
Substantial performance improvements are possible for xVA1 Pricing and Greeks
applications, using Intel Xeon Scalable Processors along with innovative easy-to-
integrate software from Matlogica.

Since the 2008 financial crisis, financial institutions have been forced to report
their sensitivities to multiple scenarios, requiring banks to recalculate their trade
portfolios thousands of times. Regulations push banks to calculate risks to even
finer risk granularities, making regulatory adherence an even larger burden in
terms of costs for implementation, running, and maintenance.

Sophistication in financial market risk modeling gave rise to multiple “Valuation
Adjustments” such as funding (FVA), credit risk (CVA), regulatory capital costs
(KVA), and more—hence the “x” in xVA to denote an entire collection of valuation
adjustments to meet individual needs. These values represent price correction
at a portfolio level and therefore can only be computed once price distribution
of each trade over portfolio lifetime is known. This means thousands of price
valuations are needed for each trade to accurately determine CVA and Debit
Valuation Adjustment (DVA) values. Adding to the challenges, computing fine grade
sensitivities for these adjustments using traditional bump-and-revalue methods
has become computationally infeasible or they demand a hefty cloud computing
cost. For this reason, utilizing Automatic Adjoint Differentiation (AAD)3 becomes a
highly desirable method to implement robust risk management in current markets
and comply with current and future regulatory requirements.

More efficient methods to support xVA computations can yield important benefits
for a wide range of business groups including sales, trading, risk management,
product management, enterprise risk, and treasury.

One xVA Pricing application was accelerated by as much as 1770X

Results published by Matlogica have demonstrated outstanding performance for
financial derivative computations. One xVA Pricing application was accelerated
by as much as 1770X. Workloads that included xVA Pricing and Greeks4 together
demonstrated up to 832X performance gains even when compared with another
solution that also utilized AAD. These results utilize innovative patent pending
technology from Matlogica that takes advantage of the advanced capabilities in
Intel Xeon Scalable Processors.

The need for differentiable programs
There are plenty of numerical computing problems that require not only
processing of input values into output values, but also require measures of how

Significant performance leaps, from Matlogica technology and 2nd Generation
Intel Xeon Scalable processors, demonstrate upside from Intel® AVX-512, CPU
memory capacity, and multithreading or multiprocessing.

More Than a Thousand-fold Speed-
up for xVA Pricing Calculations with
Intel® Xeon® Scalable Processors

High Performance Computing
Financial Services

Table of Contents

The need for
differentiable programs 1

New programming paradigm
yields tremendous performance
returns . 2

Outstanding performance that is
easy to add into preexisting
applications . 3

Integrating Matlogica Libraries
to obtain impressive results 3

Summary . 3

White Paper

White Paper | High Performance Computing for Financial Services

outputs change with respect to small variations in inputs.
These measures are called gradients, derivatives, sensitivity,
or risk in finance applications.

Examples of such problems include machine learning
(ML) and deep neural networks (DNN) training, but also
include reconstruction of the initial model state for weather
modeling, shape optimization problems in industrial design
in conjunction with computer fluid dynamics, and real-time
scanning and reconstruction of deep underground oil and
gas reserves.

Applications in Finance are wide and include computation
of risk sensitivities of financial derivative instruments,
calibration of model parameters, and pricing.

The finance world has traditionally relied on the “bump-and-
revalue” method that applies small change to input data,
re-runs analytics, and approximates sensitivities as ratios
of output value change with respect to input data change.
Complexity of this process grows linearly with the number of
input variables.

In cases where the number of output variables is low, but
the number of inputs is high, the Adjoint Differentiation (AD)
method can help. Roughly speaking, the AD method passes
all calculations from the output back to all inputs and
accumulates derivatives according to the chain rule.
Complexity of the AD method grows linearly with the number
of output variables, which for many problems are just a few
values (e.g., loss function value for ML/DNN training, portfolio
value). Since computational costs do not depend on the
number of input variables, one application of the AD method
to original analytics computes sensitivities for all inputs. This
is what makes AD so appealing to practitioners and allows
them to obtain results faster and save on compute costs.

The method can be manually implemented using chain
differentiation from high school math, starting from the
output of the original program and propagating differentials
all the way to program inputs. This process is known as
back propagation in DNN, but also used widely in other

applications and known as adjoint (or reverse) program of
the original.

Manual AD implementation is tedious and must be consistent
with the original (forward) program. Implementation
and maintenance of adjoint and the original versions for
constantly evolving programs is even harder. Therefore,
Automatic AD (AAD) tools exist to simplify this step
generating the reverse program automatically.

New programming paradigm yields
tremendous performance returns
Matlogica is a UK-based company specializing in software
solutions that help accelerate Monte-Carlo Simulations using
highly parallel vectorized software and automatic adjoint
differentiation. Their ground-breaking results come from
bringing together an impressive range of specialists including
quantitative analysts, computer science engineers, and
researchers.

The approach Matlogica takes to acceleration is novel in
both its easy-to-use programming interface and the high
performance it achieves out-of-the-box. Straight-forward
and minimal code changes, to make use of the libraries,
offer leaps in performance for both xVA Pricing and Greeks
calculations.

To accomplish their published results, Matlogica utilized two
complementary products. The Matlogica Vector Accelerator
C++ Library enables high-performance processing of data
using SIMD, multithreading, and multiprocessing capabilities
of modern processors. The Malogica Parallel AAD-C5 C++
Library implements automatic adjoint differentiation of C++
programs with focus on computations where derivatives are
required for multiple instances of input data.

Outstanding performance that is easy to add
into preexisting applications
To illustrate these achievements, Matlogica assembled an
xVA benchmark modeling one interest rate curve with four

Figure 1. xVA pricing speed-up Figure 2. xVA pricing + Greeks speed-up

White Paper | High Performance Computing for Financial Services

projection curves, with IR swaps generated randomly. It
computes CVA & DVA, Positive and Negative Expected
Exposures (PEE & NEE), and Collateral. AAD is used to
calculate the bucketed risk for IR model and credit curves.

When run on a 2nd Generation Intel Xeon Scalable Processor,
specifically on a system with two 28-core Intel Xeon Platinum
processors (56 cores total) equipped with 192Gb of memory,1
speed-ups of over a thousand-fold2 were reached when using
the full power of Intel AVX-512. As shown in Figure 1, with
Intel AVX-512 plus memory optimizations due to caching,
results in gains up to 1770x with 56 cores (112 threads) for
xVA pricing. From this Figure 1, we can also see impressive
35X performance gain (compared to baseline) even on
the single core. Figure 2 shows speed-up for xVA+Greeks
calculations; gains for this application are up to 832x with 56
cores and are up to 23X gains on a single core.

One might ask “why did the performance increase drop for
xVA+Greeks?” Honest benchmarking is the answer. The
first graph (xVA pricing only) is a baseline vs. Matlogica
Vector Accelerator C++ Library comparison. When computing
Greeks with Matlogica Parallel AAD-C C++ Library, two
things kick in: (1) use of AAD as a technique, and (2) the novel
technology Matlogica has created to accelerate AAD runs.
To highlight the latter, the baseline was increased to include
AAD via the Adept library. Adept (Automatic Differentiation
using Expression Templates) is an open source C++ software
library. The increase in performance is especially remarkable
since it uses Adept as a baseline. It would be tempting to
use a bump-and-revalue as the baseline, in which case the
performance gain would be particularly dramatic because of
the advantage any AAD implementation would bring with it.
Since bump-and-revalue method revalues original function
for each input risk value, in this modest benchmark it could be
expected to slow things down by factor of 140 if used instead
of Adept—and the reported increase in performance would be
much more if not for including Adept in the baseline.

Integrating Matlogica Libraries to obtain
impressive results
The Matlogica Vector Accelerator Library C++ uses operator
overloading for integration with the user’s code base.
This allows the translation of even complex user valuations
into binary code to harness the substantial benefits of
Intel AVX-512.

Operator overloading used in conjunction with tracking
variables dependent on function inputs provides an
automatic way to optimize out all intermediate results that
can be cached and hard coded into generated function for
improved performance. On top of this, generated functions
are by construction multithread safe by design, and do not
require thread locking mutexes even when the original user
program wasn’t built with multithreading in mind.

The Matlogica Parallel AAD-C C++ Library is easy to integrate,
without interfering with debuggability, into existing code
because it requires minimal changes to utilize its operator
overloading on numerical type (double). The operator
overloading then easily extracts a valuation graph for
additional processing. Without any additional programming,
the AAD-C transforms this graph at runtime into efficient
binary machine instructions isolated from the original
program, which can even be easily sent for execution on a

cloud farm. This allows use of Intel AVX-512 vectorization to
its full capacity and produced code is ready for multicore and
multithreaded usage (i.e., it is thread safe).

AAD-C consists of a collection of C++ overloaded functions—
easy to integrate and designed to keep debugging
straightforward. Automatic vectorization combined with a
unique on-the-fly approach have yielded these outstanding
performance results. For a small fraction of the original code
execution time, you can get values of the base algorithm and
all its derivatives.

AAD-C improves significantly on the prior techniques in
multiple ways that can allow it to complete more analysis in
less time. The observed thousand-fold performance gains
stem from:

1. The translation to machine instructions once, instead of
interpreting parts of a valuation graph repeatedly,

2. The ability to fully exploit Intel AVX-512.

Dmitri Goloubentsev, Head of Automatic Adjoint
Differentiation at Matlogica LTD, shared that “With AAD-C
programmers can develop their code in single threaded,
predictable OO C++ and convert any heavy load block to
flattened streamlined execution taking full advantage of
Intel AVX-512 vectorization and threading. Even NUMA
management is easy, because we have full control on memory
blocks needed for execution. AAD-C helps to transform
Object Oriented Design into Data-Oriented-Design”.6

Summary
Versatility of Intel Xeon Scalable Processors for a wide variety
of Financial Services applications includes xVA. This fits well
with the trends in many businesses to centralize xVA activities
to better quantify and manage the costs to their derivatives
business of counterparty credit, funding, margin, etc.

The benefits of Intel AVX-512 for applications with
demanding compute needs are evident in these results.
Many applications utilize the Intel® Math Kernel Library
(Intel® MKL) for high performance from Intel AVX-512; the
Matlogica libraries demonstrate strong results from their
approach as well. Both libraries can be used, in the same
application, as desired.

The Matlogica Vector Accelerator C++ Library and Matlogica
Parallel AAD-C5 C++ Library results described here
illustrate opportunities for thousand-fold performance
improvements of reasonable baseline implementations.
Best of all, these performance results are within reach for a
wide variety of applications.

Learn More

Learn more about the AAD-C project.

Engage with Matlogica to see how they can offer quick
proof-of-concept projects to gauge the possible
benefits that the Matlogica Vector Accelerator Library
can give to your specific applications.

Discover Intel HPC and AI technologies.

Request a demo.

http://www.bigcloudanalytics.com
http://www.intel.com/fsi

White Paper | High Performance Computing for Financial Services

 1 System Configuration: Two Intel Xeon Platinum 8280 processors (28 cores/processor) with a total of 56 cores (112 threads), 192GB memory, Matlogica AADC library (5/15 release) and
Intel® C++ Compiler 19.1.1; xVA refers to X-Value Adjustment—an inclusive term for numerous different valuation adjustments used to assess pricing and risk associated with financial
derivative instruments.

2 Results published by Matlogica at www.matlogica.com
3 AAD refers to Automatic Adjoint Differentiation (AAD)—a technique that greatly reduces the time to calculate sensitivities of derivatives prices to underlying factors, called Greeks.
4 Greeks represent the sensitivity of the price of derivatives to a change in underlying parameters. The name “Greeks” stems from the fact that key sensitivities are known by their Greek letters

including values such as spot price value (Δ delta), volatility value (V vega), and time to expiry value (Θ theta).
5 The AAD-C name means Automatic Adjoint Differentiation (AAD) Compiler, where the term compiler refers to a compiler-like activity hidden from the user within the library and not a compiler in

the traditional sense. This is part of the novel approach from Matlogica that yields such tremendous benefits.
6 A nice introduction to Data-Oriented-Design can be found at https://youtu.be/rX0ItVEVjHc
 © Intel Corporation 2020

0820/RJMJ/MB/PDF Please Recycle 44201-001US

