

OpenCL* Optimizations Tutorial
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 325672-003US

OpenCL* Optimizations Tutorial

2

Contents
Contents .. 2
Legal Information .. 3
About Simple Optimizations Sample ... 4
Introduction ... 4
Performance Debugging Intro ... 4
Getting Credible Performance Numbers .. 5
Optimization Tips .. 6
Controlling the Sample ... 7
What’s Next? .. 8
APIs Used .. 9
Reference (Native) Implementation .. 9
References ... 9

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

OpenCL* Optimizations Tutorial

4

About Simple Optimizations Sample
SimpleOptimizations sample demonstrates simple ways of measuring the performance of OpenCL*
kernels in an application. It discusses the basics of profiling and important caveats like having
dedicated “warming” run. It also demonstrates several simple optimizations, Some of optimizations
are rather CPU-specific (like mapping buffers), while others are more general (like using relaxed-
math).

Introduction
Many ways to measure the performance of OpenCL kernels exist. For example there are host-side
timing mechanisms like QueryPerformanceCounter or rdtsc. Still those ”wall-clock” measurements
do not provide any insights into the costs breakdown, for example, whether actual kernel execution
was fast but delayed by driver or run-time. For this purpose the sample shows how to employ the
OpenCL profiling events. It also introduces several simple optimizations along with explanations.

Performance Debugging Intro
Most developers are probably already familiar with QueryPerformanceCounter/
QueryPerformanceFrequency API (otherwise please refer to Measure Code Sections Using The
Enhanced Timer article on ISN). You also might want to use the in-line assembly combination of
RDTSC/CPUID, or the __rdtsc() intrinsic, which is also available in 64-bit.

Below is an example of host-side timing routine around clEnqueueNDRangeKernel (error handling is
omitted for simplicity):

LARGE_INTEGER g_PerfFrequency;
LARGE_INTEGER g_PerformanceCountNDRangeStart;
LARGE_INTEGER g_PerformanceCountNDRangeStop;
QueryPerformanceFrequency(&g_PerfFrequency);

QueryPerformanceCounter(&g_PerformanceCountNDRangeStart);
 clEnqueueNDRangeKernel(g_cmd_queue, …);
 clFinish(g_cmd_queue);// to make sure the kernel completed
QueryPerformanceCounter(&g_PerformanceCountNDRangeStop);
float seconds = (float)(g_PerformanceCountReadStop.QuadPart -
g_PerformanceCountReadStart.QuadPart)/(float)g_PerfFrequency.QuadPart);

Couple of things to pay attention to:

• The clEnqueueNDRangeKernel function puts your kernel to the queue and immediately
returns

• Thus, to measure the kernel execution time, you need to explicitly sync on kernel completion via
calling to the clFinish or clWaitForEvents functions.

Wrapping the Right Set of Operations
When using QueryPerformanceCounter/QueryPerformanceFrequency for understanding the
performance of your kernel please ensure you wrapped the proper set of operations.

For example, avoid wrapping various printf calls, file Input/Output operations and other potentially
costly and/or serializing routine.

Profiling Operations Using Profiling Events

Next piece of code measures the kernel execution via profiling events, again error handling is omitted:

g_cmd_queue = clCreateCommandQueue(…CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel(g_cmd_queue,…, &perf_event);

http://software.intel.com/en-us/articles/measure-code-sections-using-the-enhanced-timer/
http://software.intel.com/en-us/articles/measure-code-sections-using-the-enhanced-timer/

Getting Credible Performance Numbers

5

clWaitForEvents(1, &perf_event);
cl_ulong start = 0, end = 0;

clGetEventProfilingInfo(perf_event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong),
&start, NULL);
clGetEventProfilingInfo(perf_event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong),
&end, NULL);

//END-START gives you hints on kind of “pure HW execution time”
//the resolution of the events is 1e-06
g_NDRangePureExecTime = (cl_double)(end - start)*(cl_double)(1e-06);

Important caveats:

• Set the CL_QUEUE_PROFILING_ENABLE property to enable the queue for profiling in the creation
time

• You need to explicitly sync via clWaitForEvents. The reason is that device time counters (for
the command being profiled) are associated with the specified event.

This way you can profile operations on both Memory Objects and Kernels. Refer to section 5.12 of the
OpenCL* 1.1 standard for the detailed description of profiling events. Host-side wall-clock time with
QueryPerformanceCounter/ QueryPerformanceFrequency API might result in longer execution times
than precise measurements with profiling events. While for CPU the difference is typically negligible,
for GPUs it can be substantial especially for lightweight kernels, for which various driver overheads
might even dominate in execution time.

Comparing OpenCL Kernel Performance with Performance of Native Code

When comparing the OpenCL kernel performance with native code (e.g. C or SSE), make sure that
you wrapped exactly the same set of operations. For example:

• Do not include program build time in the kernel execution time
• This build step can be amortized well via program pre-compilation (refer to

clCreateProgramFromBinary)
• Track data transfers costs separately
• Also prefer data-mapping (example follows in this sample description); this is closer to the

way a data is passed in native code (by pointers).

Also ensure the working set is identical for native/OpenCL code. Similarly, for correct performance
comparison, access patterns should be the same (rows vs. columns, for example).

Getting Credible Performance Numbers

Run Kernel Several Times or at Least Have “Warming” Run

In the world of computing, performance conclusions are typically deduced from sufficiently large
number of invocations of the same routine. Since the first iteration is almost exclusively slower than
later iterations, minimum (or average, geomean, etc) value for the execution time is usually used for
final projections. A simple alternative to having loop that calls your kernel zillion times is having single
“warming” run as explained in this section.

“Warming” run is especially helpful for small/lightweight kernels for which one-time overheads (like
some “lazy” object creations, delayed initializations and other costs potentially incurred by the OpenCL
run-time) might really cost something. “Warming” run also brings data in the cache. Thus for
bandwidth-limited kernels operating on the data that doesn’t fit last-level cache, the “warming” run is
unlikely to help.

Remember that profiling event is associated with single clEnqueueNDRangeKernel call. So if you call
clEnqueueNDRangeKernel many times make sure to grab counters after each iteration:

OpenCL* Optimizations Tutorial

6

cl_ulong start = 0, end = 0;
cl_ulong total_execution_time = 0;
for(int i=0;i<times;i++)
{
clEnqueueNDRangeKernel(g_cmd_queue,…, &perf_event);
clWaitForEvents(1, &perf_event);
clGetEventProfilingInfo(…&start);
clGetEventProfilingInfo(…&end);
total_execution_time += (end-start);
}
//averaging, etc
…
While with QueryPerformanceCounter you can measure the whole sequence at once, though on the
host-side:

//first time-step
QueryPerformanceCounter(&g_PerformanceCountNDRangeStart);
for(int i=0;i<times;i++)
{
//assuming in-order queue, no need for sync
clEnqueueNDRangeKernel(g_cmd_queue…);
}
//waiting for the whole bunch of kernel calls to complete
clFinish(g_cmd_queue);
//last time-step
QueryPerformanceCounter(&g_PerformanceCountNDRangeStop);
Similarly you can also use clEnqueueMarker to measure the whole sequence on the device-side.

Kernels Should Run Sufficient Time
If your kernel is just a small number of instructions executed over small data set, then even infinitely-
precise measurements mechanism is very unlikely to yield a reliable result. This is due to OS, cache,
threading, etc influence. Having kernel run for at least 20 milliseconds is strongly recommended.

Potential Rule-of-Thumb
The bottom-line is that you need to build your performance conclusions on reproducible data. If
“warming” run doesn’t help and/or execution time still varies, you can try to run large number of
iterations and then average the results (for time values that range too much, geomean is preferable).

Remember that kernels that are too lightweight wouldn’t give you reliable data, so making them
artificially heavier could give you important insights into the hotspots. Examples are adding loop into
the kernel, or replicating its heavy pieces.

Optimization Tips
Below are simple optimizations that the sample demonstrates via respective command-line switches
(described in the “Controlling the Sample” section).

Using Relaxed Math
One specific optimization is careful trading-off math precision and performance, refer to the “Trading
off Accuracy and Speed of Calculations” chapter of the Performance Guide [1].

Use native_* and half_* variants for math built-ins where appropriately. Those can be really faster
than higher precision variants. Similarly -cl-fast-relaxed-math compiler option enables faster
versions for the whole file:

clBuildProgram(g_program, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);

Still to avoid any artifacts it is always recommended to test the output for any intolerable numerical
inaccuracies (for example, by comparing to a “gold” reference implementation or output). Also
comparing floating-point numbers should be performed with proper floating point epsilons.

Controlling the Sample

7

Mapping Memory Objects
One specific optimization that is especially helpful for CPU OpenCL is mapping memory objects
(buffers or images) instead of copying them into host memory. It is explained in section “Mapping
Buffer Objects (USE_HOST_PTR)” of the product optimization guide.

To take advantage of this technique, memory object should be properly aligned. One way to achieve
this is to allow run-time to do allocation via CL_MEM_ALLOC_HOST_PTR. To initialize the data with some
values you need to map data first (as described below).

If your application uses a specific memory management algorithm, or if you want more control over
memory allocation, the proper way would be creating memory objects with CL_MEM_USE_HOST_PTR flag
that places object in the specified memory:
//min alignment query returns value in bits
cl_uint min_align = 0; clGetDeviceInfo(g_dev,
CL_DEVICE_MEM_BASE_ADDR_ALIGN…,&min_align,…);
//here alignment should be in bytes
cl_float* g_pfInput = (cl_float*)_aligned_malloc(data_size, min_align/8);

const cl_mem_flags flags = CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY;
//this code places the buffer in the mem-region pointed by g_pfInput cl_mem g_buf
= clCreateBuffer(g_context, flags, data_size, g_pfInput,…);

Mapping data is easy:
void* ptr = clEnqueueMapBuffer(g_queue, g_buf,…CL_MAP_READ,…data_size,…);

Make sure to unmap data to return ownership to OpenCL:
clEnqueueUnmapMemObject(g_queue, g_buf, ptr, 0, NULL, NULL);

Letting OpenCL Run-Time to Determine Optimal Size for Work-Groups
Important considerations for work-group size are explained in chapters “Work-Group Size
Considerations” of the product optimization guide for both CPU and Intel® HD Graphics devices. The
idea is to let the OpenCL implementation to automatically determine the optimal work-group size
(sometimes referred as “local work size”) for a given kernel. Simply pass NULL for a pointer to the
local work size when calling clEnqueueNDRangeKernel:

//passing NULL for the pointer to the local work size
clEnqueueNDRangeKernel(g_queue, g_kernel, 1, NULL, globalWorkSize, NULL, 0, NULL,
&perf_event);
You can play with various work-group sizes or leave the decision to the run-time (refer to the
“Controlling the Sample” section below).

Loading/Storing data in Greatest Chunks
As explained in chapter “«Gather4» Rule of Thumb” of the product optimization guide for Intel HD
Graphics device it is particularly important to load/store data in the largest chunks (for example, using
float4/int4). For CPU this is less important, though processing data by vectors is often beneficial.

In addition to the regular floating-point based version, the sample is also equipped with float4-based
version, so you can compare performance of both versions on any device.

For float4-based version of kernel and CPU device, you may experiment with turning vectorizer off
(uncomment vec_type_hint).

Controlling the Sample
The sample executable is a console application. It supports following optional command-line
parameters and switches:

OpenCL* Optimizations Tutorial

8

Option Description

-h, --help Show this help text and exit.

-p, --platform number-or-string Selects the platform, the devices of which are used.

-t, --type all | cpu | gpu | acc |
default | <OpenCL constant for device
type>

Selects the device by type on which the OpenCL
kernel is executed.

-d, --device number-or-string Selects the device on which all stuff is executed.

-s, --task-size <integer> Number of processed floats.

-g, --work-group-size <integer> OpenCL work group size. Set to 0 for work group
size auto selection.

-r, --relaxed-math Enable -cl-fast-relaxed-math option for
comilation.

-u, --use-host-ptr Host pointers/buffer-mapping enabled.

-f, --ocl-profiling Enable OpenCL event profiling.

-w, --warming Additional "warming" kernel run enabled (useful for
small task sizes).

-v, --vector-kernel Enable "gather4" kernel version to process 4 floats
by one work-item.

-i, --internal-iterations <integer> Number of iterations in kernel.

--errors <integer> Number of errors to print.

What’s Next?
Using tools
Once you get the stable/reproducible performance numbers, the next question would be about what to
optimize first.

Unless you suspect some specific parts of the kernel (for example, heavy math built-ins), we strongly
recommend using VTune to determine hot-spots as described in the user’s guide.

Remember that tuning the kernel itself might in turn require tweaking the run-time parameters as
well, e.g. increasing size work-group once you kernel getting faster (larger work-groups would help to
amortize run-time overheads). That is why the best practice is letting the run-time to decide on
optimal local size as described above.

You can also check the overall CPU utilization and job distribution with Intel® Graphics Performance
Analyzers.

Use Offline Compiler to inspect resulting assembly as described in the user’s guide. Check whether
your kernel is vectorized as you expect it to be, especially if you’re trying to compare to your hand-
tuned SSE.

Optimizing Kernels Pipeline
If you need to optimize kernels pipeline first measure kernels separately to find the most-time
consuming one, using either QueryPerformanceCounter or profiling events as described in this
document.

In the final pipeline version though, it is recommended to avoid calling clFinish or clWaitForEvents
frequently (e.g. after each kernel invocation). Rather prefer to submit the whole sequence (to the in-

APIs Used

9

order queue) and issue clFinish (or wait on the event) once. This would reduce host-device round-
trips.

APIs Used
This sample uses the following APIs:

• clKreateKernel
• clCreateContextFromType
• clGetContextInfo
• clCreateCommandQueue
• clCreateProgramWithSource
• clBuildProgram
• clCreateBuffer
• clSetKernelArg
• clEnqueueNDRangeKernel
• clGetEventProfilingInfo
• clEnqueueReadBuffer
• clReleaseMemObject
• clReleaseKernel
• clReleaseProgram
• clReleaseCommandQueue
• clReleaseContext

Reference (Native) Implementation
Reference implementation is done in ExecuteNative() routine of SimpleOptimizations.cpp file. This
is single-threaded code that performs exactly the same sequence as the OpenCL implementation.

References
• Intel SDK for OpenCL Applications – Optimization Guide
• OpenCL Specification Version 1.2 http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
• Intel SDK for OpenCL Applications – User’s Guide

http://software.intel.com/sites/products/documentation/ioclsdk/2013/OG/index.htm
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://software.intel.com/sites/products/documentation/ioclsdk/2013/UG/index.htm

	OpenCL* Optimizations Tutorial
	Contents
	Legal Information
	About Simple Optimizations Sample
	Introduction
	Performance Debugging Intro
	Wrapping the Right Set of Operations
	Profiling Operations Using Profiling Events
	Comparing OpenCL Kernel Performance with Performance of Native Code

	Getting Credible Performance Numbers
	Run Kernel Several Times or at Least Have “Warming” Run
	Kernels Should Run Sufficient Time
	Potential Rule-of-Thumb

	Optimization Tips
	Using Relaxed Math
	Mapping Memory Objects
	Letting OpenCL Run-Time to Determine Optimal Size for Work-Groups
	Loading/Storing data in Greatest Chunks

	Controlling the Sample
	What’s Next?
	Using tools
	Optimizing Kernels Pipeline

	APIs Used
	Reference (Native) Implementation
	References

