

Multi-Device Basic
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 329763-004US

Multi-Device Basic

2

Contents
Contents .. 2
Legal Information .. 3
About Multi-Device Basic Sample ... 4
Algorithm ... 4
OpenCL* Implementation ... 5
Understanding the OpenCL* Performance Characteristics .. 8
Project Structure ... 8
APIs Used .. 9
Controlling the Sample ... 9
Understanding the Sample Output .. 10
References .. 11

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Multi-Device Basic

4

About Multi-Device Basic Sample
The Multi-Device Basic sample is an example of utilizing the capabilities of a multi-device system.
Such systems might have different hardware setups, for example:

• Systems based on CPU and GPU devices, where one OpenCL device is a regular CPU and
another is an on-chip or a discrete GPU card.

• HPC systems based on CPU and discrete GPUs or accelerator devices like Intel® Xeon Phi™
coprocessors.

This sample targets systems with multiple Intel Xeon Phi coprocessor devices, but its guidelines and
methods are also applicable to multi-device systems with CPU and GPU devices, or a CPU and one
Intel Xeon Phi coprocessor device.

For optimal utilization of devices, you need to reduce idle time by loading multiple devices
simultaneously.

The Multi-Device Basic sample exemplifies three basic scenarios of simultaneous utilization of multiple
devices under the same system:

• System-level

• Multi-context

• Shared context

This sample demonstrates a minimal sequence of steps to keep all devices busy simultaneously. It
consists of:

• A simple synthetic kernel, operating in 1-dimensional iteration space.

• A simple work partitioning strategy, which comprises dividing all work among devices equally,
regardless of their compute capabilities.

The sample utilizes no data sharing and therefore no synchronization between the devices. This is a
purely functional sample with no performance instrumentation and no performance reported as
sample output.

Algorithm
The sample calculates a synthetic function, which is implemented in the kernel, on a pair of input
buffers a and b, and puts the resulting values to the output buffer c. Each buffer consists of
work_size elements. For each index i the sample calculates c[i] = f(a[i], b[i]),

where

• i = 0..work_size-1

• f is a function, implemented in the kernel.

Initial values for buffer elements are also synthetic: a[i] = i, b[i] = 2*i.

The aim of the sample is to demonstrate how to divide, allocate, share resources, and load several
devices in the system simultaneously. The problem is simplified by excluding borders, halos, or other
data shared between adjacent devices, which helps to omit overlapping between devices during
resource partitioning.

The sample demonstrates basic steps to saturate multiple devices without complex explanations of
access patterns and other issues. The Multi-Device Basic sample utilizes a static work partitioning
approach instead of dynamic load balancing among devices. See the other SDK samples at
software.intel.com/en-us/vcsource/tools/opencl.
In the considered scenarios the sample uses common math for work partitioning, which is suitable
for the case where the number of data items is much larger than the number of devices.

According to this strategy, work is divided among devices evenly, and the non-dividable piece is
assigned to the last device. For a case where you cannot divide data with small granularity, you need
to utilize a different math to distribute the last piece of work among several devices for better load
balance.

OpenCL* Implementation

5

OpenCL* Implementation
The following scenarios are considered in this sample. Scenario names are not conventional. Each
name is an alias of the respective scenario in the document and sample code.

• System-level scenario, where separate devices are picked up by different instances of the
same application. Each instance gets its index and recognizes how many application instances
run simultaneously to correctly divide work and process a specific portion.

• Multi-context scenario, where one application instance uses all devices, and each device has
its own OpenCL* context.

• Shared-context scenario, where all devices are placed in the same shared context and share
input and output buffers using sub-buffers.

Refer to the scenario-dedicated sections in this document to understand which scenario best suits your
needs.

System-Level Scenario
In the system-level scenario, multi-device parallelism is implemented outside of the host application.
Multiple instances of the sample application run simultaneously under the same system. The following
illustrates the system-level scenario:

If you already have an OpenCL-enabled application with ability to partition work between multiple
instances, for example, through MPI, then you do not need to modify this application to use multiple
devices. Just run one instance per each device.

In case you have an MPI-enabled and OpenCL-enabled application (for a cluster) that is capable of
utilizing one device, and you want to utilize a machine with multiple Intel® Xeon Phi™ coprocessors,
you do not need to make any adjustments in work partitioning. Run one application instance per each
Intel Xeon Phi coprocessor under the same system. Coprocessors have equal compute power, which
means that the approach of dividing work between devices evenly provides the desired performance
scalability, assuming that the execution time is distributed among work items uniformly.

Using the system-level scenario, you should limit the number of devices for each application instance
externally, using one of the following methods:

A
p

p
li

ca
ti

o
n

 i
n

st
an

ce
 1

Host array

O
p

en
C

L
co

n
te

xt

Program &
kernel

Buffer

Command
queue

Device

Original data items/work space

A
p

p
li

ca
ti

o
n

 i
n

st
an

ce
 N

Host array

O
p

en
C

L
co

n
te

xt

Program &
kernel

Buffer

Command
queue

Device

…

Fig. 1: System-level scenario

Multi-Device Basic

6

• Setting the OpenCL device type with different values depending on application instance. In
such a case, different application instances use different types of devices. For example, one
instance uses CPU device, while another uses the coprocessor device. To set the device type,
use the –t command-line option.

• Enabling the OFFLOAD_DEVICES environment variable on the systems with multiple Intel Xeon
Phi coprocessors. OFFLOAD_DEVICES does not require any special processing by applications,
as the environment variable is supported at OpenCL implementation level. OFFLOAD_DEVICES
limits the Intel Xeon Phi coprocessor device visibility to a particular process in the system.

• Combination: set the device type and enable the OFFLOAD_DEVICES environment variable. In
such case you can use a combination of CPU device and multiple coprocessors.

This sample implements the synthetic algorithm that does not involve any inter-device
communication, so the code does not organize inter-instance interaction. Each application instance
works individually and independently from others. Each instance calculates which work items to
process so that all instances calculate the complete result but do not collect the resulting values into
one place.

Multi-Context Scenario
In the multi-context scenario, one application instance uses all devices. Yet each device has its own
context, so programs, kernels, buffers, and other resources are not shared. You should create the
resources individually for each device. You can share only the memory allocation on the host. Each
device exploits a separated piece of the allocated host memory by using its own buffer, created with
CL_MEM_USE_HOST_PTR.

Individual paths for each of the devices start from almost very beginning, from the context creation.
The same code is executed multiple times for different devices. So syntactically, the code consists of a
number of loops over individual devices and queues.

Absence of tight synchronization between devices is a consequence of context separation. You cannot
use events from one context in other contexts. So the synchronization that you can organize should
involve host-side API calls. This sample explicitly waits for completion in all queues in loop over all
devices with the clFinish call.

The following figure illustrates the multi-context scenario.

A
p

p
li

ca
ti

o
n

 i
n

st
an

ce

Host array

O
p

en
C

L
co

n
te

xt
 1

Program &
kernel

Buffer

Command
queue

Device

Original data items/work space

O
p

en
C

L
co

n
te

xt
 N

Program &
kernel

Buffer

Command
queue

Device

…

Fig. 2: Multi-context scenario

OpenCL* Implementation

7

Shared-Context Scenario
In the shared-context scenario, program, kernel and all buffers are shared between all devices and
exist in a single OpenCL* context. However, to use the output to the same buffer by multiple devices
simultaneously, you need to create a non-overlapping sub-buffer for each device. See the OpenCL
specification for more information.

The following figure illustrates the shared-context scenario:

You can also use OpenCL events to synchronize multiple devices without host-side participation, which
is possible when all command queues coexist in a single context. Use this possibility to wait for the
resulting buffer to become ready, which is the moment when all devices finish their NDRange
commands. Specifically, use an array of event in the dependence list for the clEnqueueMapBuffer call.
See more details in the source code.

To collect all devices of a specified type inside a single context, consider the following methods:

• Call clGetDeviceIDs, which lists the available devices. Call clCreateContext to create a
context for the available devices.

• Call clCreateContextFromType directly for platform and device type. Call clGetContextInfo
to query the available devices.

Querying the list of devices is necessary in all methods as you need to create a separate command
queue for each device. OpenCL has no API for creating an array of command queues to simplify the
process. This sample utilizes the method with calling clCreateContextFromType.

Choosing an Appropriate Scenario
You need to consider which scenario best suits your needs.

Prefer the system-level scenario if the inter-instance communication is not a bottleneck in your
application. Otherwise, prefer multi- or shared-context scenarios, which provide more tight

A
p

p
li

ca
ti

o
n

 i
n

st
an

ce

Host array

O
p

en
C

L
co

n
te

xt

Program &
kernel

Sub-buffer 1

Command
queue 1

Device 1

Original data items/work space

…

Fig. 3: Shared-context
scenario scenscenario

Buffer

Command
queue N

Device N

Sub-buffer N

Multi-Device Basic

8

synchronization capabilities between devices and hence better utilization of devices, particularly for
application types that spend a lot of time for data transfers.

In the multi-context scenario, individual paths for each of the devices start from almost very
beginning, from the context creation in comparison to shared-context scenario, which provides more
sharing between devices (compare Fig. 2 with Fig. 3). Due to early separation, multi-context scenario
has less flexibility, particularly in load balancing, and lack of tight synchronization between command
queues, which requires more host participation in inter-device scheduling.

Using the multi-context scenario you can create a buffer for a dedicated device and avoid extra cycles
for allocating (and potentially duplicating) a buffer in a context with multiple devices. This is relevant
for the case when several Intel® Xeon Phi™ coprocessor devices are present in the OpenCL context,
which requires some extra time to allocate the entire buffer and might not be suitable for the shared-
context scenario.

Using the shared-context scenario you can organize efficient load balancing among devices by
dynamically choosing sub-buffer sizes without recreating original buffers. Depending on the device
type and OpenCL implementation, the cost of buffer creation might be higher than the cost of sub-
buffer creation, so the dynamic load balancing approach can be efficiently implemented with shared-
context.

Understanding the OpenCL* Performance
Characteristics
Saturating Device Capabilities
You need to choose an appropriate work partitioning scenario to assign enough work to each device.
Some types of devices, like Intel® Xeon Phi™ coprocessors, require a large number of work-groups
that is scheduled in one NDRange. If the number of work-groups is insufficient, the system may result
in device starvation and lead to lower performance on multi-device systems.

In multi-device context scenario, the given amount of work might be enough to utilize capabilities of
one device, but not enough for several devices. Considering the overhead required for multi-device
partitioning, dividing the work of one device into several devices can be slower than performing all
work on one device.

Work-group Size Considerations
To provide each device with appropriate global size while dividing work between devices you should
ensure enough granularity. The global size of NDRange enqueued for the device should be a multiple
of a predefined value. You can query this value using clGetKernelInfo with
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE for a particular kernel. The fixed granularity value
satisfies minimal requirements for each pair of a device and a kernel in a multi-device environment, in
case the value is used for all devices. This implies an additional requirement for the data partitioning
scheme used in the application. While in the sample the additional requirement is not forced (to keep
the source code shorter), in a real application the host logic should follow the requirement to achieve
better performance results.

Generally this recommendation is implied by the auto-vectorization module of the compiler. See the
Intel® SDK for OpenCL Applications - Optimization Guide for more information.

Project Structure
All files, necessary for sample build and execution, reside at the sample directory (MultiDeviceBasic)
and in the common directory of the root directory, to which you extract samples.

MultiDeviceBasic directory contains the following files:

• Source files:

http://software.intel.com/sites/products/documentation/ioclsdk/2013XE/OG/index.htm

APIs Used

9

o multidevice.hpp – declaration of main sample functions, which includes the sample
scenarios and kernel creation function.

o multidevice.cpp – entry point, command-line parameters definition, and parsing,
selecting among scenarios and calling one of them.

o kernel.cpp – creation of an OpenCL* program from a string; kernel code is inlined to
this file.

o system.cpp – implementation of the system-level scenario
o multi.cpp – implementation of the multi-context scenario
o shared.cpp – implementation of the shared-context scenario

• Scripts to run the system-level scenario with different hardware setups:
o cpu+mic.system-level.sh – runs the system-level scenario with two application

instances: one instance is for CPU OpenCL device, and another for the Intel® Xeon
Phi™ coprocessor OpenCL device.

o multimic.system-level.sh – runs the system-level scenario with several application
instances, each instance is mapped for the dedicated Intel Xeon Phi coprocessor
OpenCL device.

o cpu+multimic.system-level.sh – runs the system-level scenario with CPU OpenCL
device and with several application instances, each instance is mapped for a dedicated
Intel Xeon Phi coprocessor OpenCL device.

NOTE: Multi-context and shared-context scenarios are executed directly by running the binary file
with a specific command-line option without using any script files. Refer to the “Controlling
the Sample” section for more information.

• Other files:
o Makefile – builds the sample binary.
o README.TXT – instruction on building and running the sample. Also provides

information on understanding the sample output.

APIs Used
This sample uses the following OpenCL host functions:
• clBuildProgram
• clCreateBuffer
• clCreateCommandQueue
• clCreateContext
• clCreateContextFromType
• clCreateKernel
• clCreateProgramWithSource
• clCreateSubBuffer
• clEnqueueMapBuffer
• clEnqueueNDRangeKernel
• clEnqueueUnmapMemObject
• clFinish
• clFlush
• clGetDeviceIDs
• clGetDeviceInfo
• clGetPlatformIDs
• clGetPlatformInfo
• clReleaseCommandQueue
• clReleaseContext
• clReleaseKernel
• clReleaseMemObject
• clReleaseProgram
• clSetKernelArg
• clWaitForEvents

Controlling the Sample
You can run the following files in the command line:

Multi-Device Basic

10

• multidevice, the sample binary file, which is a console application.
• <hardware_setup>.system-level.sh, which is a script for running the system-level scenario

in various hardware configurations, where <hardware_setup> is the placeholder for a
hardware setup name.

The multi-context and the shared-context scenarios are executed directly by calling the sample binary
with a particular --context command-line option. You can choose platform, devices, and other
parameters through command line when calling the executable. To view all parameters, run the help
command:

./multidevice –h

Help command shows the following help text:
Option Description

-h, --help Show this help text and exit.
-p, --platform number-or-string Select platform, devices of which are used.
-t, --type all | cpu | gpu | acc |
default | <OpenCL constant for device
type>

Select the device by type on which the OpenCL
kernel is executed.

-c, --context system | multi | shared

Type of the multi-device scenario used: with
system-level partitioning, with multiple devices and
multiple contexts for each device or one shared
context for all devices. For one device in the system,
system = multiple = shared.

-s, --size <integer> Set input/output array size.

--instance-count <integer>

Applicable for system-level scenario only. Number of
application instances which will participate in
system-level scenario. To identify particular
instance, use --instance-index key.

--instance-index <integer>
Applicable for system-level scenario only. Index of
instance among all participating application
instances which is set by --instance-count key.

Understanding the Sample Output

The following is an example of possible multidevice binary output for the shared context with CPU and
Intel Xeon Phi coprocessor devices:

$./multidevice
Platforms (1):
[0] Intel(R) OpenCL [Selected]
Executing shared-context scenario.
Context was created successfully.
Program was created successfully.
Program was built successfully.
Number of devices in the context: 2.
Successfully created command queue for device 0.
Successfully created command queue for device 1.
Detected minimal alignment requirement suitable for all devices:
128 bytes.
Required memory amount for each buffer: 67108864 bytes.
Buffers were created successfully.
Sub-buffers for device 0 were created successfully.
Sub-buffers for device 1 were created successfully.
Kernel for device 0 was enqueued successfully.
Kernel for device 1 was enqueued successfully.
All devices finished execution.

References

11

First, the sample outputs all available platforms and picks one of them (line with [Selected]). Then it
reports, which scenario is running. In the example, multidevice binary runs with no command-line
parameters, so it executes according to the shared-context scenario by default.

Then sample reports each significant step of the OpenCL code execution and ends when all devices
finish working.

Note that the sample reports no performance measures.

When running the system-level scripts, several multidevice binaries run at the same time. To avoid
output mix and corruption, the output from each individual run forwards to a file. Output files have
names, formed by name of the running script, and device type and number, particularly:

• For the cpu+mic.system-level.sh script:
o cpu+mic.system-level.cpu.out -- for CPU device
o cpu+mic.system-level.acc.out -- for Intel Xeon Phi coprocessor device

• For the multimic.system-level.sh script:
o multimic.system-level.acc-I.out -- for I-th Intel Xeon Phi

device, where I in {0..number of Intel Xeon Phi coprocessor devices
minus one}

• For cpu+multimic.system-level.sh script:
o cpu+multimic.system-level.cpu.out -- for CPU device
o cpu+multimic.system-level.acc-I.out -- for I-th Intel Xeon Phi

coprocessor device

References
Intel SDK for OpenCL Applications – Optimization Guide

http://software.intel.com/sites/products/documentation/ioclsdk/2013XE/OG/index.htm

	Multi-Device Basic -
Sample User's Guide
	Contents
	Legal Information
	About Multi-Device Basic Sample
	Algorithm
	OpenCL* Implementation
	System-Level Scenario
	Multi-Context Scenario
	Shared-Context Scenario
	Choosing an Appropriate Scenario

	Understanding the OpenCL* Performance Characteristics
	Saturating Device Capabilities
	Work-group Size Considerations

	Project Structure
	APIs Used
	Controlling the Sample
	Understanding the Sample Output
	References

