System Console

Exercise Manual

Software Requirements:

The Intel® Quartus® Prime Standard Edition version 17.1
Cyclone® V device support

Hardware Requirements:

Terasic C5G Cyclone® V GX Starter Kit:

https://www.altera.com/solutions/partners/partner-profile/terasic-inc-/board/cyclone-v-gx-starter-kit. html

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=830

Use the link below to download the design files for the exercise:

http://www.altera.com/customertraining/webex/System Console.zip

Exercises System Console

A-MNL-APD-EX-17-1-v1 2 Copyright © 2018 Intel Corporation

System Console Exercises

Exercise

Testing a System with
System Console

Exercises System Console

Objectives:

e Add a JTAG-to-Avalon Master Bridge for communication with the System
Console

e Use the System Console to verify system clock and reset
e Perform simple master read and write operations
e Use Tcl scripting and a toolkit to perform complicated tasks from System Console

Introduction:

In this exercise, you will use the System Console to control a system. First you will use
Platform Designer to add the JTAG-to-Avalon® master bridge component to the system.
The JTAG-to-Avalon master bridge can communicate with System Console and act as a
master in the system. You will then use the System Console to check the system reset
and clock signals. After that, you will perform simple master reads and writes. Finally,
you will use Tcl scripting and a toolkit GUI to control the system from the System
Console.

These lab instructions are written for use in the Windows* operating system, but all tool
steps should work identically if you are working in Linux.

Platform Designer system

State Machine
JTAG to

Avalon Master m

[m1 [m] |—'i
STeTR a1 a2 a3) [rR]| [x o|x|¥|z
5
in] | b1b2 b3 |x|G|=|v|Ex—__ [N - BN |
demux
cl c2 c3 B “
FIFO DMA
ch|R|G|B z[x[v]o] [0IXI¥]Z] yv7pata
L B — B | —] [) . Buffer (1kB)
Matrix Multiplier
DMA FIFO Byte to Luminos e
Extractor
RGE Data DataPacket Format: ch Video Transform Coefficients:
Buffer (4kB) [h[R[G[8] [(BIGIRIch] Default Luminosity Space
Coefficients Transform Coefficients
al a2 a3 100 0.4184 -0.0912 0.0009
- Off-the-shelf Components bl b2 b3 010 01587 0.2524 -0.0026
\:I Custom Components €l 2 3 001 -0.0828 00157 0.1786

A-MNL-APD-EX-17-1-v1 4 Copyright © 2018 Intel Corporation

System Console Exercises

Step 1: Add the JTAG to Avalon Master Bridge

1.

Before starting the Intel Quartus Prime software, unzip the lab project files from the
.zip linked at the beginning of this lab manual.

In the .zip file is a folder named System_Console. Place the unzipped folder
(System_Console) wherever you'd like. The path to the System_Console folder
contents will be referred to as the <lab install directory>.

Start the Intel Quartus Prime Standard Edition software, version 17.1, from the Start
menu (All Programs — Intel FPGA 17.1.0.590 Standard Edition — Quartus
Prime Standard Edition 17.1.0.590 — Quartus (Quartus Prime 17.1)).

3. From the File menu, select Open Project.

4. Open the following project file:

<lab install directory>/PD_Sys_Console_Lab.qpf

Launch Platform Designer by selecting it from the Tools menu or by clicking the
Platform Designer icon i | in the toolbar.

Open the system named system.qsys.

From the Basic Functions — Bridges and Adaptors — Memory Mapped folder in
the IP Catalog, double-click JTAG to Avalon Master Bridge to instantiate the
component.

Click Finish to accept the default parameters and add the component to the system.
You can safely ignore the errors that appear. They will be fixed in the next steps.

Right-click and Rename the component to J2A_master.

. Connect the clk interface to sys_clk (pll.outclkO0).

. Make connections from the master interface of the J2A_master to the following

slave interfaces using any technique you’d like (clicking dots in the Connections
column, right-clicking the interface and selecting from the Connections sub-menu,
the Connections tab, etc.).

RGB_DATA.s1
RGB_DMA.control_port_slave
CHO_TRANSFORM.s0
CHO_DMA.control_port_slave
CHO_BUFFER.s1
led_out.debug

By connecting the above interfaces to the J2A_master, you’re giving System
Console the ability to control data flow through the system as well as to read from
and write to the RGB and XYZ data buffers. These connections also allow System
Console to edit the matrix multiplier coefficients and control the LEDs.

A-MNL-APD-EX-17-1-v1 5 Copyright © 2018 Intel Corporation

Exercises System Console

12. Go to the Platform Designer System menu and choose Create Global Reset
Network to connect both the clk_reset input and master_reset output interfaces to
the global reset.

By connecting the two reset interfaces, the System Console will have the ability to
sample and issue reset requests.

13. From the Generate menu, select Generate HDL.

14. Set Create HDL design files for synthesis to Verilog.

15. Set Create simulation model to None.

16. Click Generate, saving changes if necessary. All warnings can be safely ignored.

Click Close when complete.

17. Once the system generates, return to the Intel Quartus Prime software and compile
the project (Processing menu — Start Compilation).

Depending on the speed of your computer, the compilation could take up to about 5-
10 minutes.

18. Take out and power up your development kit. Connect the USB cable to the board
as well. Make sure you connect the USB-B connector to the connector named USB
BLASTER on the board (there are 2 USB-B connectors; the correct one is on the
left, nearer to the power jack).

Use this
connector

t
Button 3 Button 0

A-MNL-APD-EX-17-1-v1 6 Copyright © 2018 Intel Corporation

System Console

Step 2: Use System Console to perform board bring-up

Exercises

With the design fully compiled, you can now program the FPGA on the development
kit. To prepare for using a graphical toolkit later, you first need to “register” the
toolkit to use it with System Console.

. In Windows Explorer, go up to the <lab install directory>, and copy the file there
named PD_Sys_Console_Lab_toolkit.toolkit.

. Go to your user directory (C:\Users\<username>) and create a new folder there
named system_console if you don’t have one already.

. In this new folder, create another new folder named toolkits.

A-MNL-APD-EX-17-1-v1 7

. Paste the PD_Sys_Console_Lab_toolkit.toolkit file into this new toolkits
directory.

. Open the .toolkit file in a text editor.

. Replace the text on line 3 (<path to:>) with the path to the <lab install
directory>.

This file should be pointing to PD_System_Console_toolkit.tcl, the file you’ll be
using later to run a toolkit. So line 3 should have a path that looks like

C:\System Console\PD_System Console toolkit.tcl
. Back in Platform Designer, from the Tools menu, select System Console.

. Verify the System Console connection with the board from the System Explorer
pane by expanding the devices section. If you don’t see the devices folder, select
Refresh Connections from the Tools menu.

You should see the Cyclone V component on the board.

. Program the component by right-clicking the 5CGXBC5C component and selecting
Program device. Select the PD_Sys_Console_Lab.sof image. Programming is
complete when the status bar in the lower righthand corner of the System Console
stops scrolling.

@ System Console

File Tools Help

System Explorer o |
/
- |9 connections
devices
& 6] 5CGTFD5(C5|F5)|SCGXBCECAInL_misicn a
designs Link deviceto »
de;ign_instances Program device *
¥ scripts |

PD_Sys_Console_Lab.sof

Copyright © 2018 Intel Corporation

Exercises System Console

10. Expand the component in the devices section to see the components in the system

that are connected to the Avalon bus in the (hpath) section or to the JTAG bus in
the (link) section.

Notice the connections in the J2A_master component you made in Platform
Designer. These connections and names are discovered automatically when
System Console links the project as can be seen in the Messages window (“Auto
linking...”).

System Explorer o
/
- |9 connections
= devices
= | 5CGTFDS(C5IFS5)|SCGXBCSC(6|7).. @1#USB-0 (QSYS_Labs.sof_inst0)
= (hpath)
+1-gf. system_ch0_buffer:ch_buffer

- # j2a_master
+}-g. System_rgb_data:rgb_data
led_out
- # pushbutton_switches
- g rgb_dma
= g ch0_transform
ch0_dma
(link)
= JTAG
¥ alt_sld_fab_sldfabric.node_0
alt_sld_fab_sldfabric.node_1
=+ e Phy_0
= J2A_master.master
RGB_DATA.s1
led_out.debug
pushbutton_switches.s0
RGB_DMA.control_port_slave
CHO_TRANSFORM.s0
CHO_DMA.control_port_slave
CHO_BUFFER.s1
¥ alt_sld_fab_sldfabric.node_2
+ (files)
0 designs
(] design_instances
¥ scripts

11. In the Tcl Console, create a Tcl variable to store the name of the jtag_debug

service path.

You can see the command to perform this in the training or in the following screen
shot. Spaces before and after brackets in Tcl are required.

% set jtag_debug_path [lindex [get_service_paths Jjtag_debug] 0]
devices/5CGTEDS (C5|F5) | 5CGXBC5C(6]|7) | . . €1#USB-0/ (1ink) /JTAG/a t_sl:i_:’i):_sl:‘t:’i}: ric.no :Ee_l 1:‘;1_.'_]

12. Verify that the clock is toggling by issuing the following commands:

a. Usethe jtag debug sense clock command which will return 1 if the clock
has ever toggled (see below for full command).

b. Sample the clock signal by using the jtag debug sample clock command
multiple times (see below for full command).

Verify that after a few different samplings of the clock you see both 1’s and 0’s. The
sense clock command should return 1 as long as the clock has ever toggled.

A-MNL-APD-EX-17-1-v1 8 Copyright © 2018 Intel Corporation

System Console

Exercises

oo

1

jtag_debug sample clock Sjtag debug path
§ jtag_debug sample clock $jtag debug path
§ jtag debug sample clock $jtag debug path

% jtag debug_sense clock Sjta;_iek:g_;itJ

[

D

D

Note: Pressing up arrow will bring up the previous System Console command.

13.

Use the jtag debug sample reset command to sample the value of the reset

signal and verify that the reset is released.

The reset signal is active low so the result of this command should be 1, denoting

the reset is released.

1

§ jtag_debug sample reset $jtag debug path

Step 3: Perform master reads and writes

1. Use the Tcl Console to get access to the master service:

a. Create a Tcl variable to store the name of the master service path.

b. Create another variable and set it to the claimed path from the master service

path.

% get_service_paths master

devices/5CGTEDS (C5|F5) | 5CGXBC5C (67

devices/5CGTFEDS XBC5

channels/local

1ib) /master 1

% set master_path [lindex [get_service_paths master] 0]

% set m path [claim service master Smas

1408

-0/ (1link) /JTAG/alt sld fab sldfabric.node 1/phy 0/J2A master.master

1405

-0/ (1link) /JTAG/alt sld fab sldfabric.node 1/phy 0/J2A master.master

+ £

ter path ""]

__ 2. Turnon all eight green LEDs using one of the master write commands. The
led_out component is located at address 0x1030, as defined in Platform Designer,
and the green LEDs use the lowest 8 bits at that location (the red LEDs can normally
be accessed with higher bits at that location, but they are not connected in this
design). The LEDs are active high.

$ master_write_32 $m path

0x1030 Oxff

A-MNL-APD-EX-17-1-v1

9 Copyright © 2018 Intel Corporation

Exercises System Console

In this scenario, it’s best to use master_write 32 because the slave port on the
led_out component is 32 bits. The status_leds (greenled conduit) on the led_out
component is eight bits wide, so you could’ve used master write 8,

master write 16,0r master write memory With the same result. However
accessing the LEDs using one of these commands may be less efficient.

Experiment by writing other numbers to the green status LEDs and observe the
results on the development board.

Read from the RGB_DATA memory. The RGB_DATA on-chip memory is located
at addresses 0x0000 to 0xO0fff, as defined in the Platform Designer system. Practice
using the different read commands and see the differences in the results.

§ master_read 32 Sm path Ox4 4
$ master_read 16 $m path O0x4 4
$ master_read memory $m path 0x4 4

Close the master service.

$ close_service master $m path

Step 4: Complete the toolkit script and run the transform system from a System
Console toolkit

1.

Back in the Intel Quartus Prime software, open PD_System_Console_toolkit.tcl,
found in the project directory. You may need to change the file type to Script Files
to see the file.

Examine the script. The procedures in the script mimic what gets performed by the
state machine to control the system. Much of the script is the toolkit commands that
setup the GUI.

Make your first edit to the Tcl script. Go to line 199.
Look for the comment “Step 4, #2”.

Create a transform button for the GUI. The transform button belongs to a grouping
of other buttons called buttons, and it should call the procedure transform when
clicked. Three lines of code are required.

The code for the “Load Identity Coefficients” and “Load Luminosity Space Transform
Coefficients” buttons has already been inserted for you in the few lines before this
point. Follow the same format to create the Transform button. (If you get stuck, take
a look at the solutions file provided in the Solutions folder for some hints.)

A-MNL-APD-EX-17-1-v1 10 Copyright © 2018 Intel Corporation

System Console Exercises

4. Go up to line 153, and enter the commands to load the matrix coefficients into the
transform. Use the master_write_32 command and $claim_path to access the
master service. The coefficient values themselves can be referenced in the code by
$a1, $a2, etc. The base address of the transform component’s slave interface is
0x2000, which is where a1 resides, so this will be the address you will write to first.
Each of the other coefficients’ base addresses increases by 4 from there. Nine lines
of code are required for the 9 coefficients.

Look for the comment “Step 4, #4”. Again, you may refer to the solution file for
hints.

5. Save the file.
6. From the Tools menu in System Console, select PD_System_Console_Toolkit.

If you don'’t see the toolkit listed in the Tools menu, double-check the .toolkit file
you copied, pasted, and edited earlier. Close and reopen System Console if you
needed to fix anything.

If you encounter errors or the toolkit does not look like the screenshot below, debug
your Tcl file, close the toolkit’s tab in the System Console, and reopen the toolkit
from the Tools menu.

'Toolkits PD_System_Console_Toolkit 0 O X
PD_System_Console_Toolkit

Coefficients Action
at: |1 ax P a3 P | Load Identity Coefficients

bi: b2: |1 b3: P | Load Luminosity Space Transform Coefficients
ct: 2 P a3 1 Transform

7. Back in the Intel Quartus Prime software, from the Tools menu, select In-System
Memory Content Editor.

You'll use this tool to monitor the contents of two on-chip memories in the design.
The RGBB memory stores RGB source data for processing through the datapath,
while CHOB stores the output transformed data.

8. Select USB-Blaster [USB-0] from the Hardware list in the JTAG Chain
Configuration section of the tool.

Once you’ve selected the hardware, make sure you can see the device in the
Device list and the two memory instances in the Instance Manager. If you don’t
see them, click Scan Chain.

A-MNL-APD-EX-17-1-v1 11 Copyright © 2018 Intel Corporation

Exercises System Console

10.

11.
12.

13.

Select both the RGBB and the CHOB instances and click to have both instances
continuously read memory contents. Select an instance to see its contents.

The RGBB memory should contain incrementing data, while CHOB should be all 0’s.

Go to System Console, and in the toolkit, enter in your own coefficients or choose
one of the two preset sets of coefficients.

Run the transform by clicking Transform.

Re-check the contents of system memory. Go back to the In-System Memory
Content Editor and reexamine the Channel 0 buffer.

If you used the Luminosity Coefficients you should see the following results:

r a
«= In-System Memory Content Editor - C:/altera_trn/Advanced_Qsys/AQSYS/Lablto3a/QSYS_Labs - QSYS_Labs o S
Fle Edit View Processing Tools Window Help 5/ Search altera.con @

JTAG Chain Confi tion: X
Instance Manager: [=f| [} E] =] Acquisition in progress x ain Configuration: JTAG ready
Index Instance ID Status Width Depth Hardware: |USB
0 RGBB Unloading data 32 1024 Device: @
d; CHOB Unloading data 32 256

File: | %, | 2d_Qsys/AQSYS/Lab1to3a/QSYS_Labs.sof |.

< 1 »

Instance 1: CHOB o

000000 00 FF 00 00 00 00 00 00 00 01 00 01 00 02 01 01 00 03 01 01
000005 00 04 01 02 00 05 01 02 00 06 02 02 00 07 02 03 00 08 02 03
00000a 00 09 02 03 00 OA 03 04 00 OB 03 04 00 OC 03 04 00 OD 04 0S5
00000f 00 OE 04 0S 00 00 00 00 00 00 00 00 0O 00 00 00 0O 00 00 00
000014 00 00 00 00 0O 00 00 00 0O 00 00 00 0O 00 OO0 00 0O 00 00 00
000019 00 00 00 OO0 00 00 00 OO 0O 00 00 00 0O 00 00 00 00 00 00 00
00001e 00 00 00 00 00 00 00 00 OO 00 00 00 0O 00 00 00 0O 00 00 0O
000023 00 00 00 00 00 00 00 00 0O 00 00 00 0O 00 00 00 0O 00 00 00
000028 00 00 00 00 00 00 00 00 0O 00 OO0 00 0O 00 OO 00 0O 00 00 0O
00002d 00 00 00 00 00 00 00 00O 0O 00 00 00 0O 00 00 00 00 00 00 0O
000032 00 00 00 00 00 00 00 00 0O 00 00 00 0O 00 00 00 0O 00 00 00

100% 00:02:42 Instance 1: CHOB Word: 0x000010 Bit: 0x00001f

You have successfully controlled your system from the System Console GUI!

Experiment with the System Consule graphical Ul that you have created. Try
loading in other coefficients, performing the transform, and checking the results in
the In-System Memory Content Editor.

Note that the Transform button always overwrites the channel 0 buffer data
because it always writes to the same location in the buffer.

END OF EXERCISE

A-MNL-APD-EX-17-1-v1 12 Copyright © 2018 Intel Corporation

