Data comes in many shapes and sizes – each enterprise has its own requirements. When beginning your AI journey, you need a platform that gives you the flexibility to use the frameworks and infrastructure designs that work best for you.

Your data should determine your infrastructure

Successful machine learning and deep learning deployments are achieved by layering the right data with the right tools, approach, and infrastructure.

FAQs

Frequently Asked Questions

The type of data you want to use makes a big difference to the infrastructure decisions you should make, both in terms of hardware and software.

Structured data is where most start today, and includes information like financial, customer relationship management (CRM), and sensor data. Unstructured data is becoming much more common but takes more resource to process – for example raw text, web pages, and voice data.

For deployments that require low-latency results, the location of your data and the hardware used to process it is essential. For less time-sensitive applications, running training and inference in the data center may be the best choice – but the question of cloud and on-premise remains.

The IoT will include a projected 200bn devices by 2020, and the data produced is expected to total 40 zettabytes by that time.

Modern data management infrastructure is essential to cope with the strain this will cause and take advantage of the opportunity it poses. Optimized data tiering and performance technology is emerging now that will enable this.

Intel® Xeon® Scalable processors: your data foundation

From data ingestion and preparation to model tuning, Intel® Xeon® Scalable processors act as a flexible platform for all the analytics and AI requirements in the enterprise data center.

 

Able to handle scale-up applications with the largest in-memory requirements to the most massive data sets distributed across a myriad of clustered systems, they serve as an agile foundation for organizations ready to begin their AI journeys.