Intel® Agilex™ FPGAs and SoCs Device Overview

ID 683458
Date 9/26/2022
Public
Document Table of Contents
1. Overview of the Intel® Agilex™ FPGAs and SoCs 2. Intel® Agilex™ FPGAs and SoCs Family Plan 3. Second Generation Intel® Hyperflex™ Core Architecture 4. Adaptive Logic Module in Intel® Agilex™ FPGAs and SoCs 5. Internal Embedded Memory in Intel® Agilex™ FPGAs and SoCs 6. Variable-Precision DSP in Intel® Agilex™ FPGAs and SoCs 7. Core Clock Network in Intel® Agilex™ FPGAs and SoCs 8. General Purpose I/Os in Intel® Agilex™ FPGAs and SoCs 9. I/O PLLs in Intel® Agilex™ FPGAs and SoCs 10. External Memory Interface in Intel® Agilex™ FPGAs and SoCs 11. Hard Processor System in Intel® Agilex™ SoCs 12. FPGA Transceivers in Intel® Agilex™ FPGAs and SoCs 13. Heterogeneous 3D Stacked HBM2E DRAM Memory in Intel® Agilex™ M-Series FPGAs and SoCs 14. High-Performance Crypto Blocks in Intel® Agilex™ F-Series and I-Series FPGAs and SoCs 15. MIPI* Protocols Support in Intel® Agilex™ D-Series FPGAs and SoCs 16. Balls Anywhere Package Design of Intel® Agilex™ D-Series FPGAs and SoCs 17. Configuration via Protocol Using PCIe* for Intel® Agilex™ FPGAs and SoCs 18. Device Configuration and the SDM in Intel® Agilex™ FPGAs and SoCs 19. Partial and Dynamic Configuration of Intel® Agilex™ FPGAs and SoCs 20. Device Security for Intel® Agilex™ FPGAs and SoCs 21. SEU Error Detection and Correction in Intel® Agilex™ FPGAs and SoCs 22. Power Management for Intel® Agilex™ FPGAs and SoCs 23. Intel® Software and Tools for Intel® Agilex™ FPGAs and SoCs 24. Revision History for the Intel® Agilex™ FPGAs and SoCs Device Overview

14. High-Performance Crypto Blocks in Intel® Agilex™ F-Series and I-Series FPGAs and SoCs

Select Intel® Agilex™ devices contain multiple instances of the crypto block. The 200 Gbps half-duplex crypto block consists of hardened logic that performs both encryption and decryption functions in a single circuit. The crypto blocks reside in the top and bottom periphery of the device next to the I/O cells.

The crypto block supports these encryption standards:

  • AES standard, used worldwide
  • SM4 standard, used primarily in China

The crypto block supports these different modes of operation:

  • Galois counter mode (GCM)
  • XTS mode, built on top of XOR-encrypt-XOR

The Ethernet MACsec soft IP supports each crypto block, providing a complete MACsec solution for 100 Gbps full-duplex or 200 Gbps half-duplex throughput rates. You can also use the crypto block with a third-party or your own IPsec soft IP.

Did you find the information on this page useful?

Characters remaining:

Feedback Message