Visible to Intel only — GUID: lbl1455130101432
Ixiasoft
1. Datasheet
2. Getting Started with the SR-IOV DMA Example Design
3. Parameter Settings
4. Interfaces and Signal Descriptions
5. Registers
6. Programming and Testing SR-IOV Bridge MSI Interrupts
7. Error Handling
8. IP Core Architecture
9. Design Implementation
10. Transceiver PHY IP Reconfiguration
11. Debugging
A. Frequently Asked Questions for PCI Express
B. Transaction Layer Packet (TLP) Header Formats
C. Stratix V Avalon-ST with SR-IOV Interface for PCIe Solutions User Guide Archive
12. Document Revision History
1.1. Stratix® V Avalon-ST Interface with SR-IOV for PCIe Datasheet
1.2. Release Information
1.3. Device Family Support
1.4. Design Examples for SR-IOV
1.5. Debug Features
1.6. IP Core Verification
1.7. Performance and Resource Utilization
1.8. Recommended Speed Grades for SR-IOV Interface
1.9. Creating a Design for PCI Express
2.1. Generating the Example Design Testbench
2.2. Understanding the Generated Files and Directories
2.3. Simulating the SR-IOV Example Design
2.4. Running a Gate-Level Simulation
2.5. Understanding the DMA Functionality
2.6. Compiling the Example Design with the Quartus® Prime Software
2.7. Using the IP Catalog To Generate Your Stratix V Hard IP for PCI Express as a Separate Component
4.1. Avalon-ST TX Interface
4.2. Component-Specific Avalon-ST Interface Signals
4.3. Avalon-ST RX Interface
4.4. BAR Hit Signals
4.5. Configuration Status Interface
4.6. Clock Signals
4.7. Function-Level Reset Interface
4.8. Interrupt Interface
4.9. Configuration Extension Bus (CEB) Interface
4.10. Implementing MSI-X Interrupts
4.11. Local Management Interface (LMI) Signals
4.12. Reset, Status, and Link Training Signals
4.13. Transceiver Reconfiguration
4.14. Serial Data Signals
4.15. Test Signals
4.16. PIPE Interface Signals
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. PCI and PCI Express Configuration Space Registers
5.3. MSI Registers
5.4. MSI-X Capability Structure
5.5. Power Management Capability Structure
5.6. PCI Express Capability Structure
5.7. Advanced Error Reporting (AER) Enhanced Capability Header Register
5.8. Uncorrectable Error Status Register
5.9. Uncorrectable Error Mask Register
5.10. Uncorrectable Error Severity Register
5.11. Correctable Error Status Register
5.12. Correctable Error Mask Register
5.13. Advanced Error Capabilities and Control Register
5.14. Header Log Registers 0-3
5.15. SR-IOV Virtualization Extended Capabilities Registers
5.16. Virtual Function Registers
5.15.1. SR-IOV Virtualization Extended Capabilities Registers Address Map
5.15.2. ARI Enhanced Capability Header
5.15.3. SR-IOV Enhanced Capability Registers
5.15.4. Initial VFs and Total VFs Registers
5.15.5. VF Device ID Register
5.15.6. Page Size Registers
5.15.7. VF Base Address Registers (BARs) 0-5
5.15.8. Secondary PCI Express Extended Capability Header
5.15.9. Lane Status Registers
11.1.1. Changing Between Serial and PIPE Simulation
11.1.2. Using the PIPE Interface for Gen1 and Gen2 Variants
11.1.3. Viewing the Important PIPE Interface Signals
11.1.4. Disabling the Scrambler for Gen1 and Gen2 Simulations
11.1.5. Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations
11.1.6. Changing between the Hard and Soft Reset Controller
Visible to Intel only — GUID: lbl1455130101432
Ixiasoft
9.4. Creating a SignalTap II Debug File to Match Your Design Hierarchy
For Arria 10 devices, the Quartus® Prime Standard Edition software generates two files, build_stp.tcl and <ip_core_name>.xml. You can use these files to generate a SignalTap® II file with probe points matching your design hierarchy.
The Quartus® Prime software stores these files in the IP core Diretory/synth/debug/stp/ directory.
Synthesize your design using the Quartus® Prime software.
- To open the Tcl console, click View > Utility Windows > Tcl Console.
- Type the following command in the Tcl console:
source <IP core Directory>/synth/debug/stp/build_stp.tcl
- To generate the STP file, type the following command:
main -stp_file <output stp file name>.stp -xml_file <input xml_file name>.xml -mode build
- To add this SignalTap® II file (.stp) to your project, select Project > Add/Remove Files in Project. Then, compile your design.
- To program the FPGA, click Tools > Programmer.
- To start the SignalTap® II Logic Analyzer, click Quartus Prime > Tools > SignalTap® II Logic Analyzer.
The software generation script may not assign the SignalTap® II acquisition clock in <output stp file name>.stp. Consequently, the Quartus® Prime software automatically creates a clock pin called auto_stp_external_clock. You may need to manually substitute the appropriate clock signal as the SignalTap® II sampling clock for each STP instance.
- Recompile your design.
- To observe the state of your IP core, click Run Analysis.
You may see signals or SignalTap® II instances that are red, indicating they are not available in your design. In most cases, you can safely ignore these signals and instances.They are present because software generates wider buses and some instances that your design does not include.