

Monte Carlo Method for Stock
Options Pricing
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number: 329764-004US

Monte Carlo Method for Stock Options Pricing

2

Contents
Contents .. 2
Legal Information .. 3
About Monte Carlo Method for Stock Options Pricing ... 4
Algorithm ... 4
OpenCL* Implementation ... 6
APIs Used .. 7
Reference (Native) Implementation .. 7
Controlling the Sample ... 7
Choosing Sample Parameters .. 8
Understanding the Sample Output ... 8
References ... 9

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2013 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Monte Carlo Method for Stock Options Pricing

4

About Monte Carlo Method for Stock Options Pricing
This sample demonstrates implementation of the Monte Carlo simulation for the European stock option
pricing. Underlying algorithm is an OpenCL* kernel that unifies three major algorithm components:

• Mersenne twister - generation of uniformly distributed pseudorandom numbers
• Box-Muller transform - generation of normally distributed random numbers
• Option price calculation using Black-Scholes stock pricing model.

The exact Black-Scholes model is implemented as native code on the host for comparison with the
results, generated with Monte Carlo.

Algorithm
Monte Carlo option model uses the Monte Carlo method to calculate the value of an
option with multiple sources of uncertainty or complicated features. You can apply this
technique to generate thousand random possible price paths for the underlying asset,
and then to calculate the “payoff “– the associated exercise value of the option for each
path. These payoffs are then averaged and adjusted to today numbers. This result is the
value of the option. See http://en.wikipedia.org/wiki/Monte_Carlo_option_model for more
information.

Mersenne Twister Random Number Generator

Monte Carlo option pricing model relies on random number generation for random price
paths generation. This sample uses pseudorandom number generator – the Mersenne
twister. The Mersenne twister is based on a matrix linear recurrence over a finite binary
field, and provides fast generation of pseudorandom numbers, designed specifically to
rectify many of the flaws found in older algorithms. For a k-bit word length, the Mersenne
twister generates numbers with an almost uniform distribution in the range of [0, 2k-1].

For comprehensive understanding of this pseudo-random number generator and algorithm
details refer to http://en.wikipedia.org/wiki/Mersenne_twister. Intel OpenCL implementation
of pseudorandom number generator is similar to pseudo code from the original paper. For
more information see Matsumoto, M.; Nishimura, T. (1998). "Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator".

Box-Muller Transform

Monte Carlo option model requires sequence of normally distributed pseudorandom
numbers for possible price paths generation. The Mersenne twister algorithm provides
uniformly distributed numbers. The Box-Muller transform converts the uniformly distributed
numbers to normally distributed numbers. The Box–Muller transform is a pseudo-random
number sampling method for generating pairs of independent, standard, normally
distributed (zero expectation, unit variance) random numbers, given a source of uniformly
distributed random numbers. The basic form takes two samples from the uniform
distribution on the interval of (0, 1] and maps them to two standard, normally distributed
samples. Suppose U1 and U2 are independent random variables that are uniformly
distributed in the interval of (0, 1]. Let

𝑍0 = �−2 ∗ 𝑙𝑛𝑈1 ∗ cos(2𝜋𝑈2)

and

http://en.wikipedia.org/wiki/Monte_Carlo_option_model
http://en.wikipedia.org/wiki/Mersenne_twister

Algorithm

5

 𝑍1 = �−2 ∗ 𝑙𝑛𝑈1 ∗ sin(2𝜋𝑈2).

Then Z0 and Z1 are independent random variables with a standard normal distribution. For
more information on the Box-Muller transform see
http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform.

Monte-Carlo Method and Black-Scholes Model

European options pricing has exact closed form solution described by the Black-Scholes
formula. This sample uses exact Black-Scholes formula implementation in native C code on
the host device to demonstrate correctness of the Monte Carlo method for options pricing.
The Black–Scholes model or Black–Scholes–Merton is a mathematical model of a financial
market containing certain derivative investment instruments. From the model, one can
deduce the Black–Scholes formula, which gives the price of the European-style options. See
http://en.wikipedia.org/wiki/Option_(finance) for details.

The partial differential equation, now called the Black–Scholes equation, governs the price
of the option over time. The key idea behind the derivation is to hedge the option by buying
and selling the underlying asset in just the right way and consequently "eliminate risk". This
hedge is called “delta hedging” and is the basis of more complicated hedging strategies. The
hedge implies only one right price for the option and it is given by the Black–Scholes
formula. For more information on Black-Scholes method, see
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes.

Use the Monte-Carlo methods to estimate the price of an European option, and first consider
the case of the ”usual” European Call, which is priced by the Black Scholes equation. At
maturity, a call option is worth

𝑐𝑇 = max(0, 𝑆𝑇 − 𝑋),

where ST is a stock price and X is an exercise price (strike price).

At the earlier date t, the option value is the expected present value of this

𝑐𝑡 = 𝐸[𝑃𝑉(max(0, 𝑆𝑇 − 𝑋))]

The important simplifying feature of option pricing is the “risk neutral result”, which enables
treating the (suitably transformed) problem as the decision of a risk neutral decision maker,
if you modify the expected return of the underlying asset such that this earns the risk free
rate.

𝑐𝑡 = 𝑒−𝑟(𝑇−𝑡)𝐸∗[max(0, 𝑆𝑇 − 𝑋)]

where E*[.] is a transformation of the original expectation and r is a risk free rate. One way
to estimate the value of the call is to simulate a large number of sample values of ST
according to the assumed price process, and find the estimated call price as the average of
the simulated values. By appealing to a law of large numbers, this average converges to the
actual call value, where the rate of convergence depends on how many simulations you
perform.

Lognormal variables are simulated as follows. Let 𝑥� be normally distributed with mean zero
and variance one. If St follows a lognormal distribution, then the one-period-later price St+1
is simulated as

http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
http://en.wikipedia.org/wiki/Option_(finance)
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Delta_hedging
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes

Monte Carlo Method for Stock Options Pricing

6

𝑆𝑡+1 = 𝑆𝑡𝑒
�𝑟−12𝜎

2�+𝜎𝑥�,

where 𝜎is volatility. Or more generally, if the current time is t and terminal date is T, with a
time between t and T of (T-t),

𝑆𝑇 = 𝑆𝑡𝑒
�𝑟−12𝜎

2�(𝑇−𝑡)+𝜎√𝑇−𝑡𝑥�.

For the purposes of doing the Monte Carlo estimation of the price if an European call

𝑐𝑡 = 𝑒−𝑟(𝑇−𝑡)𝐸∗[max(0, 𝑆𝑇 − 𝑋)]

You need to simulate the terminal price of the underlying, ST, the price of the underlying at
any time between t and T is not relevant for pricing.

The sample simulates lognormally distributed random variables, which gives us a set of
observations of the terminal price ST. If we let ST,1, ST,2, ST,3, … ST,n denote the n simulated
values, estimate
𝐸[max(0, 𝑆𝑇 − 𝑋)] as the average of option payoffs at maturity, discounted at the risk free rate.
[6]

𝑐𝑡� = 𝑒−𝑟(𝑇−𝑡) ��max�0, 𝑆𝑇,𝑖 − 𝑋�
𝑛

𝑖=1

�

Analogously, put option price estimate is

𝑝𝑡� = 𝑒−𝑟(𝑇−𝑡) ��max�0,𝑋 − 𝑆𝑇,𝑖�
𝑛

𝑖=1

�

OpenCL* Implementation
The described random number generation and option pricing algorithm are implemented as an OpenCL
kernel.

Single OpenCL work-item calculates a pair of European option prices: put and call. The algorithm is
implemented both for single and double precision floating point calculations. This feature is ruled by -
-arithmetic command-line option, which can be float (default) and double value. Global work size is
defined by the --options command-line option. The default value is 65536. The OpenCL kernel
contains inner loop over the Monte Carlo samples, ruled by --samples command-line option. The
default samples number is 262144. Inner loop iteration encapsulates the Mersenne twister
pseudorandom number generator, the Box Muller transform and the Black-Scholes stock options
pricing model. The inner loop step is 2 because this is convenient for the Box Muller transform that
operates with pair of uniformly distributed random numbers to generate pair of the normally
distributed random numbers. Because of this atomic iteration of inner loop calculates pair of the Monte
Carlo samples for final average. All underlying algorithms are interleaved together in the one inner
loop to avoid the call overheads that can arise in the case of separate implementation of underlying
algorithms as individual helper functions called from the main kernel. As a result, the inner loop
contains some code duplications, but it helps to achieve performance gains.

The default work-group size for the OpenCL NDRange call is NULL, which means that it is up to the
OpenCL runtime implementation to choose appropriate work-group number. You can try to adjust this
parameter using the --work_group_size command-line option to get better performance. The
work-group size of 16 work-items is optimal for the Intel® Xeon Phi™ coprocessor, as this size
provides maximal granularity (or large enough work-group size to saturate computing facilities of the
Intel Xeon Phi coprocessor) and enables an automatic 16-way vectorization done by the OpenCL
runtime compiler. The sample application prompts you if the work group size choice is not valid.

APIs Used

7

Host part of the sample initializes three buffers, which contain randomly generated values for time to
maturity, current stock price, and option strike price. Risk-free and volatility parameters are fixed. All
this data is passed to the OpenCL kernel to calculate the resulting option put and call prices.

The --validation command-line option enables calculation of option prices on the host side using
the Black and Scholes formula. Then these values are used for comparison with results calculated
using the Monte Carlo simulation.

You can obtain the full list of sample command-line options by using the --help command-line
option.

APIs Used
• clGetPlatformIDs
• clGetPlatformInfo
• clGetDeviceIDs
• clGetDeviceInfo
• clCreateContext
• clCreateCommandQueue
• clCreateProgramWithSource
• clBuildProgram
• clGetProgramBuildInfo
• clCreateKernel
• clGetKernelWorkGroupInfo
• clCreateBuffer
• clSetKernelArg
• clEnqueueNDRangeKernel
• clEnqueueMapBuffer
• clEnqueueUnmapMemObject
• clFinish
• clReleaseMemObject
• clReleaseKernel
• clReleaseProgram
• clReleaseCommandQueue
• clReleaseContext

Reference (Native) Implementation
Reference implementation is done in the checkValidity routine of the montecarlo.cpp file.
This is single-threaded code that performs options price calculation according to Black and
Scholes formula algorithm in native C as described in the “Algorithm” section.

Controlling the Sample
This sample is a command-line application. Use the following command-line options to
control this sample:
Option Description

-h, --help Show this help text and exit.
-p, --platform number-or-string Select platform, devices of which are used.
-t, --type all | cpu | gpu | acc |
default | <OpenCL constant for device
type>

Select the device by type on which the OpenCL
kernel is executed.

-d, --device number-or-string Select the device on which all stuff is executed.
-o, --options <integer> Number of options to model.

-g, --work-group-size <integer> OpenCL work group size. Set to 0 for work-group
size auto selection.

Monte Carlo Method for Stock Options Pricing

8

-s, --samples <integer> Number of Monte Carlo samples.

-i, --iterations <integer> Number of kernel invocations. For each invoction,
performance information will be printed.

-e, --threshold <float> Validation threshold (if validation is enabled).
-a, --arithmetic float | double Type of elements and all calculations.

--validation Enables validation procedure on host (slow for big
task sizes).

Choosing Sample Parameters
Algorithm is implemented both for single and double precision floating point calculations. This specific
data type is selected by --arithmetic command-line option which can be float (default) and double
value.

Global work size is defined by --options command-line option. Default value is 65536.

The kernel contains inner loop over Monte Carlo samples ruled by --samples command line option.
Default samples number is 262144. Inner loop iteration encapsulates Mersenne twister pseudorandom
number generator, Box Muller transform, and Monte Carlo sampling from Black and Scholes equation.
All underlying algorithms are interleaved together in the one inner loop to avoid function call
overheads.

The default work-group size for the OpenCL NDRange call is NULL, which means that it is up to the
OpenCL runtime implementation to choose appropriate work-group number. You can try to adjust this
parameter using the --work_group_size command-line option to get better performance. The work-
group size of 16 work-items is optimal for the Intel® Xeon Phi™ coprocessor, as this size provides
maximal granularity (or large enough work-group size to saturate computing facilities of the Intel
Xeon Phi coprocessor) and enables an automatic 16-way vectorization done by the OpenCL runtime
compiler. The sample application prompts you if the work group size choice is not valid.

Host part of the sample initializes three buffers, which contain randomly generated values for time to
maturity, current stock price, and option strike price. Risk-free and volatility parameters are fixed. All
this data is passed to the OpenCL kernel to calculate the resulting option put and call prices.

The --validation command-line option enables calculation of option prices on the host side using the
Black and Scholes formula. Then these values are used for comparison with results calculated using
the Monte Carlo simulation.

Understanding the Sample Output
The following is an example of possible sample output (with validation enabled):

$./montecarlo --validation
Platforms (1):
 [0] Intel(R) OpenCL [Selected]
Devices (2):
[0] Genuine Intel(R) CPU @ 2.60GHz
[1] Intel(R) Many Integrated Core Acceleration Card [Selected]
Build program options: "-D__DO_FLOAT__ -cl-denorms-are-zero
-cl-fast-relaxed-math -cl-single-precision-constant -DNSAMP=262144"
Running Monte Carlo options pricing for 65536 options, with 262144 samples
Size of memory region for each array: 262144 bytes
Using risk free rate = 0.05 and volatility = 0.2
Host time: 2.63781 sec.
Host perf: 24844.8 Options per second
VALIDATION PASSED
Host time: 2.6169 sec.
Host perf: 25043.4 Options per second
Host time: 2.63238 sec.

References

9

Host perf: 24896.1 Options per second
Host time: 2.62573 sec.
Host perf: 24959.1 Options per second
Host time: 2.66394 sec.
Host perf: 24601.1 Options per second
Host time: 2.6682 sec.
Host perf: 24561.9 Options per second
Host time: 2.60798 sec.
Host perf: 25129.1 Options per second
Host time: 2.62947 sec.
Host perf: 24923.6 Options per second
Host time: 2.65792 sec.
Host perf: 24656.9 Options per second
Host time: 2.63868 sec.
Host perf: 24836.7 Options per second

First, the sample outputs all available platforms and marks (look at the line with [Selected]). Then
goes the list of devices for the selected platform. The selected device is also marked.

Then follows a "Build program options" section which is exact build options line passed to the
clBuildProgram OpenCL call.

Finally the sample calls the kernel several times and for each iteration it prints two numbers: "Host
time" and "Host perf". Host time is the time measured on host for complete kernel invocation without
any data transfer to or from device. Host perf is a number of modeled options calculated based on
Host time.

In the case when --validation key is set in the command line, validation procedure prints validation
status just after the first kernel iteration. It looks as "VALIDATION PASSED" if validation succeeded
and "VALIDATION FAILED" otherwise. An example above demonstraits usage of the --validation key.

References
• http://en.wikipedia.org/wiki/Monte_Carlo_option_model
• http://en.wikipedia.org/wiki/Mersenne_twister
• Matsumoto, M.; Nishimura, T. (1998). "Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator". ACM Transactions on Modeling and Computer
Simulation 8 (1): 3–30.

• http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
• http://en.wikipedia.org/wiki/Black%E2%80%93Scholes
• http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node12.html

http://en.wikipedia.org/wiki/Monte_Carlo_option_model
http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes
http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node12.html

	Monte Carlo Method for Stock Options Pricing
	Contents
	Legal Information
	About Monte Carlo Method for Stock Options Pricing
	Algorithm
	Mersenne Twister Random Number Generator
	Box-Muller Transform

	OpenCL* Implementation
	APIs Used
	Reference (Native) Implementation
	Controlling the Sample
	Choosing Sample Parameters
	Understanding the Sample Output
	References

