
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01085-11.0

User Guide

Embedded Peripherals IP

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
June 2011

Subscribe

Embedded Peripherals IP User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-01085

Embedded Peripherals IP User Guide June 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

June 2011 Altera Corporation
Contents
Chapter 1. Introduction
Tools Support . 1–1
Device Support . 1–1
Obsolescence . 1–2
Document Revision History . 1–2

Section I. Off-Chip Interface Peripherals

Chapter 2. SDRAM Controller Core
Core Overview . 2–1
Functional Description . 2–2

Avalon-MM Interface . 2–2
Off-Chip SDRAM Interface . 2–3

Signal Timing and Electrical Characteristics . 2–3
Synchronizing Clock and Data Signals . 2–3
Clock Enable (CKE) Not Supported . 2–3
Sharing Pins with Other Avalon-MM Tri-State Devices . 2–3

Board Layout and Pinout Considerations . 2–4
Performance Considerations . 2–4

Open Row Management . 2–4
Sharing Data and Address Pins . 2–4
Hardware Design and Target Device . 2–5

Configuration . 2–5
Memory Profile Page . 2–6
Timing Page . 2–7

Hardware Simulation Considerations . 2–7
SDRAM Controller Simulation Model . 2–8
SDRAM Memory Model . 2–8

Using the Generic Memory Model . 2–8
Using the SDRAM Manufacturer’s Memory Model . 2–8

Example Configurations . 2–8
Software Programming Model . 2–10
Clock, PLL and Timing Considerations . 2–10

Factors Affecting SDRAM Timing . 2–11
Symptoms of an Untuned PLL . 2–11
Estimating the Valid Signal Window . 2–11
Example Calculation . 2–13

Document Revision History . 2–15

Chapter 3. CompactFlash Core
Core Overview . 3–1
Functional Description . 3–1
Required Connections . 3–2
Software Programming Model . 3–3

HAL System Library Support . 3–3
Software Files . 3–3
Register Maps . 3–4

Ide Registers . 3–4
Embedded Peripherals IP User Guide

iv Contents
Ctl Registers . 3–4
Document Revision History . 3–5

Chapter 4. Common Flash Interface Controller Core
Core Overview . 4–1
Functional Description . 4–2
Configuration . 4–2

Attributes Page . 4–2
Presets Settings . 4–2
Size Settings . 4–3

Timing Page . 4–3
Software Programming Model . 4–4

HAL System Library Support . 4–4
Limitations . 4–4

Software Files . 4–4
Document Revision History . 4–5

Chapter 5. EPCS Serial Flash Controller Core
Core Overview . 5–1
Functional Description . 5–1

Avalon-MM Slave Interface and Registers . 5–3
Configuration . 5–4
Software Programming Model . 5–4

HAL System Library Support . 5–4
Software Files . 5–5

Document Revision History . 5–5

Chapter 6. JTAG UART Core
Core Overview . 6–1
Functional Description . 6–2

Avalon Slave Interface and Registers . 6–2
Read and Write FIFOs . 6–2
JTAG Interface . 6–3
Host-Target Connection . 6–3

Configuration . 6–4
Configuration Page . 6–4

Write FIFO Settings . 6–4
Read FIFO Settings . 6–4

Simulation Settings . 6–5
Simulated Input Character Stream . 6–5
Prepare Interactive Windows . 6–5

Hardware Simulation Considerations . 6–5
Software Programming Model . 6–6

HAL System Library Support . 6–6
Driver Options: Fast vs. Small Implementations . 6–7
ioctl() Operations . 6–8

Software Files . 6–8
Accessing the JTAG UART Core via a Host PC . 6–9
Register Map . 6–9

Data Register . 6–9
Control Register . 6–10

Interrupt Behavior . 6–10
Document Revision History . 6–11
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents v
Chapter 7. UART Core
Core Overview . 7–1
Functional Description . 7–1

Avalon-MM Slave Interface and Registers . 7–2
RS-232 Interface . 7–2
Transmitter Logic . 7–2
Receiver Logic . 7–3
Baud Rate Generation . 7–3

Instantiating the Core . 7–3
Configuration Settings . 7–3

Baud Rate Options . 7–3
Data Bits, Stop Bits, Parity . 7–4
Synchronizer Stages . 7–5
Flow Control . 7–5
Streaming Data (DMA) Control . 7–6

Simulation Settings . 7–6
Simulated RXD-Input Character Stream . 7–6
Prepare Interactive Windows . 7–6
Simulated Transmitter Baud Rate . 7–7

Simulation Considerations . 7–7
Software Programming Model . 7–7

HAL System Library Support . 7–8
Driver Options: Fast Versus Small Implementations . 7–9
ioctl() Operations . 7–10
Limitations . 7–10

Software Files . 7–10
Register Map . 7–11

rxdata Register . 7–12
txdata Register . 7–12
status Register . 7–12
control Register . 7–14
divisor Register (Optional) . 7–15
endofpacket Register (Optional) . 7–15

Interrupt Behavior . 7–15
Document Revision History . 7–16

Chapter 8. SPI Core
Core Overview . 8–1
Functional Description . 8–1

Example Configurations . 8–2
Transmitter Logic . 8–3
Receiver Logic . 8–3
Master and Slave Modes . 8–3

Master Mode Operation . 8–3
Slave Mode Operation . 8–4
Multi-Slave Environments . 8–5

Avalon-MM Interface . 8–5
Configuration . 8–5

Master/Slave Settings . 8–5
Number of Select (SS_n) Signals . 8–5
SPI Clock (sclk) Rate . 8–6
Specify Delay . 8–6

Data Register Settings . 8–6
June 2011 Altera Corporation Embedded Peripherals IP User Guide

vi Contents
Timing Settings . 8–7
Software Programming Model . 8–8

Hardware Access Routines . 8–8
alt_avalon_spi_command() . 8–8
Software Files . 8–9
Register Map . 8–9

rxdata Register . 8–9
txdata Register . 8–10
status Register . 8–10
control Register . 8–11
slaveselect Register . 8–11

Document Revision History . 8–12

Chapter 9. Optrex 16207 LCD Controller Core
Core Overview . 9–1
Functional Description . 9–1
Software Programming Model . 9–2

HAL System Library Support . 9–2
Displaying Characters on the LCD . 9–2
Software Files . 9–3
Register Map . 9–3
Interrupt Behavior . 9–3

Document Revision History . 9–4

Chapter 10. PIO Core
Core Overview . 10–1
Functional Description . 10–2

Data Input and Output . 10–2
Edge Capture . 10–3
IRQ Generation . 10–3

Example Configurations . 10–3
Avalon-MM Interface . 10–4

Configuration . 10–4
Basic Settings . 10–4

Width . 10–4
Direction . 10–4
Output Port Reset Value . 10–4
Output Register . 10–4

Input Options . 10–4
Edge Capture Register . 10–5
Interrupt . 10–5

Simulation . 10–5
Software Programming Model . 10–5

Software Files . 10–5
Register Map . 10–6

data Register . 10–6
direction Register . 10–6
interruptmask Register . 10–7
edgecapture Register . 10–7
outset and outclear Registers . 10–7

Interrupt Behavior . 10–7
Software Files . 10–8

Document Revision History . 10–8
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents vii
Chapter 11. Avalon-ST Serial Peripheral Interface Core
Core Overview . 11–1
Functional Description . 11–1

Interfaces . 11–1
Operation . 11–2
Timing . 11–3
Limitations . 11–3

Configuration . 11–3
Document Revision History . 11–3

Chapter 12. PCI Lite Core
Core Overview . 12–1
Performance and Resource Utilization . 12–1
Functional Description . 12–2

PCI-Avalon Bridge Blocks . 12–2
Avalon-MM Ports . 12–3

Master and Target Performance . 12–5
Master Performance . 12–5
Target Performance . 12–5

PCI-to-Avalon Address Translation . 12–6
Avalon-to-PCI Address Translation . 12–7
Avalon-To-PCI Read and Write Operation . 12–8

Avalon-to-PCI Write Requests . 12–9
Avalon-to-PCI Read Requests . 12–9

Ordering of Requests . 12–10
PCI Interrupt . 12–10

Configuration . 12–11
PCI Timing Constraint Files . 12–12

Additional Tcl Option . 12–13
Simulation Considerations . 12–14

Features . 12–14
Master Transactor (mstr_tranx) . 12–14

TASKS Sections . 12–14
INITIALIZATION Section . 12–15
USER COMMANDS Section . 12–15

Simulation Flow . 12–15
Document Revision History . 12–17

Chapter 13. Cyclone III Remote Update Controller Core
Core Overview . 13–1
Functional Description . 13–1

Avalon-MM Slave Interface and Registers . 13–1
Software Programming Model . 13–2

Setting the Configuration Offset . 13–2
Shifting the Configuration Offset Value . 13–3
Setting up the Watchdog Timer . 13–3
Triggering a Reconfiguration . 13–3
Code Example . 13–4

Document Revision History . 13–5

Chapter 14. MDIO Core
Functional Description . 14–1

MDIO Frame Format (Clause 45) . 14–2
June 2011 Altera Corporation Embedded Peripherals IP User Guide

viii Contents
MDIO Clock Generation . 14–3
Interfaces . 14–3
Operation . 14–3

Write Operation . 14–3
Read Operation . 14–3

Parameter . 14–4
Configuration Registers . 14–4
Document Revision History . 14–4

Section II. On-Chip Storage Peripherals

Chapter 15. Avalon-ST Single-Clock and Dual-Clock FIFO Cores
Core Overview . 15–1
Functional Description . 15–1

Interfaces . 15–2
Avalon-ST Data Interface . 15–2
Avalon-MM Control and Status Register Interface . 15–2
Avalon-ST Status Interface . 15–3

Operating Modes . 15–3
Fill Level . 15–3
Thresholds . 15–4

Parameters . 15–4
Register Description . 15–5
Document Revision History . 15–6

Chapter 16. On-Chip FIFO Memory Core
Core Overview . 16–1
Functional Description . 16–1

Avalon-MM Write Slave to Avalon-MM Read Slave . 16–2
Avalon-ST Sink to Avalon-ST Source . 16–2
Avalon-MM Write Slave to Avalon-ST Source . 16–3
Avalon-ST Sink to Avalon-MM Read Slave . 16–5
Status Interface . 16–6
Clocking Modes . 16–6

Configuration . 16–6
FIFO Settings . 16–6

Depth . 16–6
Clock Settings . 16–6
Status Port . 16–6
FIFO Implementation . 16–6

Interface Parameters . 16–7
Input . 16–7
Output . 16–7
Allow Backpressure . 16–7
Avalon-MM Port Settings . 16–7
Avalon-ST Port Settings . 16–7

Software Programming Model . 16–7
HAL System Library Support . 16–8
Software Files . 16–8

Programming with the On-Chip FIFO Memory . 16–8
Software Control . 16–9
Software Example . 16–12

On-Chip FIFO Memory API . 16–13
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents ix
altera_avalon_fifo_init() . 16–13
altera_avalon_fifo_read_status() . 16–13
altera_avalon_fifo_read_ienable() . 16–14
altera_avalon_fifo_read_almostfull() . 16–14
altera_avalon_fifo_read_almostempty() . 16–14
altera_avalon_fifo_read_event() . 16–14
altera_avalon_fifo_read_level() . 16–15
altera_avalon_fifo_clear_event() . 16–15
altera_avalon_fifo_write_ienable() . 16–15
altera_avalon_fifo_write_almostfull() . 16–15
altera_avalon_fifo_write_almostempty() . 16–16
altera_avalon_write_fifo() . 16–16
altera_avalon_write_other_info() . 16–17
altera_avalon_fifo_read_fifo() . 16–17
altera_avalon_fifo_read_other_info() . 16–17

Document Revision History . 16–18

Chapter 17. Avalon-ST Multi-Channel Shared Memory FIFO Core
Core Overview . 17–1
Performance and Resource Utilization . 17–2
Functional Description . 17–3

Interfaces . 17–3
Avalon-ST Interfaces . 17–3
Avalon-MM Interfaces . 17–4

Operation . 17–4
Parameters . 17–5
Software Programming Model . 17–5

HAL System Library Support . 17–5
Register Map . 17–5

Control Register Interface . 17–6
Fill-Level Register Interface . 17–6

Document Revision History . 17–7

Section III. Transport and Communication

Chapter 18. SPI Slave/JTAG to Avalon Master Bridge Cores
Core Overview . 18–1
Functional Description . 18–1
Parameters . 18–3
Document Revision History . 18–3

Chapter 19. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Core Overview . 19–1

Resource Usage and Performance . 19–1
Multiplexer . 19–2

Functional Description . 19–2
Input Interfaces . 19–3
Output Interface . 19–3

Parameters . 19–3
Functional Parameters . 19–3
Output Interface . 19–4

Demultiplexer . 19–4
Functional Description . 19–4
June 2011 Altera Corporation Embedded Peripherals IP User Guide

x Contents
Input Interface . 19–5
Output Interfaces . 19–5

Parameters . 19–5
Functional Parameters . 19–5
Input Interface . 19–6

Hardware Simulation Considerations . 19–6
Software Programming Model . 19–7
Document Revision History . 19–7

Chapter 20. Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Core Overview . 20–1
Functional Description . 20–1

Interfaces . 20–2
Operation—Avalon-ST Bytes to Packets Converter Core . 20–2
Operation—Avalon-ST Packets to Bytes Converter Core . 20–3

Document Revision History . 20–4

Chapter 21. Avalon Packets to Transactions Converter Core
Core Overview . 21–1
Functional Description . 21–1

Interfaces . 21–1
Operation . 21–2

Packet Formats . 21–2
Supported Transactions . 21–2
Malformed Packets . 21–3

Document Revision History . 21–4

Chapter 22. Avalon-ST Round Robin Scheduler Core
Core Overview . 22–1
Performance and Resource Utilization . 22–1
Functional Description . 22–2

Interfaces . 22–2
Almost-Full Status Interface . 22–2
Request Interface . 22–3

Operations . 22–3
Parameters . 22–4
Document Revision History . 22–4

Chapter 23. Avalon-ST Delay Core
Core Overview . 23–1
Functional Description . 23–1

Reset . 23–1
Interfaces . 23–2

Parameters . 23–2
Document Revision History . 23–3

Chapter 24. Avalon-ST Splitter Core
Core Overview . 24–1
Functional Description . 24–1

Backpressure . 24–1
Interfaces . 24–2

Parameters . 24–2
Document Revision History . 24–3
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents xi
Section IV. Peripherals

Chapter 25. Scatter-Gather DMA Controller Core
Core Overview . 25–1

Example Systems . 25–1
Comparison of SG-DMA Controller Core and DMA Controller Core . 25–2
In This Chapter . 25–2

Resource Usage and Performance . 25–3
Functional Description . 25–3

Functional Blocks and Configurations . 25–3
Descriptor Processor . 25–4
DMA Read Block . 25–4
DMA Write Block . 25–4
Memory-to-Memory Configuration . 25–4
Memory-to-Stream Configuration . 25–5
Stream-to-Memory Configuration . 25–6

DMA Descriptors . 25–6
Descriptor Processing . 25–6
Building and Updating Descriptor List . 25–7

Error Conditions . 25–8
Parameters . 25–9
Simulation Considerations . 25–10
Software Programming Model . 25–10

HAL System Library Support . 25–10
Software Files . 25–10
Register Maps . 25–11
DMA Descriptors . 25–13
Timeouts . 25–15

Programming with SG-DMA Controller . 25–15
Data Structure . 25–15
SG-DMA API . 25–16
alt_avalon_sgdma_do_async_transfer() . 25–17
alt_avalon_sgdma_do_sync_transfer() . 25–17
alt_avalon_sgdma_construct_mem_to_mem_desc() . 25–18
alt_avalon_sgdma_construct_stream_to_mem_desc() . 25–18
alt_avalon_sgdma_construct_mem_to_stream_desc() . 25–19
alt_avalon_sgdma_enable_desc_poll() . 25–20
alt_avalon_sgdma_disable_desc_poll() . 25–20
alt_avalon_sgdma_check_descriptor_status() . 25–20
alt_avalon_sgdma_register_callback() . 25–21
alt_avalon_sgdma_start() . 25–21
alt_avalon_sgdma_stop() . 25–22
alt_avalon_sgdma_open() . 25–22

Document Revision History . 25–22

Chapter 26. DMA Controller Core
Core Overview . 26–1
Functional Description . 26–1

Setting Up DMA Transactions . 26–2
The Master Read and Write Ports . 26–3
Addressing and Address Incrementing . 26–3

Parameters . 26–4
DMA Parameters (Basic) . 26–4
June 2011 Altera Corporation Embedded Peripherals IP User Guide

xii Contents
Transfer Size . 26–4
Burst Transactions . 26–4
FIFO Depth . 26–4
FIFO Implementation . 26–4

Advanced Options . 26–5
Allowed Transactions . 26–5

Software Programming Model . 26–5
HAL System Library Support . 26–5

ioctl() Operations . 26–6
Limitations . 26–6

Software Files . 26–6
Register Map . 26–7

status Register . 26–7
readaddress Register . 26–8
writeaddress Register . 26–8
length Register . 26–8
control Register . 26–8

Interrupt Behavior . 26–10
Document Revision History . 26–10

Chapter 27. Video Sync Generator and Pixel Converter Cores
Core Overview . 27–1
Video Sync Generator . 27–1

Functional Description . 27–2
Parameters . 27–2
Signals . 27–3
Timing Diagrams . 27–4

Pixel Converter . 27–5
Functional Description . 27–5
Parameters . 27–5
Signals . 27–5

Hardware Simulation Considerations . 27–6
Document Revision History . 27–6

Chapter 28. Interval Timer Core
Core Overview . 28–1
Functional Description . 28–1

Avalon-MM Slave Interface . 28–2
Configuration . 28–2

Timeout Period . 28–2
Counter Size . 28–3
Hardware Options . 28–3

Register Options . 28–3
Output Signal Options . 28–4

Configuring the Timer as a Watchdog Timer . 28–4
Software Programming Model . 28–4

HAL System Library Support . 28–5
System Clock Driver . 28–5
Timestamp Driver . 28–5
Limitations . 28–5

Software Files . 28–5
Register Map . 28–6

status Register . 28–7
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents xiii
control Register . 28–7
period_n Registers . 28–8
snap_n Registers . 28–8

Interrupt Behavior . 28–8
Document Revision History . 28–8

Chapter 29. Mutex Core
Core Overview . 29–1
Functional Description . 29–1
Configuration . 29–2
Software Programming Model . 29–2

Software Files . 29–2
Hardware Access Routines . 29–3

Mutex API . 29–3
altera_avalon_mutex_is_mine() . 29–3
altera_avalon_mutex_first_lock() . 29–4
altera_avalon_mutex_lock() . 29–4
altera_avalon_mutex_open() . 29–4
altera_avalon_mutex_trylock() . 29–5
altera_avalon_mutex_unlock() . 29–5

Document Revision History . 29–5

Chapter 30. Mailbox Core
Core Overview . 30–1
Functional Description . 30–1
Configuration . 30–2
Software Programming Model . 30–2

Software Files . 30–3
Programming with the Mailbox Core . 30–3

Mailbox API . 30–4
altera_avalon_mailbox_close() . 30–4
altera_avalon_mailbox_get() . 30–5
altera_avalon_mailbox_open() . 30–5
altera_avalon_mailbox_pend() . 30–5
altera_avalon_mailbox_post() . 30–6

Document Revision History . 30–6

Chapter 31. Vectored Interrupt Controller Core
Core Overview . 31–1
Functional Description . 31–2

External Interfaces . 31–2
clk . 31–2
irq_input . 31–3
interrupt_controller_out . 31–3
interrupt_controller_in . 31–3
csr_access . 31–4

Functional Blocks . 31–4
Interrupt Request Block . 31–4
Priority Processing Block . 31–5
Vector Generation Block . 31–5

Daisy Chaining VIC Cores . 31–6
Latency Information . 31–6

Register Maps . 31–6
June 2011 Altera Corporation Embedded Peripherals IP User Guide

xiv Contents
Parameters . 31–10
Altera HAL Software Programming Model . 31–10

Software Files . 31–10
Macros . 31–11
Data Structure . 31–12
VIC API . 31–12

alt_vic_sw_interrupt_set() . 31–13
alt_vic_sw_interrupt_clear() . 31–13
alt_vic_sw_interrupt_status() . 31–13
alt_vic_irq_set_level() . 31–14

Run-time Initialization . 31–14
Board Support Package . 31–14

VIC BSP Settings . 31–15
Default Settings for RRS and RIL . 31–18
VIC BSP Design Rules for Altera Hal Implementation . 31–19
RTOS Considerations . 31–20

Document Revision History . 31–20

Section V. Test and Debug Peripherals

Chapter 32. Avalon-ST JTAG Interface Core
Core Overview . 32–1
Functional Description . 32–1

Interfaces . 32–1
Core Behavior . 32–2

Bytestream Operation . 32–2
JTAG Debug Operation . 32–2

Parameters . 32–3
Document Revision History . 32–3

Chapter 33. System ID Core
Core Overview . 33–1
Functional Description . 33–1
Configuration . 33–2
Software Programming Model . 33–2

alt_avalon_sysid_test() . 33–3
Document Revision History . 33–3

Chapter 34. Performance Counter Core
Core Overview . 34–1
Functional Description . 34–1

Section Counters . 34–2
Global Counter . 34–2
Register Map . 34–2
System Reset . 34–3

Configuration . 34–3
Define Counters . 34–3
Multiple Clock Domain Considerations . 34–3

Hardware Simulation Considerations . 34–3
Software Programming Model . 34–3

Software Files . 34–3
Using the Performance Counter . 34–4

API Summary . 34–4
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents xv
Startup . 34–5
Global Counter Usage . 34–5
Section Counter Usage . 34–5
Viewing Counter Values . 34–5

Interrupt Behavior . 34–6
Performance Counter API . 34–6

PERF_RESET() . 34–6
PERF_START_MEASURING() . 34–6
PERF_STOP_MEASURING() . 34–7
PERF_BEGIN() . 34–7
PERF_END() . 34–7
perf_print_formatted_report() . 34–8
perf_get_total_time() . 34–8
perf_get_section_time() . 34–9
perf_get_num_starts() . 34–9
alt_get_cpu_freq() . 34–9

Document Revision History . 34–10

Chapter 35. Avalon Streaming Test Pattern Generator and Checker Cores
Core Overview . 35–1
Resource Utilization and Performance . 35–1
Test Pattern Generator . 35–3

Functional Description . 35–3
Command Interface . 35–3
Control and Status Interface . 35–3
Output Interface . 35–4

Configuration . 35–4
Functional Parameter . 35–4
Output Interface . 35–4

Test Pattern Checker . 35–5
Functional Description . 35–5

Input Interface . 35–5
Control and Status Interface . 35–6

Configuration . 35–6
Functional Parameter . 35–6
Input Parameters . 35–6

Hardware Simulation Considerations . 35–6
Software Programming Model . 35–7

HAL System Library Support . 35–7
Software Files . 35–7
Register Maps . 35–8

Test Pattern Generator Control and Status Registers . 35–8
Test Pattern Generator Command Registers . 35–9
Test Pattern Checker Control and Status Registers . 35–10

Test Pattern Generator API . 35–12
data_source_reset() . 35–12
data_source_init() . 35–12
data_source_get_id() . 35–12
data_source_get_supports_packets() . 35–13
data_source_get_num_channels() . 35–13
data_source_get_symbols_per_cycle() . 35–13
data_source_set_enable() . 35–13
data_source_get_enable() . 35–14
data_source_set_throttle() . 35–14
June 2011 Altera Corporation Embedded Peripherals IP User Guide

xvi Contents
data_source_get_throttle() . 35–14
data_source_is_busy() . 35–14
data_source_fill_level() . 35–15
data_source_send_data() . 35–15

Test Pattern Checker API . 35–16
data_sink_reset() . 35–16
data_sink_init() . 35–16
data_sink_get_id() . 35–16
data_sink_get_supports_packets() . 35–17
data_sink_get_num_channels() . 35–17
data_sink_get_symbols_per_cycle() . 35–17
data_sink_set enable() . 35–17
data_sink_get_enable() . 35–18
data_sink_set_throttle() . 35–18
data_sink_get_throttle() . 35–18
data_sink_get_packet_count() . 35–18
data_sink_get_symbol_count() . 35–19
data_sink_get_error_count() . 35–19
data_sink_get_exception() . 35–19
data_sink_exception_is_exception() . 35–19
data_sink_exception_has_data_error() . 35–20
data_sink_exception_has_missing_sop() . 35–20
data_sink_exception_has_missing_eop() . 35–20
data_sink_exception_signalled_error() . 35–20
data_sink_exception_channel() . 35–21

Document Revision History . 35–21

Chapter 36. Avalon Streaming Data Pattern Generator and Checker Cores
Core Overview . 36–1
Data Pattern Generator . 36–1

Functional Description . 36–1
Control and Status Register Interface . 36–2
Output Interface . 36–2
Clock Interface . 36–2
Supported Data Patterns . 36–2
Inject Error . 36–3
Preamble Mode . 36–3

Configuration . 36–3
Output Parameter . 36–3

Data Pattern Checker . 36–3
Functional Description . 36–3

Control and Status Register Interface . 36–4
Input Interface . 36–4
Clock Interface . 36–4
Supported Data Patterns . 36–5
Lock . 36–5
Bit and Error Counters . 36–5
Clock Sensor . 36–5

Configuration . 36–6
Input Parameter . 36–6

Hardware Simulation Considerations . 36–6
Software Programming Model . 36–6

Register Maps . 36–6
Data Pattern Generator Control Registers . 36–6
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Contents xvii
Data Pattern Checker Control and Status Registers . 36–8
Document Revision History . 36–11

Section V. Clock Control Peripherals

Chapter 38. PLL Cores
Core Overview . 38–1
Functional Description . 38–2

ALTERA_PLL Megafunction . 38–2
ALTPLL Megafunction . 38–2
Clock Outputs . 38–2
PLL Status and Control Signals . 38–3
System Reset Considerations . 38–3

Instantiating the ALTERA_PLL Core . 38–3
Instantiating the Avalon ALTPLL Core . 38–3
Instantiating the PLL Core . 38–4

PLL Settings Page . 38–4
Interface Page . 38–4
Finish . 38–5

Hardware Simulation Considerations . 38–5
Register Definitions and Bit List . 38–5

Status Register . 38–6
Control Register . 38–7
Phase Reconfig Control Register . 38–7

Document Revision History . 38–8

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–2
June 2011 Altera Corporation Embedded Peripherals IP User Guide

xviii Contents
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
1. Introduction
This user guide describes the IP cores provided by Altera that are included in the
Quartus® II design software.

The IP cores are optimized for Altera® devices and can be easily implemented to
reduce design and test time. You can use the IP parameter editor from Qsys or SOPC
Builder to add the IP cores to your system, configure the cores, and specify their
connectivity.

Tools Support
Qsys is a system-level integration tool which is included as part of the Quartus II
software. Qsys leverages the easy-to-use interface of SOPC Builder and provides
backward compatibility for easy migration of existing embedded systems.You can
implement a design using the IP cores from the Qsys component library.

All the IP cores described in this user guide are supported by Qsys except for the
following cores which are only supported by SOPC Builder.

■ Common Flash Interface Controller Core

■ SDRAM Controller Core (pin-sharing mode)

■ DMA Controller Core

f For more information on Qsys or SOPC Builder, refer to Volume 1: Design and Synthesis
of the Quartus II Handbook or SOPC Builder User Guide.

Device Support
The IP cores described in this user guide support all Altera device families except the
cores listed in Table 1–1.

Table 1–1. Device Support

IP Cores Device Support

Off-Chip Interfaces

EPCS Serial Flash Controller Core All device families except HardCopy® series.

Cyclone III Remote Update Controller Core Only Cyclone III device.

MDIO Core Only Stratix® IV GX and Stratix IV GT devices.

On-Chip Interfaces

On-Chip FIFO Memory Core All device families except HardCopy® series.

Clock Control

Avalon ALTPLL Core All device families except Stratix V, Cyclone V,
and Arria V device families.
Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf

1–2 Chapter 1: Introduction
Obsolescence
1 Different device families support different I/O standards, which may affect the ability
of the core to interface to certain components. For details about supported I/O types,
refer to the device handbook for the target device family.

Obsolescence
The following IP cores are scheduled for product obsolescence and discontinued
support:

■ PCI Lite Core

■ Mailbox Core

Altera recommends that you do not use these cores in new designs.

f For more information about Altera’s current IP offering, refer to Altera’s Intellectual
Property website.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0

■ Removed System ID core from the list of cores which are only supported by SOPC
Builder.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/products/ip/ipm-index.html

June 2011 Altera Corporation
Section I. Off-Chip Interface Peripherals
This section describes the interfaces to off-chip devices provided for SOPC Builder
systems.

This section includes the following chapters:

■ Chapter 2, SDRAM Controller Core

■ Chapter 3, CompactFlash Core

■ Chapter 4, Common Flash Interface Controller Core

■ Chapter 5, EPCS Serial Flash Controller Core

■ Chapter 6, JTAG UART Core

■ Chapter 7, UART Core

■ Chapter 8, SPI Core

■ Chapter 9, Optrex 16207 LCD Controller Core

■ Chapter 10, PIO Core

■ Chapter 11, Avalon-ST Serial Peripheral Interface Core

■ Chapter 12, PCI Lite Core

■ Chapter 13, Cyclone III Remote Update Controller Core

■ Chapter 14, MDIO Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

I–2 Section I: Off-Chip Interface Peripherals
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
2. SDRAM Controller Core
Core Overview
The SDRAM controller core with Avalon® interface provides an Avalon
Memory-Mapped (Avalon-MM) interface to off-chip SDRAM. The SDRAM controller
allows designers to create custom systems in an Altera® device that connect easily to
SDRAM chips. The SDRAM controller supports standard SDRAM as described in the
PC100 specification.

SDRAM is commonly used in cost-sensitive applications requiring large amounts of
volatile memory. While SDRAM is relatively inexpensive, control logic is required to
perform refresh operations, open-row management, and other delays and command
sequences. The SDRAM controller connects to one or more SDRAM chips, and
handles all SDRAM protocol requirements. Internal to the device, the core presents an
Avalon-MM slave port that appears as linear memory (flat address space) to
Avalon-MM master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16, 32, or
64 bits), various memory sizes, and multiple chip selects. The Avalon-MM interface is
latency-aware, allowing read transfers to be pipelined. The core can optionally share
its address and data buses with other off-chip Avalon-MM tri-state devices. This
feature is valuable in systems that have limited I/O pins, yet must connect to multiple
memory chips in addition to SDRAM.

The SDRAM controller core with Avalon interface is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system. This chapter contains the
following sections:

■ “Functional Description” on page 2–2

■ “Hardware Simulation Considerations” on page 2–7

■ “Software Programming Model” on page 2–10

■ “Clock, PLL and Timing Considerations” on page 2–10
Embedded Peripherals IP User Guide

2–2 Chapter 2: SDRAM Controller Core
Functional Description
Functional Description
Figure 2–1 shows a block diagram of the SDRAM controller core connected to an
external SDRAM chip.

The following sections describe the components of the SDRAM controller core in
detail. All options are specified at system generation time, and cannot be changed at
runtime.

Avalon-MM Interface
The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The
slave port presents a flat, contiguous memory space as large as the SDRAM chip(s).
When accessing the slave port, the details of the PC100 SDRAM protocol are entirely
transparent. The Avalon-MM interface behaves as a simple memory interface. There
are no memory-mapped configuration registers.

The Avalon-MM slave port supports peripheral-controlled wait states for read and
write transfers. The slave port stalls the transfer until it can present valid data. The
slave port also supports read transfers with variable latency, enabling
high-bandwidth, pipelined read transfers. When a master peripheral reads sequential
addresses from the slave port, the first data returns after an initial period of latency.
Subsequent reads can produce new data every clock cycle. However, data is not
guaranteed to return every clock cycle, because the SDRAM controller must pause
periodically to refresh the SDRAM.

f For details about Avalon-MM transfer types, refer to the Avalon Interface Specifications.

Figure 2–1. SDRAM Controller with Avalon Interface Block Diagram

Avalon-MM slave
interface
to on-chip

logic

SDRAM Controller Core

data, control

A
va

lo
n-

M
M

 S
la

ve
 P

or
t

clock

waitrequest

readdatavalid
dq
dqm

PLL

Phase Shift

In
te

rf
ac

e
to

 S
D

R
A

M
 p

in
s

Altera FPGA

clk

addr

ras
cas
cs

cke

ba

we

Control
Logic

address

SDRAM Clock

Controller Clock

Clock
Source

SDRAM Chip
(PC100)
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: SDRAM Controller Core 2–3
Functional Description
Off-Chip SDRAM Interface
The interface to the external SDRAM chip presents the signals defined by the PC100
standard. These signals must be connected externally to the SDRAM chip(s) through
I/O pins on the Altera device.

Signal Timing and Electrical Characteristics
The timing and sequencing of signals depends on the configuration of the core. The
hardware designer configures the core to match the SDRAM chip chosen for the
system. See “Configuration” on page 2–5 for details. The electrical characteristics of
the device pins depend on both the target device family and the assignments made in
the Quartus® II software. Some device families support a wider range of electrical
standards, and therefore are capable of interfacing with a greater variety of SDRAM
chips. For details, refer to the device handbook for the target device family.

Synchronizing Clock and Data Signals
The clock for the SDRAM chip (SDRAM clock) must be driven at the same frequency
as the clock for the Avalon-MM interface on the SDRAM controller (controller clock).
As in all synchronous designs, you must ensure that address, data, and control signals
at the SDRAM pins are stable when a clock edge arrives. As shown in Figure 2–1, you
can use an on-chip phase-locked loop (PLL) to alleviate clock skew between the
SDRAM controller core and the SDRAM chip. At lower clock speeds, the PLL might
not be necessary. At higher clock rates, a PLL is necessary to ensure that the SDRAM
clock toggles only when signals are stable on the pins. The PLL block is not part of the
SDRAM controller core. If a PLL is necessary, you must instantiate it manually. You
can instantiate the PLL core interface, which is an SOPC Builder component, or
instantiate an ALTPLL megafunction outside the SOPC Builder system module.

If you use a PLL, you must tune the PLL to introduce a clock phase shift so that
SDRAM clock edges arrive after synchronous signals have stabilized. See “Clock, PLL
and Timing Considerations” on page 2–10 for details.

f For more information about instantiating a PLL in your SOPC Builder system, refer to
“PLL Cores” on page 38–1. The Nios® II development tools provide example
hardware designs that use the SDRAM controller core in conjunction with a PLL,
which you can use as a reference for your custom designs. The Nios II development
tools are available free for download from www.altera.com.

Clock Enable (CKE) Not Supported
The SDRAM controller does not support clock-disable modes. The SDRAM controller
permanently asserts the CKE signal on the SDRAM.

Sharing Pins with Other Avalon-MM Tri-State Devices
If an Avalon-MM tri-state bridge is present in the SOPC Builder system, the SDRAM
controller core can share pins with the existing tri-state bridge. In this case, the core’s
addr, dq (data) and dqm (byte-enable) pins are shared with other devices connected to
the Avalon-MM tri-state bridge. This feature conserves I/O pins, which is valuable in
systems that have multiple external memory chips (for example, flash, SRAM, and
SDRAM), but too few pins to dedicate to the SDRAM chip. See “Performance
Considerations” for details about how pin sharing affects performance.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com

2–4 Chapter 2: SDRAM Controller Core
Functional Description
1 The SDRAM addresses must connect all address bits regardless of the size of the word
so that the low-order address bits on the tri-state bridge align with the low-order
address bits on the memory device. The Avalon-MM tristate address signal always
presents a byte address. It is not possible to drop A0 of the tri-state bridge for
memories when the smallest access size is 16 bits or A0-A1 of the tri-state bridge when
the smallest access size is 32 bits.

Board Layout and Pinout Considerations
When making decisions about the board layout and device pinout, try to minimize
the skew between the SDRAM signals. For example, when assigning the device
pinout, group the SDRAM signals, including the SDRAM clock output, physically
close together. Also, you can use the Fast Input Register and Fast Output Register
logic options in the Quartus II software. These logic options place registers for the
SDRAM signals in the I/O cells. Signals driven from registers in I/O cells have similar
timing characteristics, such as tCO, tSU, and tH.

Performance Considerations
Under optimal conditions, the SDRAM controller core’s bandwidth approaches one
word per clock cycle. However, because of the overhead associated with refreshing
the SDRAM, it is impossible to reach one word per clock cycle. Other factors affect the
core’s performance, as described in the following sections.

Open Row Management
SDRAM chips are arranged as multiple banks of memory, in which each bank is
capable of independent open-row address management. The SDRAM controller core
takes advantage of open-row management for a single bank. Continuous reads or
writes within the same row and bank operate at rates approaching one word per
clock. Applications that frequently access different destination banks require extra
management cycles to open and close rows.

Sharing Data and Address Pins
When the controller shares pins with other tri-state devices, average access time
usually increases and bandwidth decreases. When access to the tri-state bridge is
granted to other devices, the SDRAM incurs overhead to open and close rows.
Furthermore, the SDRAM controller has to wait several clock cycles before it is
granted access again.

To maximize bandwidth, the SDRAM controller automatically maintains control of
the tri-state bridge as long as back-to-back read or write transactions continue within
the same row and bank.

1 This behavior may degrade the average access time for other devices sharing the
Avalon-MM tri-state bridge.

The SDRAM controller closes an open row whenever there is a break in back-to-back
transactions, or whenever a refresh transaction is required. As a result:

■ The controller cannot permanently block access to other devices sharing the
tri-state bridge.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 2: SDRAM Controller Core 2–5
Configuration
■ The controller is guaranteed not to violate the SDRAM’s row open time limit.

Hardware Design and Target Device
The target device affects the maximum achievable clock frequency of a hardware
design. Certain device families achieve higher fMAX performance than other families.
Furthermore, within a device family, faster speed grades achieve higher performance.
The SDRAM controller core can achieve 100 MHz in Altera’s high-performance
device families, such as Stratix® series. However, the core might not achieve 100 MHz
performance in all Altera device families.

The fMAX performance also depends on the SOPC Builder system design. The SDRAM
controller clock can also drive other logic in the system module, which might affect
the maximum achievable frequency. For the SDRAM controller core to achieve fMAX
performance of 100 MHz, all components driven by the same clock must be designed
for a 100 MHz clock rate, and timing analysis in the Quartus II software must verify
that the overall hardware design is capable of 100 MHz operation.

Configuration
The SDRAM controller MegaWizard has two pages: Memory Profile and Timing.
This section describes the options available on each page.

The Presets list offers several pre-defined SDRAM configurations as a convenience. If
the SDRAM subsystem on the target board matches one of the preset configurations,
you can configure the SDRAM controller core easily by selecting the appropriate
preset value. The following preset configurations are defined:

■ Micron MT8LSDT1664HG module

■ Four SDR100 8 MByte × 16 chips

■ Single Micron MT48LC2M32B2-7 chip

■ Single Micron MT48LC4M32B2-7 chip

■ Single NEC D4564163-A80 chip (64 MByte × 16)

■ Single Alliance AS4LC1M16S1-10 chip

■ Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the Memory Profile
and Timing tabs to match the specific configuration. Altering a configuration setting
on any page changes the Preset value to custom.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

2–6 Chapter 2: SDRAM Controller Core
Configuration
Memory Profile Page
The Memory Profile page allows you to specify the structure of the SDRAM
subsystem such as address and data bus widths, the number of chip select signals,
and the number of banks. Table 2–1 lists the settings available on the Memory Profile
page.

Based on the settings entered on the Memory Profile page, the wizard displays the
expected memory capacity of the SDRAM subsystem in units of megabytes, megabits,
and number of addressable words. Compare these expected values to the actual size
of the chosen SDRAM to verify that the settings are correct.

Table 2–1. Memory Profile Page Settings

Settings Allowed
Values

Default
Values Description

Data Width 8, 16, 32,
64 32 SDRAM data bus width. This value determines the width of the dq

bus (data) and the dqm bus (byte-enable).

Architecture
Settings

Chip Selects 1, 2, 4, 8 1
Number of independent chip selects in the SDRAM subsystem. By
using multiple chip selects, the SDRAM controller can combine
multiple SDRAM chips into one memory subsystem.

Banks 2, 4 4
Number of SDRAM banks. This value determines the width of the
ba bus (bank address) that connects to the SDRAM. The correct
value is provided in the data sheet for the target SDRAM.

Address
Width
Settings

Row 11, 12, 13,
14 12

Number of row address bits. This value determines the width of the
addr bus. The Row and Column values depend on the geometry of
the chosen SDRAM. For example, an SDRAM organized as 4096
(212) rows by 512 columns has a Row value of 12.

Column
>= 8, and
less than
Row value

8
Number of column address bits. For example, the SDRAM
organized as 4096 rows by 512 (29) columns has a Column value
of 9.

Share pins via tri-state
bridge dq/dqm/addr I/O pins On, Off Off

When set to No, all pins are dedicated to the SDRAM chip. When
set to Yes, the addr, dq, and dqm pins can be shared with a tristate
bridge in the system. In this case, select the appropriate tristate
bridge from the pull-down menu.

Include a functional memory
model in the system
testbench

On, Off On

When on, SOPC Builder creates a functional simulation model for
the SDRAM chip. This default memory model accelerates the
process of creating and verifying systems that use the SDRAM
controller. See “Hardware Simulation Considerations” on page 2–7.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 2: SDRAM Controller Core 2–7
Hardware Simulation Considerations
Timing Page
The Timing page allows designers to enter the timing specifications of the SDRAM
chip(s) used. The correct values are available in the manufacturer’s data sheet for the
target SDRAM. Table 2–2 lists the settings available on the Timing page.

Regardless of the exact timing values you specify, the actual timing achieved for each
parameter is an integer multiple of the Avalon clock period. For the Issue one refresh
command every parameter, the actual timing is the greatest number of clock cycles
that does not exceed the target value. For all other parameters, the actual timing is the
smallest number of clock ticks that provides a value greater than or equal to the target
value.

Hardware Simulation Considerations
This section discusses considerations for simulating systems with SDRAM. Three
major components are required for simulation:

■ A simulation model for the SDRAM controller.

■ A simulation model for the SDRAM chip(s), also called the memory model.

■ A simulation testbench that wires the memory model to the SDRAM controller
pins.

Some or all of these components are generated by SOPC Builder at system generation
time.

Table 2–2. Timing Page Settings

Settings Allowed
Values

Default
Value Description

CAS latency 1, 2, 3 3 Latency (in clock cycles) from a read command to data out.

Initialization refresh cycles 1–8 2 This value specifies how many refresh cycles the SDRAM controller
performs as part of the initialization sequence after reset.

Issue one refresh
command every — 15.625 µs

This value specifies how often the SDRAM controller refreshes the
SDRAM. A typical SDRAM requires 4,096 refresh commands every
64 ms, which can be achieved by issuing one refresh command every
64 ms / 4,096 = 15.625 μs.

Delay after power up,
before initialization — 100 µs The delay from stable clock and power to SDRAM initialization.

Duration of refresh
command (t_rfc) — 70 ns Auto Refresh period.

Duration of precharge
command (t_rp) — 20 ns Precharge command period.

ACTIVE to READ or
WRITE delay (t_rcd) — 20 ns ACTIVE to READ or WRITE delay.

Access time (t_ac) — 17 ns Access time from clock edge. This value may depend on CAS latency.

Write recovery time (t_wr,
No auto precharge) — 14 ns Write recovery if explicit precharge commands are issued. This

SDRAM controller always issues explicit precharge commands.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

2–8 Chapter 2: SDRAM Controller Core
Example Configurations
SDRAM Controller Simulation Model
The SDRAM controller design files generated by SOPC Builder are suitable for both
synthesis and simulation. Some simulation features are implemented in the HDL
using “translate on/off” synthesis directives that make certain sections of HDL code
invisible to the synthesis tool.

The simulation features are implemented primarily for easy simulation of Nios and
Nios II processor systems using the ModelSim® simulator. The SDRAM controller
simulation model is not ModelSim specific. However, minor changes may be required
to make the model work with other simulators.

c If you change the simulation directives to create a custom simulation flow, be aware
that SOPC Builder overwrites existing files during system generation. Take
precautions to ensure your changes are not overwritten.

f Refer to AN 351: Simulating Nios II Processor Designs for a demonstration of simulation
of the SDRAM controller in the context of Nios II embedded processor systems.

SDRAM Memory Model
This section describes the two options for simulating a memory model of the SDRAM
chip(s).

Using the Generic Memory Model
If the Include a functional memory model the system testbench option is enabled at
system generation, SOPC Builder generates an HDL simulation model for the
SDRAM memory. In the auto-generated system testbench, SOPC Builder
automatically wires this memory model to the SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process of creating
and verifying systems that use the SDRAM controller. However, the memory model is
a generic functional model that does not reflect the true timing or functionality of real
SDRAM chips. The generic model is always structured as a single, monolithic block of
memory. For example, even for a system that combines two SDRAM chips, the generic
memory model is implemented as a single entity.

Using the SDRAM Manufacturer’s Memory Model
If the Include a functional memory model the system testbench option is not
enabled, you are responsible for obtaining a memory model from the SDRAM
manufacturer, and manually wiring the model to the SDRAM controller pins in the
system testbench.

Example Configurations
The following examples show how to connect the SDRAM controller outputs to an
SDRAM chip or chips. The bus labeled ctl is an aggregate of the remaining signals,
such as cas_n, ras_n, cke and we_n.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/an/an351.pdf

Chapter 2: SDRAM Controller Core 2–9
Example Configurations
Figure 2–2 shows a single 128-Mbit SDRAM chip with 32-bit data. The address, data,
and control signals are wired directly from the controller to the chip. The result is a
128-Mbit (16-Mbyte) memory space.

Figure 2–3 shows two 64-Mbit SDRAM chips, each with 16-bit data. The address and
control signals connect in parallel to both chips. The chips share the chipselect (cs_n)
signal. Each chip provides half of the 32-bit data bus. The result is a logical 128-Mbit
(16-Mbyte) 32-bit data memory.

Figure 2–2. Single 128-Mbit SDRAM Chip with 32-Bit Data

Figure 2–3. Two 64-MBit SDRAM Chips Each with 16-Bit Data

data 32 128 Mbits
16 Mbytes

32 data width device

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

addr

cs_n

ctl

addr

ctl

cs_n

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

64 Mbits
8 Mbytes

16 data width device

64 Mbits
8 Mbytes

16 data width device

data

16

16

32
June 2011 Altera Corporation Embedded Peripherals IP User Guide

2–10 Chapter 2: SDRAM Controller Core
Software Programming Model
Figure 2–4 shows two 128-Mbit SDRAM chips, each with 32-bit data. The address,
data, and control signals connect in parallel to the two chips. The chipselect bus
(cs_n[1:0]) determines which chip is selected. The result is a logical 256-Mbit 32-bit
wide memory.

Software Programming Model
The SDRAM controller behaves like simple memory when accessed via the
Avalon-MM interface. There are no software-configurable settings and no
memory-mapped registers. No software driver routines are required for a processor to
access the SDRAM controller.

Clock, PLL and Timing Considerations
This section describes issues related to synchronizing signals from the SDRAM
controller core with the clock that drives the SDRAM chip. During SDRAM
transactions, the address, data, and control signals are valid at the SDRAM pins for a
window of time, during which the SDRAM clock must toggle to capture the correct
values. At slower clock frequencies, the clock naturally falls within the valid window.
At higher frequencies, you must compensate the SDRAM clock to align with the valid
window.

Determine when the valid window occurs either by calculation or by analyzing the
SDRAM pins with an oscilloscope. Then use a PLL to adjust the phase of the SDRAM
clock so that edges occur in the middle of the valid window. Tuning the PLL might
require trial-and-error effort to align the phase shift to the properties of your target
board.

f For details about the PLL circuitry in your target device, refer to the appropriate
device family handbook. For details about configuring the PLLs in Altera devices,
refer to the ALTPLL Megafunction User Guide.

Figure 2–4. Two 128-Mbit SDRAM Chips Each with 32-Bit Data

addr

ctl

cs_n [0]

cs_n [1]

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

data 32

128 Mbits
16 Mbytes

32 data width device

128 Mbits
16 Mbytes

32 data width device

32

32
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 2: SDRAM Controller Core 2–11
Clock, PLL and Timing Considerations
Factors Affecting SDRAM Timing
The location and duration of the window depends on several factors:

■ Timing parameters of the device and SDRAM I/O pins — I/O timing parameters
vary based on device family and speed grade.

■ Pin location on the device — I/O pins connected to row routing have different
timing than pins connected to column routing.

■ Logic options used during the Quartus II compilation — Logic options such as the
Fast Input Register and Fast Output Register logic affect the design fit. The
location of logic and registers inside the device affects the propagation delays of
signals to the I/O pins.

■ SDRAM CAS latency

As a result, the valid window timing is different for different combinations of FPGA
and SDRAM devices. The window depends on the Quartus II software fitting results
and pin assignments.

Symptoms of an Untuned PLL
Detecting when the PLL is not tuned correctly might be difficult. Data transfers to or
from the SDRAM might not fail universally. For example, individual transfers to the
SDRAM controller might succeed, whereas burst transfers fail. For processor-based
systems, if software can perform read or write data to SDRAM, but cannot run when
the code is located in SDRAM, the PLL is probably tuned incorrectly.

Estimating the Valid Signal Window
This section describes how to estimate the location and duration of the valid signal
window using timing parameters provided in the SDRAM datasheet and the
Quartus II software compilation report. After finding the window, tune the PLL so
that SDRAM clock edges occur exactly in the middle of the window.

Calculating the window is a two-step process. First, determine by how much time the
SDRAM clock can lag the controller clock, and then by how much time it can lead.
After finding the maximum lag and lead values, calculate the midpoint between
them.

1 These calculations provide an estimation only. The following delays can also affect
proper PLL tuning, but are not accounted for by these calculations.

■ Signal skew due to delays on the printed circuit board — These calculations
assume zero skew.

■ Delay from the PLL clock output nodes to destinations — These calculations
assume that the delay from the PLL SDRAM-clock output-node to the pin is
the same as the delay from the PLL controller-clock output-node to the clock
inputs in the SDRAM controller. If these clock delays are significantly different,
you must account for this phase shift in your window calculations.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

2–12 Chapter 2: SDRAM Controller Core
Clock, PLL and Timing Considerations
Figure 2–5 shows how to calculate the maximum length of time that the SDRAM clock
can lag the controller clock, and Figure 2–6 shows how to calculate the maximum
lead. Lag is a negative time shift, relative to the controller clock, and lead is a positive
time shift. The SDRAM clock can lag the controller clock by the lesser of the
maximum lag for a read cycle or that for a write cycle. In other words,
Maximum Lag = minimum(Read Lag, Write Lag). Similarly, the SDRAM clock can lead
by the lesser of the maximum lead for a read cycle or for a write cycle. In other words,
Maximum Lead = minimum(Read Lead, Write Lead).

Figure 2–5. Calculating the Maximum SDRAM Clock Lag
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 2: SDRAM Controller Core 2–13
Clock, PLL and Timing Considerations
Example Calculation
This section demonstrates a calculation of the signal window for a Micron
MT48LC4M32B2-7 SDRAM chip and design targeting the Stratix II EP2S60F672C5
device. This example uses a CAS latency (CL) of 3 cycles, and a clock frequency of 50
MHz. All SDRAM signals on the device are registered in I/O cells, enabled with the
Fast Input Register and Fast Output Register logic options in the Quartus II
software.

Table 2–3 shows the relevant timing parameters excerpted from the MT48LC4M32B2
device datasheet.

Figure 2–6. Calculating the Maximum SDRAM Clock Lead

Table 2–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device (Part 1 of 2)

Parameter Symbol
Value (ns) in -7 Speed Grade

Min. Max.

Access time from
CLK (pos. edge)

CL = 3 tAC(3) — 5.5

CL = 2 tAC(2) — 8

CL = 1 tAC(1) — 17

Address hold time tAH 1 —

Address setup time tAS 2 —

CLK high-level width tCH 2.75 —

CLK low-level width tCL 2.75 —
June 2011 Altera Corporation Embedded Peripherals IP User Guide

2–14 Chapter 2: SDRAM Controller Core
Clock, PLL and Timing Considerations
Table 2–4 shows the relevant timing information, obtained from the Timing Analyzer
section of the Quartus II Compilation Report. The values in the table are the
maximum or minimum values among all device pins related to the SDRAM. The
variance in timing between the SDRAM pins on the device is small (less than 100 ps)
because the registers for these signals are placed in the I/O cell.

1 You must compile the design in the Quartus II software to obtain the I/O timing
information for the design. Although Altera device family datasheets contain generic
I/O timing information for each device, the Quartus II Compilation Report provides
the most precise timing information for your specific design.

c The timing values found in the compilation report can change, depending on fitting,
pin location, and other Quartus II logic settings. When you recompile the design in
the Quartus II software, verify that the I/O timing has not changed significantly.

The following examples illustrate the calculations from Figure 2–5 and Figure 2–6
using the values from Table 2–3 and Table 2–4.

Clock cycle time

CL = 3 tCK(3) 7 —

CL = 2 tCK(2) 10 —

CL = 1 tCK(1) 20 —

CKE hold time tCKH 1 —

CKE setup time tCKS 2 —

CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1 —

CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2 —

Data-in hold time tDH 1

Data-in setup time tDS 2

Data-out
high-impedance
time

CL = 3 tHZ(3) 5.5

CL = 2 tHZ(2) — 8

CL = 1 tHZ(1) — 17

Data-out low-impedance time tLZ 1 —

Data-out hold time tOH 2.5

Table 2–4. FPGA I/O Timing Parameters

Parameter Symbol Value (ns)

Clock period tCLK 20

Minimum clock-to-output time tCO_MIN 2.399

Maximum clock-to-output time tCO_MAX 2.477

Maximum hold time after clock tH_MAX –5.607

Maximum setup time before clock tSU_MAX 5.936

Table 2–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device (Part 2 of 2)

Parameter Symbol
Value (ns) in -7 Speed Grade

Min. Max.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 2: SDRAM Controller Core 2–15
Document Revision History
The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag:

Read Lag = tOH(SDRAM) – tH_MAX(FPGA)

= 2.5 ns – (–5.607 ns) = 8.107 ns

or

Write Lag= tCLK – tCO_MAX(FPGA) – tDS(SDRAM)

= 20 ns – 2.477 ns – 2 ns = 15.523 ns

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write Lead:

Read Lead= tCO_MIN(FPGA) – tDH(SDRAM)

= 2.399 ns – 1.0 ns = 1.399 ns

or

Write Lead= tCLK – tHZ(3)(SDRAM) – tSU_MAX(FPGA)

= 20 ns – 5.5 ns – 5.936 ns = 8.564 ns

Therefore, for this example you can shift the phase of the SDRAM clock from
–8.107 ns to 1.399 ns relative to the controller clock. Choosing a phase shift in the
middle of this window results in the value (–8.107 + 1.399)/2 = –3.35 ns.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

2–16 Chapter 2: SDRAM Controller Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
3. CompactFlash Core
Core Overview
The CompactFlash core allows you to connect SOPC Builder systems to
CompactFlash storage cards in true IDE mode by providing an Avalon®
Memory-Mapped (Avalon-MM) interface to the registers on the storage cards. The
core supports PIO mode 0.

The CompactFlash core also provides an Avalon-MM slave interface which can be
used by Avalon-MM master peripherals such as a Nios® II processor to communicate
with the CompactFlash core and manage its operations.

The CompactFlash core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 3–3

Functional Description
Figure 3–1 shows a block diagram of the CompactFlash core in a typical system
configuration.

As shown in Figure 3–1, the CompactFlash core provides two Avalon-MM slave
interfaces: the ide slave port for accessing the registers on the CompactFlash device
and the ctl slave port for accessing the core's internal registers. These registers can be
used by Avalon-MM master peripherals such as a Nios II processor to control the
operations of the CompactFlash core and to transfer data to and from the
CompactFlash device.

Figure 3–1. SOPC Builder System With a CompactFlash Core

Avalon-to-
CompactFlash

Avalon-MM
Master

(e.g. CPU)

S
ystem

 Interconnect Fabric

Altera FPGA

CompactFlash
Deviceid

e
A

va
lo

n-
M

M
 S

la
ve

 P
or

t
ct

l
A

va
lo

n-
M

M
 S

la
ve

 P
or

t

data

address

cfctl

idectl

Registers

IRQ

data

address

IRQ
Embedded Peripherals IP User Guide

3–2 Chapter 3: CompactFlash Core
Required Connections
You can set the CompactFlash core to generate two active-high interrupt requests
(IRQs): one signals the insertion and removal of a CompactFlash device and the other
passes interrupt signals from the CompactFlash device.

The CompactFlash core maps the Avalon-MM bus signals to the CompactFlash device
with proper timing, thus allowing Avalon-MM master peripherals to directly access
the registers on the CompactFlash device.

f For more information, refer to the CF+ and CompactFlash specifications available at
www.compactflash.org.

Required Connections
Table 3–1 lists the required connections between the CompactFlash core and the
CompactFlash device.

Table 3–1. Required Connections (Part 1 of 2)

CompactFlash Interface Signal
Name Pin Type CompactFlash Pin Number

addr[0] Output 20

addr[1] Output 19

addr[2] Output 18

addr[3] Output 17

addr[4] Output 16

addr[5] Output 15

addr[6] Output 14

addr[7] Output 12

addr[8] Output 11

addr[9] Output 10

addr[10] Output 8

atasel_n Output 9

cs_n[0] Output 7

cs_n[1] Output 32

data[0] Input/Output 21

data[1] Input/Output 22

data[2] Input/Output 23

data[3] Input/Output 2

data[4] Input/Output 3

data[5] Input/Output 4

data[6] Input/Output 5

data[7] Input/Output 6

data[8] Input/Output 47

data[9] Input/Output 48

data[10] Input/Output 49

data[11] Input/Output 27
Embedded Peripherals IP User Guide June 2011 Altera Corporation

www.compactflash.org
www.compactflash.org

Chapter 3: CompactFlash Core 3–3
Software Programming Model
Software Programming Model
This section describes the software programming model for the CompactFlash core.

HAL System Library Support
The Altera-provided HAL API functions include a device driver that you can use to
initialize the CompactFlash core. To perform other operations, use the low-level
macros provided. For more information on the macros, refer to the files listed in the
section “Software Files” on page 3–3.

Software Files
The CompactFlash core provides the following software files. These files define the
low-level access to the hardware. Application developers should not modify these
files.

■ altera_avalon_cf_regs.h—The header file that defines the core's register maps.

■ altera_avalon_cf.h, altera_avalon_cf.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

data[12] Input/Output 28

data[13] Input/Output 29

data[14] Input/Output 30

data[15] Input/Output 31

detect Input 25 or 26

intrq Input 37

iord_n Output 34

iordy Input 42

iowr_n Output 35

power Output CompactFlash power
controller, if present

reset_n Output 41

rfu Output 44

we_n Output 46

Table 3–1. Required Connections (Part 2 of 2)

CompactFlash Interface Signal
Name Pin Type CompactFlash Pin Number
June 2011 Altera Corporation Embedded Peripherals IP User Guide

3–4 Chapter 3: CompactFlash Core
Software Programming Model
Register Maps
This section describes the register maps for the Avalon-MM slave interfaces.

Ide Registers
The ide port in the CompactFlash core allows you to access the IDE registers on a
CompactFlash device. Table 3–2 shows the register map for the ide port.

Ctl Registers
The ctl port in the CompactFlash core provides access to the registers which control
the core’s operation and interface. Table 3–3 shows the register map for the ctl port.

Table 3–2. Ide Register Map

Offset
Register Names

Read Operation Write Operation

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head

7 Status Command

14 Alt Status Device Control

Table 3–3. Ctl Register Map

Offset Register
Fields

31:4 3 2 1 0

0 cfctl Reserved IDET RST PWR DET

1 idectl Reserved IIDE

2 Reserved Reserved

3 Reserved Reserved
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 3: CompactFlash Core 3–5
Document Revision History
Cfctl Register

The cfctl register controls the operations of the CompactFlash core. Reading the
cfctl register clears the interrupt. Table 3–4 describes the cfctl register bits.

Idectl Register

The idectl register controls the interface to the CompactFlash device. Table 3–5
describes the idectl register bit.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Table 3–4. cfctl Register Bits

Bit Number Bit Name Read/Write Description

0 DET RO Detect. This bit is set to 1 when the core detects a CompactFlash device.

1 PWR RW Power. When this bit is set to 1, power is being supplied to the
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the CompactFlash device is held in a reset
state. Setting this bit to 0 returns the device to its active state.

3 IDET RW Detect Interrupt Enable. When this bit is set to 1, the CompactFlash core
generates an interrupt each time the value of the det bit changes.

Table 3–5. idectl Register

Bit Number Bit Name Read/Write Description

0 IIDE RW
IDE Interrupt Enable. When this bit is set to 1, the CompactFlash core
generates an interrupt following an interrupt generated by the
CompactFlash device. Setting this bit to 0 disables the IDE interrupt.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Added the mode supported by the CompactFlash core.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

3–6 Chapter 3: CompactFlash Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
4. Common Flash Interface Controller
Core
Core Overview
The common flash interface controller core with Avalon® interface (CFI controller)
allows you to easily connect SOPC Builder systems to external flash memory that
complies with the Common Flash Interface (CFI) specification. The CFI controller is
SOPC Builder-ready and integrates easily into any SOPC Builder-generated system.

For the Nios® II processor, Altera provides hardware abstraction layer (HAL) driver
routines for the CFI controller. The drivers provide universal access routines for
CFI-compliant flash memories. Therefore, you do not need to write any additional
code to program CFI-compliant flash devices. The HAL driver routines take
advantage of the HAL generic device model for flash memory, which allows you to
access the flash memory using the familiar HAL application programming interface
(API), the ANSI C standard library functions for file I/O, or both.

The Nios II Embedded Design Suite (EDS) provides a flash programmer utility based
on the Nios II processor and the CFI controller. The flash programmer utility can be
used to program any CFI-compliant flash memory connected to an Altera® device.

f For more information about how to read and write flash using the HAL API, refer to
the Nios II Software Developer's Handbook. For more information on the flash
programmer utility, refer to the Nios II Flash Programmer User Guide.

Further information about the Common Flash Interface specification is available at
www.intel.com. As an example of a flash device supported by the CFI controller, see
the data sheet for the AMD Am29LV065D-120R, available at www.amd.com.

The common flash interface controller core supersedes previous Altera flash cores
distributed with SOPC Builder or Nios development kits. All flash chips associated
with these previous cores comply with the CFI specification, and therefore are
supported by the CFI controller.

This chapter contains the following sections:

■ “Functional Description” on page 4–2

■ “Software Programming Model” on page 4–4
Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.intel.com
http://www.amd.com

4–2 Chapter 4: Common Flash Interface Controller Core
Functional Description
Functional Description
Figure 4–1 shows a block diagram of the CFI controller in a typical system
configuration. As shown in Figure 4–1, the Avalon Memory-Mapped (Avalon-MM)
interface for flash devices is connected through an Avalon-MM tristate bridge. The
tristate bridge creates an off-chip memory bus that allows the flash chip to share
address and data pins with other memory chips. It provides separate chipselect, read,
and write pins to each chip connected to the memory bus. The CFI controller
hardware is minimal; it is simply an Avalon-MM tristate slave port configured with
waitstates, setup, and hold time appropriate for the target flash chip. This slave port is
capable of Avalon-MM tristate slave read and write transfers.

Avalon-MM master ports can perform read transfers directly from the CFI controller's
Avalon-MM port. See “Software Programming Model” on page 4–4 for more detail on
writing/erasing flash memory.

Configuration
The following sections describe the available configuration options.

Attributes Page
The options on this page control the basic hardware configuration of the CFI
controller.

Presets Settings
The Presets setting is a drop-down menu of flash chips that have already been
characterized for use with the CFI controller. After you select one of the chips in the
Presets menu, the wizard updates all settings on both tabs (except for the Board Info
setting) to work with the specified flash chip.

Figure 4–1. An SOPC Builder System Integrating a CFI Controller

S
ystem

 Interconnect Fabric

S Avalon-MM Slave Port

M Avalon-MM Master Port

A
valo

n
-M

M
 Tristate B

rid
g

e

S

S

M

M
Avalon-MM

Master
(e.g. CPU)

S
On-Chip

Slave
Peripheral

Altera FPGA

S
Flash

Memory
Chip

S Other
Memory

chipselect,
read_n, write_n

chipselect,
read_n, write_n

flash

other
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 4: Common Flash Interface Controller Core 4–3
Configuration
The options provided are not intended to cover the wide range of flash devices
available in the market. If the flash chip on your target board does not appear in the
Presets list, you must configure the other settings manually.

Size Settings
The size setting specifies the size of the flash device. There are two settings:

■ Address Width—The width of the flash chip's address bus.

■ Data Width—The width of the flash chip's data bus

The size settings cause SOPC Builder to allocate the correct amount of address space
for this device. SOPC Builder will automatically generate dynamic bus sizing logic
that appropriately connects the flash chip to Avalon-MM master ports of different
data widths.

f For details about dynamic bus sizing, refer to the Avalon Interface Specifications.

Timing Page
The options on this page specify the timing requirements for read and write transfers
with the flash device.

f Refer to the specifications provided with the common flash device you are using to
obtain the timing values you need to calculate the values of the parameters on the
Timing page.

The settings available on the Timing page are:

■ Setup—After asserting chipselect, the time required before asserting the read or
write signals. You can determine the value of this parameter by using the
following formula:

Setup = tCE (chip enable to output delay) - tOE (output enable to output delay)

■ Wait—The time required for the read or write signal to be asserted for each
transfer. Use the following guideline to determine an appropriate value for this
parameter:

The sum of Setup, Wait, and board delay must be greater than tACC, where:

■ Board delay is determined by the TCO on the FPGA address pins, TSU on the
device data pins, and propagation delay on the board traces in both directions.

■ tACC is the address to output delay.

■ Hold—After deasserting the write signal, the time required before deasserting the
chipselect signal.

■ Units—The timing units used for the Setup, Wait, and Hold values. Possible
values include ns, µs, ms, and clock cycles.

f For more information about signal timing for the Avalon-MM interface, refer to the
Avalon Interface Specifications.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–4 Chapter 4: Common Flash Interface Controller Core
Software Programming Model
Software Programming Model
This section describes the software programming model for the CFI controller. In
general, any Avalon-MM master in the system can read the flash chip directly as a
memory device. For Nios II processor users, Altera provides HAL system library
drivers that enable you to erase and write the flash memory using the HAL API
functions.

HAL System Library Support
The Altera-provided driver implements a HAL flash device driver that integrates into
the HAL system library for Nios II systems. Programs call the familiar HAL API
functions to program CFI-compliant flash memory. You do not need to know
anything about the details of the underlying drivers.

f The HAL API for programming flash, including C code examples, is described in
detail in the Nios II Software Developer's Handbook. The Nios II EDS also provides a
reference design called Flash Tests that demonstrates erasing, writing, and reading
flash memory.

Limitations
Currently, the Altera-provided drivers for the CFI controller support only Intel, AMD
and Spansion flash chips.

Software Files
The CFI controller provides the following software files. These files define the
low-level access to the hardware, and provide the routines for the HAL flash device
driver. Application developers should not modify these files.

■ altera_avalon_cfi_flash.h, altera_avalon_cfi_flash.c—The header and source
code for the functions and variables required to integrate the driver into the HAL
system library.

■ altera_avalon_cfi_flash_funcs.h, altera_avalon_cfi_flash_table.c—The header
and source code for functions concerned with accessing the CFI table.

■ altera_avalon_cfi_flash_amd_funcs.h, altera_avalon_cfi_flash_amd.c—The
header and source code for programming AMD CFI-compliant flash chips.

■ altera_avalon_cfi_flash_intel_funcs.h, altera_avalon_cfi_flash_intel.c—The
header and source code for programming Intel CFI-compliant flash chips.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 4: Common Flash Interface Controller Core 4–5
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Revised description of the timing page settings.

March 2009 9.0 No change from previous release.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Added description to the parameters on Timing page.

May 2008 8.0 Updated the CFI controllers supported by Altera-provided drivers. Updates are made to
comply with the Quartus II software version 8.0 release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

4–6 Chapter 4: Common Flash Interface Controller Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
5. EPCS Serial Flash Controller Core
Core Overview
The EPCS serial flash controller core with Avalon® interface allows Nios® II systems
to access an Altera® EPCS serial configuration device. Altera provides drivers that
integrate into the Nios II hardware abstraction layer (HAL) system library, allowing
you to read and write the EPCS device using the familiar HAL application program
interface (API) for flash devices.

Using the EPCS serial flash controller core, Nios II systems can:

■ Store program code in the EPCS device. The EPCS serial flash controller core
provides a boot-loader feature that allows Nios II systems to store the main
program code in an EPCS device.

■ Store non-volatile program data, such as a serial number, a NIC number, and other
persistent data.

■ Manage the device configuration data. For example, a network-enabled embedded
system can receive new FPGA configuration data over a network, and use the core
to program the new data into an EPCS serial configuration device.

The EPCS serial flash controller core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated system. The flash programmer utility in the Nios II IDE
allows you to manage and program data contents into the EPCS device.

f For information about the EPCS serial configuration device family, refer to the Serial
Configuration Devices (EPCS1, EPCS4, EPCS16, EPCS64 and EPCS128) Data Sheet. For
details about using the Nios II HAL API to read and write flash memory, refer to the
Nios II Software Developer's Handbook. For details about managing and programming
the EPCS memory contents, refer to the Nios II Flash Programmer User Guide.

1 For Nios II processor users, the EPCS serial flash controller core supersedes the Active
Serial Memory Interface (ASMI) device. New designs should use the EPCS serial flash
controller core instead of the ASMI core.

This chapter contains the following sections:

■ “Functional Description” on page 5–1

■ “Software Programming Model” on page 5–4

Functional Description
Figure 5–1 shows a block diagram of the EPCS serial flash controller core in a typical
system configuration. As shown in Figure 5–1, the EPCS device's memory can be
thought of as two separate regions:

■ FPGA configuration memory—FPGA configuration data is stored in this region.
Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

5–2 Chapter 5: EPCS Serial Flash Controller Core
Functional Description
■ General-purpose memory—If the FPGA configuration data does not fill up the
entire EPCS device, any left-over space can be used for general-purpose data and
system startup code.

By virtue of the HAL generic device model for flash devices, accessing the EPCS
device using the HAL API is the same as accessing any flash memory. The EPCS
device has a special-purpose hardware interface, so Nios II programs must read and
write the EPCS memory using the provided HAL flash drivers.

The EPCS serial flash controller core contains an on-chip memory for storing a
boot-loader program. When used in conjunction with Cyclone® and Cyclone II
devices, the core requires 512 bytes of boot-loader ROM. For Cyclone III, Cyclone IV,
Stratix® II, and newer device families in the Stratix series, the core requires 1 KByte of
boot-loader ROM. The Nios II processor can be configured to boot from the EPCS
serial flash controller core. To do so, set the Nios II reset address to the base address of
the EPCS serial flash controller core. In this case, after reset the CPU first executes
code from the boot-loader ROM, which copies data from the EPCS general-purpose
memory region into a RAM. Then, program control transfers to the RAM. The Nios II
IDE provides facilities to compile a program for storage in the EPCS device, and
create a programming file to program into the EPCS device.

f For more information, refer to the Nios II Flash Programmer User Guide.

1 If you program the EPCS device using the Quartus® II Programmer, all previous
content is erased. To program the EPCS device with a combination of FPGA
configuration data and Nios II program data, use the Nios II IDE flash programmer
utility.

Figure 5–1. Nios II System Integrating an EPCS Serial Flash Controller Core

S
ystem

 Interconnect Fabric

EPCS
Controller Core

Boot-Loader
ROM

EPCS Serial
Configuration

Device

Config
Memory

General-
Purpose
Memory

Nios II CPU

Other
On-Chip

Peripheral(s)

Altera FPGA
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Chapter 5: EPCS Serial Flash Controller Core 5–3
Functional Description
The Altera EPCS configuration device connects to the FPGA through dedicated pins
on the FPGA, not through general-purpose I/O pins. In all Altera device families
except Cyclone III and Cyclone IV, the EPCS serial flash controller core does not create
any I/O ports on the top-level SOPC Builder system module. If the EPCS device and
the FPGA are wired together on a board for configuration using the EPCS device (in
other words, active serial configuration mode), no further connection is necessary
between the EPCS serial flash controller core and the EPCS device. When you compile
the SOPC Builder system in the Quartus II software, the EPCS serial flash controller
core signals are routed automatically to the device pins for the EPCS device.

You, however, have the option not to use the dedicated pins on the FPGA (active serial
configuration mode) by turning off the respective parameters in the MegaWizard
interface. When this option is turned off or when the target device is a Cyclone III or
Cyclone IV device, you have the flexibility to connect the output pins, which are
exported to the top-level design, to any EPCS devices. Perform the following tasks in
the Quartus® II software to make the necessary pin assignments:

■ On the Dual-purpose pins page (Assignments > Devices > Device and Pin
Options), ensure that the following pins are assigned to the respective values:

■ Data[0] = Use as regular I/O

■ Data[1] = Use as regularr I/O

■ DCLK = Use as regular I/O

■ FLASH_nCE/nCS0 = Use as regular I/O

■ Using the Pin Planner (Assignments > Pins), ensure that the following pins are
assigned to the respective configuration functions on the device:

■ data0_to_the_epcs_controller = DATA0

■ sdo_from the_epcs_controller = DATA1,ASDO

■ dclk_from_epcs_controller = DCLK

■ sce_from_the_epcs_controller = FLASH_nCE

f For more information about the configuration pins in Altera devices, refer to the Pin-
Out Files for Altera Device page.

Avalon-MM Slave Interface and Registers
The EPCS serial flash controller core has a single Avalon-MM slave interface that
provides access to both boot-loader code and registers that control the core. As shown
in Table 5–1, the first segment is dedicated to the boot-loader code, and the next seven
words are control and data registers. A Nios II CPU can read the instruction words,
starting from the core's base address as flat memory space, which enables the CPU to
reset the core's address space.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-dp.jsp
http://www.altera.com/literature/lit-dp.jsp

5–4 Chapter 5: EPCS Serial Flash Controller Core
Configuration
The EPCS serial flash controller core includes an interrupt signal that can be used to
interrupt the CPU when a transfer has completed.

Configuration
The core must be connected to a Nios II processor. The core provides drivers for
HAL-based Nios II systems, and the precompiled boot loader code compatible with
the Nios II processor.

In device families other than Cyclone III and Cyclone IV, you can use the
MegaWizard™ interface to configure the core to use general I/O pins instead of
dedicated pins by turning off both parameters, Automatically select dedicated active
serial interface, if supported and Use dedicated active serial interface.

1 Only one EPCS serial flash controller core can be instantiated in each FPGA design.

Software Programming Model
This section describes the software programming model for the EPCS serial flash
controller core. Altera provides HAL system library drivers that enable you to erase
and write the EPCS memory using the HAL API functions. Altera does not publish
the usage of the cores registers. Therefore, you must use the HAL drivers provided by
Altera to access the EPCS device.

HAL System Library Support
The Altera-provided driver implements a HAL flash device driver that integrates into
the HAL system library for Nios II systems. Programs call the familiar HAL API
functions to program the EPCS memory. You do not need to know the details of the
underlying drivers to use them.

Table 5–1. EPCS Serial Flash Controller Core Register Map

Offset—Cyclone and
Cyclone II

(32-bit Word Address)

Offset—Other Device
Families

(32-bit Word Address)
Register Name R/W

Bit Description

31:0

0x00 .. 0x7F 0x00 .. 0xFF Boot ROM Memory R Boot Loader Code

0x080 0x100 Read Data R

(1)

0x081 0x101 Write Data W

0x082 0x102 Status R/W

0x083 0x103 Control R/W

0x084 0x104 Reserved —

0x085 0x105 Slave Enable R/W

0x086 0x106 End of Packet R/W

Note to Table 5–1:

(1) Altera does not publish the usage of the control and data registers. To access the EPCS device, you must use the HAL drivers provided by Altera.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 5: EPCS Serial Flash Controller Core 5–5
Document Revision History
1 The driver for the EPCS device is excluded when the reduced device drivers option is
enabled in a BSP or system library. To force inclusion of the EPCS drivers in a BSP
with the reduced device drivers option enabled, you can define the preprocessor
symbol, ALT_USE_EPCS_FLASH, before including the header, as follows:

#define ALT_USE_EPCS_FLASH

#include <altera_avalon_epcs_flash_controller.h>

f The HAL API for programming flash, including C-code examples, is described in
detail in the Nios II Software Developer's Handbook. For details about managing and
programming the EPCS device contents, refer to the Nios II Flash Programmer User
Guide.

Software Files
The EPCS serial flash controller core provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into the Nios II
HAL system library. Application developers should not modify these files.

■ altera_avalon_epcs_flash_controller.h, altera_avalon_epcs_flash_controller.c—
Header and source files that define the drivers required for integration into the
HAL system library.

■ epcs_commands.h, epcs_commands.c—Header and source files that directly
control the EPCS device hardware to read and write the device. These files also
rely on the Altera SPI core drivers.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1
■ Revised descriptions of register fields and bits.

■ Updated the section on HAL System Library Support.

March 2009 9.0 Updated the boot ROM memory offset for other device familes in Table 5–1.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0
■ Updated the boot rom size. Updates are made to comply with the Quartus II software

version 8.0 release.

■ Added additional steps on connecting output pins in Cyclone III devices.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-qts_archive.jsp

5–6 Chapter 5: EPCS Serial Flash Controller Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
6. JTAG UART Core
Core Overview
The JTAG UART core with Avalon® interface implements a method to communicate
serial character streams between a host PC and an SOPC Builder system on an Altera®
FPGA. In many designs, the JTAG UART core eliminates the need for a separate
RS-232 serial connection to a host PC for character I/O. The core provides an Avalon
interface that hides the complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios® II processor) communicate with
the core by reading and writing control and data registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs, and provides
host access via the JTAG pins on the FPGA. The host PC can connect to the FPGA via
any Altera JTAG download cable, such as the USB-Blaster™ cable. Software support
for the JTAG UART core is provided by Altera. For the Nios II processor, device
drivers are provided in the hardware abstraction layer (HAL) system library, allowing
software to access the core using the ANSI C Standard Library stdio.h routines.

f Nios II processor users can access the JTAG UART via the Nios II IDE or the
nios2-terminal command-line utility. For further details, refer to the Nios II Software
Developer's Handbook or the Nios II IDE online help.

For the host PC, Altera provides JTAG terminal software that manages the connection
to the target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description” on page 6–2

■ “Hardware Simulation Considerations” on page 6–5

■ “Software Programming Model” on page 6–6
Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–2 Chapter 6: JTAG UART Core
Functional Description
Functional Description
Figure 6–1 shows a block diagram of the JTAG UART core and its connection to the
JTAG circuitry inside an Altera FPGA. The following sections describe the
components of the core.

Avalon Slave Interface and Registers
The JTAG UART core provides an Avalon slave interface to the JTAG circuitry on an
Altera FPGA. The user-visible interface to the JTAG UART core consists of two 32-bit
registers, data and control, that are accessed through an Avalon slave port. An
Avalon master, such as a Nios II processor, accesses the registers to control the core
and transfer data over the JTAG connection. The core operates on 8-bit units of data at
a time; eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can request an
interrupt when read data is available, or when the write FIFO is ready for data. For
further details see “Interrupt Behavior” on page 6–10.

Read and Write FIFOs
The JTAG UART core provides bidirectional FIFOs to improve bandwidth over the
JTAG connection. The FIFO depth is parameterizable to accommodate the available
on-chip memory. The FIFOs can be constructed out of memory blocks or registers,
allowing you to trade off logic resources for memory resources, if necessary.

Figure 6–1. JTAG UART Core Block Diagram

Avalon-MM slave
interface

to on-chip
logic

JTAG UART Core

Registers

JTAG
Hub

Interface

IRQ

Built-In Feature of Altera FPGA

Write FIFO

Read FIFO

Data

Control
JTAG
Hub

JTAG Connection to Host PC

Altera FPGA

Other Nodes Using JTAG Interface
(for example, another JTAG UART)

TC
K

TD
I

TD
O

TM
S

TR
ST

JTAG
Controller

Automatically Generated by Quartus II Software
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 6: JTAG UART Core 6–3
Functional Description
JTAG Interface
Altera FPGAs contain built-in JTAG control circuitry between the device's JTAG pins
and the logic inside the device. The JTAG controller can connect to user-defined
circuits called nodes implemented in the FPGA. Because several nodes may need to
communicate via the JTAG interface, a JTAG hub, which is a multiplexer, is necessary.
During logic synthesis and fitting, the Quartus® II software automatically generates
the JTAG hub logic. No manual design effort is required to connect the JTAG circuitry
inside the device; the process is presented here only for clarity.

Host-Target Connection
Figure 6–2 shows the connection between a host PC and an SOPC Builder-generated
system containing a JTAG UART core.

The JTAG controller on the FPGA and the download cable driver on the host PC
implement a simple data-link layer between host and target. All JTAG nodes inside
the FPGA are multiplexed through the single JTAG connection. JTAG server software
on the host PC controls and decodes the JTAG data stream, and maintains distinct
connections with nodes inside the FPGA.

The example system in Figure 6–2 contains one JTAG UART core and a Nios II
processor. Both agents communicate with the host PC over a single Altera download
cable. Thanks to the JTAG server software, each host application has an independent
connection to the target. Altera provides the JTAG server drivers and host software
required to communicate with the JTAG UART core.

1 Systems with multiple JTAG UART cores are possible, and all cores communicate via
the same JTAG interface. To maintain coherent data streams, only one processor
should communicate with each JTAG UART core.

Figure 6–2. Example System Using the JTAG UART Core

PC
Interface

Host PC

JTAG
Server

Download
Cable

Altera
Downlo

DebuggerDebugger

C
Debug Data

PC
Interface JTAG

Host PC

Altera FPGA

 J
TA

G
 C

on
tro

lle
r

JT
AG

H
ub

 JTAG
Server

Download
Cable
Driver

Altera
Download

Cable

JTAG
Debug
Module

JTAG
UART

System Interconnect Fabric

Character Stream

DebuggerDebugger

C

JTAG TerminalJTAG Terminal

Nios II
Processor

On-Chip
Memory

M

S S

M

S

Avalon-MM master port

Avalon-MM slave port
June 2011 Altera Corporation Embedded Peripherals IP User Guide

6–4 Chapter 6: JTAG UART Core
Configuration
Configuration
The following sections describe the available configuration options.

Configuration Page
The options on this page control the hardware configuration of the JTAG UART core.
The default settings are pre-configured to behave optimally with the Altera-provided
device drivers and JTAG terminal software. Most designers should not change the
default values, except for the Construct using registers instead of memory blocks
option.

Write FIFO Settings
The write FIFO buffers data flowing from the Avalon interface to the host. The
following settings are available:

■ Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

■ IRQ Threshold—The write IRQ threshold governs how the core asserts its IRQ in
response to the FIFO emptying. As the JTAG circuitry empties data from the write
FIFO, the core asserts its IRQ when the number of characters remaining in the
FIFO reaches this threshold value. For maximum bandwidth, a processor should
service the interrupt by writing more data and preventing the write FIFO from
emptying completely. A value of 8 is typically optimal. See “Interrupt Behavior”
on page 6–10 for further details.

■ Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of on-chip logic resources. This option is
useful when memory resources are limited. Each byte consumes roughly 11 logic
elements (LEs), so a FIFO depth of 8 (bytes) consumes roughly 88 LEs.

Read FIFO Settings
The read FIFO buffers data flowing from the host to the Avalon interface. Settings are
available to control the depth of the FIFO and the generation of interrupts.

■ Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only powers of
two are allowed. Larger values consume more on-chip memory resources. A depth
of 64 is generally optimal for performance, and larger values are rarely necessary.

■ IRQ Threshold—The IRQ threshold governs how the core asserts its IRQ in
response to the FIFO filling up. As the JTAG circuitry fills up the read FIFO, the
core asserts its IRQ when the amount of space remaining in the FIFO reaches this
threshold value. For maximum bandwidth, a processor should service the
interrupt by reading data and preventing the read FIFO from filling up completely.
A value of 8 is typically optimal. See “Interrupt Behavior” on page 6–10 for further
details.

■ Construct using registers instead of memory blocks—Turning on this option
causes the FIFO to be constructed out of logic resources. This option is useful
when memory resources are limited. Each byte consumes roughly 11 LEs, so a
FIFO depth of 8 (bytes) consumes roughly 88 LEs.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 6: JTAG UART Core 6–5
Hardware Simulation Considerations
Simulation Settings
At system generation time, when SOPC Builder generates the logic for the JTAG
UART core, a simulation model is also constructed. The simulation model offers
features to simplify simulation of systems using the JTAG UART core. Changes to the
simulation settings do not affect the behavior of the core in hardware; the settings
affect only functional simulation.

Simulated Input Character Stream
You can enter a character stream that will be simulated entering the read FIFO upon
simulated system reset. The MegaWizard Interface accepts an arbitrary character
string, which is later incorporated into the test bench. After reset, this character string
is pre-initialized in the read FIFO, giving the appearance that an external JTAG
terminal program is sending a character stream to the JTAG UART core.

Prepare Interactive Windows
At system generation time, the JTAG UART core generator can create ModelSim®
macros to open interactive windows during simulation. These windows allow the
user to send and receive ASCII characters via a console, giving the appearance of a
terminal session with the system executing in hardware. The following options are
available:

■ Do not generate ModelSim aliases for interactive windows—This option does
not create any ModelSim macros for character I/O.

■ Create ModelSim alias to open a window showing output as ASCII text—This
option creates a ModelSim macro to open a console window that displays output
from the write FIFO. Values written to the write FIFO via the Avalon interface are
displayed in the console as ASCII characters.

■ Create ModelSim alias to open an interactive stimulus/response window—This
option creates a ModelSim macro to open a console window that allows input and
output interaction with the core. Values written to the write FIFO via the Avalon
interface are displayed in the console as ASCII characters. Characters typed into
the console are fed into the read FIFO, and can be read via the Avalon interface.
When this option is enabled, the simulated character input stream option is
ignored.

Hardware Simulation Considerations
The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The simulation model is implemented in the
JTAG UART core's top-level HDL file. The synthesizable HDL and the simulation
HDL are implemented in the same file. Some simulation features are implemented
using translate on/off synthesis directives that make certain sections of HDL code
visible only to the synthesis tool.

1 For complete details about simulating the JTAG UART core in Nios II systems, refer to
AN 351: Simulating Nios II Processor Designs.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an351.pdf

6–6 Chapter 6: JTAG UART Core
Software Programming Model
Other simulators can be used, but require user effort to create a custom simulation
process. You can use the auto-generated ModelSim scripts as references to create
similar functionality for other simulators.

c Do not edit the simulation directives if you are using Altera’s recommended
simulation procedures. If you change the simulation directives to create a custom
simulation flow, be aware that SOPC Builder overwrites existing files during system
generation. Take precautions to ensure your changes are not overwritten.

Software Programming Model
The following sections describe the software programming model for the JTAG UART
core, including the register map and software declarations to access the hardware. For
Nios II processor users, Altera provides HAL system library drivers that enable you
to access the JTAG UART using the ANSI C standard library functions, such as
printf() and getchar().

HAL System Library Support
The Altera-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the JTAG UART via the familiar HAL API and the ANSI C standard library, rather
than accessing the JTAG UART registers. ioctl() requests are defined that allow
HAL users to control the hardware-dependent aspects of the JTAG UART.

c If your program uses the Altera-provided HAL device driver to access the JTAG
UART hardware, accessing the device registers directly will interfere with the correct
behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to
the JTAG UART core's features. Nios II programs treat the JTAG UART core as a
character mode device, and send and receive data using the ANSI C standard library
functions, such as getchar() and printf().

Example 6–1 demonstrates the simplest possible usage, printing a message to stdout
using printf(). In this example, the SOPC Builder system contains a JTAG UART
core, and the HAL system library is configured to use this JTAG UART device for
stdout.

Example 6–1. Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{

printf("Hello world.\n");
return 0;

}

Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 6: JTAG UART Core 6–7
Software Programming Model
Example 6–2 demonstrates reading characters from and sending messages to a JTAG
UART core using the C standard library. In this example, the SOPC Builder system
contains a JTAG UART core named jtag_uart that is not necessarily configured as the
stdout device. In this case, the program treats the device like any other node in the
HAL file system.

In this example, the ferror(fp) is used to check if an error occurred on the JTAG
UART connection, such as a disconnected JTAG connection. In this case, the driver
detects that the JTAG connection is disconnected, reports an error (EIO), and discards
data for subsequent transactions. If this error ever occurs, the C library latches the
value until you explicitly clear it with the clearerr() function.

f For complete details of the HAL system library, refer to the Nios II Software Developer's
Handbook.

The Nios II Embedded Design Suite (EDS) provides a number of software example
designs that use the JTAG UART core.

Driver Options: Fast vs. Small Implementations
To accommodate the requirements of different types of systems, the JTAG UART
driver has two variants, a fast version and a small version. The fast behavior is used
by default. Both the fast and small drivers fully support the C standard library
functions and the HAL API.

Example 6–2. Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{

char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;

fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
if (fp)
{

while (prompt != 'v')
{ // Loop until we receive a 'v'.

prompt = getc(fp); // Get a character from the JTAG UART.
if (prompt == 't')
{ // Print a message if character is 't'.

fwrite (msg, strlen (msg), 1, fp);
}

if (ferror(fp))// Check if an error occurred with the file
pointer clearerr(fp);// If so, clear it.

}

fprintf(fp, "Closing the JTAG UART file handle.\n");
fclose (fp);
}

return 0;
}

June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–8 Chapter 6: JTAG UART Core
Software Programming Model
The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
JTAG UART data rate is slow compared to the processor, the fast driver can provide a
large performance benefit for systems that could be performing other tasks in the
interim. In addition, the fast version of the Altera Avalon JTAG UART monitors the
connection to the host. The driver discards characters if no host is connected, or if the
host is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG UART hardware
before sending and receiving each character. The performance of the small driver is
poor if you are sending large amounts of data. The small version assumes that the
host is always connected, and will never discard characters. Therefore, the small
driver will hang the system if the JTAG UART hardware is ever disconnected from the
host while the program is sending or receiving data. There are two ways to enable the
small footprint driver:

■ Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system.

■ Specify the preprocessor option -DALTERA_AVALON_JTAG_UART_SMALL. Use this
option if you want the small, polled implementation of the JTAG UART driver, but
you do not want to affect the drivers for other devices.

ioctl() Operations
The fast version of the JTAG UART driver supports the ioctl() function to allow
HAL-based programs to request device-specific operations. Specifically, you can use
the ioctl() operations to control the timeout period, and to detect whether or not a
host is connected. The fast driver defines the ioctl() operations shown in Table 6–1.

f For details about the ioctl() function, refer to the Nios II Software Developer's
Handbook.

Software Files
The JTAG UART core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL drivers.
Application developers should not modify these files.

■ altera_avalon_jtag_uart_regs.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware. The symbols in
this file are used only by device driver functions.

■ altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files implement the
HAL system library device driver.

Table 6–1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT
Set the timeout (in seconds) after which the driver will decide that the host is not connected. A
timeout of 0 makes the target assume that the host is always connected. The ioctl arg parameter
passed in must be a pointer to an integer.

TIOCGCONNECTED
Sets the integer arg parameter to a value that indicates whether the host is connected and acting as
a terminal (1), or not connected (0). The ioctl arg parameter passed in must be a pointer to an
integer.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 6: JTAG UART Core 6–9
Software Programming Model
Accessing the JTAG UART Core via a Host PC
Host software is necessary for a PC to access the JTAG UART core. The Nios II IDE
supports the JTAG UART core, and displays character I/O in a console window.
Altera also provides a command-line utility called nios2-terminal that opens a
terminal session with the JTAG UART core.

f For further details, refer to the Nios II Software Developer's Handbook and Nios II IDE
online help.

Register Map
Programmers using the HAL API never access the JTAG UART core directly via its
registers. In general, the register map is only useful to programmers writing a device
driver for the core.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 6–2 shows the register map for the JTAG UART core. Device drivers control and
communicate with the core through the two, 32-bit memory-mapped registers.

Data Register
Embedded software accesses the read and write FIFOs via the data register. Table 6–3
describes the function of each bit.

A read from the data register returns the first character from the FIFO (if one is
available) in the DATA field. Reading also returns information about the number of
characters remaining in the FIFO in the RAVAIL field. A write to the data register stores
the value of the DATA field in the write FIFO. If the write FIFO is full, the character is
lost.

Table 6–2. JTAG UART Core Register Map

Offset Register
Name R/W

Bit Description

31 ... 16 15 14 ... 11 10 9 8 7 ... 2 1 0

0 data RW RAVAIL RVALID Reserved DATA

1 control RW WSPACE Reserved AC WI RI Reserved WE RE

Note to Table 6–2:

(1) Reserved fields—Read values are undefined. Write zero.

Table 6–3. data Register Bits

Bit(s) Name Access Description

[7:0] DATA R/W
The value to transfer to/from the JTAG core. When writing, the DATA field
holds a character to be written to the write FIFO. When reading, the DATA field
holds a character read from the read FIFO.

[15] RVALID R Indicates whether the DATA field is valid. If RVALID=1, the DATA field is valid,
otherwise DATA is undefined.

[32:16] RAVAIL R The number of characters remaining in the read FIFO (after the current read).
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–10 Chapter 6: JTAG UART Core
Software Programming Model
Control Register
Embedded software controls the JTAG UART core's interrupt generation and reads
status information via the control register. Table 6–4 describes the function of each
bit.

A read from the control register returns the status of the read and write FIFOs. Writes
to the register can be used to enable/disable interrupts, or clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs, respectively. The WI
and RI bits indicate the status of the interrupt sources, qualified by the values of the
interrupt enable bits (WE and RE). Embedded software can examine RI and WI to
determine the condition that generated the IRQ. See “Interrupt Behavior” on
page 6–10 for further details.

The AC bit indicates that an application on the host PC has polled the JTAG UART
core via the JTAG interface. Once set, the AC bit remains set until it is explicitly cleared
via the Avalon interface. Writing 1 to AC clears it. Embedded software can examine the
AC bit to determine if a connection exists to a host PC. If no connection exists, the
software may choose to ignore the JTAG data stream. When the host PC has no data to
transfer, it can choose to poll the JTAG UART core as infrequently as once per second.
Delays caused by other host software using the JTAG download cable could cause
delays of up to 10 seconds between polls.

Interrupt Behavior
The JTAG UART core generates an interrupt when either of the individual interrupt
conditions is pending and enabled.

1 Interrupt behavior is of interest to device driver programmers concerned with the
bandwidth performance to the host PC. Example designs and the JTAG terminal
program provided with Nios II Embedded Design Suite (EDS) are pre-configured
with optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and read
interrupts. The WE and RE bits in the control register enable/disable the interrupts.

Table 6–4. Control Register Bits

Bit(s) Name Access Description

0 RE R/W Interrupt-enable bit for read interrupts.

1 WE R/W Interrupt-enable bit for write interrupts.

8 RI R Indicates that the read interrupt is pending.

9 WI R Indicates that the write interrupt is pending.

10 AC R/C Indicates that there has been JTAG activity since the bit was cleared. Writing 1
to AC clears it to 0.

[32:16] WSPACE R The number of spaces available in the write FIFO.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 6: JTAG UART Core 6–11
Document Revision History
The core can assert a write interrupt whenever the write FIFO is nearly empty. The
nearly empty threshold, write_threshold, is specified at system generation time and
cannot be changed by embedded software. The write interrupt condition is set
whenever there are write_threshold or fewer characters in the write FIFO. It is
cleared by writing characters to fill the write FIFO beyond the write_threshold.
Embedded software should only enable write interrupts after filling the write FIFO. If
it has no characters remaining to send, embedded software should disable the write
interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. The
nearly full threshold value, read_threshold, is specified at system generation time
and cannot be changed by embedded software. The read interrupt condition is set
whenever the read FIFO has read_threshold or fewer spaces remaining. The read
interrupt condition is also set if there is at least one character in the read FIFO and no
more characters are expected. The read interrupt is cleared by reading characters from
the read FIFO.

For optimum performance, the interrupt thresholds should match the interrupt
response time of the embedded software. For example, with a 10-MHz JTAG clock, a
new character is provided (or consumed) by the host PC every 1 µs. With a threshold
of 8, the interrupt response time must be less than 8 µs. If the interrupt response time
is too long, performance suffers. If it is too short, interrupts occurs too often.

1 For Nios II processor systems, read and write thresholds of 8 are an appropriate
default.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

6–12 Chapter 6: JTAG UART Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
7. UART Core
Core Overview
The UART core with Avalon® interface implements a method to communicate serial
character streams between an embedded system on an Altera® FPGA and an external
device. The core implements the RS-232 protocol timing, and provides adjustable
baud rate, parity, stop, and data bits, and optional RTS/CTS flow control signals. The
feature set is configurable, allowing designers to implement just the necessary
functionality for a given system.

The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that
allows Avalon-MM master peripherals (such as a Nios® II processor) to communicate
with the core simply by reading and writing control and data registers.

The UART core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Simulation Considerations” on page 7–7

■ “Software Programming Model” on page 7–7

Functional Description
Figure 7–1 shows a block diagram of the UART core.

The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port

Figure 7–1. Block Diagram of the UART Core in a Typical System

Altera FPGA

UART Core
baud rate divisor

shift register RXD

RTS

CTS

TXD L
ev

e
l

S
h

ift
e

r

R
S

 -
 2

32
C

on
ne

ct
or

Avalon-MM
 signals
connected
to on-chip
 logic

data

IRQ

dataavailable

readyfordata

endofpacket

address

clock

rxdata

status

control

txdata

endofpacket

shift register

divisor
Embedded Peripherals IP User Guide

7–2 Chapter 7: UART Core
Functional Description
■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers
The UART core provides an Avalon-MM slave interface to the internal register file.
The user interface to the UART core consists of six, 16-bit registers: control, status,
rxdata, txdata, divisor, and endofpacket. A master peripheral, such as a Nios II
processor, accesses the registers to control the core and transfer data over the serial
connection.

The UART core provides an active-high interrupt request (IRQ) output that can
request an interrupt when new data has been received, or when the core is ready to
transmit another character. For further details, refer “Interrupt Behavior” on
page 7–15.

The Avalon-MM slave port is capable of transfers with flow control. The UART core
can be used in conjunction with a direct memory access (DMA) peripheral with
Avalon-MM flow control to automate continuous data transfers between, for example,
the UART core and memory.

f For more information, refer to “Interval Timer Core” on page 28–1. For details about
the Avalon-MM interface, refer to the Avalon Interface Specifications.

RS-232 Interface
The UART core implements RS-232 asynchronous transmit and receive logic. The
UART core sends and receives serial data via the TXD and RXD ports. The I/O buffers
on most Altera FPGA families do not comply with RS-232 voltage levels, and may be
damaged if driven directly by signals from an RS-232 connector. To comply with
RS-232 voltage signaling specifications, an external level-shifting buffer is required
(for example, Maxim MAX3237) between the FPGA I/O pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter inside the
FPGA can be used to reverse the polarity of any of the RS-232 signals, if necessary.

Transmitter Logic
The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register and a
corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM master peripherals
write the txdata holding register via the Avalon-MM slave port. The transmit shift
register is loaded from the txdata register automatically when a serial transmit shift
operation is not currently in progress. The transmit shift register directly feeds the TXD
output. Data is shifted out to TXD LSB first.

These two registers provide double buffering. A master peripheral can write a new
value into the txdata register while the previously written character is being shifted
out. The master peripheral can monitor the transmitter's status by reading the status
register's transmitter ready (TRDY), transmitter shift register empty (tmt), and
transmitter overrun error (TOE) bits.

The transmitter logic automatically inserts the correct number of start, stop, and
parity bits in the serial TXD data stream as required by the RS-232 specification.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: UART Core 7–3
Instantiating the Core
Receiver Logic
The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and a
corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM master peripherals
read the rxdata holding register via the Avalon-MM slave port. The rxdata holding
register is loaded from the receiver shift register automatically every time a new
character is fully received.

These two registers provide double buffering. The rxdata register can hold a
previously received character while the subsequent character is being shifted into the
receiver shift register.

A master peripheral can monitor the receiver's status by reading the status register's
read-ready (RRDY), receiver-overrun error (ROE), break detect (BRK), parity error (PE),
and framing error (FE) bits. The receiver logic automatically detects the correct
number of start, stop, and parity bits in the serial RXD stream as required by the RS-
232 specification. The receiver logic checks for four exceptional conditions, frame
error, parity error, receive overrun error, and break, in the received data and sets
corresponding status register bits.

Baud Rate Generation
The UART core's internal baud clock is derived from the Avalon-MM clock input. The
internal baud clock is generated by a clock divider. The divisor value can come from
one of the following sources:

■ A constant value specified at system generation time

■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at system
generation time, the divisor value is fixed and the baud rate cannot be altered.

Instantiating the Core
Instantiating the UART in hardware creates at least two I/O ports for each UART
core: An RXD input, and a TXD output. Optionally, the hardware may include flow
control signals, the CTS input and RTS output. The following sections describe the
available options.

Configuration Settings
This section describes the configuration settings.

Baud Rate Options
The UART core can implement any of the standard baud rates for RS-232 connections.
The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and cannot be
changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor value held in the
divisor register. A master peripheral changes the baud rate by writing new values
to the divisor register.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

7–4 Chapter 7: UART Core
Instantiating the Core
1 The baud rate is calculated based on the clock frequency provided by the Avalon-MM
interface. Changing the system clock frequency in hardware without regenerating the
UART core hardware results in incorrect signaling.

Baud Rate (bps) Setting

The Baud Rate setting determines the default baud rate after reset. The Baud Rate
option offers standard preset values.

The baud rate value is used to calculate an appropriate clock divisor value to
implement the desired baud rate. Baud rate and divisor values are related as shown in
Equation 7–1 and Equation 7–2:

Baud Rate Can Be Changed By Software Setting

When this setting is on, the hardware includes a 16-bit divisor register at address
offset 4. The divisor register is writable, so the baud rate can be changed by writing a
new value to this register.

When this setting is off, the UART hardware does not include a divisor register. The
UART hardware implements a constant baud divisor, and the value cannot be
changed after system generation. In this case, writing to address offset 4 has no effect,
and reading from address offset 4 produces an undefined result.

Data Bits, Stop Bits, Parity
The UART core's parity, data bits and stop bits are configurable. These settings are
fixed at system generation time; they cannot be altered via the register file. Table 7–1
explains the settings.

Equation 7–1.

Equation 7–2.

divisor int clock frequency
baud rate

--- 0.5+ 
 =

baud rate clock frequency
divisor 1+

---=

Table 7–1. Data Bits Settings (Part 1 of 2)

Setting Legal Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and endofpacket registers.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 7: UART Core 7–5
Instantiating the Core
Synchronizer Stages
The option Synchronizer Stages allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Flow Control
When the option Include CTS/RTS pins and control register bits is turned on, the
UART core includes the following features:

■ cts_n (logic negative CTS) input port

■ rts_n (logic negative RTS) output port

■ CTS bit in the status register

■ DCTS bit in the status register

■ RTS bit in the control register

■ IDCTS bit in the control register

Based on these hardware facilities, an Avalon-MM master peripheral can detect CTS
and transmit RTS flow control signals. The CTS input and RTS output ports are tied
directly to bits in the status and control registers, and have no direct effect on any
other part of the core. When using flow control, be sure the terminal program on the
host side is also configured for flow control.

When the Include CTS/RTS pins and control register bits setting is off, the core does
not include the aforementioned hardware and continuous writes to the UART may
loose data. The control/status bits CTS, DCTS, IDCTS, and RTS are not implemented;
they always read as 0.

Stop Bits 1, 2
This setting determines whether the core transmits 1 or 2 stop bits with every character. The
core always terminates a receive transaction at the first stop bit, and ignores all subsequent
stop bits, regardless of this setting.

Parity None, Even, Odd

This setting determines whether the UART core transmits characters with parity checking,
and whether it expects received characters to have parity checking.

When Parity is set to None, the transmit logic sends data without including a parity bit, and
the receive logic presumes the incoming data does not include a parity bit. The PE bit in the
status register is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and inserts the required
parity bit into the outgoing TXD bitstream, and the receive logic checks the parity bit in the
incoming RXD bitstream. If the receiver finds data with incorrect parity, the PE bit in the
status register is set to 1. When Parity is Even, the parity bit is 0 if the character has an
even number of 1 bits; otherwise the parity bit is 1. Similarly, when parity is Odd, the parity
bit is 0 if the character has an odd number of 1 bits.

Table 7–1. Data Bits Settings (Part 2 of 2)

Setting Legal Values Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

7–6 Chapter 7: UART Core
Instantiating the Core
Streaming Data (DMA) Control
The UART core's Avalon-MM interface optionally implements Avalon-MM transfers
with flow control. Flow control allows an Avalon-MM master peripheral to write data
only when the UART core is ready to accept another character, and to read data only
when the core has data available. The UART core can also optionally include the
end-of-packet register.

Include End-of-Packet Register

When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data width is
determined by the Data Bits setting.

■ EOP bit in the status register.

■ IEOP bit in the control register.

■ endofpacket signal in the Avalon-MM interface to support data transfers with
flow control to and from other master peripherals in the system.

End-of-packet (EOP) detection allows the UART core to terminate a data transaction
with an Avalon-MM master with flow control. EOP detection can be used with a
DMA controller, for example, to implement a UART that automatically writes
received characters to memory until a specified character is encountered in the
incoming RXD stream. The terminating (EOP) character's value is determined by the
endofpacket register.

When the EOP register is disabled, the UART core does not include the EOP
resources. Writing to the endofpacket register has no effect, and reading produces an
undefined value.

Simulation Settings
When the UART core's logic is generated, a simulation model is also created. The
simulation model offers features to simplify and accelerate simulation of systems that
use the UART core. Changes to the simulation settings do not affect the behavior of
the UART core in hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II systems, refer to
AN 351: Simulating Nios II Embedded Processor Designs.

Simulated RXD-Input Character Stream
You can enter a character stream that is simulated entering the RXD port upon
simulated system reset. The UART core's MegaWizard™ interface accepts an arbitrary
character string, which is later incorporated into the UART simulation model. After
reset in reset, the string is input into the RXD port character-by-character as the core is
able to accept new data.

Prepare Interactive Windows
At system generation time, the UART core generator can create ModelSim macros that
facilitate interaction with the UART model during simulation. You can turn on the
following options:
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/an/an351.pdf

Chapter 7: UART Core 7–7
Simulation Considerations
■ Create ModelSim alias to open streaming output window to create a ModelSim
macro that opens a window to display all output from the TXD port.

■ Create ModelSim alias to open interactive stimulus window to create a
ModelSim macro that opens a window to accept stimulus for the RXD port. The
window sends any characters typed in the window to the RXD port.

Simulated Transmitter Baud Rate
RS-232 transmission rates are often slower than any other process in the system, and it
is seldom useful to simulate the functional model at the true baud rate. For example,
at 115,200 bps, it typically takes thousands of clock cycles to transfer a single
character. The UART simulation model has the ability to run with a constant clock
divisor of 2, allowing the simulated UART to transfer bits at half the system clock
speed, or roughly one character per 20 clock cycles. You can choose one of the
following options for the simulated transmitter baud rate:

■ Accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in simulation.

■ Actual (use true baud divisor)—TXD transmits at the actual baud rate, as
determined by the divisor register.

Simulation Considerations
The simulation features were created for easy simulation of Nios II processor systems
when using the ModelSim simulator. The documentation for the processor documents
the suggested usage of these features. Other usages may be possible, but will require
additional user effort to create a custom simulation process.

The simulation model is implemented in the UART core's top-level HDL file; the
synthesizable HDL and the simulation HDL are implemented in the same file. The
simulation features are implemented using translate on and translate off synthesis
directives that make certain sections of HDL code visible only to the synthesis tool.

Do not edit the simulation directives if you are using Altera's recommended
simulation procedures. If you do change the simulation directives for your custom
simulation flow, be aware that SOPC Builder overwrites existing files during system
generation. Take precaution so that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems, refer to
AN 351: Simulating Nios II Processor Designs.

Software Programming Model
The following sections describe the software programming model for the UART core,
including the register map and software declarations to access the hardware. For
Nios II processor users, Altera provides hardware abstraction layer (HAL) system
library drivers that enable you to access the UART core using the ANSI C standard
library functions, such as printf() and getchar().
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an351.pdf

7–8 Chapter 7: UART Core
Software Programming Model
HAL System Library Support
The Altera-provided driver implements a HAL character-mode device driver that
integrates into the HAL system library for Nios II systems. HAL users should access
the UART via the familiar HAL API and the ANSI C standard library, rather than
accessing the UART registers. ioctl() requests are defined that allow HAL users to
control the hardware-dependent aspects of the UART.

c If your program uses the HAL device driver to access the UART hardware, accessing
the device registers directly interferes with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides complete access to
the UART core's features. Nios II programs treat the UART core as a character mode
device, and send and receive data using the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled in SOPC
Builder. Refer to “Driver Options: Fast Versus Small Implementations” on page 7–9.

The following code demonstrates the simplest possible usage, printing a message to
stdout using printf(). In this example, the SOPC Builder system contains a UART
core, and the HAL system library has been configured to use this device for stdout.

Example 7–1. Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()
{

printf("Hello world.\n");
return 0;

}

Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 7: UART Core 7–9
Software Programming Model
The following code demonstrates reading characters from and sending messages to a
UART device using the C standard library. In this example, the SOPC Builder system
contains a UART core named uart1 that is not necessarily configured as the stdout
device. In this case, the program treats the device like any other node in the HAL file
system.

1 For more information about the HAL system library, refer to the Nios II Software
Developer's Handbook.

Driver Options: Fast Versus Small Implementations
To accommodate the requirements of different types of systems, the UART driver
provides two variants: a fast version and a small version. The fast version is the
default. Both fast and small drivers fully support the C standard library functions and
the HAL API.

The fast driver is an interrupt-driven implementation, which allows the processor to
perform other tasks when the device is not ready to send or receive data. Because the
UART data rate is slow compared to the processor, the fast driver can provide a large
performance benefit for systems that could be performing other tasks in the interim.

The small driver is a polled implementation that waits for the UART hardware before
sending and receiving each character. There are two ways to enable the small
footprint driver:

■ Enable the small footprint setting for the HAL system library project. This option
affects device drivers for all devices in the system as well.

Example 7–2. Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{

char* msg = "Detected the character 't'.\n";
FILE* fp;
char prompt = 0;

fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
if (fp)
{

while (prompt != 'v')
{ // Loop until we receive a 'v'.

prompt = getc(fp); // Get a character from the UART.
if (prompt == 't')
{ // Print a message if character is 't'.

fwrite (msg, strlen (msg), 1, fp);
}

}

fprintf(fp, "Closing the UART file.\n");
fclose (fp);

}

return 0;
}

June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

7–10 Chapter 7: UART Core
Software Programming Model
■ Specify the preprocessor option -DALTERA_AVALON_UART_SMALL. You can use this
option if you want the small, polled implementation of the UART driver, but do
not want to affect the drivers for other devices.

f Refer to the help system in the Nios II IDE for details about how to set HAL properties
and preprocessor options.

If the CTS/RTS flow control signals are enabled in hardware, the fast driver
automatically uses them. The small driver always ignores them.

ioctl() Operations
The UART driver supports the ioctl() function to allow HAL-based programs to
request device-specific operations. Table 7–2 defines operation requests that the
UART driver supports.

Additional operation requests are also optionally available for the fast driver only, as
shown in Table 7–3. To enable these operations in your program, you must set the
preprocessor option -DALTERA_AVALON_UART_USE_IOCTL.

f For details about the ioctl() function, refer to the Nios II Software Developer's
Handbook.

Limitations
The HAL driver for the UART core does not support the endofpacket register. Refer to
“Register Map” for details.

Software Files

Table 7–2. UART ioctl() Operations

Request Description

TIOCEXCL

Locks the device for exclusive access. Further calls to open() for this device will fail until either
this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl request. For this
request to succeed there can be no other existing file descriptors for this device. The parameter arg
is ignored.

TIOCNXCL Releases a previous exclusive access lock. The parameter arg is ignored.

Table 7–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Description

TIOCMGET
Returns the current configuration of the device by filling in the contents of the input termios structure. (1)
A pointer to this structure is supplied as the value of the parameter opt.

TIOCMSET
Sets the configuration of the device according to the values contained in the input termios structure. (1)
A pointer to this structure is supplied as the value of the parameter arg.

Note to Table 7–3:

(1) The termios structure is defined by the Newlib C standard library. You can find the definition in the file <Nios II EDS install
path>/components/altera_hal/HAL/inc/sys/termios.h.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 7: UART Core 7–11
Software Programming Model
The UART core is accompanied by the following software files. These files define the
low-level interface to the hardware, and provide the HAL drivers. Application
developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement the UART core
device driver for the HAL system library.

Register Map
Programmers using the HAL API never access the UART core directly via its registers.
In general, the register map is only useful to programmers writing a device driver for
the core.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 7–4 shows the register map for the UART core. Device drivers control and
communicate with the core through the memory-mapped registers.

Some registers and bits are optional. These registers and bits exists in hardware only if
it was enabled at system generation time. Optional registers and bits are noted in the
following sections.

Table 7–4. UART Core Register Map

Offset Register
Name R/W

Description/Register Bits

15:13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO Reserved (1) (1) Receive Data

1 txdata WO Reserved (1) (1) Transmit Data

2 status (2) RW Reserved eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW Reserved ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor (3) RW Baud Rate Divisor

5 endof-
packet (3) RW Reserved (1) (1) End-of-Packet Value

Notes to Table 7–4:

(1) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read zero, and writing has no effect.
(2) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
(3) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading returns an undefined value and

writing has no effect.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

7–12 Chapter 7: UART Core
Software Programming Model
rxdata Register
The rxdata register holds data received via the RXD input. When a new character is
fully received via the RXD input, it is transferred into the rxdata register, and the
status register's rrdy bit is set to 1. The status register's rrdy bit is set to 0 when the
rxdata register is read. If a character is transferred into the rxdata register while the
rrdy bit is already set (in other words, the previous character was not retrieved), a
receiver-overrun error occurs and the status register's roe bit is set to 1. New
characters are always transferred into the rxdata register, regardless of whether the
previous character was read. Writing data to the rxdata register has no effect.

txdata Register
Avalon-MM master peripherals write characters to be transmitted into the txdata
register. Characters should not be written to txdata until the transmitter is ready for a
new character, as indicated by the TRDY bit in the status register. The TRDY bit is set to
0 when a character is written into the txdata register. The TRDY bit is set to 1 when the
character is transferred from the txdata register into the transmitter shift register. If a
character is written to the txdata register when TRDY is 0, the result is undefined.
Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM master
peripheral writes a first character into the txdata register. The TRDY bit is set to 0, then
set to 1 when the character is transferred into the transmitter shift register. The master
can then write a second character into the txdata register, and the TRDY bit is set to 0
again. However, this time the shift register is still busy shifting out the first character
to the TXD output. The TRDY bit is not set to 1 until the first character is fully shifted out
and the second character is automatically transferred into the transmitter shift
register.

status Register
The status register consists of individual bits that indicate particular conditions
inside the UART core. Each status bit is associated with a corresponding
interrupt-enable bit in the control register. The status register can be read at any
time. Reading does not change the value of any of the bits. Writing zero to the status
register clears the DCTS, E, TOE, ROE, BRK, FE, and PE bits.

The status register bits are shown in Table 7–5.

Table 7–5. status Register Bits (Part 1 of 3)

Bit Name Access Description

0 (1) PE RC

Parity error. A parity error occurs when the received parity bit has an unexpected
(incorrect) logic level. The PE bit is set to 1 when the core receives a character with an
incorrect parity bit. The PE bit stays set to 1 until it is explicitly cleared by a write to the
status register. When the PE bit is set, reading from the rxdata register produces an
undefined value.

If the Parity hardware option is not enabled, no parity checking is performed and the
PE bit always reads 0. Refer to “Data Bits, Stop Bits, Parity” on page 7–4.

1 FE RC

Framing error. A framing error occurs when the receiver fails to detect a correct stop bit.
The FE bit is set to 1 when the core receives a character with an incorrect stop bit. The
FE bit stays set to 1 until it is explicitly cleared by a write to the status register. When the
FE bit is set, reading from the rxdata register produces an undefined value.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 7: UART Core 7–13
Software Programming Model
2 BRK RC

Break detect. The receiver logic detects a break when the RXD pin is held low (logic 0)
continuously for longer than a full-character time (data bits, plus start, stop, and parity
bits). When a break is detected, the BRK bit is set to 1. The BRK bit stays set to 1 until it is
explicitly cleared by a write to the status register.

3 ROE RC

Receive overrun error. A receive-overrun error occurs when a newly received character is
transferred into the rxdata holding register before the previous character is read (in other
words, while the RRDY bit is 1). In this case, the ROE bit is set to 1, and the previous
contents of rxdata are overwritten with the new character. The ROE bit stays set to 1 until
it is explicitly cleared by a write to the status register.

4 TOE RC

Transmit overrun error. A transmit-overrun error occurs when a new character is written
to the txdata holding register before the previous character is transferred into the shift
register (in other words, while the TRDY bit is 0). In this case the TOE bit is set to 1. The
TOE bit stays set to 1 until it is explicitly cleared by a write to the status register.

5 TMT R

Transmit empty. The TMT bit indicates the transmitter shift register’s current state. When
the shift register is in the process of shifting a character out the TXD pin, TMT is set to 0.
When the shift register is idle (in other words, a character is not being transmitted) the
TMT bit is 1. An Avalon-MM master peripheral can determine if a transmission is
completed (and received at the other end of a serial link) by checking the TMT bit.

6 TRDY R

Transmit ready. The TRDY bit indicates the txdata holding register’s current state. When
the txdata register is empty, it is ready for a new character, and TRDY is 1. When the
txdata register is full, TRDY is 0. An Avalon-MM master peripheral must wait for TRDY to
be 1 before writing new data to txdata.

7 RRDY R

Receive character ready. The RRDY bit indicates the rxdata holding register’s current
state. When the rxdata register is empty, it is not ready to be read and RRDY is 0. When a
newly received value is transferred into the rxdata register, RRDY is set to 1. Reading the
rxdata register clears the RRDY bit to 0. An Avalon-MM master peripheral must wait for
RRDY to equal 1 before reading the rxdata register.

8 E RC

Exception. The E bit indicates that an exception condition occurred. The E bit is a
logical-OR of the TOE, ROE, BRK, FE, and PE bits. The E bit and its corresponding interrupt-
enable bit (IE) bit in the control register provide a convenient method to enable/disable
IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10
(1) DCTS RC

Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a logic-level
transition is detected on the CTS_N input port (sampled synchronously to the Avalon-MM
clock). This bit is set by both falling and rising transitions on CTS_N. The DCTS bit stays
set to 1 until it is explicitly cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always reads 0. Refer to
“Flow Control” on page 7–5.

11
(1) CTS R

Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s instantaneous state
(sampled synchronously to the Avalon-MM clock).

The CTS_N input has no effect on the transmit or receive processes. The only visible effect
of the CTS_N input is the state of the CTS and DCTS bits, and an IRQ that can be generated
when the control register’s idcts bit is enabled.

If the Flow Control hardware option is not enabled, the CTS bit always reads 0. Refer to
“Flow Control” on page 7–5.

Table 7–5. status Register Bits (Part 2 of 3)

Bit Name Access Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

7–14 Chapter 7: UART Core
Software Programming Model
control Register
The control register consists of individual bits, each controlling an aspect of the
UART core's operation. The value in the control register can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit in the status
register. When both a status bit and its corresponding interrupt-enable bit are 1, the
core generates an IRQ.

The control register bits are shown in Table 7–6.

12
(1) EOP R

End of packet encountered. The EOP bit is set to 1 by one of the following events:

■ An EOP character is written to txdata

■ An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket register. The
EOP bit stays set to 1 until it is explicitly cleared by a write to the status register.

If the Include End-of-Packet Register hardware option is not enabled, the EOP bit always
reads 0. Refer to “Streaming Data (DMA) Control” on page 7–6.

Note to Table 7–5:

(1) This bit is optional and may not exist in hardware.

Table 7–5. status Register Bits (Part 3 of 3)

Bit Name Access Description

Table 7–6. control Register Bits (Part 1 of 2)

Bit Name Access Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW

Transmit break. The TRBK bit allows an Avalon-MM master peripheral to transmit a break
character over the TXD output. The TXD signal is forced to 0 when the TRBK bit is set to 1.
The TRBK bit overrides any logic level that the transmitter logic would otherwise drive on the
TXD output. The TRBK bit interferes with any transmission in process. The Avalon-MM
master peripheral must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW

Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output. An Avalon-MM
master peripheral can write the RTS bit at any time. The value of the RTS bit only affects the
RTS_N output; it has no effect on the transmitter or receiver logic. Because the RTS_N output
is logic negative, when the RTS bit is 1, a low logic-level (0) is driven on the RTS_N output.

If the Flow Control hardware option is not enabled, the RTS bit always reads 0, and writing
has no effect. Refer to “Flow Control” on page 7–5.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 7: UART Core 7–15
Software Programming Model
divisor Register (Optional)
The value in the divisor register is used to generate the baud rate clock. The effective
baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate Can Be
Changed By Software hardware option is not enabled, the divisor register does not
exist. In this case, writing divisor has no effect, and reading divisor returns an
undefined value. For more information, refer to “Baud Rate Options” on page 7–3.

endofpacket Register (Optional)
The value in the endofpacket register determines the end-of-packet character for
variable-length DMA transactions. After reset, the default value is zero, which is the
ASCII null character (\0). For more information, refer to Table 7–5 on page 7–12 for
the description for the EOP bit.

The endofpacket register is an optional hardware feature. If the Include
end-of-packet register hardware option is not enabled, the endofpacket register does
not exist. In this case, writing endofpacket has no effect, and reading returns an
undefined value.

Interrupt Behavior
The UART core outputs a single IRQ signal to the Avalon-MM interface, which can
connect to any master peripheral in the system, such as a Nios II processor. The
master peripheral must read the status register to determine the cause of the
interrupt.

Every interrupt condition has an associated bit in the status register and an interrupt-
enable bit in the control register. When any of the interrupt conditions occur, the
associated status bit is set to 1 and remains set until it is explicitly acknowledged.
The IRQ output is asserted when any of the status bits are set while the corresponding
interrupt-enable bit is 1. A master peripheral can acknowledge the IRQ by clearing the
status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot assert an IRQ
until a master peripheral sets one or more of the interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status and control
(interrupt-enable) bits in Table 6–5 on page 6–16 and Table 6–6 on page 6–18. Details
of each interrupt condition are provided in the status bit descriptions.

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 7–6:

(1) This bit is optional and may not exist in hardware.

Table 7–6. control Register Bits (Part 2 of 2)

Bit Name Access Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

7–16 Chapter 7: UART Core
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 Added description of a new parameter, Synchronizer stages.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
8. SPI Core
Core Overview
SPI is an industry-standard serial protocol commonly used in embedded systems to
connect microprocessors to a variety of off-chip sensor, conversion, memory, and
control devices. The SPI core with Avalon® interface implements the SPI protocol and
provides an Avalon Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When configured as a
master, the SPI core can control up to 32 independent SPI slaves. The width of the
receive and transmit registers are configurable between 1 and 32 bits. Longer transfer
lengths can be supported with software routines. The SPI core provides an interrupt
output that can flag an interrupt whenever a transfer completes.

The SPI core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 8–8

Functional Description
The SPI core communicates using two data lines, a control line, and a synchronization
clock:

■ Master Out Slave In (mosi)—Output data from the master to the inputs of the
slaves

■ Master In Slave Out (miso)—Output data from a slave to the input of the master

■ Serial Clock (sclk)—Clock driven by the master to slaves, used to synchronize the
data bits

■ Slave Select (ss_n)— Select signal (active low) driven by the master to individual
slaves, used to select the target slave

The SPI core has the following user-visible features:

■ A memory-mapped register space comprised of five registers: rxdata, txdata,
status, control, and slaveselect

■ Four SPI interface ports: sclk, ss_n, mosi, and miso

The registers provide an interface to the SPI core and are visible via the Avalon-MM
slave port. The sclk, ss_n, mosi, and miso ports provide the hardware interface to
other SPI devices. The behavior of sclk, ss_n, mosi, and miso depends on whether the
SPI core is configured as a master or slave.
Embedded Peripherals IP User Guide

8–2 Chapter 8: SPI Core
Functional Description
Figure 8–1 shows a block diagram of the SPI core in master mode.

The SPI core logic is synchronous to the clock input provided by the Avalon-MM
interface. When configured as a master, the core divides the Avalon-MM clock to
generate the SCLK output. When configured as a slave, the core's receive logic is
synchronized to SCLK input. The core's Avalon-MM interface is capable of
Avalon-MM transfers with flow control. The SPI core can be used in conjunction with
a DMA controller with flow control to automate continuous data transfers between,
for example, the SPI core and memory. For more details, refer to “Interval Timer Core”
on page 28–1.

Example Configurations
Figure 8–1 and Figure 8–2 show two possible configurations. In Figure 8–2, the SPI
core provides a slave interface to an off-chip SPI master.

In Figure 8–1, the SPI core provides a master interface driving multiple off-chip slave
devices. Each slave device in Figure 8–1 must tristate its miso output whenever its
select signal is not asserted.

The ss_n signal is active-low. However, any signal can be inverted inside the FPGA,
allowing the slave-select signals to be either active high or active low.

Figure 8–1. SPI Core Block Diagram (Master Mode)

clock

control

 control

baud rate divisor*

IRQ

sclk

mosi

miso

ss_n0
ss_n1

ss_n15

 *Not present on SPI slave

 slaveselect*

Avalon-MM
slave

interface
to on-chip

logic

 txdata shift register

 status

 rxdata shift register

data

Figure 8–2. SPI Core Configured as a Slave

Altera FPGA

Avalon-MM
 interface
to on-chip
 logic

sclk
ss_n
mosi
miso

 SPI component
(configured as slave)

miso
mosi
ss
sclk

 SPI
Master
Device
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 8: SPI Core 8–3
Functional Description
Transmitter Logic
The SPI core transmitter logic consists of a transmit holding register (txdata) and
transmit shift register, each n bits wide. The register width n is specified at system
generation time, and can be any integer value from 8 to 32. After a master peripheral
writes a value to the txdata register, the value is copied to the shift register and then
transmitted when the next operation starts.

The shift register and the txdata register provide double buffering during data
transmission. A new value can be written into the txdata register while the previous
data is being shifted out of the shift register. The transmitter logic automatically
transfers the txdata register to the shift register whenever a serial shift operation is
not currently in process.

In master mode, the transmit shift register directly feeds the mosi output. In slave
mode, the transmit shift register directly feeds the miso output. Data shifts out LSB
first or MSB first, depending on the configuration of the SPI core.

Receiver Logic
The SPI core receive logic consists of a receive holding register (rxdata) and receive
shift register, each n bits wide. The register width n is specified at system generation
time, and can be any integer value from 8 to 32. A master peripheral reads received
data from the rxdata register after the shift register has captured a full n-bit value of
data.

The shift register and the rxdata register provide double buffering while receiving
data. The rxdata register can hold a previously received data value while subsequent
new data is shifting into the shift register. The receiver logic automatically transfers
the shift register content to the rxdata register when a serial shift operation
completes.

In master mode, the shift register is fed directly by the miso input. In slave mode, the
shift register is fed directly by the mosi input. The receiver logic expects input data to
arrive LSB first or MSB first, depending on the configuration of the SPI core.

Master and Slave Modes
At system generation time, the designer configures the SPI core in either master mode
or slave mode. The mode cannot be switched at runtime.

Master Mode Operation
In master mode, the SPI ports behave as shown in Table 8–1.

Table 8–1. Master Mode Port Configurations

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 31.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

8–4 Chapter 8: SPI Core
Functional Description
In master mode, an intelligent host (for example, a microprocessor) configures the SPI
core using the control and slaveselect registers, and then writes data to the txdata
buffer to initiate a transaction. A master peripheral can monitor the status of the
transaction by reading the status register. A master peripheral can enable interrupts
to notify the host whenever new data is received (for example, a transfer has
completed), or whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and receives data at
the same time. The master transmits a new data bit on the mosi output and the slave
drives a new data bit on the miso input for each active edge of sclk. The SPI core
divides the Avalon-MM system clock using a clock divider to generate the sclk signal.

When the SPI core is configured to interface with multiple slaves, the core has one
ss_n signal for each slave. During a transfer, the master asserts ss_n to each slave
specified in the slaveselect register. Note that there can be no more than one slave
transmitting data during any particular transfer, or else there will be a contention on
the miso input. The number of slave devices is specified at system generation time.

Slave Mode Operation
In slave mode, the SPI ports behave as shown in Table 8–2.

In slave mode, the SPI core simply waits for the master to initiate transactions. Before
a transaction begins, the slave logic continuously polls the ss_n input. When the
master asserts ss_n, the slave logic immediately begins sending the transmit shift
register contents to the miso output. The slave logic also captures data on the mosi
input, and fills the receive shift register simultaneously. After a word is received by
the slave, the master must de-assert the ss_n signal and reasserts the signal again
when the next word is ready to be sent.

An intelligent host such as a microprocessor writes data to the txdata registers, so
that it is transmitted the next time the master initiates an operation. A master
peripheral reads received data from the rxdata register. A master peripheral can
enable interrupts to notify the host whenever new data is received, or whenever the
transmit buffer is ready for new data.

Table 8–2. Slave Mode Port Configurations

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock

ss_n input Select signal
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 8: SPI Core 8–5
Configuration
Multi-Slave Environments
When ss_n is not asserted, typical SPI cores set their miso output pins to high
impedance. The Altera®-provided SPI slave core drives an undefined high or low
value on its miso output when not selected. Special consideration is necessary to avoid
signal contention on the miso output, if the SPI core in slave mode is connected to an
off-chip SPI master device with multiple slaves. In this case, the ss_n input should be
used to control a tristate buffer on the miso signal. Figure 8–3 shows an example of the
SPI core in slave mode in an environment with two slaves.

Avalon-MM Interface
The SPI core’s Avalon-MM interface consists of a single Avalon-MM slave port. In
addition to fundamental slave read and write transfers, the SPI core supports
Avalon-MM read and write transfers with flow control. The flow control is disabled
when:

■ the option to disable flow control is turned on, or

■ the option to disable flow control is turned off and the master does not support
flow control.

Configuration
The following sections describe the available configuration options.

Master/Slave Settings
The designer can select either master mode or slave mode to determine the role of the
SPI core. When master mode is selected, the following options are available: Number
of select (SS_n) signals, SPI clock rate, and Specify delay.

Number of Select (SS_n) Signals
This setting specifies the number of slaves the SPI master connects to. The range is 1 to
32. The SPI master core presents a unique ss_n signal for each slave.

Figure 8–3. SPI Core in a Multi-Slave Environment

 SPI
Master
Device

 sclk
 mosi
 miso
ss_n0
ss_01

sclk
 mosi
 miso
 ss_n0

 SPI component
(configured as slave)

 SPI
 Slave
DeviceSS_n

miso
mosi
sclk
June 2011 Altera Corporation Embedded Peripherals IP User Guide

8–6 Chapter 8: SPI Core
Configuration
SPI Clock (sclk) Rate
This setting determines the rate of the sclk signal that synchronizes data between
master and slaves. The target clock rate can be specified in units of Hz, kHz or MHz.
The SPI master core uses the Avalon-MM system clock and a clock divisor to generate
sclk.

The actual frequency of sclk may not exactly match the desired target clock rate. The
achievable clock values are:

 <Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target value.

Specify Delay
Turning on this option causes the SPI master to add a time delay between asserting
the ss_n signal and shifting the first bit of data. This delay is required by certain SPI
slave devices. If the delay option is on, you must also specify the delay time in units of
ns, µs or ms. An example is shown in Figure 8–4.

The delay generation logic uses a granularity of half the period of sclk. The actual
delay achieved is the desired target delay rounded up to the nearest multiple of half
the sclk period, as shown in Equation 8–1 and Equation 8–2:

Data Register Settings
The data register settings affect the size and behavior of the data registers in the SPI
core. There are two data register settings:

■ Width—This setting specifies the width of rxdata, txdata, and the receive and
transmit shift registers. The range is from 1 to 32.

■ Shift direction—This setting determines the direction that data shifts (MSB first or
LSB first) into and out of the shift registers.

Figure 8–4. Time Delay Between Asserting ss_n and Toggling sclk

Equation 8–1.

Equation 8–2.

p 1
2
--- period of sclk()×=

ctual delay ceiling desired delay
p

----------------------------------- 
  ××=
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 8: SPI Core 8–7
Configuration
Timing Settings
The timing settings affect the timing relationship between the ss_n, sclk, mosi and
miso signals. In this discussion the mosi and miso signals are referred to generically as
data. There are two timing settings:

■ Clock polarity—This setting can be 0 or 1. When clock polarity is set to 0, the idle
state for sclk is low. When clock polarity is set to 1, the idle state for sclk is high.

■ Clock phase—This setting can be 0 or 1. When clock phase is 0, data is latched on
the leading edge of sclk, and data changes on trailing edge. When clock phase is 1,
data is latched on the trailing edge of sclk, and data changes on the leading edge.

Figure 8–5 through Figure 8–8 demonstrate the behavior of signals in all possible
cases of clock polarity and clock phase.

Figure 8–5. Clock Polarity = 0, Clock Phase = 0

Figure 8–6. Clock Polarity = 0, Clock Phase = 1

Figure 8–7. Clock Polarity = 1, Clock Phase = 0

Figure 8–8. Clock Polarity = 1, Clock Phase = 1
June 2011 Altera Corporation Embedded Peripherals IP User Guide

8–8 Chapter 8: SPI Core
Software Programming Model
Software Programming Model
The following sections describe the software programming model for the SPI core,
including the register map and software constructs used to access the hardware. For
Nios® II processor users, Altera provides the HAL system library header file that
defines the SPI core registers. The SPI core does not match the generic device model
categories supported by the HAL, so it cannot be accessed via the HAL API or the
ANSI C standard library. Altera provides a routine to access the SPI hardware that is
specific to the SPI core.

Hardware Access Routines
Altera provides one access routine, alt_avalon_spi_command(), that provides
general-purpose access to the SPI core that is configured as a master.

alt_avalon_spi_command()

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,

alt_u32 write_length,
const alt_u8* wdata,

alt_u32 read_length,

alt_u8* read_data,

alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: This function performs a control sequence on the SPI bus. It supports only SPI masters with
data width less than or equal to 8 bits. A single call to this function writes a data buffer of
arbitrary length to the mosi port, and then reads back an arbitrary amount of data from the
miso port. The function performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select output is 0.

(2) Transmits write_length bytes of data from wdata through the SPI interface,
discarding the incoming data on the miso port.

(3) Reads read_length bytes of data and stores the data into the buffer pointed to by
read_data. The mosi port is set to zero during the read transaction.

(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from scattered buffers, call
the function multiple times and specify the merge flag on all the accesses except the last.

To access the SPI bus from more than one thread, you must use a semaphore or mutex to
ensure that only one thread is executing within this function at any time.

Returns: The number of bytes stored in the read_data buffer.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 8: SPI Core 8–9
Software Programming Model
Software Files
The SPI core is accompanied by the following software files. These files provide a
low-level interface to the hardware.

■ altera_avalon_spi.h—This file defines the core's register map, providing symbolic
constants to access the low-level hardware.

■ altera_avalon_spi.c—This file implements low-level routines to access the
hardware.

Register Map
An Avalon-MM master peripheral controls and communicates with the SPI core via
the six 32-bit registers, shown in Table 8–3. The table assumes an n-bit data width for
rxdata and txdata.

Reading undefined bits returns an undefined value. Writing to undefined bits has no
effect.

rxdata Register
A master peripheral reads received data from the rxdata register. When the receive
shift register receives a full n bits of data, the status register's RRDY bit is set to 1 and
the data is transferred into the rxdata register. Reading the rxdata register clears the
RRDY bit. Writing to the rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not the previous
data was retrieved. If RRDY is 1 when data is transferred into the rxdata register (that
is, the previous data was not retrieved), a receive-overrun error occurs and the status
register's ROE bit is set to 1. In this case, the contents of rxdata are undefined.

Table 8–3. Register Map for SPI Master Device

Internal
Address Register Name Type

[R/W] 32..11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata (1) R RXDATA (n-1..0)

1 txdata (1) W TXDATA (n-1..0)

2 status (2) R/W E RRDY TRDY TMT TOE ROE

3 control R/W SSO
(3) IE IRRDY ITRDY ITOE IROE

4 Reserved —

5 slaveselect (3) R/W Slave Select Mask

Notes to Table 8–3:

(1) Bits 31 to n are undefined when n is less than 32.
(2) A write operation to the status register clears the ROE, TOE, and E bits.
(3) Present only in master mode.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

8–10 Chapter 8: SPI Core
Software Programming Model
txdata Register
A master peripheral writes data to be transmitted into the txdata register. When the
status register's TRDY bit is 1, it indicates that the txdata register is ready for new
data. The TRDY bit is set to 0 whenever the txdata register is written. The TRDY bit is set
to 1 after data is transferred from the txdata register into the transmitter shift register,
which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the transmitter is
ready for new data. If TRDY is 0 and a master peripheral writes new data to the txdata
register, a transmit-overrun error occurs and the status register's TOE bit is set to 1. In
this case, the new data is ignored, and the content of txdata remains unchanged.

As an example, assume that the SPI core is idle (that is, the txdata register and
transmit shift register are empty), when a CPU writes a data value into the txdata
holding register. The TRDY bit is set to 0 momentarily, but after the data in txdata is
transferred into the transmitter shift register, TRDY returns to 1. The CPU writes a
second data value into the txdata register, and again the TRDY bit is set to 0. This time
the shift register is still busy transferring the original data value, so the TRDY bit
remains at 0 until the shift operation completes. When the operation completes, the
second data value is transferred into the transmitter shift register and the TRDY bit is
again set to 1.

status Register
The status register consists of bits that indicate status conditions in the SPI core. Each
bit is associated with a corresponding interrupt-enable bit in the control register, as
discussed in “control Register” on page 8–11. A master peripheral can read status at
any time without changing the value of any bits. Writing status does clear the ROE,
TOE and E bits. Table 8–4 describes the individual bits of the status register.

Table 8–4. status Register Bits (Part 1 of 2)

Name Description

3 ROE

Receive-overrun error

The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while the RRDY bit is
1). In this case, the new data overwrites the old. Writing to the status register clears the ROE bit to 0.

4 TOE

Transmitter-overrun error

The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, while the
TRDY bit is 0). In this case, the new data is ignored. Writing to the status register clears the TOE bit to 0.

5 TMT

Transmitter shift-register empty

In master mode, the TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift
register is empty.

In slave mode, the TMT bit is set to 0 when the slave is selected (SS_n is low) or when the SPI Slave
register interface is not ready to receive data.

6 TRDY
Transmitter ready

The TRDY bit is set to 1 when the txdata register is empty.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 8: SPI Core 8–11
Software Programming Model
control Register
The control register consists of data bits to control the SPI core's operation. A master
peripheral can read control at any time without changing the value of any bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register control interrupts
for status conditions represented in the status register. For example, bit 1 of status is
ROE (receiver-overrun error), and bit 1 of control is IROE, which enables interrupts for
the ROE condition. The SPI core asserts an interrupt request when the corresponding
bits in status and control are both 1.

The control register bits are shown in Table 8–5.

After reset, all bits of the control register are set to 0. All interrupts are disabled and
no ss_n signals are asserted.

slaveselect Register
The slaveselect register is a bit mask for the ss_n signals driven by an SPI master.
During a serial shift operation, the SPI master selects only the slave device(s) specified
in the slaveselect register.

The slaveselect register is only present when the SPI core is configured in master
mode. There is one bit in slaveselect for each ss_n output, as specified by the
designer at system generation time.

A master peripheral can set multiple bits of slaveselect simultaneously, causing the
SPI master to simultaneously select multiple slave devices as it performs a
transaction. For example, to enable communication with slave devices 1, 5, and 6, set
bits 1, 5, and 6 of slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

7 RRDY
Receiver ready

The RRDY bit is set to 1 when the rxdata register is full.

8 E

Error

The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer to detect
error conditions. Writing to the status register clears the E bit to 0.

Table 8–4. status Register Bits (Part 2 of 2)

Name Description

Table 8–5. control Register Bits

Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO
Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a serial shift
operation is in progress or not. The slaveselect register controls which ss_n outputs are asserted. SSO
can be used to transmit or receive data of arbitrary size, for example, greater than 32 bits.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

8–12 Chapter 8: SPI Core
Document Revision History
Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after a device reset,
slave device 0 is automatically selected.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1

■ Revised the register width in transmitter logic and receiver logic.

■ Added description on the disable flow control option.

■ Added R/W column in Table 8–3.

March 2009 9.0 No change from previous release.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Updated the width of the parameters and signals from 16 to 32.

May 2008 8.0 Updated the description of the TMT bit. Updates are made to comply with the Quartus II
software version 8.0 release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
9. Optrex 16207 LCD Controller Core
Core Overview
The Optrex 16207 LCD controller core with Avalon® Interface (LCD controller core)
provides the hardware interface and software driver required for a Nios® II processor
to display characters on an Optrex 16207 (or equivalent) 16×2-character LCD panel.
Device drivers are provided in the HAL system library for the Nios II processor.
Nios II programs access the LCD controller as a character mode device using ANSI C
standard library routines, such as printf(). The LCD controller is SOPC
Builder-ready, and integrates easily into any SOPC Builder-generated system.

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD module and
provide several ready-made example designs that display text on the Optrex 16207
via the LCD controller. For details about the Optrex 16207 LCD module, see the
manufacturer's Dot Matrix Character LCD Module User's Manual available at
www.optrex.com.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 9–2

Functional Description
The LCD controller core consists of two user-visible components:

■ Eleven signals that connect to pins on the Optrex 16207 LCD panel—These signals
are defined in the Optrex 16207 data sheet.

■ E—Enable (output)

■ RS—Register Select (output)

■ R/W—Read or Write (output)

■ DB0 through DB7—Data Bus (bidirectional)

■ An Avalon Memory-Mapped (Avalon-MM) slave interface that provides access to
4 registers.
Embedded Peripherals IP User Guide

www.optrex.com

9–2 Chapter 9: Optrex 16207 LCD Controller Core
Software Programming Model
Figure 9–1 shows a block diagram of the LCD controller core.

Software Programming Model
This section describes the software programming model for the LCD controller.

HAL System Library Support
Altera provides HAL system library drivers for the Nios II processor that enable you
to access the LCD controller using the ANSI C standard library functions. The
Altera-provided drivers integrate into the HAL system library for Nios II systems.
The LCD driver is a standard character-mode device, as described in the Nios II
Software Developer's Handbook. Therefore, using printf() is the easiest way to write
characters to the display.

The LCD driver requires that the HAL system library include the system clock driver.

Displaying Characters on the LCD
The driver implements VT100 terminal-like behavior on a miniature scale for the 16×2
screen. Characters written to the LCD controller are stored to an 80-column × 2-row
buffer maintained by the driver. As characters are written, the cursor position is
updated. Visible characters move the cursor position to the right. Any visible
characters written to the right of the buffer are discarded. The line feed character (\n)
moves the cursor down one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto the line below
the bottom of the buffer. Rows do not scroll as soon as the cursor moves down to
allow the maximum useful information in the buffer to be displayed.

If the visible characters in the buffer fit on the display, all characters are displayed. If
the buffer is wider than the display, the display scrolls horizontally to display all the
characters. Different lines scroll at different speeds, depending on the number of
characters in each line of the buffer.

Figure 9–1. LCD Controller Block Diagram

address

data

control
DB0 .. DB7

R/W

RS

E

Optrex 16207
LCD Module

LCD
Controller

Avalon-MM slave
interface to

on-chip logic

Altera FPGA
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 9: Optrex 16207 LCD Controller Core 9–3
Software Programming Model
The LCD driver supports a small subset of ANSI and VT100 escape sequences that can
be used to control the cursor position, and clear the display as shown in Table 9–1.

The LCD controller is an output-only device. Therefore, attempts to read from it
returns immediately indicating that no characters have been received.

The LCD controller drivers are not included in the system library when the Reduced
device drivers option is enabled for the system library. If you want to use the LCD
controller while using small drivers for other devices, add the preprocessor option—
DALT_USE_LCD_16207 to the preprocessor options.

Software Files
The LCD controller is accompanied by the following software files. These files define
the low-level interface to the hardware and provide the HAL drivers. Application
developers should not modify these files.

■ altera_avalon_lcd_16207_regs.h — This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

■ altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files implement
the LCD controller device drivers for the HAL system library.

Register Map
The HAL device drivers make it unnecessary for you to access the registers directly.
Therefore, Altera does not publish details about the register map. For more
information, the altera_avalon_lcd_16207_regs.h file describes the register map, and
the Dot Matrix Character LCD Module User's Manual from Optrex describes the register
usage.

Interrupt Behavior
The LCD controller does not generate interrupts. However, the LCD driver's text
scrolling feature relies on the HAL system clock driver, which uses interrupts for
timing purposes.

Table 9–1. Escape Sequence Supported by the LCD Controller

Sequence Meaning

BS (\b) Moves the cursor to the left by one character.

CR (\r) Moves the cursor to the start of the current line.

LF (\n)
Moves the cursor to the start of the line and move it
down one line.

ESC((\x1B) Starts a VT100 control sequence.

ESC [<y> ; <x> H
Moves the cursor to the y, x position specified – positions
are counted from the top left which is 1;1.

ESC [K Clears from current cursor position to end of line.

ESC [2 J Clears the whole screen.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

9–4 Chapter 9: Optrex 16207 LCD Controller Core
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
10. PIO Core
Core Overview
The parallel input/output (PIO) core with Avalon® interface provides a
memory-mapped interface between an Avalon® Memory-Mapped (Avalon-MM)
slave port and general-purpose I/O ports. The I/O ports connect either to on-chip
user logic, or to I/O pins that connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in situations
where a “bit banging” approach is sufficient. Some example uses are:

■ Controlling LEDs

■ Acquiring data from switches

■ Controlling display devices

■ Configuring and communicating with off-chip devices, such as
application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based on input
signals. The PIO core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Example Configurations” on page 10–3

■ “Software Programming Model” on page 10–5
Embedded Peripherals IP User Guide

10–2 Chapter 10: PIO Core
Functional Description
Functional Description
Each PIO core can provide up to 32 I/O ports. An intelligent host such as a
microprocessor controls the PIO ports by reading and writing the register-mapped
Avalon-MM interface. Under control of the host, the PIO core captures data on its
inputs and drives data to its outputs. When the PIO ports are connected directly to
I/O pins, the host can tristate the pins by writing control registers in the PIO core.
Figure 10–1 shows an example of a processor-based system that uses multiple PIO
cores to drive LEDs, capture edges from on-chip reset-request control logic, and
control an off-chip LCD display.

When integrated into an SOPC Builder-generated system, the PIO core has two
user-visible features:

■ A memory-mapped register space with four registers: data, direction,
interruptmask, and edgecapture

■ 1 to 32 I/O ports

The I/O ports can be connected to logic inside the FPGA, or to device pins that
connect to off-chip devices. The registers provide an interface to the I/O ports via the
Avalon-MM interface. See Table 10–2 on page 10–6 for a description of the registers.

Data Input and Output
The PIO core I/O ports can connect to either on-chip or off-chip logic. The core can be
configured with inputs only, outputs only, or both inputs and outputs. If the core is
used to control bidirectional I/O pins on the device, the core provides a bidirectional
mode with tristate control.

The hardware logic is separate for reading and writing the data register. Reading the
data register returns the value present on the input ports (if present). Writing data
affects the value driven to the output ports (if present). These ports are independent;
reading the data register does not return previously-written data.

Figure 10–1. An Example System Using Multiple PIO Cores

S
ystem

 Interconnect Fabric

CPU

PIO core
(output only)

Program
 and Data
Memory PIO

core
 (bidirectional)

IRQ

 LEDs

Edge
Capture

PIO
core

(input
only)

Reset
request

logic

Altera FPGA

4

11 LCD
 display
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 10: PIO Core 10–3
Example Configurations
Edge Capture
The PIO core can be configured to capture edges on its input ports. It can capture
low-to-high transitions, high-to-low transitions, or both. Whenever an input detects
an edge, the condition is indicated in the edgecapture register. The types of edges
detected is specified at system generation time, and cannot be changed via the
registers.

IRQ Generation
The PIO core can be configured to generate an IRQ on certain input conditions. The
IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT gate can be
inserted external to the core to provide negative sensitivity.

■ Edge-sensitive—The core's edge capture configuration determines which type of
edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt mask
determines which input port can generate interrupts.

Example Configurations
Figure 10–2 shows a block diagram of the PIO core configured with input and output
ports, as well as support for IRQs.

Figure 10–3 shows a block diagram of the PIO core configured in bidirectional mode,
without support for IRQs.

Figure 10–2. PIO Core with Input Ports, Output Ports, and IRQ Support

Figure 10–3. PIO Core with Bidirectional Ports

data
in

out

address

data

control

IRQ

 32

interruptmask

edgecapture

Avalon-MM
interface

to on-chip
logic

direction

data
in

out

address

data

control

 32
Avalon-MM

interface
to on-chip

logic
June 2011 Altera Corporation Embedded Peripherals IP User Guide

10–4 Chapter 10: PIO Core
Configuration
Avalon-MM Interface
The PIO core's Avalon-MM interface consists of a single Avalon-MM slave port. The
slave port is capable of fundamental Avalon-MM read and write transfers. The
Avalon-MM slave port provides an IRQ output so that the core can assert interrupts.

Configuration
The following sections describe the available configuration options.

Basic Settings
The Basic Settings page allows you to specify the width, direction and reset value of
the I/O ports.

Width
The width of the I/O ports can be set to any integer value between 1 and 32.

Direction
You can set the port direction to one of the options shown in Table 10–1.

Output Port Reset Value
You can specify the reset value of the output ports. The range of legal values depends
on the port width.

Output Register
The option Enable individual bit set/clear output register allows you to set or clear
individual bits of the output port. When this option is turned on, two additional
registers—outset and outclear—are implemented. You can use these registers to
specify the output bit to set and clear.

Input Options
The Input Options page allows you to specify edge-capture and IRQ generation
settings. The Input Options page is not available when Output ports only is selected
on the Basic Settings page.

Table 10–1. Direction Settings

Setting Description

Bidirectional (tristate) ports
In this mode, each PIO bit shares one device pin for driving and
capturing data. The direction of each pin is individually selectable. To
tristate an FPGA I/O pin, set the direction to input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate,
unidirectional buses of n bits wide.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 10: PIO Core 10–5
Software Programming Model
Edge Capture Register
Turn on Synchronously capture to include the edge capture register, edgecapture, in
the core. The edge capture register allows the core to detect and generate an optional
interrupt when an edge of the specified type occurs on an input port. The user must
further specify the following features:

■ Select the type of edge to detect:

■ Rising Edge

■ Falling Edge

■ Either Edge

■ Turn on Enable bit-clearing for edge capture register to clear individual bit in the
edge capture register. To clear a given bit, write 1 to the bit in the edge capture
register.

Interrupt
Turn on Generate IRQ to assert an IRQ output when a specified event occurs on input
ports. The user must further specify the cause of an IRQ event:

■ Level— The core generates an IRQ whenever a specific input is high and
interrupts are enabled for that input in the interruptmask register.

■ Edge— The core generates an IRQ whenever a specific bit in the edge capture
register is high and interrupts are enabled for that bit in the interruptmask
register.

When Generate IRQ is off, the interruptmask register does not exist.

Simulation
The Simulation page allows you to specify the value of the input ports during
simulation. Turn on Hardwire PIO inputs in test bench to set the PIO input ports to a
certain value in the testbench, and specify the value in Drive inputs to field.

Software Programming Model
This section describes the software programming model for the PIO core, including
the register map and software constructs used to access the hardware. For Nios® II
processor users, Altera provides the HAL system library header file that defines the
PIO core registers. The PIO core does not match the generic device model categories
supported by the HAL, so it cannot be accessed via the HAL API or the ANSI C
standard library.

The Nios II Embedded Design Suite (EDS) provides several example designs that
demonstrate usage of the PIO core. In particular, the count_binary.c example uses the
PIO core to drive LEDs, and detect button presses using PIO edge-detect interrupts.

Software Files
The PIO core is accompanied by one software file, altera_avalon_pio_regs.h. This file
defines the core's register map, providing symbolic constants to access the low-level
hardware.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

10–6 Chapter 10: PIO Core
Software Programming Model
Register Map
An Avalon-MM master peripheral, such as a CPU, controls and communicates with
the PIO core through four 32-bit registers, shown in Table 10–2. The table assumes that
I/O ports of the PIO core have a width of n bits.

The PIO core uses native address alignment where the 16-bit slave data maps to the
base address <BASE> in the address space of the 32-bit master. The offset refers to the
16-bit slave address space. For example, to access the direction register value, use
BASE + 0x4 (offset 1).

f For more information about native address alignment, refer to the System Interconnect
Fabric for Memory-Mapped Interfaces chapter in the SOPC User Guide.

data Register
Reading from data returns the value present at the input ports. If the PIO core
hardware is configured in output-only mode, reading from data returns an undefined
value.

Writing to data stores the value to a register that drives the output ports. If the PIO
core hardware is configured in input-only mode, writing to data has no effect. If the
PIO core hardware is in bidirectional mode, the registered value appears on an output
port only when the corresponding bit in the direction register is set to 1 (output).

direction Register
The direction register controls the data direction for each PIO port, assuming the
port is bidirectional. When bit n in direction is set to 1, port n drives out the value in
the corresponding bit of the data register.

Table 10–2. Register Map for the PIO Core

Offset Register Name R/W
Fields

(n-1) ... 2 1 0

0 data
read access R Data value currently on PIO inputs.

write access W New value to drive on PIO outputs.

1 direction (1) R/W Individual direction control for each I/O port. A value of 0 sets the
direction to input; 1 sets the direction to output.

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1 enables
interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

4 outset W Specifies which bit of the output port to set.

5 outclear W Specifies which output bit to clear.

Notes to Table 10–2:

(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the register returns an undefined
value, and writing the register has no effect.

(2) Writing any value to edgecapture clears all bits to 0.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

Chapter 10: PIO Core 10–7
Software Programming Model
The direction register only exists when the PIO core hardware is configured in
bidirectional mode. The mode (input, output, or bidirectional) is specified at system
generation time, and cannot be changed at runtime. In input-only or output-only
mode, the direction register does not exist. In this case, reading direction returns an
undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional I/O ports are configured
as inputs. If those PIO ports are connected to device pins, the pins are held in a
high-impedance state. In bi-directional mode, to change the direction of the PIO port,
reprogram the direction register.

interruptmask Register
Setting a bit in the interruptmask register to 1 enables interrupts for the
corresponding PIO input port. Interrupt behavior depends on the hardware
configuration of the PIO core. See “Interrupt Behavior” on page 10–7.

The interruptmask register only exists when the hardware is configured to generate
IRQs. If the core cannot generate IRQs, reading interruptmask returns an undefined
value, and writing to interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are disabled for all
PIO ports.

edgecapture Register
Bit n in the edgecapture register is set to 1 whenever an edge is detected on input port
n. An Avalon-MM master peripheral can read the edgecapture register to determine if
an edge has occurred on any of the PIO input ports. If the option Enable bit-clearing
for edge capture register is turned off, writing any value to the edgecapture register
clears all bits in the register. Otherwise, writing a 1 to a particular bit in the register
clears only that bit.

The type of edge(s) to detect is fixed in hardware at system generation time. The
edgecapture register only exists when the hardware is configured to capture edges. If
the core is not configured to capture edges, reading from edgecapture returns an
undefined value, and writing to edgecapture has no effect.

outset and outclear Registers
You can use the outset and outclear registers to set and clear individual bits of the
output port. For example, to set bit 6 of the output port, write 0x40 to the outset
register. Writing 0x08 to the outclear register clears bit 3 of the output port.

These registers are only present when the option Enable individual bit set/clear
output register is turned on.

Interrupt Behavior
The PIO core outputs a single IRQ signal that can connect to any master peripheral in
the system. The master can read either the data register or the edgecapture register to
determine which input port caused the interrupt.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

10–8 Chapter 10: PIO Core
Document Revision History
When the hardware is configured for level-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the data and interruptmask registers are 1. When the
hardware is configured for edge-sensitive interrupts, the IRQ is asserted whenever
corresponding bits in the edgecapture and interruptmask registers are 1. The IRQ
remains asserted until explicitly acknowledged by disabling the appropriate bit(s) in
interruptmask, or by writing to edgecapture.

Software Files
The PIO core is accompanied by the following software file. This file provide
low-level access to the hardware. Application developers should not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used by device driver functions.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0
■ Added a description about native address alignment.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 Added a section on new registers, outset and outclear.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Added the description for Output Port Reset Value and Simulation parameters.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
11. Avalon-ST Serial Peripheral Interface
Core
Core Overview
The Avalon® Streaming (Avalon-ST) Serial Peripheral Interface (SPI) core is an SPI
slave that allows data transfers between SOPC Builder systems and off-chip SPI
devices via Avalon-ST interfaces. Data is serially transferred on the SPI, and sent to
and received from the Avalon-ST interface in bytes.

The SPI Slave to Avalon Master Bridge is an example of how this core is used. For
more information on the bridge, refer to “SPI Slave/JTAG to Avalon Master Bridge
Cores” on page 18–1.

The Avalon-ST Serial Peripheral Interface core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

Functional Description
Figure 11–1 shows a block diagram of the Avalon-ST Serial Peripheral Interface core in
a typical system configuration.

Interfaces
The serial peripheral interface is full-duplex and does not support backpressure. It
supports SPI clock phase bit, CPHA = 1, and SPI clock polarity bit, CPOL = 0.

Table 11–1 shows the properties of the Avalon-ST interfaces.

Figure 11–1. SOPC Builder System with an Avalon-ST SPI Core

Avalon-ST
Source

Avalon-ST
Sink

Avalon-ST
Serial

Peripheral
Interface

Core

SPI
S

ys
te

m
 In

te
rc

on
ne

ct
 F

ab
ric

Rest of the
System

data_out

data_in

SPI
 Master

mosi

miso

sclk

nSS

Altera FPGA

SPI
Clock

System
Clock

Table 11–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.
Embedded Peripherals IP User Guide

11–2 Chapter 11: Avalon-ST Serial Peripheral Interface Core
Functional Description
f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Operation
The Avalon-ST SPI core waits for the nSS signal to be asserted low, signifying that the
SPI master is initiating a transaction. The core then starts shifting in bits from the
input signal mosi. The core packs the bits received on the SPI to bytes and checks for
the following special characters:

■ 0x4a—Idle character. The core drops the idle character.

■ 0x4d—Escape character. The core drops the escape character, and XORs the
following byte with 0x20.

For each valid byte of data received, the core asserts the valid signal on its Avalon-ST
source interface and presents the byte on the interface for a clock cycle.

At the same time, the core shifts data out from the Avalon-ST sink to the output signal
miso beginning with from the most significant bit. If there is no data to shift out, the
core shifts out idle characters (0x4a). If the data is a special character, the core inserts
an escape character (0x4d) and XORs the data with 0x20.

The data shifts into and out of the core in the direction of MSB first.

Figure 11–2 shows the SPI transfer protocol.

Error Not used.

Packet Not supported.

Table 11–1. Properties of Avalon-ST Interfaces

Feature Property

Figure 11–2. SPI Transfer Protocol

Notes to Figure 11–2:

(1) TL = The worst recovery time of sclk with respect with nSS.
(2) TT = The worst hold time for MOSI and MISO data.
(3) TI = The minimum width of a reset pulse required by Altera FPGA families.

sclk
(CPOL = 0)

Sample I
MOSI/MISO

Change O
MISO pin

Change O
MOSI pin

nSS

TL TT TI TL
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 11: Avalon-ST Serial Peripheral Interface Core 11–3
Configuration
Timing
The core requires a lead time (TL) between asserting the nSS signal and the SPI clock,
and a lag time (TT) between the last edge of the SPI clock and deasserting the nSS
signal. The nSS signal must be deasserted for a minimum idling time (TI) of one SPI
clock between byte transfers. A TimeQuest SDC file (.sdc) is provided to remove false
timing paths. The frequency of the SPI master’s clock must be equal to or lower than
the frequency of the core’s clock.

Limitations
Daisy-chain configuration, where the output line miso of an instance of the core is
connected to the input line mosi of another instance, is not supported.

Configuration
The parameter Number of synchronizer stages: Depth allows you to specify the
length of synchronization register chains. These register chains are used when a
metastable event is likely to occur and the length specified determines the meantime
before failure. The register chain length, however, affects the latency of the core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Added a description to specify the shift direction.

March 2009 9.0 Added description of a new parameter, Number of synchronizer stages: Depth.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

11–4 Chapter 11: Avalon-ST Serial Peripheral Interface Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
12. PCI Lite Core
Core Overview
The PCI Lite core is a protocol interface that translates PCI transactions to Avalon®

Memory-Mapped (Avalon-MM) transactions with low latency and high throughput.
The PCI Lite core uses the PCI-Avalon bridge to connect the PCI bus to the
interconnect fabric, allowing you to easily create simple PCI systems that include one
or more SOPC Builder components. This core has the following features:

■ SOPC Builder ready

■ PCI complexities, such as retry and disconnect are handled by the PCI/Avalon
Bridge logic and transparent to the user

■ Run-time configurable (dynamic) Avalon-to-PCI address translation

■ Separate Avalon Memory-Mapped (Avalon-MM) slave ports for PCI bus access
(PBA) and control register access (CRA)

■ Support for Avalon-MM burst mode

■ Common PCI and Avalon clock domains

■ Option to increase PCI read performance by increasing the number of pending
reads and maximum read burst size.

1 The PCI Lite core is scheduled for product obsolescence and discontinued support.
Therefore, Altera recommends that you do not use this core in new designs.

This chapter contains the following sections:

■ “Performance and Resource Utilization”

■ “Functional Description” on page 12–2

■ “Simulation Considerations” on page 12–14

Performance and Resource Utilization
This section lists the resource utilization and performance data for supported devices
when operating in the PCI Target-Only, and PCI Master/Target device modes for each
of the application-specific performance settings.

The estimates are obtained by compiling the core using the Quartus® II software.
Performance results vary depending on the parameters that you specify for the
system module.
Embedded Peripherals IP User Guide

12–2 Chapter 12: PCI Lite Core
Functional Description
Table 12–1 shows the resource utilization and performance data for a Stratix® III
device (EP3SE50F780C2). The performance of the MegaCore function in the Stratix IV
family is similar to the Stratix III family.

Table 12–2 lists the resource utilization and performance data for a Cyclone III device
(EP3C40F780C6).

Functional Description
The following sections provide a functional description of the PCI Lite Core.

PCI-Avalon Bridge Blocks
The PCI-Avalon bridge's blocks manage the connectivity for the following PCI
operational modes:

■ PCI Target-Only Peripheral

■ PCI Master/Target Peripheral

■ PCI Host-Bridge Device

Depending on the operational mode, the PCI-Avalon bridge uses some or all of the
predefined Avalon-MM ports. Figure 12–1 shows a generic PCI-Avalon bridge block
diagram, which includes the following blocks:

■ Five predefined Avalon-MM ports

■ Control registers

■ PCI master controller (when applicable)

Table 12–1. Memory Utilization and Performance Data for the Stratix III Family

PCI
Device
Mode

PCI Target PCI Master ALUTs (2) Logic Register M9K Memory
Blocks I/O Pins

Min (1) Enabled N/A 715 517 2 48

Max (1) Enabled Enabled 1,347 876 5 50

Notes to Table 12–1:

(1) Min = One BAR with minimum settings for each parameter.
Max = Three BARs with maximum settings for each parameter.

(2) The logic element (LE) count for the Stratix III family is based on the number of adaptive look-up tables (ALUTs) used for the design as reported
by the Quartus II software.

Table 12–2. Memory Utilization and Performance Data for the Cyclone III Family

PCI
Device
Mode

PCI Target PCI Master Logic
Elements Logic Register M4K Memory

Blocks I/O Pins

Min (1) Enabled N/A 1,057 511 2 48

Max (1) Enabled Enabled 2,027 878 5 50

Note to Table 12–2:

(1) Min = One BAR with minimum settings for each parameter.
Max = Three BARs with maximum settings for each parameter.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–3
Functional Description
■ PCI target controller

Avalon-MM Ports
The Avalon bridge comprises up to five predefined ports to communicate with the
interconnect (depending on device operating mode).

This section discusses the five Avalon-MM ports:

■ Prefetchable Avalon-MM master

■ Non-Prefetchable Avalon-MM master

■ I/O Avalon-MM master

■ PCI bus access slave

■ Control register access (CRA) Avalon-MM slave

Prefetchable Avalon-MM Master

The prefetchable Avalon-MM master port provides a high bandwidth PCI memory
request access to Avalon-MM slave peripherals. This master port is capable of
generating Avalon-MM burst transactions for PCI requests that hit a prefetchable base
address register (BAR). You should only connect prefetchable Avalon-MM slaves to
this port, typically RAM or ROM memory devices.

This port is optimized for high bandwidth transfers as a PCI target and it does not
support single cycle transactions.

Figure 12–1. Generic PCI-Avalon Bridge Block Diagram

P
C

I Lite C
ore

Control
 Register

Access Avalon
 Slave

Control
Status

Registers

PCI
Prefetchable

Bridge
Logic

PCI
Non-

Prefetchable
 Bridge Logic

PCI
Bus

PCI
Master

Controller

Master
Bridge
Logic

PCI Bus
Access
Slave

Prefetchable
Avalon
Master

Non-
Prefetchable

Avalon
Master

I/O
Bridge
Logic

I/O
Avalon
Master

A
valon S

w
itch Fabric

PCI-Avalon Bridge

P
C

I Target C
ontroller
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–4 Chapter 12: PCI Lite Core
Functional Description
Non-Prefetchable Avalon-MM Master

The Non-Prefetchable Avalon-MM master port provides a low latency PCI memory
request access to Avalon-MM slave peripherals. Burst operations are not supported
on this master port. Only the exact amount of data needed to service the initial data
phase is read from the interconnect. Therefore, the PCI byte enables (for the first data
phase of the PCI read transaction) are passed directly to the interconnect.

This Avalon-MM master port is optimized for low latency access from
PCI-to-Avalon-MM slaves. This is optimal for providing PCI target access to simple
Avalon-MM peripherals.

I/O Avalon-MM Master

The I/O Avalon-MM master port provides a low latency PCI I/O request access to
Avalon-MM slave peripherals. Burst operations are not supported on this master port.
As only the exact amount of data needed to service the initial data phase is read from
the interconnect, the PCI byte enables (for the first data phase of the PCI read
transaction) are passed directly to the interconnect.

This Avalon-MM master port is also optimized for I/O access from
PCI-to-Avalon-MM slaves for providing PCI target access to simple Avalon-MM
peripherals.

PCI Bus Access Slave

This Avalon-MM slave port propagates the following transactions from the
interconnect to the PCI bus:

■ Single cycle memory read and write requests

■ Burst memory read and write requests

■ I/O read and write requests

■ Configuration read and write requests

Burst requests from the interconnect are the only way to create burst transactions on
the PCI bus.

This slave port is not implemented in the PCI Target-Only Peripheral mode.

Control Register Access (CRA) Avalon-MM Slave

This Avalon-MM slave port is used to access control registers in the PCI-Avalon
bridge. To provide external PCI master access to these registers, one of the bridge's
master ports must be connected to this port. There is no internal access inside the
bridge from the PCI bus to these registers. You can only write to these registers from
the interconnect. The Control Register Access Avalon Slave port is only enabled on
Master/Target selection. The range of values supported by PCI CRA is 0x1000 to
0x1FFF. Depending on the system design, these values can be accessed by PCI
processors, Avalon processors or both.

Table 12–3 on page 12–5 shows the instructions on how to use these values. The
address translation table is writable via the Control Register Access Avalon Slave
port. If the Number of Address Pages field is set to the maximum of 512, 0x1FF8
contains A2P_ADDR_MAP_LO511 and 0x1FFC contains A2P_ADDR_MAP_HI511.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–5
Functional Description
Each entry in the PCI address translation table is always 8 bytes wide. The lower
order address bits that are treated as a pass through between Avalon-MM and PCI,
and the number of pass-through bits, are defined by the size of page in the address
translation table and are always forced to 0 in the hardware table. For example, if the
page size is 4 KBytes, the number of pass-through bits is
log2 (page size) = log2 (4 KBytes) = 12.

Refer to “Avalon-to-PCI Address Translation” on page 12–7 for more details.

Master and Target Performance
The performance of the PCI Lite core is designed to provide low-latency single-cycle
and burst transactions.

Master Performance
The master provides high throughput for transactions initiated by Avalon-MM master
devices to PCI target devices via the PCI bus master interface. Avalon-MM read
transactions are implemented as latent read transfers. The PCI master device issues
only one read transaction at a time.

1 The PCI bus access (PBA) handles the Avalon master transaction system interconnect
hold state for 6 clock cycles. This is the maximum number of cycles supported by the
PCI specification.

Target Performance
The target allows high throughput read/write operations to Avalon-MM slave
peripherals. Read/write accesses to prefetchable base address registers (BARs) use
dual-port buffers to enable burst transactions on both the PCI and Avalon-MM sides.
This profile also allows access to the PCI BARs (Prefetchable, Non-Prefetchable, and
I/O) to use their respective Avalon-MM master ports to initiate transfers to
Avalon-MM slave peripherals. Prefetchable handles burst transaction and
Non-Prefetchable and I/O handles only single-cycle transaction.

Table 12–3. Avalon-to-PCI Address Translation Table – Address Range: 0x1000-0x1FFF

Address Bit Name Access
Mode Description

0x1000

1:0 A2P_ADDR_SPACE0 W Address space indication for entry 0. See Table 12–4 on
page 12–7 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO0 W Lower bits of Avalon-to-PCI address map entry 0. The pass
through bits are not writable and are forced to 0.

0x1004 31:0 A2P_ADDR_MAP_HI0 W Reserved.

0x1008

1:0 A2P_ADDR_SPACE1 W Address Space indication for entry 1. See Table 12–4 on
page 12–7 for the definition of these bits.

31:2 A2P_ADDR_MAP_LO1 W

Lower bits of Avalon-to-PCI address map entry 1. Pass
through bits are not writable and are forced to 0.

This entry is only implemented if the number of pages in the
address translation table is greater than 1.

0x100C 31:0 A2P_ADDR_MAP_HI1 W Reserved.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–6 Chapter 12: PCI Lite Core
Functional Description
All PCI read transactions are completed as delayed reads. However, only one delayed
read is accepted and processed at a time.

PCI-to-Avalon Address Translation
Figure 12–2 shows the PCI-to-Avalon address translation. The bits in the PCI address
that are used in the BAR matching process are replaced by an Avalon-MM base
address that is specific to that BAR.

Figure 12–2. PCI-to-Avalon Address Translation

Avalon_Addr_B0

Avalon AddressPCI Address

High Low

Hardcoded BAR Specific
Avalon Addresses

Matched BAR
Selects Avalon

Addresses

Inside PCI Lite Core

BAR Specific Number
of High Avalon Bits

N = Number of Pass Through Bits (BAR Specific)
M = Number of Avalon Address Bits
P = Number of PCI Address Bits (64/32)

Low Address Bits Unchanged
(BAR Specific Number of Bits)

Avalon_Addr_B1

Avalon_Addr_B2

0N-1M-1 N

High Low

0P-1 N N-1

BAR0

BAR1

BAR2
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–7
Functional Description
Avalon-to-PCI Address Translation
Avalon-to-PCI address translation is done through a translation table. Low order
Avalon-MM address bits are passed to PCI unchanged; higher order Avalon-MM
address bits are used to index into the address translation table. The value found in
the table entry is used as the higher order PCI address bits. Figure 12–3 depicts this
process.

The address size selections in the translation table determine both the number of
entries in the Avalon-to-PCI address translation table, and the number of bits that are
passed through the transaction table unchanged.

Each entry in the address translation table also has two address space indication bits,
which specify the type of address space being mapped. If the type of address space
being mapped is memory, the bits also indicate the resulting PCI address is a 32-bit
address.

Table 12–4 shows the address space field’s format of the address translation table
entries.

Figure 12–3. Avalon-to-PCI Address Translation

Avalon Address PCI Address

High Low

N = Number of Pass Through Bits
M = Number of Avalon Address Bits
P = Number of PCI Address Bits
Q = Number of Translation Table Entries
Sp = Space Indication for Each Entry

Low Address Bits Unchanged

Avalon to PCI Address
Translation Table

(Q Entries by P-N Bits wide)

PCI Address from Table Entry
Used as High PCI Address Bits

Space IndicationTable Updates via
Control Register Port

High Avalon Address
Bits Index Table

PCI Address 0 Sp0

PCI Address 1 Sp1

PCI Address Q-1 SpQ-1

0N-1M-1 N

High Low

0P-1 N N-1

Table 12–4. Address Space Bit Encodings (Part 1 of 2) (Part 1 of 2)

Address
Space Indicator

(Bits 1:0)
Description

00
Memory space, 32-bit PCI address.

Address bits 63:32 of the translation table entries are ignored.

01 Reserved.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–8 Chapter 12: PCI Lite Core
Functional Description
If the space indication bits specify configuration or I/O space, subsequent
modifications to the PCI address are performed. See Table 12–5.

Avalon-To-PCI Read and Write Operation
The PCI Bus Access Slave port is a burst-capable slave that attempts to create PCI
bursts that match the bursts requested from the interconnect.

The PCI-Avalon bridge is capable of handling bursts up to 512 bytes with a 32-bit PCI
bus. In other words, the maximum supported Avalon-MM burst count is 128.

Bursts from Avalon-MM can be received on any boundary. However, when internal
PCI-Avalon bridge bursts cross the Avalon-to-PCI address page boundary, they are
broken into two pieces. Two bursts are used because the address translation can
change at that boundary, requiring a different PCI address for the second portion of
the burst with a burst count greater than 1.

1 Avalon-MM burst read requests are treated as if they are going to prefetchable PCI
space. Therefore, if the PCI target space is non-prefetchable, you should not use read
bursts.

10 I/O space. The address from the translation table process is modified as described in Table 12–5.

11
Configuration space. The address from the translation table process is treated as a type 1
configuration address and is modified as described in Table 12–5.

Table 12–4. Address Space Bit Encodings (Part 2 of 2) (Part 2 of 2)

Address
Space Indicator

(Bits 1:0)
Description

Table 12–5. Configuration and I/O Space Address Modifications

Address Space Modifications Performed

I/O
■ Address bits 2:0 are set to point to the first enabled byte according to the Avalon byte enables.

(Bit 2 only needs to be modified when a 64-bit data path is in use.)

■ Address bits 31:3 are handled normally.

Configuration

address bits 23:16 == 0

(bus number == 0)

■ Address bits 1:0 are set to 00 to indicate a type 0 configuration request.

■ Address bits 10:2 are passed through as normal.

■ Address bits 31:11 are set to be a one-hot encoding of the device number field (15:11) of the
address from the translation table. For example, if the device number is 0x00, address bit 11
is set to 1 and bits 31:12 are set to 0. If the device number is 0x01, address bit 12 is set to 1
and bits 31:13, 11 are set to 0.

■ Address bits 31:24 of the original PCI address are ignored.

Configuration

address bits 23:16 > 0

(bus number > 0)

■ Address bits 1:0 are set to 01 to indicate a type 1 configuration request.

■ Address bits 31:2 are passed through unchanged.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–9
Functional Description
Several factors control how Avalon-MM transactions (bursts or single cycle) are
translated to PCI transactions. These cases are discussed in Table 12–6.

Avalon-to-PCI Write Requests
For write requests from the interconnect, the write request is pushed onto the PCI bus
as a configuration write, I/O write, or memory write. When the Avalon-to-PCI
command/write data buffer either has enough data to complete the full burst or
8 data phases (32 bytes on a 32-bit PCI bus) are exceeded, the PCI master controller
issues the PCI write transaction.

The PCI write is issued to configuration, I/O, or memory space based on the address
translation table. See “Avalon-to-PCI Address Translation” on page 12–7.

A PCI write burst can be terminated for various reasons. Table 12–7 describes the
resulting action for the PCI master write request termination condition.

Avalon-to-PCI Read Requests
For read requests from the interconnect, the request is pushed on the PCI bus by a
configuration read, I/O read, memory read, memory read line, or memory read
multiple command. The PCI read is issued to configuration, I/O, or memory space
based on the address translation table entry. See “Avalon-to-PCI Address Translation”
on page 12–7.

Table 12–6. Translation of Avalon Requests to PCI Requests

Data Path
Width

Avalon
Burst Count

Type of
Operation

Avalon Byte
Enables Resulting PCI Operation and Byte Enables

32 1 Read or
Write Any value Single data phase read or write, PCI byte enables identical

to Avalon byte enables

32 >1 Read Any value Attempt to burst on PCI. All data phases have all PCI bytes
enabled.

32 >1 Write Any value Attempt to burst on PCI. All data phases have PCI byte
enables identical to the Avalon byte enables.

Table 12–7. PCI Master Write Request Termination Conditions

Termination condition Resulting Action

Burst count satisfied Normal master-initiated termination on PCI bus, command completes, and
the master controller proceeds to the next command.

Latency timer expiring during configuration,
I/O, or memory write command

Normal master-initiated termination on PCI bus, the continuation of the PCI
write is requested from the master controller arbiter.

Avalon-to-PCI command/write data buffer
running out of data

Normal master-initiated termination on the PCI bus. Master controller waits
for the buffer to reach 8 DWORDs on a 32-bit PCI or 16 DWORDs on a 64-bit
PCI, or there is enough data to complete the remaining burst count. Once
enough data is available, the master controller arbiter continues wth the
PCI write.

PCI target disconnect The master controller arbiter attempts to initiate the PCI write until the
transaction is successful.PCI target retry

PCI target-abort
The rest of the write data is read from the buffer and discarded.

PCI master-abort
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–10 Chapter 12: PCI Lite Core
Functional Description
If a memory space read request can be completed in a single data phase, it is issued as
a memory read command. If the memory space read request spans more than one
data phase but does not cross a cacheline boundary (as defined by the cacheline size
register), it is issued as a memory read line command. If the memory space read
request crosses a cache line boundary, it is issued as multiple memory read
commands.

Read requests on PCI may initially be retried. Retries depend on the response time
from the target. The master continues to retry until it gets the required data.

Table 12–8 shows PCI master read request termination conditions.

Ordering of Requests
The PCI-Avalon bridge handles the following types of requests:

■ PMW—Posted memory write.

■ DRR—Delayed read request.

■ DWR—Delayed write request. DWRs are I/O or configuration write operation
requests. The PCI-Avalon bridge does not handle DWRs as delayed writes.

■ As a PCI master, I/O or configuration writes are generated from posted
Avalon-MM writes. If required to verify completion, you must issue a
subsequent read request to the same target.

■ As a PCI target, configuration writes are the only requests accepted, which are
never delayed. These requests are handled directly by the PCI core.

■ DRC—Delayed read completion.

■ DWC—Delayed write completion. These are never passed through to the core in
either direction. Incoming configuration writes are never delayed. Delayed write
completion status is not passed back at all.

Every single transaction that is initiated, locks the core until it is completed. Only then
can a new transaction be accepted.

PCI Interrupt
When Avalon-MM asserts the IRQ signal, an interrupt on the PCI bus occurs. The
Avalon-MM IRQ input causes a bit to be set in the PCI interrupt status register.

Table 12–8. PCI Master Read Request Termination Conditions

Termination Condition Resulting Action

Burst count satisfied Normal master initiated termination on the PCI bus. Master controller proceeds to the next
command.

Latency timer expired Normal master initiated termination on PCI bus. The continuation of the PCI read is made
pending as a request from the master controller arbiter.

PCI target disconnect
The continuation of the PCI read is requested from the master controller arbiter.

PCI target retry

PCI target-abort Dummy data is returned to complete the Avalon-MM read request. The next operation is then
attempted in a normal fashion. PCI master-abort
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–11
Configuration
Configuration
Table 12–9 describes the parameters that can be configured in SOPC Builder for the
PCI Lite core.

Table 12–9. Parameters for PCI Lite Core (Part 1 of 2)

Parameters Legal Values Description

Enable Master/Target Mode On or Off

Turning this option On enables Master/Target mode. This option
enables allows Avalon-MM master devices to access PCI target
devices via the PCI bus master interface, and PCI bus master devices
to access Avalon-MM slave devices via the PCI bus target interface.

Turning this option Off means you have selected Target Only mode,
which allows PCI bus mastering devices to access Avalon-MM slave
devices via the PCI bus target interface.

Enable Host Bridge Mode On or Off

Turning this option On enables this mode.

In addition to the same features provided by the PCI Master/Target
mode, Host Bridge Mode provides host bridge functionality including
hardwiring the master enable bit to 1 in the PCI command register
and allowing self-configuration. This value can only be set if the
Enable Master/Target Mode option is turned On.

Number of Address Pages 2, 4, 8, or 16 The number of translation/pages supported by the device for Avalon
to PCI address translation.

Size of Address Pages 12–27 The supported address size (in bits) that can be assigned to each
map number entries.

Prefetchable BAR On or Off
Turning this option On invokes a Prefetchable Master (PM) Bar in the
PCI system. This option allows PCI-Avalon Bridge Lite to accept and
process PM transactions.

Prefetchable BAR Size 10–31 The allowed reserved address range supported by the PM BAR. The
reserved memory space is 1 KByte (10 bits) to 4 GBytes (31 bits).

Prefetchable BAR Avalon
Address Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon space. Refer to “PCI-to-Avalon Address
Translation” on page 12–6.

Non-Prefetchable BAR On or Off
Turning this option On invokes a Non-Prefetchable Master (NPM) Bar
in the PCI system. This option allows the PCI-Avalon Bridge Lite to
accept and process NPM transactions.

Non-Prefetchable BAR Size 10–31
Specifies the allowed reserved address range supported by the NPM
BAR. The reserved memory space is 1 KByte (10 bits) to 4 GBytes
(31 bits).

Non-Prefetchable BAR Avalon
Address Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon space. Refer to “PCI-to-Avalon Address
Translation” on page 12–6.

I/O BAR On or Off
Turning this option On enables an I/O BAR in the system. This option
allows PCI-Avalon Bridge Lite to accept and process I/O type
transactions.

I/O BAR Size 2–8 The allowed reserved address range supported by the I/O BAR. The
reserved memory space is 4 bytes (2 bits) to 256 bytes (8 bits).

I/O BAR Avalon Address
Translation Offset

<BAR translation
value>

The direct translation of the value that hits the BAR and modified to a
fixed address in the Avalon address space. Refer to “PCI-to-Avalon
Address Translation” on page 12–6.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–12 Chapter 12: PCI Lite Core
Configuration
PCI Timing Constraint Files
The PCI Lite core supplies a Tcl timing constraint file for your target device family.

When run, the constraint file automatically sets the PCI Lite core assignments for your
design such as PCI Lite core hierarchy, device family, density and package type used
in your Quartus II project.

To run a PCI constraint file, perform the following steps:

1. Copy pci_constraints.tcl from
<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite.

Maximum Target Read Burst
Size

1, 2, 4, 8, 16, 32,
64, or 128

Specifies the maximum FIFO depth that is used for reading. Larger
values allow more reads to be read in a single transaction but also
require more time to clear the FIFO content.

Device ID <register value> Device ID register. This parameter is a 16-bit hexadecimal value that
sets the device ID register in the configuration space.

Vendor ID <register value>
Vendor ID register.This parameter is a 16-bit read-only register that
identifies the manufacturer of the device. The value of this register is
assigned by the PCI Special Interest Group (SIG).

Class Code <register value>

Class code register. This parameter is a 24-bit hexadecimal value that
sets the class code register in the configuration space. The value
entered for this parameter must be valid PCI SIG-assigned class
code register value.

Revision ID <register value>
Revision ID register. This parameter is an 8-bit read-only register that
identifies the revision number of the device. The value of this register
is assigned by the manufacturer.

Subsystem ID <register value>
Subsystem ID register. This parameter is a 16-bit hexadecimal value
that sets the subsystem ID register in the PCI configuration space.
Any value can be entered for this parameter.

Subsystem Vendor ID <register value>

Subsystem vendor ID register. This parameter is a 16-bit
hexadecimal value that sets the subsystem vendor ID register in the
PCI configuration space. The value for this parameter must be a valid
PCI SIG-assigned vendor ID number.

Maximum Latency <register value>

Maximum latency register. This parameter is an 8-bit hexadecimal
value that sets the maximum latency register in the configuration
space. This parameter must be set according to the guidelines in the
PCI specifications. Only meaningful when the Enable Master/Target
Mode option is turned On.

Minimum Grant <register value>

Minimum grant register. This parameter is an 8-bit hexadecimal
value that sets the minimum grant register in the PCI configuration
space. This parameter must be set according to the guidelines in the
PCI specifications. Only meaningful when the Enable Master/Target
Mode option is turned On.

Table 12–9. Parameters for PCI Lite Core (Part 2 of 2)

Parameters Legal Values Description
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–13
Configuration
2. Update the pin list in the Tcl constraint file. Edit the get_user_pin_name procedure
in the Tcl constraint file to match the default pin names. To edit the PCI constraint
file, follow these steps:

a. Locate the get_user_pin_name procedure. This procedure maps the default PCI
pin names to user PCI pin names. The following lines are the first few lines of
the procedure:

proc get_user_pin_name { internal_pin_name } {

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name {ad ad }

b. Edit the pin names under the Change header in the file to match the PCI pin
names used in your Quartus II project. In the following example, the name ad
is changed to pci_ad:

#---------------- Do NOT change ------------------------------- ---- Change -----
array set map_user_pin_name_to_internal_pin_name { ad pci_ad }

1 The Tcl constraint file uses the default PCI pin names to make assignments.
When overwriting existing assignments, the Tcl constraint file checks the
new assignment pin names against the default PCI pin names. You must
update the assignment pin names if there is a mismatch between the
assignment pin names and the default PCI pin names.

3. Source the constraint file by typing the following in the Quartus II Tcl Console
window:

source pci_constraints.tcl r
4. Add the PCI constraints to your project by typing the following command in the

Quartus II Tcl Console window:

add_pci_constraints r
See “Additional Tcl Option” on page 12–13 for the option supported by the
add_pci_constraints command.

When you add the timing constraints file as described in Step 4 above, the
Quartus II software generates a Synopsys Design Constraints (.sdc) file with the
file name format, <variation name>.sdc. The Quartus II TimeQuest timing analyzer
uses the constraints specified in this file.

f For more information about .sdc files or TimeQuest timing analyzer, refer to
Quartus II Help.

Additional Tcl Option
If you do not want to compile your project and prefer to skip analysis and synthesis,
you can use the -no_compile option:

add_pci_contraints [-no_compile]

By default, the add_pci_constraints command performs analysis and synthesis in
the Quartus II software to determine the hierarchy of your PCI Lite core design. You
should only use this option if you have already performed analysis and synthesis or
fully compiled your project prior to using this script.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–14 Chapter 12: PCI Lite Core
Simulation Considerations
Simulation Considerations
The PCI Lite core includes a testbench that facilitates the design and verification of
systems that implement the Altera PCI-Avalon bridge. The testbench only works for
master systems and is provided in Verilog HDL only.

To use the PCI testbench, you must have a basic understanding of PCI bus
architecture and operations.This section describes the features and applications of the
PCI testbench to help you successfully design and verify your design.

Features
The PCI testbench includes the following features:

■ Easy to use simulation environment for any standard Verilog HDL simulator

■ Open source Verilog HDL files

■ Flexible PCI bus functional model to verify your application that uses any PCI Lite
core

■ Simulates all basic PCI transactions including memory read/write operations, I/O
read/write transactions, and configuration read/write transactions

■ Simulates all abnormal PCI transaction terminations including target retry, target
disconnect, target abort, and master abort

■ Simulates PCI bus parking

Master Transactor (mstr_tranx)
The master transactor simulates the master behavior on the PCI bus. It serves as an
initiator of PCI transactions for PCI testbench. The master transactor has three main
sections:

■ TASKS (Verilog HDL)

■ INITIALIZATION

■ USER COMMANDS

TASKS Sections
The TASKS (Verilog HDL) sections define the events that are executed for the user
commands supported by the master transactor. The events written in the TASKS
sections follow the phases of a standard PCI transaction as defined by the PCI Local
Bus Specification, Revision 3.0, including:

■ Address phase

■ Turn-around phase (read transactions)

■ Data phases

■ Turn-around phase

The master transactor terminates the PCI transactions in the following cases:

■ The PCI transaction has successfully transferred all the intended data.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–15
Simulation Considerations
■ The PCI target terminates the transaction prematurely with a target retry,
disconnect, or abort as defined in the PCI Local Bus Specification, Revision 3.0.

■ A target does not claim the transaction resulting in a master abort.

The bus monitor informs the master transactor of a successful data transaction or a
target termination. Refer to the source code, which shows you how the master
transactor uses these termination signals from the bus monitor.

The PCI testbench master transactor TASKS sections implement basic PCI transaction
functionality. If your application requires different functionality, modify the events to
change the behavior of the master transactor. Additionally, you can create new
procedures or tasks in the master transactor by using the existing events as an
example.

INITIALIZATION Section
This user-defined section defines the parameters and reset length of your PCI bus on
power-up. Specifically, the system should reset the bus and write the configuration
space of the PCI agents. You can modify the master transactor INITIALIZATION
section to match your system requirements by changing the time that the system reset
is asserted and by modifying the data written in the configuration space of the PCI
agents.

USER COMMANDS Section
The master transactor USER COMMANDS section contains the commands that
initiate the PCI transactions you want to run for your tests. The list of events that are
executed by these commands is defined in the TASKS sections. Customize the USER
COMMANDS section to execute the sequence of commands needed to test your
design.

Simulation Flow
This section describes the simulation flow using Altera PCI testbench. Figure 12–4
shows the block diagram of a typical verification environment using the PCI
testbench.

The simulation flow using Altera PCI testbench comprises the following steps.

1. Use SOPC Builder to create your system. SOPC creates the <variation
name_system>_sim folder in your project directory.

Figure 12–4. Typical Verification Environment Using the PCI Testbench

Altera Device

PCI Bus
Altera PCI Testbench

PCI
Testbench System Generated

Using SOPC Builder
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–16 Chapter 12: PCI Lite Core
Simulation Considerations
2. Source pci_constraints.tcl.

3. Copy
<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/verilog/pci_l
ite/trgt_tranx_mem_init.dat to <project_directory>/<variation
name_system>_sim folder.

4. Edit the top level HDL verilog files in the testbench. Insert the following lines just
before module test_bench.

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/pci_tb.v”

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/clk_gen.v”

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/arbiter.v”

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/pull_up.v”

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/monitor.v”

‘include “<quartus_root>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/
verilog/pci_lite/trgt_tranx.v”

‘include “mstr_tranx.v”

1 Modify mstr_tranx.v in your project directory to add the PCI transactions to
your system. If you regenerate your system, SOPC Builder overwrites the
testbench files in the <sopc_system>_sim directory. If you want the default
testbench files, regenerate the system. Then resource pci_constraints.tcl or
simply copy the mstr_tranx.v from
<quartus_ip>/ip/sopc_builder_ip/altera_avalon_pci_lite/pci_sim/verilog/
pci_lite into your project folder and repeat steps 3 and 4.

5. Set the initialization parameters, which are defined in the master transactor model
source code. These parameters control the address space reserved by the target
transactor model and other PCI agents on the PCI bus.

6. The master transactor defines the tasks (Verilog HDL) needed to initiate PCI
transactions in your testbench. Add the commands that correspond to the
transactions you want to implement in your tests to the master transactor model
source code. At a minimum, you must add configuration commands to set the
BAR for the target transactor model and write the configuration space of the PCI
Lite core. Additionally, you can add commands to initiate memory or I/O
transactions to the PCI Lite core.

7. Compile the files in your simulator, including the testbench modules and the files
created by SOPC Builder.

8. Simulate the testbench for the desired time period.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 12: PCI Lite Core 12–17
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0
■ Added information on core obsolescence.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Edited the command errors in the Simulation Flow section.

May 2008 8.0 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

12–18 Chapter 12: PCI Lite Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
13. Cyclone III Remote Update Controller
Core
Core Overview
The Cyclone® III Remote Update Controller core provides a method to control the
Cyclone III remote update block from SOPC Builder systems. The core allows you to
access all features of the ALTREMOTE_UPDATE megafunction through a simple
Avalon® Memory-Mapped (Avalon-MM) slave interface. The slave interface allows
Avalon-MM master peripherals, such as a Nios® II processor, to communicate with
the core simply by reading and writing the registers.

The Cyclone III Remote Update Controller core is a thin Avalon interface layer on top
of the ALTREMOTE_UPDATE megafunction. Every function of the core maps
directly to a function of the megafunction. Altera recommends that you familiarize
yourself with the ALTREMOTE_UPDATE megafunction before using the core.

f For more information about the ALTREMOTE_UPDATE megafunction, refer to the
altremote_update Megafunction User Guide. For more information about remote system
upgrade in Cyclone III devices, refer to the Remote System Upgrade With Cyclone III
Devices chapter in volume 1 of the Cyclone III Device Handbook.

The Cyclone III Remote Update Controller core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

Functional Description
Figure 13–1 shows a block diagram of the Cyclone III Remote Update Controller core.

Avalon-MM Slave Interface and Registers
The address bus on the core's Avalon-MM interface is 6 bits wide. The lower three bits
of the address bus map directly to the param signal of the ALTREMOTE_UPDATE
megafunction whereas the upper three bits map to the read_source signal.

Figure 13–1. Cyclone III Remote Update Controller Core Block Diagram

clock
busy

data_in

data_out

param
read_source
read_param
write_param

reconfig

Av
al

on
 M

em
or

y-
M

ap
pe

d
In

te
rfa

ce

Cyclone III
altremote_update

Megafunction

clock

address

readdata

writedata

chipselect

read

write

waitrequest
Embedded Peripherals IP User Guide

http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51012.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51012.pdf

13–2 Chapter 13: Cyclone III Remote Update Controller Core
Software Programming Model
Reading or writing to address offsets 0x00 – 0x1F of the Cyclone III Remote Update
Controller core is equivalent to performing read or write operations to the
ALTREMOTE_UPDATE megafunction using the param and read_source signals.

Table 13–1 shows the mapping of the 5 lowest order Remote Update Controller
address bits to the ALTREMOTE_UPDATE megafunction signals.

The highest order address bit [5] is used to access a single control/status register.
Reading or writing any address offset from 0x20 – 0x3F accesses the control/status
register.

Table 13–2 shows the bit map of the control/status register.

Software Programming Model
Software programs can operate the Cyclone III Remote Update Controller core by
reading from and writing to the core's registers.

1 You can only reconfigure the FPGA to an application image from the factory image.
Any attempt to reconfigure from an already reconfigured application image causes
the FPGA to return to the factory image.

This section describes the most common types of operations using the Cyclone III
Remote Update Controller core.

Setting the Configuration Offset
Before you reconfigure the FPGA, you must first specify the offset within the memory
device from which you want to execute a reconfiguration. The offset is the relative
address within the memory device where the configuration image is located. Write
the offset value to address 0x04 of the core to set the configuration offset.

Table 13–1. Avalon-MM Address Bits to Megafunction Signals Mapping

Address Bit Megafunction Signal

address[0] param[0]

address[1] param[1]

address[2] param[2]

address[3] read_source[0]

address[4] read_source[1]

Table 13–2. Bit Map of Control/Status Register

Bit(s) Field Access Description

0 RECONFIG RW Set this bit to 1 to reset the FPGA and trigger reconfiguration.

1 RESET_TIMER RW Set this bit to 1 to reset the watchdog timer. Then, set this bit to 0 to allow
the watchdog timer to continue.

2..31 Reserved
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 13: Cyclone III Remote Update Controller Core 13–3
Software Programming Model
For example, if your system contains a CFI flash memory mapped at address
0x04000000, and the configuration image is located at address 0x100000 in the flash
memory, the offset to set in the Cyclone III Remote Update Controller core is
0x100000.

Shifting the Configuration Offset Value
The ALTREMOTE_UPDATE megafunction requires that you provide only the 22
highest-order bits of a 24-bit address offset. To translate the address, right shift the
offset by two bits. This results in a properly oriented 22-bit address offset.

If you are using a CFI flash device, you must also take into account the data width of
the flash. If the data width of your flash device is 16 bits, you must provide a 16-bit
address offset to the Cyclone III Remote Update Controller core. This requires an
additional 1-bit right shift of the byte address offset. No translation is necessary if the
data width of your flash is 8 bits.

If you are using an EPCS serial configuration device, consider the data width of the
device to be 8 bits. Even though the EPCS device is a serial device, it uses byte
addressing internally.

For example, an FPGA is set up to configure itself using active parallel mode from a
16-bit CFI flash memory mapped at address 0x04000000 in an SOPC Builder system,
and the configuration image is located at byte offset 0x100000 within the flash
memory. To derive the correct configuration offset, you must first right shift the byte
offset 0x100000 by one bit to obtain the 16-bit address. Then, right shift by another two
bits to obtain the highest 22 bits of the 24-bit offset. The result is a configuration offset
of 0x20000 (0x100000 >> 3 = 0x20000), to be written to address 0x04 of the core.

Setting up the Watchdog Timer
You can set up the watchdog timer by writing the upper 12 bits of the 29-bit timeout
value to address 0x02 of the core. To reset the watchdog timer, set the RESET_TIMER bit
of the control/status register to 1 and immediately set the bit to 0.

c Ensure that you don't accidentally set bit 0 of the control/status register to 1.
Otherwise, you will trigger a reconfiguration of the FPGA.

f For more information on watchdog timer, refer to the ALTREMOTE_UPDATE
Megafunction User Guide.

If you do not use the watchdog timer feature of the ALTREMOTE_UPDATE
megafunction, it must be disabled before a reconfiguration is performed. To disable
the watchdog timer, write 0x00 to address 0x03 of the core.

Triggering a Reconfiguration
You can trigger a reconfiguration once you have set the reconfiguration offset in the
Cyclone III Remote Update Controller core, and you have either setup or disabled the
watchdog timer. To trigger a reconfiguration, set the RECONFIG bit in the
control/status register to 1. Consequently, the FPGA performs a reset and
reconfigures itself from the configuration image specified.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/ug/ug_altremote.pdf
http://www.altera.com/literature/ug/ug_altremote.pdf

13–4 Chapter 13: Cyclone III Remote Update Controller Core
Software Programming Model
Code Example
Example 13–1 shows a C function that can be used to operate the Cyclone III Remote
Update Controller core from a processor such as Nios II.

Example 13–1. FPGA Reconfiguration Function

/**
 * Function: CycloneIII_Reconfig
 * Purpose: Uses the ALT_REMOTE_UPDATE megafunction to reconfigure a Cyclone III FPGA.
 * Parameters:
 * remote_update_base - base address of the remote update controller
 * flash_base - base address of flash device
 * reconfig_offset - offset in flash from which to reconfigure
 * watchdog_timeout - 29-bit watchdog timeout value
 * width_of_flash - data-width of flash device
 * Returns: 0 (but never exits since it reconfigures the FPGA)
 **/
int CycloneIII_Reconfig(int remote_update_base,
 int flash_base,
 int reconfig_offset,
 int watchdog_timeout,
 int width_of_flash)
{int offset_shift;

 // Obtain upper 12 bits of 29-bit watchdog timeout value
 watchdog_timeout = watchdog_timeout >> 17;

 // Only enable the watchdog timer if its timeout value is greater than 0.
 if(watchdog_timeout > 0)
 {
 // Set the watchdog timeout value
 IOWR(remote_update_base, 0x2, watchdog_timeout);
 }
 else
 {
 // Disable the watchdog timer
 IOWR(remote_update_base, 0x3, 0);
 }

 // Calculate how much to shift the reconfig offset location:
 // width_of_flash == 8->offset_shift = 2.
 // width_of_flash == 16->offset_shift = 3
 offset_shift = ((width_of_flash / 8) + 1);

 // Write the offset of the desired reconfiguration image in flash
 IOWR(remote_update_base, 0x4, reconfig_offset >> offset_shift);

 // Perform the reconfiguration by setting bit 0 in the
 // control/status register
 IOWR(remote_update_base, 0x20, 0x1);

 return(0);
}

Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 13: Cyclone III Remote Update Controller Core 13–5
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

13–6 Chapter 13: Cyclone III Remote Update Controller Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
14. MDIO Core
The Altera Management Data Input/Output (MDIO) IP core is a two-wire standard
management interface that implements a standardized method to access the external
Ethernet PHY device management registers for configuration and management
purposes. The MDIO IP core is IEEE 802.3 standard compliant. To access each PHY
device, the PHY register address must be written to the register space followed by the
transaction data. The PHY register addresses are mapped in the MDIO core’s register
space and can be accessed by the host processor via the Avalon® Memory-Mapped
(Avalon-MM) interface. This IP core can also be used with the Altera 10-Gbps
Ethernet MAC to realize a fully manageable system.

The MDIO core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Functional Description”

■ “Configuration Registers” on page 14–4

Functional Description
The core provides an Avalon Memory-Mapped (Avalon-MM) slave interface that
allows Avalon-MM master peripherals (such as a CPU) to communicate with the core
and access the external PHY by reading and writing the control and data registers.
The system interconnect fabric connects the Avalon-MM master and slave interface
while a buffer connects the MDIO interface signals to the external PHY.

f For more information about system interconnect fabric for Avalon-MM interfaces,
refer to the System Interconnect Fabric for Memory-Mapped Interfaces.

Figure 14–1 shows a block diagram of the MDIO core.

Figure 14–1. MDIO Core Block Diagram

csr_address
mdio_in

MDIO Core mdio_out

clk

Avalon-MM
Slave

Interface

csr_waitrequest

MDIO
Ports

External PHY

mdc

mdio

csr_read
csr_write

csr_writedata

csr_readdata

reset

mdio_oen

MDIO Buffer
Connection

Altera FPGA

32

32

6

System
Inter-

connect
Fabric

User
Logic
Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

14–2 Chapter 14: MDIO Core
Functional Description
MDIO Frame Format (Clause 45)
The MDIO core communicates with the external PHY device using frames. A
complete frame is 64 bits long and consists of 32-bit preamble, 14-bit command, 2-bit
bus direction change, and 16-bit data. Each bit is transferred on the rising edge of the
management data clock (MDC). The PHY management interface supports the
standard MDIO specification (IEEE802.3 Ethernet Standard Clause 45).

Figure 14–2 illustrates the Clause 45 frame format.

Table 14–1 describes the fields of the MDIO frame (Clause 45).

Figure 14–2. MDIO Frame Format (Clause 45)

Z0 Read
10 Address/Write

PRE ST OP PRTAD DEVAD TA REGAD/Data Idle

00 Address
01 Write
11 Read

32 bits 2 bits 2 bits 5 bits 5 bits 2 bits 16 bits 1 bit

Table 14–1. MDIO Frame Field Descriptions—Clause 45 (Part 1 of 2)

Field Name Description

PRE Preamble. 32 bits of logical 1 sent prior to every transaction.

ST
The start of frame for indirect access cycles is indicated by the <00> pattern. This pattern assures a transition
from the default one and identifies the frame as an indirect access.

OP

The operation code field indicates the following transaction types:

■ 00 indicates that the frame payload contains the address of the register to access.

■ 01 indicates that the frame payload contains data to be written to the register whose address was provided
in the previous address frame.

■ 11 indicates that the frame is a read operation.

The post-read-increment-address operation <10> is not supported in this frame.

PRTAD
The port address (PRTAD) is 5 bits, allowing 32 unique port addresses. Transmission is MSB to LSB. A station
management entity (STA) must have a prior knowledge of the appropriate port address for each port to which
it is attached, whether connected to a single port or to multiple ports.

DEVAD
The device address (DEVAD) is 5 bits, allowing 32 unique MDIO manageable devices (MMDs) per port.
Transmission is MSB to LSB.

TA

The turnaround time is a 2-bit time spacing between the device address field and the data field of a
management frame to avoid contention during a read transaction.

■ For a read transaction, both the STA and the MMD remain in a high-impedance state (Z) for the first bit
time of the turnaround. The MMD drives a 0 during the second bit time of the turnaround of a read or
postread-increment-address transaction.

■ For a write or address transaction, the STA drives a 1 for the first bit time of the turnaround and a 0 for the
second bit time of the turnaround.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 14: MDIO Core 14–3
Functional Description
MDIO Clock Generation
The MDIO core’s MDC is generated from the Avalon-MM interface clock signal, clk.
The MDC_DIVISOR parameter specifies the division parameter. For more information
about the parameter, refer to “Parameter” on page 14–4.

1 The division factor must be defined such that the MDC frequency does not exceed
2.5 MHz.

Interfaces
The MDIO core consists of a single Avalon-MM slave interface. The slave interface
performs Avalon-MM read and write transfers initiated by an Avalon-MM master in
the client application logic. The Avalon-MM slave uses the waitrequest signal to
implement backpressure on the Avalon-MM master for any read or write operation
which has yet to be completed.

f For more information about Avalon-MM interfaces, refer to the Avalon Interface
Specifications.

Operation
The MDIO core has bidirectional external signals to transfer data between the external
PHY and the core.

Write Operation
Follow the steps below to perform a write operation:

1. Issue a write to the device register at address offset 0x21 to configure the device,
port, and register addresses of the PHY.

2. Issue a write to the MDIO_ACCESS register at address offset 0x20 to generate an
MDIO frame and write the data to the selected PHY device’s register.

Read Operation
Follow the steps below to perform a read operation:

1. Issue a write to the device register at address offset 0x21 to configure the device,
port, and register addresses of the PHY.

2. Issue a read to the MDIO_ACCESS register at address offset 0x20 to read the selected
PHY device’s register.

REGAD/

Data

The register address (REGAD) or data field is 16 bits. For an address cycle, it contains the address of the
register to be accessed on the next cycle. For the data cycle of a write frame, the field contains the data to be
written to the register. For a read frame, the field contains the contents of the register. The first bit transmitted
and received is bit 15.

Idle
The idle condition on MDIO is a high-impedance state. All tri-state drivers are disabled and the MMDs pullup
resistor pulls the MDIO line to a one.

Table 14–1. MDIO Frame Field Descriptions—Clause 45 (Part 2 of 2)

Field Name Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

14–4 Chapter 14: MDIO Core
Parameter
Parameter
Table 14–2 lists and describes the parameter you can configure.

Configuration Registers
An Avalon-MM master peripheral, such as a CPU, controls and communicates with
the MDIO core via 32-bit registers, shown in Table 14–3.

Document Revision History
The following table shows the revision history for this document.

Table 14–2. Configurable Parameter

Parameter Legal Values Default Value Description

MDC_DIVISOR 8-64 32

The host clock divisor provides the division factor for the clock on
the Avalon-MM interface to generate the preferred MDIO clock
(MDC). The division factor must be defined such that the MDC
frequency does not exceed 2.5 MHz.

Formula:

For example, if the Avalon-MM interface clock source is 100 MHz
and the desired MDC frequency is 2.5 MHz, specify a value of 40
for the MDC_DIVISOR.

Clock Source
MDC_DIVISOR
-- MDC Frequency=

Table 14–3. Register Map

Address
Offset Bit(s) Name Access

Mode Description

0x00-0x1F [31:0] Reserved

0x20 (1) [31:0] MDIO_ACCESS RW
Performs a read or write of 32-bit data to the external PHY
device. The addresses of the external PHY device’s register,
device, and port are specified in address offset 0x21.

0x21 (2)

[4:0] MDIO_DEVAD RW Contains the device address of the PHY.

[7:5] Reserved

[12:8] MDIO_PRTAD RW Contains the port address of the PHY.

[15:13] Reserved

[31:16] MDIO_REGAD RW Contains the register address of the PHY.

Notes to Table 14–3:

(1) The byte address for this register is 0x84.
(2) The byte address for this register is 0x80.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Revised the register map address offset.

July 2010 10.0 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
Section II. On-Chip Storage Peripherals
This section describes on-chip storage peripherals provided for SOPC Builder
systems.

This section includes the following chapters:

■ Chapter 15, Avalon-ST Single-Clock and Dual-Clock FIFO Cores

■ Chapter 16, On-Chip FIFO Memory Core

■ Chapter 17, Avalon-ST Multi-Channel Shared Memory FIFO Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

II–2 Section II: On-Chip Storage Peripherals
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
15. Avalon-ST Single-Clock and
Dual-Clock FIFO Cores
Core Overview
The Avalon® Streaming (Avalon-ST) Single-Clock and Avalon-ST Dual-Clock FIFO
cores are FIFO buffers which operate with a common clock and independent clocks
for input and output ports respectively. The FIFO cores are configurable, SOPC
Builder-ready, and integrate easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description”

■ “Register Description” on page 15–5

Functional Description
Figure 15–1 and Figure 15–2 show block diagrams of the Avalon-ST Single-Clock
FIFO and Avalon-ST Dual-Clock FIFO cores.

Figure 15–1. Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data

Source
Embedded Peripherals IP User Guide

15–2 Chapter 15: Avalon-ST Single-Clock and Dual-Clock FIFO Cores
Functional Description
Interfaces
This section describes the interfaces implemented in the FIFO cores.

f For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

Avalon-ST Data Interface
Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and
source interfaces in the dual-clock FIFO core are driven by different clocks.

Table 15–1 shows the properties of the Avalon-ST interfaces.

Avalon-MM Control and Status Register Interface
You can configure the single-clock FIFO core to include an optional Avalon-MM
interface, and the dual-clock FIFO core to include an Avalon-MM interface in each
clock domain. The Avalon-MM interface provides access to 32-bit registers, which
allows you to retrieve the FIFO buffer fill level and configure the almost-empty and
almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes. See Table 15–3 and Table 15–4 for the register descriptions.

Figure 15–2. Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data

Source

Table 15–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 15: Avalon-ST Single-Clock and Dual-Clock FIFO Cores 15–3
Functional Description
Avalon-ST Status Interface
The single-clock FIFO core has two optional Avalon-ST status source interfaces from
which you can obtain the FIFO buffer almost-full and almost empty statuses.

Operating Modes
The following lists the FIFO operating modes:

■ Default mode—The core accepts incoming data on the in interface (Avalon-ST
data sink) and forwards it to the out interface (Avalon-ST data source). The core
asserts the valid signal on the Avalon-ST source interface to indicate that data is
available at the interface.

■ Store and forward mode—This mode only applies to the single-clock FIFO core.
The core asserts the valid signal on the out interface only when a full packet of
data is available at the interface.

In this mode, you can also enable the drop-on-error feature by setting the
drop_on_error register to 1. When this feature is enabled, the core drops all
packets received with the in_error signal asserted.

■ Cut-through mode— This mode only applies to the single-clock FIFO core. The
core asserts the valid signal on the out interface to indicate that data is available
for consumption when the number of entries specified in the
cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and forward
parameter to include the csr interface (Avalon-MM slave). Set the
cut_through_threshold register to 0 to enable the store and forward mode; set the
register to any value greater than 0 to enable the cut-through mode. The non-zero
value specifies the minimum number of FIFO entries that must be available before the
data is ready for consumption. Setting the register to 1 provides you with the default
mode.

Fill Level
You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control
and status interface. Turn on the Use fill level parameter (Use sink fill level and Use
source fill level in the dual-clock FIFO core) and read the fill_level register.

The dual-clock FIFO core has two fill levels, one in each clock domain. Due to the
latency of the clock crossing logic, the fill levels reported in the input and output clock
domains may be different at any given instance. In both cases, the fill level is
pessimistic for the clock domain; the fill level is reported high in the input clock
domain and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage
is accounted for when calculating the output fill level, but not when calculating the
input fill level. Hence, the best measure of the amount of data in the FIFO is given by
the fill level in the output clock domain, while the fill level in the input clock domain
represents the amount of space available in the FIFO (Available space = FIFO depth –
input fill level).
June 2011 Altera Corporation Embedded Peripherals IP User Guide

15–4 Chapter 15: Avalon-ST Single-Clock and Dual-Clock FIFO Cores
Parameters
Thresholds
You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO
overflow and underflow. This feature is only available in the single-clock FIFO core.

To use the thresholds, turn on the Use fill level, Use almost-full status, and Use
almost-empty status parameters. You can access the almost_full_threshold and
almost_full_threshold registers via the csr interface and set the registers to an
optimal value for your application. See Table 15–3 on page 15–5 for the register
description.

You can obtain the almost-full and almost-empty statuses from almost_full and
almost_empty interfaces (Avalon-ST status source). The core asserts the almost_full
signal when the fill level is equal to or higher than the almost-full threshold. Likewise,
the core asserts the almost_empty signal when the fill level is equal to or lower than
the almost-empty threshold.

Parameters
Table 15–2 lists and describes the parameters you can configure.

Table 15–2. Configurable Parameters

Parameter Legal Values Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.

FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 1–32 The FIFO depth. An output pipeline stage is added to the FIFO to increase
performance, which increases the FIFO depth by one.

Use packets — Turn on this parameter to enable packet support on the Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only

Use fill level — Turn on this parameter to include the Avalon-MM control and status register
interface.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM control and status register
interface in the input clock domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control and status register
interface in the output clock domain.

Write pointer
synchronizer length 2–8 The length of the write pointer synchronizer chain. Setting this parameter to a

higher value leads to better metastability while increasing the latency of the core.

Read pointer
synchronizer length 2–8 The length of the read pointer synchronizer chain. Setting this parameter to a

higher value leads to better metastability.

Use Max Channel — Turn on this parameter to specify the maximum channel number.

Max Channel 1–255 Maximum channel number.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 15: Avalon-ST Single-Clock and Dual-Clock FIFO Cores 15–5
Register Description
f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Register Description
The csr interface in the Avalon-ST Single Clock FIFO core provides access to registers.
Table 15–3 describes the registers.

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the
FIFO fill level. Table 15–4 describes the fill level.

Table 15–3. Register Description for Avalon-ST Single-Clock FIFO

32-Bit
Word Offset Name Access Reset Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are unused.

1 Reserved — — Reserved for future use.

2 almost_full_threshold RW FIFO depth–1 Set this register to a value that indicates the
FIFO buffer is getting full.

3 almost_empty_threshold RW 0 Set this register to a value that indicates the
FIFO buffer is getting empty.

4 cut_through_threshold RW 0

0—Enables store and forward mode.
>0—Enables cut-through mode and specifies
the minimum of entries in the FIFO buffer
before the valid signal on the Avalon-ST
source interface is asserted. Once the FIFO
core starts sending the data to the
downstream component, it continues to do
so until the end of the packet.

This register applies only when the Use store
and forward parameter is turned on.

5 drop_on_error RW 0

0—Disables drop-on error.
1—Enables drop-on error.

This register applies only when the Use
packet and Use store and forward
parameters are turned on.

Table 15–4. Register Description for Avalon-ST Dual-Clock FIFO

32-Bit Word
Offset Name Access Reset

Value Description

0 fill_level R 0 24-bit FIFO fill level. Bits 24 to 31 are unused.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

15–6 Chapter 15: Avalon-ST Single-Clock and Dual-Clock FIFO Cores
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0

■ Added description of new features of the single-clock FIFO: store and forward mode, cut-
through mode, and drop on error. The changes reflect the enhancements made to the
single-clock FIFO that include new features and new optional interfaces.

■ Added new parameters and registers.

November 2009 9.1 No change from previous release.

March 2009 9.0 Added description of new parameters, Write pointer synchronizer length and Read pointer
synchronizer length.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
16. On-Chip FIFO Memory Core
Core Overview
The on-chip FIFO memory core buffers data and provides flow control in an SOPC
Builder system. The core can operate with a single clock or with separate clocks for
the input and output ports, and it does not support burst read or write.

The input interface to the on-chip FIFO memory core may be an Avalon® Memory
Mapped (Avalon-MM) write slave or an Avalon Streaming (Avalon-ST) sink. The
output interface can be an Avalon-ST source or an Avalon-MM read slave. The data is
delivered to the output interface in the same order that it was received at the input
interface, regardless of the value of channel, packet, frame, or any other signals.

In single-clock mode, the on-chip FIFO memory core includes an optional status
interface that provides information about the fill level of the FIFO core. In dual-clock
mode, separate, optional status interfaces can be included for the input and output
interfaces. The status interface also includes registers to set and control interrupts.

The on-chip FIFO memory core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. Device drivers are provided in the HAL system
library allowing software to access the core using ANSI C.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 16–7

■ “Programming with the On-Chip FIFO Memory” on page 16–8

■ “On-Chip FIFO Memory API” on page 16–13

Functional Description
The on-chip FIFO memory core has four configurations:

■ Avalon-MM write slave to Avalon-MM read slave

■ Avalon-ST sink to Avalon-ST source

■ Avalon-MM write slave to Avalon-ST source

■ Avalon-ST sink to Avalon-MM read slave

In all configurations, the input and output interfaces can use the optional
backpressure signals to prevent underflow and overflow conditions. For the
Avalon-MM interface, backpressure is implemented using the waitrequest signal. For
Avalon-ST interfaces, backpressure is implemented using the ready and valid signals.
For the on-chip FIFO memory core, the delay between the sink asserts ready and the
source drives valid data is one cycle.
Embedded Peripherals IP User Guide

16–2 Chapter 16: On-Chip FIFO Memory Core
Functional Description
Avalon-MM Write Slave to Avalon-MM Read Slave
In this configuration, the input is a zero-address-width Avalon-MM write slave. An
Avalon-MM write master pushes data into the FIFO core by writing to the input
interface, and a read master (possibly the same master) pops data by reading from its
output interface. The input and output data must be the same width.

If Allow backpressure is turned on, the waitrequest signal is asserted whenever the
data_in master tries to write to a full FIFO buffer. waitrequest is only deasserted
when there is enough space in the FIFO buffer for a new transaction to complete.
waitrequest is asserted for read operations when there is no data to be read from the
FIFO buffer, and is deasserted when the FIFO buffer has data.

Avalon-ST Sink to Avalon-ST Source
This configuration has streaming input and output interfaces as illustrated in
Figure 16–2. You can parameterize most aspects of the Avalon-ST interfaces including
the bits per symbol, symbols per beat, and the width of error and channel signals.
The input and output interfaces must be the same width. If Allow backpressure is
turned on, both interfaces use the ready and valid signals to indicate when space is
available in the FIFO core and when valid data is available.

Figure 16–1. FIFO with Avalon-MM Input and Output Interfaces

S Avalon-MM Slave Port

On-Chip FIFO
Memory

S S

S S

Wr Rd

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input data Output data
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–3
Functional Description
f For more information about the Avalon-ST interface protocol, refer to the Avalon
Interface Specifications.

Avalon-MM Write Slave to Avalon-ST Source
In this configuration, the input is an Avalon-MM write slave with a width of 32 bits as
shown in Figure 16–3. The Avalon-ST output (source) data width must also be 32 bits.
You can configure output interface parameters, including: bits per symbol, symbols
per beat, and the width of the channel and error signals. The FIFO core performs the
endian conversion to conform to the output interface protocol.

The signals that comprise the output interface are mapped into bits in the Avalon
address space. If Allow backpressure is turned on, the input interface asserts
waitrequest to indicate that the FIFO core does not have enough space for the
transaction to complete.

Figure 16–2. FIFO with Avalon-ST Input and Output Interfaces

SNK Avalon-ST Sink

On-Chip FIFO
Memory

S S

SNK SRC

Input Status I/F
(optional)

Output Status I/F
(optional)

System Interconnect Fabric

Streaming
Output Data

SRC Avalon-ST Source

S Avalon-MM Slave Port

Figure 16–3. FIFO with Avalon-MM Input Interface and Avalon-ST Output Interface

On-Chip FIFO
Memory

S S

S SRC

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input Data
Streaming
Output Data

SRC Avalon-ST Source

S Avalon-MM Slave Port
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

16–4 Chapter 16: On-Chip FIFO Memory Core
Functional Description
Table 16–1 shows the layout of the memory map for this configuration.

If Enable packet data is turned off, the Avalon-MM write master writes all data at
address offset 0 repeatedly to push data into the FIFO core.

If Enable packet data is turned on, the Avalon-MM write master starts by writing the
SOP, ERROR (optional), CHANNEL (optional), EOP, and EMPTY packet status information at
address offset 1. Writing to address offset 1 does not push data into the FIFO core. The
Avalon-MM master then writes packet data to address offset 0 repeatedly, pushing 8-
bit symbols into the FIFO core. Whenever a valid write occurs at address offset 0, the
data and its respective packet information is pushed into the FIFO core. Subsequent
data is written at address offset 0 without the need to clear the SOP field. Rewriting to
address offset 1 is not required each time if the subsequent data to be pushed into the
FIFO core is not the end-of-packet data, as long as ERROR and CHANNEL do not change.

At the end of each packet, the Avalon-MM master writes to the address at offset 1 to
set the EOP bit to 1, before writing the last symbol of the packet at offset 0. The write
master uses the empty field to indicate the number of unused symbols at the end of
the transfer. If the last packet data is not aligned with the symbols per beat, the EMPTY
field indicates the number of empty symbols in the last packet data. For example, if
the Avalon-ST interface has symbols per beat of 4, and the last packet only has 3
symbols, the empty field will be 1, indicating that one symbol (the least significant
symbol in the memory map) is empty.

Table 16–1. Memory Map

Offset Bits Field Description

0 31:0

SYMBOL_0,
SYMBOL_1,

SYMBOL_2 ..
SYMBOL_n

Packet data. The value of the Symbols per beat parameter
specifies the number of fields in this register; Bits per
symbol specifies the width of each field.

1

0 SOP The value of the startofpacket signal.

1 EOP The value of the endofpacket signal.

6:2 EMPTY The value of the empty signal.

7 — Reserved.

15:8 CHANNEL

The value of the channel signal. The number of bits
occupied corresponds to the width of the signal. For
example, if the width of the channel signal is 5, bits 8 to 12
are occupied and bits 13 to 15 are unused.

23:16 ERROR

The value of the error signal. The number of bits occupied
corresponds to the width of the signal. For example, if the
width of the error signal is 3, bits 16 to 18 are occupied and
bits 19 to 23 are unused.

31:24 — Reserved.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–5
Functional Description
Avalon-ST Sink to Avalon-MM Read Slave
In this configuration, the input is an Avalon-ST sink and the output is an Avalon-MM
read slave with a width of 32 bits (Figure 16–4). The Avalon-ST input (sink) data
width must also be 32 bits. You can configure input interface parameters, including:
bits per symbol, symbols per beat, and the width of the channel and error signals.
The FIFO core performs the endian conversion to conform to the output interface
protocol.

An Avalon-MM master reads the data from the FIFO core. The signals are mapped
into bits in the Avalon address space. If Allow backpressure is turned on, the input
(sink) interface uses the ready and valid signals to indicate when space is available in
the FIFO core and when valid data is available. For the output interface, waitrequest
is asserted for read operations when there is no data to be read from the FIFO core. It
is deasserted when the FIFO core has data to send. The memory map for this
configuration is exactly the same as for the Avalon-MM to Avalon-ST FIFO core. See
Table 16–1 on page 16–4 for the memory map .

If Enable packet data is turned off, read data repeatedly at address offset 0 to pop the
data from the FIFO core.

If Enable packet data is turned on, the Avalon-MM read master starts reading from
address offset 0. If the read is valid, that is, the FIFO core is not empty, both data and
packet status information are popped from the FIFO core. The packet status
information is obtained by reading at address offset 1. Reading from address offset 1
does not pop data from the FIFO core. The ERROR, CHANNEL, SOP, EOP and EMPTY fields
are available at address offset 1 to determine the status of the packet data read from
address offset 0.

The EMPTY field indicates the number of empty symbols in the data field. For example,
if the Avalon-ST interface has symbols-per-beat of 4, and the last packet data only has
1 symbol, the empty field is 3 to indicate that 3 symbols (the 3 least significant symbols
in the memory map) are empty.

Figure 16–4. FIFO with Avalon-ST Input and Avalon-MM Output

On-Chip FIFO
Memory

S S

SNK S

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Output Data
Streaming
Input Data

SNK Avalon-ST Sink

S Avalon-MM Slave Port
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–6 Chapter 16: On-Chip FIFO Memory Core
Configuration
Status Interface
The FIFO core provides two optional status interfaces, one for the master writing to
the input interface and a second for the read master reading from the output interface.
For FIFO cores that operate in a single domain, a single status interface is sufficient to
monitor the status of the FIFO core. In the dual clocking scheme, a second status
interface using the output clock is necessary to accurately monitor the status of the
FIFO core in both clock domains.

Clocking Modes
When single-clock mode is used, the FIFO core being used is SCFIFO. When dual-
clock mode is chosen, the FIFO core being used is DCFIFO. In dual-clock mode, input
data and write-side status interfaces use the write side clock domain; the output data
and read-side status interfaces use the read-side clock domain.

Configuration
The following sections describe the available configuration options.

FIFO Settings
The following sections outline the settings that pertain to the FIFO core as a whole.

Depth
Depth indicates the depth of the FIFO buffer, in Avalon-ST beats or Avalon-MM
words. The default depth is 16. When dual clock mode is used, the actual FIFO depth
is equal to depth-3. This is due to clock crossing and to avoid FIFO overflow.

Clock Settings
The two options are Single clock mode and Dual clock mode. In Single clock mode,
all interface ports use the same clock. In Dual clock mode, input data and input side
status are on the input clock domain. Output data and output side status are on the
output clock domain.

Status Port
The optional status ports are Avalon-MM slaves. To include the optional input side
status interface, turn on Create status interface for input on the SOPC Builder
MegaWizard. For FIFOs whose input and output ports operate in separate clock
domains, you can include a second status interface by turning on Create status
interface for output. Turning on Enable IRQ for status ports adds an interrupt signal
to the status ports.

FIFO Implementation
This option determines if the FIFO core is built from registers or embedded memory
blocks. The default is to construct the FIFO core from embedded memory blocks.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–7
Software Programming Model
Interface Parameters
The following sections outline the options for the input and output interfaces.

Input
Available input interfaces are Avalon-MM write slave and Avalon-ST sink.

Output
Available output interfaces are Avalon-MM read slave and Avalon-ST source.

Allow Backpressure
When Allow backpressure is on, an Avalon-MM interface includes the waitrequest
signal which is asserted to prevent a master from writing to a full FIFO buffer or
reading from an empty FIFO buffer. An Avalon-ST interface includes the ready and
valid signals to prevent underflow and overflow conditions.

Avalon-MM Port Settings
Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other, the data width
is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths other than
32 bits, be careful of potential overflow and underflow conditions.

Avalon-ST Port Settings
The following parameters allow you to specify the size and error handling of the
Avalon-ST port or ports:

■ Bits per symbol

■ Symbols per beat

■ Channel width

■ Error width

If the symbol size is not a power of two, it is rounded up to the next power of two. For
example, if the bits per symbol is 10, the symbol will be mapped to a 16-bit memory
location. With 10-bit symbols, the maximum number of symbols per beat is two.

Enable packet data provides an option for packet transmission.

Software Programming Model
The following sections describe the software programming model for the on-chip
FIFO memory core, including the register map and software declarations to access the
hardware. For Nios II processor users, Altera provides HAL system library drivers
that enable you to access the on-chip FIFO memory core using its HAL API.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–8 Chapter 16: On-Chip FIFO Memory Core
Programming with the On-Chip FIFO Memory
HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the on-chip FIFO
memory via the familiar HAL API, rather than accessing the registers directly.

Software Files
Altera provides the following software files for the on-chip FIFO memory core:

■ altera_avalon_fifo_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware.

■ altera_avalon_fifo_util.h—This file defines functions to access the on-chip FIFO
memory core hardware. It provides utilities to initialize the FIFO, read and write
status, enable flags and read events.

■ altera_avalon_fifo.h—This file provides the public interface to the on-chip FIFO
memory

■ altera_avalon_fifo_util.c—This file implements the utilities listed in
altera_avalon_fifo_util.h.

Programming with the On-Chip FIFO Memory
This section describes the low-level software constructs for manipulating the on-chip
FIFO memory core hardware. Table 16–2 lists all of the available functions.

Table 16–2. On-Chip FIFO Memory Functions (Part 1 of 2)

Function Name Description

altera_avalon_fifo_init() Initializes the FIFO.

altera_avalon_fifo_read_status()
Returns the integer value of the specified bit of the status register. To
read all of the bits at once, use the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_ienable()
Returns the value of the specified bit of the interrupt enable register.
To read all of the bits at once, use the
ALTERA_AVALON_FIFO_EVENT_ALL mask.

altera_avalon_fifo_read_almostfull() Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty() Returns the value of the almostempty register.

altera_avalon_fifo_read_event()
Returns the value of the specified bit of the event register. All of the
event bits can be read at once by using the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_level() Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event() Clears the specified bits and the event register and performs error
checking.

altera_avalon_fifo_write_ienable()
Writes the specified bits of the interruptenable register and
performs error checking.

altera_avalon_fifo_write_almostfull()
Writes the specified value to the almostfull register and performs
error checking.

altera_avalon_fifo_write_almostempty()
Writes the specified value to the almostempty register and performs
error checking.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–9
Programming with the On-Chip FIFO Memory
Software Control
Table 16–3 provides the register map for the status register. The layout of status
register for the input and output interfaces is identical.

Table 16–4 outlines the use of the various fields of the status register.

altera_avalon_fifo_write_fifo() Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info()
Writes the packet status information to the write_address. Only
valid when the Enable packet data option is turned on.

altera_avalon_fifo_read_fifo() Reads data from the specified read_address.

altera_avalon_fifo_read__other_info()
Reads the packet status information from the specified
read_address. Only valid when the Enable packet data option is
turned on.

Table 16–2. On-Chip FIFO Memory Functions (Part 2 of 2)

Function Name Description

Table 16–3. FIFO Status Register Memory Map

Offset
Bit Description

31 24 23 16 15 8 7 6 5 4 3 2 1 0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interrupt
enable

base + 4 almostfull

base + 5 almostempty

Table 16–4. FIFO Status Field Descriptions (Part 1 of 2)

Field Type Description

fill_level RO The instantaneous fill level of the FIFO, provided in units of symbols for a FIFO with an
Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO A 6-bit register that shows the FIFO’s instantaneous status. See Table 16–5 for the meaning
of each bit field.

event RW1C
A 6-bit register with exactly the same fields as i_status. When a bit in the i_status
register is set, the same bit in the event register is set. The bit in the event register is only
cleared when software writes a 1 to that bit.

interruptenable RW
A 6-bit interrupt enable register with exactly the same fields as the event and i_status
registers. When a bit in the event register transitions from a 0 to a 1, and the
corresponding bit in interruptenable is set, the master Is interrupted.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–10 Chapter 16: On-Chip FIFO Memory Core
Programming with the On-Chip FIFO Memory
Table 16–5 describes the instantaneous status bits.

Table 16–6 lists the bit fields of the event register. These fields are identical to those in
the status register and are set at the same time; however, these fields are only cleared
when software writes a one to clear (W1C). The event fields can be used to determine
if a particular event has occurred.

almostfull RW

A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is Depth-4. The default threshold
value for SCFIFO is Depth-1. The valid range of the threshold value is from 1 to the default.
1 is used when attempting to write a value smaller than 1. The default is used when
attempting to write a value larger than the default.

almostempty RW

A threshold level used for interrupts and status. Can be written by the Avalon-MM status
master at any time. The default threshold value for DCFIFO is 1. The default threshold value
for SCFIFO is 1. The valid range of the threshold value is from 1 to the maximum allowable
almostfull threshold. 1 is used when attempting to write a value smaller than 1. The
maximum allowable is used when attempting to write a value larger than the maximum
allowable.

Table 16–4. FIFO Status Field Descriptions (Part 2 of 2)

Field Type Description

Table 16–5. Status Bit Field Descriptions

Bit(s) Name Description

0 FULL Has a value of 1 if the FIFO is currently full.

1 EMPTY Has a value of 1 if the FIFO is currently empty.

2 ALMOSTFULL Has a value of 1 if the fill level of the FIFO is greater than the almostfull value.

3 ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO is less than the almostempty value.

4 OVERFLOW
Is set to 1 for 1 cycle every time the FIFO overflows. The FIFO overflows when an Avalon
write master writes to a full FIFO. OVERFLOW is only valid when Allow backpressure is off.

5 UNDERFLOW
Is set to 1 for 1 cycle every time the FIFO underflows. The FIFO underflows when an Avalon
read master reads from an empty FIFO. UNDERFLOW is only valid when Allow
backpressure is off.

Table 16–6. Event Bit Field Descriptions

Bit(s) Name Description

1 E_FULL Has a value of 1 if the FIFO has been full and the bit has not been cleared by software.

0 E_EMPTY Has a value of 1 if the FIFO has been empty and the bit has not been cleared by software.

3 E_ALMOSTFULL
Has a value of 1 if the fill level of the FIFO has been greater than the almostfull threshold
value and the bit has not been cleared by software.

2 E_ALMOSTEMPTY
Has a value of 1 if the fill level of the FIFO has been less than the almostempty value and
the bit has not been cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit has not been cleared by software.

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit has not been cleared by software.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–11
Programming with the On-Chip FIFO Memory
Table 16–7 provides a mask for the six STATUS fields. When a bit in the event register
transitions from a zero to a one, and the corresponding bit in the interruptenable
register is set, the master is interrupted.

Macros to access all of the registers are defined in altera_avalon_fifo_regs.h. For
example, this file includes the following macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG 0
#define ALTERA_AVALON_FIFO_STATUS_REG 1
#define ALTERA_AVALON_FIFO_EVENT_REG 2
#define ALTERA_AVALON_FIFO_IENABLE_REG 3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG 4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG 5

f For a complete list of predefined macros and utilities to access the on-chip FIFO
hardware, see:
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo.h and
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo\HAL\inc\
alatera_avalon_fifo_util.h.

Table 16–7. InterruptEnable Bit Field Descriptions

Bit(s) Name Description

1 IE_FULL Enables an interrupt if the FIFO is currently full.

0 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

3 IE_ALMOSTFULL
Enables an interrupt if the fill level of the FIFO is greater than the value of the
almostfull register.

2 IE_ALMOSTEMPTY
Enables an interrupt if the fill level of the FIFO is less than the value of the almostempty
register.

4 IE_OVERFLOW
Enables an interrupt if the FIFO overflows. The FIFO overflows when an Avalon write
master writes to a full FIFO.

5 IE_UNDERFLOW
Enables an interrupt if the FIFO underflows. The FIFO underflows when an Avalon read
master reads from an empty FIFO.

6 ALL Enables all 6 status conditions to interrupt.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–12 Chapter 16: On-Chip FIFO Memory Core
Programming with the On-Chip FIFO Memory
Software Example
Example 16–1 shows sample codes for the core.

Example 16–1. Sample Code for the On-Chip FIFO Memory (Part 1 of 2)

/***/
//Includes
#include "altera_avalon_fifo_regs.h"
#include "altera_avalon_fifo_util.h"
#include "system.h"
#include "sys/alt_irq.h"
#include <stdio.h>
#include <stdlib.h>

#define ALMOST_EMPTY 2
#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5

volatile int input_fifo_wrclk_irq_event;

void print_status(alt_u32 control_base_address)
{

printf("--------------------------------------\n");
printf("LEVEL = %u\n", altera_avalon_fifo_read_level(control_base_address));
printf("STATUS = %u\n", altera_avalon_fifo_read_status(control_base_address,

ALTERA_AVALON_FIFO_STATUS_ALL));
printf("EVENT = %u\n", altera_avalon_fifo_read_event(control_base_address,

ALTERA_AVALON_FIFO_EVENT_ALL));
printf("IENABLE = %u\n", altera_avalon_fifo_read_ienable(control_base_address,

ALTERA_AVALON_FIFO_IENABLE_ALL));
printf("ALMOSTEMPTY = %u\n",

altera_avalon_fifo_read_almostempty(control_base_address));
printf("ALMOSTFULL = %u\n\n",

altera_avalon_fifo_read_almostfull(control_base_address));
}

static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)
{

/* Cast context to input_fifo_wrclk_irq_event's type. It is important
* to declare this volatile to avoid unwanted compiler optimization.
*/
volatile int* input_fifo_wrclk_irq_event_ptr = (volatile int*) context;

/* Store the value in the FIFO's irq history register in *context. */
*input_fifo_wrclk_irq_event_ptr =

altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE, ALTERA_AVALON_FIFO_EVENT_ALL);
printf("Interrupt Occurs for %#x\n", INPUT_FIFO_IN_CSR_BASE);
print_status(INPUT_FIFO_IN_CSR_BASE);

/* Reset the FIFO's IRQ History register. */
altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE,

ALTERA_AVALON_FIFO_EVENT_ALL);
}

/* Initialize the fifo */
static int init_input_fifo_wrclk_control()
{

int return_code = ALTERA_AVALON_FIFO_OK;

/* Recast the IRQ History pointer to match the alt_irq_register() function
* prototype. */
void* input_fifo_wrclk_irq_event_ptr = (void*) &input_fifo_wrclk_irq_event;
/* Enable all interrupts. */
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–13
On-Chip FIFO Memory API
On-Chip FIFO Memory API
This section describes the application programming interface (API) for the on-chip
FIFO memory core.

altera_avalon_fifo_init()

altera_avalon_fifo_read_status()

/* Clear event register, set enable all irq, set almostempty and
almostfull threshold */
return_code = altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,

0, // Disabled interrupts
ALMOST_EMPTY,
ALMOST_FULL);

/* Register the interrupt handler. */
alt_irq_register(INPUT_FIFO_IN_CSR_IRQ,

input_fifo_wrclk_irq_event_ptr, handle_input_fifo_wrclk_interrupts);
return return_code;

}

Example 16–1. Sample Code for the On-Chip FIFO Memory (Part 2 of 2)

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable, alt_u32
emptymark, alt_u32 fullmark)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:

address—the base address of the FIFO control slave

ienable—the value to write to the interruptenable register

emptymark—the value for the almost empty threshold level

fullmark—the value for the almost full threshold level

Returns:

Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR for clear errors,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR for interrupt enable write errors,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR for errors writing the almostfull and
almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the almostfull register
and almostempty registers.

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

mask—masks the read value from the status register

Returns: Returns the masked bits of the addressed register.

Description: Gets the addressed register bits—the AND of the value of the addressed register and the mask.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–14 Chapter 16: On-Chip FIFO Memory Core
On-Chip FIFO Memory API
altera_avalon_fifo_read_ienable()

altera_avalon_fifo_read_almostfull()

altera_avalon_fifo_read_almostempty()

altera_avalon_fifo_read_event()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

mask—masks the read value from the interruptenable register

Returns: Returns the logical AND of the interruptenable register and the mask.

Description: Gets the logical AND of the interruptenable register and the mask.

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostfull register.

Description: Gets the value of the almostfull register.

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

Description: Gets the value of the almostempty register.

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

mask—masks the read value from the event register

Returns: Returns the logical AND of the event register and the mask.

Description:
Gets the logical AND of the event register and the mask. To read single bits of the event register use
the single bit masks, for example: ALTERA_AVALON_FIFO_FIFO_EVENT_F_MSK. To read the entire
event register use the full mask: ALTERA_AVALON_FIFO_EVENT_ALL.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 16: On-Chip FIFO Memory Core 16–15
On-Chip FIFO Memory API
altera_avalon_fifo_read_level()

altera_avalon_fifo_clear_event()

altera_avalon_fifo_write_ienable()

altera_avalon_fifo_write_almostfull()

Prototype: int altera_avalon_fifo_read_level(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the fill level of the FIFO.

Description: Gets the fill level of the FIFO.

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

mask—the mask to use for bit-clearing (1 means clear this bit, 0 means do not clear)

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR if unsuccessful.

Description: Clears the specified bits of the event register.

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32 mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

mask—the value to write to the interruptenable register. See altera_avalon_fifo_regs.h for
individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR if unsuccessful.

Description: Writes the specified bits of the interruptenable register.

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

data—the value for the almost full threshold level
June 2011 Altera Corporation Embedded Peripherals IP User Guide

16–16 Chapter 16: On-Chip FIFO Memory Core
On-Chip FIFO Memory API
altera_avalon_fifo_write_almostempty()

altera_avalon_write_fifo()

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostfull register.

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address, alt_u23 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
address—the base address of the FIFO control slave

data—the value for the almost empty threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostempty register.

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt_u32 ctrl_address,
alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:

write_address—the base address of the FIFO write slave

ctrl_address—the base address of the FIFO control slave

data—the value to write to address offset 0 for Avalon-MM to Avalon-ST transfers, the value to
write to the single address available for Avalon-MM to Avalon-MM transfers. See the
Avalon Interface Specifications for the data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if
unsuccessful.

Description: Writes data to the specified address if the FIFO is not full.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 16: On-Chip FIFO Memory Core 16–17
On-Chip FIFO Memory API
altera_avalon_write_other_info()

altera_avalon_fifo_read_fifo()

altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address, alt_u32
ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:

write_address—the base address of the FIFO write slave

ctrl_address—the base address of the FIFO control slave

data—the packet status information to write to address offset 1 of the Avalon interface. See the
Avalon Interface Specifications for the ordering of the packet status information.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK) if successful, ALTERA_AVALON_FIFO_FULL if
unsuccessful.

Description: Writes the packet status information to the write_address. Only valid when Enable packet data is
on.

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address, alt_u32 ctrl_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters:
read_address—the base address of the FIFO read slave

ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: Gets the data addressed by read_address.

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Returns the packet status information from address offset 1 of the Avalon interface. See the
Avalon Interface Specifications for the ordering of the packet status information.

Description: Reads the packet status information from the specified read_address. Only valid when Enable
packet data is on.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

16–18 Chapter 16: On-Chip FIFO Memory Core
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 Revised the memory map description.

November 2009 9.1 Added description to the core overview—The core does not support burst read or write.

March 2009 9.0 Updated the description of the function altera_avalon_fifo_read_status().

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
17. Avalon-ST Multi-Channel Shared
Memory FIFO Core
Core Overview
The Avalon® Streaming (Avalon-ST) Multi-Channel Shared Memory FIFO core is a
FIFO buffer with Avalon-ST data interfaces. The core, which supports up to
16 channels, is a contiguous memory space with dedicated segments of memory
allocated for each channel. Data is delivered to the output interface in the same order
it was received on the input interface for a given channel.

Figure 17–1 shows an example of how the core is used in a system. In this example,
the core is used to buffer data going into and coming from a four-port Triple Speed
Ethernet MegaCore function. A processor, if used, can request data for a particular
channel to be delivered to the Triple Speed Ethernet MegaCore function.

The Avalon-ST Multi-Channel Shared FIFO core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Performance and Resource Utilization” on page 17–2

■ “Functional Description” on page 17–3

■ “Software Programming Model” on page 17–5

Figure 17–1. Multi-Channel Shared Memory FIFO in a System—An Example

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

Altera
FPGA

M
ux

Port 0

Port 1

Port 2

Port 3

Channel 0

Channel 1

Channel 2

Channel 3

Processor/
Scheduler

Multi-port
Triple Speed Ethernet

Multi-Channel
Shared Memory FIFO
(Receive FIFO buffer)

From
Network

D
em

ux
Embedded Peripherals IP User Guide

17–2 Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core
Performance and Resource Utilization
Performance and Resource Utilization
This section lists the resource utilization and performance data for various Altera
device families. The estimates are obtained by compiling the core using the
Quartus® II software.

Table 17–1 shows the resource utilization and performance data for a Stratix II GX
device (EP2SGX130GF1508I4).

Table 17–2 shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore function in Stratix IV devices
is similar to Stratix III devices.

Table 17–3 shows the resource utilization and performance data for a Cyclone III
device (EP3C120F780I7).

Table 17–1. Memory Utilization and Performance Data for Stratix II GX Devices

Channels ALUTs Logic
Registers

Memory Blocks fMAX
(MHz)M512 M4K M-RAM

4 559 382 0 0 1 > 125

12 1617 1028 0 0 6 > 125

Table 17–2. Memory Utilization and Performance Data for Stratix III Devices

Channels ALUTs Logic
Registers

Memory Blocks fMAX
(MHz)M9K M144K MLAB

4 557 345 37 0 0 > 125

12 1741 1028 0 24 0 > 125

Table 17–3. Memory Utilization and Performance Data for Cyclone III Devices

Channels Total Logic
Elements Total Registers Memory

M9K
fMAX

(MHz)

4 711 346 37 > 125

12 2284 1029 412 > 125
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core 17–3
Functional Description
Functional Description
Figure 17–2 shows a block diagram of the Avalon-ST Multi-Channel Shared FIFO
core.

Interfaces
This section describes the core's interfaces.

Avalon-ST Interfaces
The core includes Avalon-ST interfaces for transferring data and almost-full status.
Table 17–4 shows the properties of the Avalon-ST data interfaces.

Figure 17–2. Avalon-ST Multi-Channel Shared Memory FIFO Core

Avalon-ST
Status Source

Avalon-ST
Status Source

Multi-Channel Shared FIFO

almost_empty almost_full

out

control fill_level request

in

Avalon-MM
Slave

Avalon-MM
Status

Avalon-MM
Status

Avalon-ST
Data Sink

Avalon-ST
Data Source

Table 17–4. Properties of Avalon-ST Interfaces

Feature
Property

Data Interfaces Status Interfaces

Backpressure Ready latency = 0. Not supported.

Data Width Configurable.
Data width = 2 bits.

Symbols per beat = 1.

Channel Supported, up to 16 channels. Supported, up to 16 channels.

Error Configurable. Not used.

Packet Supported. Not supported.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

17–4 Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core
Functional Description
Avalon-MM Interfaces
The core can have up to three Avalon-MM interfaces:

■ Avalon-MM control interface—Allows master peripherals to set and access
almost-full and almost-empty thresholds. The same set of thresholds is used by all
channels. See Table 17–6 for the description of the threshold registers.

■ Avalon-MM fill-level interface—Allows master peripherals to retrieve the fill
level of the FIFO buffer for a given channel. The fill level represents the amount of
data in the FIFO buffer at any given time. The read latency on this interface is one.
See Table 17–7 for the description of the fill-level registers.

■ Avalon-MM request interface—Allows master peripherals to request data for a
given channel. This interface is implemented only when the Use Request
parameter is turned on. The request_address signal contains the channel number.
Only one word of data is returned for each request.

f For more information about Avalon interfaces, refer to the Avalon Interface
Specifications.

Operation
The Avalon-ST Multi-Channel Shared FIFO core allocates dedicated memory
segments within the core for each channel, and is implemented such that the memory
segments occupy a single memory block. The parameter FIFO depth determines the
depth of each memory segment.

The core receives data on its in interface (Avalon-ST sink) and stores the data in the
allocated memory segments. If a packet contains any error (in_error signal is
asserted), the core drops the packet.

When the core receives a request on its request interface (Avalon-MM slave), it
forwards the requested data to its out interface (Avalon-ST source) only when it has
received a full packet on its in interface. If the core has not received a full packet or
has no data for the requested channel, it deasserts the valid signal on its out interface
to indicate that data is not available for the channel. The output latency is three and
only one word of data can be requested at a time.

When the Avalon-MM request interface is not in use, the request_write signal is kept
asserted and the request_address signal is set to 0. Hence, if you configure the core to
support more than one channel, you must also ensure that the Use request parameter
is turned on. Otherwise, only channel 0 is accessible.

You can configure almost-full thresholds to manage FIFO overflow. The current
threshold status for each channel is available from the core's Avalon-ST status
interfaces in a round-robin fashion. For example, if the threshold status for channel 0
is available on the interface in clock cycle n, the threshold status for channel 1 is
available in clock cycle n+1 and so forth.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core 17–5
Parameters
Parameters
Table 17–5 lists and describes the parameters you can configure.

Software Programming Model
The following sections describe the software programming model for the Avalon-ST
Multi-Channel Shared FIFO core.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the Avalon-ST
Multi-Channel Shared FIFO core via the familiar HAL API and the ANSI C standard
library.

Register Map
You can configure the thresholds and retrieve the fill-level for each channel via the
Avalon-MM control and fill-level interfaces respectively. Subsequent sections describe
the registers accessible via each interface.

Table 17–5. Configurable Parameters

Parameter Legal Values Description

Number of channels 1, 2, 4, 8, and 16 The total number of channels supported on the Avalon-ST data
interfaces.

Symbols per beat 1–32 The number of symbols transferred in a beat on the Avalon-ST data
interfaces

Bits per symbol 1–32 The symbol width in bits on the Avalon-ST data interfaces.

Error width 0–32 The width of the error signal on the Avalon-ST data interfaces.

FIFO depth 2–232 The depth of each memory segment allocated for a channel. The value
must be a multiple of 2.

Address width 1–32 The width of the FIFO address. This parameter is determined by the
parameter FIFO depth; FIFO depth = 2 Address Width.

Use request —
Turn on this parameter to implement the Avalon-MM request interface.
If the core is configured to support more than one channel and the
request interface is disabled, only channel 0 is accessible.

Use almost-full threshold 1 —

Turn on these parameters to implement the optional Avalon-ST almost-
full and almost-empty interfaces and their corresponding registers. See
Table 17–6 for the description of the threshold registers.

Use almost-full threshold 2 —

Use almost-empty threshold 1 —

Use almost-empty threshold 2 —
June 2011 Altera Corporation Embedded Peripherals IP User Guide

17–6 Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core
Software Programming Model
Control Register Interface
Table 17–6 shows the register map for the control interface.

Fill-Level Register Interface
Table 17–7 shows the register map for the fill-level interface.

Table 17–6. Control Interface Register Map

Byte
Offset Name Access Reset

Value Description

0 ALMOST_FULL_THRESHOLD RW 0

Primary almost-full threshold. The bit
Almost_full_data[0] on the Avalon-ST almost-full
status interface is set to 1 when the FIFO level is equal to
or greater than this threshold.

4 ALMOST_EMPTY_THRESHOLD RW 0

Primary almost-empty threshold. The bit
Almost_empty_data[0] on the Avalon-ST almost-empty
status interface is set to 1 when the FIFO level is equal to
or less than this threshold.

8 ALMOST_FULL2_THRESHOLD RW 0

Secondary almost-full threshold. The bit
Almost_full_data[1] on the Avalon-ST almost-full
status interface is set to 1 when the FIFO level is equal to
or greater than this threshold.

12 ALMOST_EMPTY2_THRESHOLD RW 0

Secondary almost-empty threshold. The bit
Almost_empty_data[1] on the Avalon-ST almost-empty
status interface is set to 1 when the FIFO level is equal to
or less than this threshold.

Table 17–7. Fill-level Interface Register Map

Byte
Offset Name Access Reset

Value Description

0 fill_level_0 RO 0
Fill level for each channel. Each register is defined for each
channel. For example, if the core is configured to support
four channel, four fill-level registers are defined.

4 fill_level_1 RO 0

8 fill_level_2 RO 0

(n*4) fill_level_n RO 0
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core 17–7
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0
■ Added the description of almost-empty thresholds and fill-level registers.

■ Revised the “Operation” section.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

17–8 Chapter 17: Avalon-ST Multi-Channel Shared Memory FIFO Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
Section III. Transport and Communication
This section describes communication and transport peripherals provided for SOPC
Builder systems.

This section includes the following chapters:

■ Chapter 18, SPI Slave/JTAG to Avalon Master Bridge Cores

■ Chapter 19, Avalon Streaming Channel Multiplexer and Demultiplexer Cores

■ Chapter 20, Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores

■ Chapter 21, Avalon Packets to Transactions Converter Core

■ Chapter 22, Avalon-ST Round Robin Scheduler Core

■ Chapter 23, Avalon-ST Delay Core

■ Chapter 24, Avalon-ST Splitter Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

III–2 Section III: Transport and Communication
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
18. SPI Slave/JTAG to Avalon Master
Bridge Cores
Core Overview
The SPI Slave to Avalon® Master Bridge and the JTAG to Avalon Master Bridge cores
provide a connection between host systems and SOPC Builder systems via the
respective physical interfaces. Host systems can initiate Avalon Memory-Mapped
(Avalon-MM) transactions by sending encoded streams of bytes via the cores’
physical interfaces. The cores support reads and writes, but not burst transactions.

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge are
SOPC Builder-ready and integrates easily into any SOPC Builder-generated systems.

Functional Description
Figure 18–1 shows a block diagram of the SPI Slave to Avalon Master Bridge core and
its location in a typical system configuration.

Figure 18–1. SOPC Builder System with a SPI Slave to Avalon Master Bridge Core

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

SPI
Master

(Example:
Power PC
Processor)

Altera FPGA

SPI to Transaction Bridge

sr
c

sink

Avalon-ST
Bytes to
Packets

Converter

src
sink

Avalon-ST
Packets to

Transactions
Converter

Av
al

on
-M

M
 M

as
te

r

sr
c Avalon-ST

Source si
nk Avalon-ST

Sink

src

si
nk

Avalon-ST
Packets to

Bytes
Converter

Avalon-ST
SPI Core

SPI

sr
c

si
nk

SPI
ClockClock

System
Clock
Embedded Peripherals IP User Guide

18–2 Chapter 18: SPI Slave/JTAG to Avalon Master Bridge Cores
Functional Description
Figure 18–2 shows a block diagram of the JTAG to Avalon Master Bridge core and its
location in a typical system configuration.

The SPI Slave to Avalon Master Bridge and the JTAG to Avalon Master Bridge cores
accept encoded streams of bytes with transaction data on their respective physical
interfaces and initiate Avalon-MM transactions on their Avalon-MM interfaces. Each
bridge consists of the following cores, which are available as stand-alone components
in SOPC Builder:

■ Avalon-ST Serial Peripheral Interface and Avalon-ST JTAG Interface—Accepts
incoming data in bits and packs them into bytes.

■ Avalon-ST Bytes to Packets Converter—Transforms packets into encoded stream
of bytes, and a likewise encoded stream of bytes into packets.

■ Avalon-ST Packets to Transactions Converter—Transforms packets with data
encoded according to a specific protocol into Avalon-MM transactions, and
encodes the responses into packets using the same protocol.

■ Avalon-ST Single Clock FIFO—Buffers data from the Avalon-ST JTAG Interface
core. The FIFO is only used in the JTAG to Avalon Master Bridge.

For the bridges to successfully transform the incoming streams of bytes to
Avalon-MM transactions, the streams of bytes must be constructed according to the
protocols used by the cores.

f For more information about the protocol at each layer of the bridges and the single
clock FIFO, refer to the following chapters:

■ “Avalon-ST Serial Peripheral Interface Core” on page 11–1

■ “Avalon-ST JTAG Interface Core” on page 32–1

■ “Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores” on page 20–1

■ “Avalon Packets to Transactions Converter Core” on page 21–1

■ “Avalon-ST Single-Clock and Dual-Clock FIFO Cores” on page 15–1

Figure 18–2. SOPC Builder System with a JTAG to Avalon Master Bridge Core

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Rest of the
System

Host
PC

Altera FPGA

JTAG to Transaction Bridge

sr
c

sink

Avalon-ST
Bytes to
Packets

Converter

src
sink

Avalon-ST
Packets to

Transactions
Converter Av

al
on

-M
M

sr
c Avalon-ST

Source si
nk

Avalon-ST
Sink

sr
c

sink

Avalon-ST
Single Clock

FIFO
(64 bytes)

src

si
nk

Avalon-ST
Packets to

Bytes
Converter

Avalon-ST
JTAG

Interface
Core

JTAG

sr
c

si
nk

JTAG
Clock
JTAG
Clock

System
Clock
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/qts_qii55009.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55008.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55012.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55013.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55014.pdf

Chapter 18: SPI Slave/JTAG to Avalon Master Bridge Cores 18–3
Parameters
The following example shows how a bytestream changes as it is transferred through
the different layers in the bridges.

When the transaction is complete, the bridges send a response to the host system
using the same protocol.

Parameters
For the SPI Slave to Avalon Master Bridge core, the parameter Number of
synchronizer stages: Depth allows you to specify the length of synchronization
register chains. These register chains are used when a metastable event is likely to
occur and the length specified determines the meantime before failure. The register
chain length, however, affects the latency of the core.

f For more information on metastability in Altera devices, refer to AN 42: Metastability
in Altera Devices. For more information on metastability analysis and synchronization
register chains, refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Document Revision History
The following table shows the revision history for this document.

Figure 18–3. Bits to Avalon-MM Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 6A FF 03 5F7B4A 4A 4A 4D

00 00 00 04 02 4B 7A 40 4A FF 03 5F

Command Address Data

Writes four bytes of data (4A, FF, 03 and
5F) to address 0x024B7A40

Packet Layer
Input: Bytes
Output: Avalon-ST
 Packets

Transaction Layer
Input: Avalon-ST
 Packets
Output: Avalon-MM
 Transaction

00 00 00 047A 7C 00 02 4B 5A 407D 4A FF 03 5F7B

LSB MSB

Idle Idle Idle Escape

Dropped

Escape is dropped.
Next byte is XORed
with 0x20.

Physical Layer
Input: Bits
Output: Bytes

SOP Ch 0 Escape

Escape is dropped.
Next byte is XORed
with 0x20.

EOP

Bytes carried over
the physical interface
after idles and escapes
have been inserted.

The packet encoded
as bytes.

The transaction
encapsulated as a
packet.

The Avalon-MM
transaction.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/an/an042.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=metastability%20application%20note
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

18–4 Chapter 18: SPI Slave/JTAG to Avalon Master Bridge Cores
Document Revision History
March 2009 9.0 Added description of a new parameter Number of synchronizer stages: Depth.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.

Date Version Changes
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
19. Avalon Streaming Channel
Multiplexer and Demultiplexer Cores
Core Overview
The Avalon® streaming (Avalon-ST) channel multiplexer core receives data from a
number of input interfaces and multiplexes the data into a single output interface,
using the optional channel signal to indicate which input the output data is from. The
Avalon-ST channel demultiplexer core receives data from a channelized input
interface and drives that data to multiple output interfaces, where the output interface
is selected by the input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces on cores that
support the unidirectional flow of data. The multiplexer and demultiplexer allow you
to create multiplexed or de-multiplexer datapaths without having to write custom
HDL code to perform these functions. The multiplexer includes a round-robin
scheduler. Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Multiplexer” on page 19–2

■ “Demultiplexer” on page 19–4

■ “Hardware Simulation Considerations” on page 19–6

■ “Software Programming Model” on page 19–7

Resource Usage and Performance
Resource utilization for the cores depends upon the number of input and output
interfaces, the width of the datapath and whether the streaming data uses the optional
packet protocol. For the multiplexer, the parameterization of the scheduler also effects
resource utilization. Table 19–1 provides estimated resource utilization for eleven
different configurations of the multiplexer.

Table 19–1. Multiplexer Estimated Resource Usage and Performance (Part 1 of 2)

No. of
Inputs Data Width

Scheduling
Size

(Cycles)

Stratix® II and
Stratix II GX

(Approximate LEs)
Cyclone® II Stratix

fMAX
(MHz)

ALM
Count

fMAX
(MHz) Logic Cells fMAX

(MHz) Logic Cells

2 Y 1 500 31 420 63 422 80

2 Y 2 500 36 417 60 422 58

2 Y 32 451 43 364 68 360 49

8 Y 2 401 150 257 233 228 298

8 Y 32 356 151 219 207 211 123

16 Y 2 262 333 174 533 170 284

16 Y 32 310 337 161 471 157 277

2 N 1 500 23 400 48 422 52

2 N 9 500 30 420 52 422 56
Embedded Peripherals IP User Guide

19–2 Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Multiplexer
Table 19–2 provides estimated resource utilization for six different configurations of
the demultiplexer. The core operating frequency varies with the device, the number of
interfaces and the size of the datapath.

Multiplexer
This section describes the hardware structure and functionality of the multiplexer
component.

Functional Description
The Avalon-ST multiplexer takes data from a number of input data interfaces, and
multiplexes the data onto a single output interface. The multiplexer includes a simple,
round-robin scheduler that selects from the next input interface that has data. Each
input interface has the same width as the output interface, so that all other input
interfaces are backpressured when the multiplexer is carrying data from a different
input interface.

11 N 9 292 275 197 397 182 287

16 N 9 262 295 182 441 179 224

Table 19–1. Multiplexer Estimated Resource Usage and Performance (Part 2 of 2)

No. of
Inputs Data Width

Scheduling
Size

(Cycles)

Stratix® II and
Stratix II GX

(Approximate LEs)
Cyclone® II Stratix

fMAX
(MHz)

ALM
Count

fMAX
(MHz) Logic Cells fMAX

(MHz) Logic Cells

Table 19–2. Demultiplexer Estimated Resource Usage

No. of Inputs
Data Width

(Symbols per
Beat)

Stratix II
(Approximate LEs) Cyclone II Stratix II GX

(Approximate LEs)

fMAX
(MHz) ALM Count fMAX

(MHz) Logic Cells fMAX
(MHz) Logic Cells

2 1 500 53 400 61 399 44

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 19–3
Multiplexer
The multiplexer includes an optional channel signal that enables each input interface
to carry channelized data. When the channel signal is present on input interfaces, the
multiplexer adds log2 (num_input_interfaces) bits to make the output channel signal,
such that the output channel signal has all of the bits of the input channel plus the bits
required to indicate which input interface each cycle of data is from. These bits are
appended to either the most or least significant bits of the output channel signal as
specified in the SOPC Builder MegaWizard™ interface.

The internal scheduler considers one input interface at a time, selecting it for transfer.
Once an input interface has been selected, data from that input interface is sent until
one of the following scenarios occurs:

■ The specified number of cycles have elapsed.

■ The input interface has no more data to send and valid is deasserted on a ready
cycle.

■ When packets are supported, endofpacket is asserted.

Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets.
The input interfaces are identical; they have the same symbol and data widths, error
widths, and channel widths.

Output Interface
The output interface carries the multiplexed data stream with data from all of the
inputs. The symbol, data, and error widths are the same as the input interfaces. The
width of the channel signal is the same as the input interfaces, with the addition of the
bits needed to indicate the input each datum was from.

Parameters
The following sections list the available options in the MegaWizard™ interface.

Functional Parameters
You can configure the following options for the multiplexer:

Figure 19–1. Multiplexer

src
sink

data_in_n

sink

data_in0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel
June 2011 Altera Corporation Embedded Peripherals IP User Guide

19–4 Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Demultiplexer
■ Number of Input Ports—The number of input interfaces that the multiplexer
supports. Valid values are 2–16.

■ Scheduling Size (Cycles)—The number of cycles that are sent from a single
channel before changing to the next channel.

■ Use Packet Scheduling—When this option is on, the multiplexer only switches
the selected input interface on packet boundaries. Hence, packets on the output
interface are not interleaved.

■ Use high bits to indicate source port—When this option is on, the high bits of the
output channel signal are used to indicate the input interface that the data came
from. For example, if the input interfaces have 4-bit channel signals, and the
multiplexer has 4 input interfaces, the output interface has a 6-bit channel signal. If
this parameter is true, bits [5:4] of the output channel signal indicate the input
interface the data is from, and bits [3:0] are the channel bits that were presented at
the input interface.

Output Interface
You can configure the following options for the output interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1–32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat (transfer). Valid values are 1–32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the channel signal for
input interfaces. A value of 0 indicates that input interfaces do not have channels.
A value of 4 indicates that up to 16 channels share the same input interface. The
input channel can have a width between 0–31 bits. A value of 0 means that the
optional channel signal is not used.

■ Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not used.

Demultiplexer
This section describes the hardware structure and functionality of the demultiplexer
component.

Functional Description
That Avalon-ST demultiplexer takes data from a channelized input data interface and
provides that data to multiple output interfaces, where the output interface selected
for a particular transfer is specified by the input channel signal. The data is delivered
to the output interfaces in the same order it was received at the input interface,
regardless of the value of channel, packet, frame, or any other signal. Each of the
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 19–5
Demultiplexer
output interfaces has the same width as the input interface, so each output interface is
idle when the demultiplexer is driving data to a different output interface. The
demultiplexer uses log2 (num_output_interfaces) bits of the channel signal to select
the output to which to forward the data; the remainder of the channel bits are
forwarded to the appropriate output interface unchanged.

Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets.

Output Interfaces
Each output interface carries data from a subset of channels from the input interface.
Each output interface is identical; all have the same symbol and data widths, error
widths, and channel widths. The symbol, data, and error widths are the same as the
input interface. The width of the channel signal is the same as the input interface,
without the bits that were used to select the output interface.

Parameters
The following sections list the available options in the MegaWizard Interface.

Functional Parameters
You can configure the following options for the demultiplexer as a whole:

■ Number of Output Ports—The number of output interfaces that the multiplexer
supports Valid values are 2–16.

Figure 19–2. Demultiplexer

sink

data_out_n

data_out0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel
June 2011 Altera Corporation Embedded Peripherals IP User Guide

19–6 Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Hardware Simulation Considerations
■ High channel bits select output—When this option is on, the high bits of the
input channel signal are used by the de-multiplexing function and the low order
bits are passed to the output. When this option is off, the low order bits are used
and the high order bits are passed through.

The following example illustrates the significance of the location of these signals.
In Figure 19–3 there is one input interface and two output interfaces. If the
low-order bits of the channel signal select the output interfaces, the even channels
goes to channel 0 and the odd channels goes to channel 1. If the high-order bits of
the channel signal select the output interface, channels 0–7 goes to channel 0 and
channels 8–15 goes to channel 1.

Input Interface
You can configure the following options for the input interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat (transfer). Valid values are 1 to 32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the channel signal for
output interfaces. A value of 0 means that output interfaces do not use the optional
channel signal.

■ Error Signal Width (bits)—The width of the error signal for input and output
interfaces. A value of 0 means the error signal is not unused.

Hardware Simulation Considerations
The multiplexer and demultiplexer components do not provide a simulation
testbench for simulating a stand-alone instance of the component. However, you can
use the standard SOPC Builder simulation flow to simulate the component design
files inside an SOPC Builder system.

Figure 19–3. Select Bits for Demultiplexer

sink

data_out_n

data_out0

sink
sink

data_in
src

src

channel<4..0>

channel<3..0>

channel<3..0>
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores 19–7
Software Programming Model
Software Programming Model
The multiplexer and demultiplexer components do not have any user-visible control
or status registers. Therefore, software cannot control or configure any aspect of the
multiplexer or de-multiplexer at run-time. The components cannot generate
interrupts.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Added description of a new parameter Include Packet Support.

May 2008 8.0 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

19–8 Chapter 19: Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
20. Avalon-ST Bytes to Packets and
Packets to Bytes Converter Cores
Core Overview
The Avalon® Streaming (Avalon-ST) Bytes to Packets and Packets to Bytes Converter
cores allow an arbitrary stream of packets to be carried over a byte interface, by
encoding packet-related control signals such as startofpacket and endofpacket into
byte sequences.The Avalon-ST Packets to Bytes Converter core encodes packet control
and payload as a stream of bytes. The Avalon-ST Bytes to Packets Converter core
accepts an encoded stream of bytes, and converts it into a stream of packets.

f The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are
examples of how the cores are used. For more information about the bridge, refer to
“SPI Slave/JTAG to Avalon Master Bridge Cores” on page 18–1

Both of these cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

Functional Description
Figure 20–1 and Figure 20–2 show block diagrams of the Avalon-ST Bytes to Packets
and Packets to Bytes Converter cores.

Figure 20–1. Avalon-ST Bytes to Packets Converter Core

Figure 20–2. Avalon-ST Packets to Bytes Converter Core

Av
al

on
-S

T

 S
in

k

Avalon-ST
Bytes to Packets

Converter

data_in
(bytes)

Avalon-ST
Source

data_out
(packet)

Av
al

on
-S

T
So

ur
ce Avalon-ST

Packets to Bytes
Converter

data_in
(packet)

Avalon-ST
Sink

data_out
(bytes)
Embedded Peripherals IP User Guide

20–2 Chapter 20: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Functional Description
Interfaces
Table 20–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Operation—Avalon-ST Bytes to Packets Converter Core
The Avalon-ST Bytes to Packets Converter core receives streams of bytes and
transforms them into packets. When parsing incoming bytestreams, the core decodes
special characters in the following manner, with higher priority operations listed first:

■ Escape (0x7d)—The core drops the byte. The next byte is XORed with 0x20.

■ Start of packet (0x7a)—The core drops the byte and marks the next payload byte as
the start of a packet by asserting the startofpacket signal on the Avalon-ST
source interface.

■ End of packet (0x7b)—The core drops the byte and marks the following byte as the
end of a packet by asserting the endofpacket signal on the Avalon-ST source
interface. For single beat packets, both the startofpacket and endofpacket signals
are asserted in the same clock cycle.

■ Channel number indicator (0x7c)—The core drops the byte and takes the next non-
special character as the channel number.

Table 20–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Supported, up to 255 channels.

Error Not used.

Packet Supported only on the Avalon-ST Bytes to Packet Converter core’s source
interface and the Avalon-ST Packet to Bytes Converter core’s sink interface.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 20: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores 20–3
Functional Description
Figure 20–3 shows examples of bytestreams.

Operation—Avalon-ST Packets to Bytes Converter Core
The Avalon-ST Packets to Bytes Converter core receives packetized data and
transforms the packets to bytestreams. The core constructs outgoing bytestreams by
inserting appropriate special characters in the following manner and sequence:

■ If the startofpacket signal on the core's source interface is asserted, the core
inserts the following special characters:

■ Channel number indicator (0x7c).

■ Channel number, escaping it if required.

■ Start of packet (0x7a).

■ If the endofpacket signal on the core's source interface is asserted, the core inserts
an end of packet (0x7b) before the last byte of data.

■ If the channel signal on the core’s source interface changes to a new value within a
packet, the core inserts a channel number indicator (0x7c) followed by the new
channel number.

■ If a data byte is a special character, the core inserts an escape (0x7d) followed by
the data XORed with 0x20.

Figure 20–3. Examples of Bytestreams

0x7c 0x01 0x7a 0x7d 0x5a 0x01 0xff 0x7b 0x3a...

Channel 1 SOP Data = 0x7a Data bytes EOP Last
Data
byte

Single-channel packet for Channel 1:

0x7c 0x02 0x7a 0x7b 0x3a

Channel 2 SOP EOP Data
byte

Single-beat packet:

0x7c 0x00 0x7a 0x10 0x11 0x30 0x31 0x7b 0x14

Channel 0 SOP
(Ch 0)

Data
(Ch 0)

EOP
(Ch 0)

Data
(Ch 0)

Interleaved channels in a packet:

0x7c 0x01 0x7c 0x00 0x12 0x13

Channel 1 Data
(Ch 1)

Channel 0 Data
(Ch 0)
June 2011 Altera Corporation Embedded Peripherals IP User Guide

20–4 Chapter 20: Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
21. Avalon Packets to Transactions
Converter Core
Core Overview
The Avalon® Packets to Transactions Converter core receives streaming data from
upstream components and initiates Avalon Memory-Mapped (Avalon-MM)
transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

f The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are
examples of how this core is used. For more information on the bridge, refer to “SPI
Slave/JTAG to Avalon Master Bridge Cores” on page 18–1

The Avalon Packets to Transactions Converter core is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated systems.

Functional Description
Figure 21–1 shows a block diagram of the Avalon Packets to Transactions Converter
core.

Interfaces
Table 21–1 shows the properties of the Avalon-ST interfaces.

Figure 21–1. Avalon Packets to Transactions Converter Core

Av
al

on
-S

T
Si

nk

Avalon
Packets to

Transactions
Converter

data_out

Av
al

on
-M

M
 M

as
te

rdata_in

Av
al

on
-S

T
So

ur
ce

Avalon-MM
Slave

Component

Table 21–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

Error Not used.

Packet Supported.
Embedded Peripherals IP User Guide

21–2 Chapter 21: Avalon Packets to Transactions Converter Core
Functional Description
The Avalon-MM master interface supports read and write transactions. The data
width is set to 32 bits and burst transactions are not supported.

For more information about Avalon-ST interfaces, refer to Avalon Interface
Specifications.

Operation
The Avalon Packets to Transactions Converter core receives streams of packets on its
Avalon-ST sink interface and initiates Avalon-MM transactions. Upon receiving
transaction responses from Avalon-MM slaves, the core transforms the responses to
packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packet Formats
The core expects incoming data streams to be in the format shown in Table 21–2. A
response packet is returned for every write transaction. The core also returns a
response packet if a no transaction (0x7f) is received. An invalid transaction code is
regarded as a no transaction. For read transactions, the core simply returns the data
read.

Supported Transactions
Table 21–3 lists the Avalon-MM transactions supported by the core.

Table 21–2. Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction. Refer to Table 21–3.

1 Reserved Reserved for future use.

[3:2] Size
Transaction size in bytes. For write transactions, the size indicates the size of the
data field. For read transactions, the size indicates the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit inversed.

1 Reserved Reserved for future use.

[3:2] Size Total number of bytes written successfully.

Table 21–3. Transaction Supported

Transaction
Code Avalon-MM Transaction Description

0x00 Write, non-incrementing address.
Writes data to the given address until the total number of bytes written
to the same word address equals to the value specified in the size
field.

0x04 Write, incrementing address. Writes transaction data starting at the given address.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 21: Avalon Packets to Transactions Converter Core 21–3
Functional Description
The core can handle only a single transaction at a time. The ready signal on the core's
Avalon-ST sink interface is asserted only when the current transaction is completely
processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST
interface is forwarded directly to the Avalon-MM interface and vice-versa. Asserting
the waitrequest signal on the Avalon-MM interface backpressures the Avalon-ST sink
interface. In the opposite direction, if the Avalon-ST source interface is backpressured,
the read signal on the Avalon-MM interface is not asserted until the backpressure is
alleviated. Backpressuring the Avalon-ST source in the middle of a read could result
in data loss. In such cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write
transactions, the actual data size is expected to be the same as the value of the size
field. Whether or not both values agree, the core always uses the EOP to determine the
end of data.

Malformed Packets
The following are examples of malformed packets:

■ Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction.
If an SOP is received in the middle of a transaction, the core drops the current
transaction without returning a response packet for the transaction, and initiates a
new transaction. This effectively handles packets without an end of packet(EOP).

■ Unsupported transaction codes—The core treats unsupported transactions as a no
transaction.

0x10 Read, non-incrementing address.
Reads 32 bits of data from the given address until the total number of
bytes read from the same address equals to the value specified in the
size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size field starting from the
given address.

0x7f No transaction.

No transaction is initiated. You can use this transaction type for testing
purposes. Although no transaction is initiated on the Avalon-MM
interface, the core still returns a response packet for this transaction
code.

Table 21–3. Transaction Supported

Transaction
Code Avalon-MM Transaction Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

21–4 Chapter 21: Avalon Packets to Transactions Converter Core
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0
■ Updated the Size field description in Table 21–2.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
22. Avalon-ST Round Robin Scheduler
Core
Core Overview
Avalon® Streaming (Avalon-ST) components in SOPC Builder provide a channel
interface to stream data from multiple channels into a single component. In a
multi-channel Avalon-ST component that stores data, the component can store data
either in the sequence that it comes in (FIFO) or in segments according to the channel.
When data is stored in segments according to channels, a scheduler is needed to
schedule the read operations from that particular component. The most basic of the
schedulers is the Avalon-ST Round Robin Scheduler core.

The Avalon-ST Round Robin Scheduler core is SOPC Builder-ready and can integrate
easily into any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Performance and Resource Utilization”

■ “Functional Description” on page 22–2

Performance and Resource Utilization
This section lists the resource utilization and performance data for various Altera®
device families. The estimates are obtained by compiling the core using the
Quartus® II software.

Table 22–1 shows the resource utilization and performance data for a Stratix® II GX
device (EP2SGX130GF1508I4).

Table 22–2 shows the resource utilization and performance data for a Stratix III device
(EP3SL340F1760C3). The performance of the MegaCore® function in Stratix IV devices
is similar to Stratix III devices.

Table 22–1. Resource Utilization and Performance Data for Stratix II GX Devices

Number of
Channels ALUTs Logic Registers

Memory
M512/M4K/

M-RAM

fMAX
(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 62 30 0/0/0 > 125

Table 22–2. Resource Utilization and Performance Data for Stratix III Devices

Number of
Channels ALUTs Logic Registers

Memory
M9K/M144K/

MLAB

fMAX
(MHz)

4 7 7 0/0/0 > 125

12 25 17 0/0/0 > 125

24 67 30 0/0/0 > 125
Embedded Peripherals IP User Guide

22–2 Chapter 22: Avalon-ST Round Robin Scheduler Core
Functional Description
Table 22–3 shows the resource utilization and performance data for a Cyclone® III
device (EP3C120F780I7).

Functional Description
The Avalon-ST Round Robin Scheduler core controls the read operations from a
multi-channel Avalon-ST component that buffers data by channels. It reads the
almost-full threshold values from the multiple channels in the multi-channel
component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Figure 22–1 shows the block diagram of the Avalon-ST Round Robin Scheduler.

Interfaces
The following interfaces are available in the Avalon-ST Round Robin Scheduler core:

■ Almost-Full Status Interface

■ Request Interface

Almost-Full Status Interface
The Almost-Full Status interface is an Avalon-ST sink interface. Table 22–4 describes
the almost-full interface.

Table 22–3. Resource Utilization and Performance Data for Cyclone III Devices

Number of
Channels

Total Logic
Elements Total Registers Memory M9K fMAX

(MHz)

4 12 7 0 > 125

12 32 17 0 > 125

24 71 30 0 > 125

Figure 22–1. Avalon-ST Round Robin Scheduler Block Diagram

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin

Scheduler

A
va

lo
n-

M
M

W

rit
e

M
as

te
r

A
valon-S

T
 S

ink

Table 22–4. Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 22: Avalon-ST Round Robin Scheduler Core 22–3
Functional Description
The interface collects the almost-full status from the sink components for all the
channels in the sequence provided.

Request Interface
The Request Interface is an Avalon Memory-Mapped (MM) Write Master interface.
This interface requests data from a specific channel. The Avalon-ST Round Robin
Scheduler core cycles through all of the channels it supports and schedules data to be
read.

Operations
If a particular channel is almost full, the Avalon-ST Round Robin Scheduler will not
schedule data to be read from that channel in the source component.

The Avalon-ST Round Robin Scheduler only requests 1 beat of data from a channel at
each transaction. To request 1 beat of data from channel n, the scheduler writes the
value 1 to address (4 ×n). For example, if the scheduler is requesting data from
channel 3, the scheduler writes 1 to address 0xC.

At every clock cycle, the Avalon-ST Round Robin Scheduler requests data from the
next channel. Therefore, if the Avalon-ST Round Robin Scheduler starts requesting
from channel 1, at the next clock cycle, it requests from channel 2. The Avalon-ST
Round Robin Scheduler does not request data from a particular channel if the
almost-full status for the channel is asserted. In this case, one clock cycle is used
without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component
is able to service the request transaction. The component asserts waitrequest when it
cannot accept new requests.

Table 22–5 shows the list of ports for the Avalon-ST Round Robin Scheduler core:

Table 22–5. Ports for the Avalon-ST Round Robin Scheduler (Part 1 of 2)

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

Avalon-MM Request Interface

request_address (log2
Max_Channels–1:0)

Out The write address used to signal the channel the request is for.

request_write Out Write enable signal.

request_writedata Out
The amount of data requested from the particular channel.

This value is always fixed at 1.

request_waitrequest In Wait request signal, used to pause the scheduler when the slave
cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and
almost_full_data are valid.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

22–4 Chapter 22: Avalon-ST Round Robin Scheduler Core
Parameters
Parameters
Table 22–6 describes the parameters that can be configured for the Avalon-ST Round
Robin Scheduler component.

Document Revision History
The following table shows the revision history for this document.

almost_full_channel
(Channel_Width–1:0)

In Indicates the channel for the current status indication.

almost_full_data (log2
Max_Channels–1:0)

In A 1-bit signal that is asserted high to indicate that the channel
indicated by almost_full_channel is almost full.

Table 22–5. Ports for the Avalon-ST Round Robin Scheduler (Part 2 of 2)

Signal Direction Description

Table 22–6. Parameters for Avalon-ST Round Robin Scheduler Component

Parameters Values Description

Number of channels 2–32 Specifies the number of channels the Avalon-ST Round Robin Scheduler
supports.

Use almost-full status 0–1 Specifies whether the almost-full interface is used. If the interface is not used, the
core always requests data from the next channel at the next clock cycle.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
23. Avalon-ST Delay Core
Core Overview
The Avalon® Streaming (Avalon-ST) Delay core provides a solution to delay Avalon-
ST transactions by a constant number of clock cycles. This core supports up to 16 clock
cycle delays.

The Avalon-ST Delay core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system.

Functional Description
Figure 23–1 shows a block diagram of the Avalon-ST Delay core.

The Avalon-ST Delay core adds a delay between the input and output interfaces. The
core accepts all transactions presented on the input interface and reproduces them on
the output interface N cycles later without changing the transaction.

The input interface delays the input signals by a constant (N) number of clock cycles
to the corresponding output signals of the Avalon-ST output interface. The Number
Of Delay Clocks parameter defines the constant (N) number, which must be between
0 and 16. The change of the In_Valid signal is reflected on the Out_Valid signal
exactly N cycles later.

Reset
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal.
When the core asserts the reset signal, the output signals are held at 0. After the
reset signal is deasserted, the output signals are held at 0 for N clock cycles. The
delayed values of the input signals are then reflected at the output signals after N
clock cycles.

Figure 23–1. Avalon-ST Delay Core

Out_Data
In_Data

Clock

Avalon-ST
Delay Core

A
va

lo
n-

S
T

 S
in

k A
valon-S

T
 S

ource
Embedded Peripherals IP User Guide

23–2 Chapter 23: Avalon-ST Delay Core
Parameters
Interfaces
The Avalon-ST Delay core supports packetized and non-packetized interfaces with
optional channel and error signals. This core does not support backpressure.

Table 23–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Parameters
Table 23–2 lists and describes the parameters you can configure.

Table 23–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Table 23–2. Configurable Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1
Specifies the delay the core introduces, in clock cycles. The
value of 0 is supported for some cases of parameterized
systems in which no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8
The number of bits per symbol for the input and output
interfaces. For example, byte-oriented interfaces have 8-bit
symbols.

Use Packets 0 or 1 0
Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket,
and empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1
The maximum number of channels that a data interface can
support. This parameter is disabled when Use Channel is set
to 0.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1
The width of the error signal on the output interfaces. A value
of 0 indicates that the error signal is not in use. This parameter
is disabled when Use Error is set to 0.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 23: Avalon-ST Delay Core 23–3
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

January 2010 9.1 SP1 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

23–4 Chapter 23: Avalon-ST Delay Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
24. Avalon-ST Splitter Core
Core Overview
The Avalon® Streaming (Avalon-ST) Splitter core allows you to replicate transactions
from an Avalon-ST source interface to multiple Avalon-ST sink interfaces. This core
can support from 1 to 16 outputs.

The Avalon-ST Splitter core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system.

Functional Description
Figure 24–1 shows a block diagram of the Avalon-ST Splitter core.

The Avalon-ST Splitter core copies all input signals from the input interface to the
corresponding output signals of each output interface without altering the size or
functionality. This include all signals except for the ready signal.

The Avalon-ST Splitter core includes a clock signal used by SOPC Builder to
determine the Avalon-ST interface and clock domain that this core resides in. Because
the clock signal is unused internally, no latency is introduced when using this core.

Backpressure
The Avalon-ST Splitter core handles backpressure by AND-ing the ready signals from
all of the output interfaces and sending the result to the input interface. This way, if
any output interface deasserts the ready signal, the input interface receives the
deasserted ready signal as well. This mechanism ensures that backpressure on any of
the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the Out_Valid signals on all other
output interfaces are gated when backpressure is applied from one output interface.
In this case, when any output interface deasserts its ready signal, the Out_Valid
signals on the rest of the output interfaces are deasserted as well.

Figure 24–1. Avalon-ST Splitter Core

Output 0

In_Data

Out_Data

Avalon-ST
Splitter Core

Output N

Clock

A
va

lo
n-

S
T

 S
in

k

A
valon-S

T
S

ource 0
A

valon-S
T

S
ource N
Embedded Peripherals IP User Guide

24–2 Chapter 24: Avalon-ST Splitter Core
Parameters
When the Qualify Valid Out parameter is set to 0, the output interfaces have a
non-gated Out_Valid signal when backpressure is applied. In this case, when an
output interface deasserts its ready signal, the Out_Valid signals on the rest of the
output interfaces are not affected.

Because the logic is purely combinational, the core introduces no latency.

Interfaces
The Avalon-ST Splitter core supports packetized and non-packetized interfaces with
optional channel and error signals. The core propagates backpressure from any
output interface to the input interface.

Table 24–1 shows the properties of the Avalon-ST interfaces.

f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Parameters
Table 24–2 lists and describes the parameters you can configure.

Table 24–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Table 24–2. Configurable Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2
The number of output interfaces. The value of 1 is supported for
some cases of parameterized systems in which no duplicated
output is required.

Qualify Valid Out 0 or 1 1 Determines whether the Out_Valid signal is gated or non-gated
when backpressure is applied.

Data Width 1–512 8 The width of the data on the Avalon-ST data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input and output interfaces.
For example, byte-oriented interfaces have 8-bit symbols.

Use Packets 0 or 1 0
Indicates whether or not packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and empty
signals.

Use Channel 0 or 1 0 The option to enable or disable the channel signal.

Channel Width 0-8 1 The width of the channel signal on the data interfaces. This
parameter is disabled when Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a data interface can
support. This parameter is disabled when Use Channel is set to 0.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 24: Avalon-ST Splitter Core 24–3
Document Revision History
Document Revision History
The following table shows the revision history for this document.

Use Error 0 or 1 0 The option to enable or disable the error signal.

Error Width 0–31 1
The width of the error signal on the output interfaces. A value of
0 indicates that the error signal is not used. This parameter is
disabled when Use Error is set to 0.

Table 24–2. Configurable Parameters

Parameter Legal Values Default Value Description

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

January 2010 9.1 SP1 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

24–4 Chapter 24: Avalon-ST Splitter Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
Section IV. Peripherals
This section describes multiprocessor coordination peripherals provided by Altera®
for SOPC Builder systems. These components provide reliable mechanisms for
multiple Nios® II processors to communicate with each other, and coordinate
operations.

This section includes the following chapters:

■ Chapter 25, Scatter-Gather DMA Controller Core

■ Chapter 26, DMA Controller Core

■ Chapter 27, Video Sync Generator and Pixel Converter Cores

■ Chapter 28, Interval Timer Core

■ Chapter 29, Mutex Core

■ Chapter 30, Mailbox Core

■ Chapter 31, Vectored Interrupt Controller Core

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

IV–2 Section IV: Peripherals
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
25. Scatter-Gather DMA Controller Core
Core Overview
The Scatter-Gather Direct Memory Access (SG-DMA) controller core implements
high-speed data transfer between two components. You can use the SG-DMA
controller core to transfer data from:

■ Memory to memory

■ Data stream to memory

■ Memory to data stream

The SG-DMA controller core transfers and merges non-contiguous memory to a
continuous address space, and vice versa. The core reads a series of descriptors that
specify the data to be transferred.

For applications requiring more than one DMA channel, multiple instantiations of the
core can provide the required throughput. Each SG-DMA controller has its own series
of descriptors specifying the data transfers. A single software module controls all of
the DMA channels.

The SG-DMA controller core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. For the Nios® II processor, device drivers are
provided in the Hardware Abstraction Layer (HAL) system library, allowing software
to access the core using the provided driver.

Example Systems
Figure 25–1 shows a SG-DMA controller core in a block diagram for the DMA
subsystem of a printed circuit board. The SG-DMA core in the FPGA reads streaming
data from an internal streaming component and writes data to an external memory. A
Nios II processor provides overall system control.

Figure 25–1. SG-DMA Controller Core with Streaming Peripheral and External Memory

Altera FPGA
 SOPC Builder System

S

Scatter Gather DMA Controller Core

Nios II
Processor

Rd

SNK

Descriptor
Processor

Block

DDR2
SDRAM

Memory
Controller

M

Rd

M

DMA Write
Block

M

Wr

M

Wr

M

Control
&

Status
Registers

System Interconnect Fabric

Memory

Descriptor
Table

S Avalon-MM Slave Port

SNK Avalon-ST Sink Port

M Avalon-MM Master Port

Streaming
Component
Embedded Peripherals IP User Guide

25–2 Chapter 25: Scatter-Gather DMA Controller Core
Core Overview
Figure 25–2 shows a different use of the SG-DMA controller core, where the core
transfers data between an internal and external memory. The host processor and
memory are connected to a system bus, typically either a PCI Express or Serial
RapidIO™.

Comparison of SG-DMA Controller Core and DMA Controller Core
The SG-DMA controller core provides a significant performance enhancement over
the previously available DMA controller core, which could only queue one transfer at
a time. Using the DMA Controller core, a CPU had to wait for the transfer to complete
before writing a new descriptor to the DMA slave port. Transfers to non-contiguous
memory could not be linked; consequently, the CPU overhead was substantial for
small transfers, degrading overall system performance. In contrast, the SG-DMA
controller core reads a series of descriptors from memory that describe the required
transactions and performs all of the transfers without additional intervention from the
CPU.

In This Chapter
This chapter contains the following sections:

■ “Functional Description” on page 25–3

■ “Simulation Considerations” on page 25–10

■ “Software Programming Model” on page 25–10

■ “Programming with SG-DMA Controller” on page 25–15

Figure 25–2. SG-DMA Controller Core with Internal and External Memory

Processor
Bus

Altera FPGA
 SOPC Builder System

S

Host Processor

Internal
Memory

M M

System Interconnect Fabric

S

Rd

M

Descriptor
Processor

Block

Rd

M

DMA Read/
Write
Block

Wr

M

Wr

M

Control
&

Status
Registers

Scatter Gather DMA Controller Core

Avalon-MM Bridge

M S

IOB

Main Memory

Descriptor
Table

S Avalon-MM Slave Port

M Avalon-MM Master Port

IOB IO Breakout
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–3
Resource Usage and Performance
Resource Usage and Performance
Resource utilization for the core is 600–1400 logic elements, depending upon the
width of the datapath, the parameterization of the core, the device family, and the
type of data transfer. Table 25–1 provides the estimated resource usage for a SG-DMA
controller core used for memory to memory transfer. The core is configurable and the
resource utilization varies with the configuration specified.

The core operating frequency varies with the device and the size of the datapath.
Table 25–2 provides an example of expected performance for SG-DMA cores
instantiated in several different device families.

Functional Description
The SG-DMA controller core comprises three major blocks: descriptor processor,
DMA read, and DMA write. These blocks are combined to create three different
configurations:

■ Memory to memory

■ Memory to stream

■ Stream to memory

The type of devices you are transferring data to and from determines the
configuration to implement. Examples of memory-mapped devices are PCI, PCIe and
most memory devices. The Triple Speed Ethernet MAC, DSP MegaCore functions and
many video IPs are examples of streaming devices. A recompilation is necessary each
time you change the configuration of the SG-DMA controller core.

Functional Blocks and Configurations
The following sections describe each functional block and configuration.

Table 25–1. SG-DMA Estimated Resource Usage

Datapath Cyclone® II Stratix®
(LEs)

Stratix II
(ALUTs)

8-bit datapath 850 650 600

32-bit datapath 1100 850 700

64-bit datapath 1250 1250 800

Table 25–2. SG-DMA Peak Performance

Device Datapath fMAX Throughput

Cyclone II 64 bits 150 MHz 9.6 Gbps

Cyclone III 64 bits 160 MHz 10.2 Gbps

Stratix II/Stratix II GX 64 bits 250 MHz 16.0 Gbps

Stratix III 64 bits 300 MHz 19.2 Gbps
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–4 Chapter 25: Scatter-Gather DMA Controller Core
Functional Description
Descriptor Processor
The descriptor processor reads descriptors from the descriptor list via its Avalon®
Memory-Mapped (MM) read master port and pushes commands into the command
FIFOs of the DMA read and write blocks. Each command includes the following fields
to specify a transfer:

■ Source address

■ Destination address

■ Number of bytes to transfer

■ Increment read address after each transfer

■ Increment write address after each transfer

■ Generate start of packet (SOP) and end of packet (EOP)

After each command is processed by the DMA read or write block, a status token
containing information about the transfer such as the number of bytes actually
written is returned to the descriptor processor, where it is written to the respective
fields in the descriptor.

DMA Read Block
The DMA read block is used in memory-to-memory and memory-to-stream
configurations. The block performs the following operations:

■ Reads commands from the input command FIFO.

■ Reads a block of memory via the Avalon-MM read master port for each command.

■ Pushes data into the data FIFO.

If burst transfer is enabled, an internal read FIFO with a depth of twice the maximum
read burst size is instantiated. The DMA read block initiates burst reads only when
the read FIFO has sufficient space to buffer the complete burst.

DMA Write Block
The DMA write block is used in memory-to-memory and stream-to-memory
configurations. The block reads commands from its input command FIFO. For each
command, the DMA write block reads data from its Avalon-ST sink port and writes it
to the Avalon-MM master port.

If burst transfer is enabled, an internal write FIFO with a depth of twice the maximum
write burst size is instantiated. Each burst write transfers a fixed amount of data
equals to the write burst size, except for the last burst. In the last burst, the remaining
data is transferred even if the amount of data is less than the write burst size.

Memory-to-Memory Configuration
Memory-to-memory configurations include all three blocks: descriptor processor,
DMA read, and DMA write. An internal FIFO is also included to provide buffering
and flow control for data transferred between the DMA read and write blocks.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–5
Functional Description
Figure 25–3 illustrates one possible memory-to-memory configuration with an
internal Nios II processor and descriptor list.

Memory-to-Stream Configuration
Memory-to-stream configurations include the descriptor processor and DMA read
blocks. Figure 25–4 illustrates a memory-to-stream configuration.

In this example, the Nios II processor and descriptor table are in the FPGA. Data from
an external DDR2 SDRAM is read by the SG-DMA controller and written to an
on-chip streaming peripheral.

Figure 25–3. Example of Memory-to-Memory Configuration

Figure 25–4. Example of Memory-to-Stream Configuration

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source PortSRC

Avalon-ST Sink PortSNK

 SOPC Builder System

Altera FPGA

Descriptor
Processor

Block

Scatter Gather DMA Controller Core

Rd

S M

Wr

command

status

M M

command

status

M

Control
&

Status
Registers

DMA Write Block

SNK

DMA Read Block

SRC

Data
FIFO

Nios II
Processor

DDR2
SDRAM

Memory
Controller

System Interconnect Fabric

Memory

Descriptor
Table

SNK

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source Port

Avalon-ST Sink Port

 SOPC Builder System
Altera FPGA

Scatter Gather DMA Controller Core

Rd

S M

Wr

M M

command

status

SRC

Control
&

Status
Registers

Nios II
Processor

DDR2
SDRAM

Memory
Controller

Memory

Descriptor
Table

DMA Read Block

Descriptor
Processor

Block

SRCStreaming
Component

SNK

System Interconnect Fabric
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–6 Chapter 25: Scatter-Gather DMA Controller Core
Functional Description
Stream-to-Memory Configuration
Stream-to-memory configurations include the descriptor processor and DMA write
blocks. This configuration is similar to the memory-to-stream configuration as
Figure 25–5 illustrates.

DMA Descriptors
DMA descriptors specify data transfers to be performed. The SG-DMA core uses a
dedicated interface to read and write the descriptors. These descriptors, which are
stored as a linked list, can be stored on an on-chip or off-chip memory and can be
arbitrarily long.

Storing the descriptor list in an external memory frees up resources in the FPGA;
however, an external descriptor list increases the overhead involved when the
descriptor processor reads and updates the list. The SG-DMA core has an internal
FIFO to store descriptors read from memory, which allows the core to perform
descriptor read, execute, and write back operations in parallel, hiding the descriptor
access and processing overhead.

1 The descriptors must be initialized and aligned on a 32-bit boundary. The last
descriptor in the list must have its OWNED_BY_HW bit set to 0 because the core relies on a
cleared OWNED_BY_HW bit to stop processing.

Refer to “DMA Descriptors” on page 25–13 for the structure of the DMA descriptor.

Descriptor Processing
The following steps describe how the DMA descriptors are processed:

1. Software builds the descriptor linked list. See “Building and Updating Descriptor
List” on page 25–7 for more information on how to build and update the
descriptor linked list.

Figure 25–5. Example of Stream-to-Memory Configuration

SRC

SRC

M Avalon-MM Master Port

S Avalon-MM Slave Port

Avalon-ST Source Port

Avalon-ST Sink Port

 SOPC Builder System

Altera FPGA

Scatter Gather DMA Controller Core

Rd

S M

Wr

M M

command

status

SNK

Control
&

Status
Registers

Nios II
Processor

DDR2
SDRAM

Memory
Controller

System Interconnect Fabric

Memory

Descriptor
Table

Descriptor
Processor

Block

SNK

DMA Write Block

Streaming
Component

SRC
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–7
Functional Description
2. Software writes the address of the first descriptor to the next_descriptor_pointer
register and initiates the transfer by setting the RUN bit in the control register to 1.
See “Software Programming Model” on page 25–10 for more information on the
registers.

On the next clock cycle following the assertion of the RUN bit, the core sets the BUSY
bit in the status register to 1 to indicate that descriptor processing is executing.

3. The descriptor processor block reads the address of the first descriptor from the
next_descriptor_pointer register and pushes the retrieved descriptor into the
command FIFO, which feeds commands to both the DMA read and write blocks.
As soon as the first descriptor is read, the block reads the next descriptor and
pushes it into the command FIFO. One descriptor is always read in advance thus
maximizing throughput.

4. The core performs the data transfer.

■ In memory-to-memory configurations, the DMA read block receives the source
address from its command FIFO and starts reading data to fill the FIFO on its
stream port until the specified number of bytes are transferred. The DMA read
block pauses when the FIFO is full until the FIFO has enough space to accept
more data.

The DMA write block gets the destination address from its command FIFO and
starts writing until the specified number of bytes are transferred. If the data
FIFO ever empties, the write block pauses until the FIFO has more data to
write.

■ In memory-to-stream configurations, the DMA read block reads from the
source address and transfers the data to the core’s streaming port until the
specified number of bytes are transferred or the end of packet is reached. The
block uses the end-of-packet indicator for transfers with an unknown transfer
size. For data transfers without using the end-of-packet indicator, the transfer
size must be a multiple of the data width. Otherwise, the block requires extra
logic and may impact the system performance.

■ In stream-to-memory configurations, the DMA write block reads from the
core’s streaming port and writes to the destination address. The block
continues reading until the specified number of bytes are transferred.

5. The descriptor processor block receives a status from the DMA read or write block
and updates the DESC_CONTROL, DESC_STATUS, and ACTUAL_BYTES_TRANSFERRED
fields in the descriptor. The OWNED_BY_HW bit in the DESC_CONTROL field is cleared
unless the PARK bit is set to 1.

Once the core starts processing the descriptors, software must not update descriptors
with OWNED_BY_HW bit set to 1. It is only safe for software to update a descriptor when
its OWNED_BY_HW bit is cleared.

The SG-DMA core continues processing the descriptors until an error condition
occurs and the STOP_DMA_ER bit is set to 1, or a descriptor with a cleared OWNED_BY_HW
bit is encountered.

Building and Updating Descriptor List
Altera recommends the following method of building and updating the descriptor
list:
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–8 Chapter 25: Scatter-Gather DMA Controller Core
Functional Description
1. Build the descriptor list and terminate the list with a non-hardware owned
descriptor (OWNED_BY_HW = 0). The list can be arbitrarily long.

2. Set the interrupt IE_CHAIN_COMPLETED.

3. Write the address of the first descriptor in the first list to the
next_descriptor_pointer register and set the RUN bit to 1 to initiate transfers.

4. While the core is processing the first list, build a second list of descriptors.

5. When the SD-DMA controller core finishes processing the first list, an interrupt is
generated. Update the next_descriptor_pointer register with the address of the
first descriptor in the second list. Clear the RUN bit and the status register. Set the
RUN bit back to 1 to resume transfers.

6. If there are new descriptors to add, always add them to the list which the core is
not processing. For example, if the core is processing the first list, add new
descriptors to the second list and so forth.

This method ensures that the descriptors are not updated when the core is processing
them. Because the method requires a response to the interrupt, a high-latency
interrupt may cause a problem in systems where stalling data movement is not
possible.

Error Conditions
The SG-DMA core has a configurable error width. Error signals are connected directly
to the Avalon-ST source or sink to which the SG-DMA core is connected.

The list below describes how the error signals in the SG-DMA core are implemented
in the folowing configurations:

■ Memory-to-memory configuration

No error signals are generated. The error field in the register and descriptor is
hardcoded to 0.

■ Memory-to-stream configuration

If you specified the usage of error bits in the core, the error bits are generated in
the Avalon-ST source interface. These error bits are hardcoded to 0 and generated
in compliance with the Avalon-ST slave interfaces.

■ Stream-to-memory configuration

If you specified the usage of error bits in the core, error bits are generated in the
Avalon-ST sink interface. These error bits are passed from the Avalon-ST sink
interface and stored in the registers and descriptor.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–9
Parameters
Table 25–3 lists the error signals when the core is operating in the memory-to-stream
configuration and connected to the transmit FIFO interface of the Altera Triple-Speed
Ethernet MegaCore® function.

Table 25–4 lists the error signals when the core is operating in the stream-to-memory
configuration and connected to the transmit FIFO interface of the Triple-Speed
Ethernet MegaCore function.

Each streaming core has a different set of error codes. Refer to the respective user
guides for the codes.

Parameters
Table 25–5 lists and describes the parameters you can configure.

Table 25–3. Avalon-ST Transmit Error Types

Signal Type Description

TSE_transmit_error[0]

Transmit Frame Error. Asserted to indicate that the transmitted frame
should be viewed as invalid by the Ethernet MAC. The frame is then
transferred onto the GMII interface with an error code during the frame
transfer.

Table 25–4. Avalon-ST Receive Error Types

Signal Type Description

TSE_receive_error[0] Receive Frame Error. This signal indicates that an error has occurred. It
is the logical OR of receive errors 1 through 5.

TSE_receive_error[1] Invalid Length Error. Asserted when the received frame has an invalid
length as defined by the IEEE 802.3 standard.

TSE_receive_error[2] CRC Error. Asserted when the frame has been received with a CRC-32
error.

TSE_receive_error[3] Receive Frame Truncated. Asserted when the received frame has been
truncated due to receive FIFO overflow.

TSE_receive_error[4] Received Frame corrupted due to PHY error. (The PHY has asserted an
error on the receive GMII interface.)

TSE_receive_error[5] Collision Error. Asserted when the frame was received with a collision.

Table 25–5. Configurable Parameters (Part 1 of 2)

Parameter Legal Values Description

Transfer mode
Memory To Memory
Memory To Stream
Stream To Memory

Configuration to use. For more information about these configurations,
see “Memory-to-Memory Configuration” on page 25–4

Enable bursting on
descriptor read master On/Off

If this option is on, the descriptor processor block uses Avalon-MM
bursting when fetching descriptors and writing them back in memory.
With 32-bit read and write ports, the descriptor processor block can
fetch the 256-bit descriptor by performing 8-word burst as opposed to
eight individual single-word transactions.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–10 Chapter 25: Scatter-Gather DMA Controller Core
Simulation Considerations
1 The SG-DMA controller core should be given a higher priority (lower IRQ value) than
most of the components in a system to ensure high throughput.

Simulation Considerations
Signals for hardware simulation are automatically generated as part of the Nios II
simulation process available in the Nios II IDE.

Software Programming Model
The following sections describe the software programming model for the SG-DMA
controller core.

HAL System Library Support
The Altera-provided driver implements a HAL device driver that integrates into the
HAL system library for Nios II systems. HAL users should access the SG-DMA
controller core via the familiar HAL API and the ANSI C standard library.

Software Files
The SG-DMA controller core provides the following software files. These files provide
low-level access to the hardware and drivers that integrate into the Nios II HAL
system library. Application developers should not modify these files.

■ altera_avalon_sgdma_regs.h—defines the core's register map, providing symbolic
constants to access the low-level hardware

■ altera_avalon_sgdma.h—provides definitions for the Altera Avalon SG-DMA
buffer control and status flags.

Allow unaligned
transfers On/Off

If this option is on, the core allows accesses to non-word-aligned
addresses. This option doesn’t apply for burst transfers.

Unaligned transfers require extra logic that may negatively impact
system performance.

Enable burst transfers On/Off Turning on this option enables burst reads and writes.

Read burstcount signal
width 1–16 The width of the read burstcount signal. This value determines the

maximum burst read size.

Write burstcount signal
width 1–16 The width of the write burstcount signal. This value determines the

maximum burst write size.

Avalon MM data master
byte reorder mode

No Reordering
Byte Swap

Option to enable read and write byte swap on the Avalon-MM data
master.

Data width 8, 16, 32, 64 The data width in bits for the Avalon-MM read and write ports.

Source error width 0–7 The width of the error signal for the Avalon-ST source port.

Sink error width 0 – 7 The width of the error signal for the Avalon-ST sink port.

Data transfer FIFO depth 2, 4, 8, 16, 32, 64 The depth of the internal data FIFO in memory-to-memory configurations
with burst transfers disabled.

Table 25–5. Configurable Parameters (Part 2 of 2)

Parameter Legal Values Description
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–11
Software Programming Model
■ altera_avalon_sgdma.c—provides function definitions for the code that
implements the SG-DMA controller core.

■ altera_avalon_sgdma_descriptor.h—defines the core's descriptor, providing
symbolic constants to access the low-level hardware.

Register Maps
The SG-DMA controller core has three registers accessible from its Avalon-MM
interface; status, control and next_descriptor_pointer. Software can configure the
core and determines its current status by accessing the registers.

The control/status register has a 32-bit interface without byte-enable logic, and
therefore cannot be properly accessed by a master with narrower data width than
itself. To ensure correct operation of the core, always access the register with a master
that is at least 32 bits wide.

Table 25–6 lists and describes the registers.

Table 25–7 provides a bit map for the control register.

Table 25–6. Register Map

32-bit Word
Offset Register Name Reset

Value Description

base + 0 status 0

This register indicates the core’s current status such as what
caused the last interrupt and if the core is still processing
descriptors. See Table 25–8 on page 25–13 for the status
register map.

base + 4 control 0

This register specifies the core’s behavior such as what
triggers an interrupt and when the core is started and
stopped. The host processor can configure the core by
setting the register bits accordingly. See Table 25–7 on
page 25–11 for the control register map.

base + 8 next_descriptor_pointer 0

This register contains the address of the next descriptor to
process. Set this register to the address of the first
descriptor as part of the system initialization sequence.

Altera recommends that user applications clear the RUN bit
in the control register and wait until the BUSY bit of the
status register is set to 0 before writing this register.

Table 25–7. Control Register Bit Map (Part 1 of 2)

Bit Bit Name Access Description

0 IE_ERROR R/W When this bit is set to 1, the core generates an interrupt if an
Avalon-ST error occurs during descriptor processing. (1)

1 IE_EOP_ENCOUNTERED R/W When this bit is set to 1, the core generates an interrupt if an EOP
is encountered during descriptor processing. (1)

2 IE_DESCRIPTOR_COMPLETED R/W When this bit is set to 1, the core generates an interrupt after
each descriptor is processed. (1)

3 IE_CHAIN_COMPLETED R/W
When this bit is set to 1, the core generates an interrupt after the
last descriptor in the list is processed, that is when the core
encounters a descriptor with a cleared OWNED_BY_HW bit. (1)
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–12 Chapter 25: Scatter-Gather DMA Controller Core
Software Programming Model
4 IE_GLOBAL R/W When this bit is set to 1, the core is enabled to generate
interrupts.

5 RUN R/W

Set this bit to 1 to start the descriptor processor block which
subsequently initiates DMA transactions. Prior to setting this bit
to 1, ensure that the register next_descriptor_pointer is
updated with the address of the first descriptor to process. The
core continues to process descriptors in its queue as long as this
bit is 1.

Clear this bit to stop the core from processing the next descriptor
in its queue. If this bit is cleared in the middle of processing a
descriptor, the core completes the processing before stopping.
The host processor can then modify the remaining descriptors
and restart the core.

6 STOP_DMA_ER R/W
Set this bit to 1 to stop the core when an Avalon-ST error is
encountered during a DMA transaction. This bit applies only to
stream-to-memory configurations.

7 IE_MAX_DESC_PROCESSED R/W Set this bit to 1 to generate an interrupt after the number of
descriptors specified by MAX_DESC_PROCESSED are processed.

8..15 MAX_DESC_PROCESSED R/W Specifies the number of descriptors to process before the core
generates an interrupt.

16 SW_RESET R/W

Software can reset the core by writing to this bit twice. Upon the
second write, the core is reset. The logic which sequences the
software reset process then resets itself automatically.

Executing a software reset when a DMA transfer is active may
result in permanent bus lockup until the next system reset.
Hence, Altera recommends that you use the software reset as
your last resort.

17 PARK R/W

Seting this bit to 0 causes the SG-DMA controller core to clear
the OWNED_BY_HW bit in the descriptor after each descriptor is
processed. If the PARK bit is set to 1, the core does not clear the
OWNED_BY_HW bit, thus allowing the same descriptor to be
processed repeatedly without software intervention. You also
need to set the last descriptor in the list to point to the first one.

18 DESC_POLL_EN R/W

Set this bit to 1 to enable polling mode. When you set this bit to
1, the core continues to poll for the next descriptor until the
OWNED_BY_HW bit is set. The core also updates the descriptor
pointer to point to the current descriptor.

19..26 TIMEOUT_COUNTER R/W

Specifies the number of clocks to wait before polling again. The
valid range is 1 to 255. The core also updates the
next_desc_ptr field so that it points to the next descriptor to
read.

27..30 Reserved

31 CLEAR_INTERRUPT R/W Set this bit to 1 to clear pending interrupts.

Note to Table 25–7:

(1) All interrupts are generated only after the descriptor is updated.

Table 25–7. Control Register Bit Map (Part 2 of 2)

Bit Bit Name Access Description
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–13
Software Programming Model
Table 25–8 provides a bit map for the status register. Altera recommends that you
read the status register only after the RUN bit in the control register is cleared.

DMA Descriptors
Table 25–9 shows the structure a DMA descriptor entry. See “Data Structure” on
page 25–15 for the structure definition.

Table 25–8. Status Register Bit Map

Bit Bit Name Access Description

0 ERROR R/C (1) (2) A value of 1 indicates that an Avalon-ST error was
encountered during a transfer.

1 EOP_ENCOUNTERED R/C

A value of 1 indicates that the transfer was terminated by an
end-of-packet (EOP) signal generated on the Avalon-ST
source interface. This condition is only possible in stream-to-
memory configurations.

2 DESCRIPTOR_COMPLETED R/C (1) (2) A value of 1 indicates that a descriptor was processed to
completion.

3 CHAIN_COMPLETED R/C (1) (2) A value of 1 indicates that the core has completed processing
the descriptor chain.

4 BUSY R (1) (3)

A value of 1 indicates that descriptors are being processed.
This bit is set to 1 on the next clock cycle after the RUN bit is
asserted and does not get cleared until one of the following
event occurs:

■ Descriptor processing completes and the RUN bit is
cleared.

■ An error condition occurs, the STOP_DMA_ER bit is set to 1
and the processing of the current descriptor completes.

5 .. 31 Reserved

Notes to Table 25–8:

(1) This bit must be cleared after a read is performed. Write one to clear this bit.
(2) This bit is updated by hardware after each DMA transfer completes. It remains set until software writes one to clear.
(3) This bit is continuously updated by the hardware.

Table 25–9. DMA Descriptor Structure

Byte Offset
Field Names

31 24 23 16 15 8 7 0

base source

base + 4 Reserved

base + 8 destination

base + 12 Reserved

base + 16 next_desc_ptr

base + 20 Reserved

base + 24 Reserved bytes_to_transfer

base + 28 desc_control desc_status actual_bytes_transferred
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–14 Chapter 25: Scatter-Gather DMA Controller Core
Software Programming Model
Table 25–10 describes each field in a descriptor entry.

Table 25–11 provides a bit map for the desc_control field.

Table 25–10. DMA Descriptor Field Description

Field Name Access Description

source R/W Specifies the address of data to be read. This address is set to 0 if the
input interface is an Avalon-ST interface.

destination R/W Specifies the address to which data should be written. This address is
set to 0 if the output interface is an Avalon-ST interface.

next_desc_ptr R/W Specifies the address of the next descriptor in the linked list.

bytes_to_transfer R/W
Specifies the number of bytes to transfer. If this field is 0, the
SG-DMA controller core continues transferring data until it
encounters an EOP.

actual_bytes_transferred R Specifies the number of bytes that are successfully transferred by the
core. This field is updated after the core processes a descriptor.

desc_status R/W This field is updated after the core processes a descriptor. See
Table 25–12 on page 25–15 for the bit map of this field.

desc_control R/W
Specifies the behavior of the core. This field is updated after the core
processes a descriptor. See Table 25–11 on page 25–14 for
descriptions of each bit.

Table 25–11. DESC_CONTROL Bit Map

Bit (s) Field Name Access Description

0 GENERATE_EOP W When this bit is set to 1,the DMA read block asserts the EOP signal
on the final word.

1 READ_FIXED_ADDRESS R/W

This bit applies only to Avalon-MM read master ports. When this
bit is set to 1, the DMA read block does not increment the memory
address. When this bit is set to 0, the read address increments
after each read.

2 WRITE_FIXED_ADDRESS R/W

This bit applies only to Avalon-MM write master ports. When this
bit is set to 1, the DMA write block does not increment the memory
address. When this bit is set to 0, the write address increments
after each write.

In memory-to-stream configurations, the DMA read block
generates a start-of-packet (SOP) on the first word when this bit is
set to 1.

[6:3] Reserved — —

7 OWNED_BY_HW R/W

This bit determines whether hardware or software has write access
to the current register.

When this bit is set to 1, the core can update the descriptor and
software should not access the descriptor due to the possibility of
race conditions. Otherwise, it is safe for software to update the
descriptor.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–15
Programming with SG-DMA Controller
After completing a DMA transaction, the descriptor processor block updates the
desc_status field to indicate how the transaction proceeded. Table 25–1 provides the
bit map of this field.

Timeouts
The SG-DMA controller does not implement internal counters to detect stalls.
Software can instantiate a timer component if this functionality is required.

Programming with SG-DMA Controller
This section describes the device and descriptor data structures, and the application
programming interface (API) for the SG-DMA controller core.

Data Structure
Figure 25–6 shows the data structure for the device.

Table 25–12. DESC_STATUS Bit Map

Bit Bit Name Access Description

[7:0] ERROR_0 .. ERROR_7 R
Each bit represents an error that occurred on the Avalon-ST interface.
The context of each error is defined by the component connected to
the Avalon-ST interface.

Figure 25–6. Device Data Structure

typedef struct alt_sgdma_dev
{
 alt_llist llist; // Device linked-list entry
 const char *name; // Name of SGDMA in SOPC System
 void *base; // Base address of SGDMA
 alt_u32 *descriptor_base; // reserved
 alt_u32 next_index; // reserved
 alt_u32 num_descriptors; // reserved
 alt_sgdma_descriptor *current_descriptor; // reserved
 alt_sgdma_descriptor *next_descriptor; // reserved
 alt_avalon_sgdma_callback callback; // Callback routine pointer
 void *callback_context; // Callback context pointer
 alt_u32 chain_control; // Value OR'd into control reg
} alt_sgdma_dev;
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–16 Chapter 25: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
Figure 25–7 shows the data structure for the descriptors.

SG-DMA API
Table 25–13 lists all functions provided and briefly describes each.

Figure 25–7. Descriptor Data Structure

typedef struct {
 alt_u32 *read_addr;
 alt_u32 read_addr_pad;

 alt_u32 *write_addr;
 alt_u32 write_addr_pad;

 alt_u32 *next;
 alt_u32 next_pad;

 alt_u16 bytes_to_transfer;
 alt_u8 read_burst; /* Reserved field. Set to 0. */
 alt_u8 write_burst;/* Reserved field. Set to 0. */

 alt_u16 actual_bytes_transferred;
 alt_u8 status;
 alt_u8 control;

} alt_avalon_sgdma_packed alt_sgdma_descriptor;

Table 25–13. Function List

Name Description

alt_avalon_sgdma_do_async_transfer() Starts a non-blocking transfer of a descriptor chain.

alt_avalon_sgdma_do_sync_transfer()
Starts a blocking transfer of a descriptor chain. This function
blocks both before transfer if the controller is busy and until the
requested transfer has completed.

alt_avalon_sgdma_construct_mem_to_
mem_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_stream_to_mem_de
sc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-ST to Avalon-MM transfer. The function
automatically terminates the descriptor chain with a NULL
descriptor.

alt_avalon_sgdma_construct_mem_to_
stream_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_enable_desc_poll()
Enables descriptor polling mode. To use this feature, you need to
make sure that the hardware supports polling.

alt_avalon_sgdma_disable_desc_poll() Disables descriptor polling mode.

alt_avalon_sgdma_check_descriptor_
status()

Reads the status of a given descriptor.

alt_avalon_sgdma_register_callback()
Associates a user-specific callback routine with the SG-DMA
interrupt handler.

alt_avalon_sgdma_start()
Starts the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–17
Programming with SG-DMA Controller
alt_avalon_sgdma_do_async_transfer()

alt_avalon_sgdma_do_sync_transfer()

alt_avalon_sgdma_stop()
Stops the DMA engine. This is not required when
alt_avalon_sgdma_do_async_transfer()and
alt_avalon_sgdma_do_sync_transfer() are used.

alt_avalon_sgdma_open() Returns a pointer to the SG-DMA controller with the given name.

Table 25–13. Function List

Name Description

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:
*dev—a pointer to an SG-DMA device structure.

*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next”
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description:

Set up and begin a non-blocking transfer of one or more descriptors or a descriptor chain. If the
SG-DMA controller is busy at the time of this call, the routine immediately returns EBUSY; the
application can then decide how to proceed without being blocked. If a callback routine has been
previously registered with this particular SG-DMA controller, the transfer is set up to issue an
interrupt on error, EOP, or chain completion. Otherwise, no interrupt is registered and the
application developer must check for and handle errors and completion. The run bit is cleared
before the begining of the transfer and is set to 1 to restart a new descriptor chain.

Prototype: alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev, alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:
*dev—a pointer to an SG-DMA device structure.

*desc—a pointer to a single, constructed descriptor. The descriptor must have its “next”
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the chain.

Returns: Returns the contents of the status register.

Description:

Sends a fully formed descriptor or list of descriptors to the SG-DMA controller for transfer. This
function blocks both before transfer, if the SG-DMA controller is busy, and until the requested
transfer has completed. If an error is detected during the transfer, it is abandoned and the
controller’s status register contents are returned to the caller. Additional error information is
available in the status bits of each descriptor that the SG-DMA processed. The user application
searches through the descriptor or list of descriptors to gather specific error information. The run
bit is cleared before the begining of the transfer and is set to 1 to restart a new descriptor chain.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–18 Chapter 25: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
alt_avalon_sgdma_construct_mem_to_mem_desc()

alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype:
void alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u32 *write_addr, alt_u16 length, int
read_fixed, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:

*desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.

*write_addr—the first write address for the SG-DMA transfer.

length—the number of bytes for the transfer.

read_fixed—if non-zero, the SG-DMA reads from a fixed address.

write_fixed—if non-zero, the SG-DMA writes to a fixed address.

Returns: void

Description:

This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM transfer. The function
sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed descriptor as
ready to run. The descriptor is processed when the SG-DMA controller receives the descriptor and
the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor under construction as
well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas
of memory mastered by the controller.

Prototype: void alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *write_addr, alt_u16 length_or_eop, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–19
Programming with SG-DMA Controller
alt_avalon_sgdma_construct_mem_to_stream_desc()

Parameters:

*desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*write_addr—the first write address for the SG-DMA transfer.

length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the transfer continues
until an EOP signal is received from the Avalon-ST interface.

write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description:

This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM transfer. The source
(read) data for the transfer comes from the Avalon-ST interface connected to the SG-DMA
controller's streaming read port.

The function sets the OWNED_BY_HW bit in the descriptor's control field, marking the completed
descriptor as ready to run. The descriptor is processed when the SG-DMA controller receives the
descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You must properly allocate memory for the creation of both the descriptor under construction as
well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain read and chain
write Avalon master ports. Care must be taken to ensure that both *desc and *next point to areas
of memory mastered by the controller.

Prototype:
void alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_descriptor *desc,
alt_sgdma_descriptor *next, alt_u32 *read_addr, alt_u16 length, int read_fixed, int generate_sop,
int generate_eop, alt_u8 atlantic_channel)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:

*desc—a pointer to the descriptor being constructed.

*next—a pointer to the “next” descriptor. This does not need to be a complete or functional
descriptor, but must be properly allocated.

*read_addr—the first read address for the SG-DMA transfer.

length—the number of bytes for the transfer.

read_fixed—if non-zero, the SG-DMA reads from a fixed address.

generate_sop—if non-zero, the SG-DMA generates a SOP on the Avalon-ST interface when
commencing the transfer.

generate_eop—if non-zero, the SG-DMA generates an EOP on the Avalon-ST interface when
completing the transfer.

atlantic_channel—an 8-bit Avalon-ST channel number. Channels are currently not supported.
Set this parameter to 0.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

25–20 Chapter 25: Scatter-Gather DMA Controller Core
Programming with SG-DMA Controller
alt_avalon_sgdma_enable_desc_poll()

alt_avalon_sgdma_disable_desc_poll()

alt_avalon_sgdma_check_descriptor_status()

Returns: void

Description:

This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma-descriptor *desc for an Avalon-MM to Avalon-ST transfer. The destination
(write) data for the transfer goes to the Avalon-ST interface connected to the SG-DMA controller's
streaming write port. The function sets the OWNED_BY_HW bit in the descriptor's control field,
marking the completed descriptor as ready to run. The descriptor is processed when the SG-DMA
controller receives the descriptor and the RUN bit is 1.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA completes
processing of the *desc, it does not process the descriptor at *next until its OWNED_BY_HW bit is
set. To create a descriptor chain, you can repeatedly call this function using the previous call's
*next pointer in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the descriptor under
construction as well as the next descriptor in the chain. Descriptors must be in a memory device
mastered by the SG-DMA controller’s chain read and chain write Avalon master ports. Care must be
taken to ensure that both *desc and *next point to areas of memory mastered by the controller.

Prototype: void alt_avalon_sgdma_enable_desc_poll(alt_sgdma_dev *dev, alt_u32 frequency)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:
*dev—a pointer to an SG-DMA device structure.

frequency—the frequency value to set. Only the lower 11-bit value of the frequency is written to
the control register.

Returns: void

Description: Enables descriptor polling mode with a specific frequency. There is no effect if the hardware does
not support this mode.

Prototype: void alt_avalon_sgdma_disable_desc_poll(alt_sgdma_dev *dev)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.

Returns: void

Description: Disables descriptor polling mode.

Prototype: int alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descriptor *desc)

Thread-safe: Yes.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–21
Programming with SG-DMA Controller
alt_avalon_sgdma_register_callback()

alt_avalon_sgdma_start()

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously requested transfer
completed normally. Other return codes are defined in errno.h.

Description: Checks a descriptor previously owned by hardware for any errors reported in a previous transfer.
The routine reports: errors reported by the SG-DMA controller, the buffer in use.

Prototype: void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev, alt_avalon_sgdma_callback
callback, alt_u16 chain_control, void *context)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters:

*dev—a pointer to the SG-DMA device structure.

callback—a pointer to the callback routine to execute at interrupt level.

chain_control—the SG-DMA control register contents.

*context—a pointer used to pass context-specific information to the ISR. context can point to
any ISR-specific information.

Returns: void

Description:

Associates a user-specific routine with the SG-DMA interrupt handler. If a callback is registered, all
non-blocking transfers enables interrupts that causes the callback to be executed. The callback
runs as part of the interrupt service routine, and care must be taken to follow the guidelines for
acceptable interrupt service routine behavior as described in the Nios II Software Developer’s
Handbook.

To disable callbacks after registering one, call this routine with 0x0 as the callback argument.

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description:
Starts the DMA engine and processes the descriptor pointed to in the controller's next descriptor
pointer and all subsequent descriptors in the chain. It is not necessary to call this function when
do_sync or do_async is used.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

25–22 Chapter 25: Scatter-Gather DMA Controller Core
Document Revision History
alt_avalon_sgdma_stop()

alt_avalon_sgdma_open()

Document Revision History
The following table shows the revision history for this document.

Prototype: void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Stops the DMA engine following completion of the current buffer descriptor. It is not necessary to
call this function when do_sync or do_async is used.

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or NULL if no
corresponding SG-DMA device structure was found.

Description: Retrieves a pointer to a hardware SG-DMA device structure.

Date Version Changes

June 2011 11.0

■ Added description of new parameter Avalon MM data master byte reorder mode in
Table 25–5.

■ Added description of new control register bits in Table 25–7.

■ Added description of new API functions in Table 25–13.

December 2010 10.1

■ Updated Figure 25–4 and Figure 25–5.

■ Revised the bit description of IE_GLOBAL in Table 25–7.

■ Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and
“Referenced Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1

■ Revised descriptions of register fields and bits.

■ Added description to the memory-to-stream configurations.

■ Added descriptions to alt_avalon_sgdma_do_sync_transfer() and
alt_avalon_sgdma_do_async_transfer() API.

■ Added a list on error signals implementation.

March 2009 9.0 Added description of Enable bursting on descriptor read master.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 25: Scatter-Gather DMA Controller Core 25–23
Document Revision History
f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

November 2008 8.1

■ Changed to 8-1/2 x 11 page size.

■ Added section DMA Descriptors in Functional Specifications

■ Revised descriptions of register fields and bits.

■ Reorganized sections Software Programming Model and Programming with SG-DMA
Controller Core.

May 2008 8.0 Added sections on burst transfers. Updates are made to comply with the Quartus II software
version 8.0 release.

Date Version Changes
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

25–24 Chapter 25: Scatter-Gather DMA Controller Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
26. DMA Controller Core
Core Overview
The direct memory access (DMA) controller core with Avalon® interface performs
bulk data transfers, reading data from a source address range and writing the data to
a different address range. An Avalon Memor-Mapped (Avalon-MM) master
peripheral, such as a CPU, can offload memory transfer tasks to the DMA controller.
While the DMA controller performs memory transfers, the master is free to perform
other tasks in parallel.

The DMA controller transfers data as efficiently as possible, reading and writing data
at the maximum pace allowed by the source or destination. The DMA controller is
capable of performing Avalon transfers with flow control, enabling it to automatically
transfer data to or from a slow peripheral with flow control (for example, UART), at
the maximum pace allowed by the peripheral.

The DMA controller is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. Instantiating the DMA controller in SOPC Builder creates
one slave port and two master ports. You must specify which slave peripherals can be
accessed by the read and write master ports. Likewise, you must specify which other
master peripheral(s) can access the DMA control port and initiate DMA transactions.
The DMA controller does not export any signals to the top level of the system module.

For the Nios® II processor, device drivers are provided in the HAL system library. See
“Software Programming Model” on page 26–5 for details of HAL support.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 26–5

Functional Description
You can use the DMA controller to perform data transfers from a source
address-space to a destination address-space. The controller has no concept of
endianness and does not interpret the payload data. The concept of endianness only
applies to a master that interprets payload data.

The source and destination may be either an Avalon-MM slave peripheral (for
example, a constant address) or an address range in memory. The DMA controller can
be used in conjunction with peripherals with flow control, which allows data
transactions of fixed or variable length. The DMA controller can signal an interrupt
request (IRQ) when a DMA transaction completes. A transaction is a sequence of one
or more Avalon transfers initiated by the DMA controller core.
Embedded Peripherals IP User Guide

26–2 Chapter 26: DMA Controller Core
Functional Description
The DMA controller has two Avalon-MM master ports—a master read port and a
master write port—and one Avalon-MM slave port for controlling the DMA as shown
in Figure 26–1.

A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to the control
port.

2. The CPU enables the DMA controller. The DMA controller then begins
transferring data without additional intervention from the CPU. The DMA’s
master read port reads data from the read address, which may be a memory or a
peripheral. The master write port writes the data to the destination address, which
can also be a memory or peripheral. A shallow FIFO buffers data between the read
and write ports.

3. The DMA transaction ends when a specified number of bytes are transferred (a
fixed-length transaction) or an end-of-packet signal is asserted by either the sender
or receiver (a variable-length transaction). At the end of the transaction, the DMA
controller generates an interrupt request (IRQ) if it was configured by the CPU to
do so.

4. During or after the transaction, the CPU can determine if a transaction is in
progress, or if the transaction ended (and how) by examining the DMA
controller’s status register.

Setting Up DMA Transactions
An Avalon-MM master peripheral sets up and initiates DMA transactions by writing
to registers via the control port. The Avalon-MM master programs the DMA engine
using byte addresses which are byte aligned. The master peripheral configures the
following options:

■ Read (source) address location

■ Write (destination) address location

■ Size of the individual transfers: Byte (8-bit), halfword (16-bit), word (32-bit),
doubleword (64-bit) or quadword (128-bit)

■ Enable interrupt upon end of transaction

■ Enable source or destination to end the DMA transaction with end-of-packet
signal

■ Specify whether source and destination are memory or peripheral

Figure 26–1. DMA Controller Block Diagram

Avalon-MM
Save Port

Addr,
data,

control

IRQ

Separate
Avalon-MM
Master Ports

Register File

status

readaddress

writeaddress

length

control

Read
Master
Port

Write
Master
Port

Control
Port
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 26: DMA Controller Core 26–3
Functional Description
The master peripheral then sets a bit in the control register to initiate the DMA
transaction.

The Master Read and Write Ports
The DMA controller reads data from the source address through the master read port,
and then writes to the destination address through the master write port. You
program the DMA controller using byte addresses. Read and write start addresses
should be aligned to the transfer size. For example, to transfer data words, if the start
address is 0, the address will increment to 4, 8, and 12. For heterogeneous systems
where a number of different slave devices are of different widths, the data width for
read and write masters matches the width of the widest data-width slave addressed
by either the read or the write master. For bursting transfers, the burst length is set to
the DMA transaction length with the appropriate unit conversion. For example, if a
32-bit data width DMA is programmed for a word transfer of 64 bytes, the length
registered is programmed with 64 and the burst count port will be 16. If a 64-bit data
width DMA is programmed for a doubleword transfer of 8 bytes, the length register is
programmed with 8 and the burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports. The default
depth is 2, which makes the write action depend on the data-available status of the
FIFO, rather than on the status of the master read port.

Both the read and write master ports can perform Avalon transfers with flow control,
which allows the slave peripheral to control the flow of data and terminate the DMA
transaction.

f For details about flow control in Avalon-MM data transfers and Avalon-MM
peripherals, refer to Avalon Interface Specifications.

Addressing and Address Incrementing
When accessing memory, the read (or write) address increments by 1, 2, 4, 8, or 16
after each access, depending on the width of the data. On the other hand, a typical
peripheral device (such as UART) has fixed register locations. In this case, the
read/write address is held constant throughout the DMA transaction.

The rules for address incrementing are, in order of priority:

■ If the control register’s RCON (or WCON) bit is set, the read (or write) increment value
is 0.

■ Otherwise, the read and write increment values are set according to the transfer
size specified in the control register, as shown in Table 26–1.

Table 26–1. Address Increment Values

Transfer Width Increment

byte 1

halfword 2

word 4

doubleword 8

quadword 16
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

26–4 Chapter 26: DMA Controller Core
Parameters
1 In systems with heterogeneous data widths, care must be taken to present the correct
address or offset when configuring the DMA to access native-aligned slaves. For
example, in a system using a 32-bit Nios II processor and a 16-bit DMA, the base
address for the UART txdata register must be divided by the
dma_data_width/cpu_data_width—2 in this example.

Parameters
This section describes the parameters you can configure.

DMA Parameters (Basic)
The DMA Parameters page includes the following parameters.

Transfer Size
The parameter Width of the DMA Length Register specifies the minimum width of
the DMA’s transaction length register, which can be between 1 and 32. The length
register determines the maximum number of transfers possible in a single DMA
transaction.

By default, the length register is wide enough to span any of the slave peripherals
mastered by the read or write ports. Overriding the length register may be necessary
if the DMA master port (read or write) masters only data peripherals, such as a UART.
In this case, the address span of each slave is small, but a larger number of transfers
may be desired per DMA transaction.

Burst Transactions
When Enable Burst Transfers is turned on, the DMA controller performs burst
transactions on its master read and write ports. The parameter Maximum Burst Size
determines the maximum burst size allowed in a transaction.

In burst mode, the length of a transaction must not be longer than the configured
maximum burst size. Otherwise, the transaction must be performed as multiple
transactions.

FIFO Depth
The parameter Data Transfer FIFO Depth specifies the depth of the FIFO buffer used
for data transfers. Altera recommends that you set the depth of the FIFO buffer to at
least twice the maximum read latency of the slave interface connected to the read
master port. A depth that is too low reduces transfer throughput.

FIFO Implementation
This option determines the implementation of the FIFO buffer between the master
read and write ports. Select Construct FIFO from Registers to implement the FIFO
using one register per storage bit. This option has a strong impact on logic utilization
when the DMA controller’s data width is large. See “Advanced Options” on
page 26–5.

To implement the FIFO using embedded memory blocks available in the FPGA, select
Construct FIFO from Memory Blocks.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 26: DMA Controller Core 26–5
Software Programming Model
Advanced Options
The Advanced Options page includes the following parameters.

Allowed Transactions
You can choose the transfer datawidth(s) supported by the DMA controller hardware.
The following datawidth options can be enabled or disabled:

■ Byte

■ Halfword (two bytes)

■ Word (four bytes)

■ Doubleword (eight bytes)

■ Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the number of on-chip logic resources
consumed by the DMA controller core. For example, if a system has both 16-bit and
32-bit memories, but the DMA controller transfers data to the 16-bit memory, 32-bit
transfers could be disabled to conserve logic resources.

Software Programming Model
This section describes the programming model for the DMA controller, including the
register map and software declarations to access the hardware. For Nios II processor
users, Altera provides HAL system library drivers that enable you to access the DMA
controller core using the HAL API for DMA devices.

HAL System Library Support
The Altera-provided driver implements a HAL DMA device driver that integrates
into the HAL system library for Nios II systems. HAL users should access the DMA
controller via the familiar HAL API, rather than accessing the registers directly.

c If your program uses the HAL device driver to access the DMA controller, accessing
the device registers directly interferes with the correct behavior of the driver.

The HAL DMA driver provides both ends of the DMA process; the driver registers
itself as both a receive channel (alt_dma_rxchan) and a transmit channel
(alt_dma_txchan). The Nios II Software Developer’s Handbook provides complete details
of the HAL system library and the usage of DMA devices.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

26–6 Chapter 26: DMA Controller Core
Software Programming Model
ioctl() Operations
ioctl() operation requests are defined for both the receive and transmit channels,
which allows you to control the hardware-dependent aspects of the DMA controller.
Two ioctl() functions are defined for the receiver driver and the transmitter driver:
alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl(). Table 26–2 lists the available
operations. These are valid for both the transmit and receive channels.

Limitations
Currently the Altera-provided drivers do not support 64-bit and 128-bit DMA
transactions.

This function is not thread safe. If you want to access the DMA controller from more
than one thread then you should use a semaphore or mutex to ensure that only one
thread is executing within this function at any time.

Software Files
The DMA controller is accompanied by the following software files. These files define
the low-level interface to the hardware. Application developers should not modify
these files.

■ altera_avalon_dma_regs.h—This file defines the core’s register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used only by device driver functions.

■ altera_avalon_dma.h, altera_avalon_dma.c—These files implement the DMA
controller’s device driver for the HAL system library.

Table 26–2. Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl()

Request Meaning

ALT_DMA_SET_MODE_8 Transfers data in units of 8 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_16 Transfers data in units of 16 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_32 Transfers data in units of 32 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_64 Transfers data in units of 64 bits. The parameter arg is ignored.

ALT_DMA_SET_MODE_128 Transfers data in units of 128 bits. The parameter arg is ignored.

ALT_DMA_RX_ONLY_ON (1) Sets a DMA receiver into streaming mode. In this case, data is read continuously from a
single location. The parameter arg specifies the address to read from.

ALT_DMA_RX_ONLY_OFF (1) Turns off streaming mode for a receive channel. The parameter arg is ignored.

ALT_DMA_TX_ONLY_ON (1) Sets a DMA transmitter into streaming mode. In this case, data is written continuously to
a single location. The parameter arg specifies the address to write to.

ALT_DMA_TX_ONLY_OFF (1) Turns off streaming mode for a transmit channel. The parameter arg is ignored.

Note to Table 26–2:

(1) These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names (ALT_DMA_TX_STREAM_ON,
ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should use the new
names.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 26: DMA Controller Core 26–7
Software Programming Model
Register Map
Programmers using the HAL API never access the DMA controller hardware directly
via its registers. In general, the register map is only useful to programmers writing a
device driver.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate.

Table 26–3 shows the register map for the DMA controller. Device drivers control and
communicate with the hardware through five memory-mapped 32-bit registers.

status Register
The status register consists of individual bits that indicate conditions inside the DMA
controller. The status register can be read at any time. Reading the status register
does not change its value.

The status register bits are shown in Table 26–4.

Table 26–3. DMA Controller Register Map

Offset Register Name Read/Write 31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 status (1) RW (2) LE
N

WE
OP

RE
OP

BU
SY

DO
NE

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW DMA transaction length (in bytes)

4 — — Reserved (3)

5 — — Reserved (3)

6
control

RW (2)

SO
FT
WA
RE
RE
SE
T

QU
AD
WO
RD

DO
UB
LE
WO
RD

WC
ON

RC
ON

LE
EN

WE
EN

RE
EN

I_
EN GO WO
RD HW BY
TE

7 — — Reserved (3)

Notes to Table 26–3:

(1) Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
(2) These bits are reserved. Read values are undefined. Write zero.
(3) This register is reserved. Read values are undefined. The result of a write is undefined.

Table 26–4. status Register Bits (Part 1 of 2)

Bit
Number

Bit
Name Read/Write/Clear Description

0 DONE R/C
A DMA transaction is complete. The DONE bit is set to 1 when an end of packet
condition is detected or the specified transaction length is completed. Write
zero to the status register to clear the DONE bit.

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

26–8 Chapter 26: DMA Controller Core
Software Programming Model
readaddress Register
The readaddress register specifies the first location to be read in a DMA transaction.
The readaddress register width is determined at system generation time. It is wide
enough to address the full range of all slave ports mastered by the read port.

writeaddress Register
The writeaddress register specifies the first location to be written in a DMA
transaction. The writeaddress register width is determined at system generation
time. It is wide enough to address the full range of all slave ports mastered by the
write port.

length Register
The length register specifies the number of bytes to be transferred from the read port
to the write port. The length register is specified in bytes. For example, the value must
be a multiple of 4 for word transfers, and a multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the write master
port. When length reaches 0 the LEN bit is set. The length register does not decrement
below 0.

The length register width is determined at system generation time. It is at least wide
enough to span any of the slave ports mastered by the read or write master ports, and
it can be made wider if necessary.

control Register
The control register is composed of individual bits that control the DMA’s internal
operation. The control register’s value can be read at any time. The control register
bits determine which, if any, conditions of the DMA transaction result in the end of a
transaction and an interrupt request.

The control register bits are shown in Table 26–5.

2 REOP R The REOP bit is 1 when a transaction is completed due to an end-of-packet
event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an end of packet
event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to zero.

Table 26–4. status Register Bits (Part 2 of 2)

Bit
Number

Bit
Name Read/Write/Clear Description

Table 26–5. Control Register Bits (Part 1 of 2)

Bit
Number Bit Name

Read/
Write/
Clear

Description

0 BYTE RW Specifies byte transfers.

1 HW RW Specifies halfword (16-bit) transfers.

2 WORD RW Specifies word (32-bit) transfers.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 26: DMA Controller Core 26–9
Software Programming Model
The data width of DMA transactions is specified by the BYTE, HW, WORD, DOUBLEWORD,
and QUADWORD bits. Only one of these bits can be set at a time. If more than one of the
bits is set, the DMA controller behavior is undefined. The width of the transfer is
determined by the narrower of the two slaves read and written. For example, a DMA
transaction that reads from a 16-bit flash memory and writes to a 32-bit on-chip
memory requires a halfword transfer. In this case, HW must be set to 1, and BYTE, WORD,
DOUBLEWORD, and QUADWORD must be set to 0.

To successfully perform transactions of a specific width, that width must be enabled
in hardware using the Allowed Transaction hardware option. For example, the DMA
controller behavior is undefined if quadword transfers are disabled in hardware, but
the QUADWORD bit is set during a DMA transaction.

3 GO RW
Enables DMA transaction. When the GO bit is set to 0, the DMA is prevented
from executing transfers. When the GO bit is set to 1 and the length register
is non-zero, transfers occur.

4 I_EN RW
Enables interrupt requests (IRQ). When the I_EN bit is 1, the DMA
controller generates an IRQ when the status register’s DONE bit is set to 1.
IRQs are disabled when the I_EN bit is 0.

5 REEN RW
Ends transaction on read-side end-of-packet. When the REEN bit is set to 1,
a slave port with flow control on the read side may end the DMA transaction
by asserting its end-of-packet signal.

6 WEEN RW
Ends transaction on write-side end-of-packet. When the WEEN bit is set to 1,
a slave port with flow control on the write side may end the DMA
transaction by asserting its end-of-packet signal.

7 LEEN RW

Ends transaction when the length register reaches zero. When the
LEEN bit is 1, the DMA transaction ends when the length register reaches
0. When this bit is 0, length reaching 0 does not cause a transaction to
end. In this case, the DMA transaction must be terminated by an end-of-
packet signal from either the read or write master port.

8 RCON RW

Reads from a constant address. When RCON is 0, the read address
increments after every data transfer. This is the mechanism for the DMA
controller to read a range of memory addresses. When RCON is 1, the read
address does not increment. This is the mechanism for the DMA controller
to read from a peripheral at a constant memory address. For details, see
“Addressing and Address Incrementing” on page 26–3.

9 WCON RW

Writes to a constant address. Similar to the RCON bit, when WCON is 0 the
write address increments after every data transfer; when WCON is 1 the write
address does not increment. For details, see “Addressing and Address
Incrementing” on page 26–3.

10 DOUBLEWORD RW Specifies doubleword transfers.

11 QUADWORD RW Specifies quadword transfers.

12 SOFTWARERESET RW

Software can reset the DMA engine by writing this bit to 1 twice. Upon the
second write of 1 to the SOFTWARERESET bit, the DMA control is reset
identically to a system reset. The logic which sequences the software reset
process then resets itself automatically.

Table 26–5. Control Register Bits (Part 2 of 2)

Bit
Number Bit Name

Read/
Write/
Clear

Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

26–10 Chapter 26: DMA Controller Core
Document Revision History
c Executing a DMA software reset when a DMA transfer is active may result in
permanent bus lockup (until the next system reset). The SOFTWARERESET bit should
therefore not be written except as a last resort.

Interrupt Behavior
The DMA controller has a single IRQ output that is asserted when the status
register’s DONE bit equals 1 and the control register’s I_EN bit equals 1.

Writing the status register clears the DONE bit and acknowledges the IRQ. A master
peripheral can read the status register and determine how the DMA transaction
finished by checking the LEN, REOP, and WEOP bits.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 Added a new parameter, FIFO Depth.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Updated the Functional Description section. Updates are made to comply with the Quartus II
software version 8.0 release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
27. Video Sync Generator and Pixel
Converter Cores
Core Overview
The video sync generator core accepts a continuous stream of pixel data in RGB
format, and outputs the data to an off-chip display controller with proper timing. You
can configure the video sync generator core to support different display resolutions
and synchronization timings.

The pixel converter core transforms the pixel data to the format required by the video
sync generator. Figure 27–1 shows a typical placement of the video sync generator
and pixel converter cores in a system.

In this example, the video buffer stores the pixel data in 32-bit unpacked format. The
extra byte in the pixel data is discarded by the pixel converter core before the data is
serialized and sent to the video sync generator core.

The video sync generator and pixel converter cores are SOPC Builder-ready and
integrate easily into any SOPC Builder-generated system.

These cores are deployed in the Nios II Embedded Software Evaluation Kit (NEEK),
which includes an LCD display daughtercard assembly attached via an HSMC
connector.

This chapter contains the following sections:

■ “Video Sync Generator” on page 27–1

■ “Pixel Converter” on page 27–5

■ “Hardware Simulation Considerations” on page 27–6

Video Sync Generator
This section describes the hardware structure and functionality of the video sync
generator core.

Figure 27–1. Typical Placement in a System

Video
Buffer

SGDMA FIFO
Pixel

Converter

Data
Format
Adapter

Video
Sync

Generator32 bits 32 bits 32 bits 24 bits 8 bits 8 bits

0RGB BGR0 BGR0 BGR B,G,R B,G,R

Avalon-MM Avalon-ST
Embedded Peripherals IP User Guide

27–2 Chapter 27: Video Sync Generator and Pixel Converter Cores
Video Sync Generator
Functional Description
The video sync generator core adds horizontal and vertical synchronization signals to
the pixel data that comes through its Avalon® (Avalon-ST) input interface and outputs
the data to an off-chip display controller. No processing or validation is performed on
the pixel data. Figure 27–2 shows a block diagram of the video sync generator.

You can configure various aspects of the core and its Avalon-ST interface to suit your
requirements. You can specify the data width, number of beats required to transfer
each pixel and synchronization signals. See “Parameters” on page 27–2 for more
information on the available options.

To ensure incoming pixel data is sent to the display controller with correct timing, the
video sync generator core must synchronize itself to the first pixel in a frame. The first
active pixel is indicated by an sop pulse.

The video sync generator core expects continuous streams of pixel data at its input
interface and assumes that each incoming packet contains the correct number of
pixels (Number of rows * Number of columns). Data starvation disrupts
synchronization and results in unexpected output on the display.

Parameters
Table 27–1 lists the available parameters in the MegaWizard interface.

Figure 27–2. Video Sync Generator Block Diagram

clk

reset

data

ready

valid

sop

eop

rgb_out

hd

vd

den

VIDEO SYNC GENERATOR

Table 27–1. Video Sync Generator Parameters

Parameter Name Description

Horizontal Sync Pulse Pixels The width of the h-sync pulse in number of pixels.

Total Vertical Scan Lines The total number of lines in one video frame. The value is the sum of the following
parameters: Number of Rows, Vertical Blank Lines, and Vertical Front Porch Lines.

Number of Rows The number of active scan lines in each video frame.

Horizontal Sync Pulse
Polarity The polarity of the h-sync pulse; 0 = active low and 1 = active high.

Horizontal Front Porch Pixels The number of blanking pixels that follow the active pixels. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 27: Video Sync Generator and Pixel Converter Cores 27–3
Video Sync Generator
Signals
Table 27–2 lists the input and output signals for the video sync generator core.

Vertical Sync Pulse Polarity The polarity of the v-sync pulse; 0 = active low and 1 = active high.

Vertical Sync Pulse Lines The width of the v-sync pulse in number of lines.

Vertical Front Porch Lines The number of blanking lines that follow the active lines. During this period, there is no data
flow from the Avalon-ST sink port to the LCD output data port.

Number of Columns The number of active pixels in each line.

Horizontal Blank Pixels The number of blanking pixels that precede the active pixels. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal Scan Pixels The total number of pixels in one line. The value is the sum of the following parameters:
Number of Columns, Horizontal Blank Pixel, and Horizontal Front Porch Pixels.

Beats Per Pixel

The number of beats required to transfer one pixel. Valid values are 1 and 3. This
parameter, when multiplied by Data Stream Bit Width must be equal to the total number of
bits in one pixel. This parameter affects the operating clock frequency, as shown in the
following equation:

Operating clock frequency = (Beats per pixel) * (Pixel_rate), where
Pixel_rate (in MHz) = ((Total Horizontal Scan Pixels) * (Total Vertical Scan Lines) *
(Display refresh rate in Hz))/1000000.

Vertical Blank Lines The number of blanking lines that proceed the active lines. During this period, there is no
data flow from the Avalon-ST sink port to the LCD output data port.

Data Stream Bit Width The width of the inbound and outbound data.

Table 27–1. Video Sync Generator Parameters

Parameter Name Description

Table 27–2. Video Sync Generator Core Signals (Part 1 of 2)

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input System clock.

reset 1 Input System reset.

Avalon-ST Signals

data
Variable-

width Input Incoming pixel data. The datawidth is determined by the parameter Data
Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is ready to receive
the pixel data.

valid 1 Input
This signal is not used by the video sync generator core because the core
always expects valid pixel data on the next clock cycle after the ready
signal is asserted.

sop 1 Input Start-of-packet. This signal is asserted when the first pixel is received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is received.

LCD Output Signals

rgb_out
Variable-

width Output Display data. The datawidth is determined by the parameter Data Stream
Bit Width.

hd 1 Output Horizontal synchronization pulse for display.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

27–4 Chapter 27: Video Sync Generator and Pixel Converter Cores
Video Sync Generator
Timing Diagrams
The horizontal and vertical synchronization timings are determined by the
parameters setting. Figure 27–3 shows the horizontal synchronization timing when
the parameters Data Stream Bit Width and Beats Per Pixel are set to 8 and 3,
respectively.

Figure 27–4 sho.ws the horizontal synchronization timing when the parameters Data
Stream Bit Width and Beats Per Pixel are set to 24 and 1, respectively.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core outputs valid
data for display.

Table 27–2. Video Sync Generator Core Signals (Part 2 of 2)

Signal Name Width (Bits) Direction Description

Figure 27–3. Horizontal Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel

clk

hd

den

rgb_out R G B R G B

Horizontal sync pulse

Horizontal front porch

1 pixel

Horizontal blank pixels

Horizontal synchronization width

Figure 27–4. Horizontal Synchronization Timing—24 Bits DataWidth and 1 Beat Per Pixel

clk

hd

den

rgb_out RGB

Horizontal synchronization pulse

Horizontal blank pixels Horizontal front porch

1 pixel

RGBRGB RGBRGBRGB

Horizontal synchronization width
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 27: Video Sync Generator and Pixel Converter Cores 27–5
Pixel Converter
Figure 27–5 shows the vertical synchronization timing.

Pixel Converter
This section describes the hardware structure and functionality of the pixel converter
core.

Functional Description
The pixel converter core receives pixel data on its Avalon-ST input interface and
transforms the pixel data to the format required by the video sync generator. The least
significant byte of the 32-bit wide pixel data is removed and the remaining 24 bits are
wired directly to the core's Avalon-ST output interface.

Parameters
You can configure the following parameter:

■ Source symbols per beat—The number of symbols per beat on the Avalon-ST
source interface.

Signals
Table 27–3 lists the input and output signals for the pixel converter core.

Figure 27–5. Vertical Synchronization Timing—8 Bits DataWidth and 3 Beats Per Pixel / 24 Bits DataWidth and 1 Beat
Per Pixel

hd

den

Vertical blank lines

Horizontal synchronization width

vd

Vertical synchronization width

Vertical front porch

Vertical synchronization pulse

Table 27–3. Pixel Converter Input Interface Signals (Part 1 of 2)

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input
Not in use.

reset_n 1 Input

Avalon-ST Signals

data_in 32 Input Incoming pixel data. Contains four 8-bit symbols that are transferred in 1
beat.

data_out 24 Output Output data. Contains three 8-bit symbols that are transferred in 1 beat.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

27–6 Chapter 27: Video Sync Generator and Pixel Converter Cores
Hardware Simulation Considerations
Hardware Simulation Considerations
For a typical 60 Hz refresh rate, set the simulation length for the video sync generator
core to at least 16.7 μs to get a full video frame. Depending on the size of the video
frame, simulation may take a very long time to complete.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

sop_in 1 Input

Wired directly to the corresponding output signals.

eop_in 1 Input

ready_in 1 Input

valid_in 1 Input

empty_in 1 Input

sop_out 1 Output

Wired directly from the input signals.

eop_out 1 Output

ready_out 1 Output

valid_out 1 Output

empty_out 1 Output

Table 27–3. Pixel Converter Input Interface Signals (Part 2 of 2)

Signal Name Width (Bits) Direction Description

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Added new parameters for both cores. Updates are made to comply with the Quartus II
software version 8.0 release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
28. Interval Timer Core
Core Overview
The Interval Timer core with Avalon® interface is an interval timer for Avalon-based
processor systems, such as a Nios® II processor system. The core provides the
following features:

■ 32-bit and 64-bit counters.

■ Controls to start, stop, and reset the timer.

■ Two count modes: count down once and continuous count-down.

■ Count-down period register.

■ Option to enable or disable the interrupt request (IRQ) when timer reaches zero.

■ Optional watchdog timer feature that resets the system if timer ever reaches zero.

■ Optional periodic pulse generator feature that outputs a pulse when timer reaches
zero.

■ Compatible with 32-bit and 16-bit processors.

Device drivers are provided in the HAL system library for the Nios II processor. The
interval timer core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 28–4

Functional Description
Figure 28–1 shows a block diagram of the interval timer core.

The intervanl timer core has two user-visible features:

■ The Avalon Memory-Mapped (Avalon-MM) interface that provides access to six
16-bit registers

■ An optional pulse output that can be used as a periodic pulse generator

Figure 28–1. Interval Timer Core Block Diagram

Register File

status

 control

 period_n

snap_n

IRQ

Address &
Data

Avalon-MM
slave interface

to on-chip
logic

Control
Logic

resetrequest

(watchdog)

timeout_pulse

Counter
Embedded Peripherals IP User Guide

28–2 Chapter 28: Interval Timer Core
Configuration
All registers are 16-bits wide, making the core compatible with both 16-bit and 32-bit
processors. Certain registers only exist in hardware for a given configuration. For
example, if the core is configured with a fixed period, the period registers do not exist
in hardware.

The following sequence describes the basic behavior of the interval timer core:

■ An Avalon-MM master peripheral, such as a Nios II processor, writes the core's
control register to perform the following tasks:

■ Start and stop the timer

■ Enable/disable the IRQ

■ Specify count-down once or continuous count-down mode

■ A processor reads the status register for information about current timer activity.

■ A processor can specify the timer period by writing a value to the period registers.

■ An internal counter counts down to zero, and whenever it reaches zero, it is
immediately reloaded from the period registers.

■ A processor can read the current counter value by first writing to one of the snap
registers to request a coherent snapshot of the counter, and then reading the snap
registers for the full value.

■ When the count reaches zero, one or more of the following events are triggered:

■ If IRQs are enabled, an IRQ is generated.

■ The optional pulse-generator output is asserted for one clock period.

■ The optional watchdog output resets the system.

Avalon-MM Slave Interface
The interval timer core implements a simple Avalon-MM slave interface to provide
access to the register file. The Avalon-MM slave port uses the resetrequest signal to
implement watchdog timer behavior. This signal is a non-maskable reset signal, and it
drives the reset input of all Avalon-MM peripherals in the SOPC Builder system.
When the resetrequest signal is asserted, it forces any processor connected to the
system to reboot. For more information, refer to “Configuring the Timer as a
Watchdog Timer” on page 28–4.

Configuration
This section describes the options available in the MegaWizard Interace.

Timeout Period
The Timeout Period setting determines the initial value of the period registers. When
the Writeable period option is on, a processor can change the value of the period by
writing to the period registers. When the Writeable period option is off, the period is
fixed and cannot be updated at runtime. See “Hardware Options” on page 28–3 for
information on register options.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 28: Interval Timer Core 28–3
Configuration
The Timeout Period is an integer multiple of the Timer Frequency. The Timer
Frequency is fixed at the frequency setting of the system clock associated with the
timer. The Timeout Period setting can be specified in units of µs (microseconds), ms
(milliseconds), seconds , or clocks (number of cycles of the system clock associated
with the timer). The actual period depends on the frequency of the system clock
associated with the timer. If the period is specified in µs, ms, or seconds, the true
period will be the smallest number of clock cycles that is greater or equal to the
specified Timeout Period value. For example, if the associated system clock has a
frequency of 30 ns, and the specified Timeout Period value is 1 µs, the true timeout
period will be 1.020 microseconds.

Counter Size
The Counter Size setting determines the timer's width, which can be set to either 32 or
64 bits. A 32-bit timer has two 16-bit period registers, whereas a 64-bit timer has four
16-bit period registers. This option applies to the snap registers as well.

Hardware Options
The following options affect the hardware structure of the interval timer core. As a
convenience, the Preset Configurations list offers several pre-defined hardware
configurations, such as:

■ Simple periodic interrupt—This configuration is useful for systems that require
only a periodic IRQ generator. The period is fixed and the timer cannot be
stopped, but the IRQ can be disabled.

■ Full-featured—This configuration is useful for embedded processor systems that
require a timer with variable period that can be started and stopped under
processor control.

■ Watchdog—This configuration is useful for systems that require watchdog timer
to reset the system in the event that the system has stopped responding. Refer to
“Configuring the Timer as a Watchdog Timer” on page 28–4.

Register Options
Table 28–1 shows the settings that affect the interval timer core's registers.

Table 28–1. Register Options

Option Description

Writeable
period

When this option is enabled, a master peripheral can change the count-down period by writing to the period
registers. When disabled, the count-down period is fixed at the specified Timeout Period, and the period
registers do not exist in hardware.

Readable
snapshot

When this option is enabled, a master peripheral can read a snapshot of the current count-down. When
disabled, the status of the counter is detectable only via other indicators, such as the status register or the
IRQ signal. In this case, the snap registers do not exist in hardware, and reading these registers produces an
undefined value.

Start/Stop
control bits

When this option is enabled, a master peripheral can start and stop the timer by writing the START and STOP
bits in the control register. When disabled, the timer runs continuously. When the System reset on timeout
(watchdog) option is enabled, the START bit is also present, regardless of the Start/Stop control bits option.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

28–4 Chapter 28: Interval Timer Core
Software Programming Model
Output Signal Options
Table 28–2 shows the settings that affect the interval timer core's output signals.

Configuring the Timer as a Watchdog Timer
To configure the core for use as a watchdog, in the MegaWizard Interface select
Watchdog in the Preset Configurations list, or choose the following settings:

■ Set the Timeout Period to the desired "watchdog" period.

■ Turn off Writeable period.

■ Turn off Readable snapshot.

■ Turn off Start/Stop control bits.

■ Turn off Timeout pulse.

■ Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (comes out of reset) stopped. A processor later starts the
timer by writing a 1 to the control register's START bit. Once started, the timer can
never be stopped. If the internal counter ever reaches zero, the watchdog timer resets
the system by generating a pulse on its resetrequest output. To prevent the system
from resetting, the processor must periodically reset the timer's count-down value by
writing one of the period registers (the written value is ignored). If the processor fails
to access the timer because, for example, software stopped executing normally, the
watchdog timer resets the system and returns the system to a defined state.

Software Programming Model
The following sections describe the software programming model for the interval
timer core, including the register map and software declarations to access the
hardware. For Nios II processor users, Altera provides hardware abstraction layer
(HAL) system library drivers that enable you to access the interval timer core using
the HAL application programming interface (API) functions.

Table 28–2. Output Signal Options

Option Description

Timeout pulse
(1 clock wide)

When this option is on, the core outputs a signal timeout_pulse. This signal pulses high for one
clock cycle whenever the timer reaches zero. When this option is off, the timeout_pulse signal does
not exist.

System reset on
timeout
(watchdog)

When this option is on, the core’s Avalon-MM slave port includes the resetrequest signal. This
signal pulses high for one clock cycle whenever the timer reaches zero resulting in a system-wide
reset. The internal timer is stopped at reset. Explicitly writing the START bit of the control register
starts the timer.

When this option is off, the resetrequest signal does not exist.

Refer to “Configuring the Timer as a Watchdog Timer”.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 28: Interval Timer Core 28–5
Software Programming Model
HAL System Library Support
The Altera-provided drivers integrate into the HAL system library for Nios II
systems. When possible, HAL users should access the core via the HAL API, rather
than accessing the core's registers directly.

Altera provides a driver for both the HAL timer device models: system clock timer,
and timestamp timer.

System Clock Driver
When configured as the system clock, the interval timer core runs continuously in
periodic mode, using the default period set in SOPC builder. The system clock
services are then run as a part of the interrupt service routine for this timer. The driver
is interrupt-driven, and therefore must have its interrupt signal connected in the
system hardware.

The Nios II integrated development environment (IDE) allows you to specify system
library properties that determine which timer device will be used as the system clock
timer.

Timestamp Driver
The interval timer core may be used as a timestamp device if it meets the following
conditions:

■ The timer has a writeable period register, as configured in SOPC Builder.

■ The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that determine which
timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers, calls to the
alt_timestamp_start() API function will not reset the timestamp counter. All other
HAL API calls will perform as expected.

f For more information about using the system clock and timestamp features that use
these drivers, refer to the Nios II Software Developer’s Handbook. The Nios II Embedded
Design Suite (EDS) also provides several example designs that use the interval timer
core.

Limitations
The HAL driver for the interval timer core does not support the watchdog reset
feature of the core.

Software Files
The interval timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL drivers.
Application developers should not modify these files.

■ altera_avalon_timer_regs.h—This file defines the core's register map, providing
symbolic constants to access the low-level hardware.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

28–6 Chapter 28: Interval Timer Core
Software Programming Model
■ altera_avalon_timer.h, altera_avalon_timer_sc.c, altera_avalon_timer_ts.c,
altera_avalon_timer_vars.c—These files implement the timer device drivers for
the HAL system library.

Register Map
You do not need to access the interval timer core directly via its registers if using the
standard features provided in the HAL system library for the Nios II processor. In
general, the register map is only useful to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device registers directly. If you
are writing a device driver, and the HAL driver is active for the same device, your
driver will conflict and fail to operate correctly.

Table 28–3 shows the register map for the 32-bit timer. The interval timer core uses
native address alignment where the 16-bit slave data maps to the base address
<BASE> in the address space of the 32-bit master. The offset refers to the 16-bit slave
address space. For example, to access the control register value, use BASE + 0x4
(offset 1).

f For more information about native address alignment, refer to the System Interconnect
Fabric for Memory-Mapped Interfaces chapter in the SOPC User Guide.

Table 28–4 shows the register map for the 64-bit timer.

Table 28–3. Register Map—32-bit Timer

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits [15:0])

3 periodh RW Timeout Period – 1 (bits [31:16])

4 snapl RW Counter Snapshot (bits [15:0])

5 snaph RW Counter Snapshot (bits [31:16])

Note to Table 28–3:

(1) Reserved. Read values are undefined. Write zero.

Table 28–4. Register Map—64-bit Timer (Part 1 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 period_0 RW Timeout Period – 1 (bits [15:0])

3 period_1 RW Timeout Period – 1 (bits [31:16])

4 period_2 RW Timeout Period – 1 (bits [47:32])

5 period_3 RW Timeout Period – 1 (bits [63:48])
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf

Chapter 28: Interval Timer Core 28–7
Software Programming Model
status Register
The status register has two defined bits, as shown in Table 28–5.

control Register
The control register has four defined bits, as shown in Table 28–6.

6 snap_0 RW Counter Snapshot (bits [15:0])

7 snap_1 RW Counter Snapshot (bits [31:16])

8 snap_2 RW Counter Snapshot (bits [47:32])

9 snap_3 RW Counter Snapshot (bits [63:48])

Note to Table 28–4:

(1) Reserved. Read values are undefined. Write zero.

Table 28–4. Register Map—64-bit Timer (Part 2 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

Table 28–5. status Register Bits

Bit Name R/W/C Description

0 TO RC
The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once set by a timeout
event, the TO bit stays set until explicitly cleared by a master peripheral. Write zero to the
status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit reads as 0.
The RUN bit is not changed by a write operation to the status register.

Table 28–6. control Register Bits

Bit Name R/W/C Description

0 ITO RW If the ITO bit is 1, the interval timer core generates an IRQ when the status register’s TO
bit is 1. When the ITO bit is 0, the timer does not generate IRQs.

1 CONT RW

The CONT (continuous) bit determines how the internal counter behaves when it reaches
zero. If the CONT bit is 1, the counter runs continuously until it is stopped by the STOP bit.
If CONT is 0, the counter stops after it reaches zero. When the counter reaches zero, it
reloads with the value stored in the period registers, regardless of the CONT bit.

2 START (1) W

Writing a 1 to the START bit starts the internal counter running (counting down). The
START bit is an event bit that enables the counter when a write operation is performed. If
the timer is stopped, writing a 1 to the START bit causes the timer to restart counting from
the number currently stored in its counter. If the timer is already running, writing a 1 to
START has no effect. Writing 0 to the START bit has no effect.

3 STOP (1) W

Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an event bit that
causes the counter to stop when a write operation is performed. If the timer is already
stopped, writing a 1 to STOP has no effect. Writing a 0 to the stop bit has no effect.

If the timer hardware is configured with Start/Stop control bits off, writing the STOP bit
has no effect.

Note to Table 28–6:

(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

28–8 Chapter 28: Interval Timer Core
Document Revision History
period_n Registers
The period_n registers together store the timeout period value. The internal counter is
loaded with the value stored in these registers whenever one of the following occurs:

■ A write operation to one of the period_n register

■ The internal counter reaches 0

The timer's actual period is one cycle greater than the value stored in the period_n
registers because the counter assumes the value zero for one clock cycle.

Writing to one of the period_n registers stops the internal counter, except when the
hardware is configured with Start/Stop control bits off. If Start/Stop control bits is
off, writing either register does not stop the counter. When the hardware is configured
with Writeable period disabled, writing to one of the period_n registers causes the
counter to reset to the fixed Timeout Period specified at system generation time.

snap_n Registers
A master peripheral may request a coherent snapshot of the current internal counter
by performing a write operation (write-data ignored) to one of the snap_n registers.
When a write occurs, the value of the counter is copied to snap_n registers. The
snapshot occurs whether or not the counter is running. Requesting a snapshot does
not change the internal counter's operation.

Interrupt Behavior
The interval timer core generates an IRQ whenever the internal counter reaches zero
and the ITO bit of the control register is set to 1. Acknowledge the IRQ in one of two
ways:

■ Clear the TO bit of the status register

■ Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0
■ Revised the native address alignment description.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Revised descriptions of register fields and bits to highlight that the timer component is using
native address alignment.

March 2009 9.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 28: Interval Timer Core 28–9
Document Revision History
f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

November 2008 8.1
■ Changed to 8-1/2 x 11 page size.

■ Updated the core’s name to reflect the name used in SOPC Builder.

May 2008 8.0 Added a new parameter and register map for the 64-bit timer. Updates are made to comply
with the Quartus II software version 8.0 release.

Date Version Changes
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

28–10 Chapter 28: Interval Timer Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
29. Mutex Core
Core Overview
Multiprocessor environments can use the mutex core with Avalon® interface to
coordinate accesses to a shared resource. The mutex core provides a protocol to ensure
mutually exclusive ownership of a shared resource.

The mutex core provides a hardware-based atomic test-and-set operation, allowing
software in a multiprocessor environment to determine which processor owns the
mutex. The mutex core can be used in conjunction with shared memory to implement
additional interprocessor coordination features, such as mailboxes and software
mutexes.

The mutex core is designed for use in Avalon-based processor systems, such as a
Nios® II processor system. Altera provides device drivers for the Nios II processor to
enable use of the hardware mutex.

The mutex core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 29–2

■ “Mutex API” on page 29–3

Functional Description
The mutex core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface
that provides access to two memory-mapped, 32-bit registers. Table 29–1 shows the
registers.

The mutex core has the following basic behavior. This description assumes there are
multiple processors accessing a single mutex core, and each processor has a unique
identifier (ID).

■ When the VALUE field is 0x0000, the mutex is unlocked and available. Otherwise,
the mutex is locked and unavailable.

■ The mutex register is always readable. Avalon-MM master peripherals, such as a
processor, can read the mutex register to determine its current state.

Table 29–1. Mutex Core Register Map

Offset Register Name R/W
Bit Description

31 16 15 1 0

0 mutex RW OWNER VALUE

1 reset RW Reserved RESET
Embedded Peripherals IP User Guide

29–2 Chapter 29: Mutex Core
Configuration
■ The mutex register is writable only under specific conditions. A write operation
changes the mutex register only if one or both of the following conditions are true:

■ The VALUE field of the mutex register is zero.

■ The OWNER field of the mutex register matches the OWNER field in the data to be
written.

■ A processor attempts to acquire the mutex by writing its ID to the OWNER field, and
writing a non-zero value to the VALUE field. The processor then checks if the
acquisition succeeded by verifying the OWNER field.

■ After system reset, the RESET bit in the reset register is high. Writing a one to this
bit clears it.

Configuration
The MegaWizard™ Interface provides the following options:

■ Initial Value—the initial contents of the VALUE field after reset. If the Initial Value
setting is non-zero, you must also specify Initial Owner.

■ Initial Owner—the initial contents of the OWNER field after reset. When Initial
Owner is specified, this owner must release the mutex before it can be acquired by
another owner.

Software Programming Model
The following sections describe the software programming model for the mutex core.
For Nios II processor users, Altera provides routines to access the mutex core
hardware. These functions are specific to the mutex core and directly manipulate low-
level hardware. The mutex core cannot be accessed via the HAL API or the ANSI C
standard library. In Nios II processor systems, a processor locks the mutex by writing
the value of its cpuid control register to the OWNER field of the mutex register.

Software Files
Altera provides the following software files accompanying the mutex core:

■ altera_avalon_mutex_regs.h—Defines the core's register map, providing symbolic
constants to access the low-level hardware.

■ altera_avalon_mutex.h—Defines data structures and functions to access the
mutex core hardware.

■ altera_avalon_mutex.c—Contains the implementations of the functions to access
the mutex core
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 29: Mutex Core 29–3
Mutex API
Hardware Access Routines
This section describes the low-level software constructs for manipulating the mutex
core. The file altera_avalon_mutex.h declares a structure alt_mutex_dev that
represents an instance of a mutex device. It also declares routines for accessing the
mutex hardware structure, listed in Table 29–2.

These routines coordinate access to the software mutex structure using a hardware
mutex core. For a complete description of each function, see section “Mutex API” on
page 29–3.

The code shown in Example 29–1 demonstrates opening a mutex device handle and
locking a mutex.

Mutex API
This section describes the application programming interface (API) for the mutex
core.

altera_avalon_mutex_is_mine()

Table 29–2. Hardware Access Routines

Function Name Description

altera_avalon_mutex_open()
Claims a handle to a mutex, enabling all the other functions to access
the mutex core.

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to lock the mutex.

altera_avalon_mutex_lock()
Locks the mutex. Will not return until it has successfully claimed the
mutex.

altera_avalon_mutex_unlock() Unlocks the mutex.

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() Tests whether the mutex has been released since reset.

Example 29–1. Opening and Locking a mutex

#include <altera_avalon_mutex.h>
/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open(“/dev/mutex”);
/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock(mutex, 1);
/*
* Access a shared resource here.
*/
/* release the lock */
altera_avalon_mutex_unlock(mutex);

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

29–4 Chapter 29: Mutex Core
Mutex API
altera_avalon_mutex_first_lock()

altera_avalon_mutex_lock()

altera_avalon_mutex_open()

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.

Description: altera_avalon_mutex_first_lock() determines whether this mutex has been released
since reset.

Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32 value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters:
dev—the mutex device to acquire.

value—the new value to write to the mutex.

Returns: —

Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware mutex, and at
the same time, loads the mutex with the value parameter.

Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if no
corresponding mutex device structure was found.

Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device structure.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 29: Mutex Core 29–5
Document Revision History
altera_avalon_mutex_trylock()

altera_avalon_mutex_unlock()

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32 value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters:
dev—the mutex device to lock.

value—the new value to write to the mutex.

Returns: 0 = The mutex was successfully locked.
Others = The mutex was not locked.

Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and returns
immediately.

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: Null.

Description:
altera_avalon_mutex_unlock() releases a hardware mutex device. Upon release, the value
stored in the mutex is set to zero. If the caller does not hold the mutex, the behavior of this
function is undefined.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

29–6 Chapter 29: Mutex Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
30. Mailbox Core
Core Overview
Multiprocessor environments can use the mailbox core with Avalon® interface to send
messages between processors.

The mailbox core contains mutexes to ensure that only one processor modifies the
mailbox contents at a time. The mailbox core must be used in conjunction with a
separate shared memory that is used for storing the actual messages.

The mailbox core is designed for use in Avalon-based processor systems, such as a
Nios® II processor system. Altera provides device drivers for the Nios II processor.
The mailbox core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system.

1 The Mailbox core is scheduled for product obsolescence and discontinued support.
Therefore, Altera recommends that you do not use this core in new designs.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 30–2

■ “Mailbox API” on page 30–4

Functional Description
The mailbox core has a simple Avalon Memory-Mapped (Avalon-MM) slave interface
that provides access to four memory-mapped, 32-bit registers. Table 30–1 shows the
registers.

The mailbox component contains two mutexes: One to ensure unique write access to
shared memory and one to ensure unique read access from shared memory. The
mailbox core is used in conjunction with a separate memory in the system that is
shared among multiple processors.

Mailbox functionality using the mutexes and memory is implemented entirely in the
software. Refer to “Software Programming Model” on page 30–2 for details about
how to use the mailbox core in software.

Table 30–1. Mutex Core Register Map

Offset Register Name R/W
Bit Description

31 16 15 1 0

0 mutex0 RW OWNER VALUE

1 reset0 RW Reserved RESET

2 mutex1 RW OWNER VALUE

3 reset1 RW Reserved RESET
Embedded Peripherals IP User Guide

30–2 Chapter 30: Mailbox Core
Configuration
f For a detailed description of the mutex hardware operation, refer to “Mutex Core” on
page 29–1

Configuration
You can instantiate and configure the mailbox core in an SOPC Builder system using
the following process:

1. Decide which processors share the mailbox.

2. On the SOPC Builder System Contents tab, instantiate a memory component to
serve as the mailbox buffer. Any RAM can be used as the mailbox buffer. The
mailbox buffer can share space in an existing memory, such as program memory; it
does not require a dedicated memory.

3. On the SOPC Builder System Contents tab, instantiate the mailbox component.
The mailbox MegaWizard™ Interface presents the following options:

■ Memory module—Specifies which memory to use for the mailbox buffer. If the
Memory module list does not contain the desired shared memory, the memory
is not connected in the system correctly. Refer to Step 4 on page 30–2.

■ CPUs available with this memory—Shows all the processors that can share
the mailbox. This field is always read-only. Use it to verify that the processor
connections are correct. If a processor that needs to share the mailbox is
missing from the list, refer to Step 4 on page 30–2.

■ Shared mailbox memory offset—Specifies an offset into the memory. The
mailbox message buffer starts at this offset.

■ Mailbox size (bytes)—Specifies the number of bytes to use for the mailbox
message buffer. The Nios II driver software provided by Altera uses eight bytes
of overhead to implement the mailbox functionality. For a mailbox capable of
passing only one message at a time, Mailbox size (bytes) must be at least 12
bytes.

■ Maximum available bytes—Specifies the number of bytes in the selected
memory available for use as the mailbox message buffer. This field is always
read-only.

4. If not already connected, make component connections on the SOPC Builder
System Contents tab.

a. Connect each processor’s data bus master port to the mailbox slave port.

b. Connect each processor’s data bus master port to the shared mailbox memory.

Software Programming Model
The following sections describe the software programming model for the mailbox
core. For Nios II processor users, Altera provides routines to access the mailbox core
hardware. These functions are specific to the mailbox core and directly manipulate
low-level hardware.

The mailbox software programming model has the following characteristics and
assumes there are multiple processors accessing a single mailbox core and a shared
memory:
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 30: Mailbox Core 30–3
Software Programming Model
■ Each mailbox message is one 32-bit word.

■ There is a predefined address range in shared memory dedicated to storing
messages. The size of this address range imposes a maximum limit on the number
of messages pending.

■ The mailbox software implements a message FIFO between processors. Only one
processor can write to the mailbox at a time, and only one processor can read from
the mailbox at a time, ensuring message integrity.

■ The software on both the sending and receiving processors must agree on a
protocol for interpreting mailbox messages. Typically, processors treat the message
as a pointer to a structure in shared memory.

■ The sending processor can post messages in succession, up to the limit imposed by
the size of the message address range.

■ When messages exist in the mailbox, the receiving processor can read messages.
The receiving processor can block until a message appears, or it can poll the
mailbox for new messages.

■ Reading the message removes the message from the mailbox.

Software Files
Altera provides the following software files accompanying the mailbox core
hardware:

■ altera_avalon_mailbox_regs.h—Defines the core’s register map, providing
symbolic constants to access the low-level hardware.

■ altera_avalon_mailbox.h—Defines data structures and functions to access the
mailbox core hardware.

■ altera_avalon_mailbox.c—Contains the implementations of the functions to
access the mailbox core.

Programming with the Mailbox Core
This section describes the software constructs for manipulating the mailbox core
hardware.

The file altera_avalon_mailbox.h declares a structure alt_mailbox_dev that
represents an instance of a mailbox device. It also declares functions for accessing the
mailbox hardware structure, listed in Table 30–2. For a complete description of each
function, refer to “Mailbox API” on page 30–4.

Table 30–2. Mailbox API Functions (Part 1 of 2)

Function Name Description

altera_avalon_mailbox_close() Closes the handle to a mailbox.

altera_avalon_mailbox_get()
Returns a message if one is present, but does not block waiting for a
message.

altera_avalon_mailbox_open()
Claims a handle to a mailbox, enabling all the other functions to
access the mailbox core.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

30–4 Chapter 30: Mailbox Core
Mailbox API
Example 30–1 demonstrates writing to and reading from a mailbox. For this example,
assume that the hardware system has two processors communicating via mailboxes.
The system includes two mailbox cores, which provide two-way communication
between the processors.

Mailbox API
This section describes the application programming interface (API) for the mailbox
core.

altera_avalon_mailbox_close()

altera_avalon_mailbox_pend() Blocks waiting for a message to be in the mailbox.

altera_avalon_mailbox_post() Posts a message to the mailbox.

Table 30–2. Mailbox API Functions (Part 2 of 2)

Function Name Description

Example 30–1. Writing to and Reading from a Mailbox

#include <stdio.h>
#include "altera_avalon_mailbox.h"

int main()
{

alt_u32 message = 0;
alt_mailbox_dev* send_dev, recv_dev;
/* Open the two mailboxes between this processor and another */
send_dev = altera_avalon_mailbox_open("/dev/mailbox_0");
recv_dev = altera_avalon_mailbox_open("/dev/mailbox_1");

while(1)
{
/* Send a message to the other processor */
altera_avalon_mailbox_post(send_dev, message);

/* Wait for the other processor to send a message back */
message = altera_avalon_mailbox_pend(recv_dev);

}
return 0;

}

Prototype: void altera_avalon_mailbox_close (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox to close.

Returns: Null.

Description: altera_avalon_mailbox_close() closes the mailbox.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 30: Mailbox Core 30–5
Mailbox API
altera_avalon_mailbox_get()

altera_avalon_mailbox_open()

altera_avalon_mailbox_pend()

Prototype: alt_u32 altera_avalon_mailbox_get (alt_mailbox_dev* dev, int* err);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox handle.
err—pointer to an error code that is returned.

Returns: Returns a message if one is available in the mailbox, otherwise returns 0. The value pointed to by
err is 0 if the message was read correctly, or EWOULDBLOCK if there is no message to read.

Description: altera_avalon_mailbox_get() returns a message if one is present, but does not block waiting
for a message.

Prototype: alt_mailbox_dev* altera_avalon_mailbox_open (const char* name);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: name—the name of the mailbox device to open.

Returns: Returns a handle to the mailbox, or NULL if this mailbox does not exist.

Description: altera_avalon_mailbox_open() opens a mailbox.

Prototype: alt_u32 altera_avalon_mailbox_pend (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to read a message from.

Returns: Returns the message.

Description: altera_avalon_mailbox_pend() is a blocking routine that waits for a message to appear in
the mailbox and then reads it.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

30–6 Chapter 30: Mailbox Core
Document Revision History
altera_avalon_mailbox_post()

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Prototype: int altera_avalon_mailbox_post (alt_mailbox_dev* dev, alt_u32 msg);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to post a message to.
msg—the value to post.

Returns: Returns 0 on success, or EWOULDBLOCK if the mailbox is full.

Description: altera_avalon_mailbox_post() posts a message to the mailbox.

Date Version Changes

June 2011 11.0
■ Added information on core obsolescence.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
31. Vectored Interrupt Controller Core
Core Overview
The vectored interrupt controller (VIC) core serves the following main purposes:

■ Provides an interface to the interrupts in your system

■ Reduces interrupt overhead

■ Manages large numbers of interrupts

The VIC offers high-performance, low-latency interrupt handling. The VIC prioritizes
interrupts in hardware and outputs information about the highest-priority pending
interrupt. When external interrupts occur in a system containing a VIC, the VIC
determines the highest priority interrupt, determines the source that is requesting
service, computes the requested handler address (RHA), and provides information,
including the RHA, to the processor.

The VIC core contains the following interfaces:

■ Up to 32 interrupt input ports per VIC core

■ One Avalon® Memory-Mapped (Avalon-MM) slave interface to access the internal
control status registers (CSR)

■ One Avalon Streaming (Avalon-ST) interface output interface to pass information
about the selected interrupt

■ One optional Avalon-ST interface input interface to receive the Avalon-ST output
in systems with daisy-chained VICs

Figure 31–1 outlines the basic layout of a system containing two VIC components.

To use the VIC, the processor in your system needs to have a matching Avalon-ST
interface to accept the interrupt information, such as the Nios® II processor's external
interrupt controller interface.

Figure 31–1. Sample System Layout

Avalon-MM Interconnect Fabric

VIC

CPU

IRQ

Core

Avalon-ST

..
....

IRQ

VIC

IRQ

Core ..
....

IRQ

Avalon-ST

Core Core
Embedded Peripherals IP User Guide

31–2 Chapter 31: Vectored Interrupt Controller Core
Functional Description
The characteristics of each interrupt port are configured via the Avalon-MM slave
interface. When you need more than 32 interrupt ports, you can daisy chain multiple
VICs together.

The VIC core provides the following features:

■ Separate programmable requested interrupt level (RIL) for each interrupt

■ Separate programmable requested register set (RRS) for each interrupt, to tell the
interrupt handler which processor register set to use

■ Separate programmable requested non-maskable interrupt (RNMI) flag for each
interrupt, to control whether each interrupt is maskable or non-maskable

■ Software-controlled priority arbitration scheme

The VIC core is SOPC Builder-ready and integrates easily into any SOPC Builder-
generated system. For the Nios II processor, Altera provides Hardware Abstraction
Layer (HAL) driver routines for the VIC core. Refer to “Altera HAL Software
Programming Model” on page 31–10 for HAL support details.

Functional Description
Figure 31–2 shows a high-level block diagram of the VIC core.

External Interfaces
The following sections describe the external interfaces for the VIC core.

clk
clk is a system clock interface. This interface connects to your system’s main clock
source. The interface’s signals are clk and reset_n.

Figure 31–2. VIC Block Diagram

Control Status Registers

csr_access
(Avalon-MM slave
from processor)

Interrupt
Request

Block
interrupt_controller_in

(optional Avalon-ST
VIC daisy chain input)

Vector
Generation

Block

Priority
Processing

Block

interrupt_controller_out
(Avalon-ST to processor or
to interrupt_controller_in

of another VIC)

clk
(clock)

irq_input
(external interrupt input)
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–3
Functional Description
irq_input
irq_input comprises up to 32 single-bit, level-sensitive Avalon interrupt receiver
interfaces. These interfaces connect to interrupt sources. There is one irq signal for
each interface.

interrupt_controller_out
interrupt_controller_out is an Avalon-ST output interface, as defined in Table 31–2,
configured with a ready latency of 0 cycles. This interface connects to your processor
or to the interrupt_controller_in interface of another VIC. The interface’s signals
are valid and data. Table 31–1 shows the interface’s parameters and the
corresponding parameter values.

interrupt_controller_in
interrupt_controller_in is an optional Avalon-ST input interface, as defined in
Table 31–2, configured with a ready latency of 0 cycles. Include this interface in the
second, third, etc, VIC components of a daisy-chained multiple VIC system. This
interface connects to the interrupt_controller_out interface of the immediately-
preceding VIC in the chain. The interface’s signals are valid and data. Table 31–1
shows the interface’s parameters and the corresponding parameter values.

The interrupt_controller_out and interrupt_controller_in interfaces have
identical Avalon-ST formats so you can daisy chain VICs together in SOPC Builder
when you need more than 32 interrupts. interrupt_controller_out always provides
valid data and cannot be back-pressured. Table 31–2 shows the fields of the VIC’s 45-
bit Avalon-ST interface.

Table 31–1. interrupt_controller_out and interrupt_controller_in Parameters

Parameter Value

Symbol width 45 bits

Ready latency 0 cycles

Table 31–2. VIC Avalon-ST Interface Fields

44 43 42 41 40 39 38 38 37 ... 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RHA (1) RRS (2)

RN
M

I
(2

)

RIL (2)

Notes to Table 31–2:

(1) RHA contains the 32-bit address of the interrupt handling routine.
(2) Refer to Table 31–6 for a description of this field.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–4 Chapter 31: Vectored Interrupt Controller Core
Functional Description
csr_access
csr_access is a VIC CSR interface consisting of an Avalon-MM slave interface. This
interface connects to the data master of your processor. The interface’s signals are
read, write, address, readdata, and writedata. Table 31–3 shows the interface’s
parameters and the corresponding parameter values.

f For information about the Avalon-MM slave and Avalon-ST interfaces, refer to the
Avalon Interface Specifications.

Functional Blocks
The following main design blocks comprise the VIC core:

■ Interrupt request block

■ Priority processing block

■ Vector generation block

The following sections describe each functional block.

Interrupt Request Block
The interrupt request block controls the input interrupts, providing functionality such
as setting interrupt levels, setting the per-interrupt programmable registers, masking
interrupts, and managing software-controlled interrupts. You configure the number
of interrupt input ports when you create the component. Refer to “Parameters” on
page 31–10 for configuration options.

This block contains the majority of the VIC CSRs. The CSRs are accessed via the
Avalon-MM slave interface.

Optional output from another VIC core can also come into the interrupt request block.
Refer to “Daisy Chaining VIC Cores” on page 31–6 for more information.

Table 31–3. csr_access Parameters

Parameter Value

Read wait 1 cycle

Write wait 0 cycles

Ready latency 4 cycles
Embedded Peripherals IP User Guide June 2011 Altera Corporation

www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 31: Vectored Interrupt Controller Core 31–5
Functional Description
Figure 31–3 shows the details of the interrupt request block. Each interrupt can be
driven either by its associated irq_input signal (connected to a component with an
interrupt source) or by a software trigger controlled by a CSR (even when there is no
interrupt source connected to the irq_input signal).

Priority Processing Block
The priority processing block chooses the interrupt with the highest priority. The
block receives information for each interrupt from the interrupt request block and
passes information for the highest priority interrupt to the vector generation block.

The interrupt request with the numerically-largest RIL has priority. If multiple
interrupts are pending with the same numerically-largest RIL, the numerically-lowest
IRQ index of those interrupts has priority.

The RIL is a programmable interrupt level per port. An RIL value of zero disables the
interrupt. You configure the bit width of the RIL when you create the component.
Refer to “Parameters” on page 31–10 for configuration options.

Vector Generation Block
The vector generation block receives information for the highest priority interrupt
from the priority processing block. The vector generation block uses the port identifier
passed from the priority processing block along with the vector base address and
bytes per vector programmed in the CSRs during software initialization to compute
the RHA. Equation 31–1 shows the RHA formula.

The information then passes out of the vector generation block and the VIC using the
Avalon-ST interface. Refer to Table 31–2 on page 31–3 for details about the outgoing
information. The output from the VIC typically connects to a processor or another
VIC, depending on the design.

Figure 31–3. Interrupt Request Block

irq_input
(external interrupt input)

INT_RAW_STATUS INT_ENABLE INT_PENDING

SW_INTERRUPT

RIL
per port

PortId[5:0]
x32

RRS[5:0]
x32

RNMI
x32

RIL[5:0]
x32

RRS
per port

RNMI
per port

Equation 31–1. RHA Calculation

RHA port identifier bytes per vector×() vector base address+=
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–6 Chapter 31: Vectored Interrupt Controller Core
Register Maps
Daisy Chaining VIC Cores
You can create a system with more than 32 interrupts by daisy chaining multiple VIC
cores together. This is done by connecting the interrupt_controller_out interface of
one VIC to the optional interrupt_controller_in interface of another VIC. For
information about enabling the optional input interface, refer to “Parameters” on
page 31–10.

1 For performance reasons, always directly connect VIC components. Do not include
other components between VICs.

When daisy chain input comes into the VIC, the priority processing block considers
the daisy chain input along with the hardware and software interrupt inputs from the
interrupt request block to determine the highest priority interrupt. If the daisy chain
input has the highest RIL value, then the vector generation block passes the daisy
chain port values unchanged directly out of the VIC.

You can daisy chain VICs with fewer than 32 interrupt ports. The number of daisy
chain connections is only limited to the hardware and software resources. Refer to
“Latency Information” for details about the impact of multiple VICs.

1 Altera recommends setting the RIL width to the same value in all daisy-chained VIC
components. If your RIL widths are different, wider RILs from upstream VICs are
truncated.

Latency Information
The latency of an interrupt request traveling through the VIC is the sum of the delay
through each of the blocks. Clock delays in the interrupt request block and the vector
generation block are constants. The clock delay in the priority processing block varies
depending on the total number of interrupt ports. Table 31–4 shows the latency
information.

When daisy-chaining multiple VICs, interrupt latency increases as you move through
the daisy chain away from the processor. For best performance, assign interrupts with
the lowest latency requirements to the VIC connected directly to the processor.

Register Maps
The VIC core CSRs are accessible through the Avalon-MM interface. Software can
configure the core and determine current status by accessing the registers.

1 Each register has a 32-bit interface that is not byte-enabled. You must access these
registers with a master that is at least 32 bits wide.

Table 31–4. Clock Delay Latencies

Number of Interrupt
Ports

Interrupt Request
Block Delay

Priority Processing
Block Delay

Vector Generation
Block Delay

Total Interrupt
Latency

2 – 4 2 cycles 1 cycle 1 cycle 4 cycles

5 – 16 2 cycles 2 cycles 1 cycle 5 cycles

17 – 32 2 cycles 3 cycles 1 cycle 6 cycles
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–7
Register Maps
Table 31–5 lists and describes the registers.

Table 31–5. Control Status Registers (Part 1 of 2)

Offset Register Name Access Reset
Value Description

0 – 31 INT_CONFIG<n> R/W 0

There are 32 interrupt configuration registers (INT_CONFIG0 –
INT_CONFIG31). Each register contains fields to configure the
behavior of its corresponding interrupt. If an interrupt input
does not exist, reading the corresponding register always
returns zero, and writing is ignored. Refer to Table 31–6 on
page 31–8 for the INT_CONFIG register map.

32 INT_ENABLE R/W 0

The interrupt enable register. INT_ENABLE holds the enabled
status of each interrupt input. The 32 bits of the register map
to the 32 interrupts available in the VIC core. For example, bit
5 corresponds to IRQ5. (1)

Interrupt that are not enabled are never considered by the
priority processing block, even when the interrupt input is
asserted.

33 INT_ENABLE_SET W 0

The interrupt enable set register. Writing a 1 to a bit in
INT_ENABLE_SET sets the corresponding bit in INT_ENABLE.
Writing a 0 to a bit has no effect. Reading from this register
always returns 0. (1)

34 INT_ENABLE_CLR W 0

The interrupt enable clear register. Writing a 1 to a bit in
INT_ENABLE_CLR clears corresponding bit in INT_ENABLE.
Writing a 0 to a bit has no effect. Reading from this register
always returns 0. (1)

35 INT_PENDING R 0

The interrupt pending register. INT_PENDING shows the
pending interrupts. Each bit corresponds to one interrupt
input.

If an interrupt does not exist, reading its corresponding
INT_PENDING bit always returns 0, and writing is ignored.

Bits in INT_PENDING are set in the following ways:

■ An external interrupt is asserted at the VIC interface and the
corresponding INT_ENABLE bit is set.

■ An SW_INTERRUPT bit is set and the corresponding
INT_ENABLE bit is set.

INT_PENDING bits remain set as long as either condition
applies. Refer to Figure 31–3 on page 31–5 for details. (1)

36 INT_RAW_STATUS R 0

The interrupt raw status register. INT_RAW_STATUS shows the
unmasked state of the interrupt inputs.

If an interrupt does not exist, reading the corresponding
INT_RAW_STATUS bit always returns 0, and writing is ignored.

A set bit indicates an interrupt is asserted at the interface of
the VIC. The interrupt is asserted to the processor only when
the corresponding bit in the interrupt enable register is
set. (1)

37 SW_INTERRUPT R/W 0

The software interrupt register. SW_INTERRUPT drives the
software interrupts. Each interrupt is ORed with its external
hardware interrupt and then enabled with INT_ENABLE. Refer
to Figure 31–3 on page 31–5 for details. (1)
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–8 Chapter 31: Vectored Interrupt Controller Core
Register Maps
Table 31–6 provides a bit map for the 32 INT_CONFIG registers.

38 SW_INTERRUPT_SET W 0

The software interrupt set register. Writing a 1 to a bit in
SW_INTERRUPT_SET sets the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)

39 SW_INTERRUPT_CLR W 0

The software interrupt clear register. Writing a 1 to a bit in
SW_INTERRUPT_CLR clears the corresponding bit in
SW_INTERRUPT. Writing a 0 to a bit has no effect. Reading
from this register always returns 0. (1)

40 VIC_CONFIG R/W 0
The VIC configuration register. VIC_CONFIG allows software
to configure settings that apply to the entire VIC. Refer to
Table 31–7 on page 31–9 for the VIC_CONFIG register map.

41 VIC_STATUS R 0
The VIC status register. VIC_STATUS shows the current status
of the VIC. Refer to Table 31–8 on page 31–9 for the
VIC_STATUS register map.

42 VEC_TBL_BASE R/W 0

The vector table base register. VEC_TBL_BASE holds the base
address of the vector table in the processor’s memory space.
Because the table must be aligned on a 4-byte boundary, bits
1:0 must always be 0.

43 VEC_TBL_ADDR R 0

The vector table address register. VEC_TBL_ADDR provides the
RHA for the IRQ value with the highest priority pending
interrupt. If no interrupt is active, the value in this register is 0.

If daisy chain input is enabled and is the highest priority
interrupt, the vector table address register contains the RHA
value from the daisy chain input interface.

Note to Table 31–5:

(1) This register contains a 1-bit field for each of the 32 interrupt inputs. When the VIC is configured for less than 32 interrupts, the corresponding
1-bit field for each unused interrupts is tied to zero. Reading these locations always returns 0, and writing is ignored. To determine which
interrupts are present, write the value 0xffffffff to the register and then read the register contents. Any bits that return zero do not have an
interrupt present.

Table 31–5. Control Status Registers (Part 2 of 2)

Offset Register Name Access Reset
Value Description

Table 31–6. The INT_CONFIG Register Map

Bits Field Name Access Reset
Value Description

0:5 RIL R/W 0

The requested interrupt level field. RIL contains the interrupt level of the
interrupt requesting service. The processor can use the value in this field to
determine if the interrupt is of higher priority than what the processor is
currently doing.

6 RNMI R/W 0
The requested non-maskable interrupt field. RNMI contains the non-maskable
interrupt mode of the interrupt requesting service. When 0, the interrupt is
maskable. When 1, the interrupt is non-maskable.

7:12 RRS R/W 0

The requested register set field. RRS contains the number of the processor
register set that the processor should use for processing the interrupt.
Software must ensure that only register values supported by the processor
are used.

13:31 Reserved
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–9
Register Maps
f For expanded definitions of the terms in Table 31–6, refer to the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

Table 31–7 provides a bit map for the VIC_CONFIG register.

Table 31–8 provides a bit map for the VIC_STATUS register.

Table 31–7. The VIC_CONFIG Register Map

Bits Field Name Access Reset
Value Description

0:2 VEC_SIZE R/W 0

The vector size field. VEC_SIZE specifies the number of bytes in each vector
table entry. VEC_SIZE is encoded as log2 (number of words) - 2. Namely:

■ 0—4 bytes per vector table entry

■ 1—8 bytes per vector table entry

■ 2—16 bytes per vector table entry

■ 3—32 bytes per vector table entry

■ 4—64 bytes per vector table entry

■ 5—128 bytes per vector table entry

■ 6—256 bytes per vector table entry

■ 7—512 bytes per vector table entry

3 DC R/W 0

The daisy chain field. DC serves the following purposes:

■ Enables and disables the daisy chain input interface, if present. Write a 1 to
enable the daisy chain interface; write a 0 to disable it.

■ Detects the presence of the daisy chain input interface. To detect, write a 1
to DC and then read DC. A return value of 1 means the daisy chain interface
is present; 0 means the daisy chain interface is not present.

4:31 Reserved

Table 31–8. The VIC_STATUS Register Map

Bits Field Name Access Reset
Value Description

0:5 HI_PRI_IRQ R 0

The highest priority interrupt field. HI_PRI_IRQ contains the IRQ number of
the active interrupt with the highest RIL. When there is no active interrupt (IP
is 0), reading from this field returns 0.

When the daisy chain input is enabled and it is the highest priority interrupt,
then the value read from this field is 32.

Bit 5 always reads back 0 when the daisy chain input is not
present.

6:30 Reserved

31 IP R 0
The interrupt pending field. IP indicates when there is an interrupt ready to be
serviced. A 1 indicates an interrupt is pending; a 0 indicates no interrupt is
pending.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

31–10 Chapter 31: Vectored Interrupt Controller Core
Parameters
Parameters
Generation-time parameters control the features present in the hardware.Table 31–9
lists and describes the parameters you can configure.

Because multiple VICs can exist in a single system, SOPC Builder assigns a unique
interrupt controller identification number to each VIC generated.

Keep the following considerations in mind when connecting the core in your SOPC
Builder system:

■ The CSR access interface (csr_access) connects to a data master port on your
processor.

■ The daisy chain input interface (interrupt_controller_in) is only visible when
the daisy chain enable option is on.

■ The interrupt controller output interface (interrupt_controller_out) connects
either to the EIC port of your processor, or to another VIC’s daisy chain input
interface (interrupt_controller_in).

■ For SOPC Builder interoperability, the VIC core includes an Avalon-MM master
port. This master interface is not used to access memory or peripherals. Its
purpose is to allow peripheral interrupts to connect to the VIC in SOPC Builder.
The port must be connected to an Avalon-MM slave to create a valid SOPC Builder
system. Then at system generation time, the unused master port is removed
during optimization. The most simple solution is to connect the master port
directly into the CSR access interface (csr_access).

■ SOPC Builder automatically connects interrupt sources when instantiating
components. When using the provided HAL device driver for the VIC, daisy
chaining multiple VICs in a system requires that each interrupt source is
connected to exactly one VIC. You need to manually remove any extra
connections.

Altera HAL Software Programming Model
The Altera-provided driver implements a HAL device driver that integrates with a
HAL board support package (BSP) for Nios II systems. HAL users should access the
VIC core via the familiar HAL API.

Software Files
The VIC driver includes the following software files. These files provide low-level
access to the hardware and drivers that integrate with the Nios II HAL BSP.
Application developers should not modify these files.

Table 31–9. Parameters for VIC Core

Parameter Legal Values Description

Number of interrupts 1 – 32 Specifies the number of irq_input interrupt interfaces.

RIL width 1 – 6 Specifies the bit width of the requested interrupt level.

Daisy chain enable True / False Specifies whether or not to include an input interface for daisy chaining
VICs together.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–11
Altera HAL Software Programming Model
■ altera_vic_regs.h—Defines the core’s register map, providing symbolic constants
to access the low-level hardware.

■ altera_vic_funnel.h, altera_vic_irq.h, altera_vic_irq.h, altera_vic_irq_init.h—
Define the prototypes and macros necessary for the VIC driver.

■ altera_vic.c, altera_vic_irq_init.c, altera_vic_isr_register.c, altera_vic_sw_intr.c,
altera_vic_set_level.c, altera_vic_funnel_non_preemptive_nmi.S,
altera_vic_funnel_non_preemptive.S, and altera_vic_funnel_preemptive.S—
Provide the code that implements the VIC driver.

■ altera_<name>_vector_tbl.S—Provides a vector table file for each VIC in the
system. The BSP generator creates these files.

Macros
Macros to access all of the registers are defined in altera_vic_regs.h. For example, this
file includes macros to access the INT_CONFIG register, including the following macros:

#define IOADDR_ALTERA_VIC_INT_CONFIG(base, irq)
__IO_CALC_ADDRESS_NATIVE(base, irq)

#define IORD_ALTERA_VIC_INT_CONFIG(base, irq) IORD(base, irq)
#define IOWR_ALTERA_VIC_INT_CONFIG(base, irq, data) IOWR(base, irq,
data)
#define ALTERA_VIC_INT_CONFIG_RIL_MSK (0x3f)
#define ALTERA_VIC_INT_CONFIG_RIL_OFST (0)
#define ALTERA_VIC_INT_CONFIG_RNMI_MSK (0x40)
#define ALTERA_VIC_INT_CONFIG_RNMI_OFST (6)
#define ALTERA_VIC_INT_CONFIG_RRS_MSK (0x1f80)
#define ALTERA_VIC_INT_CONFIG_RRS_OFST (7)

For a complete list of predefined macros and utilities to access the VIC hardware, refer
to the following files:

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\inc\altera_vic_r
egs.h

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\alter
a_vic_funnel.h

■ <install_dir>\ip\altera\altera_vectored_interrupt_controller\top\HAL\inc\alter
a_vic_irq.h
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–12 Chapter 31: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
Data Structure
Figure 31–4 shows the data structure for the device.

VIC API
The VIC device driver provides all the routines required of an Altera HAL external
interrupt controller (EIC) device driver. The following functions are required by the
Altera Nios II enhanced HAL interrupt API:

■ alt_ic_isr_register ()

■ alt_ic_irq_enable()

■ alt_ic_irq_disable()

■ alt_ic_irq_enabled()

These functions write to the register map to change the setting or read from the
register map to check the status of the VIC component thru a memory-mapped
address.

f For detailed descriptions of these functions, refer to the to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

Table 31–10 lists the API functions specific to the VIC core and briefly describes each.
Details of each function follow the table.

Figure 31–4. Device Data Structure

#define ALT_VIC_MAX_INTR_PORTS (32)

typedef struct alt_vic_dev
{
 void *base; /* Base address of VIC */
 alt_u32 intr_controller_id; /* Interrupt controller ID */
 alt_u32 num_of_intr_ports; /* Number of interrupt ports */
 alt_u32 ril_width; /* RIL width */
 alt_u32 daisy_chain_present; /* Daisy-chain input present */
 alt_u32 vec_size; /* Vector size */
 void *vec_addr; /* Vector table base address */
 alt_u32 int_config[ALT_VIC_MAX_INTR_PORTS]; /* INT_CONFIG settings
 for each interrupt */
} alt_vic_dev;

Table 31–10. Function List

Name Description

alt_vic_sw_interrupt_set()
Sets the corresponding bit in the SW_INTERRUPT register to enable a given
interrupt via software.

alt_vic_sw_interrupt_clear()
Clears the corresponding bit in the SW_INTERRUPT register to disable a given
interrupt via software.

alt_vic_sw_interrupt_status() Reads the status of the SW_INTERRUPT register for a given interrupt.

alt_vic_irq_set_level() Sets the interrupt level for a given interrupt.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 31: Vectored Interrupt Controller Core 31–13
Altera HAL Software Programming Model
alt_vic_sw_interrupt_set()

alt_vic_sw_interrupt_clear()

alt_vic_sw_interrupt_status()

Prototype: int alt_vic_sw_interrupt_set(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from ISR: No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters:
ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

Returns:

Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Triggers a single software interrupt

Prototype: int alt_vic_sw_interrupt_clear(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from ISR: Yes; if interrupt preemption is enabled, disable global interrupts before
calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters:
ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

Returns:

Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Clears a single software interrupt

Prototype: alt_u32 alt_vic_sw_interrupt_status(alt_u32 ic_id, alt_u32 irq)

Thread-safe: No

Available from ISR: Yes; if interrupt preemption is enabled, disable global interrupts before
calling this routine.

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters:
ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–14 Chapter 31: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
alt_vic_irq_set_level()

Run-time Initialization
During system initialization, software configures the each VIC instance's control
registers using settings specified in the BSP. The RIL, RRS, and RNMI fields are
written into the interrupt configuration register of each interrupt port in each VIC. All
interrupts are disabled until other software registers a handler using the
alt_ic_isr_register() API.

Board Support Package
The BSP you generate for your Nios II system provides access to the hardware in your
system, including the VIC. The VIC driver includes scripts that the BSP generator calls
to get default interrupt settings and to validate settings during BSP generation. The
Nios II BSP Editor provides a mechanism to edit these settings and generate a BSP for
your SOPC Builder design.

Returns:

Returns non-zero if the corresponding software trigger interrupt is active;
otherwise zero for one or more of the following reasons:

■ The corresponding software trigger interrupt is disabled

■ The value in ic_id is invalid

■ The value in irq is invalid

Description: Checks the software interrupt status for a single interrupt

Prototype: int alt_vic_irq_set_level(alt_u32 ic_id, alt_u32 irq, alt_u32 level)

Thread-safe: No

Available from ISR: No

Include: altera_vic_irq.h, altera_vic_regs.h

Parameters:

ic_id—the interrupt controller identification number as defined in
system.h

irq—the interrupt value as defined in system.h

level—the interrupt level to set

Returns:

Returns zero if successful; otherwise non-zero for one or more of the
following reasons:

■ The value in ic_id is invalid

■ The value in irq is invalid

■ The value in level is invalid

Description:

Sets the interrupt level for a single interrupt.

Altera recommends setting the interrupt level only to zero to disable the
interrupt or to the original value specified in your BSP. Writing any other
value could violate the overlapping register set, priority level, and other
design rules. Refer to “VIC BSP Design Rules for Altera Hal Implementation”
on page 31–19 for more information.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–15
Altera HAL Software Programming Model
The generator produces a vector table file for each VIC in the system, named
altera_<name>_vector_tbl.S. The vector table's source path is added to the BSP
Makefile for compilation along with other VIC driver source code. Its contents are
based on the BSP settings for each VIC's interrupt ports.

1 The VIC does not support runtime stack checking feature
(hal.enable_runtime_stack_checking) in the BSP setting.

VIC BSP Settings
The VIC driver scripts provide settings to the BSP. The number and naming of these
settings depends on your hardware system's configuration, specifically, the number of
optional shadow register sets in the Nios II processor, the number of VIC controllers
in the system, and the number of interrupt ports each VIC has.

Certain settings apply to all VIC instances in the system, while others apply to a
specific VIC instance. Settings that apply to each interrupt port apply only to the
specified interrupt port number on that VIC instance.

The remainder of this section lists details and descriptions of each VIC BSP setting.

altera_vic_driver.enable_preemption

altera_vic_driver.enable_preemption_into_new_register_set

Identifier: ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED

Type: BooleanDefineOnly

Default value: 1 when all components connected to the VICs support preemption. 0 when any
of the connected components don’t support preemption.

Destination file: system.h

Description:

Enables global interrupt preemption (nesting). When enabled (set to 1), the
macro ALTERA_VIC_DRIVER_ISR_PREEMPTION_ENABLED is defined in
system.h.

Two types of ISR preemption are available. This setting must be enabled along
with other settings to enable specific types of preemption.

All preemption settings are dependant on whether the device drivers in your BSP
support interrupt preemption. For more information about preemption, refer to
the Exception Handling chapter of the Nios II Software Developer’s Handbook.

Occurs: Once per VIC

Identifier: ALTERA_VIC_DRIVER_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLED

Type: BooleanDefineOnly

Default value: 0

Destination file: system.h
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

31–16 Chapter 31: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
altera_vic_driver.enable_preemption_rs_<n>

altera_vic_driver.linker_section

Description:

Enables interrupt preemption (nesting) if a higher priority interrupt is asserted
while a lower priority ISR is executing, and that higher priority interrupt uses a
different register set than the interrupt currently being serviced.

When this setting is enabled (set to 1), the macro
ALTERA_VIC_DRIVER_ISR_PREEMPTION_INTO_NEW_REGISTER_SET_ENABLE
D is defined in system.h and the Nios II config.ANI (automatic nested
interrupts) bit is asserted during system software initialization.

Use this setting to limit interrupt preemption to higher priority (RIL) interrupts
that use a different register set than a lower priority interrupt that might be
executing. This setting allows you to support some preemption while
maintaining the lowest possible interrupt response time. However, this setting
does not allow an interrupt at a higher priority (RIL) to preempt a lower priority
interrupt if the higher priority interrupt is assigned to the same register set as the
lower priority interrupt.

Occurs: Once per VIC

Identifier: ALTERA_VIC_DRIVER_ENABLE_PREEMPTION_RS_<n>

Type: Boolean

Default value: 0

Destination file: system.h

Description:

Enables interrupt preemption (nesting) if a higher priority interrupt is asserted
while a lower priority ISR is executing, for all interrupts that target the specified
register set number.

When this setting is enabled (set to 1), the vector table for each VIC utilizes a
special interrupt funnel that manages preemption. All interrupts on all VIC
instances assigned to that register set then use this funnel.

When a higher priority interrupt preempts a lower priority interrupt running in
the same register set, the interrupt funnel detects this condition and saves the
processor registers to the stack before calling the higher priority ISR. The funnel
code restores registers and allows the lower priority ISR to continue running
once the higher priority ISR completes.

Because this funnel contains additional overhead, enabling this setting increases
interrupt response time substantially for all interrupts that target a register set
where this type of preemption is enabled.

Use this setting if you must guarantee that a higher priority interrupt preempts a
lower priority interrupt, and you assigned multiple interrupts at different
priorities to the same Nios II shadow register set.

Occurs: Per register set; <n> refers to the register set number.

Identifier: ALTERA_VIC_DRIVER_LINKER_SECTION

Type: UnquotedString

Default value: .text

Destination file: system.h
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–17
Altera HAL Software Programming Model
altera_vic_driver.<name>.vec_size

altera_vic_driver.<name>.irq<n>_rrs

altera_vic_driver.<name>.irq<n>_ril

Description:

Specifies the linker section that each VIC's generated vector table and each
interrupt funnel link to. The memory device that the specified linker section is
mapped to must be connected to both the Nios II instruction and data masters in
your SOPC Builder system.

Use this setting to link performance-critical code into faster memory. For
example, if your system's code is in DRAM and you have an on-chip or tightly-
coupled memory interface for interrupt handling code, assigning the VIC driver
linker section to a section in that memory improves interrupt response time.

For more information about linker sections and the Nios II BSP Editor, refer to
the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

Occurs: Once per VIC

Identifier: <name>_VEC_SIZE

Type: DecimalNumber

Default value: 16

Destination file: system.h

Description:

Specifies the number of bytes in each vector table entry. Legal values are 16, 32,
64, 128, 256, and 512.

The generated VIC vector tables in the BSP require a minimum of 16 bytes per
entry.

If you intend to write your own vector table or locate your ISR at the vector
address, you can use a larger size.

The vector table's total size is equal to the number of interrupt ports on the VIC
instance multiplied by the vector table entry size specified in this setting.

Occurs: Per instance; <name> refers to the component name you assign in SOPC Builder.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RRS

Type: DecimalNumber

Default value: Refer to “Default Settings for RRS and RIL”.

Destination file: system.h

Description: Specifies the RRS for the interrupt connected to the corresponding port. Legal
values are 1 to the number of shadow register sets defined for the processor.

Occurs:
Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RIL

Type: DecimalNumber

Default value: Refer to “Default Settings for RRS and RIL”.

Destination file: system.h
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

31–18 Chapter 31: Vectored Interrupt Controller Core
Altera HAL Software Programming Model
altera_vic_driver.<name>.irq<n>_rnmi

Default Settings for RRS and RIL
The default assignment of RRS and RIL values for each interrupt assumes interrupt
port 0 on the VIC instance attached to your processor is the highest priority interrupt,
with successively lower priorities as the interrupt port number increases. Interrupt
ports on other VIC instances connected through the first VIC's daisy chain interface
are assigned successively lower priorities.

To make effective use of the VIC interrupt setting defaults, assign your highest
priority interrupts to low interrupt port numbers on the VIC closest to the processor.
Assign lower priority interrupts and interrupts that do not need exclusive access to a
shadow register set, to higher interrupt port numbers, or to another daisy-chained
VIC.

The following steps describe the algorithm for default RIL assignment:

1. The formula 2RIL width -1 is used to calculate the maximum RIL value.

2. interrupt port 0 on the VIC connected to the processor is assigned the highest
possible RIL.

3. The RIL value is decremented and assigned to each subsequent interrupt port in
succession until the RIL value is 1.

4. The RILs for all remaining interrupt ports on all remaining VICs in the chain are
assigned 1.

The following steps describe the algorithm for default RRS assignment:

1. The highest register set number is assigned to the interrupt with the highest
priority.

2. Each subsequent interrupt is assigned using the same method as the default RIL
assignment.

Description: Specifies the RIL for the interrupt connected to the corresponding port. Legal
values are 0 to 2RIL width -1.

Occurs:
Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.

Identifier: ALTERA_VIC_DRIVER_<name>_IRQ<n>_RNMI

Type: Boolean

Default value: 0

Destination file: system.h

Description:

Specifies whether the interrupt port is a maskable or non-maskable interrupt
(NMI). Legal values are 0 and 1. When set to 0, the port is maskable. NMIs
cannot be disabled in hardware and there are several restrictions imposed for the
RIL and RRS settings associated with any interrupt with NNI enabled.

Occurs:
Per IRQ per instance; <name> refers to the VIC’s name and <n> refers to the IRQ
number that you assign in SOPC Builder. Refer to SOPC Builder to determine
which IRQ numbers correspond to which components in your design.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 31: Vectored Interrupt Controller Core 31–19
Altera HAL Software Programming Model
For example, consider a system with two VICs, VIC0 and VIC1. Each VIC has an RIL
width of 3, and each has 4 interrupt ports. VIC0 is connected to the processor and
VIC1 to the daisy chain interface on VIC0. The processor has 3 shadow register sets.
Table 31–11 shows the default RRS and RIL assignments for this example.

VIC BSP Design Rules for Altera Hal Implementation
The VIC BSP settings allow for a large number of combinations. This list describes
some basic design rules to follow to ensure a functional BSP:

■ Each component’s interrupt interface in your system should only be connected to
one VIC instance per processor.

■ The number of shadow register sets for the processor must be greater than zero.

■ RRS values must always be greater than zero and less than or equal to the number
of shadow register sets.

■ RIL values must always be greater than zero and less than or equal to the
maximum RIL.

■ All RILs assigned to a register set must be sequential to avoid a higher priority
interrupt overwriting contents of a register set being used by a lower priority
interrupt.

1 The Nios II BSP Editor uses the term “overlap condition” to refer to
nonsequential RIL assignments.

■ NMIs cannot share register sets with maskable interrupts.

■ NMIs must have RILs set to a number equal to or greater than the highest RIL of
any maskable interrupt. When equal, the NMIs must have a lower logical
interrupt port number than any maskable interrupt.

■ The vector table and funnel code section's memory device must connect to a data
master and an instruction master.

■ NMIs must use funnels with preemption disabled.

■ When global preemption is disabled, enabling preemption into a new register set
or per-register-set preemption might produce unpredictable results. Be sure that
all interrupt service routines (ISR) used by the register set support preemption.

Table 31–11. Default RRS and RIL Assignment Example

VIC IRQ RRS RIL

0 0 3 7

0 1 2 6

0 2 1 5

0 3 1 4

1 0 1 3

1 1 1 2

1 2 1 1

1 3 1 1
June 2011 Altera Corporation Embedded Peripherals IP User Guide

31–20 Chapter 31: Vectored Interrupt Controller Core
Document Revision History
■ Enabling register set preemption for register sets with peripherals that don't
support preemption might result in unpredictable behavior.

RTOS Considerations
BSPs configured to use a real time operating system (RTOS) might have additional
software linked into the HAL interrupt funnel code using the ALT_OS_INT_ENTER and
ALT_OS_INT_EXIT macros. The exact nature and overhead of this code is RTOS-
specific. Additional code adds to interrupt response and recovery time. Refer to your
RTOS documentation to determine if such code is necessary.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1

■ Added a note to to state that the VIC does not support the runtime stack checking feature
in BSP setting.

■ Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and
“Referenced Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Initial release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
Section V. Test and Debug Peripherals
This section describes test and debug peripherals provided by Altera for SOPC
Builder systems.

This section includes the following chapters:

■ Chapter 32, Avalon-ST JTAG Interface Core

■ Chapter 33, System ID Core

■ Chapter 34, Performance Counter Core

■ Chapter 35, Avalon Streaming Test Pattern Generator and Checker Cores

■ Chapter 36, Avalon Streaming Data Pattern Generator and Checker Cores

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

V–2 Section V: Test and Debug Peripherals
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
32. Avalon-ST JTAG Interface Core
Core Overview
The Avalon® Streaming (Avalon-ST) JTAG Interface core enables communication
between SOPC Builder systems and JTAG hosts (System Console) via Avalon-ST
interface. Data is serially transferred on the JTAG interface, and presented on the
Avalon-ST interface as bytes.

f The SPI Slave/JTAG to Avalon Master Bridge is an example of how this core is used.
For more information about the bridge, refer to “SPI Slave/JTAG to Avalon Master
Bridge Cores” on page 18–1.

The Avalon-ST JTAG Interface core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated systems.

Functional Description
Figure 32–1 shows a block diagram of the Avalon-ST JTAG Interface core in a typical
system configuration.

Interfaces
Table 32–1 shows the properties of the Avalon-ST interfaces.

Figure 32–1. SOPC Builder System with an Avalon-ST JTAG Interface Core

Avalon-ST
Source

Avalon-ST
Sink

Avalon-ST
JTAG Interface

Core

System
Clock

JTAG
Clock

JTAG
S

ys
te

m
 In

te
rc

on
ne

ct
 F

ab
ric

Rest of the
System

data_out

data_in

JTAG
Host

(System
Console)

Altera FPGA

resetrequest

Table 32–1. Properties of Avalon-ST Interfaces

Feature Property

Backpressure Only supported on the sink interface.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.
Embedded Peripherals IP User Guide

32–2 Chapter 32: Avalon-ST JTAG Interface Core
Functional Description
f For more information about Avalon-ST interfaces, refer to the Avalon Interface
Specifications.

Core Behavior
The Avalon-ST JTAG Interface core is supported when used with the System Console;
a Tcl console that provides access to IP cores instantiated in your SOPC Builder
system.

The Avalon-ST JTAG Interface core supports two sets of operations:

■ Bytestream

■ JTAG debug

Bytestream Operation
The bytestream operation uses the System Console’s bytestream service. This
operation allows you to configure the core to send and receive a stream of bytes
through the Avalon-ST interfaces.

Table 32–2 lists and describes the bytestream commands.

JTAG Debug Operation
The JTAG debug operation uses the System Console’s JTAG debug service. This
operation allows you to configure the core to to debug the clock and reset signals,
issue a reset, and verify the signal integrity of the JTAG chain.

Error Not used.

Packet Not supported.

Table 32–1. Properties of Avalon-ST Interfaces

Feature Property

Table 32–2. Bytestream Commands

Command Description Operation

bytestream_send
Sends a stream of bytes down to the
Avalon-ST source interface.

The stream of byte that appears on the
Avalon-ST source interface is in the same
order as sent from the JTAG host.

bytestream_receive
Receives a stream of bytes from the
Avalon-ST sink interface.

The stream of bytes that appears on the JTAG
host is in the same order as sent from the
Avalon-ST sink interface.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 32: Avalon-ST JTAG Interface Core 32–3
Document Revision History
Table 32–3 lists and describes the JTAG debug commands.

f For more information about the System Console and its commands, refer to Analyzing
and Debugging Designs with the System Console in volume 3 of the Quartus II Handbook.

Parameters
Table 32–4 lists and describes the parameters you can configure.

Document Revision History
The following table shows the revision history for this document.

Table 32–3. JTAG Debug Commands

Command Description Operation

jtag_debug_loop
Verifies the signal integrity of the JTAG
chain by making sure the data sent are
the same as the data received.

The bytes received from the JTAG interface
are looped-back through an internal register.

jtag_debug_reset_system
Issues a reset to the external system with
its reset signal connected to the
resetrequest output signal.

The output signal, resetrequest, is asserted
high for at least one second.

jtag_debug_sample_clock
Samples the clock (clk) signal to verify
that the clock is toggling. The input clock signal is sampled once.

jtag_debug_sample_reset
Samples the reset (reset_n) signal to
verify that the signal is not tied to
ground.

The input reset signal is sampled once.

jtag_debug_sense_clock
Senses the clock signal to verify that the
clock is toggling.

An internal register is set on the clock’s rising
edge if the clock is toggling.

Table 32–4. Configurable Parameters

Parameter Legal Values Default Value Description

Use PLI Simulation Mode On/Off —

Turn on this parameter to enable PLI simulation mode.
This PLI simulation mode enables you to send and receive
bytestream commands, through System Console, while
the system is being simulated in ModelSim®.

PLI Simulation Port 1–65535 50000 Specifies the PLI simulation port number.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1

■ Updated Figure 32–1.

■ Revised the operation description.

■ Added “Parameters” section.

■ Removed “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

32–4 Chapter 32: Avalon-ST JTAG Interface Core
Document Revision History
March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Initial release.

Date Version Changes
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
33. System ID Core
Core Overview
The system ID core with Avalon® interface is a simple read-only device that provides
SOPC Builder systems with a unique identifier. Nios® II processor systems use the
system ID core to verify that an executable program was compiled targeting the actual
hardware image configured in the target FPGA. If the expected ID in the executable
does not match the system ID core in the FPGA, it is possible that the software will not
execute correctly.

This chapter contains the following sections:

■ “Functional Description”

■ “Software Programming Model” on page 33–2

Functional Description
The system ID core provides a read-only Avalon Memory-Mapped (Avalon-MM)
slave interface. This interface has two 32-bit registers, as shown in Table 33–1. SOPC
Builder determines the value of each register at system generation time, and always
returns a constant register value.

There are two basic ways to use the system ID core:

■ Verify the system ID before downloading new software to a system. This method
is used by software development tools, such as the Nios II integrated development
environment (IDE). There is little point in downloading a program to a target
hardware system, if the program is compiled for different hardware. Therefore, the
Nios II IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or debug.

■ Check system ID after reset. If a program is running on hardware other than the
expected SOPC Builder system, the program may fail to function altogether. If the
program does not crash, it can behave erroneously in subtle ways that are difficult
to debug. To protect against this case, a program can compare the expected system
ID against the system ID core, and report an error if they do not match.

Table 33–1. System ID Core Register Map

Offset Register Name R/W Description

0 id R
A unique 32-bit value that is based on the contents of the SOPC Builder system. The id
is similar to a check-sum value; SOPC Builder systems with different components,
different configuration options, or both, produce different id values.

1 timestamp R A unique 32-bit value that is based on the system generation time. The value is
equivalent to the number of seconds after Jan. 1, 1970.
Embedded Peripherals IP User Guide

33–2 Chapter 33: System ID Core
Configuration
Configuration
The id and timestamp register values are determined at system generation time based
on the configuration of the SOPC Builder system and the current time. You can add
only one system ID core to an SOPC Builder system, and its name is always sysid.

The id register value is automatically assigned in SOPC Builder but manually
assigned in Qsys. If you are using the Qsys tool, you need to manually configure the
id value in the register.

After system generation, you can examine the values stored in the id and timestamp
registers by opening the MegaWizard™ interface for the System ID core. Hovering the
mouse over the component in SOPC Builder also displays a tool-tip showing the
values.

1 Since a unique timestamp value is added to the System ID HDL file each time you
generate the SOPC Builder system, the Quartus II software recompiles the entire
system if you have added the system as a design partition.

Software Programming Model
This section describes the software programming model for the system ID core. For
Nios II processor users, Altera provides the HAL system library header file that
defines the System ID core registers.

The System ID core comes with the following software files. These files provide
low-level access to the hardware. Application developers should not modify these
files.

■ alt_avalon_sysid_regs.h—Defines the interface to the hardware registers.

■ alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files defining the
hardware access functions.

Altera provides one access routine, alt_avalon_sysid_test(), that returns a value
indicating whether the system ID expected by software matches the system ID core.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 33: System ID Core 33–3
Document Revision History
alt_avalon_sysid_test()

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sysid.h>

Description:
Returns 0 if the values stored in the hardware registers match the values expected by software.
Returns 1 if the hardware timestamp is greater than the software timestamp. Returns -1 if the
software timestamp is greater than the hardware timestamp.

Date Version Changes

June 2011 11.0

■ Updated the configuration section to highlight that the id register value which was
automatically assigned in SOPC Builder should be manually assigned in Qsys.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Added description to the “Instantiating the Core in SOPC Builder” section—the SOPC Builder
works with incremental compilation.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

33–4 Chapter 33: System ID Core
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
34. Performance Counter Core
Core Overview
The performance counter core with Avalon® interface enables relatively unobtrusive,
real-time profiling of software programs. With the performance counter, you can
accurately measure execution time taken by multiple sections of code. You need only
add a single instruction at the beginning and end of each section to be measured.

The main benefit of using the performance counter core is the accuracy of the
profiling results. Alternatives include the following approaches:

■ GNU profiler, gprof—gprof provides broad low-precision timing information
about the entire software system. It uses a substantial amount of RAM, and
degrades the real-time performance. For many embedded applications, gprof
distorts real-time behavior too much to be useful.

■ Interval timer peripheral—The interval timer is less intrusive than gprof. It can
provide good results for narrowly targeted sections of code.

The performance counter core is unobtrusive, requiring only a single instruction to
start and stop profiling, and no RAM. It is appropriate for high-precision
measurements of narrowly targeted sections of code.

f For further discussion of all three profiling methods, refer to AN 391: Profiling Nios II
Systems.

The performance counter core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. The core is designed for use in Avalon-based
processor systems, such as a Nios® II processor system. Altera® device drivers enable
the Nios II processor to use the performance counters.

This chapter contains the following sections:

■ “Functional Description” on page 34–1

■ “Hardware Simulation Considerations” on page 34–3

■ “Software Programming Model” on page 34–3

■ “Performance Counter API” on page 34–6

Functional Description
The performance counter core is a set of counters which track clock cycles, timing
multiple sections of your software. You can start and stop these counters in your
software, individually or as a group. You can read cycle counts from hardware
registers.

The core contains two counters for every section:

■ Time: A 64-bit clock cycle counter.

■ Events: A 32-bit event counter.
Embedded Peripherals IP User Guide

http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf

34–2 Chapter 34: Performance Counter Core
Functional Description
Section Counters
Each 64-bit time counter records the aggregate number of clock cycles spent in a
section of code. The 32-bit event counter records the number of times the section
executes.

The performance counter core can have up to seven section counters.

Global Counter
The global counter controls all section counters. The section counters are enabled only
when the global counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which the counters
were enabled. The 32-bit global event counter tracks the number of global events, that
is, the number of times the performance counter core has been enabled.

Register Map
The performance counter core has an Avalon Memory-Mapped (Avalon-MM) slave
interface that provides access to memory-mapped registers. Reading from the
registers retrieves the current times and event counts. Writing to the registers starts,
stops, and resets the counters. Table 34–1 shows the registers in detail.

Table 34–1. Performance Counter Core Register Map (Part 1 of 2)

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1)
0 = STOP

1 = RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]lo section 1 clock cycle counter [31:0] (1) 0 = STOP

5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[2]lo section 2 clock cycle counter [31:0] (1) 0 = STOP

9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31:0] (1) 0 = STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 = START

4n + 2 Ev[n] section n event counter (1) (1)
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 34: Performance Counter Core 34–3
Configuration
System Reset
After a system reset, the performance counter core is stopped and disabled, and all
counters are set to zero.

Configuration
The following sections list the available options in the MegaWizard™ interface.

Define Counters
Choose the number of section counters you want to generate by selecting from the
Number of simultaneously-measured sections list. The performance counter core
may have up to seven sections. If you require more that seven sections, you can
instantiate multiple performance counter cores.

Multiple Clock Domain Considerations
If your SOPC Builder system uses multiple clocks, place the performance counter core
in the same clock domain as the CPU. Otherwise, it is not possible to convert cycle
counts to seconds correctly.

Hardware Simulation Considerations
You can use this core in simulation with no special considerations.

Software Programming Model
The following sections describe the software programming model for the
performance counter core.

Software Files
Altera provides the following software files for Nios II systems. These files define the
low-level access to the hardware and provide control and reporting functions. Do not
modify these files.

■ altera_avalon_performance_counter.h, altera_avalon_performance_counter.c—
The header and source code for the functions and macros needed to control the
performance counter core and retrieve raw results.

4n + 3 — (1) (1) (1)

Note to Table 34–1:

(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.

Table 34–1. Performance Counter Core Register Map (Part 2 of 2)

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0
June 2011 Altera Corporation Embedded Peripherals IP User Guide

34–4 Chapter 34: Performance Counter Core
Software Programming Model
■ perf_print_formatted_report.c—The source code for simple profile reporting.

Using the Performance Counter
In a Nios II system, you can control the performance counter core with a set of highly
efficient C macros, and extract the results with C functions.

API Summary
The Nios II application program interface (API) for the performance counter core
consists of functions, macros and constants.

Functions and macros

Table 34–2 lists macros and functions for accessing the performance counter hardware
structure.

For a complete description of each macro and function, see “Performance Counter
API” on page 34–6.

Hardware Constants

You can get the performance counter hardware parameters from constants defined in
system.h. The constant names are based on the performance counter instance name,
specified on the System Contents tab in SOPC Builder. Table 34–3 lists the hardware
constants.

Table 34–2. Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURING() Stops the global counter and disables section counters.

PERF_BEGIN() Starts timing a code section.

PERF_END() Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.

Table 34–3. Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

PERFORMANCE_COUNTER_SPAN Number of hardware registers

PERFORMANCE_COUNTER_HOW_MANY_SECTIONS Number of section counters

Note to Table 34–3:

(1) Example based on instance name performance_counter.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 34: Performance Counter Core 34–5
Software Programming Model
Startup
Before using the performance counter core, invoke PERF_RESET to stop, disable and
zero all counters.

Global Counter Usage
Use the global counter to enable and disable the entire performance counter core. For
example, you might choose to leave profiling disabled until your software has
completed its initialization.

Section Counter Usage
To measure a section in your code, surround it with the macros PERF_BEGIN() and
PERF_END(). These macros consist of a single write to the performance counter core.

You can simultaneously measure as many code sections as you like, up to the number
specified in SOPC Builder. See “Define Counters” on page 34–3 for details. You can
start and stop counters individually, or as a group.

Typically, you assign one counter to each section of code you intend to profile.
However, in some situations you may wish to group several sections of code in a
single section counter. As an example, to measure general interrupt overhead, you can
measure all interrupt service routines (ISRs) with one counter.

To avoid confusion, assign a mnemonic symbol for each section number.

Viewing Counter Values
Library routines allow you to retrieve and analyze the results. Use
perf_print_formatted_report() to list the results to stdout, as shown in
Example 34–1.

Example 34–2 creates a table similar to this result.

Example 34–1.

perf_print_formatted_report(
(void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address
alt_get_cpu_freq(), // defined in "system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections
"pc_overhead",
"ts_overhead");

Example 34–2.

--Performance Counter Report--
Total Time: 2.07711 seconds (103855534 clock-cycles)
+-----------------+--------+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks) |Occurrences|
+-----------------+--------+-----------+---------------+-----------+
|1st checksum_test| 50 | 1.03800 | 51899750 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| pc_overhead |1.73e-05| 0.00000 | 18 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| ts_overhead |4.24e-05| 0.00000 | 44 | 1 |
+-----------------+--------+-----------+---------------+-----------+
June 2011 Altera Corporation Embedded Peripherals IP User Guide

34–6 Chapter 34: Performance Counter Core
Performance Counter API
For full documentation of perf_print_formatted_report(), see “Performance
Counter API” on page 34–6.

Interrupt Behavior
The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance results, in an
interrupt service routine (ISR). Do not call the perf_print_formatted_report()
function from an ISR.

1 If an interrupt occurs during the measurement of a section of code, the time taken by
the CPU to process the interrupt and return to the section is added to the
measurement time. The same applies to context switches in a multithreaded
environment. Your software must take appropriate measures to avoid or handle these
situations.

Performance Counter API
This section describes the application programming interface (API) for the
performance counter core.

For Nios II processor users, Altera provides routines to access the performance
counter core hardware. These functions are specific to the performance counter core
and directly manipulate low level hardware. The performance counter core cannot be
accessed via the HAL API or the ANSI C standard library.

PERF_RESET()

PERF_START_MEASURING()

Prototype: PERF_RESET(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.

Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 34: Performance Counter Core 34–7
Performance Counter API
PERF_STOP_MEASURING()

PERF_BEGIN()

PERF_END()

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the performance counter
core. The behavior of individual section counters is controlled by PERF_BEGIN() and PERF_END().
PERF_START_MEASURING() defines the start of a global event, and increments the global event
counter. This macro is a single write to the performance counter core.

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the performance counter
core. This macro is a single write to the performance counter core.

Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this
macro.

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning of a section event,
and incrementing the section event counter. If you subsequently use PERF_STOP_MEASURING()
and PERF_START_MEASURING() to disable and re-enable the core, the section counter will resume.
This macro is a single write to the performance counter core.

Prototype: PERF_END(p,n)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address.

n—counter section number. Section counter numbers start at 1. Do not refer to counter 0 in this
macro.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

34–8 Chapter 34: Performance Counter Core
Performance Counter API
perf_print_formatted_report()

perf_get_total_time()

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not run, regardless
whether the core is enabled or not. This macro is a single write to the performance counter core.

Prototype: int perf_print_formatted_report (

void* perf_base,

alt_u32 clock_freq_hertz,

int num_sections,

char* section_name_1, ...

char* section_name_n)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_performance_counter.h>

Parameters: perf_base—Performance counter core base address.

clock_freq_hertz—Clock frequency.

num_sections—The number of section counters to display. This must not exceed
<instance_name>_HOW_MANY_SECTIONS.

section_name_1 ... section_name_n—The section names to display. The number of section
names varies depending on the number of sections to display.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from the performance
counter core, and prints a formatted summary table.

This function disables all counters. However, for predictable results in a multi-threaded or interrupt
environment, invoke PERF_STOP_MEASURING() when you reach the end of the code to be
measured, rather than relying on perf_print_formatted_report().

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core.

Returns: Aggregate global time in clock cycles.

Description: Function perf_get_total_time() reads the raw global time. This is the aggregate time, in clock
cycles, that the performance counter core has been enabled. This function has the side effect of
stopping the counters.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 34: Performance Counter Core 34–9
Performance Counter API
perf_get_section_time()

perf_get_num_starts()

alt_get_cpu_freq()

Prototype: alt_u64 perf_get_section_time

(void* hw_base_address, int which_section)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Aggregate section time in clock cycles.

Description: Function perf_get_section_time() reads the raw time for a given section. This is the time, in
clock cycles, that the section has been running. This function has the side effect of stopping the
counters.

Prototype: alt_u32 perf_get_num_starts

(void* hw_base_address, int which_section)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address.

which_section—counter section number.

Returns: Number of counter events.

Description: Function perf_get_num_starts() retrieves the number of counter events (or times a counter has
been started). If which_section = 0, it retrieves the number of global events (times the
performance counter core has been enabled). This function does not stop the counters.

Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz.

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

34–10 Chapter 34: Performance Counter Core
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 Updated perf_print_formatted_report() to remove the restriction on using small C
library.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Updated the parameter description of the function perf_print_formatted_report().
Updates are made to comply with the Quartus II software version 8.0 release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
35. Avalon Streaming Test Pattern
Generator and Checker Cores
Core Overview
The data generation and monitoring solution for Avalon® Streaming (Avalon-ST)
consists of two components: a test pattern generator core that generates packetized or
non-packetized data and sends it out on an Avalon-ST data interface, and a test
pattern checker core that receives the same data and checks it for correctness.

The test pattern generator core can insert different error conditions, and the test
pattern checker reports these error conditions to the control interface, each via an
Avalon Memory-Mapped (Avalon-MM) slave.

Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Resource Utilization and Performance”

■ “Test Pattern Generator” on page 35–3

■ “Test Pattern Checker” on page 35–5

■ “Hardware Simulation Considerations” on page 35–6

■ “Software Programming Model” on page 35–7

■ “Test Pattern Generator API” on page 35–12

■ “Test Pattern Checker API” on page 35–16

Resource Utilization and Performance
Resource utilization and performance for the test pattern generator and checker cores
depend on the data width, number of channels, and whether the streaming data uses
the optional packet protocol.
Embedded Peripherals IP User Guide

35–2
Chapter 35:

Avalon Stream
ing Test Pattern Generator and Checker Cores

Resource Utilization and Perform
ance

Em
bedded Peripherals IP User Guide

June 2011
Altera Corporation

 generator core.

 checker core.

Stratix

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

560 202 642 560

496 245 561 496

912 197 707 912

848 220 630 848

560 245 896 560

496 228 845 496

912 224 956 912

848 204 912 848

Stratix

Memory
(bits)

fMAX
(MHz)

Logic
Cells

Memory
(bits)

0 174 744 96

0 229 663 32

3854 105 795 3616

3520 133 660 3520

0 166 1323 96

0 192 1004 32

3584 110 1298 3616

3520 126 1074 3520
Table 35–1 provides estimated resource utilization and performance for the test pattern

Table 35–2 provides estimated resource utilization and performance for the test pattern

Table 35–1. Test Pattern Generator Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of
8-bit

Symbols
Per Beat)

Packet
Support

Stratix® II and Stratix II GX Cyclone® II

fMAX
(MHz)

ALM
Count

Memory
(bits)

fMAX
(MHz)

Logic
Cells

1 4 Yes 284 233 560 206 642

1 4 No 293 222 496 207 572

32 4 Yes 276 270 912 210 683

32 4 No 323 227 848 234 585

1 16 Yes 298 361 560 228 867

1 16 No 340 330 496 230 810

32 16 Yes 295 410 912 209 954

32 16 No 269 409 848 219 842

Table 35–2. Test Pattern Checker Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of
8-bit

Symbols
Per Beat)

Packet
Support

Stratix II and Stratix II GX Cyclone II

fMAX
(MHz)

ALM
Count

Memory
(bits)

fMAX
(MHz)

Logic
Cells

1 4 Yes 270 271 96 179 940

1 4 No 371 187 32 227 628

32 4 Yes 185 396 3616 111 875

32 4 No 221 363 3520 133 686

1 16 Yes 253 462 96 185 1433

1 16 No 277 306 32 218 1044

32 16 Yes 182 582 3616 111 1367

32 16 No 218 473 3520 129 1143

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–3
Test Pattern Generator
Test Pattern Generator
This section describes the hardware structure and functionality of the test pattern
generator core.

Functional Description
The test pattern generator core accepts commands to generate data via an Avalon-MM
command interface, and drives the generated data to an Avalon-ST data interface. You
can parameterize most aspects of the Avalon-ST data interface such as the number of
error bits and data signal width, thus allowing you to test components with different
interfaces. Figure 35–1 shows a block diagram of the test pattern generator core.

The data pattern is determined by the following equation:
Symbol Value = Symbol Position in Packet XOR Data Error Mask. Non-packetized data
is one long stream with no beginning or end.

The test pattern generator core has a throttle register that is set via the Avalon-MM
control interface. The value of the throttle register is used in conjunction with a
pseudo-random number generator to throttle the data generation rate.

Command Interface
The command interface is a 32-bit Avalon-MM write slave that accepts data
generation commands. It is connected to a 16-element deep FIFO, thus allowing a
master peripheral to drive a number of commands into the test pattern generator core.

The command interface maps to the following registers: cmd_lo and cmd_hi. The
command is pushed into the FIFO when the register cmd_lo (address 0) is written to.
When the FIFO is full, the command interface asserts the waitrequest signal. You can
create errors by writing to the register cmd_hi (address 1). The errors are only cleared
when 0 is written to this register or its respective fields. Refer to “Test Pattern
Generator Command Registers” on page 35–9 for more information on the register
fields.

Control and Status Interface
The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable the data generation as well as set the throttle.

Figure 35–1. Test Pattern Generator Core Block Diagram

TEST PATTERN
 GENERATOR

command data_out

control & status

A
va

lo
n-

M
M

S

la
ve

 P
or

t

Avalon-MM
Slave Port

A
valon-S

T
S

ource
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–4 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Generator
This interface also provides useful generation-time information such as the number of
channels and whether or not packets are supported.

Output Interface
The output interface is an Avalon-ST interface that optionally supports packets. You
can configure the output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may contain
interleaved packet fragments for different channels. To keep track of the current
symbol’s position within each packet, the test pattern generator core maintains an
internal state for each channel.

Configuration
The following sections list the available options in the MegaWizard™ interface.

Functional Parameter
The functional parameter allows you to configure the test pattern generator as a
whole: Throttle Seed—The starting value for the throttle control random number
generator. Altera recommends a value which is unique to each instance of the test
pattern generator and checker cores in a system.

Output Interface
You can configure the output interface of the test pattern generator core using the
following parameters:

■ Number of Channels—The number of channels that the test pattern generator
core supports. Valid values are 1 to 256.

■ Data Bits Per Symbol—The number of bits per symbol for the input and output
interfaces. Valid values are 1 to 256. Example—For typical systems that carry 8-bit
bytes, set this parameter to 8.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat. Valid values are 1 to 256.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the output interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not used.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–5
Test Pattern Checker
Test Pattern Checker
This section describes the hardware structure and functionality of the test pattern
checker core.

Functional Description
The test pattern checker core accepts data via an Avalon-ST interface, checks it for
correctness against the same predetermined pattern used by the test pattern generator
core to produce the data, and reports any exceptions to the control interface. You can
parameterize most aspects of the test pattern checker's Avalon-ST interface such as the
number of error bits and the data signal width, thus allowing you to test components
with different interfaces.

The test pattern checker has a throttle register that is set via the Avalon-MM control
interface. The value of the throttle register controls the rate at which data is accepted.

Figure 35–2 shows a block diagram of the test pattern checker core.

The test pattern checker core detects exceptions and reports them to the control
interface via a 32-element deep internal FIFO. Possible exceptions are data error,
missing start-of-packet (SOP), missing end-of-packet (EOP) and signalled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same
exception occurs more than once consecutively, only one exception descriptor is
pushed into the FIFO. All exceptions are ignored when the FIFO is full. Exception
descriptors are deleted from the FIFO after they are read by the control and status
interface.

Input Interface
The input interface is an Avalon-ST interface that optionally supports packets. You
can configure the input interface to suit your requirements.

Incoming data may contain interleaved packet fragments. To keep track of the current
symbol’s position, the test pattern checker core maintains an internal state for each
channel.

Figure 35–2. Test Pattern Checker

TEST PATTERN
 CHECKER

data_in

control & status

Avalon-MM
Slave Port

A
va

lo
n-

S
T

S
in

k

June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–6 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Hardware Simulation Considerations
Control and Status Interface
The control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance as well as set the throttle. This interface provides useful
generation-time information such as the number of channels and whether the test
pattern checker supports packets.

The control and status interface also provides information on the exceptions detected
by the test pattern checker core. The interface obtains this information by reading
from the exception FIFO.

Configuration
The following sections list the available options in the MegaWizard™ interface.

Functional Parameter
The functional parameter allows you to configure the test pattern checker as a whole:
Throttle Seed—The starting value for the throttle control random number generator.
Altera recommends a unique value to each instance of the test pattern generator and
checker cores in a system.

Input Parameters
You can configure the input interface of the test pattern checker core using the
following parameters:

■ Data Bits Per Symbol—The number of bits per symbol for the input interface.
Valid values are 1 to 256.

■ Data Symbols Per Beat—The number of symbols (words) that are transferred per
beat. Valid values are 1 to 32.

■ Include Packet Support—Indicates whether or not packet transfers are supported.
Packet support includes the startofpacket, endofpacket, and empty signals.

■ Number of Channels—The number of channels that the test pattern checker core
supports. Valid values are 1 to 256.

■ Error Signal Width (bits)—The width of the error signal on the input interface.
Valid values are 0 to 31. A value of 0 indicates that the error signal is not in use.

Hardware Simulation Considerations
The test pattern generator and checker cores do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–7
Software Programming Model
Software Programming Model
This section describes the software programming model for the test pattern generator
and checker cores.

HAL System Library Support
For Nios II processor users, Altera provides HAL system library drivers that enable
you to initialize and access the test pattern generator and checker cores. Altera
recommends you to use the provided drivers to access the cores instead of accessing
the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation
folders to your software application directory:

■ <IP installation directory> /ip /sopc_builder_ip /altera_avalon_data_source/HAL

■ <IP installation directory>/ip/sopc_builder_ip/ altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.

Software Files
The following software files define the low-level access to the hardware, and provide
the routines for the HAL device drivers. Application developers should not modify
these files.

■ Software files provided with the test pattern generator core:

■ data_source_regs.h—The header file that defines the test pattern generator's
register maps.

■ data_source_util.h, data_source_util.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.

■ Software files provided with the test pattern checker core:

■ data_sink_regs.h—The header file that defines the core’s register maps.

■ data_sink_util.h, data_sink_util.c—The header and source code for the
functions and variables required to integrate the driver into the HAL system
library.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–8 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Software Programming Model
Register Maps
This section describes the register maps for the test pattern generator and checker
cores.

Test Pattern Generator Control and Status Registers
Table 35–3 shows the offset for the test pattern generator control and status registers.
Each register is 32 bits wide.

Table 35–4 describes the status register bits.

Table 35–5 describes the control register bits

Table 35–3. Test Pattern Generator Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 35–4. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 35–5. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

[16:8] THROTTLE RW

Specifies the throttle value which can be between 0–256, inclusively. This
value is used in conjunction with a pseudorandom number generator to
throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–9
Software Programming Model
Table 35–6 describes the fill register bits.

Test Pattern Generator Command Registers
Table 35–7 shows the offset for the command registers. Each register is 32 bits wide.

Table 35–8 describes the cmd_lo register bits. The command is pushed into the FIFO
only when the cmd_lo register is written to.

Table 35–9 describes the cmd_hi register bits.

Table 35–6. Fill Field Descriptions

Bit(s) Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that there is
at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

Table 35–7. Test Pattern Command Register Map

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

Table 35–8. cmd_lo Field Descriptions

Bit(s) Name Access Description

[15:0] SIZE RW

The segment size in symbols. Except for the last segment in a packet, the size
of all segments must be a multiple of the configured number of symbols per
beat. If this condition is not met, the test pattern generator core inserts
additional symbols to the segment to ensure the condition is fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less than 14 bits
wide, the low order bits of this register are used to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This bit is ignored
when packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit is ignored
when packets are not supported.

Table 35–9. cmd_hi Field Descriptions

Bit(s) Name Access Description

[15:0] SIGNALLED
ERROR

RW Specifies the value to drive the error signal. A non-zero value creates a
signalled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to create data
errors. To stop creating data errors, set this register to 0.

[24] SUPRESS SOP RW Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

[25] SUPRESS EOP RW Set this bit to 1 to suppress the assertion of the endofpacket signal when
the last segment in a packet is sent.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–10 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Software Programming Model
Test Pattern Checker Control and Status Registers
Table 35–10 shows the offset for the control and status registers. Each register is 32 bits
wide.

Table 35–11 describes the status register bits.

Table 35–12 describes the control register bits.

Table 35–10. Test Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2

Reservedbase + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 35–11. Status Field Descriptions

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 35–12. Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW

Specifies the throttle value which can be between 0–256, inclusively. This
value is used in conjunction with a pseudorandom number generator to
throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting it to
256 causes the test pattern generator core to run at full throttle. Values
between 0–256 result in a data rate proportional to the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. Write
0 to this bit to exit reset.

[31:18] Reserved
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–11
Software Programming Model
Table 35–13 describes the exception_descriptor register bits. If there is no exception,
reading this register returns 0.

Table 35–14 describes the indirect_select register bits.

Table 35–15 describes the indirect_count register bits.

Table 35–13. exception_descriptor Field Descriptions

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED
ERROR

RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 35–14. indirect_select Field Descriptions

Bit Bits Name Access Description

[7:0] INDIRECT
CHANNEL

RW
Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT
registers.

[15:8] Reserved

[31:16] INDIRECT ERROR RO The number of data errors that occurred on the channel specified by
INDIRECT CHANNEL.

Table 35–15. indirect_count Field Descriptions

Bit Bits Name Access Description

[15:0] INDIRECT
PACKET COUNT

RO The number of packets received on the channel specified by INDIRECT
CHANNEL.

[31:16] INDIRECT
SYMBOL COUNT

RO The number of symbols received on the channel specified by INDIRECT
CHANNEL.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–12 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Generator API
Test Pattern Generator API
This section describes the application programming interface (API) for the test pattern
generator core. All API functions are currently not available from the interrupt service
routine (ISR).

data_source_reset()

data_source_init()

data_source_get_id()

Prototype: void data_source_reset(alt_u32 base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern generator core including all internal counters and FIFOs. The
control and status registers are not reset by this function.

Prototype: int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters:
base—The base address of the control and status slave.

command_base—The base address of the command slave.

Returns:
1—Initialization is successful.

0—Initialization is unsuccessful.

Description:

This function performs the following operations to initialize the test pattern generator core:

■ Resets and disables the test pattern generator core.

■ Sets the maximum throttle.

■ Clears all inserted errors.

Prototype: int data_source_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern generator core’s identifier.

Description: This function retrieves the test pattern generator core’s identifier.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–13
Test Pattern Generator API
data_source_get_supports_packets()

data_source_get_num_channels()

data_source_get_symbols_per_cycle()

data_source_set_enable()

Prototype: int data_source_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns:
1—Packets are supported.

0—Packets are not supported.

Description: This function checks if the test pattern generator core supports packets.

Prototype: int data_source_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern generator core.

Prototype: int data_source_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols transferred in a beat.

Description: This function retrieves the number of symbols transferred by the test pattern generator core in each
beat.

Prototype: void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters:
base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description:
This function enables or disables the test pattern generator core. When disabled, the test pattern
generator core stops data transmission but continues to accept commands and stores them in the
FIFO.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–14 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Generator API
data_source_get_enable()

data_source_set_throttle()

data_source_get_throttle()

data_source_is_busy()

Prototype: int data_source_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_source_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters:
base—The base address of the control and status slave.

value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value,
when divided by 256 yields the rate at which the test pattern generator sends data.

Prototype: int data_source_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the current throttle value.

Prototype: int data_source_is_busy(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns:
1—The test pattern generator core is busy.

0—The core is not busy.

Description: This function checks if the test pattern generator is busy. The test pattern generator core is busy
when it is sending data or has data in the command FIFO to be sent.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–15
Test Pattern Generator API
data_source_fill_level()

data_source_send_data()

Prototype: int data_source_fill_level(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of commands in the command FIFO.

Description: This function retrieves the number of commands currently in the command FIFO.

Prototype: int data_source_send_data(alt_u32 cmd_base, alt_u16 channel, alt_u16 size,
alt_u32 flags, alt_u16 error, alt_u8 data_error_mask);

Thread-safe: No.

Include: <data_source_util.h>

Parameters:

cmd_base—The base address of the command slave.

channel—The channel to send the data on.

size—The data size.

flags—Specifies whether to send or suppress SOP and EOP signals. Valid values are
DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP, DATA_SOURCE_SEND_SUPRESS_SOP and
DATA_SOURCE_SEND_SUPRESS_EOP.

error—The value asserted on the error signal on the output interface.

data_error_mask—This parameter and the data are XORed together to produce erroneous data.

Returns: Always returns 1.

Description:

This function sends a data fragment to the specified channel.

If packets are supported, user applications must ensure the following conditions are met:

SOP and EOP are used consistently in each channel.

Except for the last segment in a packet, the length of each segment is a multiple of the data width.

If packets are not supported, user applications must ensure the following conditions are met:

No SOP and EOP indicators in the data.

The length of each segment in a packet is a multiple of the data width.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–16 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Checker API
Test Pattern Checker API
This section describes the API for the test pattern checker core. The API functions are
currently not available from the ISR.

data_sink_reset()

data_sink_init()

data_sink_get_id()

Prototype: void data_sink_reset(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void.

Description: This function resets the test pattern checker core including all internal counters.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns:
1—Initialization is successful.

0—Initialization is unsuccessful.

Description:

This function performs the following operations to initialize the test pattern checker core:

■ Resets and disables the test pattern checker core.

■ Sets the throttle to the maximum value.

Prototype: int data_sink_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern checker core’s identifier.

Description: This function retrieves the test pattern checker core’s identifier.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–17
Test Pattern Checker API
data_sink_get_supports_packets()

data_sink_get_num_channels()

data_sink_get_symbols_per_cycle()

data_sink_set enable()

Prototype: int data_sink_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns:
1—Packets are supported.

0—Packets are not supported.

Description: This function checks if the test pattern checker core supports packets.

Prototype: int data_sink_get_num_channels(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported by the test pattern checker core.

Prototype: int data_sink_get_symbols(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols received in a beat.

Description: This function retrieves the number of symbols received by the test pattern checker core in each
beat.

Prototype: void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters:
base—The base address of the control and status slave.

value—The ENABLE bit is set to the value of this parameter.

Returns: void.

Description: This function enables the test pattern checker core.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–18 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Checker API
data_sink_get_enable()

data_sink_set_throttle()

data_sink_get_throttle()

data_sink_get_packet_count()

Prototype: int data_sink_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters:
base—The base address of the control and status slave.

value—The throttle value.

Returns: void.

Description: This function sets the throttle value, which can be between 0–256 inclusively. The throttle value,
when divided by 256 yields the rate at which the test pattern checker receives data.

Prototype: int data_sink_get_throttle(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the throttle value.

Prototype: int data_sink_get_packet_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters:
base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of packets received on the given channel.

Description: This function retrieves the number of packets received on a given channel.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–19
Test Pattern Checker API
data_sink_get_symbol_count()

data_sink_get_error_count()

data_sink_get_exception()

data_sink_exception_is_exception()

Prototype: int data_sink_get_symbol_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters:
base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of symbols received on the given channel.

Description: This function retrieves the number of symbols received on a given channel.

Prototype: int data_sink_get_error_count(alt_u32 base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters:
base—The base address of the control and status slave.

channel—Channel number.

Returns: The number of errors received on the given channel.

Description: This function retrieves the number of errors received on a given channel.

Prototype: int data_sink_get_exception(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns:
The first exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Description: This function retrieves the first exception descriptor in the exception FIFO and pops it off the FIFO.

Prototype: int data_sink_exception_is_exception(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns:
1—Indicates an exception.

0—No exception.

Description: This function checks if a given exception descriptor describes a valid exception.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

35–20 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Test Pattern Checker API
data_sink_exception_has_data_error()

data_sink_exception_has_missing_sop()

data_sink_exception_has_missing_eop()

data_sink_exception_signalled_error()

Prototype: int data_sink_exception_has_data_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns:
1—Data has errors.

0—No errors.

Description: This function checks if a given exception indicates erroneous data.

Prototype: int data_sink_exception_has_missing_sop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns:
1—Missing SOP.

0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing SOP.

Prototype: int data_sink_exception_has_missing_eop(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns:
1—Missing EOP.

0—Other exception types.

Description: This function checks if a given exception descriptor indicates missing EOP.

Prototype: int data_sink_exception_signalled_error(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The signalled error value.

Description: This function retrieves the value of the signalled error from the exception.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores 35–21
Document Revision History
data_sink_exception_channel()

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Prototype: int data_sink_exception_channel(int exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The channel number on which the given exception occurred.

Description: This function retrieves the channel number on which a given exception occurred.

Date Version Changes

June 2011 11.0 Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 No change from previous release.

March 2009 9.0 No change from previous release.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 Updated the section on HAL System Library Support. Updates are made to comply with the
Quartus II software version 8.0 release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

35–22 Chapter 35: Avalon Streaming Test Pattern Generator and Checker Cores
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
36. Avalon Streaming Data Pattern
Generator and Checker Cores
Core Overview
The data generation and monitoring solution for Avalon® Streaming (Avalon-ST)
interfaces consists of two components: a data pattern generator core that generates
data patterns and sends it out on an Avalon-ST interface, and a data pattern checker
core that receives the same data and checks it for correctness.

Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Data Pattern Generator” on page 36–1

■ “Data Pattern Checker” on page 36–3

■ “Hardware Simulation Considerations” on page 36–6

■ “Software Programming Model” on page 36–6

Data Pattern Generator
This section describes the hardware structure and functionality of the data pattern
generator core.

Functional Description
The data pattern generator core accepts commands to generate and drive data onto an
Avalon-ST source interface.

Figure 36–1 shows a block diagram of the data pattern generator core.

You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core.

Figure 36–1. Data Pattern Generator Core Block Diagram

DATA PATTERN
 GENERATOR

data_out

control & status

A
valon-S

T
S

ource

Avalon-MM
Slave Port
Embedded Peripherals IP User Guide

36–2 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Data Pattern Generator
You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the
Avalon-ST interfaces, respectively. The core’s data format endianness is the most
significant symbol first within a beat and the most significant bit first within a symbol.
For example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.

For smaller data widths, you can use the Avalon-ST Data Format Adapter for data
width adaptation. The Avalon-ST Data Format Adapter converts the output from 4
symbols per beat, to 2 or 1 symbol per beat. In this way, the 32-bit output of the core
can be adapted to a 16-bit or 8-bit output and the 40-bit output can be adapted to a
20-bit or 10-bit output.

f For more information about the Avalon-ST Data Format Adapter, refer to SOPC
Builder User Guide.

Control and Status Register Interface
The control and status register interface is an Avalon-MM slave that allows you to
enable or disable the data generation. This interface also provides the run-time ability
to choose data pattern and inject an error into the data stream.

Output Interface
The output interface is an Avalon-ST interface. You can configure the data width at the
output interface to suit your requirements.

Clock Interface
The data pattern generator core has separate clock domains for the control and status
register interface (Avalon-MM) and the output interface (Avalon-ST) to allow the two
interfaces to operate in different frequencies.

Supported Data Patterns
The following data patterns are supported in the following manner, per beat. When
the core is disabled or is in idle state, the default pattern generated on the data output
is 0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width). This core does not
support custom data patterns.

Table 36–1 lists the supported data patterns for the data pattern generator core.

Table 36–1. Supported Data Patterns (Binary Encoding) (Note 1)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf

Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores 36–3
Data Pattern Checker
Inject Error
Errors can be injected into the data stream by controlling the Inject Error register
bits in the register map (refer to Table 36–6 on page 36–7). When the inject error bit is
set, one bit of error is produced by inverting the LSB of the next data beat.

If the inject error bit is set before the core starts generating the data pattern, the error
bit is inserted in the first output cycle.

The Inject Error register bit is automatically reset after the error is introduced in the
pipeline, so that the next error can be injected.

Preamble Mode
The preamble mode is used for synchronization or word alignment. When the
preamble mode is set, the preamble control register sends the preamble character a
specified number of times before the selected pattern is generated, so the word
alignment block in the receiver can determine the word boundary in the bit stream.

The number of beats (NumBeats) determines the number of cycles to output the
preamble character in the preamble mode. You can set the number of beats (NumBeats)
in the preamble control register. The default setting is 0 and the maximum value is 255
beats. This mode can only be set when the data pattern generation core is disabled.

Configuration
The following section lists the available option in the MegaWizard™ interface.

Output Parameter
You can configure the output interface of the data pattern generator core using the
following parameter:

■ ST_DATA_W — The width of the output data signal that the data pattern
generator core supports. Valid values are 32 and 40.

Data Pattern Checker
This section describes the hardware structure and functionality of the data pattern
checker core.

Functional Description
The data pattern checker core accepts data via an Avalon-ST sink interface, checks it
for correctness against the same predetermined pattern used by the data pattern
generator core or other PRBS generators to produce the data, and reports any
exceptions to the control interface.

Low Frequency 11110000 x 4 1111100000 x 4

Note to Table 36–1:

(1) All PRBS patterns are seeded with 11111111.

Table 36–1. Supported Data Patterns (Binary Encoding) (Note 1)

Pattern 32-bit 40-bit
June 2011 Altera Corporation Embedded Peripherals IP User Guide

36–4 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Data Pattern Checker
Figure 36–2 shows a block diagram of the data pattern checker core.

You can configure the width of the output data signal to either 32-bit or 40-bit when
instantiating the core. The chosen data width is not configurable during run time.

You can configure this core to output 8-bit or 10-bit wide symbols. By default, the core
generates 4 symbols per beat, which outputs 32-bit or 40-bit wide data to the
Avalon-ST interfaces, respectively. The core’s data format endianness is the most
significant symbol first within a beat and the most significant bit first within a symbol.
For example, when you configure the output data to 32-bit, bit 31 is the first data bit,
followed by bit 30, and so forth. This interface’s endianness may change in future
versions of the core.

If you configure the width of the output data to 32-bit, the core inputs four 8-bit wide
symbols per beat. To achieve an 8-bit and 16-bit data width, you can use the
Avalon-ST Data Format Adapter component to convert 4 symbols per beat to 1 or 2
symbols per beat.

Similarly, if you configure the width of the output data to 40-bit, the core inputs four
10-bit wide symbols per beat. The 10-bit and 20-bit input can be achieved by
switching from 4 symbols per beat to 1 and 2 symbols per beat.

Control and Status Register Interface
The control and status interface is an Avalon-MM slave that allows you to enable or
disable the pattern checking. This interface also provides the run-time ability to
choose the data pattern and read the status signals.

Input Interface
The input interface is an Avalon-ST interface. You can configure the data width at this
interface to suit your requirements.

Clock Interface
The data pattern checker core has separate clock domains for the control and status
register interface (Avalon-MM) and the input interface (Avalon-ST) to allow the two
interfaces to operate in different frequencies.

Figure 36–2. Data Pattern Checker

DATA PATTERN
 CHECKER

data_in

control & status

A
va

lo
n-

S
T

S
in

k

Avalon-MM
Slave Port
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores 36–5
Data Pattern Checker
Supported Data Patterns
The following data patterns are supported in the following manner, per beat. When
the core is disabled or in idle state, the default pattern generated on the data output is
0×5555 (for 32-bit data width) or 0×55555 (for 40-bit data width).

Table 36–2 lists the supported data patterns for the data pattern checker core.

Lock
The LOCKED bit in the status register is asserted when 40 consecutive beats of correct
data are received. This bit is deasserted and the receiver loses the lock when 40
consecutive beats of incorrect data are received.

Bit and Error Counters
The core has two 64-bit internal counters to keep track of the number of bits and
number of error bits received. A snapshot has to be executed to update the NumBits
and NumErrors registers with the current value from the internal counters.

A counter reset can be executed to reset both the registers and internal counters. If the
counters are not being reset and the core is enabled, the internal counters continues
the increment base on their current value.

1 The internal counters only start to increment after a lock has been acquired.

Clock Sensor
The clock sensor register checks whether the clock is idle by detecting the postive
edge of the clock. The CLOCK RUNNING bit in the clock sensor register shows the
Avalon-ST clock status, where 1 indicates that the clock is running and 0 indicates that
the clock is idle. This bit remains set until you manually reset it by writing to the
RESET_CLOCK_RUNNING bit.

After a write to the RESET_CLOCK_RUNNING bit, you should wait for a reasonable
amount of time to detect a positive edge of the clock before reading the CLOCK RUNNING
bit again.

Table 36–2. Supported Data Patterns (Binary Encoding)

Pattern 32-bit 40-bit

PRBS-7 PRBS in parallel PRBS in parallel

PRBS-15 PRBS in parallel PRBS in parallel

PRBS-23 PRBS in parallel PRBS in parallel

PRBS-31 PRBS in parallel PRBS in parallel

High Frequency 10101010 x 4 1010101010 x 4

Low Frequency 11110000 x 4 1111100000 x 4
June 2011 Altera Corporation Embedded Peripherals IP User Guide

36–6 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Hardware Simulation Considerations
Configuration
The following section lists the available option in the MegaWizard™ interface.

Input Parameter
You can configure the input interface of the data pattern checker core using the
following parameter:

■ ST_DATA_W — The width of the input data signal that the data pattern checker
core supports. Valid values are 32 and 40.

Hardware Simulation Considerations
The data pattern generator and checker cores do not provide a simulation testbench
for simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.

Software Programming Model
This section describes the software programming model for the data pattern
generator and checker cores.

Register Maps
This section describes the register maps for the data pattern generator and checker
cores.

Data Pattern Generator Control Registers
Table 36–3 shows the register map for the data pattern generator core control
registers. To access each register, add the BASE address to the offset value.

Table 36–3. Data Pattern Generator Core Register Map (Note 1)

Offset Register
Name R/W

Bit Description

31 ... 16 15 ... 9 8 7 6 5 4 3 2 1 0

0 Enable RW Reserved ENABLE

1 Pattern
Select

RW Reserved LF HF
PRBS
31

PRBS
23

PRBS
15

PRBS
7

2 Inject
Error

RW Reserved INJECT

3 Preamble
Control

RW Reserved NUM BEATS Reserved ENABLE
PREAMBLE

4
Preamble
Character
(Low Bits)

RW PREAMBLE LO
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores 36–7
Software Programming Model
Table 36–4 describes the Enable register bits. This register enables or disables the
pattern generation.

Table 36–5 describes the Pattern Select register bits.

Table 36–6 describes the Inject Error register bits. This register allows you to set the
error inject bit and insert one bit of error into the stream.

5
Preamble
Character
(High Bits)

RW Reserved PREAMBLE HI

Note to Table 36–3:

(1) Reserved fields—Read values are undefined. Write zero.

Table 36–3. Data Pattern Generator Core Register Map (Note 1)

Offset Register
Name R/W

Bit Description

31 ... 16 15 ... 9 8 7 6 5 4 3 2 1 0

Table 36–4. Enable Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the data pattern generator core.

[31:1] Reserved

Note to Table 36–4:

(1) When the core is enabled, only the Enable register and the Inject Error register have write access. Write access to all other registers are
ignored. When the core is disabled, the final output is observed at the next clock cycle.

Table 36–5. Pattern Select Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 outputs a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 outputs a PRBS 15 pattern with T [15, 14].

[2] PRBS23 RW Setting this bit to 1 outputs a PRBS 23 pattern with T [23, 18].

[3] PRBS31 RW Setting this bit to 1 outputs a PRBS 31 pattern with T [31, 28].

[4] HF RW Setting this bit to 1 outputs a constant pattern of 0101010101… bits.

[5] LF RW Setting this bit to 1 outputs a constant word pattern of 1111100000 for
10-bit words, or 11110000 for 8-bit words.

[31:6] Reserved

Note to Table 36–5:

(1) This register is one-hot encoded where only one of the pattern selector bits should be set to 1. For all other settings, the behaviors are undefined.

Table 36–6. Inject Error Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] INJECT RW Setting this bit to 1 injects error into the stream. The bit stays high until
the error is injected. Setting this bit to 1 while the bit is high has no effect.

[31:1] Reserved

Note to Table 36–6:

(1) The data beat that is injected with error might not be observed from the source if the core is disabled while the error is injected into the stream.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

36–8 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Software Programming Model
Table 36–7 describes the Preamble Control register bits. This register enables
preamble and set the number of cycles to output the preamble character.

Table 36–8 describes the Preamble Character (Low Bits) register bits. This register is
for the user-defined preamble character (bit 0-31).

Table 36–9 describes the Preamble Character (High Bits) register bits. This register
is for the user-defined preamble character (bit 32-39) but is ignored if the ST_DATA_W
value is set to 32.

Data Pattern Checker Control and Status Registers
Table 36–10 shows the register map for the data pattern checker core control and
status registers. To access each register, add the BASE address to the offset value.

Table 36–7. Preamble Control Field Descriptions

Bit(s) Name Access Description

[0] ENABLE
PREAMBLE

RW
Setting this bit to 1 at the start of pattern generation, enables the preamble
character to be sent for NUM BEATS cycles before switching over to the
selected pattern.

[7:1] Reserved

[15:8] NUM BEATS RW The number of beats to repeat the preamble character.

[31:16] Reserved

Table 36–8. Preamble Character Low Bits Field Descriptions

Bit(s) Name Access Description

[31:0] PREAMBLE LO RW Sets bit 31-0 for the preamble character to output.

Table 36–9. Preamble Character High Bits Field Descriptions

Bit(s) Name Access Description

[7:0] PREAMBLE HI RW Sets bit 39-32 for the preamble character. This is ignored when
the ST_DATA_W value is set to 32.

[31:8] Reserved

Table 36–10. Data Pattern Checker Core Register Map (Note 1)

Offset Register
Name R/W

Bit Description

31 ... 16 15 ... 9 8 7 6 5 4 3 2 1 0

0 Status RW Reserved LOCKED ENABLE

1 Pattern
Set

RW Reserved LF HF
PRBS
31

PRBS
23

PRBS
15

PRBS
7

2 Counter
Control

RW Reserved VALID Reserved CLEAR SNAP

3
NumBits
(Lower
Bits)

R NUM BITS LO
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores 36–9
Software Programming Model
Table 36–11 describes the Status register bits.

Table 36–12 describes the Pattern Select register bits. This register is one-hot
encoded where only one of the pattern selector bits should be set to 1. For all other
settings, the behaviors are undefined.

4
NumBits
(Higher
Bits)

R NUM BITS HI

5
NumErrors
(Lower
Bits)

R NUM ERROR LO

6
NumErrors
(Higher
Bits)

R NUM ERROR HI

7 Clock
Sensor

RW Reserved CLOCK
RUNNING

RESET
CLOCK
RUNNING

Note to Table 36–3:

(1) Reserved fields—Read values are undefined. Write zero.

Table 36–10. Data Pattern Checker Core Register Map (Note 1)

Offset Register
Name R/W

Bit Description

31 ... 16 15 ... 9 8 7 6 5 4 3 2 1 0

Table 36–11. Status Field Descriptions (Note 1)

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables pattern checking.

[1] LOCKED R Indicate lock status. Writing to this bit has no effect.

[31:2] Reserved

Note to Table 36–11:

(1) When the core is enabled, only the Status register’s ENABLE bit and the Counter Control register’s SNAP and CLEAR bits have write access.
Write access to all other registers are ignored.

Table 36–12. Pattern Select Field Descriptions

Bit(s) Name Access Description

[0] PRBS7 RW Setting this bit to 1 compares the data to a PRBS 7 pattern with T [7, 6].

[1] PRBS15 RW Setting this bit to 1 compares the data to a PRBS 15 pattern with T [15, 14].

[2] PRBS23 RW Setting this bit to 1 compares the data to a PRBS 23 pattern with T [23, 18].

[3] PRBS31 RW Setting this bit to 1 compares the data to a PRBS 31 pattern with T [31, 28].

[4] HF RW Setting this bit to 1 compares the data to a constant pattern of 0101010101…
bits.

[5] LF RW Setting this bit to 1 compares the data to a constant word pattern of
1111100000 for 10-bit words, or 11110000 for 8-bit words.

[31:6] Reserved
June 2011 Altera Corporation Embedded Peripherals IP User Guide

36–10 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Software Programming Model
Table 36–13 describes the Counter Control register bits. This register snapshots and
resets the NumBits and NumErrors register, and also the internal counters.

Table 36–14 describes the NumBits (Lower Bits)register bits. This register is the lower
word of the 64-bit bit counter snapshot value. The register resets when the
component-reset is asserted or when the CLEAR bit is set to 1.

Table 36–15 describes the NumBits (Higher Bits)register bits. This register is the
higher word of the 64-bit bit counter snapshot value. The register resets when the
component-reset is asserted or when the CLEAR bit is set to 1.

Table 36–16 describes the NumErrors (Lower Bits)register bits. This register is the
lower word of the 64-bit error counter snapshot value. The register resets when the
component-reset is asserted or when the CLEAR bit is set to 1.

Table 36–13. Counter Control Field Descriptions

Bit(s) Name Access Description

[0] SNAP (1) W

Writing this bit to 1 captures the number of bits received and number of error
bits received from the internal counters to the respective NumBits and
NumErrors registers within the same clock cycle.

Writing this bit to 1 after disabling the core will still capture the correct values
from the internal counters to the NumBits and NumErrors registers.

[1] CLEAR (1) W

Writing this bit to 1 resets all internal counters and snapped registers. You
can reset the counters and registers even when the Avalon-ST clock is idle.
Re-enabling the core does not automatically reset the number of bits received
and number of error bits received in the internal counter.

This bit resets itself automatically after the reset process.

[7:2] Reserved

[8] VALID R
indicates the validity of the NumBits and NumErrors register values. Writing
to this bit has no effect. This bit is driven low after the SNAP or CLEAR bit is
set to 1.

[31:9] Reserved

Note to Table 36–13:

(1) The SNAP and CLEAR bits have no effect on the counters if the VALID bit is low.

Table 36–14. NumBits (Lower Bits) Field Descriptions

Bit(s) Name Access Description

[31:0] NUM BITS LO R Sets bit 31-0 for the NumBits (number of bits received).

Table 36–15. NumBits (Higher Bits) Field Descriptions

Bit(s) Name Access Description

[31:0] NUM BITS HI R Sets bit 63-32 for the NumBits (number of bits received).

Table 36–16. NumErrors (Lower Bits) Field Descriptions

Bit(s) Name Access Description

[31:0] NUM ERROR LO R Sets bit 31-0 for the NumErrors (number of error bits received).
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores 36–11
Document Revision History
Table 36–17 describes the NumErrors (Higher Bits)register bits. This register is the
higher word of the 64-bit error counter snapshot value. The register resets when the
component-reset is asserted or when the CLEAR bit is set to 1.

Table 36–13 describes the Clock Sensor register bits. This register check whether the
Avalon-ST clock is in idle state. Use this bit if the VALID bit does not go high in a
reasonable amount of time—where a positive edge of the Avalon-ST clock can be
detected.

Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

Table 36–17. NumErrors (Higher Bits) Field Descriptions

Bit(s) Name Access Description

[31:0] NUM ERROR HI R Sets bit 63-32 for the NumErrors (number of error bits received).

Table 36–18. Clock Sensor Field Descriptions

Bit(s) Name Access Description

[0] RESET CLOCK
RUNNING

W Writing this bit to 1 clears the CLOCK RUNNING bit.

[1] CLOCK RUNNING R

Indicates the clock status. This bit goes high when the clock is running and
goes low when the clock is idle. To clear this bit, reset the system or set
the RESET CLOCK RUNNING bit to 1 and wait for a reasonable amount of
time before reading this bit.

[31:2] Reserved

Date Version Changes

June 2011 11.0

■ Updated the functional description of the data pattern generator and data pattern checker
core.

■ Revised the core’s register map in Table 36–3 and Table 36–10 for a better representation.

■ Updated the register bits in “Register Maps” on page 36–6.

■ Added a new register in Table 36–10.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

January 2010 9.1 SP1 Initial release.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/lit-qts_archive.jsp

36–12 Chapter 36: Avalon Streaming Data Pattern Generator and Checker Cores
Document Revision History
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
Section V. Clock Control Peripherals
This section describes clock control peripherals provided by Altera for SOPC Builder
systems.

This section includes the following chapter:

■ Chapter 38, PLL Cores

1 For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.
Embedded Peripherals IP User Guide

37–2 Chapter :
Embedded Peripherals IP User Guide June 2011 Altera Corporation

June 2011 Altera Corporation
38. PLL Cores
Core Overview
The PLL cores—ALTERA_PLL, Avalon ALTPLL, and PLL—provide a means of
accessing the dedicated on-chip PLL circuitry in the Altera® Stratix® and Cyclone®
series FPGAs. The PLL and Avalon ALTPLL cores are component wrappers around
the ALTPLL megafunction.

1 The PLL core is scheduled for product obsolescence and discontinued support.
Therefore, Altera recommends that you use the ALTERA_PLL or Avalon ALTPLL
core in your designs.

The core takes an SOPC Builder system clock as its input and generates PLL output
clocks locked to that reference clock.

The PLL cores support the following features:

■ All PLL features provided by ALTERA_PLL and ALTPLL megafunctions. The
exact feature set depends on the device family.

■ Access to status and control signals through Avalon Memory-Mapped
(Avalon-MM) registers or top-level signals on the SOPC Builder system module.

■ Dynamic phase reconfiguration in Stratix III and Stratix IV device families.

The PLL output clocks are made available in two ways:

■ As sources to system-wide clocks in your SOPC Builder system

■ As output signals on your SOPC Builder system module

f For details about the megafunctions, refer to the respective documents:

■ ALTERA_PLL megafunction, refer to Altera Phase-Locked Loop (ALTERA_PLL)
Megafunction User Guide.

■ ALTPLL megafunction, refer to ALTPLL Megafunction User Guide.

The PLL core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Hardware Simulation Considerations” on page 38–5

■ “Register Definitions and Bit List” on page 38–5
Embedded Peripherals IP User Guide

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf

38–2 Chapter 38: PLL Cores
Functional Description
Functional Description
Figure 38–1 shows a block diagram of the PLL cores and their connection to the PLL
circuitry inside an Altera FPGA. The following sections describe the components of
the core.

ALTERA_PLL Megafunction
The ALTERA_PLL megafunction supports designs using the Stratix V device family.
When configured, the ALTERA_PLL instantiates a generic PLL, which creates a
simple migration path from previous PLL architectures to future architectures and
allows placement flexibility between different PLL types.

ALTPLL Megafunction
The PLL cores can consist of an ALTPLL megafunction instantiation and an
Avalon-MM slave interface. This interface can optionally provide access to status and
control registers within the cores. The ALTPLL megafunction takes an SOPC Builder
system clock as its reference, and generates one or more phase-locked loop output
clocks.

Clock Outputs
Depending on the target device family, the ALTPLL megafunction can produce two
types of output clock:

Figure 38–1. PLL Core Block Diagram

Status

Control

areset
pfdena

pllena

inclk

e1

e0

c1

c0

locked PLL Locked

Avalon-MM
Slave Interface

PLL Reset
PFD Enable
PLL Enable

Reference
Clock

Registers

PLL Core

ALTPLL Megafunction

PLL Clock
Outputs
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 38: PLL Cores 38–3
Instantiating the ALTERA_PLL Core
■ internal (c)—clock outputs that can drive logic either inside or outside the SOPC
Builder system module. Internal clock outputs can also be mapped to top-level
FPGA pins. Internal clock outputs are available on all device families.

■ external (e)—clock outputs that can only drive dedicated FPGA pins. They cannot
be used as on-chip clock sources. External clock outputs are not available on all
device families.

The Avalon ALTPLL core, however, does not differentiate the internal and external
clock outputs and allows the external clock outputs to be used as on-chip clock
sources. To determine the exact number and type of output clocks available on your
target device, refer to the respective megafunction documents.

PLL Status and Control Signals
Depending on how the ALTERA_PLL or ALTPLL megafunction is parameterized,
there can be a variable number of status and control signals. You can choose to export
certain status and control signals to the top-level SOPC Builder system module.
Alternatively, Avalon-MM registers can provide access to the signals. Any status or
control signals which are not mapped to registers are exported to the top-level
module. For details, refer to the “Instantiating the ALTERA_PLL Core”.

System Reset Considerations
At FPGA configuration, the PLL cores reset automatically. PLL-specific reset circuitry
guarantees that the PLL locks before releasing reset for the overall SOPC Builder
system module.

c Resetting the PLL resets the entire SOPC Builder system module.

Instantiating the ALTERA_PLL Core
When you instantiate the ALTERA_PLL core, the parameter editor in Qsys is
automatically launched for you to parameterize the megafunction. The ALTERA_PLL
core only supports the Stratix V device family. For other device families, Altera
recommends that you use the Avalon ALTPLL core.

f For details about the parameter settings and ports in the ALTERA_PLL core, refer to
Altera Phase-Locked Loop (ALTERA_PLL) Megafunction User Guide.

Instantiating the Avalon ALTPLL Core
When you instantiate the Avalon ALTPLL core, the MegaWizard Plug-In Manager is
automatically launched for you to parameterize the ALTPLL megafunction. There are
no additional parameters that you can configure in SOPC Builder.

The pfdena signal of the ALTPLL megafunction is not exported to the top level of the
SOPC Builder module. You can drive this port by writing to the PFDENA bit in the
control register.
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

38–4 Chapter 38: PLL Cores
Instantiating the PLL Core
The locked, pllena/extclkena, and areset signals of the megafunction are always
exported to the top level of the SOPC Builder module. You can read the locked signal
and reset the core by manipulating respective bits in the registers. See “Register
Definitions and Bit List” on page 38–5 for more information on the registers.

f For details about using the ALTPLL MegaWizard Plug-In Manager, refer to the
ALTPLL Megafunction User Guide.

Instantiating the PLL Core
This section describes the options available in the MegaWizard™ interface for the PLL
core in SOPC Builder.

PLL Settings Page
The PLL Settings page contains a button that launches the ALTPLL MegaWizard
Plug-In Manager. Use the MegaWizard Plug-In Manager to parameterize the ALTPLL
megafunction. The set of available parameters depends on the target device family.

You cannot click Finish in the PLL wizard nor configure the PLL interface until you
parameterize the ALTPLL megafunction.

Interface Page
The Interface page configures the access modes for the optional advanced PLL status
and control signals.

For each advanced signal present on the ALTPLL megafunction, you can select one of
the following access modes:

■ Export—Exports the signal to the top level of the SOPC builder system module.

■ Register—Maps the signal to a bit in a status or control register.

1 The advanced signals are optional. If you choose not to create any of them in the
ALTPLL MegaWizard Plug-In, the PLL's default behavior is as shown in Table 38–1.

You can specify the access mode for the advanced signals shown in Table 38–1. The
ALTPLL core signals, not displayed in this table, are automatically exported to the top
level of the SOPC Builder system module.

Table 38–1. ALTPLL Advanced Signal

ALTPLL
Name

Input /
Output

Avalon-MM PLL
Wizard Name Default Behavior Description

areset input PLL Reset Input The PLL is reset only at
device configuration.

This signal resets the entire SOPC Builder
system module, and restores the PLL to its
initial settings.

pllena input PLL Enable Input The PLL is enabled.
This signal enables the PLL.

pllena is always exported.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 38: PLL Cores 38–5
Hardware Simulation Considerations
c Asserting areset resets the entire SOPC Builder system module, not just the PLL.

Finish
Click Finish to insert the PLL into the SOPC Builder system. The PLL clock output(s)
appear in the clock settings table on the SOPC Builder System Contents tab.

1 If the PLL has external output clocks, they appear in the clock settings table like other
clocks; however, you cannot use them to drive components within the SOPC Builder
system.

f For details about using external output clocks, refer to the ALTPLL Megafunction User
Guide.

The SOPC Builder automatically connects the PLL's reference clock input to the first
available clock in the clock settings table.

1 If there is more than one SOPC Builder system clock available, verify that the PLL is
connected to the appropriate reference clock.

Hardware Simulation Considerations
The HDL files generated by SOPC Builder for the PLL cores are suitable for both
synthesis and simulation. The PLL cores support the standard SOPC Builder
simulation flow, so there are no special considerations for hardware simulation.

Register Definitions and Bit List
Table 38–2 shows the register map for the PLL cores. Device drivers can control and
communicate with the cores through two memory-mapped registers, status and
control. The width of these registers are 32 bits in the Avalon ALTPLL core but only
16 bits in the PLL core.

pfdena input PFD Enable Input The phase-frequency
detector is enabled.

This signal enables the phase-frequency
detector in the PLL, allowing it to lock on to
changes in the clock reference.

locked output PLL Locked Output — This signal is asserted when the PLL is locked
to the input clock.

Table 38–1. ALTPLL Advanced Signal

ALTPLL
Name

Input /
Output

Avalon-MM PLL
Wizard Name Default Behavior Description
June 2011 Altera Corporation Embedded Peripherals IP User Guide

http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

38–6 Chapter 38: PLL Cores
Register Definitions and Bit List
In the PLL core, the status and control bits shown in Table 38–2 are present only if
they have been created in the ALTPLL MegaWizard Plug-In Manager, and set to
Register on the Interface page in the PLL wizard. These registers are always created
in the Avalon ALTPLL core.

Status Register
Embedded software can access the PLL status via the status register. Writing to
status has no effect. Table 38–3 describes the function of each bit.

Table 38–2. PLL Cores Register Map

Offset Register
Name R/W

Bit Description

31/15
(2) 30 29 ... 9 8 7 6 5 4 3 2 1 0

0 status R/O (1) phasedone locked

1 control R/W (1) pfdena areset

2
phase

reconfig
control

R/W phase (1) counter_number

3 — — Undefined

Notes to Table 38–2:

(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.
(2) The registers are 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.

Table 38–3. Status Register Bits

Bit Number Bit Name Value after reset Description

0
locked

(2)
1

Connects to the locked signal on the ALTPLL
megafunction. The locked bit is high when
valid clocks are present on the output of the
PLL.

1
phasedone

(2)
0

Connects to the phasedone signal on the
ALTPLL megafunction. The phasedone
output of the ALTPLL is synchronized to the
system clock.

 2:15/31 (1) — — Reserved. Read values are undefined.

Notes to Table 38–3:

(1) The status register is 32-bit wide in the Avalon ALTPLL core and 16-bit wide in the PLL core.
(2) Both the locked and phasedone outputs from the Avalon ALTPLL component are available as conduits and reflect

the non-synchronized outputs from the ALTPLL.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

Chapter 38: PLL Cores 38–7
Register Definitions and Bit List
Control Register
Embedded software can control the PLL via the control register. Software can also
read back the status of control bits. Table 38–4 describes the function of each bit.

Phase Reconfig Control Register
Embedded software can control the dynamic phase reconfiguration via the phase
reconfig control register. Table 38–5 describes the function of each bit.

Table 38–6 lists the counter number and selection. For example, 100 000 000 selects
counter C0 and 100 000 001 selects counter C1.

Table 38–4. Control Register Bits

Bit Number Bit Name Value after reset Description

0 areset 0
Connects to the areset signal on the ALTPLL
megafunction. Writing a 1 to this bit initiates
a PLL reset.

1 pfdena 1
Connects to the pfdena signal on the ALTPLL
megafunction. Writing a 0 to this bit disables
the phase frequency detection.

2:15/31 (1) — — Reserved. Read values are undefined. When
writing, set reserved bits to zero.

Note to Table 38–4:

(1) The controlregister is 32 bit wide in the Avalon ALTPLL core and 16 bit wide in the PLL core.

Table 38–5. Phase Reconfig Control Register Bits

Bit Number Bit Name Value after
reset Description

0:8 counter_number —
A binary 9-bit representation of the counter
that needs to be reconfigured. Refer to
Table 38–6 for the counter selection.

9:29 — — Reserved. Read values are undefined. When
writing, set reserved bits to zero.

30:31 phase (1) —

01: Step up phase of counter_number

10: Step down phase of counter_number

00 and 11: No operation

Note to Table 38–5:

(1) Phase step up or down when set to 1 (only applicable to the Avalon ALTPLL core).

Table 38–6. Counter_Number Bits and Selection

Counter_Number [0:8] Counter Selection

0 0000 0000 All output counters

0 0000 0001 M counter

> 0 0000 0001 Undefined

1 0000 0000 C0
June 2011 Altera Corporation Embedded Peripherals IP User Guide

38–8 Chapter 38: PLL Cores
Document Revision History
Document Revision History
The following table shows the revision history for this document.

f For previous versions of this chapter, refer to the Quartus II Handbook Archive.

1 0000 0001 C1

1 0000 0010 C2

... ...

1 0000 1000 C8

1 0000 1001 C9

> 1 0000 1001 Undefined

Table 38–6. Counter_Number Bits and Selection

Counter_Number [0:8] Counter Selection

Date Version Changes

June 2011 11.0
■ Added information on the new ALTERA_PLL core.

■ Converted the document to new frame template version 2.0 and made textual and style
changes.

December 2010 10.1 Removed the “Device Support”, “Instantiating the Core in SOPC Builder”, and “Referenced
Documents” sections.

July 2010 10.0 No change from previous release.

November 2009 9.1 Revised descriptions of register fields and bits. Features added to the register map.

March 2009 9.0 Added information on the new Avalon ALTPLL core. A new PLL core, Avalon ALTPLL, is
released and the chapter is updated accordingly to include the new core.

November 2008 8.1 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0 No change from previous release.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp

June 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this User Guide
This user guide provides comprehensive information about the Altera® Quartus® II
design software, version 11.0.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such third-
party software products and its use in the Quartus II 11.0 software release. To the
extent that the software products described in this handbook are derived from third-
party software, no third party warrants the software, assumes any liability regarding
use of the software, or undertakes to furnish you any support or information relating
to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER WHICH
THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND THIRD-PARTY
LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO THE USE OF
SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN THE
SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Embedded Peripherals IP User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional InformationAdditional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

 A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Embedded Peripherals IP User Guide June 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Embedded Peripherals IP User Guide
	Contents
	1. Introduction
	Tools Support
	Device Support
	Obsolescence
	Document Revision History

	Section I. Off-Chip Interface Peripherals
	2. SDRAM Controller Core
	Core Overview
	Functional Description
	Avalon-MM Interface
	Off-Chip SDRAM Interface
	Signal Timing and Electrical Characteristics
	Synchronizing Clock and Data Signals
	Clock Enable (CKE) Not Supported
	Sharing Pins with Other Avalon-MM Tri-State Devices

	Board Layout and Pinout Considerations
	Performance Considerations
	Open Row Management
	Sharing Data and Address Pins
	Hardware Design and Target Device

	Configuration
	Memory Profile Page
	Timing Page

	Hardware Simulation Considerations
	SDRAM Controller Simulation Model
	SDRAM Memory Model
	Using the Generic Memory Model
	Using the SDRAM Manufacturer’s Memory Model

	Example Configurations
	Software Programming Model
	Clock, PLL and Timing Considerations
	Factors Affecting SDRAM Timing
	Symptoms of an Untuned PLL
	Estimating the Valid Signal Window
	Example Calculation

	Document Revision History

	3. CompactFlash Core
	Core Overview
	Functional Description
	Required Connections
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Ide Registers
	Ctl Registers

	Document Revision History

	4. Common Flash Interface Controller Core
	Core Overview
	Functional Description
	Configuration
	Attributes Page
	Presets Settings
	Size Settings

	Timing Page

	Software Programming Model
	HAL System Library Support
	Limitations

	Software Files

	Document Revision History

	5. EPCS Serial Flash Controller Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers

	Configuration
	Software Programming Model
	HAL System Library Support
	Software Files

	Document Revision History

	6. JTAG UART Core
	Core Overview
	Functional Description
	Avalon Slave Interface and Registers
	Read and Write FIFOs
	JTAG Interface
	Host-Target Connection

	Configuration
	Configuration Page
	Write FIFO Settings
	Read FIFO Settings

	Simulation Settings
	Simulated Input Character Stream
	Prepare Interactive Windows

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast vs. Small Implementations
	ioctl() Operations

	Software Files
	Accessing the JTAG UART Core via a Host PC
	Register Map
	Data Register
	Control Register

	Interrupt Behavior

	Document Revision History

	7. UART Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers
	RS-232 Interface
	Transmitter Logic
	Receiver Logic
	Baud Rate Generation

	Instantiating the Core
	Configuration Settings
	Baud Rate Options
	Data Bits, Stop Bits, Parity
	Synchronizer Stages
	Flow Control
	Streaming Data (DMA) Control

	Simulation Settings
	Simulated RXD-Input Character Stream
	Prepare Interactive Windows
	Simulated Transmitter Baud Rate

	Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast Versus Small Implementations
	ioctl() Operations
	Limitations

	Software Files
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	divisor Register (Optional)
	endofpacket Register (Optional)

	Interrupt Behavior

	Document Revision History

	8. SPI Core
	Core Overview
	Functional Description
	Example Configurations
	Transmitter Logic
	Receiver Logic
	Master and Slave Modes
	Master Mode Operation
	Slave Mode Operation
	Multi-Slave Environments

	Avalon-MM Interface

	Configuration
	Master/Slave Settings
	Number of Select (SS_n) Signals
	SPI Clock (sclk) Rate
	Specify Delay

	Data Register Settings
	Timing Settings

	Software Programming Model
	Hardware Access Routines
	alt_avalon_spi_command()
	Software Files
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	slaveselect Register

	Document Revision History

	9. Optrex 16207 LCD Controller Core
	Core Overview
	Functional Description
	Software Programming Model
	HAL System Library Support
	Displaying Characters on the LCD
	Software Files
	Register Map
	Interrupt Behavior

	Document Revision History

	10. PIO Core
	Core Overview
	Functional Description
	Data Input and Output
	Edge Capture
	IRQ Generation

	Example Configurations
	Avalon-MM Interface

	Configuration
	Basic Settings
	Width
	Direction
	Output Port Reset Value
	Output Register

	Input Options
	Edge Capture Register
	Interrupt

	Simulation

	Software Programming Model
	Software Files
	Register Map
	data Register
	direction Register
	interruptmask Register
	edgecapture Register
	outset and outclear Registers

	Interrupt Behavior
	Software Files

	Document Revision History

	11. Avalon-ST Serial Peripheral Interface Core
	Core Overview
	Functional Description
	Interfaces
	Operation
	Timing
	Limitations

	Configuration
	Document Revision History

	12. PCI Lite Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	PCI-Avalon Bridge Blocks
	Avalon-MM Ports

	Master and Target Performance
	Master Performance
	Target Performance

	PCI-to-Avalon Address Translation
	Avalon-to-PCI Address Translation
	Avalon-To-PCI Read and Write Operation
	Avalon-to-PCI Write Requests
	Avalon-to-PCI Read Requests

	Ordering of Requests
	PCI Interrupt

	Configuration
	PCI Timing Constraint Files
	Additional Tcl Option

	Simulation Considerations
	Features
	Master Transactor (mstr_tranx)
	TASKS Sections
	INITIALIZATION Section
	USER COMMANDS Section

	Simulation Flow

	Document Revision History

	13. Cyclone III Remote Update Controller Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers

	Software Programming Model
	Setting the Configuration Offset
	Shifting the Configuration Offset Value
	Setting up the Watchdog Timer
	Triggering a Reconfiguration
	Code Example

	Document Revision History

	14. MDIO Core
	Functional Description
	MDIO Frame Format (Clause 45)
	MDIO Clock Generation
	Interfaces
	Operation
	Write Operation
	Read Operation

	Parameter
	Configuration Registers
	Document Revision History

	Section II. On-Chip Storage Peripherals
	15. Avalon-ST Single-Clock and Dual-Clock FIFO Cores
	Core Overview
	Functional Description
	Interfaces
	Avalon-ST Data Interface
	Avalon-MM Control and Status Register Interface
	Avalon-ST Status Interface

	Operating Modes
	Fill Level
	Thresholds

	Parameters
	Register Description
	Document Revision History

	16. On-Chip FIFO Memory Core
	Core Overview
	Functional Description
	Avalon-MM Write Slave to Avalon-MM Read Slave
	Avalon-ST Sink to Avalon-ST Source
	Avalon-MM Write Slave to Avalon-ST Source
	Avalon-ST Sink to Avalon-MM Read Slave
	Status Interface
	Clocking Modes

	Configuration
	FIFO Settings
	Depth
	Clock Settings
	Status Port
	FIFO Implementation

	Interface Parameters
	Input
	Output
	Allow Backpressure
	Avalon-MM Port Settings
	Avalon-ST Port Settings

	Software Programming Model
	HAL System Library Support
	Software Files

	Programming with the On-Chip FIFO Memory
	Software Control
	Software Example

	On-Chip FIFO Memory API
	altera_avalon_fifo_init()
	altera_avalon_fifo_read_status()
	altera_avalon_fifo_read_ienable()
	altera_avalon_fifo_read_almostfull()
	altera_avalon_fifo_read_almostempty()
	altera_avalon_fifo_read_event()
	altera_avalon_fifo_read_level()
	altera_avalon_fifo_clear_event()
	altera_avalon_fifo_write_ienable()
	altera_avalon_fifo_write_almostfull()
	altera_avalon_fifo_write_almostempty()
	altera_avalon_write_fifo()
	altera_avalon_write_other_info()
	altera_avalon_fifo_read_fifo()
	altera_avalon_fifo_read_other_info()

	Document Revision History

	17. Avalon-ST Multi-Channel Shared Memory FIFO Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	Interfaces
	Avalon-ST Interfaces
	Avalon-MM Interfaces

	Operation

	Parameters
	Software Programming Model
	HAL System Library Support
	Register Map
	Control Register Interface
	Fill-Level Register Interface

	Document Revision History

	Section III. Transport and Communication
	18. SPI Slave/JTAG to Avalon Master Bridge Cores
	Core Overview
	Functional Description
	Parameters
	Document Revision History

	19. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
	Core Overview
	Resource Usage and Performance

	Multiplexer
	Functional Description
	Input Interfaces
	Output Interface

	Parameters
	Functional Parameters
	Output Interface

	Demultiplexer
	Functional Description
	Input Interface
	Output Interfaces

	Parameters
	Functional Parameters
	Input Interface

	Hardware Simulation Considerations
	Software Programming Model
	Document Revision History

	20. Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores
	Core Overview
	Functional Description
	Interfaces
	Operation—Avalon-ST Bytes to Packets Converter Core
	Operation—Avalon-ST Packets to Bytes Converter Core

	Document Revision History

	21. Avalon Packets to Transactions Converter Core
	Core Overview
	Functional Description
	Interfaces
	Operation
	Packet Formats
	Supported Transactions
	Malformed Packets

	Document Revision History

	22. Avalon-ST Round Robin Scheduler Core
	Core Overview
	Performance and Resource Utilization
	Functional Description
	Interfaces
	Almost-Full Status Interface
	Request Interface

	Operations

	Parameters
	Document Revision History

	23. Avalon-ST Delay Core
	Core Overview
	Functional Description
	Reset
	Interfaces

	Parameters
	Document Revision History

	24. Avalon-ST Splitter Core
	Core Overview
	Functional Description
	Backpressure
	Interfaces

	Parameters
	Document Revision History

	Section IV. Peripherals
	25. Scatter-Gather DMA Controller Core
	Core Overview
	Example Systems
	Comparison of SG-DMA Controller Core and DMA Controller Core
	In This Chapter

	Resource Usage and Performance
	Functional Description
	Functional Blocks and Configurations
	Descriptor Processor
	DMA Read Block
	DMA Write Block
	Memory-to-Memory Configuration
	Memory-to-Stream Configuration
	Stream-to-Memory Configuration

	DMA Descriptors
	Descriptor Processing
	Building and Updating Descriptor List

	Error Conditions

	Parameters
	Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	DMA Descriptors
	Timeouts

	Programming with SG-DMA Controller
	Data Structure
	SG-DMA API
	alt_avalon_sgdma_do_async_transfer()
	alt_avalon_sgdma_do_sync_transfer()
	alt_avalon_sgdma_construct_mem_to_mem_desc()
	alt_avalon_sgdma_construct_stream_to_mem_desc()
	alt_avalon_sgdma_construct_mem_to_stream_desc()
	alt_avalon_sgdma_enable_desc_poll()
	alt_avalon_sgdma_disable_desc_poll()
	alt_avalon_sgdma_check_descriptor_status()
	alt_avalon_sgdma_register_callback()
	alt_avalon_sgdma_start()
	alt_avalon_sgdma_stop()
	alt_avalon_sgdma_open()

	Document Revision History

	26. DMA Controller Core
	Core Overview
	Functional Description
	Setting Up DMA Transactions
	The Master Read and Write Ports
	Addressing and Address Incrementing

	Parameters
	DMA Parameters (Basic)
	Transfer Size
	Burst Transactions
	FIFO Depth
	FIFO Implementation

	Advanced Options
	Allowed Transactions

	Software Programming Model
	HAL System Library Support
	ioctl() Operations
	Limitations

	Software Files
	Register Map
	status Register
	readaddress Register
	writeaddress Register
	length Register
	control Register

	Interrupt Behavior

	Document Revision History

	27. Video Sync Generator and Pixel Converter Cores
	Core Overview
	Video Sync Generator
	Functional Description
	Parameters
	Signals
	Timing Diagrams

	Pixel Converter
	Functional Description
	Parameters
	Signals

	Hardware Simulation Considerations
	Document Revision History

	28. Interval Timer Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface

	Configuration
	Timeout Period
	Counter Size
	Hardware Options
	Register Options
	Output Signal Options

	Configuring the Timer as a Watchdog Timer

	Software Programming Model
	HAL System Library Support
	System Clock Driver
	Timestamp Driver
	Limitations

	Software Files
	Register Map
	status Register
	control Register
	period_n Registers
	snap_n Registers

	Interrupt Behavior

	Document Revision History

	29. Mutex Core
	Core Overview
	Functional Description
	Configuration
	Software Programming Model
	Software Files
	Hardware Access Routines

	Mutex API
	altera_avalon_mutex_is_mine()
	altera_avalon_mutex_first_lock()
	altera_avalon_mutex_lock()
	altera_avalon_mutex_open()
	altera_avalon_mutex_trylock()
	altera_avalon_mutex_unlock()

	Document Revision History

	30. Mailbox Core
	Core Overview
	Functional Description
	Configuration
	Software Programming Model
	Software Files
	Programming with the Mailbox Core

	Mailbox API
	altera_avalon_mailbox_close()
	altera_avalon_mailbox_get()
	altera_avalon_mailbox_open()
	altera_avalon_mailbox_pend()
	altera_avalon_mailbox_post()

	Document Revision History

	31. Vectored Interrupt Controller Core
	Core Overview
	Functional Description
	External Interfaces
	clk
	irq_input
	interrupt_controller_out
	interrupt_controller_in
	csr_access

	Functional Blocks
	Interrupt Request Block
	Priority Processing Block
	Vector Generation Block

	Daisy Chaining VIC Cores
	Latency Information

	Register Maps
	Parameters
	Altera HAL Software Programming Model
	Software Files
	Macros
	Data Structure
	VIC API
	alt_vic_sw_interrupt_set()
	alt_vic_sw_interrupt_clear()
	alt_vic_sw_interrupt_status()
	alt_vic_irq_set_level()

	Run-time Initialization
	Board Support Package
	VIC BSP Settings
	Default Settings for RRS and RIL
	VIC BSP Design Rules for Altera Hal Implementation
	RTOS Considerations

	Document Revision History

	Section V. Test and Debug Peripherals
	32. Avalon-ST JTAG Interface Core
	Core Overview
	Functional Description
	Interfaces
	Core Behavior
	Bytestream Operation
	JTAG Debug Operation

	Parameters

	Document Revision History

	33. System ID Core
	Core Overview
	Functional Description
	Configuration
	Software Programming Model
	alt_avalon_sysid_test()

	Document Revision History

	34. Performance Counter Core
	Core Overview
	Functional Description
	Section Counters
	Global Counter
	Register Map
	System Reset

	Configuration
	Define Counters
	Multiple Clock Domain Considerations

	Hardware Simulation Considerations
	Software Programming Model
	Software Files
	Using the Performance Counter
	API Summary
	Startup
	Global Counter Usage
	Section Counter Usage
	Viewing Counter Values

	Interrupt Behavior

	Performance Counter API
	PERF_RESET()
	PERF_START_MEASURING()
	PERF_STOP_MEASURING()
	PERF_BEGIN()
	PERF_END()
	perf_print_formatted_report()
	perf_get_total_time()
	perf_get_section_time()
	perf_get_num_starts()
	alt_get_cpu_freq()

	Document Revision History

	35. Avalon Streaming Test Pattern Generator and Checker Cores
	Core Overview
	Resource Utilization and Performance
	Test Pattern Generator
	Functional Description
	Command Interface
	Control and Status Interface
	Output Interface

	Configuration
	Functional Parameter
	Output Interface

	Test Pattern Checker
	Functional Description
	Input Interface
	Control and Status Interface

	Configuration
	Functional Parameter
	Input Parameters

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers

	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_set_enable()
	data_source_get_enable()
	data_source_set_throttle()
	data_source_get_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_set enable()
	data_sink_get_enable()
	data_sink_set_throttle()
	data_sink_get_throttle()
	data_sink_get_packet_count()
	data_sink_get_symbol_count()
	data_sink_get_error_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()

	Document Revision History

	36. Avalon Streaming Data Pattern Generator and Checker Cores
	Core Overview
	Data Pattern Generator
	Functional Description
	Control and Status Register Interface
	Output Interface
	Clock Interface
	Supported Data Patterns
	Inject Error
	Preamble Mode

	Configuration
	Output Parameter

	Data Pattern Checker
	Functional Description
	Control and Status Register Interface
	Input Interface
	Clock Interface
	Supported Data Patterns
	Lock
	Bit and Error Counters
	Clock Sensor

	Configuration
	Input Parameter

	Hardware Simulation Considerations
	Software Programming Model
	Register Maps
	Data Pattern Generator Control Registers
	Data Pattern Checker Control and Status Registers

	Document Revision History

	38. PLL Cores
	Core Overview
	Functional Description
	ALTERA_PLL Megafunction
	ALTPLL Megafunction
	Clock Outputs
	PLL Status and Control Signals
	System Reset Considerations

	Instantiating the ALTERA_PLL Core
	Instantiating the Avalon ALTPLL Core
	Instantiating the PLL Core
	PLL Settings Page
	Interface Page
	Finish

	Hardware Simulation Considerations
	Register Definitions and Bit List
	Status Register
	Control Register
	Phase Reconfig Control Register

	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

