1Up to 5x claim based on OLTP warehouse workload: 1-Node, 4 x Intel® Xeon® processor E7-4870 on Emerald Ridge with 512 GB total memory on Oracle Linux* 6.4 using Oracle 12c* running 800 warehouses. Benchmark: HammerDB, Score: 2.46322e+006 higher is better vs. 1-Node, 4 x Intel® Xeon® Platinum 8180 processor on Lightning Ridge SKX with 768 GB total memory on Red Hat Enterprise Linux* 7.3 using Oracle* 12.2.0.1 (including database and grid) with 800 warehouses. Score: 1.2423e+007.
2Intel® Xeon® Platinum 8180 processor compared to Intel® Xeon® processor E5-2699 v4 NOTE: 113x gain in last 2 years, using optimized frameworks & optimized Intel® MKL Libraries compared to Intel® Xeon® processor E5-2699 v3 with BVLC-Caffe Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS* Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance
Deep Learning Frameworks: Caffe*: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.
Platform: 2S Intel® Xeon® CPU E5-2697 v2 @ 2.70GHz (12 cores), HT enabled, turbo enabled, scaling governor set to “performance” via intel_pstate driver, 256GB DDR3-1600 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.21.1.el7.x86_64. SSD: Intel® SSD 520 Series 240GB, 2.5in SATA 6Gb/s, 25nm, MLC.
Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact,1,0‘, OMP_NUM_THREADS=24, CPU Freq set with cpupower frequency-set -d 2.7G -u 3.5G -g performance
Deep Learning Frameworks: Caffe*: (http://github.com/intel/caffe/), revision b0ef3236528a2c7d2988f249d347d5fdae831236. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). GCC 4.8.5, Intel MKL small libraries version 2017.0.2.20170110.