



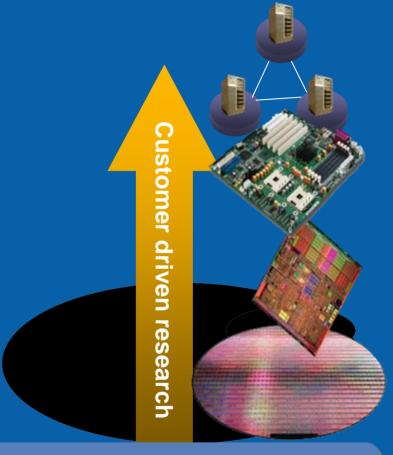
# **Enterprise** of the Future

Energy Efficiency in the Enterprise

Raj Yavatkar

Intel Fellow Director, Systems Technology Lab March 6, 2006

## **Enterprise of the Future**


- Emerging applications in Tera-scale platforms
  - Understand future workloads, system requirements and enable more energy efficient performance
- Creating the Enterprise of the Future
  - What will IT managers expect years from now?
  - What research needs to be done to meet those needs?
  - How do companies work together to find greater solutions?





# Why Systems Research?

- Deliver holistic solutions for end-user value
  - Integrated technologies, hardware, software, ecosystem aligned
  - Applied and tailored to market segments
  - Silicon, platform, system and ecosystem research driven by end user needs



Customer-driven research from silicon to platform





# User Requirements Redefining Research

### Line Of Business/ Workforce

IT/Enterprise



Evolving form factors, wireless, ease of use, trusted platforms, security

Identify LOB/IT pain points and usage models to prioritize research agenda



TCO, trust, virtualization, scalability, automation, energy efficiency

#### **Enterprise of the Future**

Energy Efficiency
Virtualization/Partitioning
Scalable Enterprise
Trust
New Platform Architectures

Focusing on the needs of the Enterprise





## **Enterprise of the Future**

**Needs of the LOB:** New capabilities, Collaboration, working with teams Around the world.



**Agility In IT:** The ability to implement New capabilities without creating a Headache for IT.

**Manage cutting edge IT resources:** 

Keeping up with new regulatory environments, minimum business expectations, quality of service.



Manage Complexity: Beyond control of the enterprise but a cost or requirement in doing Business.

IT Day to Day Wants: Tools to enable a more productive workforce, intelligent access to information while mobile and being cost effective.

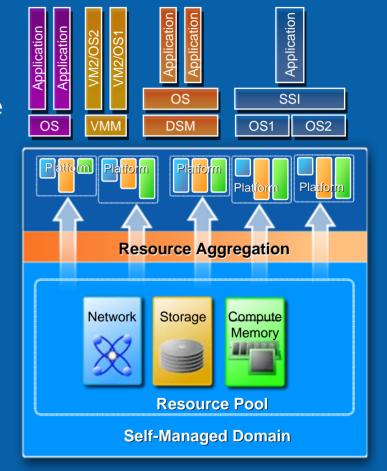


Satisfaction per Watt: Deliver more automation, higher level tools for workforce productivity, and deliver an energy efficient system.





# Agility in IT


#### **Future IT Needs**

- Respond to changing business environments
- New ways for LOBs to collaborate

### Enabling Technology

- New views of existing infrastructure
- Dynamic Resource Allocation
- Scalable Enterprise

Example: Scalable Enterprise Appropriate CPU/memory, storage and network resources are dynamically aggregated and exposed as platforms, then are continually monitored/adjusted to enforce operational policies.

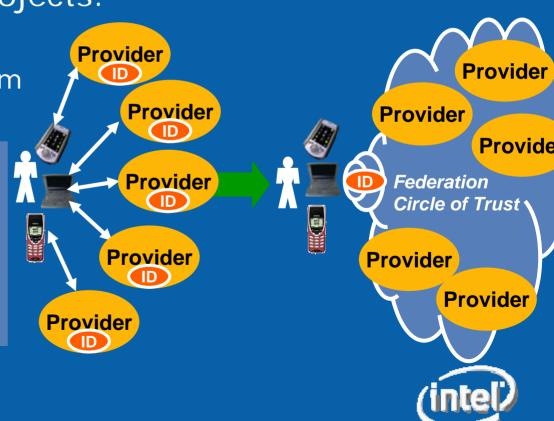






## **Manage Complexity**

#### Future IT needs


- More Trusted Computing Environment
- More flexible IT environment
- Next Generation of IT manageability

### Enabling technology projects:

- Autonomics
- More Trusted Platform
- Managed Identities

Example: Identity Capable Platforms (ICP)

ICP architecture strategy will improve trust, user control, balanced security and policy management through inter-domain converged wireless network service models across multiple platforms.





## Exploring "Satisfaction per Watt"

#### **Future IT Needs**

- -Higher computing density
- -Lower total cost of ownership
- -Enable quality of service

### **Enabling Technology Projects**

- Platform thermals and acoustics
- Virtualization and Partitioning
- Energy Efficient System Architecture (EESA)

Example: Energy Efficient System
Architecture (EESA) is a collection
of technologies and architectural
improvements that together will
result in dramatically higher
performance per watt for small
form factor to high performance
computing servers





## **EESA And the Enterprise of the Future**

#### IT Concerns

- Energy Costs to run hardware becoming significant portion of total cost of ownership
- Increasing datacenter cooling costs
- Want to better utilize space in datacenter by increasing density of computing power
- Platform design to maximize system performance per watt





# Energy Efficient System Architecture (EESA)

A collection of technologies and architectural improvements that will result in dramatically higher performance per watt across all platforms

Small Form Factor Mobile Desktop Workstation Server

Small form factor challenges:
Battery life
Heat generation
Acoustics
Representative project for Small Form Factor:

Self Refresh Display

Intel Fine-G wer Manag Server challenges: Rack densities Blade cooling Power costs

Representative project for Server/Storage:

System Power Conversion

Visibility & Control





## **EESA Components**

## Power Management Policy -

components of EESA provide the tools to maximize performance per watt on the system.

### I/O Optimization-

Focusing on optimizing communication between devices and the platform.

Industry Engagement Opportunities

FORUM

## Intel Fine Grain Power Management-

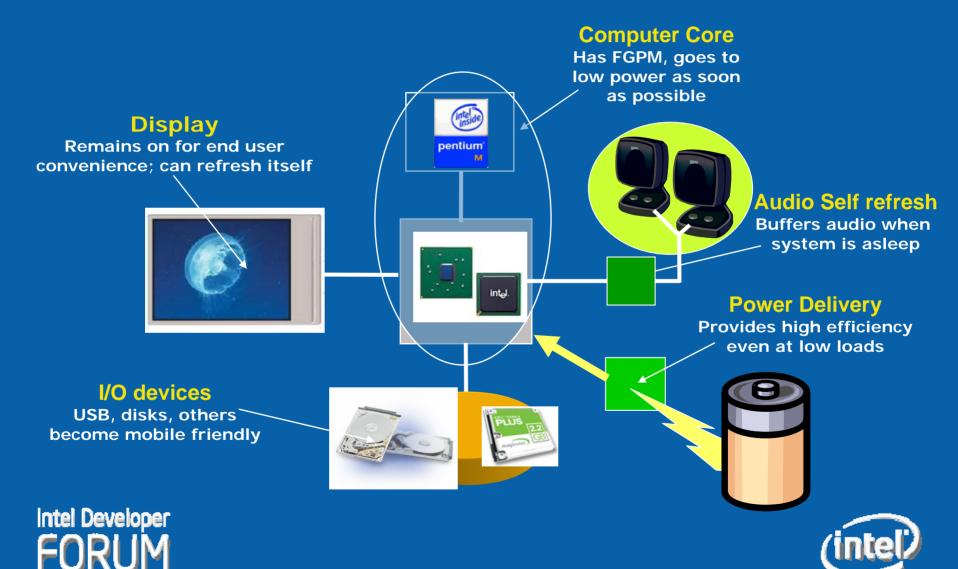
Focusing on reducing average power on a system without compromising performance.

I/O Optimization Intel Fine-Grain Power Management

**Power Delivery** 

**Visibility & Control** 

#### **Power Delivery-**


Being efficient from wall to workload.
Understanding how to efficiently convert and deliver power to the system components while minimizing loss.

#### **Visibility and Control** –

Sense and analyze information, either internal or external to the system, allowing the platform to make better decisions about the use of energy.



# **EESA System Perspective**



# Researching the Enterprise of the Future

Creating the enterprise of the future takes ecosystem engagement and coordination

- Lab to Lab engagements
- Involvement in standards bodies

Emerging research agendas to watch:

- Scalable Enterprise
- Identity Capable Platforms

Intel is harnessing platform possibilities by enabling the next generation system architecture





## Other EESA Sessions at IDF

- ITRS003 Energy Efficient System Architecture
  - Thursday, March 9 at 3:30
  - Room 2000
- ITRS013 Self Refresh Displays
  - Thursday, March 9 at 4:30
  - Room 2000
- Tech Showcase:
  - Energy Efficient Technology Research
  - Booth 1002







