Compare Now

Technical Specifications

Essentials

Capacity
2 TB
Status
Announced
Lithography Type
3D NAND TLC

Performance

Sequential Avg. 15.83 W (Write), 8.67 W (Read)

Reliability

50 G Trapezoidal, 170 in/s
Operating Temperature Range
0°C to 55°C
<1 sector per 10^17 bits read
Warranty Period
5 yrs

Package Specifications

Weight
183g
HHHL (CEM3.0)
PCIe NVMe 3.1 x4

Expert Review ({{reviewCount}})

    {{#each reviews}}
  • 10 0 {{#if showRating}}
    {{rating}}
    {{/if}}

    {{publishedOn}}

    {{#if showReviewComments}}
    {{#if isGoodAvaliable}}
    Good:

    {{good}}

    {{/if}} {{#if isBadAvaliable}}
    Bad:

    {{bad}}

    {{/if}}
    {{/if}}
  • {{/each}}

Products

{{#with products}} {{>product-card}} {{/with}}
{{#if product-card.title}}

{{product-card.title}}

{{/if}}
{{#each product-card.items}}
{{#if reviews.showRating}}
{{reviews.reviewsScore}}
{{/if}}
{{#if responsive-image}} {{#with responsive-image}} {{> responsive-image }} {{/with}} {{/if}} {{#if responsive-list-image}} {{#with responsive-list-image}} {{> responsive-image }} {{/with}} {{/if}} {{#with content-main}}

    {{#each productHighLights}}
  • {{this}}
  • {{/each}}
{{/with}}
{{#with content-extra}}
{{#if show-compare }} Compare Now {{/if}} {{#if price-tray}} {{> price-tray}} {{/if}}
{{/with}}
{{/each}}
{{#if product-card.loader}} {{/if}}
{{#each image-sizes}} {{#if smallren}} {{/if}} {{/each}}
{{#each product.productOffers}}
{{price}}{{#if cents}}{{decimalSeparator}}{{/if}}{{cents}} Buy
{{/each}}
{{#if price-tray.standalone}}
{{#if price-tray.fullwidth}}

Full Width

{{/if}} {{/if}} {{#if price-tray.standalone}} {{#if price-tray.fullwidth}}
{{/if}}
{{/if}}

Products

{{#with products}} {{>product-card}} {{/with}}
{{#if product-card.title}}

{{product-card.title}}

{{/if}}
{{#each product-card.items}}
{{#if reviews.showRating}}
{{reviews.reviewsScore}}
{{/if}}
{{#if responsive-image}} {{#with responsive-image}} {{> responsive-image }} {{/with}} {{/if}} {{#if responsive-list-image}} {{#with responsive-list-image}} {{> responsive-image }} {{/with}} {{/if}} {{#with content-main}}

    {{#each productHighLights}}
  • {{this}}
  • {{/each}}
{{/with}}
{{#with content-extra}}
{{#if show-compare }} Compare Now {{/if}} {{#if price-tray}} {{> price-tray}} {{/if}}
{{/with}}
{{/each}}
{{#if product-card.loader}} {{/if}}
{{#each image-sizes}} {{#if smallren}} {{/if}} {{/each}}
{{#each product.productOffers}}
{{price}}{{#if cents}}{{decimalSeparator}}{{/if}}{{cents}} Buy
{{/each}}
{{#if price-tray.standalone}}
{{#if price-tray.fullwidth}}

Full Width

{{/if}} {{/if}} {{#if price-tray.standalone}} {{#if price-tray.fullwidth}}
{{/if}}
{{/if}}

Features and Benefits

Optimized for cloud storage architectures, the Intel SSD DC P4600 Series significantly increases server agility and utilization, while also accelerating applications, across a wide range of cloud workloads.

Intel® 3D NAND SSDs for the data center reduce the need for specialized servers, increase technician efficiency and lessen Opex and Capex, enabling organizations to squeeze every last bit and byte from the data center.

With industry-leading quality and reliability, you can be confident your drives are available and your data is protected. Support for data-at-rest encryption minimizes the likelihood of data breaches, while industry-leading end-to-end data protection reduces the chance of silent data errors.1

Built with advanced manageability features such as NVMe*-MI, the Intel SSD DC P4600 Series allows you to remotely monitor, manage and remediate across more device states and streamline essential services.

Product and Performance Information

This feature may not be available on all computing systems. Please check with the system vendor to determine if your system delivers this feature, or reference the system specifications (motherboard, processor, chipset, power supply, HDD, graphics controller, memory, BIOS, drivers, virtual machine monitor-VMM, platform software, and/or operating system) for feature compatibility. Functionality, performance, and other benefits of this feature may vary depending on system configuration.
1

Source - Intel. End-to-end data protection refers to the set of methods used to detect and correct the integrity of data across the full path as it is read or written between the host and the SSD controller and media. Test performed on Intel® SSD DC S3520, Intel® SSD DC P3520, Intel® SSD DC P3510, Intel® SSD DC P4500, Samsung* PM953, Samsung PM1725, Samsung PM961, Samsung PM863, Micron* 7100, Micron 510DC, Micron 9100, HGST* SN100, Seagate* 1200.2, SanDisk* CS ECO drives. Claim is based on average of Intel drive error rates vs. average of competitor drive error rates. Neutron radiation is used to determine silent data corruption rates and as a measure of overall end-to-end data protection effectiveness. Among the causes of data corruption in an SSD controller are ionizing radiation, signal noise and crosstalk, and SRAM instability. Silent errors were measured at run-time and at post-reboot after a drive “hang” by comparing expected data vs actual data returned by drive. The annual rate of data corruption was projected from the rate during accelerated testing divided by the acceleration of the beam (see JEDEC standard JESD89A).