

High Dynamic Range Rendering
with God Rays Effect
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 325263-005US

High Dynamic Range Rendering with God Rays Effect

2

Contents
Contents .. 2
Legal Information .. 3
About the High Dynamic Range Rendering with God Rays Effect ... 4
Introduction ... 4
Motivation .. 4
Algorithm ... 5
OpenCL* Implementation ... 9
Understanding OpenCL Performance Characteristics ... 9
APIs Used .. 9
Reference (Native) Implementation ... 10
Controlling the Sample .. 10
References .. 10

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

High Dynamic Range Rendering with God Rays Effect

4

About the High Dynamic Range Rendering with God
Rays Effect
High Dynamic Range Rendering with God Rays Effect (God Rays) sample demonstrates how to use
high dynamic range (HDR) rendering with God Rays (crepuscular rays) effect in OpenCL*. This
implementation optimizes rendering passes by sharing intermediate data between pixels during pixel
processing, improves the method performance, and reduces data loads. The following figure illustrates
God Rays effect applied to an HDR image:

Introduction
Observing an object, you can sometimes also see small particles in the air, such as dust. These
particles cause light scattering in the atmosphere that makes sunlight visible. This effect is called God
Rays. In real-time rendering, you can usually simulate the light scattering by implementing low-
frequency effects in screen space.
To emulate the God Rays effect, this sample implements GPU Gems 3 algorithm. See Kenny Mitchell
GPU Gems 3, Volumetric Light Scattering as a Post-Process for additional information.

Motivation
A good-quality God Rays effect requires many samples along the ray as well as a significant number of
calculations and color buffer reads that are also required for smoothing and blurring post-processing.
This sample implementation minimizes color buffer accesses and uses data-level parallelism, whcih
results in performance gain and better result quality as compared to applications that use the same
post-processing effects optimized for traditional GPU architectures.

This sample demonstrates a CPU-optimized implementation of the God Rays effect, showing how to:
• Implement calculation kernels using OpenCL C99
• Parallelize the kernels by running several work-groups in parallel

Algorithm

5

• Organize data exchange between the host and the OpenCL device
• Store the final image on the hard drive

Algorithm
Original Algorithm

The original algorithm [1] consists of the following stages:

1. For each pixel (x,y), take a segment [x,y; X,Y], where (X,Y) is the position of the light source
radiating the God Rays.
2. Take N sample points (xi,yi) evenly distributed on the segment in the input image space, where
(x0,y0) = (x,y) and (xN,yN) = (X,Y).
3. For each sample point, take HDR values of the source image pixels and sum them up with the
weight and decay coefficients:

,
where: weight controls intensity of the God Rays effect, decayi dissipates the contribution along the
ray.
The derived sum is the God Rays effect value for pixel (x,y).

Height*Width*N is the number of algorithm iterations, where N is the number of samples along the
ray, Height and Width are the image height and width, in pixels. For smooth results, set the
maximum possible value for N. For a small number steps, the sample omits too many pixels in a
segment. As a result, the sample computes some neighboring pixels in the ray by different source
pixels, and the resulting pixels have different luminosity. The best variant is N = max(Height,
Width). Thus, the computational complexity of the algorithm is O(M3) where M = max(Height,
Width).

High Dynamic Range Rendering with God Rays Effect

6

Optimized Algorithm for CPUs

The optimized algorithm uses God Rays values calculated for pixels on the ray to compute God Rays
values for other pixels. Moving from the light source to the image edge along the ray, the optimized
implementation calculates the God Rays effect sample values for all affected pixels.

To compute the God Rays effect value for pixel (xi,yi), the method takes i sample points evenly
distributed on the segment [X,Y; xi,yi] in the input image space. For each sample point, the method
takes HDR values of the source image pixels and sums them up with the weighting and decay
coefficients.

The implementation uses the integer Brezenham’s line algorithm. See
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html and
http://www.xlinux.nist.gov/dads/HTML/bresenham.html. At each step, the algorithm takes a single
value of the input sample and modifies the accumulated sum.

Use the sum calculated for the pixel (xi-1,yi-1) to calculate the sum for the pixel (xi,yi) residing on the
ray [X,Y; xi,yi] immediately after the pixel (xi-1,yi-1).

Algorithm Statement

To calculate the God Rays effect values in all pixels of the God Rays mask, you only need to calculate
sample values along all the rays from the light source position to each boundary pixel of the frame.

Algorithm Proof

Algorithm

7

1. For each non-boundary pixel (x,y), take the boundary pixel (x’,y’), in which the distance from
the center to the ray a = [X,Y; x,y] is minimal. As per Brezenham’s line algorithm, this ray a =
[X,Y; x,y] intersects the edged pixel.
2. Draw the ray b = [X,Y; x’,y’] through the center of the pixel (x’,y’). As per the triangle
inequality, the distance from ray b to the center of the pixel (x,y) is not longer than the distance
from the source ray to the center of the edged pixel. Therefore, as per Brezenham’s line algorithm,
ray b cuts the pixel (x,y).

Hence, rays from the source point to all boundary pixels and cover all pixels of the image.

The number of algorithm iterations is 2*(Height+Width)*M, where Height and Width are the image
height and width, in pixels, and M is the maximum possible ray length: M = max (Height, Width).
The computational complexity of the algorithm is O(M2), which is significantly less than in the original
algorithm.

Features of the Optimized Algorithm

The Decay value determines the multiplier before every summand in the sum. However, the step
length depends on the angle between the ray and sample edges. For example, the source pixel (X,Y)
contribution is the same for the pixel (x,y) and for the pixel (x’,y’), as shown in the figure below:

As a result, the God Rays effect is square shaped. To correct this artifact, adjust the Decay value to
the algorithm step length:
1. Restore Decay as e-βs, where s is the distance between pixels and β is the extinction constant
composed of light absorption and out-scattering properties.
2. Compute segment length as s divided by the step count.

The original algorithm contains a fixed number of summands in a sum, so that convergence of a series
does not affect the result. The result only changes when the step count N is changed. For example,
the God Rays brightness increases when N is incremented.

High Dynamic Range Rendering with God Rays Effect

8

In the optimized algorithm, the number of summands varies from one in the God Rays source position
to the maximum ray length. If Decay is less than one, the series tends to the value 1/(1-Decay),
while the sum grows and then oscillates around its upper bound. This results in shading in the light
source area. To correct this artifact, adjust the convergence of series to one by multiplying every
summand by (1-Decay), except the last one. The last summand enables the sum to grow to the
maximum value at the first step.

If the light source is beyond the image edges, you need to cut off the invisible parts of rays correctly.
If you replace a cut-off ray with the ray starting in the center of the pixel crossed by the cut-off ray,
the statement that all image pixels are filled in is not true, and missing pixels can appear.

Enhancing the Optimized Algorithm

You can improve the algorithm by parallelizing the workflow and calculating every ray in a separate
thread. However, more than one ray can cross one pixel. This means that you can compute more than
one value for a pixel. Practically, choosing any of the values is not a critical error, although the error
can accumulate if you choose the value for all rays. A workaround of computing all values leads to
multiple writes in the same memory area. To avoid this artifact, while calculating coordinates of the
current ray, calculate the coordinates of corresponded steps of the subsequent ray in one thread. Use
this additional ray to find pixels to be omitted. If the current pixel coordinates of these two rays
match, the current ray pixel is omitted in the original ray and is filled by the subsequent ray in
another thread. The additional ray (shadow ray) "shades" some pixels in the original ray. Therefore,
the shadow ray is the ray to the border pixel next to the destination pixel of the original ray. The
improved algorithm uses the anticlockwise direction, as shown in the following figure:

In explicit version, calculating several rays simultaneously is most efficient due to explicit usage of
CPU SIMD units. For those original rays, the sample needs to calculate shadow rays at the same time.
Starting from the second ray in a bunch, each original ray is a shadow ray for the previous one.
Actually, the sample needs only the shadow ray for the last 15 rays. The implementation calculates
coordinates of 16 rays in a row instead of 30 rays. If you cut off certain rays by image edges, you
need to precisely calculate initial and final algorithm iterations.

Addition to the Optimized Algorithm

Use the filtering by depth buffer values to avoid bogus God Rays from highlighted parts of the
foreground scene. If pixels are placed closer to the image plane, they cannot produce God Rays.

Please refer to the improved God Rays algorithm in the EvaluateRay function implementation in
GodRays.cl.

OpenCL* Implementation

9

OpenCL* Implementation
This sample applies the following stages of the modified God Rays Pass simulation algorithm to an
HDR image:

• Application of God Rays to highlights in the input frame
• Storing the result of the applied algorithm in the intermediate buffer called the God Rays mask

The current sample implementation rearranges the algorithm kernel to optimize it for the underlying
CPU.

Code Highlights

The GodRays OpenCL kernel of the GodRays.cl file performs the God Rays effect. Every input bunch of
rays has a unique global ID that the kernel uses for their identification. They are processed by OpenCL
kernel function EvaluateRay called from GodRays. The God Rays effect sequence consists of OpenCL
kernel call performed in ExecuteGodRaysKernel() function of GodRays.cpp file.

Work-group Size Considerations

You can specify any work-group size for this kernel. However, the kernel achieves peak performance
for 1600x1200 two-dimensional HDR image with work-group size ranging from 1 to 64 ray bunches in
the work-group.

Understanding OpenCL Performance Characteristics

Benefits of Using Vector Data Types

This sample implements the God Rays effect algorithm using vector data types. Explicit usage of
vector types, such as float4, enables the following CPU optimizations:

• You can work with quadruples instead of single floats. This removes unnecessary branches,
saves memory bandwidth, and optimizes CPU cache usage.

• You can use God Rays effect for a single four-color channels pixel item. Consequently, you can
perform God Rays effect for four-color channels of an image pixel (RGBA pixel) and for four
monochrome pixels simultaneously. The current version uses vector float4 data types. As a
result, you can achieve ~3x speedup for the current version of kernel as compared to the
scalar version of the kernel.

APIs Used
This sample uses the following APIs:

• clKreateKernel
• clCreateContextFromType
• clGetContextInfo
• clCreateCommandQueue
• clCreateProgramWithSource
• clBuildProgram
• clCreateBuffer
• clSetKernelArg
• clEnqueueNDRangeKernel

High Dynamic Range Rendering with God Rays Effect

10

• clEnqueueReadBuffer
• clReleaseMemObject
• clReleaseKernel
• clReleaseProgram
• clReleaseCommandQueue
• clReleaseContext

Reference (Native) Implementation
Reference implementation is done in ExecuteGodRaysReference() routine of GodRays.cpp file. This is
single-threaded code that performs exactly the same God Rays effect sequence as the OpenCL
implementation, but using conventional nested loop in C with SSE optimizations. Native kernel
EvaluateRay() that processes ray bunches is located in GodRaysNative.cpp.

Controlling the Sample
The sample executable is a console application. Use the following command-line arguments for sample
control:

Option Description

-h, --help Show this help text and exit.

-p, --platform number-or-string Selects the platform, the devices of which are used.

-t, --type cpu | gpu Selects the device by type on which the OpenCL
kernel is executed.

-d, --device number-or-string Selects the device on which all stuff is executed.

--errors <integer> Number of errors to print.

References
• Kenny Mitchell. GPU Gems 3, Volumetric Light Scattering as a Post-Process.
• http://www.openexr.com
• http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
• http://www.xlinux.nist.gov/dads/HTML/bresenham.html

	High Dynamic Range Rendering with God Rays Effect - Sample User's Guide
	Contents
	Legal Information
	About the High Dynamic Range Rendering with God Rays Effect
	Introduction
	Motivation
	Algorithm
	Original Algorithm
	Optimized Algorithm for CPUs
	Algorithm Statement
	Algorithm Proof
	Features of the Optimized Algorithm
	Enhancing the Optimized Algorithm
	Addition to the Optimized Algorithm

	OpenCL* Implementation
	Code Highlights
	Work-group Size Considerations

	Understanding OpenCL Performance Characteristics
	Benefits of Using Vector Data Types

	APIs Used
	Reference (Native) Implementation
	Controlling the Sample
	References

