

Median Filter
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 325264-005US

Median Filter

2

Contents
Contents .. 2
Legal Information .. 3
About Median Filter .. 4
Introduction ... 4
Motivation .. 4
Algorithm ... 5
OpenCL* Implementation ... 5
Understanding OpenCL Performance Characteristics ... 6
APIs Used .. 6
Reference (Native) Implementation .. 6
Controlling the Sample ... 6
References ... 7

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Median Filter

4

About Median Filter
Median Filter sample demonstrates how to use median filter in OpenCL*. This implementation
optimizes filtration process using implicit Single Instruction Multiple Data (SIMD) code vectorization
performed by build-in OpenCL compiler vectorizer. Data-level parallelism of the underlying algorithm
results in additional performance gain. The sample improves the performance of the method and
reduces data loads. The following figure illustrates median filtering.

Refer to the article at http://tracer.lcc.uma.es/problems/mfp/mfp.html for more information.

Introduction

Median filter is a non-linear filter that removes noise from an image or a signal. One of the
advantages of this method is that it can preserve sharp edges while removing noise. To remove noise,
the median filter algorithm processes element patterns of the input image or signal. For each pattern
of neighboring elements called window or support, the algorithm finds the median value that is further
used as filtering result for the central element of the window.

Motivation

In general, median filter effect requires a significant number of calculations and color buffer accesses.
This sample implementation minimizes color buffer accesses, removes synchronization points, and
uses data-level parallelism, which results in significant performance gain and better result quality as
compared to applications that use the same filtration technique optimized for traditional GPU
architectures. For an example, please see the algorithm implemented for traditional GPUs described in
the article at
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/OpenCL/website/samples.html.

This sample demonstrates a CPU-optimized implementation of 2D image median filtration, showing
how to:

• Implement calculation kernels using OpenCL C99
• Parallelize the kernels by running several work-groups in parallel
• Organize host-device data exchange with final image storage on the hard drive

Algorithm

5

Algorithm

The median filter processes each pixel in the image and compares it to its neighbors to determine
whether this pixel can represent the window entries. It replaces the central pixel value with the
median of the pixel values in the window.

To define the median of a window, sort the entries of the window numerically. For windows with an
odd number of entries, the median is the value of the middle entry. For windows with an even
number of entries, several options are possible.

The following figure illustrates a sample calculation of the median value for a pixel neighborhood:

This example illustrates a 3×3 square window. As the central pixel value of 150 does not represent
the surrounding values well, it is replaced with the median value of 124. Please note that larger
windows produce greater smoothing.

The advantage of the median filtering is that unrepresentative pixels in a window cannot have
significant effect on the median value. Since the median value must be an actual value of one of the
window entries, the median filter does not create new unrealistic pixel values when the filter processes
an edge region. Thus, median filtering permits to preserve sharp edges. For details, see artile at
http://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm.

OpenCL* Implementation

This sample applies the following algorithm stages to a 2D image:

• 3x3 pixels patch load
• partial bitonic sorting
• result storage in 4-channel 32-bit integer format.

In this implementation, MedianFilterBitonic OpenCL* kernel of MedianFilter.cl file uses partial
bitonic sorting to perform median filtering. Every input array pixel corresponds to a unique global ID
that the kernel uses for their identification. The full median filtering sequence consists of OpenCL
kernel call performed in ExecuteMedianFilterKernel() function of MedianFilter.cpp file.

This algorithm implementation consists of the Pixels Load and Partial Sort parts.

Pixels Load

This sample uses 32-bit red, green, blue, and alpha (RGBA) pixels, with 8-bit unsigned char values
representing pixel individual color channel. For further processing, 3x3=9 pixels are preloaded into
temporary storage.

Partial Sort

This sample uses an algorithm that operates on 3x3 box-shaped support and performs partial sort to
find the fifth sorted value out of 3x3 = 9 values. Partial sort performs 19 MIN and 20 MAX operations

Median Filter

6

to find median value for 3x3 support for each color channel. The algorithm operates with 32-bit
unsigned integer values. For details on this algorithm, see article at http://www.iti.fh-
flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm and Frederick M. Waltz, Ralf Hack, and
Bruce G. Batchelor. “Fast, efficient algorithms for 3x3 ranked filters using finite-state machines”.

Understanding OpenCL Performance Characteristics

Benefits of Implicit Compiler Vectorization

The kernel structure enables implicit vectorization performed by the Intel® OpenCL Offline Compiler
when work-group size is multiple of four. Consequently, you can achieve ~2x speedup for the current
versions of kernel and vectorizer.

Work-group Size Considerations

The sample uses NULL argument for local work group size to allow runtime to choose sub-optimal workgroup size
by itself depending on device.

APIs Used
This sample uses the following APIs:

• clKreateKernel
• clCreateContextFromType
• clGetContextInfo
• clCreateCommandQueue
• clCreateProgramWithSource
• clBuildProgram
• clCreateBuffer
• clSetKernelArg
• clEnqueueNDRangeKernel
• clEnqueueReadBuffer
• clReleaseMemObject
• clReleaseKernel
• clReleaseProgram
• clReleaseCommandQueue
• clReleaseContext

Reference (Native) Implementation
Reference implementation is done in ExecuteMedianFilterReference() routine of MedianFilter.cpp
file. This is single-threaded code that performs exactly the same median filtering sequence as OpenCL
implementation, but uses conventional C nested loop.

Controlling the Sample
The sample executable is a console application. You can set the input array size and choose device
using command-line arguments:

Option Description

-h, --help Show this help text and exit.

-p, --platform number-or-string Select platform, devices of which are used.

-t, --type all | cpu | gpu | acc |
default | <OpenCL constant for device
type>

Select the device by type on which the OpenCL
kernel is executed.

References

7

-d, --device number-or-string Select the device on which all stuff is executed.

--width <integer> Width of processed image.

--height <integer> Height of processed image.

--errors <integer> Number of errors to print.

If you do not specify the array size, the sample uses the default value of 8192x8192=67108864
items.

References
• http://tracer.lcc.uma.es/problems/mfp/mfp.html
• http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/OpenCL/website/sampl

es.html
• http://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm
• http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
• Frederick M. Waltz, Ralf Hack, and Bruce G. Batchelor. Fast, efficient algorithms for 3x3

ranked filters using finite-state machines.
• http://www.engin.umd.umich.edu/~jwvm/ece581/18_RankedF.pdf

	Median Filter -
Sample User's Guide
	Contents
	Legal Information
	About Median Filter
	Introduction
	Motivation
	Algorithm
	OpenCL* Implementation
	Pixels Load
	Partial Sort

	Understanding OpenCL Performance Characteristics
	Benefits of Implicit Compiler Vectorization
	Work-group Size Considerations

	APIs Used
	Reference (Native) Implementation
	Controlling the Sample
	References

