
AN 556: Using the Design Security
Features in Intel FPGAs

Online Version

Send Feedback AN-556

ID: 683269

Version: 2021.05.21

https://www.intel.com/content/www/us/en/docs/programmable/683269/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Using the Design Security Features in Intel® FPGAs... 3
Overview of the Design Security Feature... 4

Security Encryption Algorithm...6
Non-Volatile and Volatile Key Storage.. 6
Key Programming... 7
Intel Arria 10 and Intel Cyclone 10 GX Qcrypt Security Tool...................................... 8

Hardware and Software Requirements...11
Hardware Requirements...11
Software Requirements..12

Steps for Implementing a Secure Configuration Flow...12
Step 1: Generating .ekp File and Encrypting Configuration File................................ 13
Step 2a: Programming Volatile Key into the FPGAs.. 18
Step 2b: Programming Non-Volatile Key into the FPGAs..18
Step 3: Configuring the 40-nm, 28-nm, or 20-nm FPGAs with Encrypted

Configuration Data... 22
Steps to Enable Tamper-Protection Bit Programming... 23
Supported Configuration Schemes.. 23
Security Mode Verification... 24

Verification During JTAG Secure Mode.. 28
Serial Flash Loader Support with Encryption Enabled...29
Serial Flash Loader Support with Encryption Enabled for Single FPGA Device Chain............. 29
JTAG Secure Mode for 28-nm and 20-nm FPGAs... 30

Internal JTAG Interface.. 31
Design Example for JTAG Secure Mode...36

Document Revision History for AN 556: Using the Design Security Features in Intel FPGAs... 39

Contents

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Design Security Features in Intel® FPGAs
This application note describes how you can use the design security features in Intel®
40-, 28- and 20-nm FPGAs to protect your designs against unauthorized copying,
reverse engineering, and tampering of your configuration files. This application note
provides the hardware and software requirements for the 40-, 28- and 20-nm FPGAs
design security features. This application note also provides steps for implementing
secure configuration flow.

Note: This application note uses the term "40-nm","28-nm" or "20-nm" FPGAs. The following
table lists the supported FPGAs and its applicable devices.

Table 1. Supported FPGAs

FPGA Devices

40 nm Arria® II and Stratix® IV

28 nm Arria V, Cyclone® V, and Stratix V

20 nm Intel Arria 10 and Intel Cyclone 10 GX

In the commercial and military environments, design security is an important
consideration for digital designers. As FPGAs start to play a role in larger and more
critical system components, it is important to protect the designs from unauthorized
copying, reverse engineering, and tampering. Intel FPGAs address these concerns by
encrypting their configuration bitstreams with the 256-bit Advanced Encryption
Standard (AES) algorithm.

Table 2. AES Modes in Supported Intel FPGAs

FPGA AES Mode

40 nm Counter Mode (CTR)

28 nm Cipher-block chaining (CBC)

20 nm CTR and keyed-hash message authentication code (HMAC)

During device operation, FPGAs store configuration data in SRAM configuration cells.
Because SRAM memory is volatile, the SRAM cells must be loaded with configuration
data each time the device powers up. Configuration data is typically sent from an
external memory source, such as a flash memory or a configuration device, to the
FPGA. It is possible to intercept the configuration data when it is being sent from the
memory source to the FPGA. If the configuration data were not encrypted, you could
use the intercepted configuration data to configure another FPGA.

Intel FPGAs offer both volatile and non-volatile key storage. The key is stored in FPGAs
when using the design security feature. Depending on the security mode, you can
configure the FPGAs with a configuration file that is encrypted with the same key, or
for board testing, configure with a normal configuration file.

683269 | 2021.05.21

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The design security feature is available when configuring the FPGAs with fast passive
parallel (FPP) configuration scheme with an external host (such as a MAX® II or MAX V
device or microprocessor) or when using active serial (AS) or passive serial (PS)
configuration schemes.

Related Information

• AN 680: Product Security Features for Altera Devices
Provides more information about the product security features.

• Configuration, Design Security, and Remote System Upgrades in Arria II Devices
Provides more information about the design security for Arria II devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix IV Devices
Provides more information about the design security for Stratix IV devices.

• Configuration, Design Security, and Remote System Upgrades in Arria V Devices
Provides more information about the design security for Arria V devices.

• Configuration, Design Security, and Remote System Upgrades in Cyclone V
Devices

Provides more information about the design security for Cyclone V devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix V Devices
Provides more information about the design security for Stratix V devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Arria 10
Devices

Provides more information about the design security for Intel Arria 10 devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Cyclone 10
GX Devices

Provides more information about the design security for Intel Cyclone 10
devices.

• Configuration Design Security in Intel MAX 10 FPGA

Overview of the Design Security Feature

The design security feature for Intel FPGAs protects against unauthorized copying ,
reverse engineering, and tampering. The following table lists some of the design
approaches to make the solution secure.

The 20-nm FPGAs have additional security features that you can enable by burning a
fuse, or by setting an option bit in the configuration bit-stream by using the stand-
alone Qcrypt tool or the Intel Quartus® Prime Convert Programming File tool. Tamper-
protection bit and JTAG Secure mode can be enabled separately in 20-nm FPGAs only.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

4

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an_680.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_51009.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51010.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683213/current/enhanced-configuration-and-configuration.html
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683665/
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
https://www.intel.com/content/www/us/en/docs/programmable/683865/current/configuration-design-security.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3. Design Security Approach for 40-nm and 28-nm FPGAs

Caution: Enabling the tamper-protection bit disables the test mode in 40-nm and 28-nm FPGAs.
Disabling the test mode is irreversible and prevents Intel from carrying out failure analysis.
To enable the tamper protection bit, refer to the Steps to Enable Tamper-Protection Bit
Programming section.

Design Security Element 40-nm FPGA 28-nm FPGA (1)

Non-Volatile key The non-volatile key is securely stored in fuses within the device. Proprietary
security features make it difficult to determine this key.

Volatile Key The volatile key is securely stored in battery-backed RAM within the device.
Proprietary security features make it difficult to determine this key.

Key Generation Two user provided 256-bit strings are
processed to generate a 256-bit key
that is programmed into the device.

A user provided 256-bit key is
processed by a one-way function
before being programmed into the
device.

Key Choice User only set either 1 security key type (non-volatile key or volatile key) into the
device.

Tamper Protection Mode Tamper protection mode prevents the FPGA from being loaded with an
unencrypted configuration file. When you enable this mode, the FPGA can only
be loaded with a configuration that has been encrypted with your key.
Unencrypted configurations and configurations encrypted with the wrong key
result in a configuration failure. You can enable this mode by setting a fuse
within the device.

Configuration Readback These devices do not support a configuration readback feature which makes
readback of your unencrypted configuration data infeasible.

Table 4. Design Security Approach for 20-nm FPGAs

Design Security
Element

Description

Non-Volatile key The non-volatile key is securely stored in fuses within the device. Proprietary security features
make it difficult to determine this key.

Volatile Key The volatile key is securely stored in battery-backed RAM within the device. Proprietary security
features make it difficult to determine this key.

Key Generation A user provided 256-bit key is processed by a one-way function before being programmed into
the device.

Key Choice Both volatile and non-volatile key can exist in a device. User can choose which key to use by
setting the option bits in encrypted configuration file through the Convert Programming File tool
or the Qcrypt tool.

Tamper Protection
Mode

Tamper protection mode prevents the FPGA from being loaded with an unencrypted configuration
file. When you enable this mode, the FPGA can only be loaded with a configuration that has been
encrypted with your key. Unencrypted configurations and configurations encrypted with the wrong
key result in a configuration failure. You can enable this mode by setting a fuse within the device.

continued...

(1) When you enable the tamper-protection bit in 28-nm FPGAs, the device is in the JTAG secure
mode.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Security
Element

Description

Configuration
Readback

These devices do not support a configuration readback feature. From a security perspective, this
makes readback of your unencrypted configuration data infeasible.

Security Key Control By using different JTAG instructions and the security option in the Qcrypt tool, you have the
flexibility to permanently or temporarily disable the use of the non-volatile or volatile key. You can
also choose to lock the volatile key to prevent it from being overwritten or reprogrammed.

JTAG Access Control You can enable various levels of JTAG access control by setting the OTP fuses or option bits in the
configuration file using the Qcrypt tool:
1. Force full configuration or partial configuration to be done through HPS only.
2. Bypass external JTAG pin or HPS JTAG. This feature disables external JTAG or HPS JTAG

access, but can be unlocked through internal core access. (2)

3. Disable all AES key related JTAG instructions from external JTAG pins.
4. Allows only a limited set of mandatory JTAG instruction to be accessed through external JTAG,

similar to JTAG Secure mode.

Note: For additional details on these and other security features, contact Intel FPGA
Technical Support.

Related Information

• Intel Arria 10 and Intel Cyclone 10 GX Qcrypt Security Tool on page 8

• Steps to Enable Tamper-Protection Bit Programming on page 23

• Steps for Implementing a Secure Configuration Flow on page 12

• JTAG Secure Mode for 28-nm and 20-nm FPGAs on page 30

Security Encryption Algorithm

Intel FPGAs have a dedicated AES decryptor block than can decrypt configuration bit-
streams prior to configuring the FPGA device. The 28-nm FPGAs use the AES block in
CBC mode, while the 40-nm and 20-nm FPGAs use the AES block in CTR mode. In
addition, the 20nm devices implement techniques to mitigate side-channel attacks
against the standard NIST CTR mode of encryption. If the security feature is not used,
the AES decryptor is bypassed. The FPGAs AES implementation is validated as
conforming to the Federal Information Processing Standards FIPS-197.

Related Information

Computer Security Resource Center (CSRC)
For the AES algorithm, refer to the Federal Information Processing Standards
Publication FIPS-197 or the AES Algorithm (Rijndael) Information. For the AES
validation for FPGAs, refer to the Advanced Encryption Standard Algorithm
Validation List.

Non-Volatile and Volatile Key Storage

Intel FPGAs offer both volatile and non-volatile key storage. The volatile key storage
registers are reprogrammable and erasable. The contents of the key registers are
retained between power-cycles with a coin-cell battery. Non-volatile key registers are
fuse-based and are one-time programmable.

(2) Intel Cyclone 10 GX does not support force full configuration or partial configuration through
HPS and HPS JTAG Bypass.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

6

http://csrc.nist.gov/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Examples of lithium coin-cell type batteries that are used for volatile key storage
purposes are BR1220 (–30°C to 80°C) and BR2477A (–40°C to 125°C).

Table 5. Volatile and Non-Volatile Key Comparison

Option Volatile Key Non-Volatile Key

Key Length 256 bits 256 bits

Key Programmability Reprogrammable and erasable key One-time programmable key

External Battery Required Not required

Key Programming Method (3) On-board Both on-board and off-board (4)

Design Protection (5) Secure against copying, reverse engineering, and tampering

Key Programming

Table 6. Key Programming Methods

Programming Procedure Method Programming Tool/Support

On-Board Programming Prototyping Intel FPGA Ethernet Cable (6), JTAG Technologies (7), Intel FPGA Parallel
Port Cable (8), Intel FPGA Download Cable (9), and Intel FPGA Download
Cable II (10).

Production JTAG Technologies*

Off-Board Programming Prototyping System General*

Production System General

(3) Key programming is carried out through JTAG interface. You need to use valid MSEL pin
settings for the JTAG interface.

(4) Programming the non-volatile key fuses uses the standard voltage sources used by the FPGA
during normal operation. No additional voltage rails are necessary for programming non-
volatile key.

(5) Volatile key tamper-protection is only available for Arria II, Arria V, Cyclone V, Stratix V, Intel
Arria 10, and Intel Cyclone 10 GX devices.

(6) Intel FPGA Ethernet Cable supports both volatile and non-volatile key programming.

(7) JTAG Technologies* supports both volatile and non-volatile key programming.

(8) Intel FPGA Parallel Port Cable supports only volatile key programming.

(9) Intel FPGA Download Cable support only volatile key programming except in 20-nm FPGAs,
where it supports both volatile and non-volatile key programming.

(10) Intel FPGA Download Cable II supports both volatile and non-volatile key programming.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Key programming uses the following definitions:

• On-board: procedure in which the device is programmed on your board

• Off-board: procedure in which the device is programmed on a separate
programming system

• Prototyping: method initially used to verify proper operation of a particular
method

• Production: method used for large-volume production

Note: For other third-party non-volatile key programming, you must regulate the JTAG TCK
pulse width (period) for proper polyfuse programming, as listed in Table 10 on page
11.

Related Information

Intel FPGA Technical Support
Provides information about programming support.

Intel Arria 10 and Intel Cyclone 10 GX Qcrypt Security Tool

The Qcrypt tool is a stand-alone encryption tool for encrypting and decrypting Intel
Arria 10 and Intel Cyclone 10 GX FPGA configuration bit-stream files. The Qcrypt tool
can also be used to encrypt HPS boot images through a script. Different kinds of
security settings that are currently not accessible from the Intel Quartus Prime
graphical user interface can be set through the Qcrypt tool.

The Qcrypt tool encrypts and decrypts raw binary files (.rbf) only and not other
configuration files, such as .sof and .pof files. Throughout the encryption flow, the
Qcrypt tool generates an authentication tag while encrypting the .rbf file. The
authentication tag prevents any modification or tampering of the configuration bit-
stream. Besides encryption and decryption, the Qcrypt tool allows you to enable and
set various security features and settings. By incorporating security features and
settings into the .rbf file, you have the flexibility to use different kinds of security
features on Intel Arria 10 and Intel Cyclone 10 GX devices without permanently
burning the security fuses. To generate the .ekp file or encrypted configuration file
other than .rbf, you have to use the Intel Quartus Prime Convert Programming File
tool.

Note: The Qcrypt tool is not license-protected and can be used by all Intel Quartus Prime
software user.

Related Information

• Overview of the Design Security Feature on page 4

• Steps to Enable Tamper-Protection Bit Programming on page 23

• Steps for Implementing a Secure Configuration Flow on page 12

• JTAG Secure Mode for 28-nm and 20-nm FPGAs on page 30

• Qcrypt Tool Options on page 9
Provides more information about Qcrypt tool features.

• AN 759: Intel Arria 10 SoC Secure Boot User Guide
Provides more information about encrypting HPS boot images.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

8

https://www.intel.com/content/www/us/en/support/programmable/support-resources/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683060/current/an-759-using-secure-boot-in-soc-devices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Qcrypt Tool

You can use the following command to encrypt and decrypt .rbf files. This command
is the only way to set the advanced security options.

qcrypt [options] <input_file.rbf> <output_file.rbf>

Qcrypt Tool Options

Table 7. Basic Options in Qcrypt Tool

Basic Option Descriptions

--encrypt Encrypts input_file.rbf with default behavior.

--decrypt Decrypts input_file.rbf to obtain the original bit-stream. The
decrypted .rbf is not the same as original bit-stream if you had previously
enabled any security options. You must explicitly reset these security options to
level 0 if you want the decrypted .rbf to match the original pre-
encrypted .rbf. Note that there are minor differences between the original and
decrypted .rbf files. The differences can be ignored.

--keyfile=<KEY_FILE> Default name for this key file is keyfile.key. This option allows you to specify
an alternate name for the keyfile.key. The key file is located in the current
project directory where the input_file.rbf is also stored. Refer example key
file in Generating Single-Device .ekp File and Encrypting Configuration File using
Intel Quartus Prime Software on page 14.

--keyname=<KEY_NAME> Specify a named key to use from the key file. By default, the tool uses the first
key from the key file.

--keystore=<types of key> Specify which security key to be use:
• otp (non-volatile key)
• battery (volatile key)
One-time programmable (otp) is the default value.

--iv=<HEX_VALUE> Optional seed value for creating a non-random initialization vector (IV). By
default, an .rbf generates a different encrypted .rbf every time it is
encrypted. This option allows you to specify a seed value to ensure the same
encrypted .rbf is generated when using same --iv value. HEX_VALUE can be
any arbitrary 32-bit hexadecimal value.

Table 8. Security Options in Qcrypt Tool

Security Option Descriptions

--lockto=<FILE_NAME.qlk> Locks authentication to corresponding prior base bitstream.
The .qlk file is automatically created when a base configuration file, such as a
CvP core image bitstream, is encrypted. Use this option when you want a follow-
on core CvP or partial reconfiguration image to be usable only with that base
configuration. This prevents a follow-on bitstream from being loaded over a
wrong (but otherwise authenticated) base bitstream.

--no-lockto Overrides any mandatory --lockto requirement

--epof-only=[0:3] Only allow encrypted and authenticated bit-streams to be used for external
configuration.

--no-config=[0:3] Disables configuration from external pins. With this option set, configuration can
only be controlled by the internal HPS.
Note: This security option is not supported in Intel Cyclone 10 GX.

--no-pr=[0:3] Disables external partial-configuration.

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Security Option Descriptions

--no-jtag-key=[0:3] Disables key-related JTAG instructions.

--no-jtag-ext=[0:3] Enables JTAG Secure mode.

--no-jtag=[0:3] Forces the external JTAG pins into BYPASS mode.

--no-hps-jtag=[0:3] Forces the internal HPS JTAG into BYPASS mode.
Note: This security option is not supported in Intel Cyclone 10 GX.

--no-otp-key=[0:3] Disables use of the non-volatile OTP fuse key.

--no-battery-key=[0:3] Disables use of the battery-backed key.

--lock-battery-key=[0:3] Prevents the battery-backed volatile key from being changed or overwritten.

--secure=[2:3] Disables Test Mode <default=2>.

Related Information

• Intel Arria 10 and Intel Cyclone 10 GX Qcrypt Security Tool on page 8

• AN 759: Intel Arria 10 SoC Secure Boot User Guide
Provides more information about encrypting HPS boot images.

Security Levels of Qcrypt Tool Security Option

The Qcrypt tool allows the flexibility to determine the security level of the security
options in Table 8 on page 9. You can choose the minimum or maximum requirement
by specifying the level of security from 0 to 3.

Table 9. Qcrypt Tool Security Option Security Levels

Security Level Descriptions

0 The security feature is not enabled unless by the corresponding OTP fuse.

1 The security feature is enabled from the start of the current full- or partial-reconfiguration until the
start of the next full configuration.

2 The security feature is enabled until the next power-on-reset. Additionally, configuration does not
proceed if any action normally prevented by the security feature has taken place since the last power-
on-reset.

3 Configuration does not proceed unless the security feature has been permanently enabled by blowing
the corresponding fuses in the device.

The security level of 2 provides a level of security almost as powerful as setting the
corresponding OTP security fuse, but with some flexibility. For example, the use of
JTAG may be required for manufacturing test or debug, but you may want to totally
disable JTAG while a secured (encrypted) bit-stream is loaded in the device.
Furthermore, you may not want to load a secured bit-stream into a device that had
previously been probed with any kind of JTAG command.

Intel recommends that you use the strictest security level for each option that is
consistent with your design requirements.

Note: You can find information on the Qcrypt tool by using the --help option.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

10

https://www.intel.com/content/www/us/en/docs/programmable/683060/current/an-759-using-secure-boot-in-soc-devices.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware and Software Requirements

When using the design security feature, a volatile or non-volatile key is stored in the
FPGA. The key must be programmed before the FPGA is configured with an encrypted
configuration file.

Hardware Requirements

The following table lists the specifications that you must follow for a successful key
programming.

Table 10. Specifications for Key Programming

Parameter Key Programming Mode

Non-Volatile Key Volatile Key

TCK period 10 µs ± 1 µs (11) —

Ambient Temperature 25°C ± 5°C 25°C ± 5°C

Voltage (VCCBAT) — (12)

VCCBAT is a dedicated power supply for the volatile key storage and is not shared with
other on-chip power supplies, such as VCCIO or VCC. VCCBAT continuously supplies
power to the volatile register regardless of the on-chip supply condition.

Note: After power up, you must wait for the device to exit power-on reset (POR) before
beginning the key programming. You may encounter verification error when
programming the volatile Encryption Key Programming (.ekp) file if you have the
VCCBAT pin tied to GND. The VCCBAT pin must be tied to the recommended VCCBAT
voltage provided in the respective device family pin connection guidelines for proper
operation.

Related Information

• Device Datasheet for Arria II Devices
Provides more information about JTAG, POR, and voltage specifications.

• DC and Switching Characteristics for Stratix IV Devices
Provides more information about JTAG, POR, and voltage specifications.

• Arria V Device Datasheet
Provides more information about JTAG, POR, and voltage specifications.

• Cyclone V Device Datasheet
Provides more information about JTAG, POR, and voltage specifications.

• Stratix V Device Datasheet
Provides more information about JTAG, POR, and voltage specifications.

• Intel Arria 10 Device Datasheet
Provides more information about JTAG, POR, and voltage specifications.

(11) Applies to 40-nm and 28-nm FPGAs only.

(12) If you do not use the volatile key, refer to the respective device family pin connection
guidelines for VCCBAT connection.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

11

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_53001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv54001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683022/current/gx-gt-sx-and-st-device-datasheet.html
https://www.intel.com/content/www/us/en/docs/programmable/683801/current/cyclone-v-device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_53001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683771/current/device-datasheet.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Intel Cyclone 10 GX Device Datasheet
Provides more information about JTAG, POR, and voltage specifications.

• Stratix V E, GS, and GX Device Family Pin Connection Guidelines

• Stratix V GT Device Family Pin Connection Guidelines

• Arria V GT, GX, ST and SX Device Family Pin Connection Guidelines

• Arria V GZ Device Family Pin Connection Guidelines

• Stratix IV GX and E Device Family Pin Connection Guidelines

• Stratix IV GT Device Family Pin Connection Guidelines

• Arria II Device Family Pin Connection Guidelines

• Intel Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines

Software Requirements

Table 11. Supported Quartus Version for Intel FPGAs
You are required to use the supported Quartus software version below to enable the design security feature
based on your FPGA type.

Device Supported Quartus Version

40-nm FPGA Quartus II software version 9.0 or later.

28-nm FPGA Quartus II software version 11.0 or later.

20-nm FPGA Intel Quartus Prime software version 15.1 or later. (13)

Note: To enable the design security feature for Intel Quartus Prime Lite Edition, obtain a
license file from Intel FPGA Technical Support.

Related Information

Intel FPGA Technical Support

Steps for Implementing a Secure Configuration Flow

To implement a secure configuration flow, follow these steps:

1. Generate the .ekp file and encrypt the configuration data.

The Intel Quartus Prime configuration software always uses the user-defined 256-
bit key to generate a key programming file and an encrypted configuration file.
The encrypted configuration file is stored in an external memory, such as a flash
memory or a configuration device. For details, refer to Step 1: Generating .ekp
File and Encrypting Configuration File on page 13.

Note: For the 20-nm FPGAs, you can also encrypt an .rbf by using the stand-
alone Qcrypt tool with extended security options.

2. Program the user-defined 256-bit key into the FPGAs.

(13) For 20-nm FPGAs, you can also enable the design security features by using the stand-alone
Qcrypt tool available in the Intel Quartus Prime software.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683828/current/device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix-v/pcg-01011.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix-v/pcg-01015.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-v/pcg-01013.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-v/pcg-01016.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix4/pcg-01005.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix4/pcg-01006.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-ii-gx/pcg-01007.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683814/current/intel-arria-10-gx-gt-and-sx-device-family.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For details, refer to Step 2a: Programming Volatile Key into the FPGAs on page
18 and Step 2b: Programming Non-Volatile Key into the FPGAs on page 18.

3. Configure the 40-nm, 28-nm or 20-nm FPGA device.

At power up, the external memory source sends the encrypted configuration file to
the FPGA. The device uses the stored key to decrypt the file and to configure
itself. For details about how to configure FPGAs with encrypted configuration data,
refer to Step 3: Configuring the 40-nm, 28-nm, or 20-nm FPGAs with Encrypted
Configuration Data on page 22.

Figure 1. Secure Configuration Flow

AES
Decryptor

FPGA

AES KEY

Encrypted
Configuration

Data

Encryption Key
Programming File

Encrypted
Configuration

Data

Configuration
Data

Step 1. Generate the Encryption Key Programming File
 Encrypt Configuration Data and Store in External Memory

Intel Quartus Prime

Step 2. Program Key into Devices
Encryption Key Programming File

Volatile and
Non-Volatile
Key Storage

Memory
Storage

Encrypted

Configuration
Data

AES
Encryptor

Step 3. Configure the Devices
Using Encrypted Configuration
Data

Step 1: Generating .ekp File and Encrypting Configuration File

To use the design security feature in the FPGAs, you must encrypt your 20-nm design
using the Qcrypt tool, or generate an .ekp file and encrypt your configuration files
using the Intel Quartus Prime software. The key is not saved into any Intel Quartus
Prime-generated configuration files and the actual 256-bit key is generated from the
bit sequences.

To enable the design security feature, you can obtain a license file from Intel FPGA
Technical Support.

The .ekp file has different formats, depending on the hardware and system used for
programming. There are three file formats supported by the Intel Quartus Prime
software:

• JAM Byte Code (.jbc) file

• JAM™ Standard Test and Programming Language (STAPL) Format (.jam) file

• Serial Vector Format (.svf) file

Only the .ekp file type is generated automatically from the Intel Quartus Prime
software. You must create the .jam and .svf files using the Intel Quartus Prime
software if these files are required in the key programming. The Intel Quartus Prime
software generates the JBC format of the .ekp file in the same project directory.

Note: Intel recommends that you keep the .ekp file confidential.

Use the .ekp file with the Intel FPGA Ethernet Cable communications cable or Intel
FPGA Download Cable and the Intel Quartus Prime software. The Intel FPGA Ethernet
Cable communications cable can support both volatile and non-volatile key

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

programming whereas the Intel FPGA Download Cable is used only for volatile key
programming. The .jam file format is generally used with third-party programming
vendors and JTAG programmer vendors. The .svf file format is used with JTAG
programmer vendors.

Generating Single-Device .ekp File and Encrypting Configuration File using Intel
Quartus Prime Software

To generate a single device .ekp file and encrypt your configuration file, follow these
steps:

1. Obtain a license file to enable the design security feature from Intel FPGA
Technical Support.

2. Start the Intel Quartus Prime software.

3. On the Tools menu, click License Setup. The Options dialog box displays the
License Setup options.

4. In the License file field, enter the location and name of the license file, or browse
to and select the license file.

5. Click OK.

6. Compile your design with one of the following options:

a. On the Processing menu, click Start Compilation.

b. On the Processing menu, point to Start and click Start Assembler.

An unencrypted SRAM Object File (.sof) is generated.

7. On the File menu, click Convert Programming Files. The Convert
Programming Files dialog box appears.

a. In the Convert Programming Files dialog box, select the programming file
type from the Programming file type list.

b. If applicable, select the appropriate configuration device from the
Configuration device list.

c. Select the mode from the Mode list.

d. Type the file name in the File name field, or browse to and select the file.

e. Under the Input files to convert section, click SOF Data.

f. Click Add File to open the Select Input File dialog box.

g. Browse to the unencrypted SOF file and click Open.

h. Under the Input files to convert section, select- the SOF file name. The field
is highlighted.

i. Click Properties. The SOF Files Properties: Bitstream Encryption dialog
box appears.

j. In the SOF Files Properties: Bitstream Encryption dialog box, turn on
Generate encrypted bitstream.

k. Turn on Generate key programming file and type the .ekp file path and file
name in the text area, or browse to and select <filename>.ekp.

l. Additional step for 20-nm FPGAs only: Turn on Enable volatile security key
check box to encrypt the .sof file with volatile security key or turn it off to
use non-volatile security key.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m. Additional step for 20-nm FPGAs only: Turn on Generate encryption lock
file and insert the .qlk file path and file name in the text area, or browse to
the desired <filename>.qlk.

n. Add the keys to the pull-down list either with a .key file or the Add button.
The Add and Edit buttons bring up the Key Entry dialog box. The Delete
button deletes the currently selected key from the pull-down list.

Note: 40-nm FPGAs require entry of two 256-bit keys. The encryption derived
from a combination of the two 256-bit keys. 28-nm and 20-nm FPGAs
require entry of a single 256-bit key. The final encryption key is derived
using a one-way function.

Using the .key file option allows you to specify one or two key files in the
corresponding drop-down box. You may use different files for the Key 1 and
Key 2 fields, or use one .key file for both.

The .key file is a plain text file in which each line represents a key unless the
line starts with "#". The "#" symbol is used to denote comments. Each valid
key line has the following format: <key identity><white space><256-bit
hexadecimal key>.

This is an example key file
key1 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
key2 ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789

The key identity is an alphanumeric name that is used to identify the keys
(similar to the key file entry). The key is also the text displayed when the
Show entered keys button is turned off. It is displayed together with the full
key when Show entered keys is turned on.

You can save the keys in the pull-down list to a .key file. You must click the
corresponding Save button to save a key and to display the standard File
dialog box. All keys in the pull-down list are saved to the selected or
created .key file.

Select the Key Entry Method to enter the encryption key either with the on-
screen keypad or keyboard.

The on-screen keypad allows you to enter the keys using the keypad. Select a
key and click on the on-screen keypad to enter values. You have the option of
allowing the keys to be shown as they are entered. If you use this option, you
do not need to confirm the keys.

While the on-screen keypad is being used, any attempt to use the keyboard to
enter the keys generates a pop-up notification and the key press is ignored.
Alternatively, you can enter the encryption key from the keyboard.

i. Read the design security feature disclaimer. If you agree to and
acknowledge the design security feature disclaimer, turn on the
acknowledgment box.

ii. Click OK.

o. Additional step for 20-nm FPGAs only: Under Security Options, select the
level from the Disable external partial reconfiguration list.

p. Additional step for 20-nm FPGAs only: Under Security Options, select the
level from the Disable key-related JTAG instructions list.

q. Additional step for 20-nm FPGAs only: Under Security Options, select the
level from the Disable other extended JTAG instructions list.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. In the Convert Programming Files dialog box, click OK. The <filename>.ekp
and encrypted configuration file are generated in the same project directory.

9. On the Tools menu, click Programmer. The Programmer dialog box appears.

10. In the Mode list, select JTAG as the programming mode.

11. Click Hardware Setup. The Hardware Setup dialog box appears.

a. In the currently selected hardware list, select Intel FPGA Ethernet Cable as
the programming hardware.

b. Click Done.

12. Click Add File. The Select Programmer File dialog box appears.

a. Type <filename>.ekp in the File name field.

b. Click Open.

13. Highlight the .ekp file you added and click Program/Configure.

14. On the File menu, point to Create/Update and click Create JAM, SVF, or ISC
File. The Create JAM, SVF, or ISC File dialog box appears.

15. Select the file format required (JEDEC STAPL Format [.jam]), for the .ekp file in
the File format field.

16. Type the file name in the File name field, or browse to and select the file.

17. Click OK to generate the .jam file.

18. On the Tools menu, click Programmer Options. The Programmer Options
dialog box appears.

Note: For non-volatile secure design feature, you must turn off the Configure
volatile design security key option to generate a non-volatile .svf file of
the .ekp file.

19. Click OK.

20. Repeat steps 15 on page 16 to 17 on page 16 to generate a .svf file of the .ekp
file. Use the default setting in the Create JAM, SVF, or ISC File dialog box when
generating a .svf file of the .ekp file.

Generating Single-Device .ekp File and Encrypting Configuration File using
Command-Line Interface in Intel Quartus Prime Software

There is a command-line interface that allows you to generate a single-device .ekp file
and encrypt Raw Binary File (.rbf). The command-line interfaces uses the Intel
Quartus Prime software command-line executable, quartus_cpf, and requires the
following syntax or options:

• --key/-k <path to key file>:<key identity>

• A .sof file (user design)

• An .ekp file (the required encryption key programming file name)

You can create a compressed and uncompressed .rbf for configuration by using the
following command with an option file which contains the string compression=on.

quartus_cpf -c --option=<option file> --key
<keyfile>:<keyid1>:<keyid2> <input_sof_file> <output_rbf_file>

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: 1. Encryption and compression cannot be used simultaneously in 20 nm FPGAs.

2. For 20 nm FPGAs, use non_volatile_key=off to control the Enable volatile
key security option during the .rbf file creation.

You can learn more on the option file from the Intel Quartus Prime software command
line help. Run quartus_cpf --help=option to learn more on the available options.
For 20 nm FPGAs, use the Qcrypt tool command line to encrypt or decrypt the .rbf
file. To generate the .ekp or encrypted configuration file other than .rbf, you have to
go through quartus_cpf.

Example 1.

The following example shows two sets of keys that are stored in two different key
files: key1 in key1.key and key2 in key2.key.

quartus_cpf --key D: \SIV_DS\key1.key:key1 --key

D:\SIV_DS\key2.key:key2 D:\SIV_DS\test.sof D:\SIV_DS\test.ekp

Example 2.

The following example shows two sets of keys that are stored in the same key file:
key1 and key2 in key12.key.

quartus_cpf --key

D:\SIV_DS\key12.key:key1:key2 D:\SIV_DS\test.sof D:\SIV_DS
\test.ekp

Generating Multi-Device .ekp File and Encrypting Configuration File using Intel
Quartus Prime Software

To generate a multi-device .ekp file and encrypt your configuration file, follow these
steps:

1. Start the Intel Quartus Prime software.

2. Repeat step 9 on page 16–step 11 on page 16 in Generating Single-Device .ekp
File and Encrypting Configuration File using Intel Quartus Prime Software on page
14.

3. Click Add File. The Select Programmer File dialog box appears.

a. Select the single-device .ekp file, and type <single_ekp>.ekp in the File
name field.

b. Click Open.

Note: For the correct sequence of devices in the same JTAG chain, you can use the
Auto-Detect option in the Intel Quartus Prime programmer. If one of the
FPGA is not required to be key-programmed, you are not required to replace
the device with the <single_ekp>.ekp file in the Intel Quartus Prime
programmer.

4. Repeat step 3 on page 17 for each device in the same chain. Ensure the right
device sequence is used when adding the .ekp files to the programmer window.

5. Highlight all the .ekp files you added and click Program/Configure.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. On the File menu, point to Create/Update and click Create JAM, SVF, or ISC
File. The Create JAM, SVF, or ISC File dialog box appears.

7. Select the required file format (.jam), for all the .ekp files in the File format
field.

8. Type the file name in the File name field, or browse to and select the file.

9. Click OK to generate the .jam file.

10. On the Tools menu, click Programmer Options. The Programmer Options
dialog box appears.

Note: You must turn off Configure volatile design security key to generate a
non-volatile .svf file of the .ekp file.

11. Click OK.

12. Repeat steps 7 on page 18 to 9 on page 18 to generate a .svf file for all the .ekp
files. Use the default setting in the Create JAM, SVF, or ISC File dialog box
when generating a .svf file of the .ekp file.

Step 2a: Programming Volatile Key into the FPGAs

Before programming the volatile key into the FPGAs, ensure that you can successfully
configure the FPGA with an unencrypted configuration file. The volatile key is a
reprogrammable and erasable key. Before you program the FPGAs with the volatile
key, you must provide an external battery to retain the volatile key. FPGAs with the
volatile key successfully programmed can accept both encrypted and unencrypted
configuration bitstreams. This enables the use of unencrypted configuration bitstreams
for board-level testing.

Any attempt to configure the FPGAs containing the volatile key with a configuration file
encrypted with the wrong key causes the configuration to fail. If this occurs, the
nSTATUS signal from the FPGA pulses low and continues to reset itself if you enable
the Auto-restart configuration after error option in the Intel Quartus Prime
software.

You can program the key into the FPGAs with on-board prototyping listed in Key
Programming on page 7.

Step 2b: Programming Non-Volatile Key into the FPGAs

Before programming the non-volatile key into the devices, ensure that you can
successfully configure the FPGA with an unencrypted configuration file. The
non-volatile key is one-time programmable through the JTAG interface. You can
program the non-volatile key into the devices without an external battery. Devices
with the non-volatile key successfully programmed can accept both encrypted and
unencrypted configuration bitstreams. If you set the tamper protection bit, only
encrypted configuration bitstreams are accepted. This enables the use of unencrypted
configuration bitstreams for board-level testing.

Any attempt to configure the FPGAs containing the volatile key with a configuration file
encrypted with the wrong key causes the configuration to fail. If this occurs, the
nSTATUS signal from the FPGA pulses low and continues to reset itself if you enable
the Auto-restart configuration after error option in the Intel Quartus Prime
software.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can program the non-volatile key into the devices using on-board prototyping,
volume production, and off-board prototyping and production listed in Key
Programming on page 7.

Programming Volatile or Non-Volatile Key using Intel FPGA Ethernet Cable and
Intel Quartus Prime Software

Connect the Intel FPGA Ethernet Cable communications cable to the Intel FPGA
Ethernet Cable header as shown in the following figure.

Figure 2. Intel FPGA Ethernet Cable Header
The Intel FPGA Ethernet Cable header and Intel FPGA Download Cable header are identical for key
programming.

Intel FPGA Ethernet Cable Header

J28 2
4
6
8

10

1
 3
5

 7
9

1 KΩ

10 KΩ
10 KΩ

TCK
JTAG_CONN_TDO

JTAG_TMS
JTAG_CONN_TDI

VCC

For the specific voltages required
using the JTAG download cable,
refer to the respective device handbook.

A 1-KΩ pull-down resistor is added
to TCK while 10-KΩ pull-up resistors
are added to the TMS and TDI
signals for key programming.

Note: For Intel FPGA Ethernet Cable, set the TCK speed to the required TCK period.

Related Information

• EthernetBlaster Communications Cable User Guide

• EthernetBlaster II Communications Cable User Guide
Provides more information about changing the TCK clock speed for Intel FPGA
Ethernet Cable.

• Device Datasheet for Arria II Devices
Provides more information about the specific voltages required using the JTAG
download cable.

• DC and Switching Characteristics for Stratix IV Devices
Provides more information about the specific voltages required using the JTAG
download cable.

• Arria V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Cyclone V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Stratix V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Intel Arria 10 Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

19

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_ebcc.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ethernetblasterii.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_53001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv54001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683022/current/gx-gt-sx-and-st-device-datasheet.html
https://www.intel.com/content/www/us/en/docs/programmable/683801/current/cyclone-v-device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_53001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683771/current/operating-conditions.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Intel Cyclone 10 GX Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

Programming Single-Device Volatile or Non-Volatile Key using Intel Quartus
Prime Software

To perform single-device volatile or non-volatile key programming using the Intel
Quartus Prime software through the Intel FPGA Ethernet Cable, follow these steps:

1. Check the firmware version of the Intel FPGA Ethernet Cable. Verify that the JTAG
firmware build are up-to-date.

Note: Refer to the Cable and Adapter driver page to find the latest Intel FPGA
Ethernet Cable firmware build version.

2. Start the Intel Quartus Prime software.

3. On the Tools menu, click Programmer. The Programmer dialog box appears.

4. In the Mode list, select JTAG as the programming mode.

5. Click Hardware Setup. The Hardware Setup dialog box appears.

a. In the Currently selected hardware list, select Intel FPGA Ethernet Cable
as the programming hardware.

b. Click Done.

6. Click Add File. The Select Programmer File dialog box appears.

a. Type <filename>.ekp in the File name field.

b. Click Open.

7. Highlight the .ekp file you added and click Program/Configure.

8. On the Tools menu, click Options. The Options dialog box appears.

9. In the Category list, click Programmer. You can choose to turn on or turn off the
Configure volatile design security key option to perform volatile or non-
volatile key programming.

10. Click OK to close the Options dialog box.

11. Click Start to program the key.

Note: The Intel Quartus Prime software message window provides information
about the success or failure of the key programming operation.

Related Information

EthernetBlaster Communications Cable User Guide
Provides more information about JTAG firmware upgrade instructions.

Programming Single-Device Volatile or Non-Volatile Key using the Command-Line
Interface in Intel Quartus Prime Software

To perform single-device volatile or non-volatile key programming using the Intel
Quartus Prime software command-line interface through the Intel FPGA Ethernet
Cable, follow these steps:

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

20

https://www.intel.com/content/www/us/en/docs/programmable/683828/current/device-datasheet.html
https://www.altera.com/support/support-resources/download/drivers/dri-index.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_ebcc.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Perform step 1 on page 20 of Programming Single-Device Volatile or Non-Volatile
Key using Intel Quartus Prime Software on page 20.

2. To determine the Intel FPGA Ethernet Cable cable port number that is connected
to the JTAG server, type quartus_jli -n at the command-line prompt.

3. With the single_ekp.jam file generated in Step 1: Generating .ekp File and
Encrypting Configuration File on page 13, execute volatile or non-volatile key
programming to a single FPGA with the following command line:

• Volatile key programming:

quartus_jli -c<n> single_ekp.jam -aKEY_CONFIGURE

• Non-volatile key programming:

quartus_jli -c<n> single_ekp.jam -aKEY_PROGRAM

<n> is the port number returned with the -n option.

Note: The Intel Quartus Prime software command-line provides information about
the success or failure of the key programming operation.

Related Information

AN 425: Using the Command-Line Jam STAPL Solution for Device Programming
Provides more information about quartus_jli .

Programming Multi-Device Volatile or Non-Volatile Key using Intel Quartus Prime
Software

To perform multi-device volatile or non-volatile key programming using the Intel
Quartus Prime software through the Intel FPGA Ethernet Cable, follow these steps:

1. Repeat step 1 on page 20–step 5 on page 20 in Programming Single-Device
Volatile or Non-Volatile Key using Intel Quartus Prime Software on page 20.

2. Click Add File. The Select Programmer File dialog box appears.

a. Programming using single-device .ekp files:

i. Type <single_device>.ekp in the File name field.

ii. Click Open.

iii. Repeat steps 2.a.i on page 21 to 2.a.ii on page 21 for the number of
devices in the same chain.

iv. Highlight the .ekp files you added and click Program/Configure.

Note: For the correct sequence of the devices in the same JTAG chain, you can
use the Auto-Detect option in the Intel Quartus Prime programmer.

b. Programming using a multi-device .jam file:

i. Type <multi_device>.jam in the File name field.

ii. Click Open.

iii. Highlight the .jam file you added and click Program/Configure.

3. Repeat step 8 on page 20–step 10 on page 20 of Programming Single-Device
Volatile or Non-Volatile Key using Intel Quartus Prime Software on page 20 to
perform volatile or non-volatile key programming.

4. Click Start to program the key.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

21

https://www.intel.com/content/www/us/en/docs/programmable/683089/current/using-the-command-line-jam-stapl-solution.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Intel Quartus Prime software message window provides information
about the success or failure of the key programming operation.

Programming Multi-Device Volatile or Non-Volatile Key using the Command-Line
Interface in Intel Quartus Prime Software

To perform multi-device volatile or non-volatile key programming using the Intel
Quartus Prime software command-line interface through the Intel FPGA Ethernet
Cable, follow these steps:

1. Perform step 1 on page 20 of Programming Single-Device Volatile or Non-Volatile
Key using Intel Quartus Prime Software on page 20.

2. To determine the Intel FPGA Ethernet Cable cable port number that is connected
to the JTAG server, type quartus_jli -n at the command-line prompt.

3. With the multi_ekp.jam file generated in Step 1: Generating .ekp File and
Encrypting Configuration File on page 13, execute volatile or non-volatile key
programming for multiple FPGAs with the following command line:

• Volatile key programming:

quartus_jli -c<n> multi_ekp.jam -aKEY_CONFIGURE

• Non-volatile key programming:

quartus_jli -c<n> multi_ekp.jam -aKEY_PROGRAM

<n> is the port number returned with the -n option.

Note: The Intel Quartus Prime software command-line provides information about
the success or failure of the key programming operation.

Programming Key using JTAG Technologies

The key programming for your design is performed using a .svf file (.ekp file in .svf
format) and a JT 37xx boundary scan controller in combination with a JT2147
QuadPod system.

Information about creating a .svf file to support multi-device programming is
described in Generating Multi-Device .ekp File and Encrypting Configuration File using
Intel Quartus Prime Software on page 17.

Related Information

JTAG Technologies
Provides more information about procedures for JTAG programming.

Step 3: Configuring the 40-nm, 28-nm, or 20-nm FPGAs with Encrypted
Configuration Data

The final step is to configure the protected 40-nm, 28-nm, or 20-nm FPGAs with the
encrypted configuration file.

During configuration, the encrypted configuration data is sent to the 40-nm, 28-nm,
or 20-nm FPGAs. Using the previously stored key, the FPGA decrypts the configuration
data and uses the unencrypted data to configure itself. Only configuration files
encrypted using the correct key are accepted by the FPGA for successful configuration.
Without a correct key, a stolen encrypted file is useless.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

22

https://www.jtag.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Steps to Enable Tamper-Protection Bit Programming

The default .ekp file generated in the Steps for Implementing a Secure Configuration
Flow section contains only volatile or non-volatile key programming. To enable the
tamper-protection bit programming, follow these steps:

1. Create a quartus.ini file using the text editor, with this key-value pair:
PGM_GEN_KEY_SECURE_EKP=ON.

2. Save the quartus.ini in one of the following folders:

— Project folder

— <Quartus installation folder>\bin64 folder for Windows OS

— <Quartus installation folder>/linux64 folder for Linux OS

3. When the Intel Quartus Prime Convert Programming File tool read the
quartus.ini during .ekp file generation process, the additional tamper-
protection bit programming instruction is inserted into the generated .ekp file.

Caution: The .ekp file generated with this quartus.ini contain tamper-
protection bit programming. When the .ekp file is used to program into
the devices, the tamper-protection bit is programmed, and this
programming is not reversible. You need to manage the .ekp file to
avoid unintentional programming of tamper-protection bit into your
device.

As the .ekp file contains the tamper bit programming instruction, therefore if you
generate .jam or .svf files from this .ekp file for key programming, the .jam
or .svf files program the tamper-protection bit without the need for the
quartus.ini with the specified key-value pair.

Supported Configuration Schemes

The design security feature is available in all configuration schemes except
JTAG-based configuration.

Table 12. Design Security Support for Each Configuration Scheme

Configuratio
n Scheme

Configuration Method Design
Security

Notes

FPP A MAX II or MAX V device, or a
microprocessor and a flash memory

Yes In this mode, the host system must send a
DCLK signal that is 4x the data rate.

AS Serial configuration device Yes —

PS A MAX II or MAX V device, or a
microprocessor and a flash memory

Yes —

Intel FPGA Download Cable and Intel FPGA
Download Cable II

Yes Configure encrypted .rbf to FPGA using PS
mode in Intel Quartus Prime Programmer.

JTAG Intel FPGA Download Cable and Intel FPGA
Download Cable II

— For key programming.

If your system contains a common flash interface (CFI) flash memory, you can also
use it for the FPGA configuration. The MAX II and MAX V together with the Parallel
Flash Loader Intel FPGA IP core provides an efficient method to program CFI flash
memory through the JTAG interface.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the design security feature with other configuration features, such as the
compression and remote system upgrade features. When compression is used with the
design security feature, the configuration file is first compressed and then encrypted in
the Intel Quartus Prime software. During configuration, the FPGA first decrypts and
then uncompresses the configuration file.

Note: Encryption and compression cannot be used simultaneously in 20-nm FPGAs.

You can either perform boundary-scan test (BST) or use the Signal Tap logic analyzer
to analyze functional data within the FPGA. However, you cannot perform JTAG
configuration after the key with tamper-protection bit set is programmed into the 40-
nm, 28-nm or 20-nm FPGAs.

When using the Signal Tap logic analyzer, you must first configure the device with an
encrypted configuration file using PS, FPP, or AS configuration schemes. The design
must contain at least one instance of the Signal Tap logic analyzer. After the FPGA is
configured with a Signal Tap logic analyzer instance in the design. Open the Signal Tap
logic analyzer window in the Intel Quartus Prime software and click Scan Chain. Once
the scanning is complete, the Signal Tap logic analyzer is ready to acquire data using
JTAG interface.

Related Information

• Configuration, Design Security, and Remote System Upgrades in Arria II Devices
Provides more information about the design security for Arria II devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix IV Devices
Provides more information about the design security for Stratix IV devices.

• Configuration, Design Security, and Remote System Upgrades in Arria V Devices
Provides more information about the design security for Arria V devices.

• Configuration, Design Security, and Remote System Upgrades in Cyclone V
Devices

Provides more information about the design security for Cyclone V devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix V Devices
Provides more information about the design security for Stratix V devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Arria 10
Devices

Provides more information about the design security for Intel Arria 10 devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Cyclone 10
GX Devices

Provides more information about the design security for Intel Cyclone 10
devices.

Security Mode Verification

Intel FPGAs support the KEY_VERIFY JTAG instruction that allows you to verify the
existing security mode of the device. To check if you have successfully programmed
the volatile key, use the .jam files to automate the security mode verification steps.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

24

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_51009.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51010.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683213/current/enhanced-configuration-and-configuration.html
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683665/
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13. KEY_VERIFY JTAG Instruction

JTAG Instruction Instruction Code Description

KEY_VERIFY 00 0001 0011 Connects the key verification scan
register between TDI and TDO.

The KEY_VERIFY JTAG instruction allows you to read out the information on the
security features that are enabled on the chip. This instruction scans out associated bit
values.

Table 14. Security Mode Verification for 40-nm FPGAs

Security Mode Supported Device Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

No key Arria II GX 0 0 0 0 0 0

• Arria II GZ
• Stratix IV

0 0 0 0 X X

Volatile key Arria II GX 1 0 0 0 0 0

• Arria II GZ
• Stratix IV

1 0 0 0 X X

Volatile key with tamper
protection

Arria II GX 1 0 0 0 1 0

• Arria II GZ
• Stratix IV

X X X X X X

Non-volatile key Arria II GX 0 1 0 1 0 0

• Arria II GZ
• Stratix IV

0 1 0 1 X X

Non-volatile key with tamper
protection bit

Arria II GX 0 1 1 1 0 0

• Arria II GZ
• Stratix IV

0 1 1 1 X X

Table 15. Security Mode Verification for 28-nm FPGAs

Security Mode Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

No key 0 0 0 0 0 X X X X

Volatile key 1 0 0 0 0 X X X X

Volatile key with tamper
protection (14)

1 0 0 0 1 X X X X

Non-volatile key 0 1 0 1 0 X X X X

Non-volatile key with tamper
protection bit (14)

0 1 1 1 0 X X X X

(14) If the tamper protection is enabled, the device is in JTAG secure mode after power-up. You
need to issue the UNLOCK to disable the JTAG secure mode.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16. Security Mode Verification for 20-nm FPGAs

Bit Security Feature or Settings Description Active
value

0 Volatile Key This bit is set when a volatile key has been successfully
programmed into the device.

1

1 Attempt Non-volatile Key
Programming

This bit is set to indicate that someone attempted to burn a
non-volatile key in the OTP fused.

1

2 Disable Non-volatile Key This bit is set to disable use of the volatile key. 1

3 Non-volatile Key This bit is set to indicate that someone has successfully burned
a non-volatile key into the OTP fuses.

1

4 Tamper Protection This bit is set when FPGA is in Tamper Protection mode with
either Non-volatile or Volatile key.

1

5 Don’t Care Don’t Care. X

6 Volatile Key Lock This bit is set to prevent the volatile key from being
reprogrammed from external JTAG.

1

7 - 10 Don’t Care Don’t Care. X

11 (15) Force Configuration from HPS
only

This bit is set when configuration is allowed from HPS only. 1

12 External JTAG Bypass This bit is set to indicate that external JTAG is disabled. 1

13 (16) HPS JTAG Bypass This bit is set to indicate that HPS JTAG is disabled. 1

14 (17) Disable Partial Reconfiguration
and Scrubbing

This bit is set to indicate that external PR and external
scrubbing (including HPS PR and HPS scrubbing) are disabled.

1

15 Disable Volatile Key This bit is set to indicate that the volatile key is disabled. 1

16 Don’t Care Don’t Care. X

17 Disable Key Related JTAG
Instructions

This bit is set to indicate that external JTAG access to all key-
related JTAG instructions is disabled.

1

18 JTAG Secure Mode This bit is set to indicate that only mandatory JTAG instructions
are allowed to be externally accessed.

1

19 Don’t Care Don’t Care. X

20 Volatile Key Clear This bit is set when the volatile key is successfully cleared from
the device.

1

The following examples show the .jam files to verify the FPGAs security modes. The
example .jam files are only applicable to single FPGA device in a JTAG chain. For SoC
devices, add the following statements before the IRSCAN command.

PREIR 4;
PREDR 1;

(15) Bit 11 is not applicable to Intel Cyclone 10 GX devices. In Intel Cyclone 10 GX devices, this bit
is in a "don't care" condition.

(16) Bit 13 is not applicable to Intel Cyclone 10 GX devices. In Intel Cyclone 10 GX devices, this bit
is in a "don't care" condition.

(17) Bit 14 is not applicable to Intel Cyclone 10 GX devices. In Intel Cyclone 10 GX devices, this bit
is in a "don't care" condition.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. JAM File for 40-nm FPGAs (Arria II GX Devices)

STATE RESET;

STATE IDLE;

'Security Mode Identification

BOOLEAN verify_reg[6];

IRSCAN 10, $013;

WAIT 100 USEC;

DRSCAN 6, $0, CAPTURE verify_reg[5..0];

Example 4. JAM File for 40-nm FPGAs (Arria II GZ and Stratix IV Devices)

STATE RESET;

STATE IDLE;

'Key Verification

BOOLEAN verify_reg[4];

IRSCAN 10, $013;

WAIT 100 USEC;

DRSCAN 4, $0, CAPTURE verify_reg[3..0];

Example 5. JAM File for 28-nm FPGAs

STATE RESET;

STATE IDLE;

'Key Verification in JAM format

BOOLEAN verify_reg[9];

IRSCAN 10, $013;

WAIT 100 USEC;

DRSCAN 9, $0, CAPTURE verify_reg[8..0];

Example 6. JAM File for 20-nm FPGAs

STATE RESET;

STATE IDLE;

'Key Verification in JAM format

BOOLEAN verify_reg[21];

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IRSCAN 10, $013;

WAIT 100 USEC;

DRSCAN 21, $0, CAPTURE verify_reg[20..0];

Related Information

• Configuration, Design Security, and Remote System Upgrades in Arria II Devices
Provides more information about the design security for Arria II devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix IV Devices
Provides more information about the design security for Stratix IV devices.

• Configuration, Design Security, and Remote System Upgrades in Arria V Devices
Provides more information about the design security for Arria V devices.

• Configuration, Design Security, and Remote System Upgrades in Cyclone V
Devices

Provides more information about the design security for Cyclone V devices.

• Configuration, Design Security, and Remote System Upgrades in Stratix V Devices
Provides more information about the design security for Stratix V devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Arria 10
Devices

Provides more information about the design security for Intel Arria 10 devices.

• Configuration, Design Security, and Remote System Upgrades in Intel Cyclone 10
GX Devices

Provides more information about the design security for Intel Cyclone 10
devices.

Verification During JTAG Secure Mode

Non-mandatory JTAG instructions are disabled when the tamper protection bit is
enabled in 28-nm FPGAs. When executing KEY_VERIFY during the tamper protection
bit is programmed, TDI points to the BYPASS register. Due to this, executing the
KEY_VERIFY instruction when the tamper protection bit has been set results in 0x0
(hex) being returned.

To check if the tamper protection bit has been programmed in a device, shift a user
defined pattern in when executing the KEY_VERIFY instruction and check that the
TDO pattern received has a 0 shifted in.

In 20-nm FPGAs, KEY_VERIFY instruction can be executed during JTAG Secure mode.
To perform verification during JTAG secure mode for 20-nm FPGAs, you can expect
0x0 (hex) value being returned when executing USERCODE instruction.

Example 7. Verification During JTAG Secure Mode Example
Shift in 0x15A (1 0101 1010 in binary). If the tamper protection bit has been
programmed, since KEY_VERIFY=BYPASS, you should expect 0 1011 0100 where
the last 0 is the content of the BYPASS register.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

28

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_51009.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51010.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683213/current/enhanced-configuration-and-configuration.html
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683375/
https://www.intel.com/content/www/us/en/docs/programmable/683665/
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683461/current/design-security.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
https://www.intel.com/content/www/us/en/docs/programmable/683775/current/configuration-design-security-and-remote-29047.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Serial Flash Loader Support with Encryption Enabled

Intel provides an in-system programming (ISP) solution for serial configuration
devices: the Serial Flash Loader Intel FPGA IP core. You can instantiate the serial flash
loader (SFL) block in your design to provide the flexibility to update the design stored
in the serial configuration device without reprogramming the configuration device
through the AS interface.

As long as the JTAG interface of the FPGA is accessible, you can use the SFL solution
for your application. If the design security feature with tamper-protection bit is set,
the SFL solution does not work. Although the JTAG programming is not supported
when the tamper-protection bit is set, you may instantiate the Serial Flash Loader IP
core in your design and execute the SFL programming for the first time before non-
volatile key programming with the tamper-protection bit is set in the FPGA.

Serial Flash Loader Support with Encryption Enabled for Single
FPGA Device Chain

To use the Serial Flash Loader IP core with the encryption feature enabled in a single
FPGA device chain, follow these steps:

1. Start the Intel Quartus Prime software.

2. Instantiate the Serial Flash Loader IP core in your FPGA top-level design.

3. Compile your design with one of the following options. An unencrypted .sof is
generated.

a. On the Processing menu, click Start Compilation; or

b. On the Processing menu, point Start and click Start Assembler.

4. Follow these steps to convert a .sof to a .jic file:

a. On the File menu, choose Convert Programming Files.

b. In the Convert Programming Files dialog box, scroll to the JTAG Indirect
Configuration File (.jic) from the Programming file type field.

c. In the Configuration device field, specify the serial configuration device.

d. In the File name field, browse to the target directory and specify an output
file name.

e. Highlight the .sof data in the Input files to convert section.

f. Click Add File.

g. Select the .sof file that you want to convert to a .jic file.

h. Click OK.

i. Click on the .sof file name to encrypt the .sof file.

Note: To encrypt the .sof file, refer to step 7 on page 14 of Generating Single-
Device .ekp File and Encrypting Configuration File using Intel Quartus
Prime Software on page 14.

j. Highlight Flash Loader and click Add Device.

k. Click OK. The Select Devices page appears.

l. Select the target FPGA that you are using to program the serial configuration
device.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m. Click OK.

5. Program the serial configuration device with the encrypted .jic file.

6. Program the key into the FPGA device.

Note: To program the key to a single FPGA device, follow the steps in
Programming Single-Device Volatile or Non-Volatile Key using Intel Quartus
Prime Software on page 20.

7. The encrypted FPGA is then configured by the programmed serial configuration
device.

Note: To program the key with a .jam file, you must convert the .jic file to a .jam
file.

Related Information

• AN 370: Using the Intel FPGA Serial Flash Loader IP Core with the Intel Quartus
Prime Software

• Device Datasheet for Arria II Devices
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• DC and Switching Characteristics for Stratix IV Devices
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• Arria V Device Datasheet
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• Cyclone V Device Datasheet
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• Stratix V Device Datasheet
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• Intel Arria 10 Device Datasheet
Provides more information about the timing parameters for PS and FPP
configuration schemes.

• Intel Cyclone 10 GX Device Datasheet
Provides more information about the timing parameters for PS and FPP
configuration schemes.

JTAG Secure Mode for 28-nm and 20-nm FPGAs

FPGAs are in JTAG Secure mode upon power up when you:

• Enable the tamper-protection bit for 28-nm FPGAs

• Enable the JTAG Secure settings for 20-nm FPGAs

Attention: 20-nm FPGAs do not support LOCK and UNLOCK JTAG instructions, you are not able to
unlock external JTAG to access non-mandatory JTAG instructions.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

30

https://www.intel.com/content/www/us/en/docs/programmable/683299/current/using-the-fpga-serial-flash-loader-ip-85096.html
https://www.intel.com/content/www/us/en/docs/programmable/683299/current/using-the-fpga-serial-flash-loader-ip-85096.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_53001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv54001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683022/current/gx-gt-sx-and-st-device-datasheet.html
https://www.intel.com/content/www/us/en/docs/programmable/683801/current/cyclone-v-device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_53001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683771/current/configuration-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683828/current/device-datasheet.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During JTAG secure mode, many JTAG instructions are disabled. The 28-nm and 20-
nm FPGAs in JTAG secure mode only allow you to exercise mandatory IEEE Std.
1149.1 and IEEE Std. 1149.6 BST JTAG instructions. If you attempt to exercise a non-
mandatory JTAG instruction when the FPGA is in the JTAG secure mode, the BYPASS
JTAG instruction chain is selected and the instruction is not executed.

Table 17. Mandatory and Non-Mandatory IEEE Std. 1149.1 and IEEE Std. 1149.6 BST
JTAG Instructions

Mandatory IEEE Std. 1149.1 and IEEE Std. 1149.6 BST
JTAG Instructions

Non-Mandatory IEEE Std. 1149.1 and IEEE Std. 1149.6
BST JTAG Instructions

• BYPASS

• EXTEST

• IDCODE

• LOCK

• UNLOCK

• SAMPLE/PRELOAD

• SHIFT_EDERROR_REG

• CONFIG_IO

• CLAMP

• EXTEST_PULSE (18)

• EXTEST_TRAIN (18)

• HIGHZ

• KEY_CLR_VREG

• KEY_VERIFY (18)

• PULSE_NCONFIG

• USERCODE

For 28-nm FPGAs, to enable the access of non-mandatory JTAG instructions, you must
issue the UNLOCK JTAG instruction to deactivate the JTAG secure mode. You can issue
the LOCK instruction to put the device back into JTAG secure mode. You can only issue
both the LOCK and UNLOCK JTAG instructions during user mode using internal JTAG
interface. Issuing these two instructions using the external JTAG pins does not activate
or deactivate the JTAG secure mode.

The LOCK and UNLOCK JTAG instructions only activate or deactivate the JTAG secure
mode on an FPGA with tamper-protection bit enabled. Issuing these two instructions
on a device that has a tamper-protection bit disabled does not turn on or turn off the
JTAG secure mode.

Internal JTAG Interface

There are two interfaces to access the JTAG control block in 28-nm and 20-nm FPGAs:
the external JTAG interface and the internal JTAG interface.

The external JTAG interface accesses the JTAG control block through the physical JTAG
pins—TCK, TDI, TDO, and TMS. You use the external JTAG interface for FPGA
configuration when using JTAG configuration scheme via programming cables or
executing JTAG instructions using external player or processor such as JAM player or
JTAG chain debugger tool. The internal JTAG interface refers to the connection
between TCK, TDI, TDO, and TMS signals from the internal FPGA core fabric and the
JTAG control block.

You can only access the JTAG control block using either one of these interfaces one at
a time. For example, when you use the internal JTAG interface, the external JTAG
interface to the JTAG control block is disabled. To access the internal JTAG interface,
you must include the WYSIWYG atom in your Intel Quartus Prime design.

(18) You can execute these JTAG instructions during JTAG Secure mode for 20-nm FPGAs.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Internal and External JTAG Interface Connection

JTAG TAP Controller

1
0

1
0

1
0

1
0

1
0

1
0

TDI

TMS

TCK

TDO

TDO_EN

JTAG I/O

CORECTL

TDICORE

TMSCORE

TCKCORE

TDOCORE

TDIUTAP
TMSUTAP
TCKUTAP
TDOUSER
nTDO_PIN_ENABLE

CE/Core Interface

TDI

TMS

TCK

TDO

TDO_EN

TDO

TDO_EN

TDI

TMS

TCK

TDO

TDI

TMS

TCK

JTAG WYSIWYG

TD
O_

EN
TC

K TM
S TD

I TD
O

Table 18. WYSIWYG Atom for 28-nm and 20-nm FPGAs

Device Family JTAG WYSIWYG Atom

Arria V arriav_jtag <jtagblock_name>
(
.clkdruser(),
.corectl(),
.runidleuser(),
.shiftuser(),
.tck(),
.tckcore(),
.tckutap(),
.tdi(),
.tdicore(),
.tdiutap(),
.tdo(),
.tdocore(),
.tdouser(),
.tdoutap(),
.tms(),
.tmscore(),
.tmsutap(),

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Family JTAG WYSIWYG Atom

.updateuser(),

.usr1user()
);

Cyclone V cyclonev_jtag <jtagblock_name>
(
.clkdruser(),
.corectl(),
.runidleuser(),
.shiftuser(),
.tck(),
.tckcore(),
.tckutap(),
.tdi(),
.tdicore(),
.tdiutap(),
.tdo(),
.tdocore(),
.tdouser(),
.tdoutap(),
.tms(),
.tmscore(),
.tmsutap(),
.updateuser(),
.usr1user()
);

Stratix V stratixv_jtag <jtagblock_name>
(
.clkdruser(),
.corectl(),
.runidleuser(),
.shiftuser(),
.tck(),
.tckcore(),
.tckutap(),
.tdi(),
.tdicore(),
.tdiutap(),
.tdo(),
.tdocore(),
.tdouser(),
.tdoutap(),
.tms(),
.tmscore(),
.tmsutap(),
.updateuser(),
.usr1user()
);

Intel Arria 10 twentynm_jtag <jtagblock_name>
(
.tms(),
.tck(),
.tdi(),
.ntrst(),
.tdoutap(),
.tdouser(),
.tmscore(),
.tckcore(),
.tdicore(),
.ntrstcore(),
.tmscorehps(),
.tckcorehps(),
.tdicorehps(),
.ntrstcorehps(),
.tdocorefrwl(),
.corectl(),
.ntdopinena(),
.tdo(),
.tmsutap(),
.tckutap(),
.tdiutap(),
.ntrstutap(),
.tmsuhps(),
.tckuhps(),
.tdiuhps(),
.ntrstuhps(),
.tmscoreout(),
.tckcoreout(),
.tdocorehps(),
.ntrstcoreout(),

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Family JTAG WYSIWYG Atom

.shiftuser(),

.clkdruser(),

.updateuser(),

.runidleuser(),

.usr1user(),

.tdocore(),
);

Intel Cyclone 10 GX twentynm_jtag <jtagblock_name>
(
.tms(),
.tck(),
.tdi(),
.ntrst(),
.tdoutap(),
.tdouser(),
.tmscore(),
.tckcore(),
.tdicore(),
.ntrstcore(),
.tdocorefrwl(),
.corectl(),
.ntdopinena(),
.tdo(),
.tmsutap(),
.tckutap(),
.tdiutap(),
.ntrstutap(),
.tmscoreout(),
.tckcoreout(),
.tdocorehps(),
.ntrstcoreout(),
.shiftuser(),
.clkdruser(),
.updateuser(),
.runidleuser(),
.usr1user(),
.tdocore(),
);

Table 19. Functions of the Ports in WYSIWYG Atom

Ports Input/
Output

Functions

<jtagblock_name> — Identifier for the arriaii_jtag WYSIWYG atom and represents any
identifier name that is legal for the given description language, such as
Verilog HDL, VHDL, and AHDL.

.corectl() Input Active high input to the JTAG control block to enable the internal JTAG
access from core interface. When the FPGA enters user mode after
configuration, this port is low by default. Pulling this port to logic high
enables the internal JTAG interface (with external JTAG interface disabled at
the same time) and pulling this port to logic low disables the internal JTAG
interface (with external JTAG interface enabled at the same time).

.tckcore() Input Core TCK signal. (19)

.tdicore() Input Core TDI signal. (19)

.tdocore() Output Core TDO signal. (19)

.tmscore() Input Core TMS signal. (19)

.clkdruser() Input/Output These ports are not used for enabling the JTAG secure mode using the
internal JTAG interface, hence you can leave them unconnected.

continued...

(19) For external JTAG interface, refer to the respective device datasheet for the JTAG
configuration timing specification. For internal JTAG interface, you must perform timing
constraint and timing closure analysis on these paths to meet the setup or hold time
requirement.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Ports Input/
Output

Functions

.runidleuser()

.shiftuser()

.tck()

.tckutap()

.tdi()

.tdiutap()

.tdo()

.tdouser()

.tdoutap()

.tms()

.tmsutap()

.updateuser()

.usr1user()

Related Information

• EthernetBlaster Communications Cable User Guide

• EthernetBlaster II Communications Cable User Guide
Provides more information about changing the TCK clock speed for Intel FPGA
Ethernet Cable.

• Device Datasheet for Arria II Devices
Provides more information about the specific voltages required using the JTAG
download cable.

• DC and Switching Characteristics for Stratix IV Devices
Provides more information about the specific voltages required using the JTAG
download cable.

• Arria V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Cyclone V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Stratix V Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Intel Arria 10 Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Intel Cyclone 10 GX Device Datasheet
Provides more information about the specific voltages required using the JTAG
download cable.

• Stratix V E, GS, and GX Device Family Pin Connection Guidelines

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

35

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_ebcc.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ethernetblasterii.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-ii-gx/aiigx_53001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stx4_siv54001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683022/current/gx-gt-sx-and-st-device-datasheet.html
https://www.intel.com/content/www/us/en/docs/programmable/683801/current/cyclone-v-device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_53001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683771/current/operating-conditions.html
https://www.intel.com/content/www/us/en/docs/programmable/683828/current/device-datasheet.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix-v/pcg-01011.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Stratix V GT Device Family Pin Connection Guidelines

• Arria V GT, GX, ST and SX Device Family Pin Connection Guidelines

• Arria V GZ Device Family Pin Connection Guidelines

• Stratix IV GX and E Device Family Pin Connection Guidelines

• Stratix IV GT Device Family Pin Connection Guidelines

• Arria II Device Family Pin Connection Guidelines

• Intel Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines

Design Example for JTAG Secure Mode

This design example demonstrates

• The instantiation of an internal JTAG WYSIWYG atom.

• The execution of the LOCK and UNLOCK JTAG instructions through user logic
implementation in the Intel Quartus Prime software.

This reference design is targeted on the Arria V device with the tamper-protection bit
enabled. This design example is applicable to other 28-nm FPGAs.

Related Information

AN 556 Design Files

Design Example Intel Quartus Prime Design Components

Table 20. Intel Quartus Prime Design Components for the Arria V Device

Component Function and Description

JTAG_Lock_Unlock.bdf The top entity of the reference design.

JTAG_Lock_Unlock_wysiwyg.v The Verilog code for the Arria V device WYSIWYG atom
instantiation. You need to modify this code according to
Table 18 on page 32 for compliance with other 28-nm
FPGAs.

ALTINT_OSC.v A IP core instantiation of an internal oscillator clock source.
In this reference design, the clock source from the internal
oscillator is used to drive the user logic to eliminate the
need of an external clock source.

User_logic_control_block.v An example Verilog file that executes JTAG instructions
using Arria V device WYSIWYG atom. You can modify this
code to fit your design requirements and restrictions, or
replace this code with another similar implementation.

Pulse_nconfig.jam Use this JAM file to execute the PULSE_NCONFIG JTAG
instruction to verify the JTAG secure mode as shown in
Verifying JTAG Secure Mode on page 38. This file is
optional and can be replaced with other methods to verify
the JTAG secure mode.

LOCK and UNLOCK JTAG Instructions

When you configure this reference design into an Arria V device with the
tamper-protection bit enabled, the Arria V device is in JTAG secure mode after power
up and configuration, whereby you can only execute mandatory JTAG instructions.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

36

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix-v/pcg-01015.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-v/pcg-01013.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-v/pcg-01016.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix4/pcg-01005.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/stratix4/pcg-01006.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/dp/arria-ii-gx/pcg-01007.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683814/current/intel-arria-10-gx-gt-and-sx-device-family.html
https://www.altera.com/content/dam/altera-www/global/en_US/others/literature/an/an556_ref_design.zip
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To disable the JTAG secure mode, you can trigger the start_unlock port of the user
logic to issue the UNLOCK JTAG instruction. After the start_unlock port goes high,
the UNLOCK JTAG instruction is issued. After the UNLOCK JTAG instruction is issued,
the device exits from JTAG secure mode, whereby both mandatory and non-
mandatory JTAG instructions are allowed.

Figure 4. LOCK or UNLOCK JTAG Instruction Execution

Start

Enable the Internal JTAG
Interface, corectl = 1

Shift the JTAG Instruction
to the TDI Core.

start_unlock or
start_lock

= 1?

no

yes

End of Instruction
Length?

no

yes

Move the TAP Controller
State Machine from the
RESET State to the
SHIFT_IR State by
Controlling the TMS Core.

Move the TAP Controller
State Machine from the
SHIFT_IR State to the
IDLE State.

End

The start_lock port in the user logic triggers the execution of the LOCK JTAG
instruction. The function of the LOCK JTAG instruction is to put the device back into
JTAG secure mode.

Table 21. Input and Output Port of the User Logic

Port Input/Output Function

clk_in Input Clock source for the user logic. The fMAX of the user logic depends
on the timing closure analysis. You need to apply timing
constraints and perform timing analysis on the path to determine
the fMAX.

start_lock Input Logic high to trigger the execution of the LOCK JTAG instruction
to the internal JTAG interface.

start_unlock Input Logic high to trigger the execution of the UNLOCK JTAG instruction
to the internal JTAG interface.

jtag_core_en_out Output Output of the User_logic_control_block. This port is
connected to the corectl port of the JTAG WYSIWYG atom to
enable the internal JTAG interface.

tck_out Output Output of the User_logic_control_block. This port is
connected to the tck_core port of the JTAG WYSIWYG atom.

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Input/Output Function

tdi_out Output Output of the User_logic_control_block. This port is
connected to the tdi_core port of the JTAG WYSIWYG atom.

tms_out Output Output of the User_logic_control_block. This port is
connected to the tms_core port of the JTAG WYSIWYG atom.

indicator Output Logic high on this output pin indicates the completion of the LOCK
or UNLOCK JTAG instruction execution.

Related Information

AN 39: IEEE 1149.1 JTAG Boundary-Scan Testing in Altera Devices

Verifying JTAG Secure Mode

Intel recommends that you verify whether your device has successfully enter or exit
JTAG secure mode by executing the non-mandatory JTAG instructions. To validate the
JTAG secure mode with the reference design (20), follow these steps:

1. FPGA power up

After the FPGA is powered up, the FPGA is in the JTAG secure mode because the
tamper-protection bit is enabled.

2. FPGA configuration

Configure the reference design into the FPGA. Since the FPGA is tamper resistant
and accepts only encrypted configuration file, you need to configure the reference
design in encrypted file as shown in Step 3: Configuring the 40-nm, 28-nm, or 20-
nm FPGAs with Encrypted Configuration Data on page 22. To ensure the device
enters user mode successfully, you can check the CONFDONE pin or observe the
counter_output pin. If the device enters user mode successfully, the CONFDONE
pin goes high and the counter_output pin should toggle.

3. Verify the JTAG secure mode

After the device enters user mode, issue the PULSE_NCONFIG JTAG instruction
using the external JTAG pins. You can use the pulse_nconfig.jam file attached
in the design example. To execute the pulse_nconfig.jam file, you can use the
quartus_jli or the JAM player. The PULSE_NCONFIG JTAG instruction triggers
device reconfiguration. If your device is in the JTAG secure mode, reconfiguration
is not taking place because the PULSE_NCONFIG JTAG instruction is a
non-mandatory JTAG instruction. You can confirm this by observing the CONFDONE
pin and the counter_output pin. If reconfiguration did not take place, the
CONFDONE pin stays high and the counter_output pin continues to toggle.

4. Execute the UNLOCK JTAG instruction

Pull the start_unlock port of the user logic to logic high. After the UNLOCK JTAG
instruction is complete, the indicator port goes high.

5. Verify the JTAG secure mode

After the UNLOCK JTAG instruction is completed, issue the PULSE_NCONFIG JTAG
instruction again using the external JTAG pins. If your device is not in the JTAG
secure mode, the PULSE_NCONFIG JTAG instruction triggers device

(20) You should only apply these steps on an FPGA with the tamper-protection bit enabled.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

38

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an039.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reconfiguration. You can observe the CONFDONE pin and the counter_output pin
to monitor the device reconfiguration. The CONFDONE pin goes from high to low
and the counter_output pin stops toggling during device reconfiguration.

Related Information

AN 425: Using the Command-Line Jam STAPL Solution for Device Programming
Provides more information about quartus_jli .

Document Revision History for AN 556: Using the Design Security
Features in Intel FPGAs

Document
Version

Changes

2021.05.21 Added a note to Generating Single-Device .ekp File and Encrypting Configuration File using Command-
Line Interface in Intel Quartus Prime Software.

2019.11.12 Updated the Key Programming section:
• Updated the footnote for Intel FPGA Download Cable II.
• Added a note to state that the JTAG TCK pulse width (period) for other third-party non-volatile key

programming must be regulated for proper polyfuse programming.

2018.12.11 Updated the Generating Single-Device .ekp File and Encrypting Configuration File using Intel Quartus
Prime Software section to correct the key file examples.

2018.06.15 • Updated the description in the Overview of the Design Security Feature section.
• Updated the description in the Design Security Approach for 40-nm and 28-nm FPGAs table.
• Removed the note to the design protection option in the Volatile and Non-Volatile Key Comparison

table.
• Corrected the note to Intel FPGA Parallel Port Cable in the Key Programming Methods table.
• Updated the description for --decrypt in the Basic Options in Qcrypt Tool table.
• Updated the information on encrypting an .rbf by using the stand-alone Qcrypt tool in the Steps

for Implementing a Secure Configuration Flow section.
• Added steps in the Generating Single-Device .ekp File and Encrypting Configuration File using Intel

Quartus Prime Software section.
• Added the Steps to Enable Tamper-Protection Bit Programming section.
• Updated the PS and JTAG configuration schemes in the Design Security Support for Each

Configuration Scheme table.
• Added description for the examples in the Security Mode Verification section.
• Updated the Internal and External JTAG Interface Connection diagram.
• Corrected the functions for the jtag_core_en_out, tck_out, tdi_out, and tms_out ports in

the Input and Output Port of the User Logic table.
• Renamed the following IP cores as per Intel rebranding:

— Renamed Intel FPGA Parallel Flash Loader IP core to Parallel Flash Loader Intel FPGA IP core.
— Renamed Intel FPGA Serial Flash Loader IP core to Serial Flash Loader Intel FPGA IP core.

Date Version Changes

December 2017 2017.12.18 • Added support for Intel Cyclone 10 GX device family.
• Updated the "Specifications for Key Programming" table: Updated the

Non-Volatile Key and Volatile Key descriptions for TCK period.
• Updated the "Security Mode Verification for 20-nm FPGAs" table:

Added footnotes for bits 11 and 13 to clarify that these bits are not
applicable Intel Cyclone 10 GX devices.

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

39

https://www.intel.com/content/www/us/en/docs/programmable/683089/current/using-the-command-line-jam-stapl-solution.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Updated for latest Intel branding standards.
• Updated --lockto=<FILE_NAME.qlk> security option description

in Security Options in Qcrypt Tool table.
• Made minor text edits to the document.

June 2016 2016.06.01 • Added Arria 10 Qcrypt Tool information.
• Added information about tamper-protection bit and JTAG Secure can

be enabled separately in 20-nm FPGAs.
• Added software requirements for 20-nm FPGAs.
• Added two additional steps for 20-nm FPGAs in Generating Single-

Device .ekp File and Encrypting Configuration File using Intel Quartus
Prime Software.

• Added 20-nm FPGA JTAG Secure verification methods.
• Added note about EXTEST_PULSE, EXTEST_TRAIN, KEY_VERIFY JTAG

instructions can be used during JTAG Secure mode.
• Updated Arria 10 JTAG atom.
• Added separate security approach for 20-nm FPGAs.
• Added note about encryption and compression cannot be used

simultaneously in 20-nm FPGAs.
• Updated TCK period non-volatile key specification for 20-nm FPGAs.
• Added note about USB-Blaster supports volatile and non-volatile key

for 20-nm FPGAs.

November 2015 2015.11.02 • Added note about user need set the TCK speed to required TCK
period for EthernetBlaster II and added link EthernetBlaster II
Communications Cable User Guide.

• Changed instances of Quartus II to Quartus Prime.

June 2015 2015.06.15 Added link to JTAG Secure Mode Design Example.

May 2015 2015.05.04 Corrected the total number of character in .key file example.

January 2015 2015.01.23 • Added 20-nm FPGAs (Arria 10) support.
• Added JAM file example for 20-nm.
• Added Security Mode Verification for 20-nm table.
• Added JTAG WYSIWYG atom for Arria 10.
• Added AES modes in Altera FPGAs.

December 2014 2014.12.15 Added USB-Blaster II support for non-volatile security key programming.

September 2014 2014.09.30 • Added example .key file in How to Generate the Single-Device .ekp
File and Encrypt the Configuration File using Quartus II Software.

• Removed VCCBAT voltage guideline and added device family pin
connection guidelines links for updated values in Hardware
Requirements.

• Added note to modes with tamper protection in Security Mode
Verification for 28-nm FPGAs.

• Added Verification During JTAG Secure Mode subsection to tamper bit
protection settings during JTAG Secure mode.

May 2014 2014.05.19 Updated the Non-Volatile and Volatile Key Storage section to include
information on using valid MSEL pin settings.

June 2013 2013.06.19 • Updated the Design Security Approach for FPGAs table to include
more design security features.

• Updated the Non-Volatile and Volatile Key Storage section to include
details on both volatile and non-volatile key storage.

• Updated the Key Programming section to include support for both
28-nm and 40-nm FPGAs using the System General programming
tool.

• Updated the Hardware Requirements section to update the
Specifications for Key Programming table.

continued...

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

AN 556: Using the Design Security Features in Intel FPGAs Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Updated the Steps for Implementing a Secure Configuration Flow
section.

• Updated the Step 1: Generate the .ekp File and Encrypt
Configuration File, Step 2a: Program the Volatile Key into the FPGAs,
and Step 2b: Program the Volatile Key into the FPGAs sections.

• Updated the How to Generate the Single-Device .ekp File and Encrypt
the Configuration File using Quartus II Software to include
information about the encryption key for 28-nm and 40-nm FPGAs.

• Updated the Security Mode Verification section to update the security
mode and its associated bit values for both 28-nm and 40-nm FPGAs.

• Updated the JTAG Secure Mode for 28-nm FPGAs section to include
more information about the mandatory and non-mandatory JTAG
instructions, internal JTAG interface and external JTAG interface,
WYSIWYG atom functions, and design example for JTAG secure
mode.

• Moved all links in all topics to the Related Information section for
easy reference.

June 2012 2.1 • Updated Table 1 and Table 3.
• Updated .ekp file verification error information.
• Updated "Hardware Requirements" section.

June 2011 2.0 • Updated application note for the Quartus II software version 11.0
release.

• Changed the specific device names to 40- or 28-nm FPGAs.
• Added "Security Mode Verification" and "JTAG Secure Mode for 28-

nm FPGAs" sections.
• Added Table 1.
• Added Table 5.
• Added Example 3, Example 4, and Example 5.
• Updated Figure 1.
• Minor text edits.

June 2009 1.1 • Updated "Introduction" on page 1.
• Updated "Overview of the Design Security Feature" on page 2.
• Updated "Security Encryption Algorithm" on page 2.
• Updated "Non-Volatile and Volatile Key Storage" on page 3.
• Updated (Note 3) of Table 2 on page 4.
• Updated "Hardware and Software Requirements" on page 4.
• Updated (Note 1) of Table 3 on page 5.
• Updated "Steps for Implementing a Secure Configuration Flow" on

page 5.
• Updated "Step 2a: Program the Volatile Key into the Arria II GX or

Stratix IV Devices" on page 17.
• Updated "Step 2b: Program the Non-Volatile Key into the Arria II GX

or Stratix IV Devices" on page 18.
• Updated "Step 3: Configure the Arria II GX or Stratix IV Devices with

Encrypted Configuration Data" on page 24.
• Added Table 3 on page 28.
• Updated Figure 1 on page 6 and Figue 26 on page 29.

March 2009 1.0 Initial release.

Using the Design Security Features in Intel® FPGAs

683269 | 2021.05.21

Send Feedback AN 556: Using the Design Security Features in Intel FPGAs

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20556:%20Using%20the%20Design%20Security%20Features%20in%20Intel%20FPGAs%20(683269%202021.05.21)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 556: Using the Design Security Features in Intel FPGAs
	Contents
	Using the Design Security Features in Intel® FPGAs
	Overview of the Design Security Feature
	Security Encryption Algorithm
	Non-Volatile and Volatile Key Storage
	Key Programming
	Intel Arria 10 and Intel Cyclone 10 GX Qcrypt Security Tool
	Using Qcrypt Tool
	Qcrypt Tool Options
	Security Levels of Qcrypt Tool Security Option

	Hardware and Software Requirements
	Hardware Requirements
	Software Requirements

	Steps for Implementing a Secure Configuration Flow
	Step 1: Generating .ekp File and Encrypting Configuration File
	Generating Single-Device .ekp File and Encrypting Configuration File using Intel Quartus Prime Software
	Generating Single-Device .ekp File and Encrypting Configuration File using Command-Line Interface in Intel Quartus Prime Software
	Generating Multi-Device .ekp File and Encrypting Configuration File using Intel Quartus Prime Software

	Step 2a: Programming Volatile Key into the FPGAs
	Step 2b: Programming Non-Volatile Key into the FPGAs
	Programming Volatile or Non-Volatile Key using Intel FPGA Ethernet Cable and Intel Quartus Prime Software
	Programming Single-Device Volatile or Non-Volatile Key using Intel Quartus Prime Software
	Programming Single-Device Volatile or Non-Volatile Key using the Command-Line Interface in Intel Quartus Prime Software
	Programming Multi-Device Volatile or Non-Volatile Key using Intel Quartus Prime Software
	Programming Multi-Device Volatile or Non-Volatile Key using the Command-Line Interface in Intel Quartus Prime Software
	Programming Key using JTAG Technologies

	Step 3: Configuring the 40-nm, 28-nm, or 20-nm FPGAs with Encrypted Configuration Data

	Steps to Enable Tamper-Protection Bit Programming
	Supported Configuration Schemes
	Security Mode Verification
	Verification During JTAG Secure Mode

	Serial Flash Loader Support with Encryption Enabled
	Serial Flash Loader Support with Encryption Enabled for Single FPGA Device Chain
	JTAG Secure Mode for 28-nm and 20-nm FPGAs
	Internal JTAG Interface
	Design Example for JTAG Secure Mode
	Design Example Intel Quartus Prime Design Components
	LOCK and UNLOCK JTAG Instructions
	Verifying JTAG Secure Mode

	Document Revision History for AN 556: Using the Design Security Features in Intel FPGAs

