

AN 882: Using ADI AD9217 with Intel[®] Stratix[®] 10 Devices

ID: 683700 Version: 2020.08.17

AN-882

Contents

1 Using ADI AD0217 with Intel Stratix 10 Devices	2
1.1. Hardware Requirements	3
1.2. Hardware Setup	3
1.3. Design Description	6
1.3.1. Overall Design Flow	7
1.3.2. Low-Latency C2C Interface	7
1.4. Functional Description	10
1.5. Parameterization	10
1.5.1. Design Parameters	10
1.5.2. Derived Parameters	11
1.5.3. Clocks	11
1.6. Directory Structure	11
1.7. Simulation	12
1.7.1. Procedure	12
1.8. Latency Measurement for 10G Design	14
1.8.1. Latency Calculations	15
1.9. Register Map	16
1.10. Document Revision History for AN 882: Using ADI AD9217 with Intel Stratix 10	
Devices	16
1.11. Appendix: 5G Design Example	16
1.11.1. Hardware Setup	16
1.11.2. Parameterization	18
1.11.3. Directory Structure	19
1.11.4. Simulation	20
1.11.5. Hardware Testing	22
1.11.6. Latency Measurement for 5G Design	26

1. Using ADI AD9217 with Intel Stratix 10 Devices

AD9217 is a single 12-bit, 10.25 gigasample per second (GSPS) radio frequency (RF) analog-to-digital converter (ADC) from Analog Devices Inc. (ADI).

AD9217 features a high speed parallel output interface to support its maximum bandwidth capability. It includes digital data path that can be configured for direct real or down converted to complex intelligence quotient (IQ) data. The interface includes 12 data lines, single data clock operating at one-half of ADC sample rate, and a parity bit.

- **Data outputs** are scrambled to maintain direct current (DC) balance on each data lane. During calibration, the scrambler should remain off.
- A **parity bit** is generated for each 12-bit sample to detect single bit errors that result from channel-to-channel misalignment. The parity bit is passed along simultaneously with the data sample and it is determined prior to being scrambled.
- The **data clock** operates at one-half the data rate. Data and the parity bit operate up to 10 Gbps while the clock operates up to 5 GHz.

AD9217 has a low latency chip-to-chip (C2C) output data formats.

1.1. Hardware Requirements

The hardware setup test requires the following hardware:

- Intel[®] Stratix[®] 10 H-Tile Signal Integrity Development Kit
- ADI AD9217 evaluation module (EVM)
- Mini-USB cables
- SMA cables
- Clock source card capable of generating sampling clock frequency

1.2. Hardware Setup

An Intel Stratix 10 GX H-Tile Signal Integrity Development Kit is used with the ADI AD9217 EVM attached to the FPGA Mezzanine Card Plus (FMC+) connector of the development board.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

ISO 9001:2015 Registered

Figure 1. Hardware Setup—10G Design

- The ADC AD9217 derives power from the FMC pins.
- Si5341 clock generator on the Intel Stratix 10 development kit provides reference clock to the ADF5356 clock source and device clock to the field-programmable gate array (FPGA).
- In ADF5356, provide a reference clock to a single-ended SMA input marked as REFINB, while a 5 GHz suppression filter is added. In this setup procedure, VHF-8400+ from Mini-Circuits Inc. is used.

• Attach SMA 50 Ohm terminations to other inputs and outputs and ensure required modifications are done to the ADF5356 board. Refer to Figure 2 on page 5.

Note: Remove R12 and R27 to apply external reference.

Figure 2. ADF5356 Terminating Unused Input and Output

- Connect RFOUTB of ADF5356 to the clock input J13 of AD9217.
- Connect the mini-USB cable to the system demonstration platform-serial (SDP-S) controller board of ADF5356 and power up the boards.

The following system-level diagram shows how the different modules connect in this design.

Figure 3. System Diagram—10G Design

In this setup, the data rate of the native PHY transceiver lanes is 10 Gbps. An external clock source card ADF5356 provides sampling clock of 10000 MHz to the ADC (AD9217) through the SMA cables. The Si5341 oscillator on the development kit board provides reference clock to the FPGA and the external clock source board ADF5356. The reference clock to the FPGA is provided to the ATX PLL, which generates the serial clock to transceiver. SPI is used to access the registers in ADC (AD9217).

1.3. Design Description

1. Using ADI AD9217 with Intel Stratix 10 Devices 683700 | 2020.08.17

1.3.1. Overall Design Flow

Figure 4. Design Flow

1.3.2. Low-Latency C2C Interface

The FPGA program supports the low-latency chip-to-chip (C2C) interface mode.

- In C2C mode, the FPGA controls the C2C pattern select and scramble fields of the ADC to implement the C2C alignment sequence.
- The FPGA de-asserts scrambling during alignment and enables scrambling after alignment is complete.
- FPGA supports inverted or non-inverted parity.
- Before running C2C mode, the ADC and FPGA C2C alignment pattern values must be set the same.

1.3.2.1. Lane Mapping in C2C

In the native PHY Transceiver, there are 16 lanes. 16 lanes transceiver is mapped to the C2C interface with 12 data lanes, 1 parity, and a clock.

- The lane 0 and lane 15 from the transceiver were discarded.
- The lanes 1 to 6 and lanes 9 to 14 are mapped to the 12 C2C data lanes.
- Lane 7 and lane 8 of the native PHY Transceiver is mapped to the parity and clock of the C2C interface.

Figure 5. Lane Mapping

1.3.2.2. C2C Design Flow

The following local parameters are involved in the C2C interface:

- WORD_WIDTH = 16
- WORDS_PER_CYCLE = DATA_WIDTH / WORD_WIDTH
- DELAY_CYCLES = ((2 * ALIGN_CNT_WIDTH) + 2 * WORDS_PER_CYCLE 2) / (WORDS_PER_CYCLE)

1.3.2.3. Calibration Operation Sequence

Table 1.Calibration Sequence

Step	Action	Device	Details
1	Data capture start asserted	FPGA	FPGA initiates system startup procedure.
2	FPGA sets DUT scrambling off & sets	FPGA	FPGA initiates data and clock alignment.
	(default is 0xAAAA)	AD9217	0x4B1 = 0; scrambler off. 0x4A0[3:0] = 1; Select pattern 1 (Reg 0x481 - 0x482).
	FPGA transceivers configured	FPGA	Write appropriate SPI bits.
	FPGA transceivers clock data recovery locks	FPGA	Read appropriate SPI bits to verify bit alignment.
3	FPGA sets DUT pattern to channel word	FPGA	FPGA initiates word alignment.
	alignment pattern (derault is 0xFF00)	AD9217	0x4A0[3:0] = 2; Select pattern 2 (Reg 0x483 - 0x484).
	FPGA transceiver comma detect used to align to word alignment pattern	FPGA	Read appropriate SPI bits to verify word alignment.
4	FPGA sets DUT pattern to channel alignment pattern (default is 0xB496)	FPGA	FPGA initiates channel alignment.
			continued

Step	Action	Device	Details		
		AD9217	0x4A0[3:0] = 3; Select pattern 2 (Reg 0x485 – 0x486).		
	FPGA RTL de-skew channels	FPGA	Read appropriate SPI bits to verify channel alignment.		
5	FPGA sets DUT pattern to ADC data	FPGA Set mux for ADC data transmission.			
		AD9217	0x4A0[3:0] = 0; Selects ADC Data.		
	DUT sends break word then ADC Data	AD9217	Automatically sends break word ($0x3333$) once then ADC data; $0x4A0[3:0] = 0$.		
	FPGA optionally sets DUT scrambling on	FPGA	Sets scrambling on (recommended).		
	after break word seen	AD9217	0x4B1[0] = 1; Scrambler on.		
6	FPGA starts capturing ADC data	FPGA	FPGA monitors parity bit.		

1.3.2.4. Calibration Operation Sequence Descriptions

- Data capture start is given by the FPGA to initiate the calibration operation sequence.
- During bit/clock alignment phase, the FPGA sets the alignment pattern and disables the scrambler. The same is done in ADC (AD9217) by configuring the registers 0x4B1 and 0x4A0 through SPI. Once the bit alignment is done in the FPGA, the word alignment phase starts.
- During the word alignment phase, the FPGA sets the alignment pattern. In ADC (AD9217), configure the register 0x4A0 with appropriate bits to select word alignment pattern. Once the word alignment is done, the channel alignment starts in the FPGA.
- During the channel alignment phase, the FPGA sets the alignment pattern. In ADC (AD9217), configure the register 0x4A0 with appropriate bits to select the channel alignment pattern. During this phase, the lane de-skew is taken care in the C2C module.

Figure 6. Channel Alignment in C2C

- In Figure 6 on page 9, Lane_0 and Lane_2 are aligned and its channel align count is 0. And in Lane_1 and Lane_n, there is a 32-bit delay in data. Therefore, the channel align count is 2.
- Based on the channel align count, the channels are aligned properly.
- After the lane/channel alignment is done and when the break pattern is detected, the scrambler is enabled in both FPGA and AD9217 and the ADC starts the data transmission.
- The FPGA starts capturing the ADC data and monitors the parity bit.

1.4. Functional Description

The design has two major blocks:

- Native PHY
- Chip-to-chip (C2C) interface

The native PHY supports data rate of 5 Gbps. The C2C interface combines controls from multiple PHYs, takes care of channel/word alignment, maps physical lane to logical lane, and converts lane data to sample data.

1.5. Parameterization

1.5.1. Design Parameters

- NO OF TRANSCEIVERS = 16
- NUM_PHY = 1
- NUM_LINK = 1
- C2C_NUM_DATA_LANE = 12
- C2C_ALIGN_CNT_WIDTH = 2

1. Using ADI AD9217 with Intel Stratix 10 Devices 683700 | 2020.08.17

intel

1.5.2. Derived Parameters

- Lane rate = 10 Gbps
- Number of lanes = 16
- ADC sampling clock = 10 GHz
- ADC samples = 10 GSps
- Sample bits = 12
- Bit rate = 10 Gsps * 12 = 120 Gbps
- *Note:* There are 12 C2C data lanes. Hence, lane rate = 120 Gbps/12 = 10 Gbps.

1.5.3. Clocks

- Master_clk = 100 MHz
- Mgt_Refclk = 312.5 MHz (Actual reference clock to generate serial clock)
- Rx_Phy Clock = (Lane rate/32) = 10 Gbps/32 = 312.5 MHz
- Serial Clock = (Lane rate/2) = 10 Gbps/2 = 5000 MHz

1.6. Directory Structure

Figure 8. Directory Structure for the AD9217 Low Latency 10G Design

Simulation test design includes RTL files, testbench files, and script files to perform functional simulation and latency measurement.

1.7. Simulation

Figure 9. Simulation Environment

The data pattern sequence block generates the calibration sequence data, which is serial loopbacked and is provided as an input to the PHY receiver (RX).

1.7.1. Procedure

To run the functional simulation using VCS simulation tool, follow these steps:

- 1. In a Terminal window, open the simulation_test_design file, which is present in the design folder.
- 2. Change the working directory to simulation_test_design/ll_nphy_tb.
- 3. In the command line, type sh run_vcs.sh to invoke the VCS Discovery Visual Environment (DVE).
- In the VCS DVE, select File ➤ Load Session from the main menu and select simulation_test_design/load_wave.tcl.
- 5. Click Load to load the session.
- 6. Run the simulation for 0.5 ms.
- 7. When the simulation is completed, observe the output displayed. The following diagrams show the simulation waveforms of the native PHY status output, data pattern generation and C2C states, and latency measurements for 10G design.

Figure 10. Native PHY Status Output

	Native PHY Status signals		
		St1	
		16'hffff	""
	-D iesd204_iesd204_rx_pcs_data_valid_export[15:0]	16'hffff	IIII
	D-rx_analogreset_rx_analogreset[15:0]	16°h0000	0000
	⊕ rx_analogreset_stat_rx_analogreset_stat[15:0]	16°h0000	0000
	. D−rx_digitalreset_rx_digitalreset[15:0]	16°h0000	0000
	- Drx_digitalreset_stat_rx_digitalreset_stat[15:0]	16'h0000	0000
	⊕ tx_analogreset_stat_tx_analogreset_stat[15:0]	16'h0000	0000
	E- tx_analogreset_tx_analogreset[15:0]	16'h0000	000
		16'h0000	000
	- D- tx_digitalreset_tx_digitalreset[15:0]	16°h0000	000
	E⊕xcvr_reset_rx_ready_rx_ready[15:0]	16'hffff	m
		16'hffff	
ł	1		

Figure 11. Data Pattern Generation and C2C States

Figure 12. Data at C2C Output

This simulation waveform has the data at C2C output. Incremental data is provided in each lane and it is observed at C2C output.

×	- 34 - 1	-															
Name	Value			469235		469240		469245	I	469250		469255		469260		69265	
		01 355	356	357	358	359	35a 🛛	35b	350	35d	35e	35f	360	361	362	363	364
	- 0 count[7][11:0] 12h	01 355	356	357	358	359	35a -	35b	350	35d	35e	35f	360	361	362	363	364
	- 🛙 count(6][11:0] 12'h	01 355	356	357	358	359	35a -	356	35c	35d	35e	35f	360	361	362	363	364
	- 🛙 count(5)(11:0) 12%	01 355	356	357	358	359	35a -	356	350	35d	35e	35f	360	361	362	363	364
	- Count[4][11:0] 12'h	01 355	356	357	358	359	35a	356	350	35d	35e	35f	360	361	362	363	364
	- 🛙 count(3)(11:0) 12'h	01 355	356	357	358	359	35a	356	350	35d	35e	35f	360	361	362	363	364
		01 355	356	357	358	359	35a	35b	350	35d	35e	35f	360	361	362	363	364
	. ■ count[1][11:0] 12'h	01 355	356	357	358	359	35a	35b	35c	35d	35e	35f	360	361	362	363	364
		01 355	356	357	358	359	35a	35b	35c	35d	35e	35f	360	361	362	363	364
þ	• c2c_data_out[31:0][11:0] 000_00ff	m <u>*</u> 03	30 *3133_13	31) *3233_2	332 *3333_33	133 *433_4334	*3533_53	3633_6	336 *3733_7	7337 *3833_8	38 *3933_9	1339 (*3533_	.33a) *3b33_J	o33b (*3c33_c3)	lc ×3d33_d	33d) *3e33	_e33e
		00 330	331	332	333	334	335	336	337	338	339	331	.) 33k	330	33d	33	ie 🛛
	⊕ c2c_data_out[30][11.0] 12'h	00 330	331	332	333	334	335	336	337	338	339	331	.) 33k	330	33d	33	ie 👘
		fff 330	331	332	333	334	335	336	337	338	339	331	33k	330	33d	33	ie 👘
	@ c2c_data_out[28][11:0] 12	fff 330	331	332	333	334	335	336	337	338	339	331	33k	330	33d	33	ie 👘
		00 330	331	332	333	334	335	336	337	338	339	338	338	330	33d	33	Se 👘
		00 330	331	332	333	334	335	336	337	338	339	338	338	330	33d	33	Se 👘
	+@ c2c_data_out[25][11:0] 12	fff 330	331	332	333	334	335	336	337	338	339	338	33k	330	33d	33	(e
		rrr 330	331	332	333	334	335	336	337	338	339	338	33k	330	33d	33	(c
		00 330	331	332	333	334	335	336	337	338	339	331	. 33k	330	33d	33	ie –
		00 330	331	332	333	334	335	336	337	338	339	331	.) 33k	33c	33d	33	ie –
		rrr <u>33</u> 0	331	332	333	334	335	336	337	338	339	331	.) 33k	33c	33d	33	le 🛛
		rrr 33(331	332	333	334	335	336	337	338	339	331	.) 33k	330	33d	33	le 🛛
		00 330	331	332	333	334	335	336	337	338	339	331	.) 33k	330	33d	33	ie 👘
	⊕ c2c_data_out[18][11:0] 12'h	00 330	331	332	333	334	335	336	337	338	339	331	33k	330	33d	33	ie 👘
	±⊕ c2c_data_out[17][11:0] 12	fff 330	331	332	333	334	335	336	337	338	339	331	338	330	33d	33	le 🛛
	@ c2c_data_out[16][11:0] 12	fff 3 30	331	332	333	334	335	336	337	338	339	338	338	330	33d	33	2e
		00 330	331	332	333	334	335	336	337	338	339	338	338	330	33d	33	2e
		00 330	331	332	333	334	335	336	337	336	339	338	338	330	33d	33	ie 🛛
		rrr <u>33</u> 0	331	332	333	334	335	336	337	338	339	338	338	330	33d	33	e
		m 1 ,	mlm						".L			1			4500	ų Li i i	

Figure 13. Latency Measurement from PHY Transmitter to C2C Output

This simulation waveform shows the latency measured from the data injected at the PHY transmitter to C2C output. The data 0×001 is a reference for latency measurement, which is highlighted below.

Figure 14. Latency Measurement for 10G Design—107.864 ns

This simulation waveform shows the measured latency for 10G design after adding pipieline registers to close timing.

_		-	C1:1682:3318 TREF	1 M1	(18929.782)7.854)	
me		Value	05881 01831 00881 05851 05881 06881 06881 06881 06881 06881 06881 06881 06881	18	190	18940
	+- 0 count[210 1:0]	12h000->12h001	000 1002 003 004 005 005 005 000 100 100 000 000 000 000	022 0	23 (024 1	025 026
	+- 0 count[1][11:0]	125000->125001	ασο του του του του του του του του του το	022 0	223 024 1	025 026
	⊕ 0 count[0][11:0]	12h000->12h001	ασι το στό στό το στ	022 0	223 024 0	025 026
8	- B cur_state(31.0)	DONE	BREAK	-		
8	- 0 pes_data[511:0]	_0000_0000_8124_7dx6	(av (av (av) av (av) av (av (av) av (av (av) av (av (av) av (av) av (av) av (av (av) av (av) av (av) av (av) av (av (av) av (a	- 66	6 36 7	36 36
	- Native PHV Status signals					
	@ pll_locked	St1				
8	D rx_analogreeet[15:0]	16760000	0000			
8	Dirx_analogreset_stat[15:0]	167x0000	0000			
8	D rx_digitalreset[15:0]	16760000	0000			
8	D rx_digitalreset_stat[15:0]	16760000	0000			
8	D rx_is_lockedtodets[15:0]	16%/11				
8	@ rx_ready[15:0]	165/000	1111			
8	D tx_analogreest(15.0)	167x0000	000			
8	the tx_analogreeset_stat(15:0)	167x0000	000			
8	D tx_digitalreset[15:0]	1610000	000			
8	b tx_digitalreset_stat[15:0]	167x0000	000			
B	D-tx_ready(15.0)	1675/1111	THE TRANSPORT			
	C2C Input Test Data					
	-D-gt_refck	811		цη		
8	- D- c2c_data_in[11:0][31:0]	000_0000_0000_0000	(00°) (W (00°)	.u. 10	or (mr) o	n (11 (11
B	- D- c2c_perity_in[31:0]	32%0000_0000	0000_000 (*00) mi_mi (*	.00 j u	1,0000700	m_m po
	- C2C Dutput data					
B	- E cur_state(31.0)	DONE	BREAK DONE			
	- B- c2c_bit_align_idone	St1				
	-D-c2c_break_seen	511				
	- B- c2c_shan_align_slone	St1				
	- B- c2c_word_align_done	511				
		1151		Ļ		
f	 c2c_dsts_cut[31.0][11:0] 	00000_ffff_ff00_0000	(mi_000] (mi_000) (mi_000] (mi_000] (mi_000] (mi_000) (mi_000] (mi_000) (mi_000] (mi_000] (mi_000) (mi_000) (mi_000) (mi	101	1 105 10	3 104 10
	-@ c2c_data_out[31][11:0]	12hfff		00 00	002 00	3 004 0
	-D c2c_data_out[30][11.0]	121/11		200,00	1000 00	0,004 0
	the second second second second	100-000				

1.8. Latency Measurement for 10G Design

Because hardware testing is not performed for 10G design, the latency measurement for 10G is derived by considering 5G design calculations and added pipelines to close timing in 10G designs. Refer to the *Appendix: Latency Measurement for 5G Design* for more information.

AN 882: Using ADI AD9217 with Intel® Stratix® 10 Devices

Related Information

Latency Measurement for 5G Design on page 26

1.8.1. Latency Calculations

Speed	FPGA Clocking (MHz)	Latency on User Interface (C2C) (ns)	Latency on Transceiver Parallel Data (Native PHY FPGA Interface) (ns)
5GT/s (5GSps)	156.25	179.2	140.8
10GT/s (10GSps) (1)	312.5	99.2	80

For designs with the lane rate of 5 Gbps:

- PHY receiver clock = (Lane rate/32 = 5000e6/32) = 156.25 MHz.
- Clock period of 156.25 MHz = 6.4 ns.
- Number of clock cycles between pulse injected at the ADC input to pulse observed at C2C output – 28 clock cycles of PHY receiver clock.
- Latency measured at the C2C output = 6.4 ns * 28 = **179.2 ns**.
- Since the C2C design in the FPGA has a constant delay of 6 clock cycles, this can be excluded from overall latency so that the latency can get up to receive transceiver.
- Latency measured at the transceiver output = 6.4 ns * (28-6) = **140.8 ns**.

Considering the above calculation, the latency for 10G lane rate is derived and shown below:

- PHY receiver clock = (lane rate/32 = 10000e6/32) = 312.5 MHz.
- Clock period of 312.5 MHz = 3.2 ns.
- Number of clock cycles between pulse injected at ADC input to pulse observed at C2C output – 28 clock cycles of PHY receiver clock.
- Latency measured at the C2C output = 3.2 ns * 28 = 89.6 ns.
- C2C latency in clock cycles = 6 clock cycles.
- Latency measured at the transceiver output = 3.2 ns * (28-6) = **70.4 ns**.

After considering the pipeline delays in 10G designs, the latency is further increased to 3 clock cycles:

Note: Pipeline stages is added to close timing in 10G designs.

- Total latency measured = 3.2 ns * 31 = **99.2 ns**.
- C2C latency in clock cycles = 6 clock cycles.
- Latency measured at transceiver output = 3.2 ns * (31-6) = 80 ns.

⁽¹⁾ The latency for 10G lane rate is derived by considering the 5G design calculations and added pipelines to close timing in 10G designs (3 clock cycles).

1.9. Register Map

Table 2.FPGA Register Map

Address	Register Name	R/W	Bit Field Name	Bits	Description
0001	C2C_SCRAMBLE_EN	R/W	c2c_scramble_en	[0]	Scrambler enable signal.
0010	C2C_OUTPUT_EN	R/W	c2c_output_en	[0]	C2C output enable signal as the C2C Valid.
0011	C2C_CHAN_ALIGN_BG_PA TT	R/W	c2c_chan_align_bg_patt	[15:0]	16-bit channel alignment BG pattern register.
0100	C2C_CHAN_ALIGN_PATT	R/W	c2c_chan_align_patt	[15:0]	16-bit channel alignment pattern register.
0101	C2C_BREAK_PATT	R/W	c2c_break_patt	[15:0]	16-bit Break Pattern register.
0110	C2C_PARITY_MODE	R/W	c2c_parity_mod	[0]	Parity Mode select (0/1).
0111	DATA_PATT_SM_START	R/W	DATA_PATT_SM_START	[0]	Data capture start signal to initiate the calibration sequence.
1000	PHY_STATUS	R	Phy Status	[31:0]	Transceiver PHY status.
1001	LANE POLARITY	R/W	Lane polarity	[0]	To take the Transceiver Lane polarity in FPGA.
1010	C2C_STATUS	R	C2c status	[31:0]	C2C status.
1011	BIT REVERSE	R	Bit reversal	[0]	To reverse the PHY output.

1.10. Document Revision History for AN 882: Using ADI AD9217 with Intel Stratix 10 Devices

Document Version	Changes
2020.08.17	Updated Figure: Hardware Setup-10G Design.
2020.08.14	Initial release.

1.11. Appendix: 5G Design Example

1.11.1. Hardware Setup

An Intel Stratix 10 GX H-Tile Signal Integrity Development Kit is used with the ADI AD9217 EVM attached to the FPGA Mezzanine Card Plus (FMC+) connector of the development board.

Figure 15. Hardware Setup—5G Design

- The ADC AD9217 derives power from the FMC pins.
- The field-programmable gate array (FPGA) device clock is supplied by Si5341 clock generator on the development kit.
- Si5341 clock generator provides reference clock to the ADF4355 clock source and FPGA.
- Sampling clock to the ADC AD9217 EVM is given by the external clock source ADF4355.

The following system-level diagram shows how the different modules connect in this design.

Figure 16. System Diagram—5G Design

In this setup, the data rate of the native PHY transceiver lanes is 5 Gbps. An external clock source card ADF4355 provides sampling clock of 5000 MHz to the ADC (AD9217) through the SMA cables. The Si5341 oscillator on the development kit board provides reference clock to the FPGA and the external clock source board ADF4355. The reference clock to the FPGA is provided to the ATX PLL, which generates the serial clock to transceiver. SPI is used to access the registers in ADC (AD9217).

1.11.2. Parameterization

1.11.2.1. Design Parameters

- NO OF TRANSCEIVERS = 16
- NUM_PHY = 1
- NUM_LINK = 1
- C2C_NUM_DATA_LANE = 12
- C2C_ALIGN_CNT_WIDTH = 2

1.11.2.2. Derived Parameters

- Lane rate = 5 Gbps
- Number of lanes = 16
- ADC sampling clock = 5 GHz
- ADC samples = 5 GSps

1. Using ADI AD9217 with Intel Stratix 10 Devices 683700 | 2020.08.17

- Sample bits = 12
- Bit rate = 5 Gsps * 12 = 60 Gbps
- Note: There are 12 C2C data lanes. Hence, lane rate = 60 Gbps/12 = 5 Gbps.

1.11.2.3. Clocks

- Master_clk = 100 MHz
- Mgt_Refclk = 312.5 MHz (Actual reference clock to generate serial clock)
- Rx_Phy Clock = (Lane rate / 32) = 5 Gbps/32 = 156.25 MHz
- Serial Clock = (Lane rate / 2) = 5 Gbps/2 = 2500 MHz

1.11.3. Directory Structure

- Hardware test design includes RTL files, SOF file, Signal Tap file, and script files to perform hardware validation and latency measurement.
- Simulation test design includes RTL files, testbench files, and script files to perform functional simulation and latency measurement.

1.11.4. Simulation

Figure 18. Simulation Environment

The data pattern sequence block generates the calibration sequence data, which is serial loopbacked and is provided as an input to the PHY receiver (RX).

1.11.4.1. Procedure

To run the functional simulation using VCS simulation tool, follow these steps:

- 1. In a Terminal window, open the simulation_test_design file, which is present in the design folder.
- 2. Change the working directory to simulation_test_design/ll_nphy_tb.
- 3. In the command line, type sh run_vcs.sh to invoke the VCS Discovery Visual Environment (DVE).
- In the VCS DVE, select File ➤ Load Session from the main menu and select simulation_test_design/load_wave.tcl.
- 5. Click Load to load the session.
- 6. Run the simulation for 0.5 ms.
- 7. When the simulation is completed, observe the output displayed. The following diagrams show the simulation waveforms of the native PHY status output, data pattern generation and C2C states, and latency measurements for 5G design.

Figure 19. Native PHY Status Output

Figure 20. Data Pattern Generation and C2C States

Figure 21. Data at C2C Output

This simulation waveform has the data at C2C output. Incremental data is provided in each lane and it is observed at C2C output.

×	I III I																	
Name	Value				469235	I	469240		469245	L	469250		469255		469260	4	69265	1
	- Count[8][11:0] 12	'h001	355	356	357	358	359	35a 💧	35b	350	35d	35e	35f	360	361	362	363	364
	- 0 count[7][11:0] 12	1h001	355	356	357	358	359	35a 💧	35b	350	35d	35e	35f	360	361	362	363	364
		rh001	355	356	357	358	359	35a	35b	350	35d	35e	35f	360	361	362	363	364
	- 0 count(5)(11:0) 12	rh001	355	356	357	358	359	35a	35b	350	35d	35e	35r	360	361	362	363	364
	🖃 🛙 count(4)(11:0) 12	n001	355	356	357	358	359	35a)	356	350	35d	35e	35r	360	361	362	363	364
	- 🛙 count(3)(11:0) 12	n001	355	356	357	358	359	35a	35b	350	354	35e	35f	360	361	362	363	364
	🕕 🛙 count(2)(11:0) 12	n001	355	356	357	358	359	35a	35b	350	354	35e	35f	360	361	362	363	364
	🗈 🛙 count(1)(11:0) 12	n001	355	356	357	358	359	35a	35b	35c	35d	35e	35f	360	361	362	363	364
		n001	355	356	357	358	359	35a	35b	350	35d	35e	35f	360	361	362	363	364
E	- c2c_data_out[31:0][11:0] 000_001	m_m	*_0330	*3133_133	1 3233_233	2 *3333_33	33 *433_4334	*3533_53	35 *3633_6	336 *3733_7	7337 *3833_83	38 *3933_9	339 <mark>(*3a33_a</mark> 3	3a *3b33_b	33b (*3c33_c33	ic *3d33_d3	33d ×3e33_	e33e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	•
		2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	•
	⊕ c2c_data_out[28][11:0] 1	2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
	⊕⊕ c2c_data_out[25][11:0] 1	2hfff	330	331	332	333	334	335	336	337	336	339	338	336	330	33d	33	e
		2hfff	330	331	332	333	334	335	336	337	336	339	338	336	330	33d	33	e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	c
	⊕⊕ c2c_data_out[22][11:0] 12	n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	c
		2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	c
		2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	33c	33d	33	e 👘
		'h000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	•
	⊕ c2c_data_out[18][11:0] 12	'h000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	•
	⊕ c2c_data_out[17][11:0]	2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e 👘
	@ c2c_data_out[16][11:0] 1	2hfff	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
		n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	e
	⊕ c2c_data_out[14][11:0] 12	n000	330	331	332	333	334	335	336	337	338	339	33a	33b	330	33d	33	¢
	⊕ c2c_data_out[13][11:0] 1	2hfff	330	331	332	333	334	335	336	337	338	339	338	33b	330	33d	33	
		2hfff	,	ilin.			u tu u l			".L	250000		L			45000	ىتىلە	, Fau

Figure 22. Latency Measurement from PHY Transmitter to C2C Output

This simulation waveform shows the latency measured from the data injected at the PHY transmitter to C2C output. The data 0×001 is a reference for latency measurement, which is highlighted below.

Figure 23. Latency Measurement for 5G Design—197.95 ns

1.11.5. Hardware Testing

1. Using ADI AD9217 with Intel Stratix 10 Devices 683700 | 2020.08.17

1.11.5.1. Procedure

The scripts to run the commands are available in the Intel Quartus[®] Prime Pro Edition software archive. The Intel Quartus Prime Pro Edition software archive should be extracted into the same folder.

- 1. Ensure the device clock is available to the FPGA before proceeding to program the FPGA using SOF file.
- 2. The Intel Stratix 10 H-Tile Signal Integrity Development Kit has a Si5341 clock controller. Program 312.5 MHz in the Out_2 and Out_9 of Si5341 U6 silicon. Out_2 acts as device clock to the FPGA and Out_9 acts as the reference clock to the external clock source board.

Figure 24. Si5341 Clock Controller

Frequ	uency(N	IHz)				
OUT0	Enable	-	625.00000	OUT5	Enable 🔻	644.53125
OUT1	Disable	-	625.00000	OUT6	Disable 🔹	625.00000
OUT2	Enable	-	312.50000	OUT7	Enable 💌	125.00000
OUT3	Enable	-	644.53125	OUT8	Enable 🔹	125.00000
OUT4	Enable	-	644.53125	OUT9	Enable 💌	312.50000
vco: 1	3750.0000	00 MH:	z			
ilicon:	U6	•	Default	Read	Set	Import

3. After providing the device clock to the FPGA, program the FPGA using the SOF file. Then, provide 5000 MHz of sampling clock to the ADC through the external clock source board. In this case, ADF4355 is used as the external clock source board to generate sampling clock to the ADC.

Figure 25. ADF4355 External Clock Source

- After programming the clock source and SOF, in the Intel Quartus Prime Pro Edition software, select **Tools ➤ System Debugging Tools ➤ System Console** to launch the system console.
- 5. In the Tcl console pane, type cd <full_path> to change directory to your project folder. If your project is already opened in the Intel Quartus Prime Pro Edition software, the default path of the system console is your project folder.
- 6. All the examples shown are mainly for the mode where L is 16, lane rate is 5 Gbps, and ADC Sampling clock is 5000 MHz.
- 7. Type the following commands in sequence and check the link up in the Signal Tap Logic Analyzer.
 - source main.tcl
 - source ADC_config.tcl

Tcl Console	
	^
In addition, the directory <quartusii dir="">/sopc_builder/system_console/scripts</quartusii>	
contains Tcl files that provide miscellaneous utilities and examples of how to	
access the functionality provided. You can include those macros in your	
scripts by issuing Tcl source commands.	
source main.tcl	- 1
ourse ADC config tol	

8. After the successful link up, check the ADC PLL lock status by reading the register $0 \times 04BF$. It should be read as 0×80 if the link up is successful.

Tcl Console Register content: 0x00057b0c Reading back register content ... Register content: 0x00057001 Reading back register content ... Register content: 0x0004bd00 PLL_Lock_Status Register content: 0x0084bf80 Reading back register content... Register content: 0x0004c0ff Reading back register content... Register content: 0x0004c1ff Reading back register content ... Register content: 0x0004b900 Reading back register content ... Register content: 0x0004ba00 Reading back register content ... Register content: 0x0004bb00 Reading back register content ... Register content: 0x0004bc00 % read spi 0x4bf Register content: 0x0084bf80 s€

9. Monitor the parity error output signal (c2c_parity_err_out) in the Signal Tap c2c instance for 0x000000h, if there is no parity error.

Figure 26. C2C Data Capture

10. Calculate the latency measurement in the design by injecting a pulse to the ADC from the FPGA. The difference in clock counts between the pulse injected and the pulse observed at the C2C output gives the exact latency in the design. Refer Latency Measurement for 5G Design on page 26 for the detailed description.

Figure 27. C2C Hardware Design Latency

1.11.6. Latency Measurement for 5G Design

The latency measurement in the low latency chip-to-chip (C2C) interface is performed based on the following specified sequences for 5G design:

• Latency pulse is generated in the FPGA (SMA J64) and it is fed as an input to the J2 VIN of the ADC AD9217 EVM board through the SMA cable.

Figure 28. Test Setup–Latency Measurement for 5G Design

Figure 29. Block Diagram—Latency Measurement

- The pulse is injected at the input of ADC(AD9217) and is observed at the C2C output in the FPGA.
- The number of clock cycles between the pulse injected is observed at the C2C output, which is referred to as Chip-to-Chip latency.
- In Figure 30 on page 28, the latency pulse is injected at the 0th clock cycle and the latency pulse in C2C data output is observed at the 28th clock cycle.

AN 882: Using ADI AD9217 with $Intel^{\circledast}\ Stratix^{\circledast}\ 10$ Devices

Figure 30. Latency Measurement for 5G Design

	Pulse injected at ADC Input		Pulse observed at C2C output
		•	
log: Trig @ 2018/03/06 18:18:50 (0:0:6.2 elap 🗲	→		
Type Alias Name 04 V	nue ας ο , - 2 , -	ή , ή , η , 1ρ , 1 ² , 1 ⁴ , 1 ^β , 1 ^β , 2 ^ρ , 2 ² , 2 ⁴ ,	2¢ , 2µ , 3p ,
top[c2c_data_out[0][11.0]	20)(-1,X_1)(0)(-2)(3)		<u>X 0 X -1 X 1994 X 2007</u>
top[c2c_data_out[1][110]	<u>20 (0 (1) 3) 2 / 3</u>		<u>-1 (2 (-1 (2 (2000 (1999)</u>
*top[c2c_data_out[2][110]		<u> </u>	<u>0 X 1 X 2 X 0 X2005 X2007</u>)
top[c2c_data_out[3][11.0]	22 (-2 (1) 4) -1		0 <u>(1 (2001 (1997</u>)
*top(c2c_data_out[4][110]	<u>19 X 2 X 0 X 1 X -1 </u>		<u>2 X 0 X 2 X 4 X2003 X1998</u>)
*top[c2c_data_out[5][110]	<u>20 X 2 X -1 X 2 X 1</u>		<u>-1 </u>
*top c2c_data_out[6][110]	<u>19 X 0 X-3 X-1</u>		<u>-2 X -1 X -2 X -1 X2008 (1979</u>)
top[c2c_data_out[7][110]	11 <u>9 (-1 X 1 X 2</u>		0 X -3 X 2008 X 1974)
top c2c_data_out[8][11.0]	<u>17 (-1 X 4 X 3 X 1 X 0</u>		<u>4 X 3 X 0 X -1 (2011 X 1970</u>)
top[c2c_data_out[9][110]	20 - X X X X Z	<u> </u>	<u> </u>
p c2c_data_out[10][11.0]	<u>15 X-1 X 0 X -1 X 1</u>	<u> </u>	- <u>1 (2017 (1966</u>)
*p c2c_data_out[11][11.0]	<u>23) 1 X 0 X 2 X -2</u>		- <u>3 X 2 X -1 X2015 X1973</u>)
p[c2c_data_out[12][11.0]	<u>19)(9,×1,×1,×1,×1</u>		1 X 2 X 3 X 1 X2017 X 1968)
*p[c2c_data_out[13][11.0]	21)(0		<u>1 X 4 X 0 X2011 X1984</u>)
p c2c_data_out[14][11.0]	20) (0 X -1 X 1 X	<u> </u>	<u>2 X -1 X 3 X -2 X2012 X2000</u>)
p c2c_data_out[15][11.0]	<u>18 -2 1 0 -2 2</u>		<u>-3 X -1 X 0 X -7 X2013 X1998</u>)
*p c2c_data_out[16][11.0]	<u>22) -2 × 1 × 0 × 1 × 0</u>		<u>0 X 3 X -1 X -9 X2013 X1995</u>)
p c2c_data_out[17][11.0]	<u>19 X -2 X 2 X 0 X -1 </u>		<u>3 X -2 X 4 X -9 X2015 X1981</u>)
*p c2c_data_out[18][11.0]	<u>19 X 0 X 4 X 1 X -2 </u>	<u> </u>	<u> </u>
Image: Pic2c_data_out[19][11.0]	<u>21 X a X 1 X a X 1</u>		<u>2 X 3 X -2 X 777 X 2013 X 1983</u>)
p c2c_data_out[20][11.0]	<u>17 (1 (1 (1 (0 (1</u>		<u>-1 (0 (1515(2005)(1976</u>)
*p c2c_data_out[21][11.0]	<u>16 X -1 X 1 X -1 X 0 X -1 X</u>	<u> </u>	<u>3 X 1 X 1708 (2007 X 1977)</u>
p c2c_data_out[22][11.0]	<u>19 (</u>		<u>32 . 4 . (1800 (2009) 1971)</u>
p c2c_data_out[23][11.0]	<u>19 X 0 X -2 X -1 X 2 X -2</u>		1 X -3 X 2 X 1865 X 2014 X 1969 X
p c2c_data_out[24][11.0]	<u>10 X-1 X 2 X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 </u>		<u>1 X 0 X 1896 X 2014 X 1970</u>
p c2c_data_out[25][11.0]	17) 1 1 -1		1 X 2 X 0 X 1917 (2009 X 1973)
p c2c_data_out[26][11.0]	17 X 1 X 2 X -2		<u>3 X 4 X 1940 X 2010 X 1972)</u>
p[c2c_data_out[27][11.0]	<u>16 (1 × 1 × 2 × 1 × 2</u>		<u>-2 X -1 X 1 X 1957 (2005 X 1964)</u>
p c2c_data_out[28][11.0]	16 (0 (2 (-1) 1) 0		-1 X 2 X 0 X 1972 X 2005 X 1969 X
p c2c_data_out[29][11.0]	<u>19 (2 (0) -1) -2 (2)</u>	<u> </u>	0 X 2 X 1987 (2006 X 1968)
p c2c_data_out[30][11.0]	<u>19 (0 × 2) 0 (-1) -2</u>		<u>3 X 1 X 2000 (1998 X 1960)</u>
*p c2c_data_out[31][11.0]	17 1 2 2 1 2 1	<u> </u>	1 X 3 X 4 X 1996 (2003 X 1961)
*c c2c_parity_err_cnt[150]	00h	0000h	
Image: State of the state of	2000h	occopcoh	
Latency pulse	0		

1.11.6.1. Latency Calculations

Speed	FPGA Clocking (MHz)	Latency on User Interface (C2C) (ns)	Latency on Transceiver Parallel Data (Native PHY FPGA Interface) (ns)
5GT/s (5GSps)	156.25	179.2	140.8

For designs with the lane rate of 5 Gbps:

- PHY receiver clock = (Lane rate/32 = 5000e6/32) = 156.25 MHz.
- Clock period of 156.25 MHz = 6.4 ns.
- Number of clock cycles between pulse injected at the ADC input to pulse observed at C2C output 28 clock cycles of PHY receiver clock.
- Latency measured at the C2C output = 6.4 ns * 28 = **179.2 ns**.
- Since the C2C design in the FPGA has a constant delay of 6 clock cycles, this can be excluded from overall latency so that the latency can get up to receive transceiver.
- Latency measured at the transceiver output = 6.4 ns * (28-6) = **140.8 ns**.

