Developer Reference

  • 2022.1
  • 12/20/2021
  • Public Content
Contents

?gelsd function

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of
A
and a divide and conquer method.

Fortran-77 Interface

Calling from Fortran:
call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info) call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info) call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info) call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)
Calling from C:
sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info); dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info); cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info); zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info);

C Interface

lapack_int LAPACKE_sgelsd(int matrix_layout, lapack_int m, lapack_int n, lapack_int nrhs, float* a, lapack_int lda, float* b, lapack_int ldb, float* s, float rcond, lapack_int* rank); lapack_int LAPACKE_dgelsd(int matrix_layout, lapack_int m, lapack_int n, lapack_int nrhs, double* a, lapack_int lda, double* b, lapack_int ldb, double* s, double rcond, lapack_int* rank); lapack_int LAPACKE_cgelsd(int matrix_layout, lapack_int m, lapack_int n, lapack_int nrhs, lapack_complex_float* a, lapack_int lda, lapack_complex_float* b, lapack_int ldb, float* s, float rcond, lapack_int* rank); lapack_int LAPACKE_zgelsd(int matrix_layout, lapack_int m, lapack_int n, lapack_int nrhs, lapack_complex_double* a, lapack_int lda, lapack_complex_double* b, lapack_int ldb, double* s, double rcond, lapack_int* rank);

Product and Performance Information

1

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.