
© August 2009 Altera Corporation

© August 2009
AN 586: Porting the Jam STAPL and Jam
STAPL Byte-Code Players to an Embedded

System

AN-586-1.0
The Jam™ Standard Test and Programming Language (STAPL) and Jam STAPL Byte-Code
(JBC) Players are software that enable a processor to program or configure CPLD or FPGA
devices with data based on the algorithms in a Jam file (.jam) or Jam Byte-Code file (.jbc).

Introduction
This application note provides information about the functions that you need to be aware of
when porting the Jam STAPL and Jam STAPL Byte-Code Players to an embedded system.

1 No examples are provided in this application note because the changes required for
porting depend on the embedded system and operating system you use.

Overview for Porting the Jam STAPL or JBC Player
The Jam STAPL or JBC Player interprets and executes each Jam STAPL or JBC instruction in
the .jam or .jbc. The main program performs all the basic functions of the Jam or JBC Player.
Based on the targeted embedded system, you must modify the I/O functions of the Jam or
JBC Player to customize your functions according to your embedded processor or operating
system, for example, the Freescale™ V2 ColdFire Processor.

Figure 1 shows the functions that specify delay routines, operating system-specific functions,
and routines for file I/O pins are contained in jamstub.c or jbistub.c.

Figure 1. Jam Player Source Code Structure (Note 1)

Note to Figure 1:
(1) TCK, TMS, TDI, and TDO are the JTAG I/O pins.

Jam/JBC

(Programming
Data and
Algorithm)

Jam/JBC Player

I/O Functions
(jamstub.c and jbistub.c)

Main Program

Parser Extract
Data

Compare
& Export

Messages
& Export

TCK

TMS

TDI

TDO
AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System

Page 2 Functions in jamstub.c and jbistub.c
You can customize the I/O functions and compile the source code for any embedded
system by editing jamstub.c or jbistub.c. The Jam or JBC Player is written in
C programming language. To ensure maximum compatibility during compilation,
Altera recommends porting to the Jam or JBC Player an embedded system supporting
a C programming language-compatible compiler.

1 Jam and JBC Player source code only supports 32-bit processors. You need to port the
Jam or JBC Player source code to support other type of processors.

c Altera recommends that you modify the Jam or JBC Player source code in jamstub.c
and jbistub.c only.

Functions in jamstub.c and jbistub.c
This section lists the functions that require attention during porting. Table 1 shows the
functions with their corresponding name in jamstub.c and jbistub.c. A brief
explanation of each function follows the table.

Main Function

main
This function is part of every C program and is the main building block for all C
programs. In the Jam or JBC Player source code, the main() function contains the
.jam or .jbc location, the initialization list, and the exit codes. In addition, the
jam_execute or jbi_execute function (the main entry point to the Jam or JBC
Player) is called by the main() function.

Table 1. Functions in jamstub.c and jbistub.c

Functions Functions in jamstub.c Functions in jbistub.c

Main Function

main main() main()

Delay Functions

get_tick_count get_tick_count() get_tick_count()

calibrate_delay calibrate_delay() calibrate_delay()

delay jam_delay() jbi_delay()

Additional Functions

getc jam_getc() —

seek jam_seek() —

jtag_io jam_jtag_io() jbi_jtag_io()

message jam_message() jbi_message()

export_integer jam_export_integer() jbi_export_integer()

malloc jam_malloc() jbi_malloc()

initialize_jtag_hardware initialize_jtag_hardware() initialize_jtag_hardware()

close_jtag_hardware close_jtag_hardware() close_jtag_hardware()

read_byteblaster read_byteblaster() read_byteblaster()

write_byteblaster write_byteblaster() write_byteblaster()
AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System © August 2009 Altera Corporation

Functions in jamstub.c and jbistub.c Page 3
By default, the initialization list, action, and file location is set to NULL. The file name
and the initialization list are read from the input stream with a terminal program to
give instructions to the Jam or JBC Player using the command prompt. You must
customize this section if you do not have a user interface for your embedded
processor. For a description of the initialization list and action, see “Initialization List
and Action”.

Initialization List and Action
The following sections explain the initialization list and action of the main()
function.

Initialization List

The initialization list, init_list, is the address of a string of pointers, each
containing an initialization string. Each initialization string is in the "string=value"
form. An initialization list provides instructions to the Jam or JBC Player as to which
initialization string to perform. Table 2 lists the strings defined in the Jam
Specification version 1.1.

You must pass the initialization list in the correct manner. If an invalid initialization
list or no initialization list is passed, the Jam or JBC Player only performs a syntax
check on the .jam or .jbc. If the syntax check passes, the Jam or JBC Player issues a
successful exit code without performing any function. Example 1 shows how to
define the code to set up init_list to instruct the Jam or JBC Player to perform a
program and verify operation.

Table 2. Strings Defined in the Jam Specification Version 1.1

Initialization String Value Description

DO_PROGRAM
0 Do not program the device.

1 (default) Program the device.

DO_VERIFY
0 Do not verify the device.

1 (default) Verify the device

DO_BLANKCHECK
0 Do not check the erased state of the device.

1 (default) Check the erased state of the device.

READ_USERCODE
0 (default) Do not read the JTAG USERCODE.

1 Read USERCODE and export it

DO_SECURE
0 (default) Do not set the security bit

1 Set the security bit

Example 1.

Char CONSTANT_AREA init_list[] [] ="DO_PROGRAM=1",
"DO_VERIFY=1"
© August 2009 Altera Corporation AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System

Page 4 Functions in jamstub.c and jbistub.c
Action

action specifies the action that the Jam or JBC Player performs. By default, the
action is set to NULL. If an initialization list is not required, you can use a NULL
pointer to signify an empty initialization list. This is only applicable if the action is
already defined in the Jam or JBC Player. Table 3 lists the actions available in Jam and
JBC Players.

Delay Functions
There are three inter-related delay functions in jamstub.c and jbistub.c: delay(),
calibrate_delay(), and get_tick_count(). The get_tick_count()
function obtains the system tick count value and returns the value to the
calibrate_delay() function. The calibrate_delay() function then uses the
system tick count to determine the loops required for a one-millisecond delay. This
information is then used by the delay() function to execute the delay required for
the WAIT command.

get_tick_count
This function is called by the calibrate_delay() function to obtain the system tick
count in milliseconds. By default, the source code is tailored for the operating system
listed below:

■ WINDOWS—GetTickCount() function

■ UNIX—clock() system function

You must customize this function accordingly if the operating system for your
embedded processor does not use any of the functions listed for Windows or UNIX.

calibrate_delay
This function determines how many loops are required for a one-millisecond delay.
By default, the source code includes the calculation for the Windows operating
system.

You need to customize this function if your embedded processor’s operating system is
not Windows.

Table 3. Actions Available in the Jam and JBC Players

Action Description

PROGRAM Program the device

VERIFY Verify the device

BLANKCHECK Check the erased state of the device

READ_USERCODE Read USERCODE and export it
AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System © August 2009 Altera Corporation

Functions in jamstub.c and jbistub.c Page 5
delay
This function implements programming pulse widths necessary for programming
PLDs, memories, and configuring SRAM-based devices. These delays are
implemented using software loops calibrated to the speed of the targeted processor.
For example, pulses of varying widths are used to program the internal EEPROM
cells of Altera’s MAX® CPLDs. The Jam or JBC Player uses the delay() function to
implement these pulse widths. The WAIT command in the .jam or .jbc specifies the
delay required.

You must customize this function based on the speed of the processor and the time the
processor takes to execute a single loop. To minimize the time to execute the Jam or
JBC STAPL statements, Altera recommends you calibrate the delay, as accurately as
possible, over the range of one millisecond to one second.

Additional Functions

getc
This function retrieves the characters in a .jam. Each call to the getc() function
advances the current position of the pointer in the file. Successive calls of the function
are needed to get a string of characters. If the successive call reaches the end of the file,
the end-of-file indicator is set and the getc() function returns EOF. If a read error
occurs, the error indicator is set and getc() returns EOF. This function is similar to
the standard fgetc() C function. The function returns the character code that was
read, or a (-1) if none was available.

By default, the source code has taken care of the algorithm to retrieve the characters in
a .jam for the Windows operating system. If the operating system for your processor
uses a different algorithm, you need to customize this function.

seek
This function sets the current file position pointer in a .jam input stream based on the
specified offset. The function returns a zero if the offset is within the file length,
otherwise a non-zero value is returned. This function is similar to the standard C
function fseek().

In the source code, the storage mechanism for a .jam is a memory buffer.
Alternatively, you can use a file system as the storage machinism. In this case, you
must customize the function to use the equivalent of the C language fopen() and
fclose() functions, as well as to store the file pointer.

jtag_io
This function provides access to the IEEE 1149.1 JTAG signals TDI, TMS, TCK, and
TDO. The jtag_io() function contains the code that sends and receives the binary
programming data. You must re-map each of the four JTAG signals to the embedded
processor’s pins. By default, the source code writes to the PC’s parallel port.
© August 2009 Altera Corporation AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System

Page 6 Functions in jamstub.c and jbistub.c
In the current source code, the PC parallel port inverts the actual value of TDO. The
jtag_io() source code inverts the TDO value again to retrieve the original data.

tdo=(read_byteblaster(1)&0x80)?0:1;

If the target processor does not invert TDO, the code is:

tdo=(read_byteblaster(1)&0x80)?1:0;

To map the signals to the correct addresses, use the left shift (<<) or right shift (>>)
operators. For example, if TDI and TMS are at the third and second port respectively,
the code is:

Data=(((tdi?0x40:0)>>3)|((tms?0x02:0)<<1));

Apply the same process to TCK and TDO.

If you are not using the PC parallel port, you must customize this function to write to
the proper hardware port.

message
When the Jam or JBI Player encounters a PRINT command within .jam or .jbc, the
Player processes the text message and passes the result to the message() function. If
a standard output device is not available, the message() function does nothing.

The Player does not append a newline character to the end of the text message. If your
embedded system requires that you append a new line, you must modify the
message() function print information and error messages of this function to
standard output. If you do not use this function, you can either remove this routine or
comment out the call to the puts() function located in the message() function.

export_integer
The export_integer() and export_boolean_array() functions return
information from the Jam or JBC Player to the calling program. The most common use
of this routine is to transfer the user electronic signature (UES) instruction code from a
device back to the program that calls the Jam or JBC Player. These functions send text
messages to stdio, using the printf() function. The Jam or JBC Player uses the
export_integer() and export_boolean_array() functions to pass
information (for example, the UES instruction code or USERCODE of the device) to
the operating system or software that calls the Jam or JBC Player.

By default, the Jam or JBC Player prints the value using the printf command. You
will need to modify these functions if the printf command is not available or if there
is no device available to stdout. You can redirect the information to a file or a storage
device, or pass the information back as a variable to the program that calls the Jam or
JBC Player.

malloc
This function allocates the required memory whenever this function is called. During
program execution, the Jam or JBC Player must allocate memory to perform the tasks.
When the Jam or JBC Player allocates memory, the malloc() function is called. For
example, if the program is to write the Jam or JBC file into the memory, the Jam or JBC
Player uses this function to allocate the required memory to put the .jam or .jbc. The
Jam or JBC file size depends on which, and how many devices are targeted for
programming. You must evaluate each design to select a suitable memory resource.
AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System © August 2009 Altera Corporation

Document Revision History Page 7
In some cases, the malloc() function is not supported by the embedded system. If
this is the case, you must replace this function with an equivalent function.

f For more information about how to estimate the ROM and RAM memory usage, refer
to the “Jam STAPL Byte-Code Player Memory Usage” section of AN 425: Using
Command-Line Jam STAPL Solution for Device Programming.

initialize_jtag_hardware
This function initializes your hardware I/Os so that the player is able to write to the
JTAG port. By default, the Jam or JBC Player source code contains the routine to
initialize the hardware I/Os for the Windows operating system.

You must customize this function to initialize your hardware I/Os based on your
operating systems and hardware requirement.

close_jtag_hardware
This function closes (or inactivates) your hardware I/Os so that the player does not
write to the JTAG port. By default, the Jam or JBC Player source code contains the
routine to close the communication port for the Windows operating system.

You must customize this function to close your hardware I/Os for other operating
systems.

read_byteblaster
This function reads data through the ByteBlaster™ II download cable. The
read_byteblaster function uses the inp() function from the conio.h library to
read from the parallel port. This function is customized for the Windows system only.

You must customize this function with the equivalent function in your embedded
processor that performs the read operation through the ByteBlaster II download cable.

write_byteblaster
This function writes data through the ByteBlaster II download cable. The
write_byteblaster function uses the outp() function from the conio.h library
to write to the parallel port. This function is customized for the Windows operating
system only.

You must customize this function with the equivalent function in your embedded
processor that performs

the write operation through the ByteBlaster II download cable.

Document Revision History
Table 4 shows the revision history for this application note.

Table 4. Revision History

Date and Revision Changes Made Summary of Changes

August 2009 Initial release. —
© August 2009 Altera Corporation AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System

http://www.altera.com/literature/an/AN425.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=an425
http://www.altera.com/literature/an/AN425.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=an425

Document Revision History
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

http://www.altera.com
http://www.altera.com/support

	AN 586: Porting the Jam STAPL and Jam STAPL Byte-Code Players to an Embedded System
	Introduction
	Overview for Porting the Jam STAPL or JBC Player
	Functions in jamstub.c and jbistub.c
	Main Function
	Delay Functions
	Additional Functions

	Document Revision History

