
Customizable Flash Programmer
User Guide

Online Version

Send Feedback UG-20198

683271

2023.04.28

https://www.intel.com/content/www/us/en/docs/programmable/683271.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Customizable Flash Programmer Overview... 3
1.1. Device Family Support..3
1.2. Software Support.. 3

2. Customizable Flash Programmer...4
2.1. Programmer Image..4
2.2. System Console TCL Script... 5
2.3. Limitations and Restrictions.. 5

3. Implementing the Customizable Flash Programmer..6
3.1. Generating the Raw Programming Data File (.rpd) from User Design.............................6

3.1.1. Understanding Quad SPI Flash Byte-Addressing... 6
3.1.2. Understanding Dummy Clock Cycles for Single and Quad IO Fast Read..............8
3.1.3. Generating the .rpd File Using the Convert Programming File Tool...................8

3.2. Compiling the Programmer Image Project and Generating the .sof File......................10
3.2.1. Configuring the IP Cores Setting.. 10
3.2.2. Assigning External Clock Source for the IP Cores..11
3.2.3. Generating the Programmer Image .sof File from the Reference Project........ 11

3.3. Customizing the TCL Script... 12
3.3.1. TCL Script Structures..12
3.3.2. TCL Script User Setting...13
3.3.3. Customizing the Programming Flow..14
3.3.4. Creating Custom Functions..15

3.4. Programming the Flash Using the System Console..15
3.4.1. Executing Commands in the System Console... 16
3.4.2. Executing the System-Console Commands in the Nios II Command Shell.........16

4. Document Revision History for the Customizable Flash Programmer User Guide.......... 17

Contents

Customizable Flash Programmer User Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Customizable Flash Programmer Overview
The Customizable Flash Programmer is a tool that programs the FPGA configuration
bitstream (Raw Programming Data File (.rpd)) into the third-party flash devices. The
Customizable Flash Programmer tool is a System Console tool that uses the soft
design (Programmer Image) to program the flash device.

1.1. Device Family Support

The Customizable Flash Programmer tool supports the following devices:

• Cyclone® IV

• Cyclone V

• Intel® Cyclone 10 LP

• Intel Cyclone 10 GX

• Arria® II

• Arria V

• Intel Arria 10

• Stratix® IV

• Stratix V

This tool does not support the Intel Stratix 10 devices because the Intel Stratix 10
devices have a different configuration architecture.

1.2. Software Support

The Intel Quartus® Prime Programmer tool has limited support for third-party flash
programming. The support is as follows:

• Version 18.0 and earlier—Support only the Intel configuration devices.

• Version 18.1—Limited support for third-party flash programming.

For third-party flash programming that is not supported by the Intel Quartus Prime
Programmer, use the Customizable Flash Programmer tool.

The Programmer Image provided in the Design Store is developed using the Intel
Quartus Prime Standard Edition software version 18.0. You need to compile the
Programmer Image using the Intel Quartus Prime version 18.0 or later. Intel
recommends using the Intel Quartus Prime Standard Edition software because the
design example is developed using the Standard Edition.

Related Information

Configuration Devices
Lists the supported third-party flash devices.

683271 | 2023.04.28

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/products/programmable/configuration-device.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. Customizable Flash Programmer
Figure 1. Customizable Flash Programmer Block Diagram

Intel FPGA

JTAG to Avalon
Master Bridge

IP Core

Generic
Serial Flash

Interface
IP Core

Quad SPI
Flash

System
Console

Intel FPGA
Download Cables

to access
JTAG Pins

AS/GPIO
PinsIntel AvMM

Bursting
Master IP Core

Programmer Image

You can download the following files for the Customizable Flash Programmer from the
Design Store:

• Programmer Image—The soft logic to be programmed into the FPGA

• System Console TCL scripts (customizable_programmer.tcl)—The script to
run the programmer

Related Information

• Customizable Flash Programmer Files for Intel Arria 10 Devices
Provides the Programmer Image and System Console TCL scripts for the
Customizable Flash Programmer tool.

• Customizable Flash Programmer Files for Cyclone V Devices
Provides the Programmer Image and System Console TCL scripts for the
Customizable Flash Programmer tool.

2.1. Programmer Image

The Programmer Image is a simple Intel Quartus Prime project that consists of the
following IP cores:

• JTAG to Avalon® Master Bridge Intel FPGA IP core

• Intel AvMM Bursting Master IP core (Custom IP)

• Generic Serial Flash Interface Intel FPGA IP core

JTAG to Avalon Master Bridge IP Core

This IP core allows you to send Avalon Memory-Mapped (Avalon-MM) instruction from
the System Console to access the Avalon-MM registers in the design. You can find this
standard IP core in the Intel Quartus Prime IP Catalogue.

683271 | 2023.04.28

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://fpgacloud.intel.com/devstore/platform/18.0.0/Standard/customizable-flash-programmer-for-arria-10/
https://fpgacloud.intel.com/devstore/platform/18.0.0/Standard/customizable-flash-programmer-for-cyclone-v/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Intel AvMM Bursting Master IP core

This IP core is a custom IP core developed to trigger burst write to or burst read from
the Generic Serial Flash Interface IP core.

Generic Serial Flash Interface IP Core

This IP core is only available in the Intel Quartus Prime Standard Edition and Intel
Quartus Prime Pro Edition software version 18.0 and later. You can instantiate this IP
core from the Platform Designer IP Catalogue. This IP core is flexible to execute any
flash command.

Related Information

Generic Serial Flash Interface Intel FPGA IP Core User Guide

2.2. System Console TCL Script

The TCL script is running in the System Console environment. The script reads
the .rpd file and sends the file to the Programmer Image via JTAG port to program
the quad serial peripheral interface (quad SPI) flash.

This script accesses the Avalon-MM registers in the Programmer Image. This script has
many sub-functions such as read flash device ID, read status register, and write status
register.

Related Information

• Register Map, Generic Serial Flash Interface Intel FPGA IP Core User Guide
Provides more information on the Avalon-MM register map.

• Analyzing and Debugging Designs with System Console, Intel Quartus Prime Pro
Edition User Guide: Debug Tools

Provides more information on the System Console.

2.3. Limitations and Restrictions

There are some known limitations and restrictions to use the Customizable Flash
Programmer tool.

• Intel Arria 10 and Intel Cyclone 10 GX devices only support 4-byte addressing and
10 dummy clock cycles for single and quad fast read commands. For workaround,
generate the .rpd file using the EPCQL devices and program the .rpd file to the
flash using the System Console TCL script.

• The third-party flash must support the following commands:

Table 1. Required Commands for Third-Party Flash

Command Opcode

Normal Read 0x03

Single IO Fast Read 0x0B

Quad IO Fast Read 0xEB

Read Status Register 0x05

2. Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

5

https://www.intel.com/content/www/us/en/docs/programmable/683419.html
https://www.intel.com/content/www/us/en/docs/programmable/683419/current/register-map.html
https://www.intel.com/content/www/us/en/docs/programmable/683819/current/design-debugging-using-in-system-sources-45607.html
https://www.intel.com/content/www/us/en/docs/programmable/683819/current/design-debugging-using-in-system-sources-45607.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Implementing the Customizable Flash Programmer
To implement the Customizable Flash Programmer, follow these steps:

1. Generate the Raw Programming Data File (.rpd) from the design that you want to
program into the flash device.

a. Understand quad SPI flash byte-addressing.

b. Understand dummy clock cycles for Single and Quad IO Fast Read in your
flash device.

c. Generate the .rpd file using the Convert Programming File tool.

2. Compile the Programmer Image project and generate the SRAM Object File
(.sof).

a. Download the project from the Design Store.

b. Compile the Programmer Image project.

i. Select the target FPGA.

ii. Assign the clock pin accordingly if needed. Certain FPGAs, such as Stratix
IV, require external clock.

3. Customize the TCL script for the flash device selected.

Certain flash registers may need to be programmed. For example: setting power
up 4-byte addressing mode, dummy clock cycles, and quad enable.

4. Program the flash using the System Console.

a. Configure the Programmer Image .sof file into FPGA using the Intel Quartus
Prime Programmer.

b. Execute the TCL script and program the flash using the System Console.

3.1. Generating the Raw Programming Data File (.rpd) from User
Design

The .rpd file is the configuration bitstream to be programmed into the quad SPI flash
for active serial (AS) configuration. The FPGA reads the configuration bitstream from
quad SPI after power-on-reset (POR).

Note: Generate the .rpd file from the your design. Do not generate the .rpd file from the
Programmer Image.

3.1.1. Understanding Quad SPI Flash Byte-Addressing

The flash devices usually support one or both of the following byte-addressing modes:

• 3-byte addressing

• 4-byte addressing

683271 | 2023.04.28

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Note: Refer to the third-party quad SPI flash datasheet for the byte-addressing modes
supported for your flash devices.

The flash device reads either 24-bit (3-byte) address or 32-bit (4-byte) address before
the flash device starts taking data to write to the flash memory, or output the data if
the flash device receives a read command.

Figure 2. Reading Configuration Data from Flash with 3-Byte and 4-Byte Addressing

Command 4-bytes address 4 dummy cycles Configuration data

Command 3-bytes address N dummy cycles

Dummy data inserted into bitstream

From configuration control block perspective,
the flash is receiving the valid bitstream from
this point onwards

Configuration data

Bit 0 Bit n

Table 2. Byte-Addressing Requirement for Intel FPGAs

FPGA Devices Required Power Up Byte-Addressing of the Flash
Devices

Legacy device older than 28nm devices, Intel Cyclone 10 LP 3-byte addressing

Cyclone V, Arria V, Stratix V • 3-byte addressing (limited memory address access)
• 4-byte addressing

Intel Arria 10, Intel Cyclone 10 GX 4-byte addressing

For example, if your flash device does not support power up 4-byte addressing mode,
you cannot use your flash device for the Intel Arria 10 and Intel Cyclone 10 GX
configuration.

Flash devices with density more than 128 megabits (Mb) require 4-byte address to
access the memory space higher than 128 Mb. For flash devices that do not support
non-volatile 4-byte addressing setting, the FPGA is unable to read the configuration
image that has the start address beyond 128 Mb and unable to store image beyond
128Mb for Remote System Update application.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Memory Space of a 256 Mb Flash

For 3-byte addressing, the
FPGA can only read the
data from the start address
at the lower 128 Mb

Lower
128 Mb

Upper
128 Mb

3.1.2. Understanding Dummy Clock Cycles for Single and Quad IO Fast
Read

Table 3. Flash Commands for Configuration Control Block

Command Opcode Dummy Clock Cycles Dependency

Normal Read 0x03 No

Single IO Fast Read 0x0B Yes

Quad IO Fast Read 0xEB Yes

Third-party quad SPI flash devices may have fixed or configurable dummy clock
cycles. Determine the number of dummy clock cycles for the 0x0B and 0xEB
commands from the third-party quad SPI flash datasheet for you to generate
the .rpd file for your design.

3.1.3. Generating the .rpd File Using the Convert Programming File Tool

3.1.3.1. Generating .rpd File for Intel Arria 10 and Intel Cyclone 10 GX Devices

To generate the .rpd file for Intel Arria 10 and Intel Cyclone 10 GX devices using the
Convert Programming File tool, follow these steps:

1. Specify the programming file type: POF

2. Select the configuration device.

— If the flash density is 256 Mb, select EPCQL256.

— If the flash density is 512 Mb, select EPCQL512.

— If the flash density is 1024 Mb, select EPCQL1024.

3. Select mode: Active Serial x1 or Active Serial x4.

4. For Advanced Options, check Advanced... ➤ Disable EPCS/EPCQ ID check.

5. Check Create config data RPD (Generate output_file_auto.rpd).

6. Under Input files to convert, select the .sof file for your design.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Customizable Flash Programmer User Guide Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel recommends enabling compression for the .sof file to reduce the .rpd file
size.

7. Click Generate.

The generated <output_file>_auto.rpd file is the configuration bitstream to be
programmed into the quad SPI flash using the Customizable Flash Programmer. The
generated Programmer Object File (.pof) can be ignored.

3.1.3.2. Generating .rpd File for Other FPGA Devices

To generate the .rpd file for other FPGA devices, follow these steps:

1. Create quartus.ini in any of the following folders:

— Quartus project folder

— For Windows: %QUARTUS_ROOTDIR%\bin64

— For Linux: $QUARTUS_ROOTDIR/linux64

2. Fill in the quartus.ini directive according to the flash byte-addressing mode,
regardless of the flash density.

Quad SPI Flash Byte-Addressing Mode quartus.ini Directive

3-byte PGM_ALLOW_QSPI128=ON

4-byte PGM_ALLOW_QSPI512=ON

3. Set the following settings in the Convert Programming File tool.

a. Specify the programming file type: POF

b. Select the configuration device.

• Select QSPI128 for 3-byte addressing.

• Select QSPI512 for 4-byte addressing.

c. Select mode: Active Serial x1 or Active Serial x4.

d. For Advanced Options:

i. Check Advanced... ➤ Disable EPCS/EPCQ ID check.

ii. Fill up the dummy clock for quad SPI flash single IO and quad IO modes.
Refer to the third-party quad SPI flash datasheet for this information.

e. Check Create config data RPD (Generate output_file_auto.rpd).

f. Under Input files to convert, select the .sof file for your design.

Intel recommends enabling compression for the .sof file to reduce the .rpd
file size.

g. Click Generate.

The generated <output_file>_auto.rpd file is the configuration bitstream to be
programmed into the quad SPI flash using the Customizable Flash Programmer. The
generated .pof file can be ignored.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2. Compiling the Programmer Image Project and Generating
the .sof File

For you to send command from the System Console to the FPGA soft logic, configure
the FPGA using the Programmer Image. The Generic Serial Flash Interface IP core
then generates quad SPI command to access the quad SPI flash via active serial (AS)
pins or general-purpose I/O (GPIO) pins.

The Programmer Image project consists of only three components:

• JTAG to Avalon Master Bridge Intel FPGA IP core

• Intel AvMM Bursting Master IP core (Custom IP)

• Generic Serial Flash Interface Intel FPGA IP core

Figure 4. Programmer Image Project

3.2.1. Configuring the IP Cores Setting

3.2.1.1. Configuring JTAG to Avalon Master Bridge IP Core

The JTAG to Avalon Master Bridge IP core allows you to send Avalon-MM instruction
from the System Console to access the Avalon-MM registers in the design. You can
find this standard IP core in the Intel Quartus Prime IP Catalogue. You may instantiate
this IP core without changing the default settings of this IP core.

3.2.1.2. Configuring Intel AvMM Bursting Master IP Core

The Intel AvMM Bursting Master IP core is a custom IP core developed to trigger burst
write to or burst read from the Generic Serial Flash Interface IP core.

The following files are located in the Intel Quartus Prime project folder:

• intel_avmm_bursting_master_hw.tcl

• intel_avmm_bursting_master.sv

• altera_avalon_sc_fifo_export_fill_lel.sv

Ensure the three files are located in the project folder correctly. Instantiate this IP
core in the Platform Designer environment. You can find the IP core in the IP Catalog:
Project ➤ Peripherals ➤ Debug and Performance ➤ Intel AvMM Bursting
Master.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Customizable Flash Programmer User Guide Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4. Recommended Settings for Intel AvMM Bursting Master IP Core

Properties Setting Description

General Master Properties

Master Address Width 28 – 256M Bytes Support up to 2 Gb flash density.

Master Data Width — This setting is not applicable.

byteenable Width — This setting is not applicable.

Master is Pipelined? — This setting is not applicable.

Burst Specific Properties

burstcount Width 7 – 64 Words Page Write usually takes up to 256 bytes or 64 words per
transaction., Certain flash devices may accept more bytes
per Page Write transaction.

Master Users Bursts? BURST Set to burst mode.

3.2.1.3. Configuring Generic Serial Flash Interface IP Core

The Generic Serial Flash Interface IP core is only available in the Intel Quartus Prime
Standard Edition and Intel Quartus Prime Pro Edition software version 18.0 and later.
You can instantiate this IP core from the Platform Designer IP Catalogue.

Intel recommends setting the Device Density (Mb) to 2048 even if you are using
a lower device density. This setting may support any density lower than 2048 Mb.

Note: If the value for the Device Density (Mb) is changed, the base address of your
Avalon-MM register maps deviates from the default base address defined in the TCL
script. If you need to change to other device density, you need to match the base
address defined in the TCL script to the Platform Designer Avalon-MM base address.

You can set the Number of Chip Selects used up to 3. Only Intel Arria 10 and
Intel Cyclone 10 GX support cascaded flash. If you set this value to 3 for other FPGAs,
ensure the first chip is always selected during flash access.

3.2.2. Assigning External Clock Source for the IP Cores

The reference design utilizes the internal oscillator as the clock source. If you want to
use an external clock as the source, you need to assign the external clock pin in Pin
Assignment Editor accordingly.

For certain devices such as Stratix IV, you cannot use the internal oscillator as the
clock source. You must use an external clock as the source and you need to assign the
external clock pin accordingly.

3.2.3. Generating the Programmer Image .sof File from the Reference
Project

To generate the .sof file, follow these steps:

1. Open the reference project using the Intel Quartus Prime software.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The reference project is created using the Intel Quartus Prime Standard Edition
software version 18.0. Intel recommends opening this project using the same
version of the Intel Quartus Prime software.

2. Select the target device based on the device used on the board.

3. Configure the IP core setting in Platform Designer. This step is optional.

4. Regenerate HDL in the Platform Designer.

5. Assign the clock pin if you use an external clock as the clock source in your
design.

6. Recompile the project to generate the .sof file.

The generated .sof file is used to configure the FPGA. You may run the TCL script in
the System Console to program the .rpd file into the quad SPI flash for FPGA
configuration.

3.3. Customizing the TCL Script

The Customizable Flash Programmer uses the System Console framework to send
commands to the FPGA that instantiate JTAG to Avalon Master Bridge IP core.

You can program the .rpd file to any third-party quad SPI flash using the TCL script.
You can customize the TCL script to perform any quad SPI flash command, such as to
program the flash registers to set the 4-byte addressing, dummy clock cycles, and
quad enable (QE) bit.

Some example functions are created in the TCL script. You can use the TCL script to
access the Generic Serial Flash Interface IP core Avalon-MM registers to carry out
certain flash transactions, such as read Status Register, sector erase, and read Device
ID. If your design uses the Generic Serial Flash Interface IP core, you can use this
script as a reference to enable your design to access the quad SPI flash.

3.3.1. TCL Script Structures

The TCL script is designed to be extensible. The script is consisting of the following:

• Main script (customizable_programmer.tcl)—This script contains the global
variables, common functions, and user settings. You can execute this script using
the System Console to program the .rpd file to the flash.

• Extended script—This script stores the third-party flash commands. You may
duplicate the sample script for other third-party flash devices. For example,
programming NVCR for Micron flash and storing all Micron flash-specific functions
using the micon_mt25q.tcl script. The cypress_s25fs_s.tcl script stores
S25FS-S flash-specific functions.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Customizable Flash Programmer User Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Some examples of calling flash-specific functions are as follows:

• Source the extended script (micron_mt25q.tcl) in the main script
(customizable_programmer.tcl).

Figure 5. Example of Sourcing an Extended Script in the Main Script

Figure 6. Example of Flash-Specific Commands in the Extended Script

• Call the clear_flag_status_register function in the main script using the
following command.

micron_mt25q::clear_flag_status_register

3.3.2. TCL Script User Setting

You may use any text editor to edit the TCL script under the User Setting section.

Table 5. TCL Script User Setting

Setting Options Description

chip_select 0, 1, 2 Specify the access to which flash attached to the FPGA.
Only applicable to Intel Arria 10 and Intel Cyclone 10 GX.
For other FPGA devices, always set to 0.

byte_addressing 0, 1 Select the flash byte-addressing mode.
• 0 = 3-byte addressing
• 1 = 4-byte addressing

dummy_clock N Specify the number of dummy clock cycles for the flash
commands. Refer to the third-party quad SPI flash
datasheet.

baud_rate 1 – 16 Specify the IP clock divisor for the quad SPI clock.
• 1 = div2
• 2 = div4
• 3 = div6
• 16 = div32
For example, if baud_rate = 1, the IP clock is 100 MHz,
the quad SPI clock is 50 MHz.

cs_assert_delay N Specify the delay clock cycles before asserting nCS to
initiate the flash command.

continued...

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Options Description

read_opcode flash read opcode Enter the flash read opcode. Refer to the third-party quad
SPI flash datasheet for flash read opcode.

write_opcode flash write opcode Enter the flash write opcode. Refer to the third-party quad
SPI flash datasheet for flash write opcode.

polling_opcode 0x05 Applicable to all flash devices except Micron flash device.

0x70 Only applicable to Micron flash device.

verify_during_programm
ing

0, 1 Verify the written data on the fly.
Intel recommends setting verify_during_programming
= 1 for first time programming to ensure the script works.
For subsequent programming, set
verify_during_programming = 0 to reduce
programming time.

burst_auto 0, 1 Set burst_auto = 1 to improve programming time. Set
burst_auto = 0 if burst auto mode is unstable.

source
<extended_script>.tcl

<Extended TCL script file> Source for extended TCL script. For example, to source for
Micron-specific flash commands in an extended TCL scripts,
use this command: source micron_mt25q.tcl.

3.3.3. Customizing the Programming Flow

The standard programming flow is as follows:

1. Read the .rpd file.

2. Write the .rpd file to the flash with either write_rpd_data_auto or
write_rpd_data function depending on the burst_auto setting.

The write_rpd_data_auto function sends >256 bytes continuously to the Intel
AvMM Bursting Master IP core. The Intel AvMM Bursting Master IP core handles the
incoming bitstream automatically and performs quad SPI Page Write transactions with
256 bytes per transaction until the bitstream is fully programmed into the flash.

The write_rpd_data function sends exactly 256 bytes to the Intel AvMM Bursting
Master IP core. This function triggers the Intel AvMM Bursting Master IP core to
perform quad SPI Page Write of 256 bytes.

Figure 7. Programming Flow of the TCL Script

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Customizable Flash Programmer User Guide Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can customize the programming flow by editing the TCL script.

Figure 8. Example of a Customized Programming Flow

3.3.4. Creating Custom Functions

You may need to create the custom functions to carry out certain flash transactions.

Figure 9. Example of Custom Function to Program Macronix Flash Quad Enable (QE) Bit
to Enable Quad IO

Program the Status
Register bit6 as 1

Write Status Register
Command

1 Data Byte to Write to
the Flash Register

Related Information

Register Map, Generic Serial Flash Interface Intel FPGA IP Core User Guide
Provides more details about the register map.

3.4. Programming the Flash Using the System Console

You can program the .rpd file using the following methods:

• Launch the System Console and execute the commands in the TCL Console
window.

• Execute the system-console commands in the Nios® II Command Shell.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Send Feedback Customizable Flash Programmer User Guide

15

https://www.intel.com/content/www/us/en/docs/programmable/683419/current/register-map.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4.1. Executing Commands in the System Console

Ensure the Programmer Image .sof file is configured into the FPGA to execute the
System Console command correctly.

To execute the commands in the System Console to program the .rpd file, follow
these steps:

1. Launch the Nios II Command Shell.

2. Change the directory to your working folder where you save the TCL script
and .rpd file. For example: cd C:\My_Projects.

3. Launch the System Console by executing this command: system-console.

4. At the TCL Console window, load the TCL script by executing this command:
source customizable_programmer.tcl.

5. Program the .rpd file by executing this command: programming_flow
<your_rpd_file>.

In System Console environment, you can execute many other commands besides
programming the .rpd file. You may execute other functions in the TCL script directly
from the TCL Console window. For example, you can execute read_memory_id to
read the flash device ID, or read_status_reg to read the Status Register of the
flash. Any function written in the TCL script, including the custom functions in
extended script, can be executed from the TCL Console window.

An example to run a custom function in the custom script is as follows:

micron_mt25q::read_flag_status_register

3.4.2. Executing the System-Console Commands in the Nios II Command
Shell

To execute the system-console commands to program the .rpd file, follow these
steps:

1. Launch the Nios II Command Shell.

2. Change the directory to your working folder where you save the TCL script
and .rpd file. For example: cd C:\My_Projects.

3. Program the .rpd file using this command: system-console --
script=customizable_programmer.tcl <your_rpd_file>.

3. Implementing the Customizable Flash Programmer

683271 | 2023.04.28

Customizable Flash Programmer User Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Document Revision History for the Customizable Flash
Programmer User Guide

Document
Version

Changes

2023.04.28 Updated polling_opcode row in the table in the TCL Script User Setting section to replace 0x07 with
0x70.

2018.11.28 Initial release.

683271 | 2023.04.28

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Customizable%20Flash%20Programmer%20User%20Guide%20(683271%202023.04.28)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	Customizable Flash Programmer User Guide
	Contents
	1. Customizable Flash Programmer Overview
	1.1. Device Family Support
	1.2. Software Support

	2. Customizable Flash Programmer
	2.1. Programmer Image
	2.2. System Console TCL Script
	2.3. Limitations and Restrictions

	3. Implementing the Customizable Flash Programmer
	3.1. Generating the Raw Programming Data File (.rpd) from User Design
	3.1.1. Understanding Quad SPI Flash Byte-Addressing
	3.1.2. Understanding Dummy Clock Cycles for Single and Quad IO Fast Read
	3.1.3. Generating the .rpd File Using the Convert Programming File Tool
	3.1.3.1. Generating .rpd File for Intel Arria 10 and Intel Cyclone 10 GX Devices
	3.1.3.2. Generating .rpd File for Other FPGA Devices

	3.2. Compiling the Programmer Image Project and Generating the .sof File
	3.2.1. Configuring the IP Cores Setting
	3.2.1.1. Configuring JTAG to Avalon Master Bridge IP Core
	3.2.1.2. Configuring Intel AvMM Bursting Master IP Core
	3.2.1.3. Configuring Generic Serial Flash Interface IP Core

	3.2.2. Assigning External Clock Source for the IP Cores
	3.2.3. Generating the Programmer Image .sof File from the Reference Project

	3.3. Customizing the TCL Script
	3.3.1. TCL Script Structures
	3.3.2. TCL Script User Setting
	3.3.3. Customizing the Programming Flow
	3.3.4. Creating Custom Functions

	3.4. Programming the Flash Using the System Console
	3.4.1. Executing Commands in the System Console
	3.4.2. Executing the System-Console Commands in the Nios II Command Shell

	4. Document Revision History for the Customizable Flash Programmer User Guide

