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1 Scope and Product Target 
This document focuses on the prevention of buffer overflow or data leakage that might 
happen due to misuse/missing size input validation prior to passing it to the 
dangerous standard C library function such as: memcpy, strcpy, memmove, sprint, 
strlen, strcat, strncat etc. The size argument is lacking input validation that 
corresponds to the actual size of the given address. This lack of input validation can 
lead to a vulnerability that will cause linear data corruption or information leakage. 

The main assumption of this solution is that pointers (destination or source) are not 
corrupted. This assumption was made after many reviews of past discovered issues 
and their root-cause. Refer to Motivation for more details. 

The work done in this paper is targeting a solution for x86 Intel architecture (32bit) 
and on ELF file format and on GCC compiler tool chain. The solution is specifically 
designed for embedded systems that have limited resources such as flash size, 
constrained runtime execution and memory consumption but can fit to other OSs and 
environments.  

This solution is planned to be integrated into Intel® Converged Security and 
Management Engine (CSE / CSME) as a defense in-depth mitigation in addition to its 
existing (refer to number [24] in References) exploitation mitigation.  
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2 Motivation 
There is a clear indication that one (of many) methods of work to discover 
vulnerabilities by bug-hunters, is to focus on finding data corruption or leakage that 
can occur on the heap, stack or global variables. These types of vulnerabilities could 
lead to arbitrary code execution, control of execution flow, or disclosure of sensitive 
runtime data in order to find these “low-hanging-fruit” issues, one of the most popular 
method is to perform static analysis via reverse engineering. First, bug-hunters need 
to find all the standard C library functions, such as: malloc, free, memcpy, read, 
strcpy etc.  Once this stage is done, the bug-hunters can start to automate the 
process of finding areas with high probability (refer to number [11] in References) to 
find issues related to missing input validation on which to focus their efforts.  

This automated process has been presented multiple times in conferences (refer to 
numbers 15 and 16 in References). In some cases, tools were shared to ease the 
automation for this type of work using frameworks such as: NSA Ghidra (refer to 
number [1] in References), IDA and Binary-Ninja (refer to number [2] in References). 

Observing the latest vulnerabilities that were discovered in many products strengthen 
the assumption that vulnerabilities related to standard C library function use are 
prevalent: 

• Exploiting Wi-Fi Stack on Tesla Model S (refer to number [3] in References)

- Memcpy without size validation - copying the data from the ADDTS
response packet to the HostCmd_CMD_WMM_ADDTS_REQ structure.
The length of the copied data is calculated by subtracting 4 bytes
length of action header from length of action frame. However, if the
action frame only contains a header, and the length of the header is
only 3 bytes, the length that needs to be copied is 0xFFFFFFFF. This
can eventually override a function pointer used in interrupt handler to
call the right function to handle such large overflow. As a
consequence, it causes code execution via function pointer control.

• Instagram RCE: Code Execution Vulnerability in Instagram App (refer to
number [4] in References)

- This vulnerability refers to usage of wrong malloc function that gets
corrupted on a second stage via the memcpy function - The allocated
size is calculated by multiplying the image’s width, height and output
components. Those sizes are unchecked and in our control. When
abused, they can lead to an integer overflow. Conveniently enough,
this buffer is then passed to memcpy function, leading to a heap-
based buffer overflow.

• 17 Years-old Bug in Windows DNS Servers (refer to number [5] in References)
- This vulnerability refers to an integer truncation that causes a wrong

memory allocation and corruption via usage of  memcpy function– The
Integer overflow leads to a much smaller allocation than expected.
The allocated memory address is then passed as a destination buffer
for memcpy, leading to a Heap-Based buffer overflow.

• Intel Management Engine (ME) (refer to number [6] in References)
- File read into buffer on the stack without verification of the file size

that will match the destination size causing a stack buffer overflow.
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Overflow was large and changed data in other frames of the stack that 
contained pointers that was used after the overflow that allowed the 
corruption to be transformed to a write-what-where and from that to 
code execution. 

• “BootHole” vulnerability in the GRUB2 bootloader (refer to number [7] in
References)

- This vulnerability refers to usage of strcpy function used without
destination size verification – this is due to not implementing ERROR
handle macro to stop execution due to FATAL_ERROR. Since no error
handle was made the code just print to log that token is too large and
continue to use “strcpy”.

• Ripple20 - 19 Zero-Day Vulnerabilities Amplified by the Supply Chain (refer to
number [8] in References)

- This vulnerability happens in the Treck network stack. Demonstrated
info leak from the heap due to wrong size usage of the source pointer
during memcpy. Demonstrated heap buffer overflow due to wrong
calculation of destination size while using memcpy

• Don’t be silly – it’s only a lightbulb (refer to number [9] in References)
- Multiple heap overflows due to bug-hunter controlled size that is not

validated correctly during “memcpy”

Another popular automation method is by fuzzing (refer to number [20] in 
References) the product entry points and observe if the product has crashed. 

In some of the demonstrated vulnerabilities, it was shown that mitigations such as 
canary or even shadow stack, may not be useful since they are being enforced/verified 
only during function epilogue. Since the corruption has already occurred, the 
corrupted data is being used in the code flow. This allows the exploit developer to 
shape the data used in the code flow and trigger artificially more issues without 
triggering the mitigation or detection and bypass them. For example, in shadow stack, 
we can simply put the same return address but data will be corrupted and code flow 
will be modified and create data orientation exploitation (refer to number [21] in 
References). 

Since the most used functions in application are the linear copying functions and 
format string (refer to number [11] in References), it’s only a matter of statistics that 
there will be a bug in one of the usages of these dangerous standard C library 
functions. 

This is the motivation to find a solution that will be able to prevent linear buffer 
overflow or info-leak from happening before it’s too late. 

§§
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3 Existing Solutions 
Today, the most popular solution for catching linear overflows is a compiler option 
called Address Sanitizer (refer to number [12] in References). The main issues with 
this solution are performance, code size increase and large memory usage. Address 
sanitizer creates a shadow memory of the entire process needs to instrument every 
buffer creation and to represent the size allocation in memory. This requires large 
memory space just for the runtime data and code. This solution has a slower (x4) 
runtime performance caused by the need to instrument every instruction that leads to 
data read or data write in the code flow (not only the standard C library functions). 
Another issue with this solution is the lack of support for other CPU architectures 
(currently supported only on x86_64 and ARM and ARC) and it can work only if using 
glibc (GNU C Library). Therefore, address sanitizer is not applicable in production code 
and mainly used during product testing. 

Another solution that exists is Valgrind (refer to number [13] in References). The main 
issue with Valgrind is that it was designed as a tool for memory debugging, memory 
leak detection, and profiling and not for production code and its performance overhead 
is x40 over the original code.  

Yet another compiler option is, FORTIFY_SOURCE (refer to number [14] in 
References). This option tries to give a lightweight runtime protection to some 
memory and string standard C library functions. FORTIFY_SOURCE replaces the 
standard C library string and memory functions with their “*_chk” counterparts (i.e.: 
memcpy_chk). In the new implementation the compiler is passing an additional 
argument that is the original size of the statically allocated variable. The limitations of 
this implementation are scope and pointer aliasing. It can only work if the function 
that is calling the actual standard C memory and string library functions is within the 
same scope of the function declared local variables (same translation unit). If the 
locals are passed to a nested function call that calls the standard C library function, it 
can work only if the compiler can optimize the code of that function as inline, making 
the local variable part of the scope of the standard C library functions.  

FORTIFY_SOURCE does not cover dynamic allocation (heap) out-of-bounds access and 
it cannot handle pointer aliasing to existing global or local variables (like passing them 
as an argument), only if used directly. FORTIFY_SOURCE like address sanitizer, 
requires glibc in order to work and cannot be customized to be applied on more 
functions beside the pre-defined standard C library memory and string functions. 

In the past Intel® MPX technology (Memory Protection Extension) gave some level of a 
solution to stack locals but due to high impact on code size and performance (refer to 
number [22] in References), it was removed in future roadmap of Intel CPUs and is no 
longer supported from GCC 9 and onward. 

An optional way to prevent the misuse of sizes in the standard C library functions is by 
banning (refer to number [17] in References) the use of these dangerous/un-safe 
functions and use safe function that are more “developer aware” library functions. The 
safe functions do not only require the size of the buffer to copy, but also require the 
size of the destination and the source (i.e.: memcpy_s) or limit the size of the data 
being copied (i.e.: strncpy_s). Inside of these functions, the required destination and 
source sizes are compared to not copy beyond the stated sizes. However, these 
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implementations are still depended on the developer to pass the right sizes. If the 
wrong sizes are given, then buffer overflow still occurs (refer to number [18] in 
References). 
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4 Proposed Solution 
The proposed solution is to implement a function that will be able to retrieve, for a 
desired address, it’s real allocation size in runtime and to apply it in every function we 
choose to. This way, we can get to a full customization of our code and not only in a 
pre-defined location. This can work either as a wrapper for existing functions, or inside 
of them to be transparent to the developers. Example: 

In case the sizes do not match, then the verification function can either not return and 
halt/invoke process termination (in some firmware cases - firmware reset). Or, like 
“memcpy_s” will return status error for error handling and continue execution flow 
correctly and will not cause a denial of service. Example: 

§§
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5 Implementation Details 

5.1 Stack Size verification – Stack Fortify 
Refer to the following image to view an example of a stack overflow that will take 
advantage of a bug in the buffer size validation. It will corrupt data in “arg1” on the 
stack and pass it to a new function while it’s corrupted and not being detected with 
the canary or CET (refer to number [25] in References) shadow stack. Potentially in 
“func2” there could be a bigger issue since “func2” trusts the input verification that 
was done before and will use the data without any verification. Because the data in 
“arg1” is completely controlled by the user inputs the likelihood of exploitation success 
is high. 

To solve this issue and get the size of “local_buff” we leverage a feature of compilers 
that embed data that allows debuggers the ability to get function back tracing 
information. We use this same data to gain runtime knowledge of the function stack 
frame size. 

Because the debugger needs to know the call-trace, the assembly code is generated in 
a way that allows generation of the call trace. Since EBP points to the caller stack 
frame (old EBP), EBP+4 holds the return address. 

By recursively reading EBP and its pointer to the previous stack frame location, we can 
find the address of the frame pointer (EBP) where the desired destination address is 
lower than the previous stack frame location. With this knowledge the calculation of 
the maximum size allowed for copying can be accomplish. 

The following picture illustrates the trace that needs to be implemented to verify the 
maximum allowed copy/read size.  
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To make sure this structure on the stack will be generated a compiler option “-fno-
omit-frame-pointer” MUST be used. 

In the example above, since we can “backtrace” to a higher address than 
“local_buf_3”, we know the frame limits. Calculation of the max-allowed copy size in 
the origin stack frame of the variable, prevents from copying beyond the function 
frame: 

TRACED_HIGHER_EBP – PTR_LOCAL_BUF_3 = MAX_ALLOWED_SIZE 

This still allows an attacker to overrun frame inner local variables (Refer Appendix for 
solution side notes) but the likelihood of successful exploitation will be lower 
significantly. Stack canary/protection is very important since it is not only used as a 
detection of corruption that can occur due to other vulnerability types but If stack 
protection is enabled, the compiler (GCC) defers all stack variables, so that the 
compiler can re-order the strings to the top of the frame (GCC source file cfgexpand.c, 
function “defer_stack_allocation”). This means, the buffers will be located higher on 
the stack than the primitive local variables (integers etc.)     

5.2 Global Size Variables Verification – Globals Fortify 
For global variables protection we will focus only on BSS (un-initialized variables) and 
DATA (initialized variables) sections. RODATA section is not relevant because: 
1. RODATA is a known static fixed value and does not change – Therefore, info leak

is not relevant.
a. A mitigation for the case of a large info-leak that can go beyond RODATA, is

to put a page guard without an access attribute (R/W/X) after RODATA in
order to trigger a page fault by the CPU.

2. RODATA should be mapped by the OS as read-only pages in memory. Writing to
this memory triggers a page fault and exception.
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In order to retrieve the size of a desired global variable in BSS or DATA section, we 
need to generate metadata post linking that will be used during runtime. 

The metadata holds the address and size of each global variable. The way to retrieve 
the address and size of each global variable is via a binutils application called 
“objdump”. 

The global variables symbol information is extracted from the binary by calling 
“objdump -t” to get the following results. 

Using the linker, a new global variable is created in the RODATA section with the 
required size to hold the entire global variables metadata information: 

GLOBAL_VARS_METADATA_SIZE = 4 + ((BSS_AMOUNT + DATA_AMOUNT) * 8) 

The first 4-bytes hold the size of GLOBAL_VARS_METADATA_SIZE and the rest is the 
list. Each entry holds a 32-bit address and a 32 bit size, for a total of 8-bytes per-
entry. 

Filling the GLOBAL_VARS_METADATA with the required data can be done with either 
method below: 
1. usage of “FILL” command of a linker script
2. manually opening the binary file for write and writing to the

GLOBAL_VARS_METADATA offset in the file with the values of the address and size
of each global variable

Global variables with size of 0, should be ignored since they are only offset reference 
symbols. For the runtime search to be fast, the entries must be sorted by address in 
ascending order. 

If a given pointer is in the range of BSS/DATA, all that is needed in order retrieve the 
size of the desired global variable is to apply a binary-search algorithm (flat not 
recursive) on GLOBAL_VARS_METADATA. 

• The search needs to find not only beginning of a pointer but also mid-pointers
original size.

• Once a pointer size has been retrieved, verification of size is possible.

The overall illustration of implementation is as follows: 
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5.3 Heap Size Verification - Heap Fortify 
Without diving too deeply into the heap manager implementation, we will focus only 
on the metadata implementation and will not discuss other heap manager 
implementation aspects. 

The following section will present details of a specific heap implementation. This does 
not mean it is the only way to implement a heap manager with metadata, nor that it is 
the most optimized, but rather an example. This heap implementation is based on a 
heap that is aligned to a 4-bytes allocation size. 

The CSME has many security requirements. The requirement standing out as the most 
relevant for this section is: Heap Manager shall provide a mechanism of free “bad 
pointer” detection 

The requirement mandates that the Heap Manager prevents freeing a bad pointer by 
holding metadata that indicates the pointer allocation start and end. If the pointer is 
pointing to a “free” area, the heap will avoid the free action (freeing un-allocated area 
is not allowed). 

For every page in the pool there is a page descriptor. The page descriptor 
(PAGE_INFO) is a 16-bit value. The PAGE_INFO contains bit field information about 
current state of the page managed by the memory manager. For every pool there is 
an array of such values. Pages are divided into “Free”, “Fragmented” (small allocation 
– less than 4K) and “Segmented” (big allocation - equal to or greater than 4K).

In case a page is marked as a “Fragmented” allocation page, in the beginning of the 
page itself, there is a bitmap that describes all allocations in the page. The bitmap size 
is 128-byte (1024-bit) where each set bit (“1”) describes a 4-byte allocation. Between 
each allocation there is a marker of 4-bytes that is marked as “free” (0b) in the byte 
allocation bitmap. This 4byte marker holds metadata for debugging and overflow 
detection (marker is verified only during “free” operation). The marker is split into two 
16bit parts. The first 16 bits hold the caller information, and the second 16-bits hold a 
random cookie. The following picture represents this concept: 
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If a pointer to the heap points to mid-allocation (offset), we can calculate the location 
of the representation of the address in the bitmap and search for the beginning or end 
of the pointer and calculate the size of the allocation to be compared against the input 
we need to validate.  

Since bit scanning is a highly optimized CPU instructions (“BSF/BSR”), the 
performance for such search has low performance impact. 

§§
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6 Solution Performance Impacts 
The performance impact of the different solutions varies due to different approaches 
for retrieving the size available for a given address. 

6.1 Heap Size Retrieval Performance Impact 
In case of the heap implementation the code size increase to support heap variable 
size retrieval is negligible since the instrumentation is only applied in one area and 
does not need to be applied in every part of the code. The only performance that is 
relevant is the runtime impact. 

In the case of heap addresses it was shown that in case of a small or large allocation 
the operations that are required are: 
1. Get the page index: O(1)
2. Get the classification of the page: O(1)

Small allocation - Bitmap scanning: 

The worst case for finding the remaining size allowed for copy is - O(n) where n = 
SIZE_OF_ALLOCATION / 4.  

As stated, even though the search is an O(n), the search is optimized by using the bit 
scanning instruction (BSF/BSR). The timing of the instruction (refer to number [19] in 
References) is different between CPU generation and 32bit/64bit architecture. 

Big allocation mapping requires searching in each page pool in the allocation page 
descriptor: 

The worst-case for finding the remaining size allowed for copy is - O(n) where n = 
SIZE_OF_ALLOCATION / 4k.  

Meaning, we need to iterate in a granularity of 4K until we find the page that is the 
last page of the allocation to be able to calculate the allowed access size. 

6.2 Global Variables Size Retrieval Performance 
Impact 
In the case of global variables, there is size impact on the read-only data section 
(RODATA) since it is required to hold the table of all global variable address and size. 
meaning the size increase is of the executable image and not the code size.  

The increase of the RODATA section is calculated as follows:  

GLOBAL_VARS_METADATA_SIZE = 4 + ((BSS_AMOUNT + DATA_AMOUNT) * 8) 

The runtime impact is a binary search of log (base 2). Hence, worst-case scenario of 
searching for required address is O(log(n)) where n = 
BSS_AMOUNT_OF_GLOBAL_VARS + DATA_AMOUNT_OF_GLOBAL_VARS. For 
example: Given 1000 entries (each entry holds address and size) of global variables 
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will takes about 10 iteration in worst-case scenario to find the size of the variable 
given an arbitrary address. 

By using the compiler options correctly it can be found that binary search are CPU 
cache friendly and faster results can be achieved if used properly (refer to number 
[23] in References).

6.3 Stack Variables Size Retrieval Performance 
Impact 
The performance impact is mainly on runtime and is defined by the amount of nested 
calls. Therefore, the runtime performance impact in the worst-case scenario is O(n) 
where n = NESTED_CALLS_TREE_DEPTH. 

In our experiments we found that in practice, real applications usually have a 
maximum nested tree depth of n=10, while the average nested tree depth is n=3. 

There is also potential code size impact due to the used “-fno-omit-frame-pointer” 
compilation flag. This is harder to measure and depends on the existing code structure 
of each product and can varies between one to another. 

§§
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7 Summary 
The solution is not entirely coupled with hardware architecture and the modification 
required for stack frame size retrieval to support other CPU architectures is very 
lightweight since it’s an already existing implementation in every architecture compiler 
through the backtrace command, which is implemented in the gdb debugger, since the 
compilers create the code structure to make production code debug-able and 
backtrace ready. 

Existing industrial solutions have large impact on: 
• runtime due to the increase of code size after applying instrumentation of every

pointer access in the code flow (i.e.: Address Sanitizer)
• memory usage due to the need to hold large metadata as shadow.

Some solutions were lacking the ability to work with real life code that requires to get 
the size of an address even from aliased pointers or arguments passed to deeply 
nested calls (i.e.: FORTIFY_SOURCE). 

Preventing the buffer overflow from happening allows programs to continue execution 
as no corruption occurs. Implementing proper error handling further prevents DoS 
(denial of service) caused by protections such as stack canary and stack shadowing. If 
such DoS is not a factor in the product security, the implementation can choose to 
raise an exception and terminate the process instead. 

“Safe API” were introduced by adding the “_s” to the standard C library functions 
(e.g.: memcpy_s etc.). But safe does not mean secure, and these APIs can be still 
vulnerable to developers passing wrong sizes (by mistake).  

The main limitation of the “Data Fortify” solution is: Internal overflow of data 
structures within the allocation size. Data Fortify solution is not identifying such 
overflows. This is the case for heap, global variables, and stack (function frame 
allocated size). Even with this limitation, the proposed fortification significantly 
reduces the likelihood of a successful exploitation. 

For the Intel® CSE/CSME, data fortify will be applied on the following standard C 
library functions”: 
• Memcpy
• Memmove
• Memset
• Strcpy
• Strncpy
• Strcat
• Strncat
• Read
• Strlen
• Strnlen
• Sprintf
• Snprintf

In addition, the verification function was added to some private Intel® CSE APIs that 
might present a risk as well. 
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In summary, this paper introduces a solution that is flexible and well balanced 
between size and runtime impact. Also, Data Fortify can be enabled in production and 
not only in debug/testing environments The solution is applicable not only on pre-
defined functions and can be placed in any code that poses a risk.  

The main different concept of this solution to other existing anti-exploitation 
mitigations is by preventing \ limiting the memory corruption from happening. Unlike 
most other solutions that are more focused on post-corruptions mitigations that tries 
to lower the impact or the likelihood of a successful exploitation. Since many types of 
other vulnerabilities classes exists, we cannot drop any other existing systemic 
mitigations. 

§§
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9 Appendix – Solution Side Notes 
1. The invocation to the re-implementation of the library APIs (memcpy etc.) can be

done via compiler command line “--wrap” option that will call the
"__wrap_symbol" library function and not the "__real_symbol" and the wrapper
will call the "__real_symbol".

2. It is needed to not only use the existing system calls wrappers but also find in the
product code other places that the implements helper functions that eventually
behave like linear write/read and apply the suggested solution on them as well
(calling the verification function prior to doing the behavior)

3. To have the ability to check sizes of arbitrary pointers in memory requires the
product to be able to pre-know each area and to whom it belongs to. Usually area
of memory is divided into sections and we have (not by order):
a. Code (text)
b. Stack
c. BSS
d. DATA
e. RODATA
f. Heap

To be able to apply any protection, the application requires to know in runtime each 
pointer to what section it belongs to. 
4. The proposed solution is not covering inner buffers overflow within the single

allocation. Meaning, if a global variable is constructed from multiple types (i.e.:
structure), a buffer overflow is considered only when the overflow/leak is beyond
the entire structure

An overflow will be considered only if trying to copy beyond original allocation of size. 
Inner data writes/read are not considered as out of bound access. Stack overflow is 
considered as overflow for this proposal only if the access out of bounds is beyond the 
function “Stack Frame Size”. The function “Stack Frame Size” is calculated during 
compilation time. The compiler knows for the required stack frame size for each 
function and move the stack pointer accordantly, leaving space for the entire the 
function local variables to be stored on the stack (so the locals are actually between 
the stack pointers and the return address). An out of bound write/read will be 
considered an overflow on stack only if the size of copying/reading on the stack is 
going to be larger than the function frame size allocation 
5. If needed during initialization of OS area of memory i.e.: Zeroing all BSS memory

area with “memset”, it will be required to implement an “not_secure_memset”
that will not have the verification option and “bypass” the protection.

6. Unlike the heap fortify and globals fortify, if the variable is located on the stack
(function locals) it is not possible to “getAllocedSize” of an arbitrary pointer of the
stack without it being passed as nested argument on the stack. In case of heap
and global variables, since they are described in metadata, it is possible request
size of the desired pointer that points to arbitrary address of heap/global memory
sections.

In case heap implementation the right way to implemented it is by return value of 
“success” or “failure” in case that the pointer points to a free area, and the return of 
size will be return as reference function parameter/argument. 
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7. Instead of verifying both destination and source pointers, performance impact can
be improved by only choosing to verify for destination copying to eliminate buffer
overflow but taking the risk on having info-leak. Also, another way to customize
the performance impact is by profiling your product and what is more at risk by
observing the product past issues and focus the verification function only on these
areas. For example, let’s say that we have less risk in info leak of global variables,
but all the rest is still a risk. We can define the prototype to pass a BIT_SET to the
only desired verification

§§
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