## Developer Reference

• 2022.1
• 12/20/2021
• Public Content
Contents

# LAPACKE_cheev Example Program in C for Column Major Data Layout

``````/*******************************************************************************
*  The information and material ("Material") provided below is owned by Intel
*  Corporation or its suppliers or licensors, and title to such Material remains
*  with Intel Corporation or its suppliers or licensors. The Material contains
*  proprietary information of Intel or its suppliers and licensors. The Material
*  is protected by worldwide copyright laws and treaty provisions. No part of
*  the Material may be copied, reproduced, published, uploaded, posted,
*  transmitted, or distributed in any way without Intel's prior express written
*  property rights in the Material is granted to or conferred upon you, either
*  expressly, by implication, inducement, estoppel or otherwise. Any license
*  under such intellectual property rights must be express and approved by Intel
*  in writing.
*
********************************************************************************
*/
/*
LAPACKE_cheev Example.
======================

Program computes all eigenvalues and eigenvectors of a complex Hermitian
matrix A:

(  9.14,  0.00) ( -4.37, -9.22) ( -1.98, -1.72) ( -8.96, -9.50)
( -4.37,  9.22) ( -3.35,  0.00) (  2.25, -9.51) (  2.57,  2.40)
( -1.98,  1.72) (  2.25,  9.51) ( -4.82,  0.00) ( -3.24,  2.04)
( -8.96,  9.50) (  2.57, -2.40) ( -3.24, -2.04) (  8.44,  0.00)

Description.
============

The routine computes all eigenvalues and, optionally, eigenvectors of an
n-by-n complex Hermitian matrix A. The eigenvector v(j) of A satisfies

A*v(j) = lambda(j)*v(j)

where lambda(j) is its eigenvalue. The computed eigenvectors are
orthonormal.

Example Program Results.
========================

LAPACKE_cheev (column-major, high-level) Example Program Results

Eigenvalues
-16.00  -6.76   6.67  25.51

Eigenvectors (stored columnwise)
(  0.34,  0.00) ( -0.55,  0.00) (  0.31,  0.00) ( -0.70,  0.00)
(  0.44, -0.54) (  0.26,  0.18) (  0.45,  0.29) (  0.22, -0.28)
( -0.48, -0.37) ( -0.52, -0.02) ( -0.05,  0.57) (  0.15,  0.08)
(  0.10, -0.12) ( -0.50,  0.28) ( -0.23, -0.48) (  0.34, -0.49)
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"

/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda );

/* Parameters */
#define N 4
#define LDA N

/* Main program */
int main() {
/* Locals */
MKL_INT n = N, lda = LDA, info;
/* Local arrays */
float w[N];
MKL_Complex8 a[LDA*N] = {
{ 9.14f,  0.00f}, {-4.37f,  9.22f}, {-1.98f,  1.72f}, {-8.96f,  9.50f},
{ 0.00f,  0.00f}, {-3.35f,  0.00f}, { 2.25f,  9.51f}, { 2.57f, -2.40f},
{ 0.00f,  0.00f}, { 0.00f,  0.00f}, {-4.82f,  0.00f}, {-3.24f, -2.04f},
{ 0.00f,  0.00f}, { 0.00f,  0.00f}, { 0.00f,  0.00f}, { 8.44f,  0.00f}
};
/* Executable statements */
printf( "LAPACKE_cheev (column-major, high-level) Example Program Results\n" );
/* Solve eigenproblem */
info = LAPACKE_cheev( LAPACK_COL_MAJOR, 'V', 'L', n, a, lda, w );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
/* Print eigenvalues */
print_rmatrix( "Eigenvalues", 1, n, w, 1 );
/* Print eigenvectors */
print_matrix( "Eigenvectors (stored columnwise)", n, n, a, lda );
exit( 0 );
} /* End of LAPACKE_cheev Example */

/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i+j*lda].real, a[i+j*lda].imag );
printf( "\n" );
}
}

/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, float* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}``````

#### Product and Performance Information

1

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.