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1 Preface 

1.1 Scope of this Revision 
The PCI Express, SATA, USB, DisplayPort, and Converged IO PHY Interface Specification has 
definitions of all functional blocks and signals.  This revision includes support for PCI Express 
implementations conforming to the PCI Express Base Specification, Revision 4.0, SATA 
implementations conforming to the SATA specification, revision 3.0, USB implementations 
conforming to the Universal Serial Bus Specification, Revision 3.1, DisplayPort implementations 
conforming to the DisplayPort 1.4 Specification, and Converged IO implementations conforming 
to the Converged IO Base Specification, Revision 1.0 

1.2 Revision History 
Revision 
Number 

Date Description 

0.1 7/31/02 Initial Draft 

0.5 8/16/02 Draft for industry review 

0.6 10/4/02 Provides operational detail 

0.7 11/4/02 Includes timing diagrams 
 

0.8 11/22/02 More operational detail.  Receiver detection sequence changed. 

0.9 12/16/02 Minor updates.  Solid enough for implementations to be finalized. 

0.95 4/25/03 Updates to reflect 1.0a Base Spec.  Added multilane suggestions. 

1.00 6/19/03 Stable revision for implementation. 

1.70 11/6/05 First pass at Gen. 2 PIPE 

1.81 12/4/2005 Fixed up areas based on feedback. 

1.86 2/27/2006 Fixed up more areas based on feedback.  Added a section on how 
to handle CLKREQ#. 

1.87 9/28/2006 Removed references to Compliance Rate determination.  Added 
sections for TX Margining and Selectable De-emphasis.  Fixed up 
areas (6.4) based on feedback. 

1.90 3/24/2007 Minor updates, mostly editorial. 

2.00 7/21/2007 Minor updates, stable revision for implementation. 

2.7 12/31/200
7 

Initial draft of updates to support the USB specification, revision 
3.0. 

2.71 1/21/2008 Updates for SKP handling and USB SuperSpeed PHY power 
management. 

2.75 2/8/08 Additional updates for SKP handling. 

2.90 8/11/08 Added 32 bit data interface support for USB SuperSpeed mode, 
support for USB SuperSpeed mode receiver equalization training, 
and support for USB SuperSpeed mode compliance patterns that 
are not 8b/10b encoded. 
Solid enough for implementation architectures to be finalized. 

3.0 3/11/09 Final update 

4.0 4/5/11 Draft 1 update adding SATA. 

4.0 4/13/11 Draft 3 update adding PCI Express 3.0 rev .9. 

4.0 9/1/11 Draft 6 update adding updates based on PCI Express 3.0 rev .9 
feedback. 

4.1 12/7/11 Initial draft with per lane clocking option 

4.1 12/12/11 Draft 2.  Updates for initial review feedback and addition of several 
example timing diagrams for PCI Express 3.0 related signals. 

4.1 5/21/12 Updated for Draft 2 feedback from various reviewers. 

4.2 7/1/13 Added support for USB 3.1 – preliminary review release based on 
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USB 3.1 specification revision .9 
4.3 1/31/14 Added support for PTM (preliminary for review), L1 Substates 

(preliminary for review), and PCI Express 4.0 (preliminary rev .3). 
4.4 11/28/16 Added support for PCIe RX margining and elastic buffer depth 

control over a message bus interface.  Support for PCIe Nominal 
Empty elastic buffer mode.  Gen4 updates: LocalLF/FS, LF/FS, 
Rate, PCLK rates.  SRIS support.  RXStandby for USB.  L1 substate 
clarifications.  General cleanup. 

4.4.1 1/12/17 Removed “PCLK as an input” requirement for message bus.  Added 
wording to allow PHY to choose whether to support L1 substate 
management via PowerDown[3:0] exclusively or via 
RxEIDetectDisable and TxCommonModeDisable. 

5.0 11/2/17 Clarified that margin NAK is only required for unsupported voltage 
margin offset requests that are within PHY advertised range.  
Added support for 64-bit data width for PCIe SerDes only.  Mapped 
all eligible legacy PIPE signals into message bus registers.  Added 
support for a SerDes architecture.   Added requirements for 
support of low pin count vs legacy PIPE interface and SerDes vs 
original PIPE architecture.  Added support for Converged IO and 
DisplayPort.  Recommendation that USB Nominal Empty Operation 
should use RxDataValid.  Added EB Error recovery mechanism 
controlled via a register bit.  Added RefClkRequired signal to 
indicate when the reference clock can be safely removed.  
Reformatted signal tables into separate input and output tables 
and added a new column indicating relevant protocols.  General 
cleanup and clarifications. 

5.1 3/14/18 PCIe 5.0 formal rate definitions.  General typo corrections and 
clarifications.  Added back in external signals table that was 
inadvertently dropped in the 5.0 rev.  
ElasticBufferLocationUpdateFrequency moved to the PHY address 
space with min/max values to be specified in PHY datasheet.  
Clarified that RefClkRequired# is optional for the PHY.  Updated 
TxDataValid description to reference usage in original PIPE 
architecture for USB due to block encoding.  Clarified that PHYs 
must specify their own timing requirements for RxStandby.  Added 
PHY parameters to specify whether PclkChangeOk/PclkChangeAck 
handshake is required for rate+width changes and for all rate 
changes.  Clarified states for L1 substates in the PowerDown 
description and RxEIDetectDisable description.  Allow receiver 
detection in P2 for PCIe.  Add USB clarification for timing around 
LFPS, RxElecIdle and exit from P1 to P0.  Added table of USB 
PowerDown state characteristics.  Updated RxStatus description to 
reflect that ‘111b value indicates corrected SKP for USB.  
PclkChangeOk/PclkChangeAck handshake is required for all rate 
changes (not just those impacting PCLK).  Add clarification on 
priority of LFPS transmission vs SuperSpeed data for USB.  
RxEIDetectDisable can be used to disable LFPS circuit for power 
savings.  Moved GetLocalPresetCoefficients from bit 5 to bit 7 of 
the PHY TX Control5 register to allow growth of the 
LocalPresetIndex field.  Deprecate TxElecIdle+TxCompliance 
method of turning off a lane.  Updated PHY parameters table for 
USB 3.2 for Tx EQ.  Disallow LFPS transmission in P2 and P3 for 
USB.  Added eDP rates.  Moved TX Control9 register contents to RX 
Control4 register. Moved RX Status0-3 register contents to TX 
Status3-6 registers.  Updated LocalPresetIndex valid range for 
LocalG5LF register field.  Updated various entries in “Lane 
Margining at Receiver Sequences” table.  Added PHY parameter 
AsynchReceiverDetectSupport to advertise whether the PHY 
support asynchronous receiver detection in PCIe P2 state.  
Updated message bus rules, including restrictions on posted-to-
posted writes and defined register groups.  Add PHY parameter to 
advertise the time to transition to a valid Electrical Idle after 
sending EIOS.  Updated Converged IO interface to 40-bits.  Added 
rate/width table for Converged IO.  Add PHY parameters for 
datapath and control path support options. Disallow LFPS signaling 
in P2&P3 for USB.  RXTermination assertion during Reset for USB 
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is changed to be implementation specific.  Added sample clocking 
topologies compatible with PIPE. 
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2 Introduction 
The PHY Interface for the PCI Express, SATA, USB, DisplayPort and Converged IO 
Architectures (PIPE) is intended to enable the development of functionally equivalent PCI 
Express, SATA, USB, DisplayPort, and Converged IO PHY's. Such PHY's can be delivered as 
discrete IC's or as macrocells for inclusion in ASIC designs. The specification defines a set of 
PHY functions which must be incorporated in a PIPE compliant PHY, and it defines a standard 
interface between such a PHY and a Media Access Layer (MAC) & Link Layer ASIC. It is not 
the intent of this specification to define the internal architecture or design of a compliant PHY 
chip or macrocell. The PIPE specification is defined to allow various approaches to be used. 
Where possible the PIPE specification references the PCI Express base specification, SATA 3.0 
Specification, USB 3.1 Specification, DisplayPort 1.4 specification or Converged IO 1.0 
specification rather than repeating its content. In case of conflicts, the PCI-Express Base 
Specification, SATA 3.0 specification, USB 3.1 Specification, DisplayPort 1.3 specification, and 
Converge IO 1.0 specification shall supersede the PIPE spec. 
 
This spec provides some information about how the MAC could use the PIPE interface for 
various LTSSM states, Link states and other protocols.  This information should be viewed as 
‘guidelines for’ or as ‘one way to implement’ base specification requirements.  MAC 
implementations are free to do things in other ways as long as they meet the corresponding 
specification requirements. 
  
One of the intents of the PIPE specification is to accelerate PCI Express endpoint, SATA device, 
USB device, and Converged IO device development. This document defines an interface to which 
ASIC and endpoint device vendors can develop. Peripheral and IP vendors will be able to develop 
and validate their designs, insulated from the high-speed and analog circuitry issues associated 
with the PCI Express, SATA, USB, DisplayPort, or Converged IO PHY interfaces, thus 
minimizing the time and risk of their development cycles. 
 
The PIPE specification defines two clocking options for the interface.  In the first alternative the 
PHY provides a clock (PCLK) that clocks the PIPE interface as an output.  In the second 
alternative  PCLK is provided to each lane of the PHY as an input.  The alternative, where PCLK 
is provided to each lane of the PHY, was added in the 4.1 revision of the PIPE specification.  It 
allows the controller or logic external to the PHY to more easily adjust timing of the PIPE 
interface to meet timing requirements for silicon implementations.  A PHY is only required to 
support one of the timing alternatives.  The two clocking options shall be referenced as “PCLK as 
PHY Output” and “PCLK as PHY Input” respectively.  DisplayPort only supports the “PCLK as 
PHY Input” clocking option.  Note: “PCLK as PHY Output” mode is not supported for PCIe 
5.0 and beyond, Converged IO, or Displayport. 
 
Figure 2-1: Partitioning PHY Layer for PCI Express shows the partitioning described in this spec for 
the PCI Express Base Specification.  Figure 2-2 shows the partitioning described in this spec for 
the USB 3.1 Specification.  Figure 2-3 shows the partitioning described in this spec for the 
Converged IO 1.0 Specification. 
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Figure 2-1: Partitioning PHY Layer for PCI Express 
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Figure 2-2 Partitioning PHY Layer for USB 
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Figure 2-3. Partitioning PHY Layer for Converged IO 

2.1 PCI Express PHY Layer 
The PCI Express PHY Layer handles the low level PCI Express protocol and signaling. This 
includes features such as analog buffers, receiver detection, data serialization and de-serialization,  
8b/10b encoding/decoding, 128b/130b encoding/decoding (8 GT/s, 16 GT/s, 32 GT/s), and elastic 
buffers. The primary focus of this block is to shift the clock domain of the data from the PCI 
Express rate to one that is compatible with the general logic in the ASIC. 
 
Some key features of the PCI Express PHY are: 
• Standard PHY interface enables multiple IP sources for PCI Express Logical Layer and 

provides a target interface for PCI Express PHY vendors. 
• Supports 2.5GT/s only or 2.5GT/s and 5.0 GT/s, or 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s, or 2.5 

GT/s, 5.0 GT/s, 8.0 GT/s, and 16 GT/s, or 2.5 GT/s, 5.0 GT/s, 8.0 GT/s and 16 GT/s and 32 
GT/s serial data transmission rate 

• Utilizes 8-bit, 16-bit or 32-bit parallel interface to transmit and receive PCI Express data.  
Additionally, supports 64-bit interface in SerDes architecture only. 

• Allows integration of high speed components into a single functional block as seen by the 
endpoint device designer 

• Data and clock recovery from serial stream on the PCI Express bus 
• Holding registers to stage transmit and receive data 
• Supports direct disparity control for use in transmitting compliance pattern(s) 
• 8b/10b encode/decode and error indication 
• 128b/130b encode/decode and error indication 
• Receiver detection 
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• Beacon transmission and reception 
• Selectable Tx Margining, Tx De-emphasis and signal swing values 
• Lane Margining at the Receiver 
• Polarity 
• Electrical Idle Entry/Exit Detection (Squelch) 

2.2 USB PHY Layer 
The USB PHY Layer handles the low level USB protocol and signaling. This includes features 
such as analog buffers, receiver detection, data serialization and de-serialization, 8b/10b 
encoding/decoding, 128b/132b encoding/decoding (10 GT/s), and  elastic buffers. The primary 
focus of this block is to shift the clock domain of the data from the USB rate to one that is 
compatible with the general logic in the ASIC. 
 
Some key features of the USB PHY are: 
• Standard PHY interface enables multiple IP sources for USB Link Layer and provides a 

target interface for USB PHY vendors. 
• Supports 5.0 GT/s and/or 10 GT/s serial data transmission rate 
• Utilizes 8-bit, 16-bit or 32-bit parallel interface to transmit and receive USB data 
• Allows integration of high speed components into a single functional block as seen by the 

device designer 
• Data and clock recovery from serial stream on the USB bus 
• Holding registers to stage transmit and receive data 
• 8b/10b encode/decode and error indication 
• 128b/132b encode/decode and error indication 
• Receiver detection 
• Low Frequency Periodic Signaling (LFPS) 

2.3 Converged IO PHY Layer 
The Converged IO PHY Layer handles the low level Converged IO protocol and signaling.  This 
includes features such as data serialization and de-serialization, analog buffers, and receiver 
detection. 
 
Some key features of the Converged IO PHY: 
• Standard PHY interface enables multiple IP sources for Converged IO Link Layer and provides 

a target interface for Converged IO PHY vendors. 
• Supports 10 GT/s and/or 20 GT/s serial data transmission rate 
• Implements a 40-bit parallel interface to transmit and receive converged IO data 
• Data and clock recovery from serial stream on the Converged IO bus 
• Holding registers to stage transmit and receive data 
• Low Frequency Periodic Signaling (LFPS) 

 

2.4 SATA PHY Layer 
The SATA PHY Layer handles the low level SATA protocol and signaling. This includes 
features such as analog buffers, data serialization and deserialization, 8b/10b encoding/decoding,  
and elastic buffers. The primary focus of this block is to shift the clock domain of the data from 
the SATA rate to one that is compatible with the general logic in the ASIC. 
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Some key features of the SATA PHY are: 
• Standard PHY interface enables multiple IP sources for SATA controllers and provides a 

target interface for SATA PHY vendors. 
• Supports 1.5 GT/s only or 1.5 GT/s and 3.0 GT/s, or 1.5 GT/s, 3.0 GT/s and 6.0 GT/s serial 

data transmission rate 
• Utilizes 8-bit, 16-bit, or 32-bit parallel interface to transmit and receive SATA data 
• Allows integration of high speed components into a single functional block as seen by the 

device designer 
• Data and clock recovery from serial stream on the SATA bus 
• Holding registers to stage transmit and receive data 
• 8b/10b encode/decode and error indication 
• COMINIT and COMRESET transmission and reception 

 

2.5 Low Pin Count Interface and SerDes Architecture 
To address the issue of increasing signal count, the message bus interface was introduced in PIPE 
4.4 and utilized for PCIe lane margining at the receiver and elastic buffer depth control.  In PIPE 
5.0, all legacy PIPE signals without critical timing requirements were mapped into message bus 
registers so that their associated functionality could be accessed via the message bus interface 
instead of implementing dedicated signals.  Any new features added in PIPE 4.4 and onwards are 
available only via message bus accesses unless they have critical timing requirements that need 
dedicated signals. 
 
To facilitate the design of general purpose PHYs delivered as hard IPs and to provide the MAC 
with more freedom to do latency optimizations, a SerDes architecture was defined in PIPE 5.0.  
This architecture simplifies the PHY and shifts much of the protocol specific logic into the MAC. 
 
To maximize interoperability between MAC and PHY IPs, PHY designs must adhere to the 
requirements stated in Table 2-1 for support of the legacy pin interface versus the low pin count 
interface and for support of the original PIPE architecture versus the SerDes architecture.   
 
The legacy pin interface refers to a pin interface that utilizes all the applicable dedicated signals 
as well as the message bus interface for features not supported through dedicated signals.  The 
low pin count interface refers to a pin interface that utilizes the message bus interface for all 
features supported through the message bus, using dedicated signals only for features not 
supported through the message bus.  The legacy pin interface dedicated signals are defined in 
PIPE 4.4.1 and earlier and have been deprecated in PIPE 5.0. 
 
The original PIPE architecture is represented in Figure 4-2, Figure 4-3, Figure 4-4 and Figure 4-5.  
The SerDes Architecture is represented in Figure 4-7 and Figure 4-8. 
 
The legacy pin interface and the low pin count interface are not simultaneously operational, with 
the exception of PCIe 4.0 lane margining at the receiver being controlled via the low pin count 
interface while other operations are managed over the legacy interface.  A PHY must be statically 
configured to utilize either the low pin count interface or the legacy pin interface, e.g. no dynamic 
switching between the interfaces based on operational rate is permitted.  Finally, a SerDes 
architecture datapath must always utilize the low pin count interface; using the legacy pin 
interface with SerDes architecture is considered illegal. 
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Table 2-1. PHY Requirements for Legacy Pin Interface vs Low Pin Count 
Interface and Original PIPE vs SerDes Architecture Support 

 Converged IO/ 
DisplayPort 

USB 3.2 and 
Less 

PCIe 5.0 PCIe 4.0 
and Less 

SATA 

Legacy Pin 
Interface 

Not allowed Required (see 
version 4.4.1) 

Not 
Allowed 

Required 
(see version 
4.4.1) 

Required(se
e version 
4.4.1) 

Low Pin 
Count 
Interface 

Required Optional Required Required for 
Gen4 RX 
margining 
only, 
optional for 
everything 
else 

Optional 

Original 
PIPE 
Architectur
e 

Not allowed Required Recommend
ed1 

Required Required 

SerDes 
Architectur
e 

Required Optional Required Optional Optional 

 
1. To provide interoperability with PCIe and USB MACs that choose not to migrate to the 

SerDes architecture, PHYs are encouraged to provide support for original PIPE via a 
method where the associated logic can be easily optimized out.  With this, designs that 
do not require a PHY that supports original PIPE are not burdened with any unneeded 
logic. 

 
 
 
 
 
 

3 PHY/MAC Interface 
Figure 3-1 shows the data and logical command/status signals between the PHY and the MAC 
layer. Figure 3-2 and Figure 3-3 shows the data and command/status signals between the PHY 
and the MAC layer for DisplayPort DPTX and DPRX, respectively.  Full support of PCI Express 
mode, USB mode, Sata mode, DisplayPort mode, and Converged IO mode at all rates require 
different numbers of control and status signals to be implemented.  Refer to Section 6.1 for details 
on which specific signals are required for each operating mode. 
 

 
 

 

Figure 3-1. PHY/MAC Interface 
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Figure 3-2. DPTX PHY/MAC Interface 

MAC Layer PHY
Layer

40, 20 or 10

Variable

Variable

TxData

Command

Status

To
 D

at
a 

Li
nk

 L
ay

er Tx+,Tx-

Channel

CLK

PCLK As PHY Input

TxAuxData

RxAuxData

Aux+,Aux-

 
 

Figure 3-3. DPRX PHY/MAC Interface 
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This specification allows several different PHY/MAC interface configurations to support various 
signaling rates.   
 
For PIPE implementations that support only the 2.5 GT/s signaling rate in PCI Express mode 
implementers can choose to have 16 bit data paths with PCLK running at 125 MHz, or 8 bit data 
paths with PCLK running at 250 MHz.  PIPE implementations that support 5.0 GT/s signaling 
and 2.5 GT/s signaling in PCI Express mode, and therefore are able to switch between 2.5 GT/s 
and 5.0 GT/s signaling rates, can be implemented in several ways.  An implementation may 
choose to have PCLK fixed at 250 MHz and use 8-bit data paths when operating at 2.5 GT/s 
signaling rate, and 16-bit data paths when operating at 5.0 GT/s signaling rate.  Another 
implementation choice is to use a fixed data path width and change PCLK frequency to adjust the 
signaling rate.    In this case, an implementation with 8-bit data paths would provide PCLK at 250 
MHz for 2.5 GT/s signaling and provide PCLK at 500 MHz for 5.0 GT/s signaling.  Similarly, an 
implementation with 16-bit data paths would provide PCLK at 125 MHz for 2.5 GT/s signaling 
and 250 MHz for 5.0 GT/s signaling.  The sample list of possibilities is shown in Table 3-1. 
 
For PIPE implementations that support 5.0 GT/s USB mode and/or 10 GT/s USB mode 
implementers can choose from options shown in Table 3-3.  A PIPE compliant MAC or PHY is 
only required to support one option for each USB transfer speed that it supports.  

For SATA PIPE implementations that support only the 1.5 GT/s signaling rate implementers can 
choose to have 16 bit data paths with PCLK running at 75 MHz, or 8 bit data paths with PCLK 
running at 150, 300 or 600 MHz.  The 300 and 600 Mhz options requires the use of TxDataValid 
and RxDataValid signals to toggle the use of data on the data bus. 

SATA PIPE implementations that support 1.5 GT/s signaling and 3.0 GT/s signaling in SATA 
mode, and therefore are able to switch between 1.5 GT/s and 3.0 GT/s signaling rates, can be 
implemented in several ways.  An implementation may choose to have PCLK fixed at 150 MHz 
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and use 8-bit data paths when operating at 1.5 GT/s signaling rate, and 16-bit data paths when 
operating at 3.0 GT/s signaling rate.  Another implementation choice is to use a fixed data path 
width and change PCLK frequency to adjust the signaling rate.    In this case, an implementation 
with 8-bit data paths could provide PCLK at 150 MHz for 1.5 GT/s signaling and provide PCLK 
at 300 MHz for 3.0 GT/s signaling.  Similarly, an implementation with 16-bit data paths would 
provide PCLK at 75 MHz for 1.5 GT/s signaling and 150 MHz for 3.0 mode are shown GT/s 
signaling.   A sample list of possible widths and PCLK rates for SATA is shown in Table 3-4.  A 
PIPE compliant MAC or PHY is only required to support one option for each SATA transfer 
speed that it supports.   
 

The full set of possible widths and PCLK rates for PCI Express mode is shown in Table 3-1.  A 
PIPE compliant MAC or PHY is only required to support one option for each PCI Express 
transfer speed that it supports.  Note that PHYs that support greater than x4 link widths must 
provide an option for 32-bit or less data width.  

 

Table 3-1. PCI Express Mode - Possible PCLK rates and data widths 
Mode PCLK Original PIPE Data Width 

(SerDes Data Width1) 
TxDataValid and RxDataValid 
Strobe Rate 

2.5 GT/s 4000 Mhz 8 bits (10 bits) 1 in 16 PCLKs 

2.5 GT/s 2000 Mhz 8 bits (10 bits) 
 

1 in 8 PCLKs 

2.5 GT/s 1000 Mhz 8 bits (10 bits) 1 in 4 PCLKs 

2.5 GT/s 500 Mhz 8 bits (10 bits) 1 in 2 PCLKs 

2.5 GT/s 250 Mhz 8 bits (10 bits) N/A 

2.5 GT/s 250 Mhz 16 bits (20 bits) 1 in 2 PCLKs 

2.5 GT/s 500 Mhz 16 bits (20 bits) 1 in 4 PCLKs 

2.5 GT/s 125 Mhz 16 bits (20 bits) N/A 

2.5 GT/s 250 Mhz 32 bits (40 bits) 1 in 4 PCLKs 

2.5 GT/s 62.5 Mhz 32 bits (40 bits) N/A 

2.5 GT/s 62.5 Mhz N/A  (80 bits) 
 

1 in 2 PCLKs 

2.5 GT/s 31.25 Mhz N/A  (80 bits) N/A 

5.0 GT/s 4000 Mhz 8 bits (10 bits) 1 in 8 PCLKs 

5.0 GT/s 2000 Mhz 8 bits (10 bits) 
 

1 in 4 PCLKs 

5.0 GT/s 1000 Mhz 8 bits (10 bits) 1 in 2 PCLKs 

                                                      
1 For block encoded modes, not all 10, 20, 40, or 80 bits are used.  See TxData and RxData signal 
descriptions for details. 
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5.0 GT/s 500 Mhz 8 bits (10 bits) N/A 

5.0 GT/s 500 Mhz 16 bits (20 bits) 1 in 2 PCLKs 

5.0 GT/s 250 Mhz 16 bits (20 bits) N/A 

5.0 GT/s 250 Mhz 32 bits (40 bits) 1 in 2 PCLKs 

5.0 GT/s 125 Mhz 32 bits (40 bits) N/A 

5.0 GT/s 125 Mhz N/A (80 bits) 1 in 2 PCLKs 

5.0 GT/s 62.5 Mhz N/A (80 bits) N/A 

8.0 GT/s 4000 Mhz 8 bits (10 bits) 1 in 4 PCLKs 

8.0 GT/s 2000 Mhz 8 bits (10 bits) 1 in 2 PCLKs 

8.0 GT/s 1000 Mhz 8 bits (10 bits) N/A 

8.0 GT/s 1000 Mhz 16 bits (20 bits) 1 in 2 PCLKs 

8.0 GT/s 500 Mhz 16 bits (20 bits) N/A 

8.0 GT/s  500 Mhz 32 bits (40 bits) 1 in 2 PCLKs 

8.0 GT/s  250 Mhz 32 bits (40 bits) N/A 

8.0 GT/s  250 Mhz N/A (80 bits) 1 in 2 PCLKs 

8.0 GT/s  125 Mhz N/A  (80 bits) N/A 

16.0 
GT/s 

4000 8 bits (10 bits) 1 in 2 PCLKs 

16.0 
GT/s  

2000 Mhz 8 bits (10 bits) N/A 

16.0 
GT/s  

1000 Mhz 16 bits (20 bits) N/A 

16.0 
GT/s  

500 Mhz 32 bits (40 bits) N/A 

16.0 
GT/s  

250 Mhz N/A (80 bits) N/A 

32 GT/s 4000 Mhz 8 bits (10 bits) N/A 

32 GT/s 2000 Mhz 16 bits (20 bits) N/A 

32 GT/s 1000 Mhz 32 bits (40 bits) N/A 

32 GT/s 500 Mhz N/A (80 bits) N/A 
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Table 3-2. PCI Express Mode (SerDes only) -- Possible RxCLK Rates and 
Data Widths 

 
Mode RxCLK Data Width 

2.5 GT/s 250 Mhz 10 bits 

2.5 GT/s 125 Mhz 20 bits 

2.5 GT/s 62.5 Mhz 40 bits 

2.5 GT/s 31.25 Mhz 80 bits 

5.0 GT/s 500 Mhz 10 bits 

5.0 GT/s 250 Mhz 20 bits 

5.0 GT/s 125 Mhz 40 bits 

5.0 GT/s 62.5 Mhz 80 bits 

8.0 GT/s 1000 Mhz 10 bits 

8.0 GT/s 500 Mhz 20 bits 

8.0 GT/s  250 Mhz 40 bits 

8.0 GT/s  125 Mhz 80 bits  

16.0 GT/s  2000 Mhz 10 bits 

16.0 GT/s  1000 Mhz 20 bits 

16.0 GT/s  500 Mhz 40 bits 

16.0 GT/s  250 Mhz 80 bits 

32 GT/s 4000 Mhz 10 bits 

32 GT/s 2000 Mhz 20 bits 

32 GT/s 1000 Mhz 40 bits 

32 GT/s 500 Mhz  80 bits 

 
 

Table 3-3. USB Mode – Possible PCLK or RxClk rates and data widths 
Mode PCLK or 

RxClk 
Original PIPE Data Width 
(SerDes Data Width) 

5.0 GT/s USB 125 Mhz 32 bits (40 bits) 
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Table 3-4.  SATA Mode – Possible PCLK rates and data widths 
Mode PCLK Original PIPE Data 

Width  (SerDes Data 
Width) 

TxDataValid/RxDataValid 
Strobe Rate 

1.5 GT/s SATA 600 Mhz 8 bits (10 bits) 1 in 4 PCLKs 

1.5 GT/s SATA  300 Mhz 8 bits (10 bits) 1 in 2 PCLKs 

1.5 GT/s SATA 150 Mhz 8 bits (10 bits) N/A 

1.5 GT/s SATA 75 Mhz 16 bits (20 bits) N/A 

1.5 GT/s SATA 37.5 Mhz 32 bits (40 bits) N/A 

3.0 GT/s SATA 300 Mhz 8 bits (10 bits) N/A 

3.0 GT/s SATA 150 Mhz 16 bits (20 bits) N/A 

3.0 GT/s SATA 75 Mhz 32 bits (40 bits) N/A 

3.0 GT/s SATA 600 Mhz 8 bits (10 bits) 1 in 2 PCLKs 

6.0 GT/s SATA 600 Mhz 8 bits (10 bits) N/A 

6.0 GT/s SATA 300 Mhz 16 bits (20 bits) N/A 

6.0 GT/s SATA 150 Mhz 32 bits (40 bits) N/A 

 
Note:  In SATA Mode if the PHY elasticity buffer is operating in nominal empty mode – then 
RxDataValid may also be used when the EB is empty and no data is available.   

 
Table 3-5. SATA Mode (SerDes only) – Possible RxCLK Rates and Data 
Widths 
Mode RxCLK Data Width 

1.5 GT/s SATA 150 Mhz 10 bits 

1.5 GT/s SATA 75 Mhz 20 bits 

1.5 GT/s SATA 37.5 Mhz 40 bits 

5.0 GT/s USB 250 Mhz 16 bits (20 bits) 
5.0 GT/s USB 500 Mhz 8 bits (10 bits) 
10.0 GT/s USB 312.5 Mhz 32 bits (40 bits) 
10.0 GT/s USB 625 Mhz 16 bits (20 bits) 
10.0 GT/s USB 1250 Mhz 8 bits (10 bits) 
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3.0 GT/s SATA 300 Mhz 10 bits 

3.0 GT/s SATA 150 Mhz 20 bits 

3.0 GT/s SATA 75 Mhz 40 bits 

6.0 GT/s SATA 600 Mhz 10 bits 

6.0 GT/s SATA 300 Mhz 20 bits 

6.0 GT/s SATA 150 Mhz 40 bits 

 
 

 
Table 3-6 shows possible PCLK and data width options for DisplayPort implementations.   

 
Table 3-6 DPTX and DPRX Mode – Possible PCLK or RxCLK Rates and Data 
Widths 

Mode PCLK/RxCLK Data Width 
1.62 Gbps DisplayPort 162 Mhz 10 bits 

81 Mhz 20 bits 
40.5 Mhz 40 bits 

2.16 Gbps DisplayPort (eDP) 216 Mhz 10 bits 
108 Mhz 20 bits 
54 Mhz 40 bits 

2.43 Gbps DisplayPort (eDP) 243 Mhz 10 bits 
 121.5 Mhz 20 bits 
 60.75 Mhz 40 bits 
2.7 Gbps DisplayPort 270 Mhz 10 bits 

135 Mhz 20 bits 
62.52 Mhz 40 bits 

3.24 Gbps DisplayPort (eDP) 324 Mhz 10 bits 
 162 Mhz 20 bits 
 81 Mhz 40 bits 
4.32 Gbps DisplayPort (eDP 432 Mhz 10 bits 
 216 Mhz 20 bits 
 108 Mhz 40 bits 
5.4 Gbps DisplayPort 540 Mhz 10 bits 

270 Mhz 20 bits 
135 Mhz 40 bits 

8.1 Gbps DisplayPort 810 Mhz 10 bits 
405 Mhz 20 bits 
202.5 Mhz 40 bits 
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Table 3-7. Converged IO Mode – Possible PCLK or RxCLK Rates and Data 
Widths 

Mode PCLK/RxCLK Data Width2 
10 GT/s Converged IO 1.25 Ghz 10 bits  

625 Mhz 20 bits 
312.5 Mhz 40 bits 

20 GT/s Converged IO 2.5 Ghz 10 bits 
1.25 Ghz 20 bits 
625 Mhz 40 bits 

 
 
 
Note:  When a MAC that implements the TxDataValid signal is using a mode that does not use 
TxDataValid the MAC shall keep TxDataValid asserted.  When a PHY that implements 
RxDataValid is in a mode that does not use RxDataValid the PHY shall keep RxDataValid 
asserted. 
 
There may be PIPE implementations that support multiples of the above configurations.  PHY 
implementations that support multiple configurations at the same rate must support the width and 
PCLK rate control signals.  A PHY that supports multiple rates in PCI Express Mode or SATA 
Mode or USB Mode must support configurations across all supported rates that are fixed PCLK 
rate.  A PHY that supports multiple rates in PCI Express Mode or SATA Mode must support 
configurations across all supported rates that are fixed data path width. 
 

                                                      
2 While the data widths are 10, 20, or 40 bits for consistency with other protocols, Converged IO 
only utilizes only 8 out of every 10 bits of data since it uses block encoding.  Refer to section 
6.1.1 for more details. 
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4 PCI Express, USB, and Converged IO PHY Functionality  
Figure 4-1 shows the functional block diagram of the PHY. The functional blocks shown are not 
intended to define the internal architecture or design of a compliant PHY but to serve as an aid for 
signal grouping. 
 

TX BLOCK

RX BLOCK

PLL

VariableCommand

64, 32, 16 or 
8

Variable

TxData
Tx Data
Related Signals

Status

64, 32, 16 or 8

Variable

RxData

Rx Data
Related Signals

CLK

Tx+, Tx-

Rx+, Rx-

Variable

PCLK (PCLK as PHY output mode only)
PCLK (PCLK as PHY input mode only)

 
Figure 4-1: PHY Functional Block Diagram 

 
Sections below provide descriptions of each of the blocks shown in Figure 4-1: PHY Functional 
Block Diagram. These blocks represent high-level functionality that is required to exist in the 
PHY implementation.  These descriptions and diagrams describe general architecture and 
behavioral characteristics.  Different implementations are possible and acceptable. 
 

4.1 Original PIPE Architecture 
4.1.1  Transmitter Block Diagram (2.5 and 5.0 GT/s) 
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x 8

x 10

x32 or x16 
or x8

TxCompliance 
(PCI Express Only)

Loopback path
from receiver

   

   

TxOnesZeroes (USB  Only)

 
Figure 4-2: Transmitter Block Diagram 

 
4.1.2 Transmitter Block Diagram (8.0/10/16 GT/s/32 GT/s) 

128b130b encoding

Parallel to Serial 

Transmitter Differential 
Driver

D+ D-

Data

TxDetectRx
TxElecIdle

Bit rate clk / 10

Optional 32,16->8

Bit rate clk (8/
10/16/32 GT/

s)

x 8
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x32 or x16 
or x8

TxSyncHeader
TxStartBlock

PCLK
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from receiver

TxMargin (PCIe 
only)
TxDeemph

TxDataSkip

 
Figure 4-3: Transmitter Block Diagram (8.0/10/16 GT/s) 

 
4.1.3 Receiver Block Diagram (2.5 and 5.0 GT/s) 
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Figure 4-4: Receiver Block Diagram 

 

4.1.4 Receiver Block Diagram (8.0/10.0/16/32 GT/s) 
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Figure 4-5: Receiver Block Diagram (8.0/10/16 GT/s) 

 
4.1.5 Clocking  

PLL

Bit Rate Clk
2.5, 5.0, 8.0, 

16.0 or 32 GT/s

CLK PCLK

Max PCLK

 
 

Figure 4-6: Clocking Block Diagram 

 

4.2 SerDes Architecture 
With the SerDes architecture, the PHY implements minimal digital logic compared to the original 
PIPE architecture.  Figure 4-7 shows the transmitter functionality implemented in the PHY.  The 
data received from the MAC goes through a parallel to serial converter before being driven out on 
differential wires.  Note that in the SerDes architecture, all loopback logic resides in the MAC. 
Figure 4-8 shows the receiver functionality implemented in the PHY.  The data received on the 
input differential wires goes through a serial to parallel converter before being forwarded to the 
MAC along with a recovered clock, RxCLK. 
 
4.2.1 SerDes Architecture: Transmitter Block Diagram 
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Parallel to Serial 

Transmitter Differential 
Driver

D+ D-

Data

TxDetectRx
TxElecIdle[3:0]

Optional 80, 40, 20->10

Bit rate clk

x 10

X80 or x40 
or x20 or 

x10

PCLK

TxMargin (PCIe 
only)

TxDeemph

TxDataValid

 

Figure 4-7.  SerDes Architecture: PHY Transmitter Block Diagram 
 
4.2.2 SerDes Architecture: Receiver Block Diagram 
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Differential Receiver

Clock Recovery 
Circuit

Data Recovery 
Circuit (DRC)

Serial to Parallel

Data 
x80 or x40 or

x20 or x10

PLL Clock

D+ D-

RxElecIdle

RxCLK

Recovered Bit 
Clock

RxValid

 

Figure 4-8. SerDes Architecture: PHY Receiver Block Diagram 

5 SATA PHY Functionality  
Figure 4-1 shows the functional block diagram of a SATA PHY. The functional blocks shown are 
not intended to define the internal architecture or design of a compliant PHY but to serve as an 
aid for signal grouping. 
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TX BLOCK

RX BLOCK

PLL
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32, 16 or 8

4, 2 or 1

TxData

TxDataK

Status Signals

32, 16 or 8

4, 2 or 1

RxData

RxDataK

CLK

Tx+, Tx-

Rx+, Rx-

PCLK

 
Figure 5-1: PHY Functional Block Diagram 

Sections below provide descriptions of each of the blocks shown in Figure 5-1. These blocks 
represent high-level functionality that is required to exist in the PHY implementation.  These 
descriptions and diagrams describe general architecture and behavioral characteristics.  Different 
implementations are possible and acceptable. 

5.1 Transmitter Block Diagram (1.5, 3.0,  and 6.0 GT/s) 

8b10b encoding

Parallel to Serial 

Transmitter Differential 
Driver

D+ D-

Data

TxDataK

TxDetectRx
TxElecIdle

Bit rate clk / 10

Optional 32,16->8

Bit rate clk (1.5G, 
3.0G or 6.0G)

x 8

x 10

X32 or x16 
or x8

PCLK

Loopback path
from receiver

 
Figure 5-2: Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s) 
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5.2 Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s) 

Serial to Parallel
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Clock Recovery 
Circuit 

RxElecIdle

Recovered 
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Status
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Figure 5-3: Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s) 

 
 
 
 

5.3 Clocking  
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PLL

Bit Rate Clk
1.5, 3.0 or 
6.0 GT/s

CLK

PCLK

 
Figure 5-4: Clocking Block Diagram 

6 PIPE Interface Signal Descriptions 
 
The PHY input and output signals are described in the following tables. Note that Input/Output is 
defined from the perspective of a PIPE compliant PHY component. Thus a signal described as an 
“Output” is driven by the PHY and a signal described as an “Input” is received by the PHY.  A 
basic description of each signal is provided.  More details on their operation and timing can be 
found in following sections.  All signals on the ‘parallel’ side of a PIPE implementation are 
synchronous with PCLK, with exceptions noted in the tables below.  In SerDes architecture, 
RxData is synchronous with RxCLK.  PHYs that only support SerDes architecture do not require 
the signals marked as “not used in the SerDes architecture”; however, PHYs that support both 
original PIPE and SerDes architecture must implement all the signals. 
 
Notes: For Converged IO and DisplayPort, the low speed side channel is not part of the PIPE 
definition; however the appendix does list DisplayPort AUX signals. 

6.1 PHY/MAC Interface Signals – Common for SerDes and Original PIPE 
This section describes signals that are applicable to both SerDes architecture and Original PIPE.  
Any deltas in usage between the two architectures are noted in the description. 
 
6.1.1 Data Interface 
Table 6-1. Transmit Data Interface Input Signals 
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Name Active 
Level Description Relevant 

Protocols 
Original PIPE: 
TxData[31:0] 
for 32-bit 
interface 
TxData[15:0] 
for 16-bit 
interface 
TxData[7:0] for 
8-bit interface 
 
SerDes arch: 
TxData[79:0] 
for 80-bit 
interface 
TxData[39:0] 
for 40-bit 
interface 
TxData[19:0] 
for 20-bit 
interface 
TxData[9:0] for 
10-bit interface 
 
 
 
 

N/A Parallel data input bus.   
 
For Original PIPE architecture, the 
TxData signal width options are 32, 16, 
and 8 bits.  For the 16-bit interface, 16 
bits represent 2 symbols of transmit 
data.  Bits [7:0] are the first symbol to 
be transmitted, and bits [15:8] are the 
second symbol.  For the 32-bit 
interface, 32 bits represent the 4 
symbols of transmit data.  Bits [23:16] 
are the third symbol to be transmitted, 
and bits [31:24] are the fourth symbol. 
Bit zero is the first to be transmitted. 
 
For SerDes architecture, the TxData 
signal width options are 80, 40, 20, 
and 10 bits.  For the 80-bit interface, 
80 bits represent 8 symbols of transmit 
data.  Bits [49:40], bits [59:50], 
bits[69:60], and bits[79:70] are the fifth, 
sixth, seventh, and eighth symbols, 
respectively.  For block encoded data3, 
only 8 bits out of each 10-bit slice are 
used, e.g. [7:0] represent byte0, [9:8] 
are reserved, [17:10] represent byte1, 
and [19:18] are reserved, etc. 

PCIe, SATA, 
USB, DisplayPort 
TX, Converged 
IO 

                                                      
3 For PCIe operating at 8 GT/s or higher link speed, Converged IO, and USB 10 GT/s link speed, 
the data bits are utilized as per the block encoded data description detailed in the tables above.  
For all other modes, all the data bits are utilized. 
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TxDataValid N/A PCI Express Mode and SATA Mode 
and USB Mode (original PIPE only) : 
This signal allows the MAC to instruct 
the PHY to ignore the data interface 
for one clock cycle. A value of one 
indicates the phy will use the data, a 
value of zero indicates the phy will not 
use the data.  

It is recommended that the MAC 
assert TxDataValid at all times 
when the PHY is in a mode that 
does not require the signal.  All PCI 
Express modes at 8 GT/s, 16 GT/s, 
and 32 GT/s and all USB modes at 
10 GT/s use TxDataValid.  Refer to 
Table 3-1, Table 3-2, and Table 3-3 
for a list of other modes that use 
TxDataValid.  Refer to section 8.27 
for details on USB usage; this 
signal is not applicable to USB 
SerDes architecture designs. 

PCIe, SATA, 
USB (original 
PIPE only)  

 

Table 6-2. Transmit Data Interface Output Signals 

Name Active 
Level Description 

Relevant 
Protocols 

Tx+, 
Tx- 

N/A The differential outputs from the PHY. All 
transmitters shall be AC coupled to the media. 
See section 4.3.1.2 of the PCI Express Base 
Specification or section 6.2.2 of the USB 3.1 
Specification.  

PCIe, SATA, 
USB, DisplayPort 
TX, Converged 
IO 

 

Table 6-3. Receive Data Interface Input Signals 

Name Active 
Level Description Relevant 

Protocols 
Rx+, Rx- N/A The differential inputs to the PHY.  PCIe, SATA, 

USB, DisplayPort 
RX, Converged 
IO 

 

Table 6-4. Receive Data Interface Output Signals 
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Name Active 
Level Description Relevant 

Protocols 
Original 
PIPE: 
RxData[31:0] 
for 32-bit 
interface 
RxData[15:0] 
for 16-bit 
interface or 
RxData[7:0] 
for 8-bit 
interface 
 
SerDes arch: 
RxData[79:0] 
for 80-bit 
interface 
RxData[39:0] 
for 40-bit 
interface 
RxData[19:0] 
for 20-bit 
interface or 
RxData[9:0] 
for 10-bit 
interface 

N/A Parallel data output bus. For 16-bit 
interface, 16 bits represents 2 symbols of 
receive data.  Bits [7:0] are the first symbol 
received, and bits [15:8] are the second 
symbol.  For the 32 bit interface, 32 bits 
represent the 4 symbols of receive data.  
Bits [23:16] are the third symbol received, 
and bits [31:24] are the fourth symbol 
received.  Bit zero is the first bit received. 
 
When the PHY is in a SATA mode, the first 
valid data following an ALIGN primitive 
must appear as byte 0 in the receive data. 
 
For SerDes architecture, the RxData signal 
width options are 80, 40, 20, and 10 bits. 
For the 80-bit interface, 80 bits represent 8 
symbols of receive data.  Bits [49:40], bits 
[59:50], bits[69:60], and bits[79:70] are the 
fifth, sixth, seventh, and eighth symbols, 
respectively.  For block encoded data4, 
only 8 bits out of each 10-bit slice are 
used, e.g. [7:0] represent byte0, [9:8] are 
reserved, [17:10] represent byte1, and 
[19:18] are reserved, etc. 

PCIe, SATA, 
USB, 
DisplayPort RX, 
Converged IO 

 
 
 
6.1.2 Command Interface 

Table 6-5. Command Interface Input Signals 

                                                      
4 For PCIe operating at 8 GT/s or higher link speed, Converged IO, and USB 10 GT/s link speed, 
the data bits are utilized as per the block encoded data description detailed in the tables above.  
For all other modes, all the data bits are utilized. 
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Name 
Acti
ve 

Lev
el 

Description 
Releva

nt 
Protoc

ols 
PHY Mode[3:0] N/A Selects PHY operating mode. 

Value Description 
0 PCI Express 
1 USB 
2 SATA 
3 DisplayPort 
4 Reserved 
5 Reserved 
6 Reserved 
7  Converged IO 
All 
others 

Reserved 

Implementation of this signal is not required for 
PHYs that only support only a single mode. 

PCIe, 
SATA, 
USB, 
Display
Port, 
Conver
ged IO 

DP_Mode_TX_
RX 

N/A This signal is used to distinguish between DPTX and 
DPRX when PHY Mode=0x3.  A value of  ‘0’ specifies 
DPTX; a value of ‘1’ specificies DPRX. 

Display
Port 

SerDesArch N/A This signal indicates whether SerDes architecture is 
enabled.  Displayport and Converged IO must always set 
this to ‘1’. 

PCIe, 
SATA, 
USB, 
Display
Port, 
Conver
ged IO 

SRISEnable Hig
h 

Used to tell the PHY to configure itself to support SRIS 
for PCIe.   
 
SRISEnable must be set by the MAC before the first 
receiver detection.  The PHY internally does sequencing 
and gates the exit to P0 with having setup for SRIS if 
SRISEnable is asserted. 
 
For PCLK as PHY output, this signal must be set before 
the PLL is configured. 

PCIe 
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TxDetectRx/ 
Loopback 

Hig
h 

Used to tell the PHY to begin a receiver detection 
operation or to begin loopback or to signal LFPS 
during P0 for USB Polling state.  Refer to Sections 
8.22 and 8.23 for details on the required values for 
all control signals to perform loopback and receiver 
detection operations and to signal Polling.LFPS.  
For receive detect in PHY power states where 
PCLK can be gated, this signal is asynchronous; in 
all other states, it is synchronous to PCLK. 
 
Converged IO Mode: Used to tell the PHY to signal 
LFPS. 
 
Sata Mode: 
Loopback support is optional for SATA PHYs.  
Loopback is only valid in Sata Mode when 
EncodeDecodeBypass is asserted.  The RX 
elasticity buffer must be active during loopback.  If 
the PHY runs out of data to transmit during 
loopback – it must transmit ALIGNs.   
 
TxDetectRX is not used in SATA mode. 
 

PCIe, 
SATA, 
USB 
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TxElecIdle[3:0] Hig
h 

Forces Tx output to electrical idle when asserted 
except in loopback. 
 
See Section 8.22 (PCI Express Mode) or Section 
8.23 (USB mode and Converged IO Mode) or 
Section 8.24 (SATA Mode) for the full description 
and usage of this pin. 
 
Note:  The MAC must always have TxDataValid 
asserted when TxElecIdle transitions to either 
asserted or deasserted; TxDataValid is a qualifier 
for TxElecIdle sampling. 
 
See section 8.3 for the definitions of PHY power 
states. 
 
For original PIPE architecture and for non-PCIe 
mode SerDes architecture, only bit 0 of this signal is 
used and all other bits are reserved. 
 
For SerDes architecture in PCIe mode, one bit is 
required per two symbols of interface data.  For 
example, for an eight symbol wide interface, bit 0 
would apply to symbols 0 and 1, bit 1 would apply 
to symbols 2 and 3, bit 2 would apply to symbols 4 
and 5, bit 3 would apply to symbols 6 and 7.  For 
narrower interfaces, unused bits of this signal are 
reserved.  This is due to EIOS truncation rules in 
section 4.2.4.2 of the PCIe 4.0 Base specification 
and due to the maximum time to transition to a valid 
Electrical Idle after sending an EIOS. 

PCIe, 
SATA 
USB, 
Conver
ged IO 

Reset# Low Resets the transmitter and receiver.  This signal is 
asynchronous. 
 
The PHY reports its default power state after reset 
as defined in section 8.2. 

PCIe, 
SATA, 
USB, 
Display
Port 
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PowerDown[3:
0] 

N/A Power up or down the transceiver. Power states 
PCI Express Mode: 

[3] [2] [1] [0] Description 
0 0 0 0 P0, normal operation 
0 0 0 1 P0s, low recovery time 

latency, power saving state 
0 0 1 0 P1, longer recovery time 

latency, lower power state 
0 0 1 1 P2, lowest power state 
0 1 0 0 POWER_STATE_4 Phy specific 
0 1 0 1 POWER_STATE_5 Phy specific 
0 1 1 0 POWER_STATE_6 Phy specific 
0 1 1 1 POWER_STATE_7 Phy specific 
1 0 0 0 POWER_STATE_8 Phy specific 
1 0 0 1 POWER_STATE_9 Phy specific 
1 0 1 0 POWER_STATE_10 Phy specific 
1 0 1 1 POWER_STATE_11 Phy specific 
1 1 0 0 POWER_STATE_12 Phy specific 
1 1 0 1 POWER_STATE_13 Phy specific 
1 1 1 0 POWER_STATE_14 Phy specific 
1 1 1 1 POWER_STATE_15 Phy specific 

In PCLK as PHY output mode, when transitioning 
from P2 to P1, the signaling is asynchronous (since 
PCLK is not running). 
 
A PIPE phy that supports PCI Express L1 PM 
Substates managed exclusively via this 
PowerDown signal must support at least one PHY 
specific power state meeting each of the 
requirements shown in the following table in 
addition to the legacy power states.  If the PHY 
supports multiple suitable states with different exit 
latencies it is the responsibility of the Mac to decide 
which states to use. 
 

PCLK 
State 

TX 
Common 
Mode 
State 

RxElecIdle 
Supported 

When to 
return 
PhyStatus 
when 
exiting? 

Exit Latency  
to P0 

Off Off No Before 
transmit 
common 
mode 
established 

Implementation 
Specific 

Off On No N/A Implementation 
Specific 

 
When managing L1 substates via sideband signals, 
the PHY must define at least one PowerDown 
encoding where PCLK can be turned off and 
TxCommonModeState and RxElecIdle are 

PCIe, 
USB, 
Conver
ged IO 
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controlled through TxCommonModeDisable and 
RxEIDetectDisable; in this case, the MAC must hold 
the PowerDown value constant when in L1 
substates. 
 
 
USB Mode and Converged IO Mode: 

[3] [2] [1] [0] Description 
0 0 0 0 P0, normal operation 
0 0 0 1 P1, low recovery time latency, 

power saving state 
0 0 1 0 P2, longer recovery time 

latency, lower power state 
0 0 1 1 P3, lowest power state 
0 1 0 0 POWER_STATE_4 Phy specific 
0 1 0 1 POWER_STATE_5 Phy specific 
0 1 1 0 POWER_STATE_6 Phy specific 
0 1 1 1 POWER_STATE_7 Phy specific 
1 0 0 0 POWER_STATE_8 Phy specific 
1 0 0 1 POWER_STATE_9 Phy specific 
1 0 1 0 POWER_STATE_10 Phy specific 
1 0 1 1 POWER_STATE_11 Phy specific 
1 1 0 0 POWER_STATE_12 Phy specific 
1 1 0 1 POWER_STATE_13 Phy specific 
1 1 1 0 POWER_STATE_14 Phy specific 
1 1 1 1 POWER_STATE_15 Phy specific 

When transitioning from P3 to P0, the signaling is 
asynchronous (since PCLK is not running). 
 
For USB, below are the characteristics of the power 
states that must be minimally implemented: 

PowerDown PCLK 
State 

TX 
Common 
Mode 
State 

Operations 

P0 On On Transmit/Receive 
high speed data 
Transmit/Receive 
LFPS 
Termination 
control 

P1 On On Transmit/Receive 
LFPS 
Termination 
control 

P2 On Off Receive LFPS 
Termination 
control 
Remote receiver 
detection 

P3 Off Off Receive LFPS 
Termination 
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control 
Remote receiver 
detection 

 
 

PowerDown[3:
0] 
Sata Mode 

N/A Sata Mode: 
 
Power up or down the transceiver. Power states 
 

[3] [2] [1] [0] Description 
0 0 0 0 POWER_STATE_0 Operational 

state 
0 0 0 1 POWER_STATE_1 Phy specific 
0 0 1 0 POWER_STATE_2 Phy specific 
0 0 1 1 POWER_STATE_3 Phy specific 
0 1 0 0 POWER_STATE_4 Phy specific 
0 1 0 1 POWER_STATE_5 Phy specific 
0 1 1 0 POWER_STATE_6 Phy specific 
0 1 1 1 POWER_STATE_7 Phy specific 
1 0 0 0 POWER_STATE_8 Phy specific 
1 0 0 1 POWER_STATE_9 Phy specific 
1 0 1 0 POWER_STATE_10 Phy specific 
1 0 1 1 POWER_STATE_11 Phy specific 
1 1 0 0 POWER_STATE_12 Phy specific 
1 1 0 1 POWER_STATE_13 Phy specific 
1 1 1 0 POWER_STATE_14 Phy specific 
1 1 1 1 POWER_STATE_15 Phy specific 

 
 
 
A PIPE compliant SATA PHY is recommended to support at least 4 
states other than POWER_STATE_0.  There must be at least one 
power state meeting each of the requirements shown in the following 
table 
 

PCLK State TX Common 
Mode State 

Exit Latency to 
POWER_STATE_0 

Off Off < 10 ms 
Off On < 10 us 
On On < 10 us 
On Off < 300 us 

 
Exit latency to POWER_STATE_0 is measured from when the MAC 
changes the Power down value to when the PHY deasserts PHY 
status.  The actual PHY latency must provide enough margin from the 
indicated limits to enable compliant device behavior per the SATA 
specification.  A MAC must map the available PHY states to SATA 
states.  
 
Note:  PLL shutdown is only possible if PowerDown is set to a state 
with PCLK off. 
 
 
 

SATA 
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PowerDown[3:
0] 
DisplayPort 
Mode 

N/A DisplayPort mode power states: 
 

[3] [2] [1] [0] Description 
0 0 0 0 POWER_STATE_0 

Operational state 
0 0 0 1 POWER_STATE_1 

Phy specific 
0 0 1 0 POWER_STATE_2 

Phy specific 
0 0 1 1 POWER_STATE_3 

Phy specific 
0 1 0 0 POWER_STATE_4 

Phy specific 
0 1 0 1 POWER_STATE_5 

Phy specific 
0 1 1 0 POWER_STATE_6 

Phy specific 
0 1 1 1 POWER_STATE_7 

Phy specific 
1 0 0 0 POWER_STATE_8 

Phy specific 
1 0 0 1 POWER_STATE_9 

Phy specific 
1 0 1 0 POWER_STATE_10 

Phy specific 
1 0 1 1 POWER_STATE_11 

Phy specific 
1 1 0 0 POWER_STATE_12 

Phy specific 
1 1 0 1 POWER_STATE_13 

Phy specific 
1 1 1 0 POWER_STATE_14 

Phy specific 
1 1 1 1 POWER_STATE_15 

Phy specific 
 
A PIPE compliant DPRX PHY is recommended to 
support the following power states, although the 
mapping to the above power state encodings is PHY 
implementation specific: 
 

Main 
Link RX 

Aux Link Exit 
Latency 

Required 

Enabled Enabled N/A Yes 
Disabled Enabled 

for 
differential 
signal 
monitoring 

<1ms Yes 

Disabled Enabled 
for 
differential 
signal 
monitoring 

<80ms No 

Disabled Enabled <0.5us Yes for 
eDP 

Display
Port 
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only 
Disabled Enabled <20us Yes for 

eDP 
only 

 
A PIPE compliant DPTX PHY is recommended to 
support the following power states, although the 
mapping to specific power state encodings is PHY 
implementation specific: (TBD: may want to specify exit 
latency) 

Main Link TX Aux Link DP_PWR 
Enabled Enabled Enabled 
Disabled Enabled Enabled 
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RxEIDetectDis
able 

Hig
h 

PCIe: 
Optionally implemented to facilitate PCIe L1 
substate management.  When asserted, this signal 
asynchronously disables the receiver Electrical Idle 
detect logic, forcing the RxElecIdle PHY output to a 
value of ‘1’.  If this signal transitions to deasserted 
after being asserted, the RxElecIdle output shall be 
forced to a high value until the Electrical Idle detect 
logic is functional. 
 
The PHY may choose to  support managing L1 
substates via this signal and the 
TxCommonModeDisable signal instead of the 
PowerDown[3:0] signal.  In this case, the 
PowerDown[3:0] signal must be held at a constant 
value through the L1 substate transitions. 
 
In addition to legacy states, the following are the 
minimum combinations required to be implemented 
by designs that support L1 substates:   

PC
LK 
Stat
e 

TX Common 
Mode State 

RxElecIdle 
Supported 

When 
to 
return 
PhySt
atus 
when 
exitin
g? 

Exit 
Latency  
to P0 

Off TxCommonMode
Disable = ‘1’ 

RxEIDetectDi
sable=’1’ 

Before 
transm
it 
comm
on 
mode 
establi
shed 

Impleme
ntation 
Specific 

Off TxCommonMode
Disable=’0’ 

RxEIDetectDi
sable=’1’ 

N/A Impleme
ntation 
Specific 

 
USB: 
This signal may be optionally implemented by the PHY 
to allow the MAC to disable the LFPS circuit to provide 
power savings.  The PHY datasheet specifies whether 
this usage is available. 

PCIe, 
USB 
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TxCommonMo
deDisable 

Hig
h 

Optionally implemented by the PHY to facilitate L1 
substate management.  When asserted, this signal 
asynchronously disables the transmitter DC 
common mode logic.  Note: The PHY may choose 
to support managing L1 substates via this signal 
and the RxEIDetectDisable signal instead of the 
PowerDown[3:0] signal. 
 
This signal is only valid when PowerDown is at a value 
that supports L1 substate management via 
TxCommonModeDisable and RxEIDetectDisable. 
 
This signal is only used by PHYs that support PCIe L1 
substates. 

PCIe 
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Rate[3:0] N/A Control the link signaling rate. 
 
PCI Express Mode: 

Value Description 
0 Use 2.5 GT/s signaling rate 
1 Use 5.0 GT/s signaling rate 
2 Use 8.0 GT/s signaling rate 
3 Use 16.0 GT/s signaling rate  
4 Use 32.0 GT/ signaling rate 
5 thru 
15 

Reserved 

 
Sata Mode: 

Value Description 
0 Use 1.5 GT/s signaling rate 
1 Use 3.0 GT/s signaling rate 
2 Use 6.0 GT/s signaling rate 
3 thru 
15 

Reserved 

 
USB Mode: 

Value Description 
0 Use 5.0 GT/s signaling rate 
1 Use 10.0 GT/s signaling rate 
2 Reserved 
3 thru 
15 

Reserved 

 
DisplayPort Mode: 
Value Description 
0 Use 1.62 Gbps signaling rate 
1 Use 2.7 Gbps signaling rate 
2 Use 5.4 Gbps signaling rate 
3  Use 8.1 Gbps signaling rate 
4 Use 2.16 Gbps signaling rate 
5 Use 2.43 Gbps signaling rate 
6 Use 3.24 Gbps signaling rate 
7 Use 4.32 Gbps signaling rate 
8 thru 
15 

Reserved 

 
Converged IO Mode: 

Value Description 
0 Use 10.0 GT/s signaling rate 
1 Use 20.0 GT/s signaling rate 
2 thru 
15 

Reserved 

 
PIPE implementations that only support one 

PCIe, 
SATA, 
USB, 
Display
Port, 
Conver
ged IO 
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signaling rate do not implement this signal. 
Width[1:0] N/A Controls the PIPE data path width.  For SerDes 

architecture, this applies only to the transmit side 
and RxWidth[1:0] controls the receive side. 
 
If EncodeDecodeBypass is ‘0’ 
Value Datapath Width 
0 8 bits 
1 16 bits 
2 32 bits 
3 Reserved 

 
If EncodeDecodeBypass is ‘1’ or in SerDes 
architecture 
Value Datapath Width 
0 10 bits 
1 20 bits 
2 40 bits 
3 80 bits (PCIe SerDes only) 

 
Note: PHYs that support greater than x4 link width 
must provide option of 32-bit data width or smaller. 
 
PIPE implementations that only support one option 
at each signaling rate do not implement this signal. 

PCIe, 
SATA, 
USB, 
Display
Port 
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PCLK Rate[4:0] N/A Control the PIPE PCLK rate 
 
SATA Mode: 
 
0 37.5 Mhz 
1 75    Mhz 
2 150  Mhz 
3 300  Mhz 
4 600  Mhrz 
All others Reserved 
 
PCI Express Mode: 
0 62.5  Mhz 
1 125   Mhz 
2 250   Mhz 
3 500   Mhz 
4 1000 Mhz 
5 2000 Mhz 
6 4000 Mhz 
All others Reserved 
 
USB Mode: 
0 125      Mhz 
1 250      Mhz 
2 312.5   Mhz (10 GT/s) 
3 500      Mhz 
4 625      Mhz (10 GT/s) 
5 1250    Mhz (10 GT/s) 
All others Reserved 
 
 
DisplayPort Mode: 
Value Rate 
0 40.5 Mhz 
1 62.52 Mhz 
2 81 Mhz 
3 135 Mhz 
4 162 Mhz 
5 202.5 Mhz 
6 270 Mhz 
7 405 Mhz 
8 540 Mhz 
9 810 Mhz 
10 54 Mhz 
11 60.75 Mhz 
12 108 Mhz 
13 121.5 Mhz 
14 160 Mhz 
15 216 Mhz 
16 243 Mhz 

PCIe, 
SATA, 
USB, 
Display
Port 
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17 324 Mhz 
18 432 Mhz 
All 
others 

Reserved 

 
Converged IO Mode:  
This signal is not used. 
 
PIPE implementations that do not support more 
than one PCLK rate for any analog signaling rate do 
not implement this signal. 
 

RXTermination Hig
h 

Controls presence of receiver terminations: 
Value Description 
0 Terminations removed 
1 Terminations present 

 
Implementation of this signal is only required for 
PHYs that support USB mode; this signal is optional 
for other protocols. 

USB, 
PCIe 
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RxStandby Low SATA Mode: 
 
Controls whether the PHY RX is active when the 
PHY is in any power state with PCLK on.   
0 – Active 
1 – Standby 
 
RxStandby is ignored when the PHY is in any 
power state where the high speed receiver is 
always off. 
 
PCI Express Mode: 
 
Controls whether the PHY RX is active when the 
PHY is in P0 or P0s.   
0 – Active 
1 – Standby 
 
RxStandby is ignored when the PHY is in states 
other than P0 or P0s. 
 
USB Mode and Converged IO Mode: 
 
Controls whether the PHY RX is active when the 
PHY is in any power state with PCLK on. 
0 – Active 
1 – Standby 
 
RxStandby is ignored when the PHY is in any 
power state where the high speed receiver is 
always off. 

PCIe, 
SATA, 
USB, 
Conver
ged IO 

 

Table 6-6. Command Interface Output Signals 
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Name 
Acti
ve 

Leve
l 

Description 
Relevant 
Protocols 

RefClkRequired
# 

Low This signal is deasserted by the PHY 
when the reference clock can be safely 
removed in low power states.   
 
This signal shall remain asserted low in 
all states except P2 and PowerDown 
states assigned to L1 substate support.  
While in P2 or L1 substate PowerDown 
states, the PHY deasserts this signal 
when it is ready for reference clock 
removal.  While in P2 or L1 substate 
PowerDown states, the PHY asserts this 
signal when it detects a P2 or L1 substate 
exit request. 
 
This signal is optionally implemented by 
the PHY.  The MAC is required to prevent 
CLKREQ# from being deasserted if this 
signal is asserted. 

PCIe 

RxStandbyStatus Low SATA Mode and PCI Express Mode and 
Converged IO Mode: 
 
The PHY uses this signal to indicate its 
RxStandby state. 
0 – Active 
1 – Standby 
 
RxStandbyStatus reflects the state of the 
high speed receiver.  The high speed 
receiver is always off in PHY states that 
do not provide PCLK.   
PCI Express Mode: 
RxStandbyStatus is undefined when the 
power state is P1 or P2. 
 
This signal is not applicable to USB 
mode. 

PCIe, SATA, 
Converged IO 
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6.1.3 Status Interface 
 

Table 6-7. Status Interface Input Signals 

Name Active 
Level Description Relevant 

Protocols 
PclkChangeAck High Only used when PCLK is a PHY input. 

Asserted by the MAC when a PCLK rate 
change or rate change or, if required, 
width change is complete and stable. 
 
After the MAC asserts PclkChangeAck 
the PHY responds by asserting 
PhyStatus for one cyle and de-asserts 
PclkChangeOk at the same time as 
PhyStatus.  The controller shall deassert 
PclkChangeAck when PclkChangeOk is 
sampled low. 
 
This signal is not used by any PhyMode that 
does not perform dynamic rate changes. 

PCIe, SATA, 
USB  

AsyncPowerCha
ngeAck 

High Only used when transitioning between 
two power states without PCLK.   
 
After the PHY asserts PhyStatus to 
acknowledge the power state change the 
MAC responds by asserting 
AsyncPowerChangeAck until it samples 
PhyStatus deasserted. 
 
Implementation of this signal is only 
required for PHYs that support PCI 
Express L1 PM Substates managed via 
the PowerDown signal. 

PCIe 
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Table 6-8. Status Interface Output Signals 
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Name 
Activ

e 
Leve

l 
Description 

Relevant 
Protocols 
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RxValid High Indicates symbol lock and valid 
data on RxData and RxDataK and 
further qualifies RxDataValid 
when used. 
 
PCI Express Mode at 8 GT/s and 
16 GT/s and 32 GT/s and USB 
Mode at 10 GT/s only: 
When BlockAlignControl=1: 
- RxValid indicates that the block 
aligner is conceptually in the 
“Aligned” state (see PCI Express 
or USB 3.1 Spec) 
- If the block aligner transitions 
“Aligned” -> “Unaligned” state 
RxValid can deassert anywhere 
within a block 
- If the block aligner transitions 
“Unaligned” -> “Aligned” state 
RxValid is asserted at the start of 
a block 
 
Note that a PHY is not required to 
force its block aligner to the 
unaligned state when 
BlockAlignControl transitions to 
one. 
When BlockAlignControl=0: 
- RxValid is constantly high 
indicating that the block aligner is 
conceptually in the “Locked” state 
(see PCI Express or USB 3.1 Spec). 
RxValid can be dropped on 
detecting and elastic buffer 
underflow or overflow. If de-
asserted it must not re-assert 
while BlockAlignControl  is de-
asserted. 
 
In the SerDes architecture, 
RxValid is used to indicate that 
the recovered clock is stable.  The 
MAC can start symbol or block 
lock after RxValid is asserted. 

PCIe, USB, SATA 
DisplayPort RX 
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PhyStatus High Used to communicate completion 
of several PHY functions including 
stable PCLK and/or Max PCLK 
(depending on clocking mode) 
after Reset# deassertion, power 
management state transitions, 
rate change, and receiver 
detection.  When this signal 
transitions during entry and exit 
from any PHY state where PCLK 
is not provided, then the signaling 
is asynchronous.  In error 
situations (where the PHY fails to 
assert PhyStatus) the MAC can 
take MAC-specific error recovery 
actions. 

PCIe, SATA, USB, 
DisplayPort, 
Converged IO 

RxElecIdle High Indicates receiver detection of an 
electrical idle. While deasserted 
with the PHY in P2 (PCI Express 
mode) or the PHY in P0, P1, P2, 
or P3 (USB Mode and Converged 
IO Mode), indicates detection of 
either: 
PCI Express Mode: a beacon. 
USB Mode and Converged IO 
Mode : LFPS   
This is an asynchronous signal.  
See RxEIDetectDisable for 
additional information. 
 
PCI Express Mode: 
It is required at the 5.0 GT/s, 8.0 
GT/s, 16 GT/s, and 32 GT/s rates 
that a MAC uses logic to detect 
electrical idle entry instead of 
relying on the RxElecIdle signal. 
 
 
Sata Mode: 
The time the signal is asserted 
must match the actual idle time on 
the analog bus within -16/+0 ns. 

PCIe, SATA, USB, 
Converged IO 
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RxStatus[2:0] 
 
 

N/A Encodes receiver status and error 
codes for the received data 
stream when receiving data.   

[
2
] 

[
1
] 

[
0
] 

Description 

0 0 0 Received data OK 
0 0 1 PCI Express Mode: 1 

SKP added 
USB Mode: 1 SKP 
Ordered Set added 
Sata Mode: 1 ALIGN 
added 
Asserted with first byte 
of Align that was 
added.  An align may 
only be added in 
conjunction with 
receiving one or more 
aligns in the data 
stream and only when 
the elasticity buffer is 
operating in half full 
mode 

0 1 0 PCI Express Mode: 1 
SKP removed 
USB Mode: 1 SKP 
Ordered Set removed 
SATA Mode: 1 or more 
ALIGNs removed 
This status is asserted 
with first non ALIGN 
byte following an 
ALIGN.  This status 
message is applicable 
to both EB buffer 
modes. 

0 1 1 PCI Express and USB 
Modes: 
Receiver detected 
SATA Mode: Misalign 
Signaled on the first 
symbol of an ALIGN 
that was received 
misaligned in elasticity 
buffer nominal half full 
mode.  Signaled on the 
first data following an 
align in elasticity buffer 
nominal empty mode. 

PCIe, SATA, USB 
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1 0 0 Both 8B/10B 
(128B/130B5) decode 
error and (optionally) 
Receive Disparity error  
Note:  This error is 
never reported if 
EncodeDecodeBypass 
is asserted. 

1 0 1 Elastic Buffer overflow 
1 1 0 Elastic Buffer 

underflow. 
This error code is not 
used if the elasticity 
buffer is operating in 
the nominal buffer 
empty mode.   

1 1 1 Receive disparity error 
(Reserved if Receive 
Disparity error is 
reported with code 
0b100) 
Not used if 
EncodeDecodeBypass 
is asserted. 
For USB3 Gen2, 
indicates “SKP 
Corrected”. 

 
The only status applicable to 
SerDes architecture is ‘Receiver 
detected’ (0x3). 

PowerPresent High USB Mode: Indicates the 
presence of VBUS. 
Implementation of this signal is 
only required for PHYs that 
support USB mode. 

USB 

                                                      
5 Disparity errors are not reported when the rate is 8.0 GT/s, 16 GT/s, or 32 GT/s. 
 
Errors in SKP ordered sets shall be reported by the PHY as 128/130 decode errors.  An error in a 
SKP ordered set shall be reported if there is an error in the first 4N+1 symbols of the skip ordered 
set. 
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PclkChangeOk High Only used when PCLK is a PHY 
input.  Asserted by the PHY when 
it is ready for the MAC to change 
the PCLK rate or Rate or, if 
required, width.  The PHY shall 
only assert this signal after the 
MAC has requested a PCLK rate 
change by changing PCLK_Rate 
or rate change by changing Rate 
or, if required, a width change by 
changing Width. 
 
This signal is not used for 
DisplayPort or Converged IO 
Mode. 

PCIe, SATA, USB  

 

6.1.4 Message Bus Interface 
 
The message bus interface provides a way to initiate and participate in non-latency sensitive PIPE 
operations using a small number of wires, and it enables future PIPE operations to be added 
without adding additional wires.  The use of this interface requires the device to be in a power 
state with PCLK running.  Control and status bits used for PIPE operations are mapped into 8-bit 
registers that are hosted in 12-bit address spaces in the PHY and the MAC.  The registers are 
accessed via read and write commands driven over the signals listed in Table 6-9.  These signals 
are synchronous with PCLK and are reset with Reset#.  The specific commands and framing of 
the transactions sent over the message bus interface are described in the following subsections.  
 
 

Table 6-9 Message Bus Interface Signals 
Name Direction Description 
M2P_MessageBus[7:0] Input The MAC multiplexes command, any 

required address, and any required data 
for sending read and write requests to 
access PHY PIPE registers and for 
sending read completion responses and 
write ack responses to PHY initiated 
requests. 

P2M_MessageBus[7:0] Output The PHY multiplexes command, any 
required address, and any required data 
for sending read and write requests to 
access MAC PIPE registers and for 
sending read completion responses and 
write ack responses to MAC initiated 
requests. 

 
6.1.4.1 Message Bus Interface Commands 
 
The 4-bit commands used for accessing the PIPE registers across the message bus are defined in 
Table 6-10.  A transaction consists of a command and any associated address and data, as 
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specified in the table.  The table also specifies the number of PCLK cycles that it takes to transfer 
the transaction across the message bus interface.  The order in which the bits are transferred 
across the interface are illustrated in Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4.  
 
To address the case where multiple PIPE interface signals can change on the same PCLK, the 
concept of write_uncommitted and write_committed is introduced. A series of 
write_uncommitted transactions followed by one write_committed transaction provides a 
mechanism by which all the uncommitted writes and the final committed write are executed in an 
atomic manner, thus taking effect during the same PCLK cycle.  
 
To enable the write_uncommitted command, designs must implement a write buffer in the PHY 
and the MAC, where each write buffer entry can accommodate the three bytes worth of 
information associated with each write transaction.  The minimum write buffer depth required is 
five; however, this number may increase in the future when new PIPE operations are mapped into 
the message bus interface. 
 

Table 6-10 Message Bus Commands 
Encoding Command Description  Required 

Fields 
Cycles to 
Transmit 

4’b0000 NOP Idle.  See Figure 6-1.  Command[3:0] 1 
4’b0001 write_uncommitted The current write should be 

saved off into a write buffer 
and its associated data 
values are updated into the 
relevant PIPE register at a 
future time when a 
write_committed is 
received.  This is useful for 
signals that must change in 
the same cycle but that are 
distributed among multiple 
registers.  See Figure 6-4.  

Command[3:0], 
Address[11:0], 
Data[7:0] 

3 

4’b0010 write_committed The current write as well as 
any previously 
uncommitted writes saved 
into the write buffer should 
be committed, i.e. their 
values should be updated 
into the PIPE registers.  
Once a write_committed is 
sent, no new writes, 
whether committed or 
uncommitted, may be sent 
until a write_ack is 
received.  See Figure 6-4.  

Command[3:0], 
Address[11:0], 
Data[7:0] 

3 

4’b0011 read Used to read contents of a 
PIPE register.  Only one 
read can be outstanding at a 
time in each direction.  See 

Command[3:0], 
Address[11:0] 

2 



PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures, 
ver 5.1 

©2007-2018 Intel Corporation – All rights reserved Page 66 of 161 
 

Figure 6-2.   
4’b0100 read completion Data response to a read.  

See Figure 6-3.   
Command[3:0], 
Data[7:0] 

2 

4’b0101 write_ack Used to acknowledge 
receipt of a 
write_committed and 
readiness to accept another 
write.  The ack is sent when 
the write buffer is flushed 
and the resulting PIPE 
operation is guaranteed to 
start in a deterministic 
amount of time.  Note: This 
does not provide 
confirmation that the PIPE 
operation triggered by the 
write has completed.  See 
Figure 6-1. 

Command[3:0] 1 

All others Reserved N/A N/A N/A 
  
 

 
 
 
 
 
 
 

  M2P/P2M_MessageBus 

Tim
e 

  7 6 5 4 3 2 1 0 
t Cmd[3:0] 0000b 

 

Figure 6-1. Command Only Message Bus Transaction Timing (NOP, 
write_ack) 

 
  M2P/P2M_MessageBus 

   7 6 5 4 3 2 1 0 

Tim
e 

t Cmd[3:0] Addr[11:8] 
t+1 Addr[7:0] 

 

Figure 6-2. Command+Address Message Bus Transaction Timing (Read) 
 
 

  M2P/P2M_MessageBus 

   7 6 5 4 3 2 1 0 
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Tim
e 

t Cmd[3:0] 0000b 
t+1 Data[7:0] 

 
Figure 6-3. Command+Data Message Bus Transaction Timing (Read 

completion) 
 
 

  M2P/P2M_MessageBus 

   7 6 5 4 3 2 1 0 

Tim
e 

t Cmd[3:0] Addr[11:8] 
t+1 Addr[7:0] 
t+2 Data[7:0] 

 

Figure 6-4. Command+Address+Data Message Bus Transaction Timing 
(Write_uncommitted, Write_committed) 

 
 
 
6.1.4.2 Message Bus Interface Framing 
 
The framing of transactions is implicitly derived by adhering to the following rules: 
 

1. All zeroes must be driven on the message bus when idle. 
2. An idle to non-idle transition indicates the start of a transaction; a new transaction can 

start immediately the cycle after the end of the previous transaction without an 
intervening idle. 

3. The number of cycles to transmit a transaction depends on the command and is 
specified in Table 6-10. 

4. The cycles associated with one transaction must be transferred in contiguous cycles. 
 

 
Figure 6-5 illustrates the framing of a couple of transactions on the message bus.  The start of the 
first transaction is inferred by the idle to non-idle transition.  The command is decoded as a write, 
which takes three cycles to transmit.  Since the cycle following the end of the write is non-idle, it 
is inferred to be the start of the next transaction, which is decoded to be another write that takes 
three cycles to transmit. 
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PCLK

Cmd[3:0], 
addr[11:8]

M2P_MessageBus[7:0] or
P2M_MessageBus[7:0]

addr[7:0] data[7:0]8'd0 = IDLE

Transition from IDLE 
to non-IDLE 

indicates start of 
transaction Write takes 3 cycles

Cmd[3:0], 
addr[11:8] addr[7:0]

Write takes 3 cycles

data[7:0]

 
Figure 6-5.  Message Bus Transaction Framing 

6.2 PHY/MAC Interface Signals – SerDes Architecture Only 
This section describes any signals for SerDes architecture that are required in addition to those 
defined in section 6.1. 
 
6.2.1 Data Interface 
 

Table 6-11. SerDes Only: Receive Data Interface Output Signals 

Name Active 
Level Description Relevant 

Protocols 
RxCLK Rising 

Edge 
This clock signal is only used in the 
SerDes architecture. 
 
Recovered clock used for RxData in the 
SerDes architecture.  

PCIe, USB, 
DisplayPort RX, 
Converged IO 

 
6.2.2 Command Interface 
Table 6-12. SerDes Only: Command Interface Input Signals 
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Name Active 
Level Description Relevant 

Protocols 
RxWidth[1:0] N/A This signal is only used in the SerDes 

architecture. 
 
Controls the PIPE receive data path width 
 
Value Datapath Width 
0 10 bits 
1 20 bits 
2 40 bits 
3 80 bits (PCIe SerDes only) 

 
Note: PHYs that support greater than x4 
link width must provide option of 32-bit data 
width or smaller. 
 
PIPE implementations that only support 
one option at each signaling rate do not 
implement this signal. 

PCIe, 
SATA, 
USB, 
DisplayPort 

 

6.3 PHY/MAC Interface Signals – Original PIPE Only 
This section describes signals for Original PIPE that are required in addition to those define in 
section 6.1. 
 
6.3.1 Data Interface 
Table 6-13. Original PIPE Only: Transmit Data Interface Input Signals 
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Name Active 
Level Description Relevant 

Protocols 
TxDataK[7:0] 
for 64-bit 
interface 
TxDataK[3:0] 
for 32-bit 
interface 
TxDataK[1:0]fo
r 16-bit 
interface 
TxDataK for 8-
bit interface 

N/A This signal is not used in the SerDes 
architecture. 
 
Data/Control for the symbols of 
transmit data.  For 64-bit interfaces, Bit 
0 corresponds to the low-byte of 
TxData and bit 7 corresponds to the 
upper byte.  For 32-bit interfaces, Bit 0 
corresponds to the low-byte of TxData, 
Bit3 corresponds to the upper byte.  
For 16-bit interfaces, Bit 0 corresponds 
to the low-byte of TxData, Bit 1 to the 
upper byte.  A value of zero indicates a 
data byte, a value of 1 indicates a 
control byte.   
 
Not used in PCI Express mode at 8 
GT/s, 16 GT/s, or 32 GT/s. 
Not used in USB mode at 10 GT/s. 
Not used in Converged IO mode. 
 

PCIe, SATA, 
USB 

TxStartBlock N/A This signal is not used in the SerDes 
architecture. 
 
PCI Express Mode and USB Mode:   
Only used at the 8.0 GT/s, 16 GT/s, 
and 32 GT/s PCI Express signaling 
rates and the 10 GT/s USB signaling 
rate.  This signals allow the MAC to tell 
the PHY the starting byte for a 128b 
block.  The starting byte for a 128b 
block must always start with byte 0 of 
the data interface. 
 

PCIe, USB 

 

Table 6-14. Original PIPE Only: Receive Data Interface Output Signals 



PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures, 
ver 5.1 

©2007-2018 Intel Corporation – All rights reserved Page 71 of 161 
 

Name Active 
Level Description Relevant 

Protocols 
RxDataK[3:0] 
for 32-bit 
interface 
RxDataK[1:0] 
for 16-bit 
interface 
RxDataK for 
8-bit 
interface 

N/A This signal is not used in the SerDes 
architecture. 
 
Data/Control bit for the symbols of receive 
data.  For 32-bit interfaces, Bit 0 
corresponds to the low-byte of RxData, 
Bit3 corresponds to the upper byte. For 16-
bit interface, Bit 0 corresponds to the low-
byte of RxData[15:0], Bit 1 to the upper 
byte.  A value of zero indicates a data byte; 
a value of 1 indicates a control byte. 
 
Not used in PCI Express mode at 8 GT/s, 
16 GT/s, or 32 GT/s or USB mode at 10 
GT/s or Converged IO mode. 
 
When the PHY is in a SATA mode, the first 
valid data following an ALIGN primitive 
must appear as byte 0 in the receive data. 

PCIe, SATA, 
USB 

RxDataValid N/A This signal is not used in the SerDes 
architecture. 
 
PCI Express Mode and SATA Mode and 
USB Mode: 
This signal allows the PHY to instruct the 
MAC to ignore the data interface for one 
clock cycle. A value of one indicates the 
MAC will use the data, a value of zero 
indicates the MAC will not use the data.   
RxDataValid shall not assert when RXvalid 
is de-asserted in PHY modes that require 
the use of RxDataValid.  If a PHY supports 
the RxDataValid signal it shall keep 
RxDataValid asserted when the PHY is in 
a mode that does not require the signal.  
The MAC may ignore RxDataValid when it 
is in a mode that does not require the 
signal. 

PCIe, SATA, 
USB 
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RxStartBlock N/A This signal is not used in the SerDes 
architecture. 
 
PCI Express Mode and USB Mode: 
Only used at the 8.0 GT/s, 16 GT/s, or 32 
GT/s PCI Express signaling rates and the 
10 GT/s USB signaling rate.  This signal 
allows the PHY to tell the MAC the starting 
byte for a 128b block. The starting byte for 
a 128b block must always start with byte 0 
of the data interface. 
 
Note:  If there is an invalid sync header 
decoded on RxSyncHeader[3:0] and block 
alignment is still present ( RxValid == 1), 
then the PHY will assert RxStartBlock with 
the invalid sync header on 
RxSyncHeader[3:0]  
 
RxStartBlock shall not assert when 
RxValid is de-asserted 
 

PCIe, USB 

 
6.3.2 Command Interface 

Table 6-15. Command Interface Input Signals 
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Name Active 
Level Description Relevant 

Protocols 
TxCompliance High This signal is not used in the SerDes 

architecture. 
 
PCI Express Mode: 
Sets the running disparity to negative.  
Used when transmitting the PCI 
Express compliance pattern. 
Implementation of this signal is only 
required for PHYs that support PCI 
Express mode.  This signal is 
sampled by TxDataValid. 

PCIe 

TxSyncHeader[3:0] N/A This signal is not used in the SerDes 
architecture. 
 
PCI Express Mode: 
Only the lower two bits ([1:0]) are 
utilized.  Provides the sync header for 
the PHY to use in the next 130b block.  
The PHY reads this value when the 
TXStartBlock signal is asserted. 
This signal is only used at the 8.0 
GT/s, 16 GT/s, and 32 GT/s signaling 
rates. 
USB Mode: 
Provides the sync header for the PHY 
to use in the next 132b block.  The 
PHY reads this value when the 
TXStartBlock signal is asserted. 
This signal is only used at the 10 GT/s 
signaling rate. 
 

PCIe, USB 

 

Table 6-16. Original PIPE Only: Command Interface Output Signals 
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Name 
Acti
ve 

Leve
l 

Description 
Relevant 
Protocols 

RxSyncHeader[3:
0] 

N/A This signal is not used in the SerDes 
architecture. 
 
PCI Express Mode: 
Only the lower two bits ([1:0]) are utilized.  
Provides the sync header for the MAC to 
use with the next 128b block.  The MAC 
reads this value when the RxStartBlock 
signal is asserted. 
This signal is only used at the 8.0 GT/s, 
16 GT/s, and 32 GT/s signaling rates. 
 
USB Mode: 
Provides the sync header for the MAC to 
use with the next 128b block.  The MAC 
reads this value when the RxStartBlock 
signal is asserted. 
This signal is only used at the 10.0 GT/s 
signaling rate. 
 
 
Note:  The PHY shall pass blocks and 
headers normally across the PIPE 
interface even if the decoded SyncHeader 
is invalid. 
 

PCIe, USB 
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Table 6-17.  Original PIPE only: Status Interface Output Signals 
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Name Active 
Level Description Relevant 

Protocols 
AlignDetect High This signal is not used in the SerDes 

architecture. 
 
Indicates receiver detection of an 
Align.     
A PHY is only required to assert this 
signal when the Elasticity Buffer is 
running in nominal empty mode.   
 
The PHY shall only toggle this signal 
after obtaining bit and symbol lock.   
 
Each ALIGN received shall map to 
AlignDetect being asserted for one 
PCLK.   
 
The spacing between PCLK pulses for 
ALIGNs should map analog spacing of 
received ALIGNs as closely as 
possible.  However there is no 
guarantee to have PCLK domain 
spacing between back to back 
AlignDetect pulses match the analog 
spacing exactly due to differences in 
the receive clock domain and the 
PCLK domain.   
 
For example: 
1.5 GT/s with 8-bit data path 
PCLK=150MHz, the nominal spacing 
is 4 PCLK’s. 
 
3.0 GT/s with 8-bit data path 
PCLK=300MHz, the nominal spacing 
is 4 PCLK’s. 
 
6.0 GT/s with 16-bit data path 
PCLK=300MHz, the nominal spacing 
is every other PCLK. 
 
Due to differences in the PCLK and 
receive clocks, the nominal spacing 
can be off by one PCLK in either 
direction.  In the example with PCLK 
rate being equal to Gen3 received 
clock rate, clock domain crossing 
could lead to AlignDetect being 
asserted for consecutive PCLK cycles 
without gap. 

SATA 
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6.4 External Signals – Common for SerDes and Original PIPE 
Table 6-18. External Input Signals 

Name 
Activ

e 
Level 

Description 
Relevant 
Protocols 

CLK Edge This differential Input is used to generate 
the bit-rate clock for the PHY transmitter 
and receiver.  Specs for this clock signal 
(frequency, jitter, …) are implementation 
dependent and must be specified for 
each implementation.  This clock may 
have a spread spectrum modulation. 

PCIe, 
SATA, USB, 
DisplayPort, 
Converged 
IO 

PCLK Rising 
Edge 

This signal is relevant for “PCLK as PHY 
Input” mode only. 
 
All data movement across the parallel 
interface is synchronized to this clock.  
This clock operates at a frequency set by 
PCLK Rate.  The rising edge of the clock 
is the reference for all signals.  Spread 
spectrum modulation on this clock is 
allowed. 

PCIe, 
SATA, USB, 
DisplayPort, 
Converged 
IO 
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Table 6-19. External Output Signals 
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Name Active 
Level Description Relevant 

Protocols 
PCLK Rising 

Edge 
This signal is relevant for “PCLK as PHY 
Input” mode only. 
 
All data movement across the parallel 
interface is synchronized to this clock.  
This clock operates at a frequency set by 
PCLK Rate.  The rising edge of the clock 
is the reference for all signals.  Spread 
spectrum modulation on this clock is 
allowed.   

PCIe, 
SATA, USB, 
DisplayPort, 
Converged 
IO 

Max PCLK Rising 
Edge 

Parallel interface data clock.  This fixed 
rate clock operates at the following rate: 
 
PCI Express Mode: 
 
Max rate supported Maximum Max PCLK 
2.5 GT/s                   250 MHz. 
5.0 GT/s                   500 MHz. 
8.0 GT/s                   1000 MHz. 
16.0 GT/s                 2000 MHz. 
32.0 GT/s                 4000 Mhz 
This clock is provided whenever PCLK is 
active. 
 
SATA Mode: 
Max rate supported Maximum Max PCLK 
1.5 GT/s                                  150 MHz. 
3.0 GT/s                                  300 MHz. 
6.0 GT/s                                  600 MHz. 
This clock is provided whenever PCLK is 
active. 
 
USB Mode: 
Max rate supported Maximum Max PCLK 
5.0   GT/s                                   500 MHz. 
10.0 GT/s                                 1250 MHz. 
This clock is provided whenever PCLK is 
active. 
 
 
Spread spectrum modulation on this 
clock is allowed. 
 
This signal is optional for most cases in 
“PCLK as PHY Output” mode and required 
for “PCLK as PHY Input” mode 
 

PCIe, 
SATA, USB, 
DisplayPort, 
Converged 
IO 
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DataBusWidth[1:
0] 

N/A This field reports the width of the data 
bus that the PHY is configured for.  
 
This field is optional. 
 
For Original PIPE architecture: 

[1] [0] Description 
0 0 32-bit mode 
0 1 16-bit mode 
1 0 8-bit mode 
1 1 Reserved 

 
 
For SerDes architecture: 

[1] [0] Description 
0 0 10-bit mode 
0 1 20-bit mode 
1 0 40-bit mode 
1 1 80-bit mode 

 

PCIe, 
SATA, USB, 
DisplayPort, 
Converged 
IO 

 
 

7 PIPE Message Bus Address Spaces 
The PIPE specification defines 12-bit address spaces to enable the message bus interface; the 
MAC and the PHY each implement unique 12-bit address spaces as shown in Figure 7-1.  These 
address spaces are used to host registers associated with certain PIPE operations.  The MAC and 
PHY access specific bits in the registers to initiate operations, to participate in handshakes, or to 
indicate status.  The MAC initiates requests on the message bus interface to access registers 
hosted in the PHY address space.  The PHY initiates requests on the message bus interface to 
access registers hosted in the MAC address space.   

Each 12-bit address space is divided into four main regions: receiver address region, transmitter 
address region, common address region, and vendor specific address region.  The receiver address 
region is used to configure and report status related to receiver operation; it spans the 1024KB 
region from 12’h000 to 12’h3FF and supports up to two receivers with 512KB allocated to each. 
The transmitter address region is used to configure and report status related to transmitter 
operation; it spans the 1024KB region from 12’h400 to 12’h7FF and supports up to two 
transmitters, TX1 and TX2, with a 512KB region associated with each.  The common address 
region hosts registers relevant to both receiver and transmitter operation; it spans the 1024KB 
region from 12’h800 to 12’hBFF and supports up two sets of Rx/Tx pairs with 512KB allocated 
toward the common registers for each pair.  The vendor specific address region is the 1024K 
region from 12’hC00 to 12’hFFF and enables individual vendors to define registers as needed 
outside of those defined in this PIPE specification. 

As noted above, the address space is defined to support configurable Rx/Tx pairs.  Up to two 
differential pairs are assumed to be operational at any one time.  Supported combinations are one 
Rx and one Tx pair, two Tx pairs, or two Rx pairs. 
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Figure 7-1. Message Bus Address Space 
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CMN
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Type-C Configurable
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The PCIe RX margining operations and elastic buffer depth are controlled via registers hosted in 
these address spaces.  Additionally, several legacy pipe control and status signals have been 
mapped into registers hosted in these address spaces. 

The following subsections define the PHY registers and the MAC registers.  Individual register 
fields are specified as required or optional.  In addition, each field has an attribute description of 
either level or 1-cycle assertion.  When a level field is written, the value written is maintained by 
the hardware until the next write to that field or until a reset occurs.  When a 1-cycle field is 
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written to assert the value high, the hardware maintains the assertion for only a single cycle and 
then automatically resets the value to zero on the next cycle. 

7.1 PHY Registers 
Table 7-1 lists the PHY registers and their associated address.  The details of each register are 
provided in the subsections below.   
 
To support configurable pairs, the same registers defined for RX1 are also defined for RX2, the 
same registers defined for TX1 are defined for TX2, and the same registers defined for CMN1 are 
defined for CMN2.  Only two differential pairs are active at a time based on configuration; valid 
combinations correspond to registers defined in RX1+TX1+CMN1, RX1+RX2+CMN1+CMN2, 
or TX1+TX2+CMN1+CMN2. 
 
A PHY that does not support configurable pairs only implements registers defined for RX1, TX1, 
and CMN1.   

Table 7-1 PHY Registers 
Byte Address Register Name Notes 
12’h0 RX1: RX Margin Control0   
12’h1 RX1: RX Margin Control1   
12’h2 RX1: Elastic Buffer Control N/A for SerDes Architecture 
12’h3 RX1: PHY RX Control0 N/A for SerDes Architecture 
12’h4 RX1: PHY RX Control1  
12’h5 RX1: PHY RX Control2  
12’h6 RX1: PHY RX Control3  
12’h7 RX1: Elastic Buffer Location Update Frequency N/A for SerDes Architecture 
12’h8 RX1: PHY RX Control4 N/A for SerDes Architecture 
12’h9-12’h1FF RX1: Reserved  
12’h200 to 
12’h3FF 

RX2: Same registers are defined in this region for 
RX2 as for RX1 above.  

 

12’h400 TX1: PHY TX Control0 N/A for SerDes Architecture 
12’h401 TX1: PHY TX Control1 N/A for SerDes Architecture 
12’h402 TX1: PHY TX Control2  
12’h403 TX1: PHY TX Control3  
12’h404 TX1: PHY TX Control4  
12’h405 TX1: PHY TX Control5  
12’h406 TX1: PHY TX Control6  
12’h407 TX1: PHY TX Control7  
12’h408 TX1: PHY TX Control8  
12’h409-
12’h5FF 

TX1: Reserved  

12’h600-
12’h7FF 

TX2: Same registers are defined in this region for 
TX2 as for TX1 above 

 

12’h800 CMN1: PHY Common Control0  N/A for SerDes Architecture 
12’h801-
12’h9FF 

CMN1: Reserved  

12’hA00 – 
12’BFF 

CMN2: Same registers are defined in this region for 
CMN2 as for CMN1 above 

 

12’hC00- VDR: Reserved  
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12’hFFF 
 
7.1.1 Address 0h: RX Margin Control0 
 
This register is used along with RX Margin Control1 to control PCIe Lane Margining at the 
Receiver. 
 

Bit Default Attribute Required Description 
[7:4] 0h N/A N/A Reserved 
[3] 0h 1-cycle PCIe 

(Optional) 
Sample Count Reset – This field is used to reset 
the ‘Sample Count[6:0]’ field of the RX Margin 
Status1 register.  

[2] 0h 1-cycle PCIe 
(Optional) 

Error Count Reset – This field is used to reset the 
‘Error Count[5:0]’ field of the RX Margin Status2 
register. 

[1] 0h Level PCIe Margin Voltage or Timing – This field is used to 
select between margining voltage (1‘b0) or 
margining timing (1’b1).  The value can be 
changed only when margining is stopped. 

[0] 0h Level PCIe Start Margin – This field is used to start and stop 
margining.  A transition from 1’b0 to 1’b1 starts 
the margining process.  A transition from 1’b1 to 
1’b0 stops the margining process. 

 
7.1.2 Address 1h: RX Margin Control1 
 
This register is used along with RX Margin Control0 to control PCIe RX margining. 
 

Bit Default Attribute Required Description 
[7] 0h Level PCIe Margin Direction – This field is used to control 

time or voltage direction for margining.  For timing 
margining, this field steps time left (1’b0) or right 
(1’b1).6  For voltage margining, this field steps 
voltage up (1’b0) or down (1’b1).  This value can be 
changed only when margining is stopped.  This field 
should by ignored by PHYs that do not support 
individual time or voltage margining as advertised in 
the PHY datasheet. 

[6:0] 0h Level PCIe Margin Offset – This field is used to change the 
margin offset a number of steps from the default 
position.  This value can be changed even during the 
margining process. 

 
7.1.3 Address 2h: Elastic Buffer Control 
 
This register is used to control the elastic buffer depth, enabling the controller to optimize latency 
in nominal half full mode.  The ability to control elastic buffer depth is an optional feature that 

                                                      
6 Note: This is reversed from the timing margining direction convention used in the PCI Express 
Base Specification. 
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may be especially beneficial for retimers operating in PCIe SRIS mode. 
 

Bit Default Attribute Required Description 
[7:0] 0h Level PCIe 

(optional) 
Elastic Buffer Depth Control – This field is used 
to set the elastic buffer depth.  The MAC must 
choose from the supported values advertised in the 
PHY datasheet.  This value can only be changed 
during transmission of TS1 ordered sets.  The PHY 
performs the adjustment as quickly as possible 
without waiting for SKPs.  The PHY signals 
completion of elastic buffer depth adjustment by 
setting the Elastic Buffer Status register. 
 
Note: This field is not used in the SerDes 
architecture. 

 
7.1.4 Address 3h: PHY RX Control0 
 
This register is used to control receiver functionality. 
 

Bit Default Attribute Required Description 
[7:2] 0h N/A N/A Reserved 
[1] 0h Level PCIe, 

USB, 
SATA, 
Converged 
IO 

RxPolarity -- This field is used to control polarity 
inversion on the received data. 

Value Description 
0 PHY does no polarity inversion 
1 PHY does polarity inversion 

 
Note: This field is not used in the SerDes 
architecture. 

[0] 0h Level PCIe 
(optional), 
SATA 
(optional), 
USB 
(optional) 

Elasticity Buffer Mode -- This field is used to 
select the Elasticity Buffer operating mode. 

Value Description 
0 Nominal Half Full Buffer mode 
1 Nominal Empty Buffer Mode 

 
This field can only be changed when the receiver is 
OFF and Pclk is running, e.g. P0 with RXStandby 
asserted or P1. 
 
This field is not valid when TxDetectRx/Loopback 
is asserted.  The PHY is responsible for switching 
to Nominal Half Full Buffer mode when loopback 
slave is requested. The PCS is responsible for 
making stream switch and abiding by PCIE base 
spec rules for slave loopback stream switching, e.g. 
switch on 10b boundary in 8b/10b modes, etc. 
 
Note: This field is not used in the SerDes 
architecture. 
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7.1.5 Address 4h: PHY RX Control1 
 
This register is used to control receiver functionality. 
 

Bit Default Attribute Required Description 
[7:1] 0h N/A N/A Reserved 
[0] 0h Level USB RxEqTraining – This field is set to 1’b1 to instruct 

the receiver to bypass normal operation to perform 
equalization training.  While performing training the 
state of the RxData interface is undefined. 

 
7.1.6 Address 5h: PHY RX Control2 
 
This register is used to control receiver functionality. 
 

Bit Default Attribute Required Description 
[7:3] 0h N/A N/A Reserved 
[2:0] 0h N/A N/A Reserved 

 
7.1.7 Address 6h: PHY RX Control3 
 
This register is used to control receiver functionality. 
 

Bit Default Attribute Required Description 
[7:3] 0h N/A N/A Reserved 
[2] 0h Level PCIe InvalidRequest – This field is used to indicate 

that the Link Evaluation feedback requested a 
link partner TX EQ setting that was out of 
range.  The MAC sets this bit to ‘1’ when it 
detects an out of range error locally based on 
calculated link partner transmitter coefficients 
based on the last valid link equalization 
feedback or it receives a NACK response from 
the link partner.  The MAC resets this bit to ‘0’ 
the next time it asserts RxEQEval.  When a 
MAC sets this bit, it shall subsequently ask the 
PHY to perform an RxEQ evaluation using the 
last valid setting a second time.   
 
This field is only applicable at the 8.0 GT/s, 16 
GT/s, and 32 GT/s  signaling rates. 

[1] 0h Level PCIe, 
Converged IO, 
DisplayPort 
RX (optional) 

RxEqInProgress – This field is used by the 
MAC to indicate when link equalization 
evaluation is in progress. 
 
The PHY may optionally use this field to 
enable and disable functionality that is only 
needed during link equalization evaluations. 
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For PCIe: 
The MAC sets this bit to ‘1’ at the same time as 
it sets RxEqEval to ‘1’ in phase 2 or phase 3 of 
the link equalization process.  The MAC resets 
this bit to ‘0’ at the end of phase 2 or phase 3. 
 

[0] 0h Level PCIe, 
Converged IO, 
DisplayPort 
RX (optional) 

RxEqEval  -- This field is set to ‘1’ by the 
MAC to instruct the PHY to start evaluation of 
the far end transmitter TX EQ settings. 
 
For PCI Express, this field is only used at the 
8.0 GT/s, 16 GT/s, and 32 GT/s signaling rates. 

 
 
7.1.8 Address 7h: Elastic Buffer Location Update Frequency 

Bit Default Attribute Required Description 
[7:0] 5h Level No ElasticBufferLocationUpdateFrequency  -- This 

field specifies the maximum update frequency to the 
ElasticBufferLocation field; the frequency of update 
should not exceed 16*N symbol times, where N is 
the value programmed in this register. 
 
Note: This field is not used in the SerDes 
architecture. 

 
7.1.9 Address 8h: PHY RX Control4 
 
This register is used to control receiver functionality. 
 

Bit Default Attribute Required Description 
[7:2] 0h N/A N/A Reserved 
[1] 0h 1-cycle PCIe, 

USB 
ElasticBufferResetControl – When asserted, this 
signal causes the PHY to initiate an EB reset 
sequence.  See section 8.15.3.1 for details.  
 
Note: This field is not used in the SerDes 
architecture 

[0] 0h Level PCIe, 
USB 

BlockAlignControl -- This field controls whether 
the PHY performs block alignment.  When 
BlockAlignControl=0 the PHY disables searching 
for EIEOS (PCIe)/SYNC OS (USB) on a bit 
boundary.  When BlockAlignControl = 1 the PHY 
enables searching for EIEOS(PCIe)/SYNC OS 
(USB) on a bit boundary.   
 
A MAC shall set BlockAlignControl to the same 
value for all active lanes in a link.  A MAC shall set 
BlockAlignControl to ‘0’ when in a datastream and 
shall set it to ‘1’ otherwise. 
This field is only used at the PCI Express 8.0 GT/s, 
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16 GT/s, and 32 GT/s signaling rates and at the USB 
10.0 GT/s signaling rate. 
 
When the PHY is in Loopback Slave mode it 
ignores BlockAlignControl and is responsible for 
maintaining alignment.  
 
Note: This field is not used in the SerDes 
architecture. 

 
 
 
7.1.10 Address 400h: PHY TX Control0 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:2] 0h N/A N/A Reserved 
[1:0] 0h Level SATA TX Pattern[1:0] – This field controls which pattern 

the PHY sends at the Gen 1 rate when sending OOB 
or initialization signaling.  The PHY transmits this 
pattern at the Gen 1 rate regardless of what rate the 
PHY is configured at. 
 
0  ALIGN 
1  D24.3 
2  D10.2 
3  Reserved 
 
See Section 8.24 for a more detailed description of 
the usage of these pins. 
 
Note: This field is not used in the SerDes 
architecture. 

 
7.1.11 Address 401h: PHY TX Control1 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:1] 0h N/A N/A Reserved 
[0] 0h Level USB TxOnesZeros – This field is used when transmitting 

USB compliance patterns CP7 or CP8.  When this 
field is set, the transmitter to transmit an alternating 
sequence of 50-250 ones and 50-250 zeros – 
regardless of the state of the TxData interface.  This 
field is only applicable to 8b/10b modes. 
 
Note: This field is not used in the SerDes 
architecture. 
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7.1.12 Address 402h: PHY TX Control2 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 1h Level PCIe, 

USB, 
Converged 
IO 

TxDeemph[5:0] – This field is part of 
TxDeemph[17:0], which selects transmitter de-
emphasis. 
 
PCI Express Mode, when the rate is 2.5 or 5.0 
GT/s: 
 

Value Description 
0 -6dB de-emphasis 
1 -3.5dB de-emphasis 
2 No de-emphasis 
3 Reserved 

 
PIPE implementations that only support 2.5 GT/s 
do not implement this field.  PIPE PHY 
implementations that do not support low swing are 
not required to support the no-de-emphasis mode. 
 
PCI Express Mode, when the rate is 8.0 GT/s, 16 
GT/s, or 32 GT/s: 
     [5:0]            C-1 
     [11:6]          C0 
     [17:12]        C+1 
 
USB Mode, when the rate is 10.0 GT/s: 
     [5:0]            C-1 
     [11:6]          C0 
     [17:12]        C+1 
 
The field is not defined for USB Mode when the 
rate is 5.0 GT/s 
 
Converged IO Mode, when the rate is 10 GT/s or 
20 GT/s: 
     [5:0]            C-1 
     [11:6]          C0 
     [17:12]        C+1 
 
Note: The MAC must ensure that only supported 
values are used for TxDeemph.  In cases where the 
implementation is required to keep track of TX 
coefficients from previous states, this shall be done 
by the MAC. 
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7.1.13 Address 403h: PHY TX Control3 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe, USB, 

Converged IO 
TxDeemph[11:6] -- This field is part of 
TxDeemph[17:0], which selects transmitter de-
emphasis.  See TxDeemph[5:0] for detailed 
description. 
 

 
7.1.14 Address 404h: PHY TX Control4 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe, USB, 

Converged IO 
TxDeemph[17:12] -- This field is part of 
TxDeemph[17:0], which selects transmitter de-
emphasis.  See TxDeemph[5:0] for detailed 
description.  

 
7.1.15 Address 405h: PHY TX Control5 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7] 0h 1-cycle PCIe GetLocalPresetCoefficients – This field is used to 

request a preset to co-efficient mapping for the 
preset on LocalPresetIndex[5:0]  to coefficients on 
LocalTxPresetCoefficient[17:0] 
 
Maximum Response time of PHY is 128 nSec. 
 
Note.  A MAC can make this request any time after 
reset.  
 
Note. This field is only used with a PHY that 
requires dynamic preset coefficient updates 

[6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalPresetIndex[5:0] – This field is used to 

indicate the index for the local PHY preset 
coefficients requested by the MAC. 
 
The preset index value is encoded as follows: 
 
000000b – 8 GT/s Preset P0. 
000001b – 8 GT/s Preset P1. 
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000010b – 8 GT/s Preset P2. 
000011b – 8 GT/s Preset P3. 
000100b – 8 GT/s Preset P4. 
000101b – 8 GT/s Preset P5. 
000110b – 8 GT/s Preset P6. 
000111b – 8 GT/s Preset P7. 
001000b – 8 GT/s Preset P8. 
001001b – 8 GT/s Preset P9. 
001010b – 8 GT/s Preset P10. 
001011b – 16 GT/s Preset P0 
001100b – 16 GT/s Preset P1 
001101b – 16 GT/s Preset P2 
001110b – 16 GT/s Preset P3 
001111b – 16 GT/s Preset P4 
010000b – 16 GT/s Preset P5 
010001b – 16 GT/s Preset P6 
010010b – 16 GT/s Preset P7 
010011b – 16 GT/s Preset P8 
010100b – 16 GT/s Preset P9 
010101b – 16 GT/s Preset P10 
010110b – 32 GT/s Preset P0 
010111b – 32 GT/s Preset P1 
011000b – 32 GT/s Preset P2 
011001b – 32 GT/s Preset P3 
011010b – 32 GT/s Preset P4 
011011b – 32 GT/s Preset P5 
011100b – 32 GT/s Preset P6 
011101b – 32 GT/s Preset P7 
011110b – 32 GT/s Preset P8 
011111b – 32 GT/s Preset P9 
100000b – 32 GT/s Preset P10 
All others -- Reserved 
 
This field is only used with a PHY that requires 
dynamic preset coefficient updates. 

 
7.1.16 Address 406h: PHY TX Control6 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe FS[5:0]  -- This field reflects the FS value 

advertised by the link partner.  The MAC shall only 
change this value when a new FS value is captured 
during link training.   A PHY may optionally 
consider this value when deciding how long to 
evaluate TX equalization settings of the link partner. 
The MAC shall only change this field when a new 
FS value is captured during link training or if there 
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is a rate change.  The MAC shall drive the relevant 8 
GT/s values when the operational rate is 8 GT/s, it 
shall drive the relevant 16 GT/s values when the 
operational rate is 16 GT/s, and it shall drive the 
relevant 32 GT/s values when the operational rate is 
32 GT/s. 

 
 
7.1.17 Address 407h: PHY TX Control7 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LF[5:0] – This field reflects the LF value advertised 

by the link partner.  The MAC shall only change this 
value when a new LF value is captured during link 
training or when there is a rate change.  A PHY may 
optionally consider this value when deciding how 
long to evaluate TX equalization settings of the link 
partner. 
The MAC shall drive the relevant 8 GT/s values 
when the operational rate is 8 GT/s, it shall drive the 
relevant 16 GT/s values when the operational rate is 
16 GT/s, and it shall drive the relevant 32 GT/s 
values when the operational rate is 32 GT/s. 

 
7.1.18 Address 408h: PHY TX Control8 
 
This register is used to control transmitter functionality. 
 

Bit Defaul
t 

Attribut
e 

Require
d 

Description 

[7:4
] 

0h N/A N/A Reserved 

[3] 0h Level PCIe TxSwing – This field controls transmitter voltage 
swing level. 

Value Description 
0 Full swing 
1 Low swing (optional) 

 
Implementation of this signal is optional if only Full 
swing is supported. 
This field is not used at the 8.0 GT/s, 16 GT/s, or 32 
GT/s signaling rates. 

[2:0
] 

0h Level PCIe TxMargin[2:0] -- This field selects transmitter 
voltage levels. 
 

[2] [1] [0] Description 
0 0 0 TxMargin value 0 = Normal 
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operating range 
0 0 1 TxMargin value 1 = 800-1200mV 

for Full swing* OR 
400-700mV for Half swing*  

0 1 0 TxMargin value 2 = required and 
vendor defined 

0 1 1 TxMargin value 3 = required and 
vendor defined 

1 0 0 TxMargin value 4 = required and 
200-400mV for Full swing* OR 
100-200mV for Half swing* if the 
last value or vendor defined 

1 0 1 TxMargin value 5 = optional and 
200-400mV for Full swing* OR 
100-200mV for Half swing* if the 
last value OR vendor defined OR 
Reserved if no other values 
supported 

1 1 0 TxMargin value 6 = optional and 
200-400mV for Full swing* OR 
100-200mV for Half swing* if the 
last value OR vendor defined OR 
Reserved if no other values 
supported 

1 1 1 TxMargin value 7 = optional and 
200-400mV for Full swing* OR 
100-200mV for Half swing* if the 
last value OR Reserved if no other 
values supported 

 
PIPE implementations that only support PCI Express 
mode and the 2.5GT/s signaling rate do not 
implement this field. 

 
7.1.19 Address 409h: PHY TX Control9 
 
This register is used to control transmitter functionality. 
 

Bit Default Attribute Required Description 
[7:0] 0h N/A N/A Reserved (original contents moved to RX Control4) 

 
7.1.20 Address 800h: PHY Common Control0 
 
This register is used to control functionality relevant to both the receiver and the transmitter 
functionality. 
 

Bit Default Attribute Required Description 
[7:1] 0h N/A N/A Reserved 
[0] 0h Level PCIe 

(optional), 
EncodeDecodeBypass -- This field controls 
whether the PHY performs 8b/10b (or 
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USB 
(optional), 
SATA 

128b/13xb) encode and decode. 
0 – Encode/decode performed normally by the 
PHY. 
1 – Encode/decode bypassed. 
 
The MAC can only change this signal during 
reset or in a power state other than 
POWER_STATE_0 (SATA Mode) or P0 (PCI 
Express Mode). 
 
SATA Mode: 
. 
 
When EncodeDecodeBypass is one the TxDataK 
and RxDataK interfaces are not used and the data 
bus width is 10, 20, or 40 bits. 
 
PCI Express Mode and USB Mode: 
 
When EncodeDecodeBypass is one the TxDataK 
and RxDataK interfaces are not used.  The data 
bus width is 10, 20, or 40 bits if rate is 2.5 or 5.0 
GT/s.  The data bus width is 8, 16, or 32 bits if 
the rate is 8.0 GT/s, 16 GT/s, or 32 GT/s (PCI 
Express) or 10 GT/s (USB).  The TxStartBlock 
and RxStartBlock signals are not used.  
 
Note: This field is not used in the SerDes 
architecture. 

 

7.2 MAC Registers 
Table 7-2 lists the MAC registers and their associated address.  The details of each register are 
provided in the subsections below.  
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Table 7-2 MAC Registers 
Byte Address Register Name Notes 

12’h0 RX1: RX Margin Status0  

12’h1 RX1: RX Margin Status1  

12’h2 RX1: RX Margin Status2  

12’h3 RX1: Elastic Buffer Status N/A for SerDes 
Architecture 

12’h4 RX1: Elastic Buffer Location N/A for SerDes 
Architecture 

12’h5 RX1: Reserved  

12’h6 RX1: RX Status0  

12’h7 RX1: RX Status1  

12’h8 RX1: RX Status2  

12’h9 RX1: RX Status3  

12’hA RX1: RX Link Evaluation Status0  

12’hB RX1: RX Link Evaluation Status1  

12’hC RX1: RX Status 4  

12’hD RX1: RX Status 5  

12’hE-12’h1FF RX1: Reserved  

12’h200 to 
12’h3FF 

RX2: Same registers are defined in this region for 
RX2 as for RX1 above. 

.  

12’h400 TX1: TX Status0  

12’h401 TX1: TX Status1  

12’h402 TX1: TX Status2  

12’h403-
12’h5FF 

TX1: Reserved  

12’h600-
12’h7FF 

TX2: Same registers are defined in this region for 
TX2 as for TX1 above 

 

12’h800-
12’h9FF 

CMN1: Reserved  

12’hA00-
12’hBFF 

CMN2: Reserved  

12’hC00-
12’hFFF 

VDR: Reserved  

 

7.2.1 Address 0h: RX Margin Status0 
Bit Default Attribute Required Description 
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[7:2] 0h N/A N/A Reserved 
[1] 0h 1-cycle PCIe 

(optional) 
Margin Nak – This field is used by the PHY to 
indicate that a voltage margin request corresponds 
to an unsupported offset that falls within the 
advertised range.  This field may be asserted in 
response to a change to the ‘Start Margin’ field or 
‘Margin Offset[6:0]’ field or ‘Margin Direction’ 
field during voltage margining only.  This field is 
only written once per committed write affecting 
either of the above three fields.  When this field is 
set, the ‘Margin Status’ should not be set.  The 
design must support the minimum voltage offset 
requirement stated in the PCIe base specification. 
Note: If the voltage margin offset requested falls 
outside of the PHY advertised range, the PHY is not 
required to communicate a NAK by setting this 
field; this is assumed to be a MAC error and PHY 
behavior is undefined. 

[0] 0h 1-cycle PCIe Margin Status – This field is used by the PHY to 
acknowledge a valid change to the ‘Start Margin’ 
field or the ‘Margin Offset[6:0]’ field.  This field is 
only written once per committed write affecting 
either of the above two fields.   For example, if both 
‘Start Margin’ and ‘Margin Offset[6:0]’ are 
changed, but one is changed with an uncommitted 
write and one is changed with a committed write, 
this ‘Margin Status’ field is only written once to 
acknowledge both changes. 

 
7.2.2 Address 1h: RX Margin Status1 

Bit Default Attribute Required Description 
[7] 0h N/A N/A Reserved 
[6:0] 0h Level PCIe 

(optional) 
Sample Count – This field indicates the number of 
bits that have been margined and can increment 
only when ‘Start Margin’ is asserted.  The value of 
this field is 3*log2(number of bits margined).  This 
field stops incrementing when the ‘Error Count’ 
saturates.  This field only resets on a PIPE reset or 
when the MAC writes to the ‘Sample Count Reset’ 
bit in the RX Margin Control1 register.  This field is 
only required if the Sampling Rate is not reported in 
the PHY datasheet.  If used, this field must be 
updated by the PHY every time the associated value 
changes; implementations may collapse multiple 
updates into a single write only to avoid creating a 
backlog of writes. 

 
7.2.3  Address 2h: RX Margin Status2 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
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[5:0] 0h Level PCIe 
(optional) 

Error Count – This field is only required if errors 
do not happen in the data stream and thus an 
independent error sampler is implemented in the 
PHY.  This field is used by the PHY to report actual 
bit errors to the MAC.  This field can increment 
only when ‘Start Margin’ is asserted.  This field 
only resets on a PIPE reset or when the MAC writes 
to the ‘Error Count Reset’ bit in the RX Margin 
Control1 register.  If used, this field must be 
updated by the PHY every time the associated value 
changes; implementations may collapse multiple 
updates into a single write to avoid creating a 
backlog of writes. 

 
7.2.4 Address 3h: Elastic Buffer Status 

Bit Default Attribute Required Description 
[7:1] 0h N/A N/A Reserved 
[0] 0h 1-cycle PCIe 

(optional) 
Elastic Buffer Status – The PHY sets this status 
bit to 1’b1 when it has completed its elastic buffer 
depth adjustment to the value specified in the 
Elastic Buffer Control register. 
 
Note: This field is not used in the SerDes 
architecture. 

 
7.2.5 Address 4h: Elastic Buffer Location 

Bit Default Attribute Required Description 
[7:0] 0h Level PCIe 

(optional), 
USB 
(optional) 

ElasticBufferLocation  -- This field reflects the 
number of entries currently in the elastic buffer. 
 
Whenever the number of entries in the elastic 
buffer changes the PHY schedules an update to 
this register, with the frequency of update not to 
exceed that programmed in the 
ElasticBufferLocationUpdateFrequency field. 
 
Note: This field is not used in the SerDes 
architecture. 

 
7.2.6 Address 5h: Reserved 

Bit Default Attribute Required Description 
[7:0] 0h N/A N/A Reserved 

 
7.2.7 Address 6h: RX Status0 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalFS[5:0] -- This field reflects the FS value for 

the PHY.  These signals are only used by a PHY that 
requires dynamic preset coefficient updates.  The FS 
value is valid for 8 GT/s. 
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This field shall be updated by the PHY before 
PhyStatus deasserts after RESET# and before the 
first PhyStatus pulse after a rate change to 8 GT/s or 
in response to GetLocalPresetCoefficients when 
LocalPresetIndex[5:0] < 11. 

 
7.2.8 Address 7h: RX Status1 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalLF[5:0] -- This field reflects the LF value for 

the PHY.  This signal is only used by a PHY that 
requires dynamic preset coefficient updates.  The LF 
value is valid for 8GT/s. 
 
LocalLF[5:0] must updated whenever LocalFS[5:0] 
is updated 

 
7.2.9 Address 8h: RX Status2 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG4FS[5:0] This field reflects the FS value for 

the PHY.  These signals are only used by a PHY that 
requires dynamic preset coefficient updates.  The FS 
value is valid for 16 GT/s. 
 
This field shall be updated by the PHY before the 
first PhyStatus pulse after a rate change to 16 GT/s 
or in response to GetLocalPresetCoefficients when 
LocalPresetIndex[5:0] > 10 and <=21. 

 
7.2.10 Address 9h: RX Status3 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG4LF[5:0] This field reflects the LF value for 

the PHY.  This signal is only used by a PHY that 
requires dynamic preset coefficient updates.  The LF 
value is valid for 16 GT/s. 
 
LocalG4LF[5:0] must be sampled whenever 
LocalG4FS[5:0] is sampled. 

 
 
 
7.2.11 Address Ah: RX Link Evaluation Status0 

Bit Default Attribute Required Description 
[7:0] 0h Level PCIe, 

Converged 
IO, 
DisplayPort 

LinkEvaluationFeedbackFigureMerit[7:0] – 
This field provides the PHY link equalization 
evaluation Figure of Merit value.  The value is 
encoded as an unsigned integer from 0 to 255.  
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RX 
(optional) 

An encoding of 0 is the worst, and an encoding of 
255 is the best. 
 
A PHY does not update this field if it is does not 
provide link equalization evaluation feedback 
using the Figure of Merit format. 
 
For PCIe, this field is only used at the 8.0 GT/s, 
16 GT/s, and 32 GT/s signaling rates. 
 
Note: The write_committed associated with an 
update to this field indicates that the RxEqEval 
has completed.  

 
7.2.12 Address Bh: RX Link Evaluation Status1 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LinkEvaluationFeedbackDirectionChange[5:0] -- 

This field provides the link equalization evaluation 
feedback in the direction change format.  Feedback 
is provided for each coefficient: 
 
[1:0] C-1 
[3:2] C0 
[5:4] C1 
 
The feedback value for each coefficient is encoded 
as follows: 
 
00 - No change 
01 – Increment 
10 – Decrement 
11 - Reserved 
 
A PHY does not update this field if it is does not 
provide link equalization evaluation feedback using 
the Direction Change format. 
 
Note:  In 8.0 GT/s mode the MAC shall ignore the 
C0 value and use the correct value per the PCI 
Express specification. 
 
These signals are only used at the 8.0 GT/s, 16 GT/s, 
and 32 GT/s signaling rates.   
 
Note that C-1  and C1 are encoded as the absolute 
value of the actual FIR coefficient and thus 
incrementing or decrementing either value refers to 
the magnitude of the actual FIR coefficient. 
For example, if C-1  is 000001b the FIR coefficient 
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is negative one and a request to increment C-1 will 
increase it in the direction of 000002b which 
decreases the FIR coefficient.   
 

Note: The write_committed associated with an 
update to this field indicates that the RxEqEval has 
completed. 

  
7.2.13 Address Ch: RX Status4 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG5FS[5:0] This field reflects the FS value for 

the PHY.  These signals are only used by a PHY that 
requires dynamic preset coefficient updates.  The FS 
value is valid for 32 GT/s. 
 
This field shall be updated by the PHY before the 
first PhyStatus pulse after a rate change to 32 GT/s 
or in response to GetLocalPresetCoefficients when 
LocalPresetIndex[5:0] > 21 and <=32. 

 
7.2.14 Address Dh: RX Status5 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG5LF[5:0] This field reflects the LF value for 

the PHY.  This signal is only used by a PHY that 
requires dynamic preset coefficient updates.  The LF 
value is valid for 32 GT/s. 
 
LocalG5LF[5:0] must be sampled whenever 
LocalG5FS[5:0] is sampled. 

 
 
 
7.2.15 Address 400h: TX Status0 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h level PCIe LocalTxPresetCoefficients[5:0]  -- This field forms 

part of LocalTxPresetCoefficients[17:0], which are 
the coefficients for the preset on the 
LocalPresetIndex[5:0] after a  
GetLocalPresetCoeffcients request: 
 
[5:0] C-1 
[11:6] C0 
[17:12] C+1 

 
 
The MAC will reflect these coefficient values on the 
TxDeemph bus when MAC wishes to apply this 
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preset.   
 
These field is only updated by a PHY that requires 
dynamic preset coefficient updates 

 
7.2.16 Address 401h: TX Status1 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h level PCIe LocalTxPresetCoefficients[11:6] -- This field 

forms part of LocalTxPresetCoefficients[17:0], 
which are the coefficients for the preset on the 
LocalPresetIndex[5:0] after a  
GetLocalPresetCoeffcients request.  See 
LocalTxPresetCoefficients[5:0] description for 
details. 

 
7.2.17 Address 402h: TX Status2 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h level PCIe LocalTxPresetCoefficients[17:12]  ] -- This field 

forms part of LocalTxPresetCoefficients[17:0], 
which are the coefficients for the preset on the 
LocalPresetIndex[5:0] after a  
GetLocalPresetCoeffcients request.  See 
LocalTxPresetCoefficients[5:0] description for 
details. 

 
 
7.2.18 Address 403h: TX Status3 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalFS[5:0] -- This field reflects the FS value for 

the PHY.  These signals are only used by a PHY that 
requires dynamic preset coefficient updates.  The FS 
value is valid for 8 GT/s. 
 
This field shall be updated by the PHY before 
PhyStatus deasserts after RESET# and before the 
first PhyStatus pulse after a rate change to 8 GT/s or 
in response to GetLocalPresetCoefficients when 
LocalPresetIndex[5:0] < 11. 

 
7.2.19 Address 404h: TX Status4 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalLF[5:0] -- This field reflects the LF value for 

the PHY.  This signal is only used by a PHY that 
requires dynamic preset coefficient updates.  The LF 
value is valid for 8GT/s. 
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LocalLF[5:0] must updated whenever LocalFS[5:0] 
is updated 

 
7.2.20 Address 405h: TX Status5 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG4FS[5:0] This field reflects the FS value for 

the PHY.  These signals are only used by a PHY that 
requires dynamic preset coefficient updates.  The FS 
value is valid for 16 GT/s. 
 
This field shall be updated by the PHY before the 
first PhyStatus pulse after a rate change to 16 GT/s 
or in response to GetLocalPresetCoefficients when 
LocalPresetIndex[5:0] > 10 and <=21. 

 
7.2.21 Address 406h: TX Status6 

Bit Default Attribute Required Description 
[7:6] 0h N/A N/A Reserved 
[5:0] 0h Level PCIe LocalG4LF[5:0] This field reflects the LF value for 

the PHY.  This signal is only used by a PHY that 
requires dynamic preset coefficient updates.  The LF 
value is valid for 16 GT/s. 
 
LocalG4LF[5:0] must be sampled whenever 
LocalG4FS[5:0] is sampled. 

 

8 PIPE Operational Behavior 
 

8.1 Clocking 
There are three clock signals used by the PHY Interface component.  The first (CLK) is a 
reference clock that the PHY uses to generate internal bit rate clocks for transmitting and 
receiving data.  The specifications for this signal are implementation dependent and must be fully 
specified by vendors.  The specifications may vary for different operating modes of the PHY.  
This clock may have spread spectrum modulation that matches a system reference clock (for 
example, the spread spectrum modulation could come from REFCLK from the Card Electro-
Mechanical Specification). 
 
The second clock (PCLK) is an output from the PHY in “PCLK as PHY Output” mode and an 
input to each PHY lane in “PCLK as PHY Input ” mode and is the parallel interface clock used to 
synchronize data transfers across the parallel interface.  This clock runs at a rate dependent on the 
Rate, PCLK Rate, and PHY Mode control inputs and data interface width.  The rising edge of this 
clock is the reference point.  This clock may also have spread spectrum modulation.  CLK and 
PCLK must be sourced from the same reference clock and must contain the same clocking 
characteristics, i.e. mesochronous with each other. 
 
The third clock (MAX PCLK) is a constant frequency clock with a frequency determined by the 
maximum signaling rate supported by the PHY and is only required in “PCLK as PHY Input ” 
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mode or in all modes for a PHY that supports PCI Express at 8GT/s or higher maximum speed.  
The Max PCLK value should be set to the maximum PCLK supported by the PHY. 
 
8.1.1 Clocking Topologies 
 
This section describes some clocking topologies that are compatible with PIPE.  Figure 8-1 shows 
PCLK as a PHY output.  This topology is only applicable for legacy PIPE implementations and is 
not supported for PCIe Gen5 designs, Converged IO or Displayport.  Figure 8-2 shows PCLK as 
a PHY input with the PLL residing in the PHY; the PHY provides a source for PCLK, in this case 
MAX PCLK) that is mesochronous to the PHY’s bit rate clock.  Figure 8-3 shows PCLK as a 
PHY input with the PLL that provides the PCLK source residing outside of the PHY; the 
reference clock for PLL that sources the bit rate clock and the PLL that provides the PCLK 
source must be the same.  Figure 8-4 shows CLK as a PHY input with a single PLL that provides 
the source for PCLK as well as for the bit rate clock. 
 

Figure 8-1. PCLK as PHY output 
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Figure 8-2. PCLK as PHY Input w/PHY owned PLL 

 
 

Figure 8-3. PCLK as PHY Input w/External PLL and PHY PLL 

 
 



PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures, 
ver 5.1 

©2007-2018 Intel Corporation – All rights reserved Page 104 of 161 
 

Figure 8-4. PCLK as PHY Input with External PLL 

 

8.2 Reset 
When the MAC wants to reset the PHY (e.g.; initial power on), the MAC must hold the PHY in 
reset until power and CLK to the PHY are stable.  For PCLK as PHY output, the PHY signals that 
PCLK and/or Max PCLK are valid (i.e. PCLK and/or Max PCLK has been running at its 
operational frequency for at least one clock) and the PHY is in the specified power state by the 
deassertion of PhyStatus after the MAC has stopped holding the PHY in reset.  The MAC must 
not perform any operational sequences until PhyStatus is returned for the Reset# deassertion.  
While Reset# is asserted the MAC should have TxDetectRx/Loopback deasserted, TxElecIdle 
asserted, TxCompliance deasserted,  PowerDown = P1 (PCI Express mode) or PowerDown = P2 
(USB Mode) or PowerDown set to the default value reported by the PHY (SATA Mode), PHY 
Mode set to the desired PHY operating mode, and Rate set to 2.5GT/s signaling rate for a PHY in 
PCI Express mode or 5.0 GT/s or 10 GT/s (highest supported) for a PHY in USB mode or any 
rate supported by the PHY in SATA mode.  The state of TxSwing during Reset# assertion is 
implementation specific.  RxTermination assertion in USB mode is implementation specific. 
 

 
Figure 8-5.  Reset# Deassertion and PhyStatus for PCLK as PHY Output 

PCLK running at any frequency less than or
equal to final operational frequency

Reset

PCLK

Reset#

PhyStatus
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8.3 Power Management – PCI Express Mode 
The power management signals allow the PHY to minimize power consumption.  The PHY must 
meet all timing constraints provided in the PCI Express Base Specification regarding clock 
recovery and link training for the various power states.  The PHY must also meet all terminations 
requirements for transmitters and receivers. 
 
Four standard power states are defined, P0, P0s, P1, and P2.  P0 state is the normal operational 
state for the PHY.  When directed from P0 to a lower power state, the PHY can immediately take 
whatever power saving measures are appropriate.  A PHY is allowed to implement additional 
PHY specific power states; L1 substate support requires implementation of additional PHY 
specific power states.  A MAC may use any of the PHY specific states as long as the PCI Express 
base specification requirements are still met.  
 
In states P0, P0s and P1, PCLK  is required to be kept operational.  For all state transitions 
between these three states and any PHY specific states where PCLK is operational, the PHY 
indicates successful transition into the designated power state by a single cycle assertion of 
PhyStatus.  Transitions into and out of P2 or a PHY specific state where PCLK is not operational 
are described below.  For all power state transitions, the MAC must not begin any operational 
sequences or further power state transitions until the PHY has indicated that the initial state 
transition is completed. 
 
Mapping of PHY power states to states in the Link Training and Status State Machine (LTSSM) 
found in the base specification are included below.  A MAC may alternately use PHY specific 
states as long as the base specification requirements are still met. 
 
• P0 state:  All internal clocks in the PHY are operational.  P0 is the only state where the PHY 

transmits and receives PCI Express signaling. 
P0 is the appropriate PHY power management state for most states in the Link Training and 
Status State Machine (LTSSM).  Exceptions are listed below for each lower power PHY 
state. 

• P0s state:  PCLK must stay operational.  The MAC may move the PHY to this state only 
when the transmit channel is idle.   
P0s state can be used when the transmitter is in state Tx_L0s.Idle. 

While the PHY is in either P0 or P0s power states, if the receiver is detecting an electrical 
idle, the receiver portion of the PHY can take appropriate power saving measures.  Note that 
the PHY must be capable of obtaining bit and symbol lock within the PHY-specified time 
(N_FTS with/without common clock) upon resumption of signaling on the receive channel.  
This requirement only applies if the receiver had previously been bit and symbol locked 
while in P0 or P0s states. 

• P1 state:  Selected internal clocks in the PHY can be turned off.  PCLK must stay operational.  
The MAC will move the PHY to this state only when both transmit and receive channels are 
idle.  The PHY must not indicate successful entry into P1 (by asserting PhyStatus) until 
PCLK is stable and the operating DC common mode voltage is stable and within 
specification (as per the base spec).  
P1 can be used for the Disabled state, all Detect states, and L1.Idle state (only if L1 substates 
are not supported) of the Link Training and Status State Machine (LTSSM). 
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• P2 state:  Selected internal clocks in the PHY can be turned off.  The parallel interface is in 
an asynchronous mode and PCLK is turned off.  P2 can be used for the L1.Idle, L2.Idle and 
L2.TransmitWake states of the Link Training and Status State Machine (LTSSM). 

  
PCLK as PHY Output:  When transitioning into P2, the PHY must assert PhyStatus before PCLK 
is turned off and then deassert PhyStatus when PCLK is fully off and when the PHY is in the P2 
state.  When transitioning out of P2, the PHY asserts PhyStatus as soon as possible and leaves it 
asserted until after PCLK is stable.   
 
PCLK as PHY Input:  When transitioning into P2, the PHY must assert PhyStatus for one input 
PCLK cycle when it is ready for PCLK to be removed.  When transitioning out of P2, the PHY 
must assert PhyStatus for one input PCLK cycle as soon as possible once it has transitioned to P0 
and is ready for operation. 
 
When transitioning out of a state that does not provide PCLK to another state that does not 
provide PCLK, the PHY asserts PhyStatus as soon as the PHY state transition is complete and 
and leaves it asserted until the MAC asserts AsyncPowerChangeAck.  Once the MAC asserts 
AsyncPowerChangeAck the PHY deasserts PhyStatus.   
 
 
PHYs should be implemented to minimize power consumption during P2 as this is when the 
device will have to operate within Vaux power limits (as described in the PCI Express Base 
Specification). 
 

 P0  P2

 P2 Entry

PCLK 

PowerDown

PhyStatus

 

 P2  P1

 P2 Exit

PCLK 

PowerDown

PhyStatus

 

Figure 8-6 PCI Express P2 Entry and Exit with PCLK as PHY Output 
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PCLK

PhyStatus

PowerDown P0 P2 (for PCI Express Mode) P0

 

Figure 8-7 PCI Express P2 Entry and Exit with PCLK as PHY Input 
There is a limited set of legal power state transitions that a MAC can ask the PHY to make.  
Those legal transitions are: P0 to P0s, P0 to P1, P0 to P2, P0s to P0, P1 to P0, and P2 to P0.  The 
base spec also describes what causes those state transitions. 

Transitions to and from any pair of PHY power states including at least one PHY specific power 
state are also allowed by PIPE (unless otherwise prohibited).  However, a MAC must ensure that 
PCI Express specification timing requirements are met. 

For L1 substate entry, the PHY must support a state where PCLK is disabled, REFCLK can be 
removed, and RX electrical idle and TX common mode are on; this can be P2 or a P2-like state.  
Figure 8-4 illustrates how a transition into and out of an L1 substate could occur.  P2 or a P2-like 
state maps to L1.Idle; and PhyStatus and AsyncPowerChangeAck signals are used as described 
earlier in this section.  Alternatively, the PHY may implement L1 substate management using a 
single PowerDown[3:0] encoding augmented with the RxEIDetectDisable and 
TxCommonModeDisable signals; the PowerDown state must remain constant across L1 substate 
transitions when this alternative mechanism is used.  Using distinct PowerDown[3:0] encodings 
to define the L1 substates allows flexibility to specify different exit latencies; while using 
RxEIDetectDisable and TxCommonModeDisable may eliminate the need to do a handshake with 
AsyncPowerChangeAck.  The PHY may support either mechanism or both; this capability must 
be advertised in the PHY datasheet.  The sideband mechanism of L1 substate management via 
RxEIDetectDisable and TxCommonModeDisable requires PCLK as PHY input mode. 
 
 

Ref Clk

PCLK

PowerDown[3:0]

PhyStatus

AsyncPowerChangeAck

Active Inactive Active

Active Inactive Active

P0 P2 or P2-like state L1.1/L1.2 state P2 or P2-like state P1 or P0

 

Figure 8-8. L1 SubState Entry and Exit with PCLK as PHY Output 

8.4 Power Management – USB Mode 
The power management signals allow the PHY to minimize power consumption.  The PHY must 
meet all timing constraints provided in the USB 3.1 Specification regarding clock recovery and 
link training for the various power states.  The PHY must also meet all termination requirements 
for transmitters and receivers. 
 
Four power states are defined, P0, P1, P2, and P3.  The P0 state is the normal operational state for 
the PHY.  When directed from P0 to a lower power state, the PHY can immediately take 
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whatever power saving measures are appropriate.   
 
In states P0, P1 and P2, the PCLK must be kept operational.  For all state transitions between 
these three states, the PHY indicates successful transition into the designated power state by a 
single cycle assertion of PhyStatus.  Transitions into and out of P3 are described below.  For all 
power state transitions, the MAC must not begin any operational sequences or further power state 
transitions until the PHY has indicated that the initial state transition is completed. 
 
Mapping of PHY power states to states in the Link Training and Status State Machine found in 
the USB specification are included below. A MAC may alternately use PHY specific states as 
long as the base specification requirements are still met. 
 
• P0 state:  All internal clocks in the PHY are operational.  P0 is the only state where the PHY 

transmits and receives USB signaling. 
P0 is the appropriate PHY power management state for all cases where the link is in U0 and 
all other link state except those listed below for P1, P2, and P3. 

• P1 state:  PCLK must stay operational.  The MAC will move the PHY to this state only when 
the PHY is transmitting idles and receiving idles.  The P1 state can be used for the U1 link 
state. 

• P2 state:  Selected internal clocks in the PHY can be turned off.  PCLK must stay operational.  
The MAC will move the PHY to this state only when both transmit and receive channels are 
idle.  The PHY must not indicate successful entry into P2 (by asserting PhyStatus) until 
PCLK is stable and the operating DC common mode voltage is stable and within 
specification (as per the base spec).  

• P2 can be used for the U2, Rx.Detect, and SS.Inactive. 
• P3 state:  Selected internal clocks in the PHY can be turned off.  The parallel interface is in 

an asynchronous mode and PCLK output is turned off.   
 
PCLK as PHY Output:  When transitioning into P3, the PHY must assert PhyStatus before 
PCLK is turned off and then deassert PhyStatus when PCLK is fully off and when the PHY is 
in the P3 state.  When transitioning out of P3, the PHY asserts PhyStatus as soon as possible 
and leaves it asserted until after PCLK is stable.   
 
PCLK as PHY Input:  When transitioning into P3, the PHY must assert PhyStatus for one 
input PCLK cycle when it is ready for PCLK to be removed.  When transitioning out of P3, 
the PHY must assert PhyStatus for one input PCLK cycle as soon as possible once it has 
transitioned to P0 and is ready for operation. 

 
PHYs should be implemented to minimize power consumption during P3 as this is when the 

device will have to operate within power limits described in the USB 3.0 Specification. 
 
• The P3 state shall be used in states SS.disabled and U3. 
• There is a limited set of legal power state transitions that a MAC can ask the PHY to make.  

Referencing the main state diagram in the USB spec and the mapping of link states to PHY 
power states described in the preceding paragraphs, those legal transitions are: P0 to P1, P0 to 
P2, P0 to P3, P1 to P0, P2 to P0,  P3 to P0, and P1 to P2.  The base spec also describes what 
causes those state transitions. 
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U1 has strict exit latency requirements as described in the USB base specification.  Figure 8-5 
illustrates the timing requirements for PIPE signals associated with U1 exit with the following 
explanation: 

• T2-T1: PHY decodes LFPS and reflects it through RxElecIdle (120ns max) 
• T4-T3: P1 to P0 transition latency (300ns max)  
• T6-T5: LFPS transmit latency (100ns max) 
• T7-T1: 0.6 to 0.9us from USB Spec 

 

 
Figure 8-9. USB U1 Exit  
 

8.5 Power Management – SATA Mode 
The power management signals allow the PHY to minimize power consumption.  The PHY must 
meet all timing constraints provided in the SATA Specification regarding clock recovery and link 
training for the various power states.  The PHY must also meet all termination requirements for 
transmitters and receivers. 
 
A minimum of five power states are defined, POWER_STATE_0  and a minimum of four additional 
states that meet minimum requirements defined in section 6.1.  POWER_STATE_0  state is the 
normal operational state for the PHY.  When directed from POWER_STATE_0  to a lower power 
state, the PHY can immediately take whatever power saving measures are appropriate.   
 
For all state transitions between POWER_STATE_0  and lower power states that provide PCLK, 
the PHY indicates successful transition into the designated power state by a single cycle assertion 
of PhyStatus.  The PHY must complete transmitting all data transferred across the PIPE interface 
before the change in the PowerDown signals before assertion of  PhyStatus. Transitions into and 
out of power states that do not provide PCLK are described below.  For all power state 
transitions, the MAC must not begin any operational sequences or further power state transitions 
until the PHY has indicated that the initial state transition is completed.  Power state transitions 
between two power states that do not provide PCLK are not allowed. 
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Mapping of PHY power states to link states in the SATA specification is MAC specific.   
• POWER_STATE_0  :  All internal clocks in the PHY are operational.  POWER_STATE_0   is the 

only state where the PHY transmits and receives SATA signaling. 
POWER_STATE_0   is the appropriate PHY power management state for most link states in the 
SATA specification.  When transitioning into a power state that does not provide PCLK , the 
PHY must assert PhyStatus before PCLK is turned off and then deassert PhyStatus when 
PCLK is fully off and when the PHY is in the low power state.  The PHY must leave PCLK 
on for at least one cycle after asserting PhyStatus.  For PCLK as PHY output, when 
transitioning out of a state that does not provide PCLK , the PHY asserts PhyStatus as soon as 
possible and leaves it asserted until after PCLK is stable.   

Transitions between any pair of PHY power states (except two states that do not provide PCLK) 
are allowed by PIPE.  However, a MAC must ensure that SATA specification timing 
requirements are met. 

 

8.6 Changing Signaling Rate, PCLK Rate, or Data Bus Width 
 
8.6.1 PCI Express Mode 
The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the 
PHY is in the P0 or P1 power state and TxElecIdle  and RxStandby (P0 only) are asserted.  When 
the MAC changes the Rate signal, and/or the Width signal, and/or the PCLK rate signal in PCLK 
as PHY Output mode, the PHY performs the rate change and/or the width change and/or the 
PCLK rate change and signals its completion with a single cycle assertion of PhyStatus.   The 
MAC must not perform any operational sequences, power state transitions, deassert TxElecIdle or 
RxStandby, or further signaling rate changes until the PHY has indicated that the signaling rate 
change has completed.  The sequence is the same in PCLK as PHY Input mode except the MAC 
needs to know when the input PCLK rate or Rate, or potentially width, can be safely changed.  
After the MAC changes Rate and either  PCLK_Rate, Data Width, or both,  any change to the  
PCLK can happen only after the PclkChangeOk output has been driven high by the PHY.  The 
MAC changes the input PCLK, if necessary, and then handshakes by asserting PclkChangeAck.  
The PHY responds by asserting PhyStatus for one input PCLK cycle and de-asserts 
PclkChangeOk on the trailing edge of PhyStatus.  Note:  PclkChangeOk is used by the PHY if the 
MAC changes PCLK_Rate and Rate.  The PHY datasheet indicates whether the same handshake 
is also required for every rate change.  Table 8-1 summarizes the handshake requirements.  The 
MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low and may de-assert 
TxElecIdle and/or RxStandby after PhyStatus is sampled high. There are instances where LTSSM 
state machine transitions indicate both a speed change and/or width and/or PCLK rate change and 
a power state change for the PHY.  In these instances, the MAC must change (if necessary) the 
signaling rate, width and/or PCLK rate before changing the power state. 
 

Table 8-1.  PclkChangeOK/PclkChangeAck Requirements 
Rate Width PCLK 

Rate 
PclkChangeOK /PclkChangeAck Handshake 
Required? 

Stable Don’t 
care 

Don’t care Don’t care 

Change Stable Stable Optional (parameter) 
Change Stable Change Required 
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Change Change Stable Optional (parameter) 
Change Change Change Required 

 
 
Some PHY architectures may allow a speed change and a power state change to occur at the same 
time as a rate and/or width and/or PCLK rate change.  If a PHY supports this, the MAC must 
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the 
PowerDown signals.  This can happen when transitioning the PHY from P0 to either P1 or P2 
states.    The completion mechanisms are the same as previously defined for the power state 
changes and indicate not only that the power state change is complete, but also that the rate and/or 
width and/or PCLK rate change is complete. 
 
8.6.2 USB Mode 
 
The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the 
PHY is in the P0 or P2 power state and TxElecIdle  and RxStandby are asserted.  Any 
combination of at least two of the rate and width and PCLK rate, can be changed simultaneously.  
The MAC is not allowed to change only one of the three.  When the MAC changes the Rate 
signal, and/or the Width signal, and/or the PCLK rate signal in PCLK as PHY Output mode, the 
PHY performs the rate change and/or the width change and/or the PCLK rate change and signals 
its completion with a single cycle assertion of PhyStatus.   The MAC must not perform any 
operational sequences, power state transitions, deassert TxElecIdle or RxStandby, or further 
signaling rate changes until the PHY has indicated that the signaling rate change has completed.  
The sequence is the same in PCLK as PHY Input mode except the MAC needs to know when the 
input PCLK rate or Rate can be safely changed.  After the MAC changes PCLK_Rate the change 
to the  PCLK can happen only after the PclkChangeOk output has been driven high by the PHY.  
The MAC changes the input PCLK, and then handshakes by asserting PclkChangeAck.  The PHY 
responds by asserting PhyStatus for one input PCLK cycle and de-asserts PclkChangeOk on the 
trailing edge of PhyStatus.  Note:  PclkChangeOk is only used by the PHY if the MAC changes 
PCLK_Rate or Rate.  The MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low 
and may de-assert TxElecIdle and/or RxStandby after PhyStatus is sampled high.  
 
Some PHY architectures may allow a speed change and a power state change to occur at the same 
time as a rate and/or width and/or PCLK rate change.  If a PHY supports this, the MAC must 
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the 
PowerDown signals.  This can happen when transitioning the PHY from P0 to either P2 or P3 
states.    The completion mechanisms are the same as previously defined for the power state 
changes and indicate not only that the power state change is complete, but also that the rate and/or 
width and/or PCLK rate change is complete. 
 
 
 
8.6.3 SATA Mode 
The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the 
PHY is in POWER_STATE_0 and TxElecIdle  and RxStandby are asserted,  or in a lowpower 
state where PCLK is provided. When the MAC changes the Rate signal, and/or the Width signal, 
and/or the PCLK rate signal in PCLK as PHY Output mode,  the PHY performs the rate change 
and/or the width change and/or the PCLK rate change and signals its completion with a single 
cycle assertion of PhyStatus. The MAC must not perform any operational sequences, power state 
transitions, deassert TxElecIdle or RxStandby, or further signaling rate and/or width changes until 
the PHY has indicated that the change has completed. 
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The sequence is the same in PCLK as PHY Input mode except the MAC needs to know when the 
input PCLK rate can be safely changed.  After the MAC changes PCLK_Rate the change to the  
PCLK can happen only after the PclkChangeOk output has been driven high by the PHY.  The 
MAC changes the input PCLK, and then handshakes by asserting PclkChangeAck.  The PHY 
responds by asserting PhyStatus for one input PCLK cycle and de-asserts PclkChangeOk on the 
trailing edge of PhyStatus.  Note:  PclkChangeOk is only used by the PHY if the MAC changes 
PCLK_Rate.  The MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low and 
may de-assert TxElecIdle and/or RxStandby after PhyStatus is sampled high.  
There are instances where conditions indicate both a speed change and/or width and/or PCLK rate 
change and a power state change for the PHY.    In such cases the MAC must change the 
signaling rate and/or width and/or PCLK rate, before changing the power state. 
Some PHY architectures may allow a speed change and a power state change to occur at the same 
time as a rate and/or width and/or PCLK rate change.  If a PHY supports this, the MAC must 
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the 
PowerDown signals.  The completion mechanisms are the same as previously defined for the 
power state changes and indicate not only that the power state change is complete, but also that 
the rate and/or width and/or PCLK rate change is complete. 
 
 
8.6.4 Fixed data path implementations 
The figure below shows logical timings for implementations that change PCLK frequency when 
the MAC changes the signaling rate and PCLK is a PHY Output.  Implementations that change  
the PCLK frequency when changing signaling rates must change the clock such that the time the 
clock is stopped (if it is stopped) is minimized to prevent any timers using PCLK from exceeding 
their specifications.  Also during the clock transition period, the frequency of PCLK must not 
exceed the PHY’s defined maximum clock frequency.  The amount of time between when Rate is 
changed and the PHY completes the rate change is a PHY specific value.  These timings also 
apply to implementations that keep the data path fixed by using options that make use of the 
TxDataValid and RxDataValid signals.  
 
 
 

 00b

PCLK

TxElecIdle

PhyStatus

Pow erDow n[1:0]

Rate

 
Rate change with fixed data path 
 

Figure 8-6 shows logical timings for an implementation that changes PCLK frequency when the 
MAC changes the signaling rate and PCLK is a PHY Input.   
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Figure 8-10 Change from PCI Express 2.5 Gt/s to 5.0 Gt/s with PCLK as PHY Input. 
8.6.5 Fixed PCLK implementations 
The figure below shows logical timings for implementations that change the width of the data 
path for different signaling rates.  PCLK may be stopped during a rate change.  These timings 
also apply to fixed PCLK implementations that make use of the TxDataValid and RxDataValid 
signals. 
 
 

 Useable

 Useable

 Useable

 Useable

PCLK

TxElecIdle

PhyStatus

Rate

TxData[7:0]

TxData[15:8]

RxData[7:0]

RxData[15:8]  
Rate change with fixed PCLK frequency 

 

8.7 Transmitter Margining – PCI Express Mode and USB Mode 
While in the P0 power state, the PHY can be instructed to change the value of the voltage at the 
transmitter pins.  When the MAC changes TxMargin[2:0],  the PHY must be capable of 
transmitting with the new setting within 128 ns. 
 
There is a limited set of legal TxMargin[2:0] and Rate combinations that a MAC can select.  
Refer to the PCIe Base Specification for a complete description of legal settings when the PHY is 
in PCI Express Mode.  Refer to the USB specification for a complete description of the legal 
settings when the PHY is in USB mode. 
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8.8 Selectable De-emphasis – PCI Express Mode 
While in the P0 power state and transmitting at 5.0GT/s, 8.0 GT/s, 16 GT/s or 32 GT/s, the PHY 
can be instructed to change the value of the transmitter equalization.  When the signaling rate is 
5.0 GT/s and the MAC changes TxDeemph,  the PHY must be capable of transmitting with the 
new setting within 128 ns.  When the signaling rate is 8.0 GT/s, 16 GT/s, or 32 GT/s and the 
MAC changes TxDeemph, the PHY must be capable of transmitting with the new setting within 
256 ns.   
 
There is a limited set of legal TxDeemph and Rate combinations that a MAC can select.  Refer to 
the PCIe Base Specification for a complete description. 
 
The MAC must ensure that TxDeemph is selecting -3.5db whenever Rate is selecting 2.5 GT/s. 
 

 

8.9 Receiver Detection – PCI Express Mode and USB Mode 
While in the P1 or optionally P2 power state and PCI Express mode or in the P2 or P3 power state 
and USB mode, the PHY can be instructed to perform a receiver detection operation to determine 
if there is a receiver at the other end of the link.    Basic operation of receiver detection is that the 
MAC requests the PHY to do a receiver detect sequence by asserting TxDetectRx/Loopback. 
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When the PHY has completed the receiver detect sequence, it asserts PhyStatus for one clock and 
drives the RxStatus signals to the appropriate code.  After the receiver detection has completed (as 
signaled by the assertion of PhyStatus), the MAC must deassert TxDetectRx/Loopback before 
initiating another receiver detection, a power state transition, or signaling a rate change. 
Once the MAC has requested a receiver detect sequence (by asserting TxDetectRx/Loopback), the 
MAC must leave TxDetectRx/Loopback asserted until after the PHY has signaled completion by 
the assertion of PhyStatus.  When receiver detection is performed in USB mode with the PHY in 
P3 or PCIe in P2, the PHY asserts PhyStatus and signals the appropriate receiver detect value 
until the MAC deasserts TxDetectRx/Loopback. 
 
 

Detected Condition RxStatus code 
Receiver not present 000b 
Receiver present 011b 

 

8.10 Transmitting a beacon – PCI Express Mode 
When the PHY has been put in the P2 power state, and the MAC wants to transmit a beacon, the 
MAC deasserts TxElecIdle and the PHY should generate a valid beacon until TxElecIdle is 
asserted.  The MAC must assert TxElecIdle before transitioning the PHY to P0. 

P2

Valid beacon signaling

Beacon Transmit

PowerDown[1:0]

TxElecIdle

 

Tx+/Tx-

 

8.11 Transmitting LFPS – USB Mode 
When the PHY is in P1 and the MAC wants to transmit LFPS, the MAC deasserts TxElecIdle and 
the PHY should generate valid LFPS until TxElecIdle is asserted.  The MAC must assert 
TxElecIdle before transitioning the PHY to P0.  The length of time TxElecIdle is deasserted is 

10b 

000b 011b 000b 

Receiver Detect - Receiver present 

PCLK 

TxDetectRx/Loopback 

PhyStatus 

PowerDown[1:0] 
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varied for different events. When the PHY is in P0 and the MAC wants to transmit LFPS, the 
MAC must assert both TxElecIdle and TxDetectRx/Loopback for the desired duration of an LFPS 
burst.  The PHY is required to complete a full LFPS period before transitioning to SuperSpeed 
data, and as a consequence may drop SuperSpeed data if these requests overlap.  This 
requirement does not apply to TxOnesZeros requests.  Refer to chapter 6 in the USB 3.0 
specification for more details. 

P2

Valid LFPS signaling

LFPS Transmit

PowerDown[1:0]

TxElecIdle

Tx+/Tx-

 

8.12 Detecting a beacon – PCI Express Mode 
The PHY receiver must monitor at all times (except during reset or when RxEIDetectDisable is 
set) for electrical idle.  When the PHY is in the P2 power state, and RxElecIdle is deasserted, then 
a beacon is being detected. 

P2

Valid beacon s ignaling

Beacon Receive

PowerDown[1:0]

RxElecIdle

 

Rx+/Rx-

 
 

8.13 Detecting Low Frequency Periodic Signaling – USB Mode 
The PHY receiver must monitor at all times (except during reset, when RX terminations are 
removed, or when RxEIDetectDisable is set) for LFPS.  When the PHY is in the P0, P1, P2, or P3 
power state, and RxElecIdle is deasserted, then LFPS is being detected.  The length of time 
RxElecIdle is deasserted indicates the length of time Low Frequency Periodic Signaling is 
detected. Refer to chapter 6 in the USB 3.0 specification for more details on the length of Low 
Frequency Periodic Signaling (LFPS) for various events. 
 
The PHY needs to differentiate LPFS received for Ping from Exit LFPS.  When the PHY receives 
LFPS for up to 2 cycles only, it should deassert RxElecIdle for a maximum of 200ns.  For U1, 
there is a strict latency requirement for a USB controller to detect and respond back as defined in 
the USB Spec chapter 6 LPFS section.  The PHY should not take more than 120ns to deassert 
RxElecIdle after detecting LFPS in P0 and P1, and P2.  For P3, the PHY is allowed to take us to 
10us to deassert RxElecIdle. 
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PowerDown[1:0]
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8.14 Clock Tolerance Compensation 
The PHY receiver contains an elastic buffer used to compensate for differences in frequencies 
between bit rates at the two ends of a Link.  The elastic buffer must be capable of holding enough 
symbols to handle worst case differences in frequency and worst case intervals between symbols 
that can be used for rate compensation for the selected PHY mode. 
 
Two models are defined for the elastic buffer operation in the PHY.  The PHY may support one 
or both of these models.  The Nominal Empty buffer model is only supported in PCI Express, 
USB or SATA Mode.  
  
For the Nominal Empty buffer model the PHY attempts to keep the elasticity buffer as close to 
empty as possible.  In Nominal Empty mode the PHY uses the RxDataValid interface to tell the 
MAC when no data is available.  The Nominal Empty buffer model provides a smaller worst case 
and average latency then the Nominal Half Full buffer model, but requires the MAC to support 
the RxDataValid signal.  The PHY removes all SKP symbols in Nominal Empty buffer mode. 
 
For the Nominal Half Full buffer model, the PHY is responsible for inserting or removing SKP 
symbols, ordered sets, or ALIGNs in the received data stream to avoid elastic buffer overflow or 
underflow.  The PHY monitors the receive data stream, and when a Skip ordered-set or ALIGN is 
received, the PHY can add or remove one SKP symbol (PCI Express Mode at 2.5 or 5 GT/s)  or 
four SKP symbols (PCI Express Mode at 8 GT/s, 16 GT/s, or 32 GT/s) or one SKP ordered set 
(USB Mode at 5 GT/s) or one ALIGN from each SKP or ALIGN as appropriate to manage its 
elastic buffer to keep the buffer as close to half full as possible.  In USBmode at 5 GT/S the PHY 
shall only add or remove SKP ordered sets.  In USB mode at 10 GT/s the PHY shall only add or 
remove multiples of four SKP symbols. Whenever SKP symbol(s) or an ordered set is added to or 
removed, the PHY will signal this to the MAC using the RxStatus[2:0] signals.  These signals 
have a non-zero value for one clock cycle and indicate whether a SKP symbol or ordered set was 
added to or removed from the received SKP ordered-set(s).  For PCI Express, the timing of 
RxStatus[2:0] assertion depends on the operational rate since SKP ordered sets are encoded 
differently in 8b/10b mode versus 128/130b mode.  In PCI Express Mode at 2.5 or 5 GT/s, 
RxStatus[2:0] shall be asserted during the clock cycle when the COM symbol of the SKP 
ordered-set is moved across the parallel interface.  In PCI Express Mode at 8, 16 GT/s or 32 
GT/s, RxStatus[2:0] shall assert anytime between and including the start of the SKP ordered set 
and the SKP_END symbol.  In SATA Mode whenever a ALIGN symbol is added or removed, the 
PHY will signal this to the MAC using the RxStatus[2:0] signals.  These signals have a non-zero 
value for one clock cycle and indicate whether an ALIGN was added or removed.  RxStatus shall 
be asserted during the clock cycle when the first symbol of the added ALIGN is moved across the 
parallel interface. 
 
In PCI Express mode, the rules for operating in Nominal Empty buffer mode are as follows: 

• Use of RxDataValid is required 
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• All SKP symbols of SOS are removed (8b/10b SKP or 128/130 AA) 
• When an empty condition happens (caused by clock drift or SOS removal) 

• RxValid must remain high 
• RxValid should only be dropped for symbol alignment loss or block 

alignment loss 
• RxDataValid must be de-asserted 
• RxStatus must be 0  

• EB full can still occur and is considered an error 
• Notification of an SOS coming through the EB must be reported in the following manner 

• 8b/10b: COM of SOS must be passed with RxStatus = SKP removed (010), SKP 
symbols dropped 

• 128/130: Start of SOS block, with first byte SKP_END or SKP_END_CTRL, 
must be passed with RxStatus = SKP Removed (010), all AA SKP symbols 
dropped 

• The EB is permitted to start RxDataValid as soon as data is available, but should never 
assert faster than the usual RxDataValid rate 

• i.e. rate=1, width=2, pclk_rate=2, RxDataValid should never assert for two 
consecutive pclk cycles 

• i.e. rate=1, width=2, pclk_rate=3, RxDataValid assertions must always have at 
least 3 pclk cycles of de-assertion between them 

• Example of valid optimization by EB: 
• Rate=1, width=2, pclk_rate=3 
• RxDataValid (t=0,t=1, etc., E=EB Empty):  

• 1000100010001000EE100010001 
• Vs. non-optimized:                     

• 1000100010001000EE00100010001 
• Non-optimized design builds EB depth in-order to maintain 

RxDataValid fixed cycle rate 
 
 
   
In USB mode for the Nominal Empty buffer model the PHY attempts to keep the elasticity buffer 
as close to empty as possible.  This means that the PHY will be required to insert SKP ordered 
sets into the received data stream when no SKP ordered sets have been received, unless the 
RxDataValid signal is used.  The Nominal Empty buffer model provides a smaller worst case and 
average latency then the Nominal Half Full buffer model, but requires the MAC to support 
receiving SKP ordered sets any point in the data stream. 
 
In SATA mode for the Nominal Empty buffer model the PHY attempts to keep the elasticity 
buffer as close to empty as possible.  In Nominal Empty mode the PHY uses the RxDataValid 
interface to tell the MAC when no data is available.  The Nominal Empty buffer model provides a 
smaller worst case and average latency then the Nominal Half Full buffer model, but requires the 
MAC to support the RxDataValid signal. 
 
It is recommended that a PHY and MAC support the Nominal Empty buffer model in USB mode 
using the RxDataValid signal.  The alternative of inserting SKPs in the data stream when no 
SKPs have been received is not recommended.   The figure below shows a sequence where a 
PHY operating in PCI Express Mode added a SKP symbol in the data stream. 
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The figure below shows a sequence where a PHY operating in PCI Express mode removed a SKP 
symbol from a SKP ordered-set that only had one SKP symbol, resulting in a ‘bare’ COM 
transferring across the parallel interface. 

 

8.15 Error Detection 
The PHY is responsible for detecting receive errors of several types.  These errors are signaled to 
the MAC layer using the receiver status signals (RxStatus[2:0]).  Because of higher level error 
detection mechanisms (like CRC) built into the Data Link layer there is no need to specifically 
identify symbols with errors, but reasonable timing information about when the error occurred in 
the data stream is important.  When a receive error occurs, the appropriate error code is asserted 
for one clock cycle at the point in the data stream across the parallel interface closest to where the 
error actually occurred.  There are four error conditions (five for SATA mode) that can be 
encoded on the RxStatus signals.  If more than one error should happen to occur on a received 
byte (or set of bytes transferred across a 16-bit, 32-bit or 64-bit interface), the errors should be 
signaled with the priority shown below. 

1. 8B/10B decode error or block decode error 
2. Elastic buffer overflow 
3. Elastic buffer underflow (Cannot occur in Nominal Empty buffer model) 
4. Disparity errors 
5. Misalign (SATA mode only) 

 
If an error occurs during a SKP ordered-set or ALIGN, such that the error signaling and SKP or 
ALIGN added/removed signaling on RxStatus would occur on the same PCLK, then the error 
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signaling has precedence. 
 
Note that the PHY does not signal 128/130B (PCI Express) or 128/132B (USB) header errors.  
The raw received header bits are passed across the interface and the controller is responsible for 
any block header error detection/handling. 
 
 
8.15.1 8B/10B Decode Errors 
For a detected 8B/10B decode error, the PHY should place an EDB symbol (for PCIe or SATA) or 
SUB symbol (for USB) in the data stream in place of the bad byte, and encode RxStatus with a 
decode error during the clock cycle when the effected byte is transferred across the parallel 
interface.  In the example below, the receiver is receiving a stream of bytes Rx-a through Rx-z, 
and byte Rx-f has an 8B/10B decode error.  In place of that byte, the PHY places an EDB (for 
PCIe or SATA) or SUB (for USB) on the parallel interface, and sets RxStatus to the 8B/10B decode 
error code. Note that a byte that can’t be decoded may also have bad disparity, but the 8B/10B 
error has precedence.  Also note that for greater than 8-bit interface, if the bad byte is on the 
lower byte lane, one of the other bytes may have bad disparity, but again, the 8B/10B error has 
precedence. 
 

 
 
8.15.2 Disparity Errors 
For a detected disparity error, the PHY should assert RxStatus with the disparity error code during 
the clock cycle when the affected byte is transferred across the parallel interface.  For greater than 
8-bit interfaces, it is not possible to discern which byte (or possibly both) had the disparity error.  
In the example below, the receiver detected a disparity error on either (or both) Rx-e or Rx-f data 
bytes, and indicates this with the assertion of RxStatus.  Optionally, the PHY can signal disparity 
errors as 8B/10B decode error (using code 0b100).  (MACs often treat 8B/10B errors and 
disparity errors identically.).  When operating in USBmode signaling disparity errors is optional. 
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8.15.3 Elastic Buffer Errors 
For elastic buffer errors, an underflow should be signaled during the clock cycle or clock cycles 
when a spurious symbol is moved across the parallel interface.  The symbol moved across the 
interface should be the EDB symbol (for PCIe or SATA) or SUB symbol (for USB).  In the timing 
diagram below, the PHY is receiving a repeating set of symbols Rx-a thru Rx-z. The elastic 
buffer underflows causing the EDB symbol (for PCIe) or SUB symbol (for USB) to be inserted 
between the Rx-g and Rx-h Symbols.  The PHY drives RxStatus to indicate buffer underflow 
during the clock cycle when the EDB (for PCIe) or SUB (for USB) is presented on the parallel 
interface. 
 
Note that underflow is not signaled when the PHY is operating in Nominal Empty buffer mode.  
In this mode SKP ordered sets are moved across the interface whenever data needs to be inserted 
or the RxDataValid signal is used.  The RxDataValid method is preferred. 
 

 
 
For an elastic buffer overflow, the overflow should be signaled during the clock cycle where the 
dropped symbol or symbols would have appeared in the data stream.  For the 16-bit interface it is 
not possible, or necessary, for the MAC to determine exactly where in the data stream the symbol 
was dropped.  In the timing diagram below, the PHY is receiving a repeating set of symbols Rx-a 
thru Rx-z.  The elastic buffer overflows causing the symbol Rx-g to be discarded. The PHY 
drives RxStatus to indicate buffer overflow during the clock cycle when Rx-g would have 
appeared on the parallel interface. 
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8.15.3.1 Elastic Buffer Reset 
The MAC can set the ElasticBufferResetControl bit (see section 7.1.9) to initiate an EB reset 
sequence in the PHY.  The PHY must complete the EB reset sequence within 16 PCLK cycles as 
follows: 

• Assert RxStatus to value of 1xx with RxValid 
• Hold RxStatus to 1xx while maintaining RxValid and RxDataValid 
• Move pointers back to their initial state 
• Release RxStatus to indicate clean data is being forwarded again 

 

8.16 Loopback 
• For USB and PCI Express Modes the PHY must support an internal loopback as 

described in the corresponding base specification.   

• For SATA the PHY may optionally support an internal loopback mode when 
EncodeDecodeBypass is asserted.  

• In the SerDes architecture, loopback is handled in the MAC instead of the PHY. 

The PHY begins to loopback data when the MAC asserts TxDetectRx/Loopback while doing 
normal data transmission (i.e. when TxElecIdle is deasserted).  The PHY must, within the 
specified receive and transmit latencies, stop transmitting data from the parallel interface, and 
begin to loopback received symbols.  While doing loopback, the PHY continues to present 
received data on the parallel interface.   

The PHY stops looping back received data when the MAC deasserts TxDetectRx/Loopback.  
Transmission of data on the parallel interface must begin within the specified transmit latency. 

The timing diagram below shows example timing for beginning loopback.  In this example, the 
receiver is receiving a repeating stream of bytes, Rx-a thru Rx-z.  Similarly, the MAC is causing 
the PHY to transmit a repeating stream of bytes Tx-a thru Tx-z.  When the MAC asserts 
TxDetectRx/Loopback to the PHY, the PHY begins to loopback the received data to the 
differential Tx+/Tx- lines.  Timing between assertion of TxDetectRx/Loopback and when Rx data 
is transmitted on the Tx pins is implementation dependent.   

 

Rx-b Rx-d Rx-f Rx-I Rx-k

Rx-a Rx-c Rx-e Rx-h Rx-j

00b 101b 000b

Elastic Buffer Overflow

PCLK

RxData[7:0]

RxData[15:8]

RxValid

 

RxStatus



PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures, 
ver 5.1 

©2007-2018 Intel Corporation – All rights reserved Page 123 of 161 
 

Rx-d Rx-f Rxh Rx-j Rx-l Rx-n Rx-p

Rx-c Rx-e Rx-g Rx-I Rx-k Rx-m Rx-o

Tx-n Tx-p Tx-r Tx-t Tx-v Tx-x Tx-z

Tx-g/Tx-h Tx-I/Tx-j Tx-k/Tx-l Tx-m/Tx-n Tx-o/Tx-p Rx-g/Rx-h Rx-I/Rx

Tx-m Tx-o Tx-q Tx-s Tx-u Tx-w Tx-y

Loopback start

PCLK

TxData[7:0]

TxData[15:8]

 

RxData[7:0]

RxData[15:8]

  

TxDetectRx/Loopback

TxElecIdle

   

Tx+/Tx-

 

The next timing diagram shows an example of switching from loopback mode to normal mode 
when the PHY is operating in PCI Express Mode.   

In PCI Express Mode, when the MAC detects an electrical idle ordered-set, the MAC deasserts 
TxDetectRx/Loopback and asserts TxElecIdle.  The PHY must transmit at least three bytes of the 
electrical idle ordered-set before going to electrical idle.  (Note, transmission of the electrical idle 
ordered-set should be part of the normal pipeline through the PHY and should not require the 
PHY to detect the electrical idle ordered-set).  The base spec requires that a Loopback Slave be 
able to detect and react to an electrical idle ordered set within 1ms.  The PHY’s contribution to 
this time consists of the PHY’s Receive Latency plus the PHY’s Transmit Latency (see section 
6.13). 

When the PHY is operating in USBMode, the device shall only transition out of loopback on 
detection of LFPS signaling (reset) or when VBUS is removed. When valid LFPS signaling is 
detected, the MAC transitions the PHY to the P2 power state in order to begin the LFPS 
handshake.  
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8.17 Polarity Inversion – PCI Express and USBModes 
To support lane polarity inversion, the PHY must invert received data when RxPolarity is 
asserted.  Inverted data must begin showing up on RxData[] within 20  PCLKs of when 
RxPolarity is asserted. 

 

8.18 Setting negative disparity (PCI Express Mode) 
To set the running disparity to negative, the MAC asserts TxCompliance for one clock cycle that 
matches with the data that is to be transmitted with negative disparity.  For a 16-bit interface, the 
low order byte will be the byte transmitted where running disparity is negative.  The example 
shows how TxCompliance is used to transmit the PCI Express compliance pattern in PCI Express 
mode.  TxCompliance is only used in PCI Express mode and is qualified by TxDataValid when 
TxDataValid is being used. 

D21.5 D21.5 D21.5 D10.2 D10.2 

D21.5 D21.5 D21.5 D10.2 D10.2 

Polarity inversion

PCLK

RxData(K)[7:0]

RxData(K)[16:8]

RxValid

RxCodeErr

RxDispErr

RxPolarity
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Data D21.5 D10.2 D21.5 D10.2 D21.5 D10.2

Data Data K28.5 K28.5 K28.5 K28.5 K28.5

Val id Data K28.5-/D21.5 K28.5+/D10.2 K28.5-/D21.5 K28.5+/D1

Loopback end

PCLK

TxData[7:0]

TxData[15:8]

 

TxCompliance

  

   

Tx+/Tx-

Byte transmitted
with negative disparity

Setting negative disparity
 

8.19 Electrical Idle – PCI Express Mode 
The base spec requires that devices send an Electrical Idle ordered set before Tx+/Tx- goes to the 
electrical idle state.  For a 16-bit interface or 32-bit interface, the MAC must always align the 
electrical idle ordered set on the parallel interface so that the COM symbol is on the low-order 
data lines (TxDataK[7:0]).  Figure 8-7 shows an example of electrical idle exit and entry for a 
PCI Express 8 GT/s  or 16 GT/s interface.  TxDataValid must be asserted whenever TxElecIdle 
toggles as it is used as a qualifier for sampling TxElecIdle.  Note: For SerDes architecture, 1 bit 
of TxElecIdle is required per 16-bits of data. 

Active (Ends wi th electrical idle ordered set)

ScZero IDL

ScZero COM IDL

Electrical Idle

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

 

Tx+/Tx-

COM placed on low-order
data lines
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P0

Sync 
Hdr

Sync 
HdrTxSyncHeader[1:0]

TxData[n:0]

TxStartBlock

TxDataValid

TxElecIdle

PowerDown[2:0]

Note:
• TxDataValid can assert earlier before TxElecIdle toggles. 
• TxDataValid can de-assert anytime after TxElecIdle asserts as long as it does not overlap with the next Electrical Idle exit sequence.
• TxElecIdle must de-assert at the same clock TxStartBlock asserts.

128-bit Block 128-bit Block

 
Figure 8-11 – PCI Express 3.0 TxDataValid Timings for Electrical Idle Exit 
and Entry. 
Note:  Figure 8-7 only shows two blocks of TxData and thus TxDataValid does not de—assert 
during the data.  Other examples in the specification show longer sequences where TxDataValid 
de-asserts. 
 
When data throttling is happening, TxElecIdle must be set long enough to be sampled by 
TxDataValid as shown in Figure 8-8. 
 

TxDataValid

TxElecIdle

Rate 00 (2.5GT/s)

PCLK Rate 11 (500MHz)

Width 01 (16b)

TxData/K

4 pclk
periods

 

Figure 8-12.  Data Throttling and TxElecIdle 
 
The PIPE specification does not require RxStandby to be asserted within any amount of time after 
Electrical Idle or that it be asserted at all.  Individual PHYs must specify their own timing 
requirements for RxStandby assertion, which may vary depending on whether they have 
staggering requirements. 

8.20 Link Equalization Evaluation 
While in the P0 power state, the PHY can be instructed to perform evaluation of the current TX 
equalization settings of the link partner.    Basic operation of the equalization evaluation is that 
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the MAC requests the PHY to evaluate the current equalization settings by asserting RxEqEval.    
When the PHY has completed evaluating the current equalization settings, it asserts PhyStatus for 
one clock and drives the LinkEvaluationFeedback signals to the appropriate feedback response.  
After link equalization evaluation has completed (as signaled by the assertion of PhyStatus), the 
MAC must deassert RxEqEval  before initiating another evaluation.  Figure 8-9 shows an 
example of the timings for a successful link equalization evaluation request.  Figure 8-10 shows 
an example of the timings for a link equalization evaluation request resulting in feedback that is 
an invalid request. 
 

PCLK

PowerDown

RxEqEval

PhyStatus

LinkEvaluation
Feedback

InvalidRequest

TS Requested 
Coeff

P0

Coeff Req #1 Coeff Req #2

Block Lock Delay
PIPE-PHY Eval Time

Note:
• RxEqEval can de-assert at the same clock the corresponding PhyStatus de-asserts or later as long as RxEqEval de-asserts prior to the next RX Equalization Request.
• Back-to-back RxEqEval request can happen as close as one clock apart (i.e. RxEqEval can de-assert for one clock before it re-asserts again to start the next RX Equalization request.

 

Figure 8-13 – PCI Express 8GT/s or higher Successful Equalization 
Evaluation Request 

PCLK

PowerDown

RxEqEval

PhyStatus

LinkEvaluation
Feedback

InvalidRequest

TS Requested 
Coeff

P0

Valid Coeff to Link Partner Hold Prior Coeff to Link Partner

Note:
• InvalidRequest assertion happens after the de-assertion of RxEqEval.
• InvalidRequest must de-assert at the same clock RxEqEval for the next RX Equalization request asserts.
• InvalidRequest could be asserted for as little as one PCLK pulse.

 

Figure 8-14 – PCI Express 3.0 Equalization Evaluation Request Resulting in 
Invalid Feedback 
Once the MAC has requested link equalization evaluation (by asserting RxEqEval), the MAC 
must leave RxEqEval asserted until after the PHY has signaled completion by the assertion of 
PhyStatus unless the MAC needs to abort the evaluation due to high level timeouts or error 
conditions.  To abort an evaluation the MAC de-asserts RxEqEval before the PHY has signaled 
completion.  If the MAC aborts the evaluation the PHY must signal completion as quickly as 
possible.  The MAC ignores returned evaluation values in an abort scenario.  
 
Note:  If a race condition occurs where the MAC aborts by deasserting RxEqEval on same cycle 
as the PHY asserts PhyStatus then the PHY shall not take any further action.   
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8.21 Implementation specific timing and selectable parameter support 
PHY vendors (macrocell or discrete) must specify typical and worst case timings for the cases 
listed in Table 8-1.  Other implementation specific parameters listed in Table 8-1 must also be 
specified advertised by the PHY in its datasheet. 
 

Table 8-2 Parameters Advertised in PHY Datasheet 
Transmit Latency Time for data moving between the parallel 

interface and the PCI Express, SATA or USB 
serial lines.  Timing is measured from when the 
data is transferred across the parallel interface 
(i.e. the rising edge of PCLK) and when the first 
bit of the equivalent 10-bit symbol is transmitted 
on the Tx+/Tx- serial lines.  The PHY reports the 
latency for each operational mode the PHY 
supports. 
 
Note:  If the transmit latency is different when 
EncodeDecodeBypass is asserted – the PHY 
must report this latency separately. 

Receive Latency Time for data moving between the parallel 
interface and the PCI Express, SATA or USB 
serial lines.  Timing is measured from when the 
first bit of a 10-bit symbol is available on the 
Rx+/Rx- serial lines to when the corresponding 
8-bit data is transferred across the parallel 
interface (i.e. the rising edge of PCLK).  The 
PHY reports the latency for each operational 
mode the PHY supports.  The reported latency is 
the nominal latency assuming the elasticity 
buffer is full to its nominal operating level. 
 
Note:  If the receive latency is different when 
EncodeDecodeBypass is asserted – the PHY 
must report this latency separately.  Additionally, 
the expected latency must be reported separately 
for both elasticity buffer operating modes. 

Power State After Reset The PHY power state immediately following 
reset.  The state after reset needs to provide 
PCLK and have common mode off.   
 
Reporting this parameter is required if the PHY 
supports either SATA mode or PCI Express 
mode at 8 GT/s. 

Loopback enable latency Amount of time it takes the PHY to begin 
looping back receive data.  Timed from when 
TxDetectRx/Loopback is asserted until the 
receive data is being transmitted on the serial 
pins.  The PHY reports the latency for each 
operational mode the pHY supports. 
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Transmit Beacon – PCI Express Mode. Timed from when the MAC directs the PHY to 
send a beacon (power state is P2 and TxElecIdle 
is deasserted) until the beacon signaling begins at 
the serial pins. 

Receive Beacon – PCI Express Mode Timed from when valid beacon signaling is 
present at the receiver pins until RxElecIdle is 
deasserted.  

Transmit LFPS – USB Mode Timed from when the MAC directs the PHY 
to send LFPS signaling until the LFPS 
signaling begins at the serial pins.  Times are 
reported for each possible P state if the times 
are different for different power states. 

Receive LFPS – USB Mode Timed from when valid LFPS signaling is 
present at the receiver pins until RxElecIdle 
is deasserted. 

N_FTS with common clock (PCI Express 
Mode) 

Number of FTS ordered sets required by the 
receiver to obtain reliable bit and symbol 
lock when operating with a common clock.  
Note: This value may be required to be 
reported separately per rate. 

N_FTS without common clock (PCI 
Express Mode) 

Number of FTS ordered sets required by the 
receiver to obtain reliable bit and symbol 
lock when operating without a common 
clock.  Note: This value may be required to 
be reported separately per rate. 

PHY lock time Amount of time for the PHY receiver to obtain 
reliable bit and symbol lock after valid symbols 
are present at the receiver.  The PHY reports the 
time for each operational mode the PHY 
supports. 

P0s to P0 transition time  PCI Express 
Mode. 

Amount of time for the PHY to return to P0 state, 
after having been in the P0s state.  Time is 
measured from when the MAC sets the 
PowerDown signals to P0 until the PHY asserts 
PhyStatus.  PHY asserts PhyStatus when it is 
ready to begin data transmission and reception. 

P1 to P0 transition time.  PCI Express 
Mode. 

Amount of time for the PHY to return to P0 state, 
after having been in the P1 state.  Time is 
measured from when the MAC sets the 
PowerDown signals to P0 until the PHY asserts 
PhyStatus.  PHY asserts PhyStatus when it is 
ready to begin data transmission and reception. 

P2 to P0 transition time  PCI Express 
Mode. 

Amount of time for the PHY to go to P0 state, 
after having been in the P2 state.  Time is 
measured from when the MAC sets the 
PowerDown signals to P1 until the PHY 
deasserts PhyStatus. 

P1 to P0 transition time.  USB Mode. Amount of time for the PHY to return to P0 state, 
after having been in the P1 state.  Time is 
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measured from when the MAC sets the 
PowerDown signals to P0 until the PHY asserts 
PhyStatus.  PHY asserts PhyStatus when it is 
ready to begin data transmission and reception. 

P2 to P0 transition time.  USB Mode. Amount of time for the PHY to return to P0 state, 
after having been in the P2 state.  Time is 
measured from when the MAC sets the 
PowerDown signals to P0 until the PHY asserts 
PhyStatus.  PHY asserts PhyStatus when it is 
ready to begin data transmission and reception. 

P3 to P0 transition time  USB Mode. Amount of time for the PHY to go to P0 state, 
after having been in the P3 state.  Time is 
measured from when the MAC sets the 
PowerDown signals to P0 until the PHY 
deasserts PhyStatus.  PHY asserts PhyStatus 
when it is ready to begin data transmission and 
reception. 

Power state transition times between two 
power states that provide PCLK. 

Amount of time for the PHY to transition to a 
new power state.  Time is measured from when 
the MAC sets the PowerDown signals to 
POWER_STATE_X until the PHY asserts 
PhyStatus.  PHY asserts PhyStatus when it is 
ready to begin data transmission and reception.  
The PHY reports this transition between each 
pair of power states it supports in each PHY 
mode it supports. 

Power state transition times between a 
power state without PCLK and a power 
state with PCLK. 

Amount of time for the PHY to go to a power 
state providing PCLK, after having been in a 
power state that does not provide PCLK.  Time is 
measured from when the MAC sets the 
PowerDown signals to the new power state until 
the PHY deasserts PhyStatus.  The PHY reports 
this time for each possible transition between a 
power state that does not provide PCLK and a 
power state that does provide PCLK.  The PHY 
reports this transition time between each pair of 
power states it supports in each PHY mode it 
supports. 

Power state transition times between a 
power state without PCLK and a power 
state without PCLK. 

Amount of time for the PHY to go to a power 
state without PCLK, after having been in a power 
state that does not provide PCLK.  Time is 
measured from when the MAC sets the 
PowerDown signals to the new power state until 
the PHY deasserts PhyStatus.  The PHY reports 
this time for each possible transition between a 
power state that does not provide PCLK and a 
power state that does not provide PCLK.  The 
PHY reports this transition time between each 
pair of power states it supports in each PHY 
mode it supports. 
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Supported power states. The PHY lists each power state it supports for 
each PHY mode it supports.  For each power 
state supported it reports whether PCLK is 
provided, the exit latency to the active power 
state, whether RxElecIdle is supported in the 
state, and the common mode state. 
Note:  This is done for all states not already 
listed separately. 

L1 Substate Management Mechanism The PHY reports which of the following 
mechanisms it supports for L1 substate 
management: 

1) Exclusively managed via 
PowerDown[3:0] 

2) Managed via RxEIDetectDisable and 
TxCommonModeDisable 

3) Both of the above mechanisms are 
supported 

LFPS Circuit Disable for USB Mode The PHY reports whether the MAC can use 
RxEIDetectDisable to disable the LFPS circuit 
for power savings. 

Simultaneous Rate and Power State 
Change 

The PHY reports if it supports simultaneous rate 
and power state changes for each PHY mode it 
supports. 

Data Rate change time. PCI Express 
Mode and SATA Mode. 

Amount of time the PHY takes to perform a data 
rate change.  Time is measured from when the 
MAC changes Rate to when the PHY signals rate 
change complete with the single clock assertion 
of PhyStatus.  There may be separate values for 
each possible change between different 
supported rates for each supported PHY mode. 

Transmit Margin values supported.  PCI 
Express Mode and USB Mode. 

Transmitter voltage levels. 
[2] [1] [0] Description 
0 0 0 TxMargin value 0 =  
0 0 1 TxMargin value 1 =  
0 1 0 TxMargin value 2 =  
0 1 1 TxMargin value 3 =  
1 0 0 TxMargin value 4 =  
1 0 1 TxMargin value 5 =  
1 1 0 TxMargin value 6 =  
1 1 1 TxMargin value 7 =  

 

Max Equalization Settings for C-1 Reports the maximum number of settings 
supported by the PHY for the 8.0 GT/s, 16 GT/s, 
and 32 GT/s equalization.  The maximum 
number of settings must be less than 64.   

Max Equalization Settings for C0 Reports the maximum number of settings 
supported by the PHY for the 8.0 GT/s, 16 GT/s, 
and 32 GT/s equalization.  The maximum 
number of settings must be less than 64. 

Max Equalization Settings for C1 Reports the maximum number of settings 
supported by the PHY for the 8.0 GT/s, 16 GT/s, 
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and 32 GT/s equalization.  The maximum 
number of settings must be less than 64. 

Default Equalization settings for full 
swing preset Pn. 

Reports the recommended setting values for C-1, 

C0, C1 for each full swing preset.  Note: This 
should be reported separately per rate. 

Default Equalization settings for half 
swing preset Pn. 

Reports the recommended setting values for C-1, 

C0, C1 for each half swing preset.  Note: This 
should be reported separately per rate. 

Default Equalization settings for 
recommended TX EQ value of 0 dB 
preshoot and -2.5 dB de-emphasis. 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.1 0 dB preshoot and -2.5 dB 
de-emphasis recommended TX EQ setting. 

Default Equalization settings for 
recommended TX EQ value of 2.7 dB 
preshoot and -3.3 dB de-emphasis. 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.1 0 dB preshoot and -2.5 dB 
de-emphasis recommended TX EQ setting. 

Default Equalization settings for 
recommended TX EQ value of 2.2 dB 
preshoot and -3.1 dB de-emphasis 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.2 2.2 dB preshoot and -3.1 
dB de-emphasis. 

Default Equalization settings for 
recommended TX EQ value of 0 dB 
preshoot and 0 dB de-emphasis 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.2 0 dB preshoot and 0 dB 
de-emphasis. 

Default Equalization settings for 
recommended TX EQ value of 0 dB 
preshoot and -3.1 dB de-emphasis 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.2 0 dB preshoot and -3.1 dB 
de-emphasis. 

Default Equalization settings for 
recommended TX EQ value of 2.2 dB 
preshoot and 0 dB de-emphasis 

Reports the recommended setting values for C-1, 

C0, C1 for the USB 3.2 2.2 dB preshoot and 0 dB 
de-emphasis. 

Dynamic Preset Coefficient Update 
Support 

A PHY indicates if it dynamically updates 
coefficients. 

Figure of Merit range If the PHY reports link equalization feedback in 
the Figure of Merit format it reports the 
maximum value it will report.  The maximum 
value must be less than 256.   

Figure of Merit for BER target If the PHY reports link equalization feedback in 
the Figure of Merit format it reports the 
minimum value that the PHY estimates 
corresponds to a link BER of E-12. 

Default Link Partner Preset[3:0] If the PHY prefers the link parter to start with a 
specific preset during link evaluation it reports 
the preferred starting preset.   
 
The default link partner preset value is encoded 
as follows: 
 
0000b – Preset P0. 
0001b – Preset P1. 
0010b – Preset P2. 
0011b – Preset P3. 
0100b – Preset P4. 
0101b – Preset P5. 
0110b – Preset P6. 
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0111b – Preset P7. 
1000b – Preset P8. 
1001b – Preset P9. 
1010b – Preset P10. 
1011b – Reserved 
1100b – Reserved 
1101b – Reserved 
1110b – Reserved 
1111b – No Preference. 
 
Note:  This should be reported separately per 
rate. 

Beacon Support The PHY indicates whether it supports beacon 
transmission.  Beacon transmission is optional. 
1:  Beacon transmission is supported. 
0:  Beacon transmission is not supported. 

EncodeDecodeBypassSupport[3:0] The PHY indicates whether it supports optional 
EncodeDecodeBypass mode at each signaling 
rate. 
[0]  Rate[1:0] = 0 
[1]  Rate[1:0] = 1 
[2]  Rate[1:0] = 2 
[3]  Rate[1:0] = 3 
 
The support value for each rate is encoded as 
follows: 
 
0 - No support for EncodeDecodeBypass 
1 – Support for EncodeDecodeBypass 
 

NoDeemphasisSupport[1:0] The PHY indicates whether it supports an 
optional No De-emphasis signaling mode at 2.5 
and 5.0 GT/s signaling rates. 
[0]  Support at 2.5 GT/s 
[1]  Support at 5.0 GT/s 
 
The support value for each rate is encoded as 
follows: 
0 – No support for a no de-emphasis signaling 
mode. 
1 – Support for a no de-emphasis signaling 
mode. 

SupportedLFPresets List of presets the PHY supports at 8 GT/s, 16 
GT/s, and 32 GT/s for half swing in addition to 
the 5 required by the base spec. 

PCLK Mode[1:0] The PHY indicates whether it support PCLK as a 
PHY output or PCLK as a PHY input. 
[0]  Supports PCLK as an output 
[1]  Supports PCLK as an input 
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The support value for each rate is encoded as 
follows: 
0 – No support. 
1 – Support. 
 
Configuration for a PHY that supports both 
PCLK modes is PHY specific. 
 

PHYClockInsertionDelay A PHY that supports “PCLK as an input” mode 
must report the maximum delay and the 
minimum delay (insertion delay) for any 
sequential logic at the MAC/PHY interface that 
will use PCLK in the PHY in picoseconds. 

SupportedPhyModes List of all modes the PHY supports for the PHY 
Mode[1:0] input. 

MaximumPCIExpressRate Value for DataRate input corresponding to the 
maximum rate the PHY supports while in PCI 
Express mode. 
This field is undefined if the PHY does not 
support PCI Express mode. 

MaximumSataRate Value for the DataRate input corresponding to 
the maximum rate the PHY supports while in 
Sata Mode.   
This field is undefined if the PHY does not 
support Sata mode. 

ListofSupportedSataModes List of all supported signaling rate, width, PCLK 
rate combinations supported in Table 3-2. 

ListofSupportedPCIExpressModes List of all supported signaling rate, width, PCLK 
rate combinations supported in Table 3-1. 

MaximumEntriesInElasticityBuffer Maximum number of entries that can be stored in 
the elasticity buffer.  The PHY reports the 
maximum number of entries for each operational 
mode the PHY supports. 

ElasticityBufferEntrySize Size of a data entry in the elasticity buffer in bits.  
The PHY reports this size for each operation 
mode the PHY supports. 

MaximumElasticBufferLocationUpdateFr
equency 

Maximum update frequency the PHY supports 
for updating the ElasticBufferLocation register. 
This field is only relevant for original PIPE 
architecture. 

MinimumElasticBufferLocationUpdateFr
equency 

Minimum update frequency the PHY supports 
for updating the ElasticBufferLocation register. 
This field is only relevant for original PIPE 
architecture. 

EnhancedPTMTimingSupport The PHY indicates whether it supports optional 
elasticity buffer location information through the 
ElasticBufferLocation control signals to allow 
more accurate timing of received packets within 
the MAC. 
 



PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures, 
ver 5.1 

©2007-2018 Intel Corporation – All rights reserved Page 135 of 161 
 

The support value is encoded as follows: 
0 – No support. 
1 – Support. 

L1PMSubStatesSupport The PHY indicates whether it supports optional 
L1 PM Substates.  A PHY which supports L1 
PM Substates must support asynchronous power 
state transitions. 
 
The support value is encoded as follows: 
0 – No support. 
1 – Support. 

RXMarginingVoltageSupported7 The PHY indicates whether it supports voltage 
margining, encoded as follows: 
0 – No Support 
1 – Support. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingSamplingRateVoltage[5:0]7  Percentage of bits margined during voltage 
margining mode is calculated as 
1/64*(Sampling_Rate[5:0]+1).  Allowable 
values: 0-63. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingSamplingRateTiming[5:0]7 Percentage of bits margined during timing 
margining mode is calculated as 
1/64*(Sampling_Rate[5:0]+1).  Allowable 
values: 0-63. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingIndependentLeftRight7 The PHY indicates whether it supports 
independent left and right time margining.  The 
support value is encoded as follows: 
0 – No Support 
1 – Support. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingIndependentUpDown7 The PHY indicates whether it supports 
independent up and down voltage margining.  
The support value is encoded as follows: 
0 – No Support 
1 – Support. 
 
The PHY needs to specify this value for PCI 

                                                      
7 See PCIe Base Specification.  In case of discrepancy, the PCIe Base Specification shall 
supercede the PIPE specification. 
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Express at 16 GT/s and 32 GT/s. 
RXMarginingIndependentErrorSampler7 The PHY indicates whether it supports an error 

sampler independent from the main sampler to 
allow higher BER’s to be measured.  The support 
value is encoded as follows: 
0 – No Support 
1 – Support. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingVoltageSteps[6:0]7 Total number of voltage steps, minimum range 
+/- 50mV. A value of zero indicates that voltage 
margining is not supported.  Allowable non-zero 
values: 32-127. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingTimingSteps[5:0]7 Total number of timing steps, minimum range 
+/-0.2UI.  Allowable values: 8-63. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingMaxVoltageOffset[6:0]7 Offset at maximum step value as percentage of 
one volt.  Allowable values: 5-50. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingMaxTimingOffset[6:0]7 Offset at maximum step value as percentage of 
nominal UI.  Allowable values: 20-50. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingMaxLanes[5:0]7 Maximum number of lanes that can be margined 
simultaneously.  Allowable values:1-32.  
Recommended value=number of lanes the PHY 
supports. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingSampleReportingMethod7 Indicates whether a sample frequency or a 
sample count is reported.  This value is encoded 
as follows: 
0 – Sample Count Reported 
1 – Sample Frequency Reported 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingMaxTimingOffsetChange[6
:0] 

Maximum number of steps margin offset can be 
changed with one command during timing 
margining.  Allowable values: 1-127. 
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The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMarginingMaxVoltageOffsetChange[
6:0] 

Maximum number of steps margin offset can be 
changed with one command during voltage 
margining.  Allowable values: 1-127. 
 
The PHY needs to specify this value for PCI 
Express at 16 GT/s and 32 GT/s. 

RXMessageBusWriteBufferDepth[3:0] The PHY indicates the number of write buffer 
entries that it has implemented to receive writes 
from the MAC, where one entry can hold the 
three bytes of information associated with each 
write transaction. 

TXMessageBusMinWriteBufferDepth[3:
0] 

The PHY indicates the minimum number of 
write buffer entries it expects the MAC to 
implement to receive writes from the PHY.  
Allowable values: 0-8.  The MAC may choose to 
implement more than the minimum required by 
the PHY; however, there may not be any benefit 
in doing so. 

WidthChangeHandshakeRequirement The PHY indicates whether it needs the MAC to 
use the PclkChangeOk/PclkChangeAck 
handshake for rate plus width changes. 

RateChangeHandshakeRequirement The PHY indicates whether it needs the MAC to 
use the PclkChangeOK/PclkChangeAck 
handshake for all rate changes. 

AsynchReceiverDetectSupport The PHY indicates whether is supports 
asynchronous receiver detection in PCIe P2 
power state. 

EIOS to Valid Electrical Idle Transition 
Time (PCIe mode) 

The PHY indicates the value of TTX-IDLE-SET-TO-

IDLE. 

Datapath Options Supported The PHY indicates whether it supports SerDes 
architecture and/or Original PIPE.  The PHY 
specifies how it should be configured to use one 
or the other option. 

Control Path Options Supported The PHY indicates whether it support the Low 
Pin Count signal interface and/or the legacy 
signal interface.  The PHY specifies how it 
should be configured to use one or the other 
option. 

 

8.22 Control Signal Decode table – PCI Express Mode 
The following table summarizes the encodings of four of the seven control signals that cause 
different behaviors depending on power state.  For the other three signals, Reset# always 
overrides any other PHY activity.  TxCompliance and RxPolarity are only valid when the PHY is 
in P0 and is actively transmitting.  Note that these rules only apply to lanes that have not been 
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‘turned off’ as described in section 8 (Multi-lane PIPE). 
 
 

PowerDown[1:0] TxDetectRx/ 
Loopback 

TxElecIdle Description 

P0:  00b 

0 0 PHY is transmitting data.  MAC is providing 
data bytes to be sent every clock cycle. 

0 1 PHY is not transmitting and is in electrical 
idle.  

1 0 PHY goes into loopback mode. 
1 1 Illegal.  MAC should never do this. 

P0s: 01b Don’t care 

0 Illegal.  MAC should always have PHY doing 
electrical idle while in P0s.  PHY behavior is 
undefined if TxElecIdle is deasserted while in 
P0s or P1. 

1 

PHY is not transmitting and is in electrical 
idle. 
Note that any data transferred across the PIPE 
interface before TxElecIdle  is asserted, but not 
yet signaled on the analog interface is signaled 
before the analog interface becomes idle. 
 

P1:  10b 
Don’t care 

0 Illegal.  MAC should always have PHY doing 
electrical idle while in P1.  PHY behavior is 
undefined if TxElecIdle is deasserted while in 
P0s or P1. 

0 1 PHY is idle. 
1 1 PHY does a receiver detection operation. 

P2:  11b 

Don’t care 0 PHY transmits Beacon signaling 

0 1 PHY is idle 

1 1 PHY does a receiver detection operation 
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8.23 Control Signal Decode table – USB Mode and Converged IO Mode 
The following table summarizes the encodings of four of the seven control signals that cause 
different behaviors depending on power state.  For the other three signals, Reset# always 
overrides any other PHY activity.  RxPolarity is only valid, and therefore should only be asserted, 
when the PHY is in P0 and is actively transmitting.   
 

PowerDown[1:0] TxDetectRx/ 
Loopback 

TxElecIdle Description 

P0:  00b 

0 0 PHY is transmitting data.  MAC is providing 
data bytes to be sent every clock cycle. 

0 1 PHY is not transmitting and is in electrical 
idle. 
Note that any data transferred across the PIPE 
interface before TxElecIdle  is asserted, but not 
yet signaled on the analog interface is signaled 
before the analog interface becomes idle.  

1 0 PHY goes into loopback mode. 
1 1 PHY transmits LFPS signaling. 

P1: 01b Don’t care 

0 PHY transmits LFPS signaling 

1 
PHY is not transmitting and is in electrical 
idle. 
 

P2:  10b 
or 

P3:  11b 

Don’t care 0 Not allowed 
0 1 PHY is idle. 
1 1 PHY does a receiver detection operation. 

8.24 Control Signal Decode table – SATA Mode 
The following table summarizes the encodings of the control signals that cause different 
behaviors in POWER_STATE_0.  For other control signals, Reset# always overrides any other 
PHY activity.   
Note:  The PHY transmit latency reported in section 8.210must be consistent for all the different 
behaviors in POWER_STATE_0.  This means that the amount of time OOB signaling is present 
on the analog TX pair must be the same as the time OOB signaling was indicated on the PIPE 
interface. 
 

PowerDown[2:0] TxDetectRx/ 
Loopback 

TxElecIdle Description 

POWER_STATE_0:  
00b 

0 0 PHY is transmitting data.  MAC is 
providing data bytes to be sent every clock 
cycle. 

0 1 PHY is not transmitting and is in electrical 
idle.  
Note that any data transferred across the 
PIPE interface before TxElecIdle  is 
asserted, but not yet signaled on the analog 
interface is signaled before the analog 
interface becomes idle. 

1 0 PHY goes into loopback mode. 
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1 1 PHY transmits OOB signaling with pattern 
determined by TX Pattern. 
Note that a PHY must ensure the transition 
between OOB signaling and data signaling 
is performed smoothly on a symbol 
boundary on the analog interface. 

Power Stater other 
than 

POWER_STATE_0 
Don’t care 

Don’t care PHY is not transmitting and is in electrical 
idle. 
 
PHY is not transmitting and is in electrical 
idle. 
 

 

8.25 Required synchronous signal timings 
To improve interoperability between MACs and PHYs from different vendors the following 
timings for synchronous signals are required: 

Setup time for input signals No greater than 25% of cycle time  
Hold time for input signals 0ns 
PCLK to data valid for outputs No greater than 25% of cycle time  

 

8.26 128b/130b Encoding and Block Synchronization (PCI Express 8 GT/s, 
16 GT/s, and 32 GT/s) 

For every block (usually 128 bits – shorter/longer SKP blocks are sometimes transmitted by 
Retimers) that is moved across the PIPE TxData interface at the 8.0 GT/s rate, 16 GT/s rate, or 32 
GT/s rate,  the PHY must transmit 2 extra bits.  The MAC must use the TxDataValid signal 
periodically to allow the PHY to transmit the built up backlog of data.  For example – if the 
TxData bus is 16 bits wide and PCLK is 500 Mhz then every 8 blocks the MAC must deassert 
TxDataValid for one PCLK to allow the PHY to transmit the 16 bit backlog of built up data.  The 
buffers used by the PHY to store TX data related to the 128/130b encoding rate mismatch must 
be empty when the PHY comes out of reset and must be empty whenever the PHY exits electrical 
idle (since TX buffers are flushed before entry to idle).  The PHY must use RxDataValid in a 
similar fashion.  TxDataValid and RxDataValid must be de-asserted for one clock exactly every 
N blocks when the PIPE interface is operating at 8 GT/s or 16 GT/s, where N is 4 for an 8 bit 
wide interface, 8 for a 16 bit wide interface, and 16 for a 32 bit wide interface.  The MAC must 
first de-assert TxDataValid immediately after the end of the Nth transmitted block following reset 
or exit from electrical idle.  Examples of the timing for TxDataValid are shown in Figure 8-11 for 
a 8 bit interface and in Figure 8-12 for a 16 bit interface.  The PHY must first de-assert 
RxDataValid immediately after the end of the Nth received block transmitted across the PIPE 
interface following reset or exit from electrical idle.  Examples of timings for RxDataValid and 
other Rx related signals for a 16 bit wide interface are shown in Figure 8-13. 
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P0

Block0 Block1 Block2 Block3 Block0 ... Block2

TxSyncHeader[1:0]

TxData[15:0]

TxStartBlock

TxDataValid ‘1’

TxElecIdle

PowerDown[2:0]

4 Blocks 4 Blocks

Block3

 
Figure 8-15 – PCI Express 8 GT/s or higher TxDataValid Timing for 8 Bit 
Wide TxData Interface 
 

P0

Block0 Block1 ... Block7 Block0 ... BlocknTxData[15:0]

TxStartBlock

TxDataValid ‘1’

TxElecIdle

PowerDown[2:0]

8 Blocks 8 Blocks

Blockn+1

Figure: TxDataValid Timing for 16-bit TxData Interface
 

Figure 8-16 – PCI Express 8 GT/s or higher TxDataValid Timing for 16 Bit 
Wide TxData Interface 

RxElecIdle

RxStartBlock

PowerDown

RxSyncHeader

RxData

P1

BlockAlignControl

P0

RxValid

RxDataValid

N
o

R
elation

Notes:
• RxValid assertion indicates that PHY has achieved block alignment.
• RxValid assertion aligns with the first RxStartBlock.
• RxDataValid can assert before RxValid toggles or at the latest the same clock when RxValid toggles. 
• There is no required relationship between BlockAlignControl de-assertion and RxStartBlock.

Block Lock 

Delay

 
Figure 8-17 – PCI Express 8 GT/s or higher RxDataValid Timing for 16 Bit 
Wide RxData Interface 
There are situations, such as upconfigure, when a MAC must start transmissions on idle lanes 
while some other lanes are already active.  In any such situation the MAC must wait until the 
cycle after TxDataValid is de-asserted to allow the PHY to transmit the backlog of data due to 
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128b/130b to start transmissions on previously idle lanes.       
 
 

8.27 128b/132b Encoding and Block Synchronization (USB 10 GT/s) 
For every 128 bits that are moved across the PIPE TxData interface at the 10.0 GT/s rate the PHY 
must transmit 132 bits.  The MAC must use the TxDataValid signal periodically to allow the 
PHY to transmit the built up backlog of data.  For example – if the TxData bus is 16 bits wide and 
PCLK is 625 Mhz then every 4 blocks the MAC must deassert TxDataValid for one PCLK to 
allow the PHY to transmit the 16 bit backlog of built up data.  The buffers used by the PHY to 
store TX data related to the 128/132b encoding rate mismatch must be empty when the PHY 
comes out of reset and must be empty whenever the PHY exits electrical idle (since TX buffers 
are flushed before entry to idle).  The PHY must use RxDataValid in a similar fashion.  
TxDataValid and RxDataValid must be de-asserted for one clock exactly every N blocks when 
the PIPE interface is operating at 10 GT/s, where N is 2 for an 8 bit wide interface, 4 for a 16 bit 
wide interface, and 8 for a 32 bit wide interface.  The MAC must first de-assert TxDataValid 
immediately after the end of the Nth transmitted block following reset or exit from electrical idle.  
 

8.28 Message Bus Interface 
8.28.1 General Operational Rules 
The message bus interface can be used after Reset# is deasserted and PCLK is stable.  The 
message bus interface must return to its idle state immediately upon assertion of Reset# and must 
remain idle until Reset# is deasserted and PhyStatus is deasserted .  Since the MAC is aware of 
when PCLK is stable, the requirement that PCLK must be an input to use the message bus allows 
the MAC to only issue transactions on the message bus after PCLK becomes stable. 

For each write_committed issued, the initiator must wait for a write_ack response before issuing 
any new write_uncommitted or write_committed transactions.  A sequence of write_uncommitted 
transactions must always be followed by a write_committed transaction; only a single write_ack 
response is expected.  The initiator must ensure that the total number of outstanding writes, i.e. 
writes issued since the last write_ack was received, must not exceed the write buffer storage 
implemented by the receiver. 

Transmission of a write_ack must not depend on receiving a write_ack. 

Only one read can be outstanding at a time in each direction.  The initiator must wait for a read 
completion before issuing a new read since there are no transaction IDs associated with 
outstanding reads. 

To facilitate design simplicity, reads and writes cannot be mixed.  There must not be any reads 
outstanding when a write is issued; conversely, there must not be any writes outstanding when a 
read is issued.  An outstanding write is any write_committed that hasn’t received a write_ack or 
any write_uncommitted without a subsequent write_committed that has received a write_ack. 

Posted-to-posted MAC to PHY writes are those that result in a PHY to MAC write to be 
generated in response.  For simplification of the verification space, the MAC must only have one 
outstanding post-to-posted write that is waiting for a write in response.  Table 8-2 lists the posted-
to-posted writes generated by the MAC.  Additionally, any vendor defined writes with posted-to-
posted properties most conform to the same restriction of only one outstanding. 
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Table 8-3. Posted-to-Posted Writes 

Post-to-Posted Register Write PHY Write Generated in Response 

RX Margin Control0 register to stop/start 
margining 

RX Margin Status0 

PHY TX Control5 register to assert 
GetLocalPresetCoefficients 

TX Status0, TX Status1, TX Status2  

PHY RX Control3 register to assert RxEqEval RX Link Evaluation Status0 and RX Link 
Evaluation Status1 

Elastic Buffer Control Elastic Buffer Status 

 

Certain registers are defined as part of a register group.  To simplify validation space, whenever 
one register in a register group needs to be updated, all the registers in the register group must be 
updated using a sequence of uncommitted writes and a single committed write.  The defined 
register groups are listed in Table 8-3, where each row corresponds to a register group. 

 

Table 8-4. Defined Register Groups 
Register Groups (one per row) 

MAC TX Status 0/1/2 

PHY TX Control 2/3/4 

MAC RX Status 0/1 

MAC RX Status 2/3 

MAC RX Status 4/5 

 

8.28.2 Message Bus Operations vs Dedicated Signals 
For simplicity, dependencies between message bus operations and dedicated signals are kept to a 
minimum.  The dependencies that do exist are there only because no acceptable workarounds for 
eliminating them have been identified; these dependencies are documented in this section: 
 

• The PHY must wait for the write_ack to come back for any write to LocalLF, LocalFS, 
LocalG4LF, or LocalG4FS, if any, before it asserts PhyStatus for a rate change. 

 

8.29 PCI Express Lane Margining at the Receiver 
Table 8-4 provides the sequence of PIPE message bus commands associated with various receiver 
margining operations; different sequences are shown for independent and dependent samplers. 

Table 8-5. Lane Margining at the Receiver Sequences  
Operation Type of 

Sampler 
Sequence 
Direction Msg 

Bus 
Description 
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Cmd 
Start 
Margining 
Success 

independent   M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

M-->P CWr RxMarginControl0=8'b000011?1 (clear 
error/sample and set start) 

  Mac clears its error count snapshot 
P-->M Ack  
  PHY clears its error and sample counters due 

to MAC setting Sample Count Reset and 
Error Count Reset bits in RxMarginControl0 

P-->M UWr RxMarginStatus1.SampleCount=0 
P-->M UWr RxMarginStatus2.ErrorCount=0 
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

M-->P CWr RxMarginControl0=8'b000011?1 (set start) 
(error/sample clears are a don't care) 

  Mac clears its error count snapshot 
P-->M Ack  
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

Offset 
Change 
Success 

independent   M-->P UWr RxMarginControl0=8'b000011?1 (clear 
error/sample counts) 

M-->P CWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

  Mac clears its error count snapshot 
P-->M Ack  
  PHY clears its error and sample counters due 

to MAC setting Sample Count Reset and 
Error Count Reset bits in RxMarginControl0 

P-->M UWr RxMarginStatus1.SampleCount=0 
P-->M UWr RxMarginStatus2.ErrorCount=0 
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

dependent M-->P CWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

  Mac clears its error count snapshot 
P-->M Ack  
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

Clear Error independent   M-->P CWr RxMarginControl0=8'b000001?1 (clear error, 
hold t vs v, maintain start) 

P-->M Ack  
P-->M UWr RxMarginStatus1.SampleCount=current 
P-->M CWr RxMarginStatus2.ErrorCount=0 
M-->P Ack  

dependent   Mac clears its error count snapshot 
Stop independent   M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 
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Margining offset) 
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear 

t vs v) 
P-->M Ack  
P-->M UWr RxMarginStatus1.SampleCount=Final 
P-->M UWr RxMarginStatus2.ErrorCount=Final 
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

M-->P CWr RxMarginControl0=8'b00000000 (stop, clear 
t vs v) 

P-->M Ack  
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  

Start 
Margining 
NAK 

independent   M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 

M-->P CWr RxMarginControl0=8'b000011?1 (clear 
error/sample and start) 

  Mac clears its error count snapshot 
P-->M Ack  
  PHY clears its error and sample counters due 

to MAC setting Sample Count Reset and 
Error Count Reset bits in RxMarginControl0 

P-->M UWr RxMarginStatus1.SampleCount=0 
P-->M UWr RxMarginStatus2.ErrorCount=0 
P-->M CWr RxMarginStatus0.MarginNak=1 
M-->P Ack  
  MAC changes execution status to 11 (NAK) 
  The “Stop Margining” sequence should be 

followed. 
dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 

offset) 
M-->P CWr RxMarginControl0=8'b000011?1 (set start) 

(error/sample clears are a don't care) 
  Mac clears its error count snapshot 
P-->M Ack  
  PHY detects bad margin request, 

places/keeps margin logic in normal 
functional operation mode 

P-->M CWr RxMarginStatus0.MarginNak=1 
M-->P Ack  
  MAC changes execution status to 11 (NAK) 
  The “Stop Margining” sequence should be 

followed. 
Offset 
Change 
NAK 

independent   M-->P UWr RxMarginControl0=8'b000011?1 (clear 
error/sample counts) 

M-->P CWr RxMarginControl1={1'b?,7'b?} (direction, 
offset) 
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  Mac clears its error count snapshot 
P-->M Ack  
  "PHY clears its error and sample counters 

due to MAC setting Sample Count Reset and 
Error Count Reset bits in RxMarginControl0.  
PHY detects bad offset, places/keeps margin 
logic in normal functional operation mode 
(margin off)" 

P-->M UWr RxMarginStatus1.SampleCount=0 
P-->M UWr RxMarginStatus2.ErrorCount=0 
P-->M CWr RxMarginStatus0.MarginNak=1 
M-->P Ack  
  MAC changes execution status to 11 (NAK) 
  The “Stop Margining” sequence should be 

followed. 
dependent M-->P CWr RxMarginControl1={1'b?,7'b?} (direction, 

offset) 
  Mac clears its error count snapshot 
P-->M Ack  
  PHY detects bad offset, places/keeps margin 

logic in normal functional operation mode 
(margin off) 

P-->M CWr RxMarginStatus0.MarginNak=1 
M-->P Ack  
  MAC changes execution status to 11 (NAK) 
  The “Stop Margining” sequence should be 

followed. 
Error & 
Sample 
Counts 
Update 
(under 
limit) 

independent     PHY detects a change in error or sample 
count (note: multiple updates may be 
combined into single write to avoid backlog) 

P-->M UWr RxMarginStatus1.SampleCount= new current 
P-->M CWr RxMarginStatus2.ErrorCount= new current 
M-->P Ack  
  MAC changes execution status to new 

error/sample count 
dependent   MAC detects a change in error count 

  MAC changes execution status to new error 
count 

Error Limit 
Exceeded 

independent     PHY detects a change in error or sample 
count 

P-->M UWr RxMarginStatus1.SampleCount= current 
P-->M CWr RxMarginStatus2.ErrorCount= new current 
M-->P Ack  
  MAC compares error update to limit, detects 

limit exceeded 
M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 

offset) 
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear 

t vs v) 
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P-->M Ack  
P-->M UWr RxMarginStatus1.SampleCount=Final 
P-->M UWr RxMarginStatus2.ErrorCount=Final 
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  
  MAC changes execution status to 00 (error 

limit exceeded) 
dependent   MAC observes error count has exceeded 

limit 
M-->P UWr RxMarginControl1={1'b?,7'b?} (direction, 

offset) 
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear 

t vs v) 
P-->M Ack  
P-->M CWr RxMarginStatus0.MarginStatus=1 
M-->P Ack  
  MAC changes execution status to 00 (error 

limit exceeded) 
Sample 
Count 
Saturated 

independent     PHY detects a change in error or sample 
count 

P-->M UWr RxMarginStatus1.SampleCount= ==7'h7F 
P-->M CWr RxMarginStatus2.ErrorCount= new current 
M-->P Ack  

dependent   N/A 
 

9 Sample Operational Sequences 
These sections show sample timing sequences for some of the more common PCI Express, SATA 
and USB operations.  These are sample sequences and timings and are not required operation. 

9.1 Active PM L0 to L0s and back to L0 – PCI Express Mode 
This example shows one way a PIPE PHY can be controlled to perform Active State Power 
Management on a link for the sequence of the link being in L0 state, transitioning to L0s state, 
and then transitioning back to L0 state. 
 
When the MAC and higher levels have determined that the link should transition to L0s, the 
MAC transmits an electrical idle ordered set and then has the PHY transmitter go idle and enter 
P0s. Note that for a 16-bit or 32-bit interface, the MAC should always align the electrical idle on 
the parallel interface so that the COM symbol is in the low-order position (TxDataK[7:0]). 
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00b 01b

ScZero IDL

Active (Ends with electrical idle ordered set)

ScZero COM IDL

L0 to L0s

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

PowerDown[1:0]

PhyStatus

 

Tx+/Tx-

 
To cause the link to exit the L0s state, the MAC transitions the PHY from the P0s state to the P0 
state, waits for the PHY to indicate that it is ready to transmit (by the assertion of PhyStatus), and 
then begins transmitting Fast Training Sequences (FTS).  Note, this is an example of L0s to L0 
transition when the PHY is running at 2.5GT/s. 

 01b  00b

 FTS

 Active

 FTS

 L0s to L0

PCLK

Pow erDow n[1:0]

PhyStatus

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

 

Tx+/Tx-

 
 

9.2 Active PM to L1 and back to L0 - – PCI Express Mode 
This example shows one way a PIPE PHY can be controlled to perform Active State Power 
Management on a link for the sequence of the link being in L0 state, transitioning to L1 state, and 
then transitioning back to L0 state.  This example assumes that the PHY is on an endpoint (i.e. it 
is facing upstream) and that the endpoint has met all the requirements (as specified in the base 
spec) for entering L1. 
 
After the MAC has had the PHY send PM_Active_State_Request_L1 messages, and has received 
the PM_Request_ACK message from the upstream port, it then transmits an electrical idle 
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ordered set, and has the PHY transmitter go idle and enter P1.  
 

00b 10b

ScZero IDL

Active (Ends wi th electrical idle ordered set)

ScZero COM IDL

L0 to L1

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

PowerDown[1:0]

PhyStatus

 

Tx+/Tx-

 
 
To cause the link to exit the 1 state, the MAC transitions the PHY from the P1 state to the P0 
state, waits for the PHY to indicate that it is ready to transmit (by the assertion of PhyStatus), and 
then begins transmitting training sequence ordered sets (TS1s).  Note, this is an example when the 
PHY is running at 2.5GT/s. 

10b 00b

TS1.1 TS1.3 TS1.x+1 TS1.x+3

Active 

COM TS1.2 TS1.x TS1.x+2

L1 to L0

PCLK

PowerDown[1:0]

PhyStatus

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

 

Tx+/Tx-
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9.3 Downstream Initiated L1 Substate Entry Using Sideband Mechanism 
Figure 9-1. L1 Substate Management using RxEIDetectDisable and 
TxCommonModeDisable 
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9.4 Receivers and Electrical Idle – PCI Express Mode Example 
This section only applies to a PHY operating to 2.5GT/s. Note that when operating at 5.0 GT/s or 
8 GT/s signaling rates, RxElecIdle may not be reliable.  MACs should refer to the PCI Express 
Revision 3.0 Base Specification or USB 3.0 Specification for methods of detecting entry into the 
electrical idle condition. Refer to  

Status Interface for the definition of RxElecIdle when operating at 5.0 GT/s. This section shows 
some examples of how PIPE interface signaling may happen as a receiver transitions from active 
to electrical idle and back again.  In these transitions there may be a significant time difference 
between when RxElecIdle transitions and when RxValid transitions. 

 
The first diagram shows how the interface responds when the receive channel has been active and 
then goes to electrical idle.  In this case, the delay between RxElecIdle being asserted and RxValid 
being deasserted is directly related to the depth of the implementations elastic buffer and symbol 
synchronization logic.  Note that the transmitter that is going to electrical idle may transmit 
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garbage data and this data will show up on the RxData[] lines.  The MAC should discard any 
symbols received after the electrical idle ordered-set until RxValid is deasserted. 

 
The second diagram shows how the interface responds when the receive channel has been idle 
and then begins signaling again.  In this case, there can be significant delay between the 
deassertion of RxElecIdle (indicating that there is activity on the Rx+/Rx- lines) and RxValid 
being asserted (indicating valid data on the RxData[] signals).  This delay is composed of the 
time required for the receiver to retrain as well as elastic buffer depth. 

 

9.5 Using CLKREQ# with PIPE – PCI Express Mode 
CLKREQ# is used in some implementations by the downstream device to cause the upstream 
device to stop signaling on REFCLK.  When REFCLK is stopped, this will typically cause the 
CLK input to the PIPE PHY to stop as well.  The PCI Express CEM spec allows the downstream 
device to stop REFCLK when the link is in either L1 or L2 states.  For implementations that use 
CLKREQ# to further manage power consumption, PIPE compliant PHYs can be used as follows: 
 
The general usage model is that to stop REFCLK the MAC puts the PHY into the P2 power state, 
then deasserts CLKREQ#.  To get the REFCLK going again, the MAC asserts CLKREQ#, and 
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then after some PHY and implementation specific time, the PHY is ready to use again. 
 
CLKREQ# in L1 
If the MAC is moving the link to the L1 state and intends to deassert CLKREQ# to stop 
REFCLK, then the MAC follows the proper sequence to get the link to L1, but instead of 
finishing by transitioning the PHY to P1, the MAC transition the PHY to P2.  Then the MAC 
deasserts CLKREQ#. 
 
When the MAC wants to get the link alive again, it can: 

• Assert CLKREQ# 
• Wait for REFCLK to be stable (implementation specific) 
• Wait for the PHY to be ready (PHY specific) 
• Transition the PHY to P0 state and begin training. 

 
CLKREQ# in L2 
If the MAC is moving the link to the L1 state and intends to deassert CLKREQ# to stop 
REFCLK, then the MAC follows the proper sequence to get the link to L2.  Then the MAC 
deasserts CLKREQ#. 
 
When the MAC wants to get the link alive again, it can: 

• Assert CLKREQ# 
• Wait for REFCLK to be stable (implementation specific) 
• Wait for the PHY to be ready (PHY specific) 
• Transition the PHY to P0 state and begin training. 

 
Delayed CLKREQ# in L1 
The MAC may want to stop REFCLK after the link has been in L1 and idle for awhile.  In this 
case, the PHY is in the P1 state and the MAC must transition the PHY into the P0 state, and then 
the P2 state before deasserting CLKREQ#.  Getting the link operational again is the same as the 
preceding cases. 
 

9.6 Block Alignment 
Figure 9-2 provides an example of a block alignment sequence using the BlockAlignControl pin.  
The PHY attempts to do alignment when BlockAlignControl is asserted and the PHY receiver is 
active. 
 

Figure 9-2. BlockAlignControl Example Timing 
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LTSSM State

BlockAlignControl

RxValid

RxStartBlock

L0 Recovery.RcvrLck/Cfg Rec.Idle

detecting underflow/
overflow

PHY enables searching 
for EIEOS(PCIe)/SYNC OS 
(USB) on a bit boundary.  

RxValid can be re-asserted 
after de-assertion when 

BlockAlignControl = 1 

Note:
• BlockAlignControl assertion and RxValid deassertion. The PHY will attempt to re-do block alignment.
• The BlockAlignControl assertion does not require the PHY to force the block aligner into the unaligned state.
• There is no requried relationship between the de-assertion of RxValid and RxStartBlock.

 

9.7 Message Bus: RX Margining Sequence 
Figure 9-3 shows an example of an RX margining sequence.  The MAC issues a 
write_uncommitted to address 0x1 followed by a write_committed to address 0x0 to set up the 
margining parameters and to start margining in the RX Margin Control1 and RX Margin Control0 
registers.  The  PHY issues a write_ack to acknowledge that it has flushed the write buffer.  
Subsequently, upon processing a change in the ‘Start Margin’ bit of the RX Margin Control0 
register, the PHY issues a write_committed to address 0x0 to assert the ‘Margin Status’ bit.  
During the margining process, the PHY periodically issues write_committed transactions to 
address 0x2 to update the ‘Error Count[3:0]’ value.  The MAC acknowledges receipt of these 
writes by issuing corresponding write_ack transactions.  Finally, the MAC stops the margining 
process by issuing a write_committed to address 0x0 to deassert the ‘Start Margin’ bit.  The PHY 
issues a write_ack to acknowledge that it has flushed the write buffer.  In response to the ‘Start 
Margin’ deassertion, the PHY pushes it’s final ‘Error Count[3:0]’ value to the MAC via a 
write_uncommitted transaction to the ‘RX Margin Status2’ register, and then issues a 
write_committed to assert ‘RX Margin Status0.Margin Status’. 
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Figure 9-3. Sample RX Margining Sequence 

9.8 Message Bus: Updating LocalFS/LocalLF and LocalG4FS/LocalG4LF 
Figure 9-4 shows a sequence where LocalFS and LocalLF are updated out of reset and, 
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subsequently, LocalG4FS and LocalG4LF are updated after a rate change.  Note that PhyStatus 
deasserts only after the write_ack returns for the LocalFS and LocalLF update out of reset.  
Similarly, the one cycle PhyStatus assertion occurs after the write_ack returns for the LocalG4FS 
and LocalG4LF update after a rate change.  This is one of the rare cases where a dependency 
between a message bus operation and a dedicated signal exists.  While this example shows 
LocalG4FS and LocalG4LF being updated after a rate change, it is not a requirement to wait until 
after the rate change to update these values; e.g. they can be updated out of reset if their values 
are already known by then.  Note, this flexibility in timing of when updates can occur was 
intentionally introduced with the low pin count interface by allocating separate Local*FS and 
Local*LF registers per data rate. 

Figure 9-4. LocalFS/LocalLF/LocalG4FS/LocalG4LF Updates Out of Reset 
and After Rate Change 
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Figure 9-5 shows a sequence where LocalFS and LocalLF are updated in response to a 
GetLocalPresetCoefficients request where the LocalPresetIndex corresponds to an 8GT/s rate.  
Note that the LocalFS and LocalLF values must be updated before or at the same cycle as the 
LocalTxPresetCoefficents are returned. 

Figure 9-5. LocalFS/LocalLF Update Due to GetLocalPresetCoefficients 
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9.9 Message Bus: Updating TxDeemph 
Figure 9-6 shows a sequence where the MAC makes a GetLocalPresetCoefficients request for 
one or more values of LocalPresetIndex and the, subsequently, update the TxDeemph value.  
Note that for every GetLocalPresetCoefficients request, there is a 128ns maximum response time 
for the PHY to return the LocalTxPresetCoefficients value; this time is shown in the diagram 
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from the end of the second write_committed to the end of the third write_committed.  This 
maximum response time requirement only exists for designs that use just-in-time fetching of 
GetLocalPresetCoefficients in response to Tx coefficients request from the link partner; designs 
that fetch ahead of time can circumvent this requirement. Additionally, after the write_committed 
for TxDeemph, the new TxDeemph value must be reflected on the pins within 128ns.  Note that 
while Figure 9-6 does not show LocalLF and LocalFS getting returned in response to a 
GetLocalPresetCoefficients request, they can be returned along with LocalTxPresetCoefficients 
similar to what is done in Figure 9-5. 

Figure 9-6.  Updating TxDeemph after GetLocalPresetCoefficients Request 
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9.10 Message Bus: Equalization 
Figure 9-7 shows a successful equalization sequence.  RxEqInProgress is asserted for the entire 
duration of equalization.  Multiple RxEqEval requests are made during the equalization process 
corresponding to different coefficient requests to the far end transmitter.  When all the RxEqEval 
requests are complete, RxEqInProcess is deasserted.  Note, the PHY does not necessarily have to 
write to both the LinkEvaluationFeedbackFigureMerit and 
LinkEvaluationFeedbackDirectionChange register fields; it could write to only to one. 

Figure 9-7.  Successful Equalization 
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Figure 9-8 shows an equalization sequence where the feedback received indicates an invalid 
coefficient request for the link partner.  Note that the write to assert InvalidRequest must happen 
before a new request is initiated; the write to deassert InvalidRequest can happen in the same 
cycle as an RxEqEval request for a new coefficient. 

Figure 9-8. Equalization with Invalid Request 
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Figure 9-9 shows a sequence where the MAC aborts the RxEqEval request before the link 
evaluation feedback is returned by the PHY.  Figure 9-10 shows a sequence where the MAC 
aborts the RxEqEval request while the link evaluation feedback is being returned by the PHY, i.e. 
there is an overlap.  In both abort case, the MAC must ignore the feedback value returned by the 
PHY. 

Figure 9-9. Aborted Equalization, Scenario #1 

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

(1)
Controller starts Coeff Req by 

asserting RxEqEval

(2)
Controller aborts Coeff Req after

timing out waiting for PHY feedback

Wr
Ack

(3)
PHY returns FOM but 

controller ignores

Wr Uncom(RX Link 
Evaluation Status0)

Wr Com(RX Link 
Evaluation Status1)

 
 

Figure 9-10. Aborted Equalization, Scenario #2 
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9.11 Message Bus: BlockAlignControl 
Figure 9-11 shows a sequence where BlockAlignControl is used to reestablish block alignment 
after a loss of alignment is detected.  This sequence also shows how RxValid transitions during 
this process. 

Figure 9-11 Message Bus: BlockAlignControl Example 
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9.12 Message Bus: ElasticBufferLocation Update 
Figure 9-12 shows the update of ElasticBufferLocation across the message bus.  The frequency of 
update across the message bus is controlled by the MAC by setting the value in the 
ElasticBufferLocationUpdateFrequency register. 

Figure 9-12. Message Bus: Updating ElasticBufferLocation 
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10 Multi-lane PIPE – PCI Express Mode 
This section describes a suggested method for combining multiple PIPEs together to form a 
multi-lane implementation.  It describes which PIPE signals can be shared between each PIPE of 
a multi-lane implementation, and which signals should be unique for each PIPE.  There are two 
types of PHYs.  “Variable” PHYs that are designed to support multiple links of variable 
maximum widths and “Fixed” PHYs that are designed to support a fixed number of links with 
fixed maximum widths.   
 
The figure shows an example 4-lane implementation of a multilane PIPE solution with PCLK as a 
PHY input.  The signals that can be shared are shown in the figure as “Shared Signals” while 
signals that must be replicated for each lane are shown as ‘Per-lane signals’. 
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4-lane PIPE implementation 

The MAC layer is responsible for handling lane-to-lane deskew and it may be necessary to use 
the per-lane signaling of SKP insertion/removal to help perform this function. 
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PhyStatus 
RxPresetHint[2:0] 
RxEqEval 
LinkEvaluationFeedbackFigureMerit[7:0] 
LinkEvaluationFeedbackDirectionChange[7:0] 
InvalidRequest 
TxSyncHeader[1:0] 
RxSyncHeader[1:0] 
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FS[5:0] 
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PHYMode[1:0] 
SRISEnable 
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M2P_MessageBus[7:0] 
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A MAC must use all “Per-Lane Signals or Shared Signals” that are inputs to the PHY consistently 
on all lanes in the link.  A PHY in “PCLK as PHY Output ” mode must ensure that PCLK and 
Max PCLK are synchronized across all lanes in the link.  A MAC must provide a synchronized 
PCLK as an input for each lane when controlling a PHY in “PCLK as PHY Input ” mode with no 
more than 300 ps of skew on PCLK across all lanes.   
It is recommended that a MAC be designed to support both PHYs that implement all signals per 
lane and those that implement the “Per-Lane or Shared Signals” per link.  A “Variable” PHY 
must implement the signals in “Per-Lane Signals or Shared Signals” per lane.  A “Fixed” PHY 
may implement the signals in “Per-Lane Signals or Shared Signals” as either Shared or Per-Lane.  
A “Fixed” PHY should implement all the signals in “Per-Lane Signals or Shared Signals” 
consistently as either Shared or Per-Lane.   
 
Note:  The following method to turn off a lane using TxElecIdle and TxCompliance is deprecated 
and will be removed in future spec revisions. 
In cases where a multi-lane has been ‘trained’ to a state where not all lanes are in use (like a x4 
implementation operating in x1 mode), a special signaling combination is defined to ‘turn off’ the 
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unused lanes allowing them to conserve as much power as the implementation allows.  This 
special ‘turn off’ signaling is done using the TxElecIdle and TxCompliance signals.  When both 
are asserted, that PHY can immediately be considered ‘turned off’ and can take whatever power 
saving measures are appropriate.  The PHY ignores any other signaling from the MAC (with the 
exception of Reset# assertion) while it is ‘turned off’.  Similarly, the MAC should ignore any 
signaling from the PHY when the PHY is ‘turned off’.  There is no ‘handshake’ back to the MAC 
to indicate that the PHY has reached a ‘turned off’ state.  
 
There are two normal cases when a lane can get turned off: 

1. During LTSSM Detect state, the MAC discovers that there is no receiver present and will 
‘turn off’ the lane. 

2. During LTSSM Configuration state (specifically Configuration.Complete), the MAC will 
‘turn off’ any lanes that didn’t become part of the configured link. 

As an example, both of these cases could occur when a x4 device is plugged into a x8 slot.  The 
upstream device (the one with the x8 port) will not discover receiver terminations on four of its 
lanes so it will turn them off.  Training will occur on the remaining 4 lanes, and let’s suppose that 
the x8 device cannot operate in x4 mode, so the link configuration process will end up settling on 
x1 operation for the link.  Then both the upstream and downstream devices will ‘turn off’ all but 
the one lane configured in the link. 
 
When the MAC wants to get ‘turned off’ lanes back into an operational state, there are two cases 
that need to be considered: 

1. If the MAC wants to reset the multi-lane PIPE, it asserts Reset# and drives other interface 
signals to their proper states for reset (see section 6.2).  Note that this stops signaling 
‘turned off’ to all lanes because TxCompliance is deasserted during reset.  The multi-lane 
PHY asserts PhyStatus in response to Reset# being asserted, and will deassert PhyStatus 
when PCLK is stable. 

2. When normal operation on the active lanes causes those lanes to transition to the LTSSM 
Detect state, then the MAC sets the PowerDown[1:0] signals to the P1 PHY power state 
at the same time that it deasserts ‘turned off’ signaling to the inactive lanes.  Then as with 
normal transitions to the P1 state, the multi-lane PHY will assert PhyStatus for one clock 
when all internal PHYs are in the P1 state and PCLK is stable. 

11 Appendix 
 

11.1 DisplayPort AUX Signals 
 

Table 11-1. DisplayPort AUX Signals 
Name Direction Active 

Level 
Description 

TxAuxData Input N/A DisplayPort asynchronous transmit data for AUX 
CH 

TxAuxOE Input High DisplayPort asynchronous data output enable 
for AUX CH.  Assertion of this signal must be 
mutually exclusive with assertion of RxAuxIE. 

RxAuxIE Input High DisplayPort asynchronous data input enable for 
AUX CH.  Assertion of this signal must be 
mutually exclusive with assertion of TxAuxOE. 
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RxAuxData Output N/A DisplayPort asynchronous data output for AUX 
CH 

DCAux+ Output Low Optional: DPRX asynchronous AUX+ pulldown 
status signal indicates a source is connected 
(DC voltage) 

DCAux- Output High Optional: DPRX asynchronous AUX- pullup 
status status signal indicates a connected 
source is powered up (DC voltage) 

AuxRxElecIdle Output High Indicates whether differential signaling is 
detected 
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