

Bitonic Sorting
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 325262-003US

Bitonic Sorting

2

Contents
Contents .. 2
Legal Information .. 3
About Bitonic Sorting Sample .. 4
Motivation .. 4
Algorithm ... 4
OpenCL* Implementation ... 4
Understanding OpenCL Performance Characteristics ... 5
Reference (Native) Implementation .. 5
Controlling the Sample ... 5
References ... 6

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Bitonic Sorting

4

About Bitonic Sorting Sample
Bitonic Sorting sample illustrates implementing calculation kernels using OpenCL* C99 and
parallelizing kernels by running several work-groups in parallel.
This sample demonstrates how to sort arbitrary input array of integer values with OpenCL using Single
Instruction Multiple Data (SIMD) bitonic sorting networks. This implementation is very general, so it
permits you to add <key/value> sorting with relatively low effort.

Motivation
Sorting algorithms are among most widely used building blocks. Bitonic sorting algorithm
implemented in this sample is based on properties of bitonic sequence and principles of so-called
sorting networks. It enables efficient SIMD-style parallelism through OpenCL vector data types.

Algorithm
For an array of length 2N*4, this algorithm completes N stages of sorting. The first stage has one
pass. As a result, the kernel forms bitonic sequences of size four using SIMD sorting network inside
each item of the input array.
For each successive stage, the number of passes is incremented by one and the sequence size is
doubled by merging two neighboring items.
For general reference on bitonic sorting networks, see “Bitonic Sort” at http://www.iti.fh-
flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm. For reference on sorting networks
using SIMD data types, see “Efficient implementation of sorting on multi-core SIMD CPU architecture”
at
http://portal.acm.org/citation.cfm?id=1454159.1454171&coll=GUIDE&dl=GUIDE&CFID=105910684&
CFTOKEN=82233064.

OpenCL* Implementation

Code Highlights

Bitonic sort OpenCL* kernel of BitonicSort.cl file performs the specified stage of each pass. Every
input array item or item pair (depending on the pass number) corresponds to a unique global ID that
the kernel uses for their identification. The full sorting sequence consists of repetitive kernel calls
performed in ExecuteSortKernel() function of BitonicSort.cpp file.

Limitations

For the sake of simplicity, the current version of the sample requires input array of size of 4*2^N 32-
bit integer items, where N is a positive integer.

Understanding OpenCL Performance Characteristics

5

Understanding OpenCL Performance Characteristics

Benefits of Using Vector Data Types

This sample implements the bitonic sort algorithm using vector data types. Explicit usage of these
types, such as int4 or float4, enables the following optimizations:

• You can work with quads instead of single integers. This removes unnecessary branches,
saves memory bandwidth, and optimizes CPU cache usage.

• You can use sorting network inside a single vector item during the last pass on every stage.
This permits merging two last passes together to save an extra kernel invocation per stage,
thus decreasing execution overhead.

Beside the maximum possible 4x speedup brought by SIMD register usage, these optimizations bring
additional 25% speedup to the explicitly vectorized version. As a result, you get approximately 5x
speedup in total.

Work-Group Size Considerations

Valid work-group sizes on Intel platforms range from 1 to 8192 elements. The sample uses NULL
argument for local work group size to allow runtime to choose sub-optimal workgroup size by itself
depending on device.

Reference (Native) Implementation
Reference implementation is done in ExecuteSortReference() routine of BitonicSort.cpp file. This
is single-threaded code that performs exactly the same bitonic sort sequence as OpenCL code, but
uses pure scalar C nested loop.

Controlling the Sample
The sample executable is a console application. To set the sorting direction and input array size, use
command-line arguments. If the command line is empty, the sample uses default values.

The sample supports the following command-line parameters:

Option Description

-h, --help Show this help text and exit.

-p, --platform number-or-string Select platform, devices of which are used.

-t, --type all | cpu | gpu | acc |
default | <OpenCL constant for device
type>

Select the device by type on which the OpenCL
kernel is executed.

-d, --device number-or-string Select the device on which all stuff is executed.

-r, --reverse-sort Perform descending sort (default is ascending).

-s, --size <integer> Set input/output array size.

Bitonic Sorting

6

References
• H. W. Lang. Bitonic Sort at http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
• Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa Hagog, Yen-Kuang

Chen, Akram Baransi, Sanjeev Kumar, Pradeep Dubey: Efficient implementation of sorting on
multi-core SIMD CPU architecture. PVLDB 1(2): 1313-1324 (2008) at
http://portal.acm.org/citation.cfm?id=1454159.1454171&coll=GUIDE&dl=GUIDE&CFID=1059
10684&CFTOKEN=82233064

	Bitonic Sorting -
Sample User's Guide
	Contents
	Legal Information
	About Bitonic Sorting Sample
	Motivation
	Algorithm
	OpenCL* Implementation
	Code Highlights
	Limitations

	Understanding OpenCL Performance Characteristics
	Benefits of Using Vector Data Types
	Work-Group Size Considerations

	Reference (Native) Implementation
	Controlling the Sample
	References

