
Intel Developer Forum
Morning Session, 9/28/06

STEVE PAWLOWSKI

[Beginning of recorded material]

[Video plays]

Male Voice: The history of supercomputing has always been that today's
supercomputing problem is tomorrow's desktop problem. One of the things we're seeing
right now is the introduction of a whole new capability in computational fluid dynamics
that's called six degree of freedom problems. And what that allows us to do, simply, is to
fly two vehicles in close proximity to each other and then to look at the interactions
among the vehicles. And so, they don't just have to be vehicles, they can also be objects.

 So whether it's debris coming off the shuttle that we want to track very closely
and understand the dynamics of, or in the next generation of vehicles, we're hoping to
supply true escape mechanisms that require extremely high fidelity in calculations using
the six degree of freedom models. Those are exclusively supercomputing problems now
and take the biggest systems we have. But we fully expect that in five years, those will be
the kind of things that are being done by powerful desktop systems.

 The current partnership with Intel has put NASA back on the supercomputing
map. And that's exciting in allowing us to provide critical services to our engineering and
science community. But even more exciting than that is a whole class of problems that
we can't tackle yet, but we know we have to, in integrated vehicle design and sciences
and in aeronautics.

Male Voice: Throughout history, industry leaders have always predicted that we've got
all of the computing power we'll ever need. But history has shown that to be incorrect.
End users are capable of absorbing all of the computing power that we're capable of
delivering.

[Video ends]

Female Voice: Ladies and Gentlemen, please welcome Steve Pawlowski.

[Applause]

Steve Pawlowski: Thank you and welcome to the third day of IDF. We've saved the
best for last. And I just told Richard that I'll start it off, and then it will all go downhill
from there. Of which he promised, he said, "Hey, this is a subject near and dear to my
heart. I know you're going to screw it up. I'll come out here and correct all your

mistakes." So, we're going to keep kind of a running score.

 The subject we're going to discuss today is petascale, high-performance
computing, but at the petascale level, and discuss some of the technological issues that
we have to deal with as we start looking at petascale, and why it's important to us, why
we think it's important. As you heard Walter Brooks from NASA, he's a wonderful guy,
great speaker to come out and talk about what he does, what he's done with Columbia. It's
the problems of today will be on the desktop of tomorrow. Now, not tomorrow tomorrow,
as in tomorrow, but, you know, tomorrow in the future. And we'll discuss that somewhat.

 So, before I get going, there are couple definitions I'm going to be using that just
to make sure we're all grounded on the same page. And the first one is high-performance
computing, or the acronym HPC. And it really has to deal with the hardware, the
software, the tools, the languages, and the algorithms to process problems or to compute
problems that heretofore have been uneconomical to do. And that's really associated with
the fact that it's just been too -- the problems are too complicated. And we just haven't
had the compute power to run those set of computations in an economical and efficient
way. And those machines keep getting more and more capable. And we're able to add a
new class of problems on those machines. However, it gets -- there's another class that
will come in that just keeps asking for that next greatest machine.

 The next one is petascale computing. And I shamelessly copied a definition that I
think really resonated with me from Horst Simon on the 4th of August in a presentation
that he did. And it really has to deal with not petaflop; it's when the widespread use of
machines have a sustained performance of a petaflop per second or greater. So, the first
petaflop machines will come out. They'll come out before the end of the decade. And
that's great; they'll be muscle machines. But it's really when you get to the tens and
hundreds of petaflops that the sustained performance is really at the level that you really
need to compute these problems.

 So high-performance computing. You're probably saying, "Yeah, those big
systems. They do cost $50 million or a $100 million each." There are only three or four
that get put into a data center. Why do you care?" Well, high-performance computing is
actually tiered under various business segments. And if you add them all together, it's
roughly a $10 billion industry, or at least there was $10 billion of revenue in 2005. And
some segments are growing at greater than two digits, greater than 30 percent in terms of
aggregate growth rate. So, it is a big issue. It's a huge market segment for us to be able to
address. And it touches on the aspects of many of our lives.

 Now, I always like this diagram because it kind of shows just how technology has
progressed. 1946 with the ENIAC, a big tube machine. I think it took roughly a
hydroelectric dam to power and cool; stored 20 numbers, but it was state of the art at the
time. First supercomputer in the 1966, '65-'67 time frame, was from Control Data
Corporation. And it roughly had a floating-point performance of about nine million
operations per second. Now you fast-forward to 1977, ASCI Red was the first teraflop
machine. And it was installed at Sandia Laboratories. It was based on the P6 at the time,

which was our Pentium II and Pentium III, early addition of Pentium II and Pentium III
microarchitecture. Had 9,000 processors and supported up to a teraflop of peak
performance.

 Now move forward to today. We have a computing center in our Washington
facility for evaluating benchmarks for high-performance computing [data] centers and
applications. It's based on 400 Woodcrest processors, so it's roughly one-tenth the
number of processors that the ASCII Red machine was, but it's 6.5 times the peak
performance in terms of floating-point performance.

 So as you can see, there's been a progression of technologies going forward and,
as I will show in a moment, you will also see that we will get more and more of that
capability sitting on our desktop. But before I do that, I'd like to bring Chuck Duvall out
to actually show two systems that are moving to bringing high-performance computing
capability to the desk side. Hello Chuck.

Chuck Duvall: Hey Steve. How's it going?

Steve Pawlowski: Terrific. So what are you going to show us today?

Chuck Duvall: Well, in the video we say earlier that today's supercomputers really are
tomorrow's desktops. So I am indeed going to give you an example of two desktops, or
really two machines that are supercomputers that sit beside the desktop. So if we come
over here, I'd like to show you part of what's making that possible. And this is our new
core architecture. This right here is based off Cloverton, so we have quad-core in this
nice small package with extreme compute power and great I/O.

 So we'll dig into the box a little bit here. We have a [TIAN] personal
supercomputer that has 10 sockets. Those 10 sockets give me 40 cores. I tie those
together with InfiniBand so I have great throughput that allows me to do some computing
simulations that I've never really been able to do in a box this size.

 I have an example; I'm running a mathematical that looks at pollution control.
Really as a society, as we consume more energy, unfortunately we create more pollution.
So we need to make sure that we can create the most energy, have the least amount of
pollution. And the pollution that we do create, we find a way to minimize that impact on
the environment. So we can run those types of simulations on this box.

Steve Pawlowski: So what you're really demonstrating here is you're running the
same simulation, but as you're adding more and more cores to this box, the performance
improvement is increasing substantially?

Chuck Duvall: Exactly

Steve Pawlowski: Okay. How about the other system?

Chuck Duvall: Now, this other system here, we have an SGI solution that looks at the
other problem of high-performance computing. And that's memory throughput. You
know, it's not just about cores and sockets; we have to be able to feed those. So in this
box from SGI, we have an SMP memory architecture that takes all 12 sockets, which
gives me 24 to 48 cores, and make sure that I have enough throughput to keep those
processors fed. In this example, I have over 35 gigabits to feed those cores, which means
those cores are running extremely efficiently and they're not sitting waiting on data. So I
can run high-performance computing and not have to wait on the back end. Another great
HPC solution.

Steve Pawlowski: Very nice. And so, again, you're showing that with adding cores as
long as you have I/O scaling you get performance and then you'll reach a boundary at
some point in time where you have to go through?

Chuck Duvall: Exactly.

Steve Pawlowski: What's this board here?

Chuck Duvall: Well, this is the board we announced yesterday. This is our Xeon 3000,
our single-socket server. This allows us to increase density and lower power. So for
volume computing, this is a great solution. We can put five of these into a 4U so when we
go to quad-core, that'll be 40 cores into a 4U; great volume computing solution at a very
low cost.

Steve Pawlowski: Very good. Very good. Okay. Thanks for the look Chuck,
appreciate it.

Chuck Duvall: Not a problem Steve.

Steve Pawlowski: All right. Okay, so let's talk techie. If you go to the
www.top500.org, you'll see this picture and it's a graphical representation of the top 500
supercomputers. The top line shows the sum of all top 500 in terms of peak floating point
performance as measured by the Linpack benchmark. The bottom one shows the top
machine. And if you draw a nice normalized line, it's been fairly linear in terms of the
rate of performance on a yearly basis. So the Y-axis is logarithmic.

 If you look at when we expect to see the first petaflop machine and you
extrapolate out that curve, in the 2008-2009 timeframe, that's when we expect to see
those systems available. Now, if you think in petascale, in terms of the definition that I
gave, draw that line out a little more to when you get to 10, it's in the 2011-2012
timeframe. So a significant amount of performance is going to continue.

 Now the bottom line is where the PC is, so what sits in your laptop today. And if
you notice, there's about a 15-year lag between the performance of the top supercomputer
at a particular point and when you see it in your standard desktop platform, single-core,
dual-core or quad-core. So right now sitting here in the 2005-2006 timeframe, we're

roughly equivalent to what we saw in 1993, but significantly better than what you saw in
the 1980s and '85s with the huge supercomputers from Cray, Control Data, among others.

 So those problems, now, that we were dealing with at that point in time are also
migrating and being executed on the platforms. So the transition from the technologies of
the supercomputer, we generally see moving into the PC. And the capabilities in terms of
bringing I/O bandwidth and whatnot, we have to bring those capabilities economically
into the PC as well.

 So the challenges. I'm a hardware guy. Richard will tell you that's a sin; don't
listen to him. There are software implications here, but in the 28 minutes and 43 seconds
I have left, I'll focus on some of the hardware issues that we're going to have to deal with
and we can discuss software with David Cook and Richard potentially at another time.

 So first and foremost, processor performance. Okay, if you draw the graph on our
current processor road map of where we are today, and how floating-point performance
has increased over time, it's also been fairly logarithmic, but it draws a nice, linear graph.
And so, in the 2010 timeframe, when we get to a petascale machine, those machines will
basically be, you know, if you follow the graph, in the 100- to 200-gigaflop range. The
example I have here is 100. Well, if that's the case, then I want to build a petascale
machine, a 10-petaflop machine, and I use those processors, I would need 100,000 of
them. Now that number will keep coming back a little later, but that's a significantly large
number, okay? So in order for us to be able to handle that, we need to increase not only
the core density and get more cores to take advantage of a smaller footprint, but also
increase the compute density per core.

 So, we look at various options. We can take the current general-purpose cores that
we have today and just try to put more and more of them on a chip. We can look at
maybe getting more efficient cores that are built for that particular level of computation.
We can mix and match them, because there are some things that we require scalar
performance, a good scalar performance, like some of the collectives and barriers that are
available in shared memory and distributed shared memory systems. Or you actually can
use just a bunch of really special purpose, more highly optimized set of cores.

 Now, if we map out the example that I have here -- and, oh, by the way, we also
need to increase the floating-point performance of those cores. So, it's just not packing
more of those cores in, it's actually making them more capable; a floating-point
performance is really what you're looking for. So what's shown on this diagram is, if I
have a standard die size that's 13 square millimeters, if I happen to take the performance
in one particular vector, in this case scalar performance, and try to move that to be more
efficient in vector performance, I will see a drop off in terms of what I can do on my
integer workloads, or my scalar workloads, and that's what's seen on the lower hand, the
bottom left.

 However, if you look at the parallel performance, so what that really shows is
each one of those cores, if the big core on the left-hand side and the 12-core configuration

is running a single thread in a small core, small core is roughly 30 percent, 40 percent as
performance efficient as the larger core. However, if you go over to the right -- and you
can paralyze these workloads significantly -- you see a tremendous improvement in terms
of parallel performance.

 When Justin, or Paul, showed the wafer of the Polaris chip, and Justin talked
about it, that's essentially the direction they were going with that chip, which is lots of
small cores, very simple, very capable floating-point units that you connect together.
Now, we're going to have other issues that I'll talk about momentarily, but that's a
direction that we think we can go. These are all the same die size. They're roughly 170,
180 square millimeter die size, but the capability you get out of those cores is much more
significant if you're really focusing on parallel performance that we're looking at for the
high performance computing applications.

 So the next thing we've got to look at is how are we going to connect these cores
inside? We got a lot of research going on in Justin's organization, and mine, to look at
answering that very question. And there are different parameters and depending on the
number of cores you have and the design targets that you're shooting for, the answer
might be different.

 If I were just to take these and say, "Performance is the absolute critical thing in
getting bandwidth to the cores," forgetting everything else, I'd pick a cross bar. Now, a
cross bar, essentially, is a mechanism that allows input agents and output agents to be
fully connected without delay. A bus is, as it was described to me long ago, a bus is an
idea of a poor man's cross bar, okay? There's a contention there. Cross bar has no
contention. Very fast, very efficient, and for bandwidth scaling, as you add number of
cores and increasing the size of the crossbar and the size of the switch, it actually is a
good choice.

 If I want to look at area, and the comparisons I have is a ring architecture where
different agents sit on a ring and they transmit data in, you know, the ring could
potentially be in two directions and they transmit data in both directions. Or a mesh,
which is essentially I'm talking to my nearest neighbor, and they branch out and talk to
their nearest neighbors and eventually we're all connected. Or the crossbar, like I
discussed.

 If I'm looking at just the area requirements, again, the crossbar looks really good,
especially as I scale the number of cores. Where if you see the ring architecture, the area
requirements for the ring go up as I scale the number of cores.

 Now, if you look at power, different story. If you take into account the power, the
energy required per ISO unit and bandwidth, that means equating bandwidth on every
one of them, the crossbar wouldn't be my choice because of power. As I get up to even
beyond the 16, but get up to the 32 and 64 core. So initial implementations which are in
the 12-core range, may use something completely different than the 44, which may use
something completely different than the 144, and it depends on the design targets that we

have.

 So by increasing that processor performance as Justin showed, he said, "We've
got a teraflop on die, having 80 cores on a die," okay? It's very good. Assume we get it to
two teraflops in that time frame. We can put 160 cores. Now if I have a two-teraflop
machine on per processor basis, I've gone down by a factor of 20. So now I can build a
machine that's roughly in the size and footprint of the ASCI Red machine -- the Pentium
Pro machine in 1977 -- but has four or five orders of magnitude greater performance with
the technology of just being able to scale the number of cores.

 But scaling the cores isn't the only issue; it's how do we get information into those
cores. Justin, when he described Polaris, he also talked about stacking memory on top of
the CPU. That's actually a good technology. You can get very high bandwidth because
now you can be bump aligned with the processor and get very high throughput to the
memory. But these machines require a significant amount of memory capacity, as well as
bandwidth. Roughly, depending on the type of operation, I've heard half a byte per
second per flop, or half a byte per flop on the average. I've also heard two bytes per flop.
It just depends on the workload and how much of that data set that they want to bring into
memory. We're not going to get that by stacking a single DRAM layer on top of the CPU.
In 169 square millimeters, we're just not going to see anything like that.

 So our issue is we have to maintain a high enough bandwidth footprint coming in
from the memory subsystem inside this chip. Now we can do this by increasing the
memory channel frequency. That has some limitations. We're pushing copper scaling to a
limit, and then as you increase the frequency, the number of dims you can put on a
channel obviously gets affected. We can put in a larger number of channels. That
increases the size of the package, and it has a whole set of other issues that we have to
deal with. Or we can try to come up with different and more exotic signaling
technologies.

 For Justin's teraflop chip, even though he's got a terabyte per second of memory
bandwidth inside the chip, we roughly feel that we're going to need half that, or 500
gigabytes per second, off the chip to be able to handle the workloads that we anticipate
these machines are going to need. That's a lot of bandwidth. There are different ways to
get to it. There's a lot of research that's going on. But that's a challenge that we're going to
have to at least solve from the memory point of view.

 And as I mentioned, DRAM stacking is an option. It's a great technology, okay?
They had SRAM on the design, but DRAM is certainly another option you can have. But
do you use it as a cache, so you have a 128 or 256 MB cache? Or do you use it as part of
the memory subsystem? And the answer is not obvious. Different workloads and
different applications would require it to behave differently. And so those are the kinds of
issues that need to be addressed as you start to partition the memory subsystem to be able
to handle these new workloads.

 The other thing is I/O. The general rule of thumb used to be if you had an

operation, whether it was a flop or mop or whatever it happened to be, for every
operation you needed one byte per second per flop of memory -- flop per second of
memory bandwidth, and roughly a tenth of that for I/O. Not necessarily the case. And I/O
is becoming a significantly larger piece of the puzzle. And as we connect these larger
systems, getting I/O and getting the latencies down for the traffic between different
clusters and different nodes is becoming an issue as well.

 Now yeah, we can scale PCI. We can add a full number of nodes. You can add
infinite band and different types of interconnects. But again, we're talking about hundreds
of gigabytes per second of bandwidth. When Justin talked about silicon photonics, it's a
great technology, and we're doing it for a reason. We think there may be applicability in a
space like this, and that's something that we'll try to address, okay? Yeah, it's good press,
but at the end of the day, it's an excellent technology to start thinking about in terms of
can it address the problems that we have from a bandwidth perspective?

 All right, so we've got the memory, we've got the processor cores. Yeah, it's
doable. There are some issues to be resolved there. We've got memory bandwidth and I/O
bandwidth, and capacity that we have to deal with. Let's put that aside. Power and
reliability. Data centers aren't going to get much bigger. If I had to build a 100,000-
processor machine, just for the compute alone, we're probably looking at around 20
megawatts and that's not including the inefficiencies of getting that power in, stepping
down the power, and also the power it takes to cool the facility and get that heat out. So,
we really have to focus on, if we go build these machines, they have to be as power
efficient or not consume any more power than the current processors we have today.

 Now process technology will get us there in some respects, but in other respects,
we have to be more clever in terms of how we do these designs and how we manage it.
And this is just a quick example of, if I have to pay 10 cents a kilowatt hour -- I know at
my home, I pay a little more, so I kind of wished I lived at this data center -- and the
machine consumed nine megawatts, and I also include the power delivery, I'll never make
that much money in a lifetime. That's $14.6 million. And if I have to build a bigger
machine, at 100,000 processors, you could easily double that number.

 And how we handle power has to really be handled at multiple levels. You've
heard about strained silicon and how we try to essentially pull the atoms apart to increase
the charge mobility and to also be able to reduce the amount of heat that's generated. We
have leakage control techniques, there are [clock gating] techniques, and you all say,
"Oh, great. But you're running these machines full out. Will these actually work?" Well,
you know some pieces of the job finish sooner than others. That doesn't mean the
machine has to sit full on all the time; you can potentially bring those down and control
them at a finer granularity. There's we have policy-based processor allocation. Most of
these machines run multiple jobs. In fact, it would really be interesting to have Walter
come in and talk about what he does at Columbia and some of the simulations he runs,
and the multiple jobs that he runs at any one particular time. So, there's policy-based
allocation, as well as there are different things that we can also do in terms of how we
would control power gating, not only at the processor, but at the memory and the I/O

subsystem level.

 And then, again, looking at facilities, what we can do to become more efficient.
DC power regulation was a concept that we talked about here. It's getting more and more
prevalent. I'm getting a lot more interest from people coming in and saying, "Hey, tell us
what we should be doing in terms of [bringing] DC to our rack and doing DC power
distribution." There are some issues there that need to be resolved. Uninterruptible power
supplies and battery backup are two key ones. But it's taking off, and if you can get the
efficiency of at least just one conversion state, that's a significant power savings.

 So reliability is kind of an interesting art. We talk about it; we use the term a lot.
In a lot of cases, it gets misused. And particularly, here, reliability has to do with the
number of times either a high-powered ion, a cosmic ray, alpha particles in a package,
how many times that will cause a soft error, an error that isn't necessarily a persistent
error, but causes an error which will affect the correctness of your machine and the
correctness of your output. And that's usually measured in FITs, failures in times. So, one
FIT is effectively one failure in one billion hours.

 And so, as you see on this diagram here, as we pack more and more transistors in
a given unit of area, the FIT rate per bit stays constant. So, if we double the number of
transistors, the FIT rate doubles. Now, the nice thing about the concept of FIT is, you
don't have to do all these exponential equations to come up with mean time between
failures. You add them all up and then take the reciprocal, or divide it by one FIT times
10 to the ninth, and you can get your mean time between failure.

 So, think of my 100,000 processor machine, and assume that I have a 400-FIT
machine -- or 450, that was the number I calculated just before I came out here. 100,000
processors, that says I'll see an error in those processors -- that doesn't include the
memory or I/O once a day. Most of these algorithms can't tolerate that. They'll do some
work and they'll checkpoint, and they don't want to have to go back to the latest
checkpoint and restart based on an error. And so reliability is something that is extremely
important. And soft errors are something we have to focus on in our memory cells, not
only on the chip, but also in the memory subsystem. And, effectively, transient errors that
we will see across the interconnects, especially as we're pushing speeds in the hundreds
of gigabytes per second across those links.

 This is just an example of as the data centers grow, we are going to start dealing
with this. I mean, even building a big supercomputer, just the mass of these mega-data
centers that Justin discussed, those will have a significantly large number of processor
systems. And those are systems that don't necessarily use these chips; they may just be
our standard chips off the shelf. And we have to start building in the reliability structures
that we put for these systems into those mainstream products. So again, technology for
the high end that is effectively moving its way down into our mainstream product line,
not something that we just keep as a boutique technology for the big capability machines
that we put in the big facilities.

 So what can we do? Well, we can go back to some of the standard techniques of
doing very good protection across our memory structures, actually looking at potentially
calculating parity as we go through the logic path and making sure that there's correctness
there. There's a performance and a power issue associated with that, but you know, I
think it's something we can at least deal with. Having ECC and better ECC codes, more
robust ECC codes across all our memory structures, not only includes the caches, but the
register files so that we can improve the reliability of the internal core.

 At the macro solution, we may have to do things like redundant multithreading or
lockstepping. This is basically dedicating a separate core to check and at the end of the
computation, you look and see, did somebody have an error, and if they did, you take the
computation of the other one.

 Then, of course, at the process, we can always make parameter changes to the
process. We may give up performance of the device in order to be able to improve a
potential characteristic of that device, for example, our SRAM cells. Because if you were
in the shop talk that we had yesterday, SRAMs tend to be a little more susceptible to soft
errors than DRAM cells. And so how you build those SRAM structures and what those
transistors look like, you may run it at a different voltage level than your processor; all
those things need to be taken into account to keep those error reads fairly consistent.

 Okay so you say, "Great. So you get to a petascale, why do you care?" Well,
Stephen Chen, who designed the Cray X-MP, I believe -- still very active in the
supercomputer business and the supercomputer field -- has basically mapped out where
he thinks performance is going to go and where the performance requirements are going
to be over the next several years, and the types of problems that we're looking at. As you
can see, computational chemistry -- I couldn't tell you what it is, I can barely say it -- is
going to take a zetaflop. That's 10 to the 21 flops, pretty significant amount of
performance. And as we get into molecular dynamics, aerodynamic design, he has up
there 10 to the 18. On and on and on.

 So there's a significant amount of computation and computational ability that can
bring to bear, that can actually improve how fast we can do design. It can help us in the
medical field, in the biotech field, obviously in the aerospace. And we're only seeing this
as being just the tip of the iceberg. But starting out and looking at the technologies we
need to bring to petascale, we believe we can build on that going forward, still take
advantage of the transistor densities we get through transistor scaling, which we believe
will continue way into the next decade on silicon. And then be able to leverage some of
the other technologies that we would look at for this type of system.

 So I will leave you with our little diagram again, kind of extended out. And say,
"Okay, when are we actually going to get this zetaflop machine?" If you map it out, the
number one machine, we probably should see that in 2029. God, I'm going to be 70 years
old. So I probably won't be working on that machine. But, you know, it's a natural
progression. Effectively, every 11 or 12 years we see an order of magnitude of
improvement in computing performance.

 Now the interesting thing about this machine is we're talking about petaflop
systems coming out in 2008. We expect in that same timeframe, roughly about maybe
2024, 2025, that your desktop will have that level of performance, if it continues the same
trend that it has over the last several generations.

RICHARD WIRT

Female Voice: Ladies and gentlemen, please welcome Richard Wirt.

[Applause]

Richard Wirt: Good morning. Thank you. I want to talk something about software today.
Steve set the pace for hardware and where we're going there. I want to bring you up-to-
date with some of the software that we're working on. We're going to focus primarily on
parallelization and threading. And most of this will be focused at the core level, as
opposed to the big cluster level. A lot of the techniques are applicable across both the
single CPU as well as the large cluster. Now in the cluster there are standards, open MPI
and products like that, that we do support. So if you have questions at the end, we'll take
those also.

 At Intel, as you've seen, we're rapidly moving to more and more cores per die. We
just introduced not only the dual processor Woodcrest, but we've now moved to
Cloverton, which has quad-core. So automatically if you put two of those in a system
with quad-core, you've got the possibility of eight threads that you want to use. The
biggest problem for software is, how do you take advantage of these? And if you think
about it, this is Intel's scaling strategy; to go more and more core. So if we don't get the
software to go threaded and have a lot more of that available, ultimately the end user is
not going to see a lot of benefit.

 There is benefit in multiple processes running at the same time. I'm sure all of you
now have your browser open, and simultaneously you may have your email. Those are
separate processes; they both can share those cores and take advantage of them. And so
there is a lot of benefit in those type of applications. Some of the applications that we're
seeing, though, are very innovative and I think you're going to see a lot more of that as
we move forward. So how can I simultaneously take conversation, translate it, maybe
even put it in Word text, and data mine on that Word text as I'm running. Now this kind
of application is easy to break up into multiple functions that each can run on a separate
thread and, therefore, on a separate core.

 The other thing that you do is you cut movies -- you watch a movie, you
download it, you burn it to a CD. You get a lot of functional type things that you can split
apart and make threads work here. One of the things that we did is we took advantage of
virtualization and began to build a system. So we have just released, and it will ship out
through some of the OEMs, software that virtualizes -- because of the virtual support in

the CPU, you virtualize the NIC driver. Therefore, you can begin putting manageability
type functions on that virtual machine while you're running your other applications on the
other virtual machine. So you have a way now of protecting the NIC driver and looking
at all the data that's coming into your machine to look for viruses or management or
whatever that.

 So another functional splitting on the virtual machine, each virtual machine runs
on its own core and therefore you can bring more value to that. Seeing a lot in the way of
gains; really driving quickly to an immersion type of virtualization where you are
immersed in the scene. You're also seeing that in Google Earth, Google Maps, you're
beginning to fly around, go right down and a lot of innovative things happening here that
you're bringing the power that you can do.

 Give you a little update where we're at as work with ISVs and get the software
threaded. Last year when we talked to you, roughly 60 percent level of the ISVs that we
deal with were beginning to thread their applications. Doesn't say all their applications,
that they now are trained or they've got major applications in progress; some of those are
shipping, some of them are starting to. That number's come up, and you see it's come up
significantly in some countries -- APAC running ahead of others. But now it's well over
80-85 percent of the ISVs are beginning to move their apps. So that's good.

 Here is a list of some of those ISVs. You'll see on this list most major ISVs that
you're building applications around now are in this threading exercise. Now, what we're
doing with most of these is we have AEs that we've trained on our own processes and
tools that we're implanting in these companies; training them, but also helping them as
they begin to thread those applications or rework those applications. So that's progress
that we've made.

 In looking at scaling your performance, there are a number of things that you
want to look at. And I want to just quickly highlight those and what they are. A lot of
performance can be gotten out micro-architecture tuning. Now this is basically taking
advantage of the micro-architecture, knowing information about cache size, all of those
kind of things, the number of buffers to the bus and write-back buffers and all those
things, and then being able to tune around those or utilizing them most effectively.

 This level of optimization is typically the last thing you do to get the last 30
percent performance out of that application. This is also the part that we do well in tuning
our compiler to automatically do this for you. That's the advantage of using some of the
tools that Intel puts out. So whether it's our compiler or our hand-tuned libraries such as
our math library or our video codecs, much of the effort we put in there is along these
lines.

 The other area is the application is self-tuning. Do I have the right algorithms? Do
those algorithms effectively utilize the architecture? Do they effectively share data? How
about bus bandwidth? Am I keeping the processor fed? So, typically, what you do here is
you use a tool like VTune, you go through and analyze, you look at the critical path

through the application, where it's spending most of it's time, and you want to shorten that
path. The shorter that path, the faster you get through that code and the faster the
application runs. So that's a lot of what you're doing here.

 In this case, we have provided the number of algorithms, particularly if you're into
our math library algorithms -- a lot of uses of those in the talk that Steve gave. Most of
those major players are using libraries like MKL; a lot of matrix solvers in that. An
example of an interesting one that we've been working with is Johns Hopkins University.
They're trying to do brain modeling to help a surgeon. As they do surgery on a brain, they
want to be able to model the brain and get dynamic feedback of that. So, getting an
application like that fast enough, that they can use it real-time is what it's all about. We're
working with them on their equation solvers and trying to get highly tuned equation
solvers that will speed that up. On an application like that, you can typically get 3x, 5x,
maybe even 10x performance gain by choosing the right type of algorithm and then
adapting your application to that algorithm.

 Another type of tuning is system tuning. Now this is an area that's very important
to look at, not only the network but the I/O sub-system. Can I get enough information in
and out of that system to feed those CPU's? This is not between the memory and the main
processor, but this is basically I/O in and out. A lot of work in the database area goes into
this. You may be surprised to see that some of these benchmarks that we run, TPC at the
very top, the high-end machines, we're running as many as 5,000 to 6,000 disk drives on
those to get rid of the latency of the spinning disk and to get a CPU balance so you can
really tune it. So these are the types of things you're worrying about there -- tuning that
I/O subsystem and really getting the full performance out of it.

 Today, I want to focus primarily on giving you an update of where we're at on our
support for parallelization and some of the techniques we're looking at and working and
actually delivering here. So if you think about it, this is where you take the application
and you split it up so that it can take advantage of those multiple cores. So you should
think of the core as the CPU's set of elements, registers, and that you run the applications
on, ALU, and you should think of the thread as the part of the code that's running on a
given core. So that terminology is a little bit loose, but that's conceptually what you have.

 So what we want to do is speed up that application when it's running on those
multiple cores. Now there are a couple of things that you need to look at here. First of all,
we introduced hyper-threading, and hyper-threading basically was the first concept where
you're actually duplicating a set of registers, but you're not duplicating the full chip. And
you probably ask, "Well, why did we do that?" That's basically an easy way, an extra cost
to do that, somewhere 5 to 10 percent in transistors, and is fairly low in power. So, that
gave us -- keeps the power down, get performance, and we're seeing now, typically, we're
after using that, somewhere in the range of 30 percent performance gain. It's the sharing
of the cache, the sharing of some of the registers, ALU's, that limits that.

 Now as we go to multiple core on a die, you've got the complete chip
reduplicated, as opposed to just the register sets. This case you should expect the

parallelism to be basically somewhere, theoretically, 1x for each additional core. So two
cores should be 2x. Practically, you don't get that kind of performance, because you still
have the memory and you've got the bandwidth of the bus coming from memory.

 When you think about threading, there's two ways of doing it. You can think of
dividing up a task into subtasks and farming those out, or basically adding new
functionality to the application. So, now if you're like me at home, your wife says, "You
go do the dishes, and I'll mop the floors." That's two tasks, okay? They're independent. I
can do mine when I get done watching TV; she can do hers before she goes to bed. One's
not dependent on the other. So that's the way you want to think about it. Now if it's
creating new capability, you're trying to bring innovation, then those tasks are different.
It's "you go build a new addition to the house while I do the normal work." And you're
bringing new capability and functionality there. So that's a way.

 When you think about threading, though, really the problem is somewhat
different. And the best way to look at is from a data viewpoint. I have this amount of
data. I have to do work on that data. How do I divide my task to get that work done?
We're going to show you some demos in a little bit. An example would be a video codec.
Suppose I'm writing a video codec. I can break it up into blocks for each frame, and I can
have a thread work on each block. Or, another way of dividing the data up is, I do frame
one, you do frame two. I do frame three, you do frame four. You split it that way. So
those are ways.

 But when you think about it, you really want to think about taking the data,
splitting it up. Now the problem when you do that is you can have data dependencies on
the boundary. When I break it up into blocks, how about that little line that comes down
the boundary? Who writes that? Do you write it, or do I write it? And there could be
different results on that line. So how do you handle the data dependency areas, is where
you have to spend a lot of time and thought. So that's one technique for threading. That's
usually the way that you want to think about it if you're writing new code.

 Another is functional. So this is like I mentioned where we split up the tasks into
two independent things. And a lot of existing applications that you're doing, this approach
to threading is where you end up, because you don't want to rewrite the full application.

 So let me look a little bit at a couple examples. If I'm writing to the native threads
of the operating system, or even a POSIX package of thread user level, there's a lot of
replication I have to do. I have to start off by declaring the threads. I have to then create
the threads. I have to then begin managing those threads and what they're going to do. So
a lot of repetitious work. And the programmer, in his own head, has to keep track of this
data does have -- or these two tasks have data dependencies and I've got to lock that data
so that one guy doesn't change the value until it's correct, you know, if you're both trying
to write at the same time, that's called a race condition.

 Now there's one thing in this program I don't like. They hard-coded the number of
threads in there. You see up at the top, constant integer, number of threads equals four.

We really encourage the ISVs, don't do that. You basically want to use CPU ID, ask how
many threads are available in the system, and then use that many dynamically. That way,
as you go to the next-generation processor that we bring out in six months or eight
months, you automatically can take advantage of those threads, as opposed to being
locked in.

 So, that's traditional, a lot of handwork, a lot of keeping in your own head the
dependencies and worrying about it. Why can't the compiler do this for you? It's meant to
do the busywork. It's meant to check on those data dependencies. So, the holy grail of
compilers for the last 25 years -- and Dave Cook is probably in the audience; he's the
father of this -- was to produce automatic parallelization in the compilers. So what you
want to think about here is [having] the compiler take that data, it figure out how to split
it up, and then it looks for data dependencies, and it really then does all the work for you.
That's done. There are compilers out there, including our own, that have auto-
parallelization. Twenty-five years of research has improved it. You can get scalability
that reasonable. Some applications have been rewritten to help that even do better. And
we continue to invest in that area.

 Now a lot of what we've done there, the infrastructure we've built, can be helped
if the programmer gives some hints to the compiler. And that's what openMP is all about.
It's an industry standard. It's in our compilers; it's in SGIs compilers; it's in Sun's
compilers; it's in IBM's compilers; Microsoft's adding it to their compilers; it's in GCC.
So it's an open standard that everybody is working together. And what are those hints? So
those hints are those pragmas. Now, what it's telling the compiler is, "Here is the section
of code that you can parallelize." And now what the compiler does is automatically
figures out how to do a transformation on those loops, change the order around. So in
this case you see, changes the order around so that you're operating on a column of that
vector at a time. And it creates a thread for that column. So that's what OpenMP is all
about. Let the compiler do as much of the busywork as possible, but the programmer give
it some hints. This works very well for loopy code that has a lot of loops and that the
data-dependencies, you can analyze it and figure it out. And if you know you're going to
use this, you can write code better – even to make it better.

 Now our compilers today hold the record. On SGI, I think it's 128-way SGI now,
and we took SPEC – and there's a version the industry has of SPEC for OpenMP where it
has these pragmas in it and how much parallelization are you getting out of it. So most of
the scientific code, a lot of the multimedia code, most of our libraries we produce utilize
this and try to get as much parallelism out of it as possible.

 What I want to talk about next is where we're at on our tools and what's available.
I talked to you last February and we had a number of things then in a beta program and
now they've moved forward and they're actually moving into product. So the first new
things are some basic building blocks. Now, this approach I'll go into some detail about,
but at a high level, these are templates -- C++ templates -- and some existing algorithms
that we've parallelized that allow you to write your code using our templates and that
does a lot of the busy work for you.

 The other the thread-checker, thread-profiler. These now are both up to version
3.0. We've gotten a lot of feedback from you on your applications and we've made
improvements. Now one thing is, I pushed [on] my own compiler team, "Why don't you
parallelize your compiler? Why don't you try to use your tools to parallelize the
compiler?" "Bad idea. Why would I ever want to do that?" "No. Go do it." So they did.
Guess what? It started off with somewhere in the range of 300,000 violations. Now, a
violation is a data-violation; it's where you're trying to parallelize and you have those
dependencies that you haven't fixed. It could be through shared variables; it could be
through global variables. So they went through and began working on those. And now we
have used this tool to get rid of all those violations. And we've got the basic part of the
compiler now parallelized so that it will take large programs, break out functions, do
those all in parallel, and begin getting some speedups by taking advantage of multiple
cores at once to do that.

 So we're trying to eat our own dog food here. We've got our AEs using them,
feeding back improvements as they work with you. We've got our own teams trying to
use them on threading some of our own applications; seeing some good results. Those are
now both on Linux and Windows and some of these tools we are also moving to Apple.
We'll talk about [that].

 The third place -- we've done a lot of work on libraries. We can give you these
heavy math libraries that are highly tuned, not only for the micro-architecture, but
threaded; allows you to get your application to market sooner. We now are extending that
to include XML libraries. These libraries are in progress. We're beginning beta. We're at
the stage we would love your feedback. You've got a chance to influence us. We're trying
to follow industry standards, [JAXBE], other standard Open Source libraries, so that you
can just have a drop-in replacement for those interfaces.

 We'll come back at the end and talk about those. So if you think about the entire
tool set, here's the way we would like to think of the process to tune your application.
First thing, go through and run VTune and the thread profiler and analyze your program
and it's match to the architecture. Then you go through and there's those tools, and the
version number tells you our latest shipping version, so if you're using them, you know
whether you're on the latest version or not. Then you go through and introduce your
threads.

 Now when you introduce your threads, you probably aren't going to keep all those
data dependencies in your head. So you're going to expect some programming errors. The
next step then, comes along and helps you check those, the confidence, correctness, the
thread checker. It helps you to see if you do have those data dependencies, that you need
to put locks around, or if you have race conditions and you fix those. And then you come
back after you've reduced all those problems, and you start working on optimizing and
tuning, much like I talked about there, the system level, the architecture level, and the
micro-architecture level.

 So with that, that's the compilers and the tools that are available now. What I'd
like to do is go into a little bit more depth on the thread building blocks. These are new.
We've gotten some very good feedback on these, and we're looking at innovative ways to
get more people using them, working together.

 Now the concept here comes from a concept in C++. C++ handles what's called
templates, and there are already some classes out there that take advantage and give you
templates to build your applications. So things like caching, sorting, those kinds of
things, are standard application templates that you can utilize. And those have been
around as long as C++ and they're classes that go along with C++, and they've been
standardized through the committees.

 So what we said is, "Why don't we take the same concept, build templates, but go
in and parallelize a lot of algorithms and provide lower-level capability to reduce your
busywork." Why should a programmer have to initialize threads? Why should a
programmer have to do a lot of management functions? Can we raise up to a higher-level
capability much like OpenMP does, hence to the compiler, things like parallel for, reduce
or scan, these kind of operations that you want to do in parallel. So, we've done that.
[Parameter] is also for locks in that.

 And then we took a number of standard algorithms and we parallelized them, so
that we even provide that level. So let me give you an example here around the sort, and
it's a quick sort. If you think about it, the concept I said, take your data and focus on
parallelizing it and getting multiple tasks to work on that data. So the first thread in this
goes through, picks a random spot, and does a quick sort on that random spot.

 Now if you're not a programmer, it's pretty simple. I go through, I've got a random
spot -- it was pretty close to middle; that's good enough. And that number turns out to be
37 [blade], yes. Now, once you have that, that first thread then, starts walking the list,
serially. Is the number bigger than 37 or less than 37? If it's less than 37, it leaves it in the
bucket it's in, your left side; if it's bigger than 37, it just throws it in the other bucket. So
you've got an initial bucket of those two.

 Now the interesting thing is, the algorithm divides the work and conquers. Now it
has a second list it can sort, the yellow. So it spawns off another thread automatically and
it says repeat the same process on that thread, or on that data. So, it goes through, finds a
random spot and walks the list. If it's less than that number, it keeps on your left; if it's
bigger, it throws it in the other side. And it just repeats this process down through,
dividing the data and creating more threads.

 Now, because we wrote the templates, we've put the busywork in to find out how
many threads, how many cores are available and making it utilize all those cores that are
available. So you don't have to do that; it does it for you and keeps track of that. The
other thing is, we've built a scheduler in and basically, you have a pool of work to get
done and you have cores that are available. So what the scheduler does is, it goes and
grabs from the pool of cores, a core, assigns it to a thread, do some work. And you're

going to see that concept used quite frequently in threading. And that's all taken care of
for you. So you're able to utilize this algorithm on your sort with different data, and it will
effectively go through. Using these templates will do that for you. So, the process is on
through until it's actually done.

 So the whole concept of building blocks is built around this kind of concept.
Provide templates for algorithms as well as some of the management-type functions and
it allows you to go through fairly quickly. We've seen, in a lot of the applications that
we've actually written, a reduction -- about a fourth as much code by the programmer
needs to be written as if they do everything by hand by themselves. Also, the other
advantage is the correctness when it's done. Somebody else is worried about that for you,
as opposed to you having to go through.

 So, I'd like to invite Charlotte Lawrence up to the stage and actually give you a
visual demo of this on another system. Welcome, Charlotte.

Charlotte Lawrence: Good morning, Richard. I am so excited about our new product,
Intel's Threading Building Blocks for C++. As Richard said earlier, it's a template-based
set of libraries for multi-core performance and scalability development efforts.

 So what we're going to do for this demonstration this morning is, I'm going to
take the Tachyon application. And I have the native serial version. And, of course, I have
a threaded version built using the -- what else? -- Intel Threading Building Blocks for
C++. So, let me go ahead and get the serial version launched right now.

Richard Wirt: Can you tell us how many processors in each of these now you're going to
use as you go through?

Charlotte Lawrence: Well, okay, the system that we're running this demonstration on is
XeonMP dual-core platform. And this one has four processors in it, totaling eight cores.

Richard Wirt: Okay.

Charlotte Lawrence: So let me go ahead and launch the serial version, as I said earlier.

Richard Wirt: So being serial, this one's effectively only on one of those cores. So you
can see the time on that.

Charlotte Lawrence: And, you know, when you look at this rendering, it's a very
familiar rendering. Now let me launch the threaded version. Wow! Wasn't that just
awesome?

Richard Wirt: Now I noticed there are a lot of black spots.

Charlotte Lawrence: Yeah. So that is actually what Richard spoke of earlier where you
have the blocked rendering. And each of one those are the data blocks that Richard spoke
of.

Richard Wirt: Effectively then, you've created blocks. And you noticed they were quite
random in their pattern, so the library figured out, obviously, some stuff there, and
assigned a thread to a block. And that block processed that data, and it did it in parallel,
so you're breaking up a lot there.

Charlotte Lawrence: I had to just run it again. This stuff makes me really giddy. It is so
neat. And, you know, Richard did say that what it does is it just goes ahead and does
great performance. It scales well, but I think the really great news here is for the
programmers. And, again, without going too much into detail, because, you know,
Richard already covered it, is that you can actually deliver and achieve this application,
and have the performance and scalability with much less code, definitely. We're looking
at three-quarters less code using the Intel C++ Thread Builder than the native code
threading.

Richard Wirt: Good. Understand you've got another demo. What's that?

Charlotte Lawrence: Yeah, you were speaking about the Intel C++ compiler. Let's get
over here. Now we talked about this as a beta a year ago was it?

Richard Wirt: That's a silver notebook. I kind of remember most of our notebooks are
black. What's that?

Charlotte Lawrence: Yeah, this is pretty hot. This is your Apple MacBook Pro, which is
your Core Duo-based processor. What I'm going to show on this demonstration is, I'm
going to use an Open Source, 3D ray-tracer application. And it's a binary that I built
using the Intel C++ compiler. I also built a second binary using the GCC compiler. And I
want all of you to know that I did use the best optimization that was available for both
binaries. So let me go ahead and get this one launched.

Richard Wirt: Now, those of you who are not familiar with ray tracers, this is another
way to give a 3D effect to a scene. And most 3D effects are through what we call
rasterization, and it's going through and creating little triangles and coloring the triangles
from the model. A ray tracer actually takes a ray of light and traces it through the scene.
Now, that's a good example where, because it's a ray of light, you can have a single
thread do a single ray. So it's very natural to parallelize that type of application.

Charlotte Lawrence: So as you view the rendering, you notice that the Intel binary, the
binary that we built using the Intel compiler outperformed the GCC version, and we are
looking at, I would say, easily a 30 percent performance advantage there. And I think
that's just great.

Richard Wirt: So, thank you.

Charlotte Lawrence: All right. Thank you.

Richard Wirt: Thank you, Charlotte.

Charlotte Lawrence: So much.

[Applause]

Richard Wirt: This shows you some of the work that we've done to tune to that
microarchitecture and really get the most performance out of that as we can. We also
have people who are working on GCC and feeding back information there to keep it
highly tuned.

 So we've talked a lot about threading and how to go about it. The problem is most
of you have existing applications and you want to take advantage of those cores. So one
way to do this is through some of the third-party products that are available in the market.
So I'd like to invite Geva Perry up -- I'm ahead of myself, just a moment.

 One other library I did want to talk about is the XML, very quickly. So, much like
the math libraries, we've threaded these libraries, and we're in the process of getting into
final product. Now, in order to help you take advantage of these, we've tried to maintain
as many of the industry-standard library interfaces for XML that are out there. So, Java
AXP is a good example of an interface to Java for XML and allows you to process it.

 Some of the results we're seeing -- these will be available over the course of the
next six months to a year; they're in design now, as well as some of the early ones are in
beta. Some of the results we're seeing on these benchmarks show you the 3x to 5x
performance gain. Now, one of the things that we're after here is really beginning to
establish these so we can put hardware under them. Most of you are aware we've bought
a couple XML companies that are working in this space. This work is part of the Sarvega
team that came on board. Also have a hardware team that we're beginning to really
analyze how to speed up the hardware parsing, because a lot of data handling now is
through XML.

 So, I started to say, I wanted to welcome Geva Perry. Geva is an ISV from
GigaSpaces. And basically they're focusing on existing applications, how you can take
those and take advantage of the threads. Welcome Geva.

Geva Perry: Thank you, Richard. [Applause] Thank you. Thanks for the opportunity to
let me speak here. We at GigaSpaces takes a somewhat different approach. It's a
middleware approach that allows you, basically, to benefit from parallelization, whether
within a multi-core, multi-CPU machine and across machines, without having to
explicitly program for threading or for any aspect of the parallelization. We do it with an
approach called space-based architecture.

 So for those who aren't familiar with space-based architecture, I think I should
start by defining what is the space in this context. That term applies to a distributed
shared memory space. So I allocate a memory address space within a RAM of a machine,
and I allow different processes and threads, whether they're local on the same box or
remote, to share that memory space. So in other words, I can have one process, write an
object into that memory space, another one read it, and essentially they share it. And I
can cluster that memory space for high availability and for partitioning and load
balancing.

 Now how do I talk to this memory address space? And this is a key point. It's via
standard API's, whether it's J2E type API's, like JDBC, so I can do SQL queries on this
memory space, or JMS, or C++ objects, C-sharp objects, Java objects.

 So, given that concept of a space, now what is a space-based architecture? So, this
sort of gives you an example, you know, the orange rectangles at the bottom are basically
boxes. A couple of them are multi-core boxes. One of them is a single-core. It's called
multi-CPU, but the concept is the same. Essentially what I do is, I write objects as they
come in and what are these objects? It's things that need to get done, whether it's data that
needs to be processed, service requests that need to responded to, messages that need to
be responded to, and so on. I write them into this clustered distributed memory space.
And essentially it then, by itself, launches what we call worker threads. What is a worker
thread? Well, a worker thread is your business logic, your code, that you wrote as if
you're writing a single box, single CPU, single core, and it is launched as threads and can
dynamically grow and shrink based on service-level agreements that you require. And
those are the little orange rectangles at the bottom; those are the worker threads that
basically work dynamically.

 So just to give an example of what the effect of this is from a traditional approach
to how you would build an application. In this case it's for a very large global bank, a
foreign exchange trading application. So the basic logic of this application is, if I want to
buy a million yen and sell for pounds, it has to match, find another trader that wants to do
the opposite. In real life, it would probably be more complex, because it would have to
find combinations in order to do those tradings. So it's a matching agent, for those
familiar with financial services systems. Essentially it has to go through three things. It
has to validate the order as it comes. Am I a legitimate customer? Is the order prepared
okay, etcetera, etcetera. Then it has to do the actual matching logic. And then eventually
you route it to different systems to execute the orders.

 The way, traditionally, people on Wall Street and other places have built this is, as
the orders come in from the clients, there is some kind of a validation logic that goes on
in order to scale. What you would do is you would use a large, expensive SMP box and
have to write proprietary code, etcetera. And then you probably want to write it into a
database and that's how you maintain the state of the transaction. And then you would
have another expensive box that needs to do the matching logic and work with the
database. So there's a lot of latency there, inefficiency, complexity, and so on. And then
eventually it will do the routing.

 With this kind of parallel approach, I can do two things. One is I can have these
three pieces of logic that are part of a sequence of a single transaction happen as thread
and share that memory, share that data in memory so I get very fast performance. And it
maintains sequence of the transaction. But what I can do now is I can parallelize that
transaction, so I can have many of these transactions happening simultaneously because
there's no dependency among them, as Richard was talking about before. There is no
challenge there; each of them is independent. So I can do them across -- it views across
cores and across boxes.

 This is not science fiction. This is being used today in mission-critical
applications in Wall Street and other financial services areas, in TelCos, in government
agencies, and so on. It's real and it's happening now, and you can see some of the big
customer names that I'm allowed to say who are using it.

 So, basically to sum up, some of the key points about this is one, it allows you a
way to parallelize your applications and run multiple threads and benefit from the
advantages of a multi-core system without having to explicitly code for it. You get huge
latency benefits because everything is talking to memory locally. It's very simple, I mean,
you use standard APIs, either for your existing application or if you're building a new
one. And it's a different, much more simple, elegant model.

Richard Wirt: Thank you, Geva. It looks like a very interesting software that you have
there that takes advantage of existing applications today and helps them get parallel very
quickly. Thank you.

Geva Perry: Thank you, Richard.

[Applause]

Richard Wirt: So in summary, I think you see that Intel is working with the industry.
We've made good progress, as we move forward, at getting more applications threaded.
We're providing a very rich ecosystem of tools, libraries around this, and we'll continue
to do that.

 Parallel, I wanted to give you a quick update. We're continuing to work with the
universities -- we've got 50, 60 of them now we're working with worldwide -- to begin to
impact their curriculum to teach more about threading and take advantage of multi-core
architectures and this shift in the industry and trending. In parallel, we have our own
training programs through what we call Software College. We put all our AEs through it
and we're now in the process of going out and making that material available to
universities as well as software parks, or within companies if you want training in-house.

 I think you can see that ISVs and end users are now significantly engaged. A lot
of new innovation is happening around this. We're very excited about the trend we're
seeing in the industry and the capability that Intel is doing to continue Moore's law in

going to more cores per die and the fact that the ISVs are responding, bringing innovation
to those, as well as scaling their applications.

BRENDAN TRAW

Female Voice: Ladies and gentlemen, please welcome Brendan Traw.

[Applause]

Brendan Traw: Good morning. I see that we have a fair number of hardcore
attendees left for the final tech insight this morning. I want to spend a little bit of time
sharing with you our digital home vision around Intel Viiv technology. And then I want
to look forward at three key areas.

 Unlike some other technology efforts, in the digital home group we're really
starting with the consumer and trying to understand what the consumer wants in the way
of technology in their home, as opposed to perhaps the more traditional technology-
driven approach where you start out with some technologies and then try to figure out
what they might do for consumer or other customers.

 And so we've really been thinking about the digital home from a very customer-
centric perspective. And one thing we know the consumers really enjoy doing, and that is
being entertained. It's one thing to work or have personal productivity and the like. It's
another thing to come home from a busy day, kick back with your family, and relax, and
let the equipment in your home entertain you and satisfy you in those ways.

 So, we focused on five experiences with Intel Viiv technology. Over on the right-
hand side there, there are two experiences in the home, enjoying your entertainment
content from your couch. So this is basically ensuring you have a set of user interfaces
and the like to facilitate an experience where you're sitting on the couch, remote control
in hand, watching your personal photos or perhaps a movie, or some other content. And
this would be with a PC actually sitting in the living room next to the TV.

 And then similarly, you can remote that experience. Your PC might actually be in
your den because you perhaps do some personal productivity applications, your taxes,
email, surf the Web, or whatever, in your den, but you still want to be able to take the
content that you have stored on your PC and still enjoy it in other rooms of your house,
such as your living room. And so the second experience there is streaming that content
using that same 10-foot experience to the other rooms of the house where you wish to
enjoy that content, not just where the PC is actually located.

 There are some other experiences that we're interested in enabling as well that
enable you to take your content with you. There's an experience we call synch-and-go.
And basically that experience involves taking content that you already have on your Intel

Viiv technology PC and transferring it to another portable device. Perhaps this is a
Centrino notebook. It might be a portable media player. It might be, you know, some
other device that you have where you actually want to take that content experience with
you.

 You can also download content directly to a device, like a Centrino mobile laptop,
and then take that content with you as well without actually having the Viiv technology
PC, sort of in the path of delivering the content. And that's basically the fourth scenario
there.

 And the final one is perhaps, I don't know, infamously referred to as a sneaker
net. And that is there may be places where you only have the ability to play back optical
media. You may be going to a family member's house and want to be able to take a photo
album with you so that you can all sit around and look at the photos from the trip you
took together. And so you can actually take your photos or other content, burn it to a
DVD, take that DVD with you. And then basically anywhere you have a DVD player,
you can enjoy that content.

 So to actually enable those user experiences, those compelling user experiences, a
number of very important technologies need to be in place. The Core 2 Duo Processors
offer a lot of advantages when it comes to actually delivering these experiences. You've
probably heard a lot this week about the performance of Core 2 Duo in terms of both its
raw processing capability as well as its power efficiency.

 Another really important aspect of Core 2 Duo for the digital home is the fact that
it's actually two processors. And if you've looked at those usage models that I just
described a couple of minutes ago, you could readily imagine situations where you might
want to be doing more than one of those things at a time. You might want to be watching
a movie playing back locally on your PC while you're wanting to do a synch-and-go to
your laptop, or to another device, so that you can take some content with you, perhaps
content you have DVRed on your PC. You might want to take that content with you on
your upcoming business trip. And so while you or your family are watching a movie in
the foreground, you can use the other processor in a Core 2 Duo system to actually do the
transcoding and prepare the content, the television content you recorded previously to
actually take on the road with you.

 Connectivity is also really critical enabler of these usage models. There are really
sort of two forms of connectivity. There is connectivity to services. So this is actually
enabling the flow of content from the Internet or from other sources onto the PC. And
then there is also the need to connect the PC to other devices. Obviously, the streaming
experiences that I talked about earlier, Sync and Go, these other experiences involve the
interaction of multiple devices. And I suspect we all envision a future where your cell
phone, your portal medic player, your notebook, your desktop system, your digital, all of
these devices are sharing content back and forth. And that's clearly part of our vision with
Intel Viiv technology.

 Finally, it's important to add technology to actually make the consumer's
experience better and simpler. In many cases people, you know, have this intuitive feel
that if there's more technology involved, somehow it's going to be harder. And our
philosophy with Intel Viiv technology is just the opposite. And that is, we want to add
technology to actually make the experience better and simpler.

 So whether it's insuring that the platform is capable of supporting high-definition
content, both video as well as audio, or providing better ease of use by being able to
instantaneously turn the system on and off, or the ability to use a remote control with the
PC as opposed to have bring a mouse and a keyboard into your living room. Intel Viiv
technology delivers a number of key technologies, again, to make that experience better
and make it easier for the consumer.

 So let's actually talk some numbers here. And again, you know, I had the
generalities there on the first slide in terms of a 40 percent improvement in performance
and a 40 percent improvement in power efficiency. Let's actually look at some of the
workloads that are going to matter to consumers in the digital home.

 So if you look at home videography, basically preparing your home videos to
enjoy on your Viiv PC or, ultimately, to write out to a DVD. As you go from generation
to generation here, you see very significant increases in performance. And, you know, in
fact going from Pentium 4 to a Core 2 Duo, you see almost a doubling of performance, or
halving the amount of elapsed time it takes to actually perform the operation. Similarly,
for preparing your library of digital music, you see similar increases in performance,
there again almost doubling -- or actually, more than doubling performance. Same thing
with digital photos or transcoding content so that you can take it with you. Again,
dramatic increases in performance across the board with Core 2 Duo. And if you then see
how those map back onto the usages, you can see that this performance really does
translate to an improved user experience. It's not just numbers; it's really directly
translatable into what the consumer is actually going to see.

 So obviously, having a compelling product is more than just having a powerful
processor. You also need to have stylish solutions. People are going to be including these
products, actually, out in the living space of their home -- in their living room and in
other visible places in the home. People are going to want something better than just a
beige box.

 And you've probably all heard Paul Otellini introduce the million-dollar Intel
Core challenge earlier this week. I'd like just to quickly refresh everyone's memory about
this and hopefully stimulate some of you to actually go and enter into this contest. And so
what we're actually looking for here are innovative form factors for Intel Viiv technology
PCs using Core 2 Duo processors. We are looking for form factors that are smaller,
quieter, and more stylish than what is done today. And we hope we can get a number of
submissions from ODMs and OEMs across the industry and from around the world. And
we'd like those entries to be submitted by January 15th, and then there'll be a judging
panel of distinguished experts, not only from the technology space but also from the sort

of the style space, who will be looking at those submissions and will be making a
decision in Q1 as to who the winners are. And there are some fairly significant financial
rewards for the couple of companies that win this contest.

 So again, I hope everyone can put their thinking caps on, and let's really come up
with some new form factors and some new ways of packaging PC technology so that
people are -- consumers are going to feel proud to have this everywhere in their home.
Not just in the office, not just in the kids' bedroom, but really everywhere in the home.

 With that, let me actually move now to giving you some insights into three critical
areas of digital home infrastructure that we're going to need to deliver over the next
several years in order to continue enhancing the consumer experience around digital
entertainment.

 The first is with content delivery. And, again, I mentioned earlier that Intel Viiv
technology is about providing connectivity with services and with devices. And the
services that I think immediately come to people's mind are content-delivery services.
And I'll talk about a second type of service later in this presentation around
manageability, but let me start with content here.

 And specifically, you know, one of the great, exciting things about PC technology
and the Internet is the opportunity to gain access to the entire world of content. It's about
connecting content creators with the consumers of content, the customers around the
world. And, you know, as we've all probably found with Internet content to-date, there's a
little bit of something out there for everybody. And you can actually target content at a
fairly small niche of people. And, you know, this is something that your traditional cable
operator or satellite broadcast operator or even over-the-air broadcast operator really can't
deliver, they can't deliver that customized content for each and every person that
subscribes or receives their service. However, with the Internet, you can actually create
those connections between individual content creators and individual content consumers
because there is no sort of incremental cost associated with actually providing that
additional connectivity.

 However, for a content provider to actually get their content on the Internet and
be able to deliver it to consumers, and particularly be able to do that in a way that works
well with a 10-foot user interface and able to take advantage of the remote control and all
of the other aspects of Intel Viiv technology that really make that a great consumer
experience, that actually takes some work on the content owner's part. And some of the
initial folks that we've worked with have had to spend several million dollars, in some
cases, actually building the infrastructure and the user interfaces and the other pieces
necessary to actually get the content, whether it's sports, movies, music, television,
games, whatever, to the end user. And there's a number of different pieces that have to be
in place in order to get this, and one of the things that we've been working with the
ecosystem on is actually putting together turnkey solutions, so instead of basically
reengineering the solution each time for a given content owner, content owners should be
able to go to basically a middleware or service providers who can then help facilitate

them getting their content onto the Internet in as efficient and time-effective way
possible.

 So let me move forward here and actually overlay some of the specific pieces of
infrastructure that are needed here. And, again, you need to be able to take the content in
its original source form, you need to be able to encode it and encrypt it so you can apply
DRM and attach the business rules to it. You need to be able to add metadata to the
content. Metadata is absolutely essential, because that's actually how consumers will be
able to find the content by searching on the metadata using a search engine or other
capability to actually identify the content that they want. And, you know, one of the
things I think people undervalue is this metadata, and from my perspective, it's really sort
of garbage in, garbage out. If you don't have good metadata associated with the content,
then you're going to have a very difficult time actually having the consumer figure out
which content they want. And if the consumer doesn’t have a satisfying search
experience, then they're unlikely to actually continue the experience. So I very much
encourage people to really put a lot of effort into the metadata. It's, in many ways, from
my perspective, as important as the content itself, because without good metadata, you're
never going to hook up the right consumers with a given piece of content.

 So once you've got all that done, you need to then be able to actually get the
content hosted on the Internet and be able then to push that out to the consumers. There's,
of course, a number of other ancillary capabilities that are needed, depending again, on
the specific business model and the specific type of content you're distributing. This
includes everything from financial transaction clearing systems to actually take the
payments, you know, some content, however, consumers won't pay for, and instead is
perhaps supported with advertisement and other things, so you need technology to insert
advertisements and basically to fulfill the business models. And so basically you end up
with a situation where there are quite a range of components that are needed, and content
owners, in conjunction with their service provider, need to be able to draw on these
turnkey solutions in order to, again, reach the market in a very effective and efficient
way.

 So with that, I'd actually like to turn and do the first demo here, which is going to
be showing a new content service that was actually just announced today, and if we can
run the video here. This is from NBC Universal, it was just announced this morning. This
is part of the Viiv Entertainment Pass. And basically what they've made available here is
a very compelling set of television content, including TV shows that they're showing this
fall, and in many cases, letting people preview those television shows.

 One of the exciting things about this is this is actually delivered for free to the
consumer. It's ad supported here, and so there's actually a pre-roll where a couple of
advertisements play, and then it moves directly into the television show. Actually, there's
a preview here as well, but then it will move to the television show. This is actually live
on the Internet today. If you have a Viiv technology PC at home, you can go home after
IDF and enjoy this content just as we're doing here.

 One of the other things that really excites me about this is the quality of the visual
experience. This isn't your typical, you know, sort of sub-VHS VCR quality content. This
is very high-quality video that looks good even on a large screen, even a screen that's
many feet across.

 So with that, let me -- actually, kill the video, and let me move on here to the next
of the three areas that I would like to focus on. And that is home storage. And I suspect
that everyone in the audience here is in the process of taking basically their entire lives
digital. And to the extent you're taking your life digital, you're entrusting basically very
important elements of your life to the digital technology that you carry with you, you
have in your office, and you have in your home. And I'd like today to spend a little bit of
time talking about some of the challenges with the current digital storage environment in
the home and some approaches for dealing with these problems going forward.

 The first problem that I'd like to identify is the fact that there are many disjointed
islands of data around the home. I look at my house, and I have seven different hard
drives that are in use on a daily basis. A couple PCs, a DVR, an iPod. I suspect actually
many of you probably even have more than seven in your home. And right now I'm very
hard pressed to be able to basically enjoy the data or the content that's on any one of
those arbitrary storage places anywhere else in the home because basically all of the
devices are not connected together, they're not interoperable, and you're not able to
basically get access to the data you want when you want it.

 The scary thing is, is as bad as it is today, it's only going to get worse here. The
number of devices is going to continue to increase. Again, if I look at my own personal
home as an example, the number of hard drives I have has basically doubled in the last 18
months. I know that's starting to sound like a Moore's-Law-style trajectory, and I think
that's a pretty scary proposition. Hopefully I don't have another doubling in another 18
months, but nevertheless, I would suspect that by the time I come back to IDF next year,
I'll have 10 or 12, you know, hard drives, major storage places in my home. I suspect,
again, all of you are seeing those trends, and we're certainly seeing it from the analyst
data, you know, looking at the deployment of digital technologies around the world.

 The second part of this that's a really significant challenge is the actual number of
data objects that you're trying to store in your home is dramatically increasing. You
know, as you go from, for instance, film cameras to digital cameras, the number of
pictures you may take in a year may be thousands of pictures. Being able to find the ones
you want can be a real challenge. You add that with all the content you're DVRing, your
home movies, all the other digital stuff in your life that's important to you and you can
very rapidly have just a phenomenal amount of data, not just in terms of the number of
bytes of data, which I think is going to rapidly approach the multiple terabytes for most
consumers, but also the sheer number of actual individual data files that you need to be
able to somehow navigate through to get to what you want. And, again, that very much
goes back to my earlier comments about metadata and the importance of having good
metadata. And I know that's been a personal failing of mine with digital photos is that I
don't go and put the metadata in with the photo, and instead, you know, basically have to

rely on the date stamp or whatever metadata the camera inserts automatically for you.
Wouldn't it be great if you were actually able to, if you wanted to see pictures of your
children with their grandparents, be able to just enter that in and get the photos you're
looking for, as opposed to trying to figure out while, gee, my grandparents were last
visiting on the third of August, and I've got to go back there and try to poke around and
find the photos I'm looking for that way.

 Basically, the bottom line here, you know, users aren't going to be able to find
what they want going forward here. It's going to be looking for a needle in basically a
number of very, very large haystacks. And so I think there are some really very
fundamental things that we need to be doing in this phase around metadata creation,
around the ability to search metadata, and again, making sure that all of these disparate
islands of storage in the home are connected and accessible.

 Another piece of this is the permanence of the data. And if you look at the
diagram on the left, if you look at the different types of contact you have in the home,
they vary quite a bit in terms of how important they are to you and how hard they are to
replace. And if you look at, for instance, your personal photos, in the upper corner there,
this is data that is basically irreplaceable. If you lose it, it's gone. You can't get it back, no
matter how much money you want to pay. And, you know, its data that you're going to
want to last for your lifetime, or maybe even multiple lifetimes as you inherit, or you pass
down your digital photos from generation to generation. That is an incredibly profound
sort of thought that you actually have this data that is so important to you and this is
something that you may want to have persist for, for decades or even longer as physical
photographs have done.

 Obviously not all content rises to sort of that level of importance to consumers.
And if you look at commercial content you've downloaded, you know, for instance the
content you've downloaded off of iTunes or whatever you've done, I mean, this is content
that you could replace. It would be pretty annoying to have to replace it if you lost it. It
might be expensive to replace, but nevertheless, you could do it. All the way down to sort
of temporary files and all, where they're really only important for sort of right now and if
you had to replace them or sort of roll back to a previous version, it wouldn't probably be
the end of the world. So again, though, you have this incredible range of, sort of the
importance and the difficulty of replacing content. And we really need to, with the home
storage, be able to address that full range.

 Now, of course, the primary device that people store content on in their homes is
a hard drive. And if you look at the chart on the right there, this is looking at the
cumulative probability of having a hard drive in your home fail in any given year by the
number of hard drives you have. And as you can see here, as your number of hard drives
increases, your probability of having a hard drive in your home fail in a given year
increases pretty dramatically. And so, in my case, I have about seven hard drives in my
home, and that's, what, a 35 percent chance in any given year of having one of those hard
drives fail. As people move forward here and have more and more, it's going to be more
and more likely to have those fail. And unless these devices are connected and mutually

backed up and have the ability to rely on each other to actually deliver the permanence
for your data, I think consumers are going to start to have some backlash here. I know
personally, if I were to lose our family's digital photos because the hard drive they were
stored on was to become corrupted, this could be a very significant event in the
relationship between myself and my wife. And I suspect a number of you would be in a
similar state if those important items were to be lost.

 The choices that consumers have today frankly aren't very satisfying. Again, if
you have a terabyte of storage in your home, which I suspect actually many of you
probably do, you're talking about hundreds of DVD's to back that up and thousands of
CD's. This isn't a very feasible thing to do. Yes, you may back up a subset of your data
onto optical media. I know that's personally what I do. But I think what consumers are
really looking for is the ability to actually have the home infrastructure step in on their
behalf and actually deliver transparent solutions to protect that data, because, again, there
are many hard drives in the home, many different devices. Wouldn't it be great if they
could work together to actually deliver the sort of data permanence that consumers are
going to require?

 So, I hope I've made a case here for the ecosystem to work together with Intel,
and, obviously, with the other key players to actually deliver a comprehensive solution
for the home. There's some great work already started in the standard space with the
digital living network alliance and the guidelines that are being created there in terms of
file formats and interconnectivity standards between devices. That's obviously great
infrastructure, a great place to start. But we need to do more. And we need to layer
additional capabilities on top of it, like the mutual backup capabilities that I was
describing earlier.

 Additionally, there are some other opportunities here to improve the home storage
situation. And you've probably heard about Robson Technology from the mobility
keynote earlier this week where you add non-volatile memory to the platform. There's a
number of exciting opportunities in the home to accelerate performance. During the
spring IDF we showed, during the digital home keynote, a really exciting gaming demo
that took advantage of those sorts of capabilities. And so I think we can not only improve
the connectivity and accessibility of content and your important digital stuff by looking at
the home storage from a broader perspective, but also improve performance and
responsiveness of the systems as well.

 Beyond the home itself, obviously the home is not an island in and of itself.
Going out into the broader world, it would be great to be able to take advantage of
resources that are out in the network, whether it's to provide backup capabilities for your
essential digital stuff, or to enable you to access your content when you're away from
home. When you're on a trip or visiting family, to be able to get back into your digital
storage in your home and be able to access those items without having to explicitly take
that content or take that digital material with you whenever you pack up for the trip.

 So with that, let me turn to the final of three focus areas here, which is remote

management. One of the things that I think many of us benefit from, just as sort of tech-
savvy individuals, is the ability to solve many of our own technical problems in the
home. Unfortunately, the vast majority of consumers don't have that expertise. They're
not able to, you know, look at the, you know, they don't necessarily have a technology
industry family member who can sort of step in and be their home system administrator
to fix all their problems. And one of the things we're looking at is actually developing
technology to enable service providers and others to add value to the consumer's
experience by actually stepping in and taking over that responsibility in the home, and
helping people manage their increasingly complicated information infrastructure.

 And, you know, this has some additional benefits, as well, for OEMs and retailers
in terms of reducing the number of returns on products. I mean, it's not only frustrating to
the consumer to bring a product home and not be able to make it work or have it do what
the consumer thought they could have it do, but it's also bad business for the retailers and
the manufacturers because that product comes back. And, you know, you've got to do
something with it; you've got to refurbish it, or whatever, to actually get it back out. And
in many cases, the product wasn't even broken. It maybe just hadn't been configured
correctly, or the user wasn't able to actually get it working. And so, wouldn't it be great if
you could come in down the wire and help the consumer with the installation of that
product once they obviously got past the sort of fundamental piece of providing some
connectivity to it.

 Similarly, for the service providers, you know the bane of the cable industry is
doing a truck roll, or the TelCo industry is doing a truck roll to install new capabilities or
to fix a problem within the home. Again, wouldn't it be great if you could come in over
the wire and fix a lot of those problems and not actually have to, you know, have the
consumer be inconvenienced by having to meet a repair person. And then furthermore,
the obvious expense of having to actually send someone out onsite to do the repair.

 So, not surprisingly, there are some really good technologies to bring to bear in
this space. And this is a place where, from a digital home perspective, we've looked at
our colleagues in the enterprise space to look at the sorts of technology solutions that are
being delivered for the enterprise that may be applicable in the home. And Intel's active
management technology, or AMT, provides actually a really exciting baseline for
delivering a home manageability solution. And the really nice thing about AMT is it
provides and out-of-band path for actually interacting with this manageability engine. So,
even if your OS can't boot because something's been corrupted or you've got a
configuration problem, the manageability engine can actually create a connection on the
Internet, on the network, and actually communicate with that external service provider
and provide a view into the home PC to actually remedy these sorts of problems.

And I'd actually now like to turn to a demo showing a couple of capabilities in this space.
I'd like to welcome Don to come out here and join us for a demonstration.

Don Bowden: Yup, I'll do that for you Brendan.

Brendan Traw: Thank you. One of the things I sort of like to point to is our
progress from sort of PowerPoint to actually product. Last fall at IDF, I joined Don
Bowden, who was the general manager of Digital Home Group during his keynote and
talked conceptually about this sort of capability. And we showed a little bit of a smoke
and mirrors demo of how it could look. Today I'm actually really excited to be able to
show a product that we're developing with a Chinese ISV. This is [Star Soft Com]. And
Don, can you sort of walk us through the capabilities?

Don Bowden: Sure. Let's start off by talking about our home system here. Now what
we've done on our home system is we've developed some policies to monitor some of the
activities on the system -- things like our firewall, our antivirus software, and what we're
going to focus on particularly today is an application called NetNanny. Now, what we've
done is we've gone into NetNanny, and with, you know, keeping our kids safe in mind,
I've gone in and blocked a lot of the undesirable sites that are out there on the Web. So
that's what we've done here. But my kids are pretty inventive, and so my son is thinking
to himself -- and believe me, I know how he thinks -- he's going, you know, if I go in, I
could just stop the NetNanny service and I'm going to be able to go anywhere I want.

Brendan Traw: Pretty clever.

Don Bowden: He's clever. He really is. So he goes in, and he's stopping the NetNanny
service. I want you to pay attention to the lower corner down here to see what happens.

Brendan Traw: And I bet your son's told all his friends how to do this too, so even
if they're not as tech savvy, it spreads like wildfire.

Don Bowden: Absolutely. So what's it's done is it's basically disconnected the system
from the network. Once he stopped NetNanny, the policy goes on and says, wait a
minute, NetNanny isn't running, I'm disconnecting the computer all together, so it's
isolated now. So my kid's not going anywhere until he starts NetNanny back up again. So
we'll go ahead and do that. And now once NetNanny starts back up, he'll be able to go out
and surf the sites that I'm going to allow him to go to.

Brendan Traw: And, again, that's implemented using the manageability engine and
AMT to actually monitor the system to make sure the necessary --

Don Bowden: Absolutely, and it works along the same ways with the firewall and
antivirus software, so if you were getting attacked from the outside and somebody tried to
force your firewall to turn off or whatever, then the system would just disconnect or the
software would disconnect the system all together from the network, and it would protect
it.

Brendan Traw: Great. So can you also show us what this could do for service
providers others?

Don Bowden: Sure, let's go ahead and do that. So if we could bring our management

console up on the screen over here. So what I'm going to do first of all is I'm going to do
something that's so foreign to a demo guy, that it really pains me to do this, but I'm going
to blue screen this system intentionally.

Brendan Traw: Oh. That's ugly. We never like to see that on stage.

Don Bowden: So I'm going to go ahead and start the management console and get things
going, and while it's going in and repairing the system, I'll explain to you exactly what
I've done here. So give me a couple seconds to get all this set up.

 So what I've done is I've started a reboot on the system remotely. Now what
happened, when this thing went blue screen, there was a policy running behind the scenes
that basically said, "Oops, I have a problem here. I need to contact my service provider."
So it opened up the secure, encrypted connection back to the service provider's computer,
the service provider went in, looked up the customer information, and the first thing that
we did is we went in and established a mount. We actually mounted the disk on our home
PC to the system here in the service provider's office. And then we started running a
diagnostic OS. Now what this is going to do is it's going to go through, step by step, and
reboot the system, and as it reboots the system, it's going to find the problems that
occurred here.

 Now it can look for things like, you know, corrupted drivers, maybe somebody's
introduced a virus onto your system somehow, and in this particular case what we did,
when I blue screened the system, I actually overwrote a section of the boot sector, so I
corrupted the boot sector. So that's what it's going to do. It's going to go in and find out
where the problem is and you can see it's repairing now. Now on this side you can see
that I have a hyperterminal screen, so I'm able to see, from my computer in the service
provider's office, exactly what's happening on the home computer, so I don't have to be
on the phone with the user saying, "Okay, now I need you to go here and click this, or go
here and click that." It's all controlled directly from my console right here.

 So now we see we've got the message up here that it's ready for reboot, so what
I'm going to do is go in and unmount the disk. And I’m going to stop the OS software and
just tell it to go through a normal boot. So now when I click reboot here, it's sending
down the wire a signal to the home computer to go ahead and reboot. So the problem's
been fixed, the system will reboot back up into its repaired state and we've done all this
without having to roll a truck or send a technician out.

Brendan Traw: That's terrific. Just one question. Consumers might be concerned
about their privacy here. Is the service provider able to arbitrarily come in and look at
their system?

Don Bowden: No. The connection has to be established from the home computer out to
the service provider. There's no way that the service provider can say, "Yeah, I just want
to go look at what this guy's doing today." No way that's going to happen. The connection

has to be initiated from the home computer, and it has to be done with that policy that's
set up under AMT.

Brendan Traw: Terrific. Thanks a lot Don.

Don Bowden: You're welcome. Take it easy.

[Applause]

Brendan Traw: Thank you. So with that I'd like to wrap up here. And I hope I've
shared with you both our consumer-focused approach that we're bringing to the digital
home and in particular the, I think, very exciting content and media experience usage
models that are driving everything we're doing with Intel Viiv technology.

 I also hope that I've raised some awareness on three sort of critical areas of
actually delivering the infrastructure that's needed to enable those experiences and
continue to grow those experiences on a going-forward basis, from content delivery to
home storage to remote management. And I hope I've inspired many of you to enter into
the $1 million design challenge for the Intel Viiv technology PCs with the core processor.
And I hope that I've inspired all of you to work on these challenges and help deliver an
even more compelling digital home experience to consumers worldwide, working with us
in the next few years. Thank you very much. And I can take a few questions.

