When measuring your company’s online sentiment, does your natural language processing (NLP) application know the difference between “I like cake” and “cake rocks”? How about “XYZ company is the bomb” versus “XYZ company bombed”?

As previously illustrated, traditional NLP algorithms are limited in delivering accurate results because they operate over strings of words without having information about a language’s grammatical rules or colloquialisms.

An alternate approach is called compositional semantics, where algorithms incorporate a language’s specific grammatical rules and sentence structures.

In this session, computational scientist Lee J. O’Riordan discusses one such model—distributional compositional semantics (DisCo)—that offers significant improvements to NLP results. However, the main challenge for implementation is its need for large classical computational resources.

But according to O’Riordan the solution is quantum implementation, which lowers storage and compute requirements compared to classic HPC implementation.

Tune in to find out how it works, including:

  • The development of a quantum-enabled NLP solution
  • A presentation of two quantum algorithms: the closest vector problem algorithm and the CSC sentence similarity algorithm
  • Details of added features to the Intel® Quantum Simulator that address quantum algorithm building blocks
  • How using a Python* wrapper allows users to quickly develop solutions and to easily analyze results
  • A demo of the algorithm in action, plus sample code and output

DisCo was developed by Intel and the Irish Centre for High-End Computing (ICHEC).


Download the Software

Intel® Distribution for Python*


Other Resource

Intel® Quantum Simulator


Lee J O'Riordan
Computational scientist, ICHEC

Lee specializes in near-term quantum computing technologies. Prior to joining ICHEC, he held several research and software development positions, including IBM* Dublin, the Ultracold Quantum Gases group in the University College Cork, and the Quantum Systems unit at the Okinawa Institute of Science and Technology where he completed his PhD in physics.

 

 

Intel® Distribution for Python*

Develop fast, performant Python code with this set of essential computational packages including NumPy, SciPy, scikit-learn*, and more.

Get It Now   

See All Tools