
 
 

High Dynamic Range Tone Mapping 
Post Processing Effect 
Sample User's Guide 
 

Intel® SDK for OpenCL* Applications - Samples 

Document Number: 325396-005US



High Dynamic Range Tone Mapping Post Processing Effect 

2 
 

Contents 
Contents ...................................................................................................................... 2 
Legal Information .......................................................................................................... 3 
About Tone Mapping Sample ........................................................................................... 4 
Introduction ................................................................................................................. 5 
Motivation .................................................................................................................... 5 
Algorithm ..................................................................................................................... 5 
OpenCL* Implementation ............................................................................................... 6 
Understanding OpenCL Performance Characteristics ........................................................... 6 
Limitations ................................................................................................................... 6 
Future Work and Enhancements ...................................................................................... 6 
Project Structure ........................................................................................................... 7 
APIs Used .................................................................................................................... 7 
Reference (Native) Implementation .................................................................................. 7 
Controlling the Sample ................................................................................................... 7 
References ................................................................................................................... 8 



Legal Information 

3 

Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH 
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, 
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS 
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, 
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY 
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS 
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not 
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel 
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities 
arising from future changes to them. The information here is subject to change without notice. Do not finalize a 
design with this information. 

The products described in this document may contain design defects or errors known as errata which may cause 
the product to deviate from published specifications. Current characterized errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your 
product order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, 
may be obtained by calling 1-800-548-4725, or go to: 

http://www.intel.com/design/literature.htm. 

Intel processor numbers are not a measure of performance.  Processor numbers differentiate features within each 
processor family, not across different processor families.  Go to: 
http://www.intel.com/products/processor_number/. 

Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the 
results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. 

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. 

Copyright © 2010-2013 Intel Corporation. All rights reserved. 

 

Optimization Notice 

 Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 
Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Notice revision #20110804 
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About Tone Mapping Sample 
Tone Mapping sample demonstrates how to use high dynamic range (HDR) rendering with tone 
mapping effect in OpenCL*. The following figures illustrates straightforward linear tone mapping and 
advanced tree-component curve based tone-mapping technique proposed by OpenEXR* community 
applied to HDR image. 
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Introduction 
The real world scenes we experience in our daily life often have a very wide range of luminance 
values. Human visual system is capable of perceiving scenes over five orders of magnitude and can 
gradually adapt to scenes with dynamic ranges of over nine orders of magnitude. With the rapid 
advancement of digital imaging technology, there is increasing interest in taking digital photographs 
that capture the full dynamic range of the scene of view. Although it is conceivable that future digital 
cameras would be able to capture high dynamic range (HDR) photos by the click of a button, current 
technology often only enables part of the real world high dynamic scene visible in any one single shot. 

The main aim of tone-mapping procedure is mapping HDR image to low dynamic range (LDR) device 
(computer monitor) perceiving as much details as possible. 

For high dynamic range mapping, there are at least two requirements. Firstly, it has to ensure that all 
features, from the darkest to the brightest, to be visible simultaneously. Secondly, it has to preserve 
the original scene’s visual contrast to produce a visual sensation matching that of the original scene. 
In a sense, these two are conflicting requirements. With a reduction in dynamic range, the available 
values for displaying the scene are limited. If one makes all features visible, we may lose contrast. On 
the other hand, if one makes the display well contrast, then some features may not be visible. A good 
tone reproduction method has to strike a good balance between these two conflicting requirements 
under the constraint of limited available display dynamic range. 

This sample implements HDR image display algorithm proposed by OpenEXR* to implement tone 
mapping effect.  

Motivation 
An implemented tone mapping effect requires many complex math calculations performed over 
floating point HDR pixel values. As well the algorithm contains 2 separate branches depending on pixel 
value. This sample implementation uses data level parallelism on pixel level (SIMD instructions over 
RGBA pixel channels) and image level (processing image pixels or image tiles in separate tasks in 
parallel).  

This sample demonstrates a CPU-optimized implementation of the tone mapping effect, showing how 
to: 

• Implement calculation kernels using OpenCL C99 
• Parallelize the kernels by running several work-groups in parallel 
• Organize data exchange between the host and the OpenCL device 
• Store the final image on the hard drive 

Algorithm 
The original algorithm consists of the following stages: 

1. Compensate for fogging by subtracting defog from the raw pixel values.  
2. Multiply the defogged pixel values by 2(exposure + 2.47393).  
3. Values, which are now 1.0, are called "middle gray." If defog and exposure are both set to 0.0, 

then middle gray corresponds to a raw pixel value of 0.18. In step 6, middle gray values will 
be mapped to intensity 3.5 f-stops below the display's maximum intensity.  

4. Apply a knee function. The knee function has two parameters, kneeLow and kneeHigh. Pixel 
values below 2kneeLow are not changed by the knee function. Pixel values above kneeLow are 
lowered according to a logarithmic curve, such that the value 2kneeHigh is mapped to 23.5 (in 
step 6, this value will be mapped to the display's maximum intensity).  

5. Gamma-correct the pixel values, assuming that the screen's gamma is 2.2.  
6. Scale the values such that middle gray pixels are mapped to 84.66 (or 3.5 f-stops below the 

display's maximum intensity).  
7. Clamp the values to [0, 255].  
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Following image illustrates underlying HDR->LDR 3 component transfer function: 

 

OpenCL* Implementation 
This sample applies above described stages of the tone mapping algorithm to an HDR image. 

Code Highlights 

The ToneMapping OpenCL* kernel of the ToneMapping.cl file performs the tone mapping effect. Every 
input image raw has a unique global ID that the kernel uses for their identification. The tone mapping 
effect sequence consists of OpenCL kernel call performed in ExecuteToneMappingKernel() function of 
ToneMapping.cpp file. 

Work-group Size Considerations 

The sample uses NULL argument for local work group size to allow runtime to choose sub-optimal 
workgroup size by itself depending on device. 

Understanding OpenCL Performance Characteristics 

Benefits of Using Vector Data Types 

This sample implements the tone mapping effect algorithm using vector data types. Explicit usage of 
vector types, such as float4, enables the following CPU optimizations: 

• You can work with quadruples instead of single floats. This removes unnecessary branches, 
saves memory bandwidth, and optimizes CPU cache usage. 

• You can use tone mapping effect for a single four-color channels pixel item. Consequently, you 
can perform tone mapping effect for four-color channels of an image pixel (RGBA pixel) and 
for four monochrome pixels simultaneously. The current version uses vector float4 data 
types. 

Limitations 
The current implementation uses global tone mapping operator which don’t cares about local lighting 
conditions for various part of the input image. To enhance output result more complex operator with 
neighboring pixels brightness analysis need to be implemented. 

Future Work and Enhancements 
The sample performs all calculations in floating-point values. Each image pixel consists of four 32-bit 
floating-point values representing red, green, blue, and alpha (RGBA) image channels. You can 
improve this sample performance by introducing the following:  



Project Structure 

7 

• More compact data representation (half float). 
• Auto-adjusting or tone-mapping parameters for the whole image/frame (auto-exposure). 
• Replacing a global tone mapping operator with a local tone mapping operator to adjust its 

parameters according to the local lighting conditions on the image/frame. 

Project Structure 
This sample project has the following structure: 

• ToneMapping.cpp - the host code, with OpenCL initialization and processing functions 
• ToneMapping.cl – source code of the OpenCL tone mapping kernel 
• ToneMappingNative.cpp – source code of the native tone mapping kernel implementation 

(SIMD)  
• ToneMapping.vcproj – Microsoft* Visual Studio* 2008 project file. 
• ToneMapping.vcxproj – Microsoft* Visual Studio* 2010 project file. 

 

APIs Used 
This sample uses the following APIs: 

• clKreateKernel 
• clCreateContextFromType 
• clGetContextInfo 
• clCreateCommandQueue 
• clCreateProgramWithSource 
• clBuildProgram 
• clCreateBuffer 
• clSetKernelArg 
• clEnqueueNDRangeKernel 
• clEnqueueReadBuffer 
• clReleaseMemObject 
• clReleaseKernel 
• clReleaseProgram 
• clReleaseCommandQueue 
• clReleaseContext. 

Reference (Native) Implementation 
Reference implementation is done in ExecuteToneMappingReference() routine of ToneMapping.cpp 
file. This is single-threaded code that performs exactly the same tone mapping effect sequence as the 
OpenCL implementation, but using conventional nested loop in C with SSE optimizations. Native 
kernel EvaluateRaw() that processes input HDR image is located in ToneMappingNative.cpp. 

Controlling the Sample 
The sample executable is a console application. Use following command line argument to run sample 
on Intel Processor Graphics. 

Option Description 

-h, --help   Show this help text and exit. 

-p, --platform number-or-string Select platform, devices of which are used. 

-t, --type all | cpu | gpu | acc | 
default | <OpenCL constant for device 
type> 

Select the device by type on which the OpenCL 
kernel is executed. 
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-d, --device number-or-string Select the device on which all stuff is executed.  

--errors <integer> Number of errors to print. 

 

References 
• http://www.openexr.com/using.html 
• “Fast Tone Mapping for High Dynamic Range Images” by Jiang Duan and Guoping Qiu. 

http://www.openexr.com/using.html

	High Dynamic Range Tone Mapping Post Processing Effect - 
Sample User's Guide
	Contents
	Legal Information
	About Tone Mapping Sample
	Introduction
	Motivation
	Algorithm
	OpenCL* Implementation
	Code Highlights
	Work-group Size Considerations

	Understanding OpenCL Performance Characteristics
	Benefits of Using Vector Data Types

	Limitations
	Future Work and Enhancements
	Project Structure
	APIs Used
	Reference (Native) Implementation
	Controlling the Sample
	References

