

PHY Interface
For the

PCI Express, SATA, USB 3.1,
DisplayPort, and Converged IO

Architectures

Version 5.1

©2007 - 2018 Intel Corporation—All rights reserved.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 2 of 161

Intellectual Property Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A COPYRIGHT LICENSE IS HEREBY GRANTED TO REPRODUCE AND
DISTRIBUTE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

INTEL CORPORATION AND THE AUTHORS OF THIS SPECIFICATION DISCLAIM
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF
PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION
IN THIS DOCUMENT AND THE SPECIFICATION. INTEL CORPORATION AND
THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR
REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

ALL SUGGESTIONS OR FEEDBACK RELATED TO THIS SPECIFICATION
BECOME THE PROPERTY OF INTEL CORPORATION UPON SUBMISSION.

INTEL CORPORATION MAY MAKE CHANGES TO SPECIFICATIONS, PRODUCT
DESCRIPTIONS, AND PLANS AT ANY TIME, WITHOUT NOTICE.

Notice: Implementations developed using the information provided in this specification may
infringe the patent rights of various parties including the parties involved in the development of
this specification. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights (including without limitation rights under any party’s patents) are granted herein.

All product names are trademarks, registered trademarks, or service marks of their respective
owners

Contributors
Jeff Morris Jim Choate Michelle Jen Kaleb Ruof
Andy Martwick Paul Mattos Bruce Tennant John Watkins
Brad Hosler Dan Froelich Quinn Devine Jamie Johnston
Matthew Myers Duane Quiet Su Wei Lim Todd Witter
Bob Dunstan Hajime Nozaki Hooi Kar Loo Andrea Uguagliati
Saleem Mohammad Peter Teng Poh Thiam Teoh Efraim Kugman
Sue Vining Karthi Vadivelu Sathyanarayanan Gopal Daniel Resnick
Tadashi Iwasaki Mineru Nishizawa Siang Lin Tan Tina Tahmoureszadeh
Yoichi Iizuka Takanori Saeki Jake Li
Rahman Ismail
Ben Graniello

Andrew Lillie
Frank Kavanagh

Zeeshan Sarwar
Minxi Gao

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 3 of 161

Dedicated to the memory of Brad Hosler, the impact
of whose accomplishments made the Universal Serial
Bus one of the most successful technology
innovations of the Personal Computer era.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 4 of 161

Table of Contents
1 Preface .. 10

1.1 Scope of this Revision .. 10
1.2 Revision History ... 10

2 Introduction .. 13
2.1 PCI Express PHY Layer ... 16
2.2 USB PHY Layer ... 17
2.3 Converged IO PHY Layer .. 17
2.4 SATA PHY Layer ... 17
2.5 Low Pin Count Interface and SerDes Architecture ... 18

3 PHY/MAC Interface .. 19
4 PCI Express, USB, and Converged IO PHY Functionality ... 28

4.1 Original PIPE Architecture ... 28
4.1.1 Transmitter Block Diagram (2.5 and 5.0 GT/s) ... 28
4.1.2 Transmitter Block Diagram (8.0/10/16 GT/s/32 GT/s) ... 29
4.1.3 Receiver Block Diagram (2.5 and 5.0 GT/s) ... 29
4.1.4 Receiver Block Diagram (8.0/10.0/16/32 GT/s) .. 30
4.1.5 Clocking ... 32

4.2 SerDes Architecture .. 32
4.2.1 SerDes Architecture: Transmitter Block Diagram ... 32
4.2.2 SerDes Architecture: Receiver Block Diagram ... 33

5 SATA PHY Functionality .. 34
5.1 Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s) ... 35
5.2 Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s) ... 36
5.3 Clocking .. 36

6 PIPE Interface Signal Descriptions .. 37
6.1 PHY/MAC Interface Signals – Common for SerDes and Original PIPE 37

6.1.1 Data Interface .. 37
6.1.2 Command Interface ... 40
6.1.3 Status Interface .. 57
6.1.4 Message Bus Interface ... 64

6.1.4.1 Message Bus Interface Commands .. 64
6.1.4.2 Message Bus Interface Framing ... 67

6.2 PHY/MAC Interface Signals – SerDes Architecture Only ... 68
6.2.1 Data Interface .. 68
6.2.2 Command Interface ... 68

6.3 PHY/MAC Interface Signals – Original PIPE Only ... 69
6.3.1 Data Interface .. 69
6.3.2 Command Interface ... 72

6.4 External Signals – Common for SerDes and Original PIPE ... 77
7 PIPE Message Bus Address Spaces ... 80

7.1 PHY Registers ... 82
7.1.1 Address 0h: RX Margin Control0 .. 83
7.1.2 Address 1h: RX Margin Control1 .. 83
7.1.3 Address 2h: Elastic Buffer Control .. 83
7.1.4 Address 3h: PHY RX Control0 ... 84
7.1.5 Address 4h: PHY RX Control1 ... 85
7.1.6 Address 5h: PHY RX Control2 ... 85
7.1.7 Address 6h: PHY RX Control3 ... 85
7.1.8 Address 7h: Elastic Buffer Location Update Frequency ... 86

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 5 of 161

7.1.9 Address 8h: PHY RX Control4 ... 86
7.1.10 Address 400h: PHY TX Control0 .. 87
7.1.11 Address 401h: PHY TX Control1 .. 87
7.1.12 Address 402h: PHY TX Control2 .. 88
7.1.13 Address 403h: PHY TX Control3 .. 89
7.1.14 Address 404h: PHY TX Control4 .. 89
7.1.15 Address 405h: PHY TX Control5 .. 89
7.1.16 Address 406h: PHY TX Control6 .. 90
7.1.17 Address 407h: PHY TX Control7 .. 91
7.1.18 Address 408h: PHY TX Control8 .. 91
7.1.19 Address 409h: PHY TX Control9 .. 92
7.1.20 Address 800h: PHY Common Control0 .. 92

7.2 MAC Registers.. 93
7.2.1 Address 0h: RX Margin Status0 .. 94
7.2.2 Address 1h: RX Margin Status1 .. 95
7.2.3 Address 2h: RX Margin Status2 .. 95
7.2.4 Address 3h: Elastic Buffer Status .. 96
7.2.5 Address 4h: Elastic Buffer Location .. 96
7.2.6 Address 5h: Reserved .. 96
7.2.7 Address 6h: RX Status0 ... 96
7.2.8 Address 7h: RX Status1 ... 97
7.2.9 Address 8h: RX Status2 ... 97
7.2.10 Address 9h: RX Status3 ... 97
7.2.11 Address Ah: RX Link Evaluation Status0 ... 97
7.2.12 Address Bh: RX Link Evaluation Status1 ... 98
7.2.13 Address Ch: RX Status4 .. 99
7.2.14 Address Dh: RX Status5 .. 99
7.2.15 Address 400h: TX Status0 ... 99
7.2.16 Address 401h: TX Status1 ... 100
7.2.17 Address 402h: TX Status2 ... 100
7.2.18 Address 403h: TX Status3 ... 100
7.2.19 Address 404h: TX Status4 ... 100
7.2.20 Address 405h: TX Status5 ... 101
7.2.21 Address 406h: TX Status6 ... 101

8 PIPE Operational Behavior .. 101
8.1 Clocking .. 101

8.1.1 Clocking Topologies .. 102
8.2 Reset .. 104
8.3 Power Management – PCI Express Mode .. 105
8.4 Power Management – USB Mode .. 107
8.5 Power Management – SATA Mode .. 109
8.6 Changing Signaling Rate, PCLK Rate, or Data Bus Width .. 110

8.6.1 PCI Express Mode ... 110
8.6.2 USB Mode ... 111
8.6.3 SATA Mode .. 111
8.6.4 Fixed data path implementations ... 112
8.6.5 Fixed PCLK implementations ... 113

8.7 Transmitter Margining – PCI Express Mode and USB Mode 113
8.8 Selectable De-emphasis – PCI Express Mode .. 114
8.9 Receiver Detection – PCI Express Mode and USB Mode .. 114
8.10 Transmitting a beacon – PCI Express Mode ... 115

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 6 of 161

8.11 Transmitting LFPS – USB Mode .. 115
8.12 Detecting a beacon – PCI Express Mode .. 116
8.13 Detecting Low Frequency Periodic Signaling – USB Mode 116
8.14 Clock Tolerance Compensation .. 117
8.15 Error Detection .. 119

8.15.1 8B/10B Decode Errors ... 120
8.15.2 Disparity Errors ... 120
8.15.3 Elastic Buffer Errors .. 121

8.15.3.1 Elastic Buffer Reset .. 122
8.16 Loopback ... 122
8.17 Polarity Inversion – PCI Express and USBModes .. 124
8.18 Setting negative disparity (PCI Express Mode) .. 124
8.19 Electrical Idle – PCI Express Mode .. 125
8.20 Link Equalization Evaluation .. 126
8.21 Implementation specific timing and selectable parameter support 128
8.22 Control Signal Decode table – PCI Express Mode ... 137
8.23 Control Signal Decode table – USB Mode and Converged IO Mode 139
8.24 Control Signal Decode table – SATA Mode ... 139
8.25 Required synchronous signal timings .. 140
8.26 128b/130b Encoding and Block Synchronization (PCI Express 8 GT/s, 16 GT/s, and
32 GT/s) 140
8.27 128b/132b Encoding and Block Synchronization (USB 10 GT/s) 142
8.28 Message Bus Interface .. 142

8.28.1 General Operational Rules ... 142
8.28.2 Message Bus Operations vs Dedicated Signals ... 143

8.29 PCI Express Lane Margining at the Receiver ... 143
9 Sample Operational Sequences .. 147

9.1 Active PM L0 to L0s and back to L0 – PCI Express Mode .. 147
9.2 Active PM to L1 and back to L0 - – PCI Express Mode .. 148
9.3 Downstream Initiated L1 Substate Entry Using Sideband Mechanism 150
9.4 Receivers and Electrical Idle – PCI Express Mode Example 150
9.5 Using CLKREQ# with PIPE – PCI Express Mode ... 151
9.6 Block Alignment ... 152
9.7 Message Bus: RX Margining Sequence .. 153
9.8 Message Bus: Updating LocalFS/LocalLF and LocalG4FS/LocalG4LF 153
9.9 Message Bus: Updating TxDeemph ... 154
9.10 Message Bus: Equalization ... 155
9.11 Message Bus: BlockAlignControl ... 156
9.12 Message Bus: ElasticBufferLocation Update .. 157

10 Multi-lane PIPE – PCI Express Mode .. 158
11 Appendix .. 160

11.1 DisplayPort AUX Signals ... 160

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 7 of 161

Table of Figures

Figure 2-1: Partitioning PHY Layer for PCI Express .. 14
Figure 2-2 Partitioning PHY Layer for USB ... 15
Figure 2-3. Partitioning PHY Layer for Converged IO ... 16
Figure 3-1. PHY/MAC Interface ... 19
Figure 3-2. DPTX PHY/MAC Interface ... 20
Figure 3-3. DPRX PHY/MAC Interface ... 20
Figure 4-1: PHY Functional Block Diagram ... 28
Figure 4-2: Transmitter Block Diagram .. 29
Figure 4-3: Transmitter Block Diagram (8.0/10/16 GT/s) .. 29
Figure 4-4: Receiver Block Diagram .. 30
Figure 4-5: Receiver Block Diagram (8.0/10/16 GT/s) ... 32
Figure 4-6: Clocking Block Diagram .. 32
Figure 4-7. SerDes Architecture: PHY Transmitter Block Diagram .. 33
Figure 4-8. SerDes Architecture: PHY Receiver Block Diagram ... 34
Figure 5-1: PHY Functional Block Diagram ... 35
Figure 5-2: Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s) .. 35
Figure 5-3: Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s) ... 36
Figure 5-4: Clocking Block Diagram .. 37
Figure 6-1. Command Only Message Bus Transaction Timing (NOP, write_ack) 66
Figure 6-2. Command+Address Message Bus Transaction Timing (Read) 66
Figure 6-3. Command+Data Message Bus Transaction Timing (Read completion) 67
Figure 6-4. Command+Address+Data Message Bus Transaction Timing (Write_uncommitted,

Write_committed) .. 67
Figure 6-5. Message Bus Transaction Framing .. 68
Figure 7-1. Message Bus Address Space .. 81
Figure 8-1. PCLK as PHY output .. 102
Figure 8-2. PCLK as PHY Input w/PHY owned PLL ... 103
Figure 8-3. PCLK as PHY Input w/External PLL and PHY PLL ... 103
Figure 8-4. PCLK as PHY Input with External PLL ... 104
Figure 8-5. Reset# Deassertion and PhyStatus for PCLK as PHY Output 104
Figure 8-6 PCI Express P2 Entry and Exit with PCLK as PHY Output 106
Figure 8-7 PCI Express P2 Entry and Exit with PCLK as PHY Input .. 107
Figure 8-8. L1 SubState Entry and Exit with PCLK as PHY Output .. 107
Figure 8-9. USB U1 Exit ... 109
Figure 8-10 Change from PCI Express 2.5 Gt/s to 5.0 Gt/s with PCLK as PHY Input. 113
Figure 8-11 – PCI Express 3.0 TxDataValid Timings for Electrical Idle Exit and Entry. 126
Figure 8-12. Data Throttling and TxElecIdle ... 126
Figure 8-13 – PCI Express 8GT/s or higher Successful Equalization Evaluation Request 127
Figure 8-14 – PCI Express 3.0 Equalization Evaluation Request Resulting in Invalid Feedback

 .. 127
Figure 8-15 – PCI Express 8 GT/s or higher TxDataValid Timing for 8 Bit Wide TxData

Interface ... 141
Figure 8-16 – PCI Express 8 GT/s or higher TxDataValid Timing for 16 Bit Wide TxData

Interface ... 141
Figure 8-17 – PCI Express 8 GT/s or higher RxDataValid Timing for 16 Bit Wide RxData

Interface ... 141
Figure 9-1. L1 Substate Management using RxEIDetectDisable and TxCommonModeDisable 150
Figure 9-2. BlockAlignControl Example Timing.. 152

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 8 of 161

Figure 9-3. Sample RX Margining Sequence .. 153
Figure 9-4. LocalFS/LocalLF/LocalG4FS/LocalG4LF Updates Out of Reset and After Rate

Change ... 154
Figure 9-5. LocalFS/LocalLF Update Due to GetLocalPresetCoefficients 154
Figure 9-6. Updating TxDeemph after GetLocalPresetCoefficients Request 155
Figure 9-7. Successful Equalization ... 155
Figure 9-8. Equalization with Invalid Request .. 155
Figure 9-9. Aborted Equalization, Scenario #1 ... 156
Figure 9-10. Aborted Equalization, Scenario #2 ... 156
Figure 9-11 Message Bus: BlockAlignControl Example .. 156
Figure 9-12. Message Bus: Updating ElasticBufferLocation .. 157

Table of Tables

dTable 2-1. PHY Requirements for Legacy Pin Interface vs Low Pin Count Interface and Original

PIPE vs SerDes Architecture Support .. 19
Table 3-1. PCI Express Mode - Possible PCLK rates and data widths ... 22
Table 3-2. PCI Express Mode (SerDes only) -- Possible RxCLK Rates and Data Widths 24
Table 3-3. USB Mode – Possible PCLK or RxClk rates and data widths 24
Table 3-4. SATA Mode – Possible PCLK rates and data widths ... 25
Table 3-5. SATA Mode (SerDes only) – Possible RxCLK Rates and Data Widths 25
Table 3-6 DPTX and DPRX Mode – Possible PCLK or RxCLK Rates and Data Widths 26
Table 3-7. Converged IO Mode – Possible PCLK or RxCLK Rates and Data Widths................. 27
Table 6-1. Transmit Data Interface Input Signals ... 37
Table 6-2. Transmit Data Interface Output Signals ... 39
Table 6-3. Receive Data Interface Input Signals ... 39
Table 6-4. Receive Data Interface Output Signals .. 39
Table 6-5. Command Interface Input Signals .. 40
Table 6-6. Command Interface Output Signals ... 55
Table 6-7. Status Interface Input Signals... 57
Table 6-8. Status Interface Output Signals .. 58
Table 6-9 Message Bus Interface Signals ... 64
Table 6-10 Message Bus Commands .. 65
Table 6-11. SerDes Only: Receive Data Interface Output Signals .. 68
Table 6-12. SerDes Only: Command Interface Input Signals ... 68
Table 6-13. Original PIPE Only: Transmit Data Interface Input Signals 69
Table 6-14. Original PIPE Only: Receive Data Interface Output Signals 70
Table 6-15. Command Interface Input Signals .. 72
Table 6-16. Original PIPE Only: Command Interface Output Signals ... 73
Table 6-17. Original PIPE only: Status Interface Output Signals .. 75
Table 6-18. External Input Signals .. 77
Table 6-19. External Output Signals ... 78
Table 7-1 PHY Registers ... 82
Table 7-2 MAC Registers .. 94
Table 8-1. PclkChangeOK/PclkChangeAck Requirements ... 110
Table 8-2 Parameters Advertised in PHY Datasheet ... 128
Table 8-3. Posted-to-Posted Writes ... 143
Table 8-4. Defined Register Groups .. 143
Table 8-5. Lane Margining at the Receiver Sequences ... 143

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 9 of 161

Table 11-1. DisplayPort AUX Signals .. 160

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 10 of 161

1 Preface

1.1 Scope of this Revision
The PCI Express, SATA, USB, DisplayPort, and Converged IO PHY Interface Specification has
definitions of all functional blocks and signals. This revision includes support for PCI Express
implementations conforming to the PCI Express Base Specification, Revision 4.0, SATA
implementations conforming to the SATA specification, revision 3.0, USB implementations
conforming to the Universal Serial Bus Specification, Revision 3.1, DisplayPort implementations
conforming to the DisplayPort 1.4 Specification, and Converged IO implementations conforming
to the Converged IO Base Specification, Revision 1.0

1.2 Revision History
Revision
Number

Date Description

0.1 7/31/02 Initial Draft

0.5 8/16/02 Draft for industry review

0.6 10/4/02 Provides operational detail

0.7 11/4/02 Includes timing diagrams

0.8 11/22/02 More operational detail. Receiver detection sequence changed.

0.9 12/16/02 Minor updates. Solid enough for implementations to be finalized.

0.95 4/25/03 Updates to reflect 1.0a Base Spec. Added multilane suggestions.

1.00 6/19/03 Stable revision for implementation.

1.70 11/6/05 First pass at Gen. 2 PIPE

1.81 12/4/2005 Fixed up areas based on feedback.

1.86 2/27/2006 Fixed up more areas based on feedback. Added a section on how
to handle CLKREQ#.

1.87 9/28/2006 Removed references to Compliance Rate determination. Added
sections for TX Margining and Selectable De-emphasis. Fixed up
areas (6.4) based on feedback.

1.90 3/24/2007 Minor updates, mostly editorial.

2.00 7/21/2007 Minor updates, stable revision for implementation.

2.7 12/31/200
7

Initial draft of updates to support the USB specification, revision
3.0.

2.71 1/21/2008 Updates for SKP handling and USB SuperSpeed PHY power
management.

2.75 2/8/08 Additional updates for SKP handling.

2.90 8/11/08 Added 32 bit data interface support for USB SuperSpeed mode,
support for USB SuperSpeed mode receiver equalization training,
and support for USB SuperSpeed mode compliance patterns that
are not 8b/10b encoded.
Solid enough for implementation architectures to be finalized.

3.0 3/11/09 Final update

4.0 4/5/11 Draft 1 update adding SATA.

4.0 4/13/11 Draft 3 update adding PCI Express 3.0 rev .9.

4.0 9/1/11 Draft 6 update adding updates based on PCI Express 3.0 rev .9
feedback.

4.1 12/7/11 Initial draft with per lane clocking option

4.1 12/12/11 Draft 2. Updates for initial review feedback and addition of several
example timing diagrams for PCI Express 3.0 related signals.

4.1 5/21/12 Updated for Draft 2 feedback from various reviewers.

4.2 7/1/13 Added support for USB 3.1 – preliminary review release based on

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 11 of 161

USB 3.1 specification revision .9
4.3 1/31/14 Added support for PTM (preliminary for review), L1 Substates

(preliminary for review), and PCI Express 4.0 (preliminary rev .3).
4.4 11/28/16 Added support for PCIe RX margining and elastic buffer depth

control over a message bus interface. Support for PCIe Nominal
Empty elastic buffer mode. Gen4 updates: LocalLF/FS, LF/FS,
Rate, PCLK rates. SRIS support. RXStandby for USB. L1 substate
clarifications. General cleanup.

4.4.1 1/12/17 Removed “PCLK as an input” requirement for message bus. Added
wording to allow PHY to choose whether to support L1 substate
management via PowerDown[3:0] exclusively or via
RxEIDetectDisable and TxCommonModeDisable.

5.0 11/2/17 Clarified that margin NAK is only required for unsupported voltage
margin offset requests that are within PHY advertised range.
Added support for 64-bit data width for PCIe SerDes only. Mapped
all eligible legacy PIPE signals into message bus registers. Added
support for a SerDes architecture. Added requirements for
support of low pin count vs legacy PIPE interface and SerDes vs
original PIPE architecture. Added support for Converged IO and
DisplayPort. Recommendation that USB Nominal Empty Operation
should use RxDataValid. Added EB Error recovery mechanism
controlled via a register bit. Added RefClkRequired signal to
indicate when the reference clock can be safely removed.
Reformatted signal tables into separate input and output tables
and added a new column indicating relevant protocols. General
cleanup and clarifications.

5.1 3/14/18 PCIe 5.0 formal rate definitions. General typo corrections and
clarifications. Added back in external signals table that was
inadvertently dropped in the 5.0 rev.
ElasticBufferLocationUpdateFrequency moved to the PHY address
space with min/max values to be specified in PHY datasheet.
Clarified that RefClkRequired# is optional for the PHY. Updated
TxDataValid description to reference usage in original PIPE
architecture for USB due to block encoding. Clarified that PHYs
must specify their own timing requirements for RxStandby. Added
PHY parameters to specify whether PclkChangeOk/PclkChangeAck
handshake is required for rate+width changes and for all rate
changes. Clarified states for L1 substates in the PowerDown
description and RxEIDetectDisable description. Allow receiver
detection in P2 for PCIe. Add USB clarification for timing around
LFPS, RxElecIdle and exit from P1 to P0. Added table of USB
PowerDown state characteristics. Updated RxStatus description to
reflect that ‘111b value indicates corrected SKP for USB.
PclkChangeOk/PclkChangeAck handshake is required for all rate
changes (not just those impacting PCLK). Add clarification on
priority of LFPS transmission vs SuperSpeed data for USB.
RxEIDetectDisable can be used to disable LFPS circuit for power
savings. Moved GetLocalPresetCoefficients from bit 5 to bit 7 of
the PHY TX Control5 register to allow growth of the
LocalPresetIndex field. Deprecate TxElecIdle+TxCompliance
method of turning off a lane. Updated PHY parameters table for
USB 3.2 for Tx EQ. Disallow LFPS transmission in P2 and P3 for
USB. Added eDP rates. Moved TX Control9 register contents to RX
Control4 register. Moved RX Status0-3 register contents to TX
Status3-6 registers. Updated LocalPresetIndex valid range for
LocalG5LF register field. Updated various entries in “Lane
Margining at Receiver Sequences” table. Added PHY parameter
AsynchReceiverDetectSupport to advertise whether the PHY
support asynchronous receiver detection in PCIe P2 state.
Updated message bus rules, including restrictions on posted-to-
posted writes and defined register groups. Add PHY parameter to
advertise the time to transition to a valid Electrical Idle after
sending EIOS. Updated Converged IO interface to 40-bits. Added
rate/width table for Converged IO. Add PHY parameters for
datapath and control path support options. Disallow LFPS signaling
in P2&P3 for USB. RXTermination assertion during Reset for USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 12 of 161

is changed to be implementation specific. Added sample clocking
topologies compatible with PIPE.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 13 of 161

2 Introduction
The PHY Interface for the PCI Express, SATA, USB, DisplayPort and Converged IO
Architectures (PIPE) is intended to enable the development of functionally equivalent PCI
Express, SATA, USB, DisplayPort, and Converged IO PHY's. Such PHY's can be delivered as
discrete IC's or as macrocells for inclusion in ASIC designs. The specification defines a set of
PHY functions which must be incorporated in a PIPE compliant PHY, and it defines a standard
interface between such a PHY and a Media Access Layer (MAC) & Link Layer ASIC. It is not
the intent of this specification to define the internal architecture or design of a compliant PHY
chip or macrocell. The PIPE specification is defined to allow various approaches to be used.
Where possible the PIPE specification references the PCI Express base specification, SATA 3.0
Specification, USB 3.1 Specification, DisplayPort 1.4 specification or Converged IO 1.0
specification rather than repeating its content. In case of conflicts, the PCI-Express Base
Specification, SATA 3.0 specification, USB 3.1 Specification, DisplayPort 1.3 specification, and
Converge IO 1.0 specification shall supersede the PIPE spec.

This spec provides some information about how the MAC could use the PIPE interface for
various LTSSM states, Link states and other protocols. This information should be viewed as
‘guidelines for’ or as ‘one way to implement’ base specification requirements. MAC
implementations are free to do things in other ways as long as they meet the corresponding
specification requirements.

One of the intents of the PIPE specification is to accelerate PCI Express endpoint, SATA device,
USB device, and Converged IO device development. This document defines an interface to which
ASIC and endpoint device vendors can develop. Peripheral and IP vendors will be able to develop
and validate their designs, insulated from the high-speed and analog circuitry issues associated
with the PCI Express, SATA, USB, DisplayPort, or Converged IO PHY interfaces, thus
minimizing the time and risk of their development cycles.

The PIPE specification defines two clocking options for the interface. In the first alternative the
PHY provides a clock (PCLK) that clocks the PIPE interface as an output. In the second
alternative PCLK is provided to each lane of the PHY as an input. The alternative, where PCLK
is provided to each lane of the PHY, was added in the 4.1 revision of the PIPE specification. It
allows the controller or logic external to the PHY to more easily adjust timing of the PIPE
interface to meet timing requirements for silicon implementations. A PHY is only required to
support one of the timing alternatives. The two clocking options shall be referenced as “PCLK as
PHY Output” and “PCLK as PHY Input” respectively. DisplayPort only supports the “PCLK as
PHY Input” clocking option. Note: “PCLK as PHY Output” mode is not supported for PCIe
5.0 and beyond, Converged IO, or Displayport.

Figure 2-1: Partitioning PHY Layer for PCI Express shows the partitioning described in this spec for
the PCI Express Base Specification. Figure 2-2 shows the partitioning described in this spec for
the USB 3.1 Specification. Figure 2-3 shows the partitioning described in this spec for the
Converged IO 1.0 Specification.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 14 of 161

Physical
Layer

Specification
(Chapter 4 & 8
of base spec)

State machines for
Link Training and Status State Machine (LTSSM)
lane-lane deskew
Scrambling/Descrambling
8b/10b or 128b/130b encode/decode (SerDes PIPE)
Elastic buffer (SerDes PIPE)

8b/10b or 128b/130b encode/decode (Original PIPE)
elastic buffer (Original PIPE)
Rx detection
Power sequencing

Analog buffers
SERDES
10-bit interface

Logical
Sub-block

Physical
Sub-block

PHY/MAC Interface

To higher link,
transaction layers

Physical Coding
Sublayer

(PCS)

Physical Media
Attachment Layer

(PMA)

Media Access Layer
(MAC)

TxRx

Channel

Figure 2-1: Partitioning PHY Layer for PCI Express

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 15 of 161

State machines for
Link Training, Flow Control, and Status
Scrambling/Descrambling (Chapter 6)
8b/10b or 128b/132b encode/decode (SerDes PIPE)
Elastic buffer (SerDes PIPE)

8b/10b code/decode (Original PIPE)
128b/132b code/decode (10 GT/s) (Original PIPE)
elastic buffer (Original PIPE)
Rx detection
Power Sequencing

Analog buffers
SERDES
10-bit interface or
132-bit interface (10 GT/s)

Link
Layer

(Chapter 7)

Physical
Layer

(Chapter 6)

PHY/MAC Interface

To higher link,
transaction layers

Physical Coding
Sublayer

(PCS)

Physical Media
Attachment Layer

(PMA)

Media Access
Layer
(MAC)

TxRx

Channel

Figure 2-2 Partitioning PHY Layer for USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 16 of 161

Link Initialization
Lane and Link state machines
Lanes Deskew
Scrambling/Descrambling
64b/66b or 128b/132b encode/decode
Elastic Buffer
RS-FEC encode/decode

PHY digital logic
Analog buffers
SerDes

Logical
Layer

(Chapter 4)

Electrical
Layer

(Chapter
3)

MAC/PHY Interface

Transport Layer

Media Access
Layer
(MAC)

Physical Media
Attachment Layer

(PMA)

TxRx

Channel

Power and Control
Sublayer

(PCS)

Physical
Layer

Power Sequencing

Figure 2-3. Partitioning PHY Layer for Converged IO

2.1 PCI Express PHY Layer
The PCI Express PHY Layer handles the low level PCI Express protocol and signaling. This
includes features such as analog buffers, receiver detection, data serialization and de-serialization,
8b/10b encoding/decoding, 128b/130b encoding/decoding (8 GT/s, 16 GT/s, 32 GT/s), and elastic
buffers. The primary focus of this block is to shift the clock domain of the data from the PCI
Express rate to one that is compatible with the general logic in the ASIC.

Some key features of the PCI Express PHY are:
• Standard PHY interface enables multiple IP sources for PCI Express Logical Layer and

provides a target interface for PCI Express PHY vendors.
• Supports 2.5GT/s only or 2.5GT/s and 5.0 GT/s, or 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s, or 2.5

GT/s, 5.0 GT/s, 8.0 GT/s, and 16 GT/s, or 2.5 GT/s, 5.0 GT/s, 8.0 GT/s and 16 GT/s and 32
GT/s serial data transmission rate

• Utilizes 8-bit, 16-bit or 32-bit parallel interface to transmit and receive PCI Express data.
Additionally, supports 64-bit interface in SerDes architecture only.

• Allows integration of high speed components into a single functional block as seen by the
endpoint device designer

• Data and clock recovery from serial stream on the PCI Express bus
• Holding registers to stage transmit and receive data
• Supports direct disparity control for use in transmitting compliance pattern(s)
• 8b/10b encode/decode and error indication
• 128b/130b encode/decode and error indication
• Receiver detection

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 17 of 161

• Beacon transmission and reception
• Selectable Tx Margining, Tx De-emphasis and signal swing values
• Lane Margining at the Receiver
• Polarity
• Electrical Idle Entry/Exit Detection (Squelch)

2.2 USB PHY Layer
The USB PHY Layer handles the low level USB protocol and signaling. This includes features
such as analog buffers, receiver detection, data serialization and de-serialization, 8b/10b
encoding/decoding, 128b/132b encoding/decoding (10 GT/s), and elastic buffers. The primary
focus of this block is to shift the clock domain of the data from the USB rate to one that is
compatible with the general logic in the ASIC.

Some key features of the USB PHY are:
• Standard PHY interface enables multiple IP sources for USB Link Layer and provides a

target interface for USB PHY vendors.
• Supports 5.0 GT/s and/or 10 GT/s serial data transmission rate
• Utilizes 8-bit, 16-bit or 32-bit parallel interface to transmit and receive USB data
• Allows integration of high speed components into a single functional block as seen by the

device designer
• Data and clock recovery from serial stream on the USB bus
• Holding registers to stage transmit and receive data
• 8b/10b encode/decode and error indication
• 128b/132b encode/decode and error indication
• Receiver detection
• Low Frequency Periodic Signaling (LFPS)

2.3 Converged IO PHY Layer
The Converged IO PHY Layer handles the low level Converged IO protocol and signaling. This
includes features such as data serialization and de-serialization, analog buffers, and receiver
detection.

Some key features of the Converged IO PHY:
• Standard PHY interface enables multiple IP sources for Converged IO Link Layer and provides

a target interface for Converged IO PHY vendors.
• Supports 10 GT/s and/or 20 GT/s serial data transmission rate
• Implements a 40-bit parallel interface to transmit and receive converged IO data
• Data and clock recovery from serial stream on the Converged IO bus
• Holding registers to stage transmit and receive data
• Low Frequency Periodic Signaling (LFPS)

2.4 SATA PHY Layer
The SATA PHY Layer handles the low level SATA protocol and signaling. This includes
features such as analog buffers, data serialization and deserialization, 8b/10b encoding/decoding,
and elastic buffers. The primary focus of this block is to shift the clock domain of the data from
the SATA rate to one that is compatible with the general logic in the ASIC.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 18 of 161

Some key features of the SATA PHY are:
• Standard PHY interface enables multiple IP sources for SATA controllers and provides a

target interface for SATA PHY vendors.
• Supports 1.5 GT/s only or 1.5 GT/s and 3.0 GT/s, or 1.5 GT/s, 3.0 GT/s and 6.0 GT/s serial

data transmission rate
• Utilizes 8-bit, 16-bit, or 32-bit parallel interface to transmit and receive SATA data
• Allows integration of high speed components into a single functional block as seen by the

device designer
• Data and clock recovery from serial stream on the SATA bus
• Holding registers to stage transmit and receive data
• 8b/10b encode/decode and error indication
• COMINIT and COMRESET transmission and reception

2.5 Low Pin Count Interface and SerDes Architecture
To address the issue of increasing signal count, the message bus interface was introduced in PIPE
4.4 and utilized for PCIe lane margining at the receiver and elastic buffer depth control. In PIPE
5.0, all legacy PIPE signals without critical timing requirements were mapped into message bus
registers so that their associated functionality could be accessed via the message bus interface
instead of implementing dedicated signals. Any new features added in PIPE 4.4 and onwards are
available only via message bus accesses unless they have critical timing requirements that need
dedicated signals.

To facilitate the design of general purpose PHYs delivered as hard IPs and to provide the MAC
with more freedom to do latency optimizations, a SerDes architecture was defined in PIPE 5.0.
This architecture simplifies the PHY and shifts much of the protocol specific logic into the MAC.

To maximize interoperability between MAC and PHY IPs, PHY designs must adhere to the
requirements stated in Table 2-1 for support of the legacy pin interface versus the low pin count
interface and for support of the original PIPE architecture versus the SerDes architecture.

The legacy pin interface refers to a pin interface that utilizes all the applicable dedicated signals
as well as the message bus interface for features not supported through dedicated signals. The
low pin count interface refers to a pin interface that utilizes the message bus interface for all
features supported through the message bus, using dedicated signals only for features not
supported through the message bus. The legacy pin interface dedicated signals are defined in
PIPE 4.4.1 and earlier and have been deprecated in PIPE 5.0.

The original PIPE architecture is represented in Figure 4-2, Figure 4-3, Figure 4-4 and Figure 4-5.
The SerDes Architecture is represented in Figure 4-7 and Figure 4-8.

The legacy pin interface and the low pin count interface are not simultaneously operational, with
the exception of PCIe 4.0 lane margining at the receiver being controlled via the low pin count
interface while other operations are managed over the legacy interface. A PHY must be statically
configured to utilize either the low pin count interface or the legacy pin interface, e.g. no dynamic
switching between the interfaces based on operational rate is permitted. Finally, a SerDes
architecture datapath must always utilize the low pin count interface; using the legacy pin
interface with SerDes architecture is considered illegal.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 19 of 161

Table 2-1. PHY Requirements for Legacy Pin Interface vs Low Pin Count
Interface and Original PIPE vs SerDes Architecture Support

 Converged IO/
DisplayPort

USB 3.2 and
Less

PCIe 5.0 PCIe 4.0
and Less

SATA

Legacy Pin
Interface

Not allowed Required (see
version 4.4.1)

Not
Allowed

Required
(see version
4.4.1)

Required(se
e version
4.4.1)

Low Pin
Count
Interface

Required Optional Required Required for
Gen4 RX
margining
only,
optional for
everything
else

Optional

Original
PIPE
Architectur
e

Not allowed Required Recommend
ed1

Required Required

SerDes
Architectur
e

Required Optional Required Optional Optional

1. To provide interoperability with PCIe and USB MACs that choose not to migrate to the

SerDes architecture, PHYs are encouraged to provide support for original PIPE via a
method where the associated logic can be easily optimized out. With this, designs that
do not require a PHY that supports original PIPE are not burdened with any unneeded
logic.

3 PHY/MAC Interface
Figure 3-1 shows the data and logical command/status signals between the PHY and the MAC
layer. Figure 3-2 and Figure 3-3 shows the data and command/status signals between the PHY
and the MAC layer for DisplayPort DPTX and DPRX, respectively. Full support of PCI Express
mode, USB mode, Sata mode, DisplayPort mode, and Converged IO mode at all rates require
different numbers of control and status signals to be implemented. Refer to Section 6.1 for details
on which specific signals are required for each operating mode.

Figure 3-1. PHY/MAC Interface

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 20 of 161

MAC Layer PHY
Layer

64, 32, 16 or 8

Variable

Variable

64, 32, 16 or 8

Variable

Variable

TxData

Tx Data Related Signals

Command

RxData

Rx Data Related Signals

Status

To
 D

at
a

Li
nk

 L
ay

er Tx+,Tx-

Rx+,Rx-

Channel

CLK

PCLK As PHY Input
RxCLK (SerDes only)

Figure 3-2. DPTX PHY/MAC Interface

MAC Layer PHY
Layer

40, 20 or 10

Variable

Variable

TxData

Command

Status

To
 D

at
a

Li
nk

 L
ay

er Tx+,Tx-

Channel

CLK

PCLK As PHY Input

TxAuxData

RxAuxData

Aux+,Aux-

Figure 3-3. DPRX PHY/MAC Interface

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 21 of 161

MAC Layer PHY
Layer

Variable

40, 20 or 10

Variable

Command

RxData

Status

To
 D

at
a

Li
nk

 L
ay

er

Rx+,Rx-

Channel

CLK

PCLK As PHY Input

TxAuxData

RxAuxData

Aux+,Aux-

RxCLK

This specification allows several different PHY/MAC interface configurations to support various
signaling rates.

For PIPE implementations that support only the 2.5 GT/s signaling rate in PCI Express mode
implementers can choose to have 16 bit data paths with PCLK running at 125 MHz, or 8 bit data
paths with PCLK running at 250 MHz. PIPE implementations that support 5.0 GT/s signaling
and 2.5 GT/s signaling in PCI Express mode, and therefore are able to switch between 2.5 GT/s
and 5.0 GT/s signaling rates, can be implemented in several ways. An implementation may
choose to have PCLK fixed at 250 MHz and use 8-bit data paths when operating at 2.5 GT/s
signaling rate, and 16-bit data paths when operating at 5.0 GT/s signaling rate. Another
implementation choice is to use a fixed data path width and change PCLK frequency to adjust the
signaling rate. In this case, an implementation with 8-bit data paths would provide PCLK at 250
MHz for 2.5 GT/s signaling and provide PCLK at 500 MHz for 5.0 GT/s signaling. Similarly, an
implementation with 16-bit data paths would provide PCLK at 125 MHz for 2.5 GT/s signaling
and 250 MHz for 5.0 GT/s signaling. The sample list of possibilities is shown in Table 3-1.

For PIPE implementations that support 5.0 GT/s USB mode and/or 10 GT/s USB mode
implementers can choose from options shown in Table 3-3. A PIPE compliant MAC or PHY is
only required to support one option for each USB transfer speed that it supports.

For SATA PIPE implementations that support only the 1.5 GT/s signaling rate implementers can
choose to have 16 bit data paths with PCLK running at 75 MHz, or 8 bit data paths with PCLK
running at 150, 300 or 600 MHz. The 300 and 600 Mhz options requires the use of TxDataValid
and RxDataValid signals to toggle the use of data on the data bus.

SATA PIPE implementations that support 1.5 GT/s signaling and 3.0 GT/s signaling in SATA
mode, and therefore are able to switch between 1.5 GT/s and 3.0 GT/s signaling rates, can be
implemented in several ways. An implementation may choose to have PCLK fixed at 150 MHz

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 22 of 161

and use 8-bit data paths when operating at 1.5 GT/s signaling rate, and 16-bit data paths when
operating at 3.0 GT/s signaling rate. Another implementation choice is to use a fixed data path
width and change PCLK frequency to adjust the signaling rate. In this case, an implementation
with 8-bit data paths could provide PCLK at 150 MHz for 1.5 GT/s signaling and provide PCLK
at 300 MHz for 3.0 GT/s signaling. Similarly, an implementation with 16-bit data paths would
provide PCLK at 75 MHz for 1.5 GT/s signaling and 150 MHz for 3.0 mode are shown GT/s
signaling. A sample list of possible widths and PCLK rates for SATA is shown in Table 3-4. A
PIPE compliant MAC or PHY is only required to support one option for each SATA transfer
speed that it supports.

The full set of possible widths and PCLK rates for PCI Express mode is shown in Table 3-1. A
PIPE compliant MAC or PHY is only required to support one option for each PCI Express
transfer speed that it supports. Note that PHYs that support greater than x4 link widths must
provide an option for 32-bit or less data width.

Table 3-1. PCI Express Mode - Possible PCLK rates and data widths
Mode PCLK Original PIPE Data Width

(SerDes Data Width1)
TxDataValid and RxDataValid
Strobe Rate

2.5 GT/s 4000 Mhz 8 bits (10 bits) 1 in 16 PCLKs

2.5 GT/s 2000 Mhz 8 bits (10 bits)

1 in 8 PCLKs

2.5 GT/s 1000 Mhz 8 bits (10 bits) 1 in 4 PCLKs

2.5 GT/s 500 Mhz 8 bits (10 bits) 1 in 2 PCLKs

2.5 GT/s 250 Mhz 8 bits (10 bits) N/A

2.5 GT/s 250 Mhz 16 bits (20 bits) 1 in 2 PCLKs

2.5 GT/s 500 Mhz 16 bits (20 bits) 1 in 4 PCLKs

2.5 GT/s 125 Mhz 16 bits (20 bits) N/A

2.5 GT/s 250 Mhz 32 bits (40 bits) 1 in 4 PCLKs

2.5 GT/s 62.5 Mhz 32 bits (40 bits) N/A

2.5 GT/s 62.5 Mhz N/A (80 bits)

1 in 2 PCLKs

2.5 GT/s 31.25 Mhz N/A (80 bits) N/A

5.0 GT/s 4000 Mhz 8 bits (10 bits) 1 in 8 PCLKs

5.0 GT/s 2000 Mhz 8 bits (10 bits)

1 in 4 PCLKs

5.0 GT/s 1000 Mhz 8 bits (10 bits) 1 in 2 PCLKs

1 For block encoded modes, not all 10, 20, 40, or 80 bits are used. See TxData and RxData signal
descriptions for details.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 23 of 161

5.0 GT/s 500 Mhz 8 bits (10 bits) N/A

5.0 GT/s 500 Mhz 16 bits (20 bits) 1 in 2 PCLKs

5.0 GT/s 250 Mhz 16 bits (20 bits) N/A

5.0 GT/s 250 Mhz 32 bits (40 bits) 1 in 2 PCLKs

5.0 GT/s 125 Mhz 32 bits (40 bits) N/A

5.0 GT/s 125 Mhz N/A (80 bits) 1 in 2 PCLKs

5.0 GT/s 62.5 Mhz N/A (80 bits) N/A

8.0 GT/s 4000 Mhz 8 bits (10 bits) 1 in 4 PCLKs

8.0 GT/s 2000 Mhz 8 bits (10 bits) 1 in 2 PCLKs

8.0 GT/s 1000 Mhz 8 bits (10 bits) N/A

8.0 GT/s 1000 Mhz 16 bits (20 bits) 1 in 2 PCLKs

8.0 GT/s 500 Mhz 16 bits (20 bits) N/A

8.0 GT/s 500 Mhz 32 bits (40 bits) 1 in 2 PCLKs

8.0 GT/s 250 Mhz 32 bits (40 bits) N/A

8.0 GT/s 250 Mhz N/A (80 bits) 1 in 2 PCLKs

8.0 GT/s 125 Mhz N/A (80 bits) N/A

16.0
GT/s

4000 8 bits (10 bits) 1 in 2 PCLKs

16.0
GT/s

2000 Mhz 8 bits (10 bits) N/A

16.0
GT/s

1000 Mhz 16 bits (20 bits) N/A

16.0
GT/s

500 Mhz 32 bits (40 bits) N/A

16.0
GT/s

250 Mhz N/A (80 bits) N/A

32 GT/s 4000 Mhz 8 bits (10 bits) N/A

32 GT/s 2000 Mhz 16 bits (20 bits) N/A

32 GT/s 1000 Mhz 32 bits (40 bits) N/A

32 GT/s 500 Mhz N/A (80 bits) N/A

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 24 of 161

Table 3-2. PCI Express Mode (SerDes only) -- Possible RxCLK Rates and
Data Widths

Mode RxCLK Data Width

2.5 GT/s 250 Mhz 10 bits

2.5 GT/s 125 Mhz 20 bits

2.5 GT/s 62.5 Mhz 40 bits

2.5 GT/s 31.25 Mhz 80 bits

5.0 GT/s 500 Mhz 10 bits

5.0 GT/s 250 Mhz 20 bits

5.0 GT/s 125 Mhz 40 bits

5.0 GT/s 62.5 Mhz 80 bits

8.0 GT/s 1000 Mhz 10 bits

8.0 GT/s 500 Mhz 20 bits

8.0 GT/s 250 Mhz 40 bits

8.0 GT/s 125 Mhz 80 bits

16.0 GT/s 2000 Mhz 10 bits

16.0 GT/s 1000 Mhz 20 bits

16.0 GT/s 500 Mhz 40 bits

16.0 GT/s 250 Mhz 80 bits

32 GT/s 4000 Mhz 10 bits

32 GT/s 2000 Mhz 20 bits

32 GT/s 1000 Mhz 40 bits

32 GT/s 500 Mhz 80 bits

Table 3-3. USB Mode – Possible PCLK or RxClk rates and data widths
Mode PCLK or

RxClk
Original PIPE Data Width
(SerDes Data Width)

5.0 GT/s USB 125 Mhz 32 bits (40 bits)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 25 of 161

Table 3-4. SATA Mode – Possible PCLK rates and data widths
Mode PCLK Original PIPE Data

Width (SerDes Data
Width)

TxDataValid/RxDataValid
Strobe Rate

1.5 GT/s SATA 600 Mhz 8 bits (10 bits) 1 in 4 PCLKs

1.5 GT/s SATA 300 Mhz 8 bits (10 bits) 1 in 2 PCLKs

1.5 GT/s SATA 150 Mhz 8 bits (10 bits) N/A

1.5 GT/s SATA 75 Mhz 16 bits (20 bits) N/A

1.5 GT/s SATA 37.5 Mhz 32 bits (40 bits) N/A

3.0 GT/s SATA 300 Mhz 8 bits (10 bits) N/A

3.0 GT/s SATA 150 Mhz 16 bits (20 bits) N/A

3.0 GT/s SATA 75 Mhz 32 bits (40 bits) N/A

3.0 GT/s SATA 600 Mhz 8 bits (10 bits) 1 in 2 PCLKs

6.0 GT/s SATA 600 Mhz 8 bits (10 bits) N/A

6.0 GT/s SATA 300 Mhz 16 bits (20 bits) N/A

6.0 GT/s SATA 150 Mhz 32 bits (40 bits) N/A

Note: In SATA Mode if the PHY elasticity buffer is operating in nominal empty mode – then
RxDataValid may also be used when the EB is empty and no data is available.

Table 3-5. SATA Mode (SerDes only) – Possible RxCLK Rates and Data
Widths
Mode RxCLK Data Width

1.5 GT/s SATA 150 Mhz 10 bits

1.5 GT/s SATA 75 Mhz 20 bits

1.5 GT/s SATA 37.5 Mhz 40 bits

5.0 GT/s USB 250 Mhz 16 bits (20 bits)
5.0 GT/s USB 500 Mhz 8 bits (10 bits)
10.0 GT/s USB 312.5 Mhz 32 bits (40 bits)
10.0 GT/s USB 625 Mhz 16 bits (20 bits)
10.0 GT/s USB 1250 Mhz 8 bits (10 bits)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 26 of 161

3.0 GT/s SATA 300 Mhz 10 bits

3.0 GT/s SATA 150 Mhz 20 bits

3.0 GT/s SATA 75 Mhz 40 bits

6.0 GT/s SATA 600 Mhz 10 bits

6.0 GT/s SATA 300 Mhz 20 bits

6.0 GT/s SATA 150 Mhz 40 bits

Table 3-6 shows possible PCLK and data width options for DisplayPort implementations.

Table 3-6 DPTX and DPRX Mode – Possible PCLK or RxCLK Rates and Data
Widths

Mode PCLK/RxCLK Data Width
1.62 Gbps DisplayPort 162 Mhz 10 bits

81 Mhz 20 bits
40.5 Mhz 40 bits

2.16 Gbps DisplayPort (eDP) 216 Mhz 10 bits
108 Mhz 20 bits
54 Mhz 40 bits

2.43 Gbps DisplayPort (eDP) 243 Mhz 10 bits
 121.5 Mhz 20 bits
 60.75 Mhz 40 bits
2.7 Gbps DisplayPort 270 Mhz 10 bits

135 Mhz 20 bits
62.52 Mhz 40 bits

3.24 Gbps DisplayPort (eDP) 324 Mhz 10 bits
 162 Mhz 20 bits
 81 Mhz 40 bits
4.32 Gbps DisplayPort (eDP 432 Mhz 10 bits
 216 Mhz 20 bits
 108 Mhz 40 bits
5.4 Gbps DisplayPort 540 Mhz 10 bits

270 Mhz 20 bits
135 Mhz 40 bits

8.1 Gbps DisplayPort 810 Mhz 10 bits
405 Mhz 20 bits
202.5 Mhz 40 bits

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 27 of 161

Table 3-7. Converged IO Mode – Possible PCLK or RxCLK Rates and Data
Widths

Mode PCLK/RxCLK Data Width2
10 GT/s Converged IO 1.25 Ghz 10 bits

625 Mhz 20 bits
312.5 Mhz 40 bits

20 GT/s Converged IO 2.5 Ghz 10 bits
1.25 Ghz 20 bits
625 Mhz 40 bits

Note: When a MAC that implements the TxDataValid signal is using a mode that does not use
TxDataValid the MAC shall keep TxDataValid asserted. When a PHY that implements
RxDataValid is in a mode that does not use RxDataValid the PHY shall keep RxDataValid
asserted.

There may be PIPE implementations that support multiples of the above configurations. PHY
implementations that support multiple configurations at the same rate must support the width and
PCLK rate control signals. A PHY that supports multiple rates in PCI Express Mode or SATA
Mode or USB Mode must support configurations across all supported rates that are fixed PCLK
rate. A PHY that supports multiple rates in PCI Express Mode or SATA Mode must support
configurations across all supported rates that are fixed data path width.

2 While the data widths are 10, 20, or 40 bits for consistency with other protocols, Converged IO
only utilizes only 8 out of every 10 bits of data since it uses block encoding. Refer to section
6.1.1 for more details.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 28 of 161

4 PCI Express, USB, and Converged IO PHY Functionality
Figure 4-1 shows the functional block diagram of the PHY. The functional blocks shown are not
intended to define the internal architecture or design of a compliant PHY but to serve as an aid for
signal grouping.

TX BLOCK

RX BLOCK

PLL

VariableCommand

64, 32, 16 or
8

Variable

TxData
Tx Data
Related Signals

Status

64, 32, 16 or 8

Variable

RxData

Rx Data
Related Signals

CLK

Tx+, Tx-

Rx+, Rx-

Variable

PCLK (PCLK as PHY output mode only)
PCLK (PCLK as PHY input mode only)

Figure 4-1: PHY Functional Block Diagram

Sections below provide descriptions of each of the blocks shown in Figure 4-1: PHY Functional
Block Diagram. These blocks represent high-level functionality that is required to exist in the
PHY implementation. These descriptions and diagrams describe general architecture and
behavioral characteristics. Different implementations are possible and acceptable.

4.1 Original PIPE Architecture
4.1.1 Transmitter Block Diagram (2.5 and 5.0 GT/s)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 29 of 161

8b10b encoding

Parallel to Serial

Data

TxDataK

Optional 32,16->8

x 8

x 10

x32 or x16
or x8

TxCompliance
(PCI Express Only)

Loopback path
from receiver

TxOnesZeroes (USB Only)

Figure 4-2: Transmitter Block Diagram

4.1.2 Transmitter Block Diagram (8.0/10/16 GT/s/32 GT/s)

128b130b encoding

Parallel to Serial

Transmitter Differential
Driver

D+ D-

Data

TxDetectRx
TxElecIdle

Bit rate clk / 10

Optional 32,16->8

Bit rate clk (8/
10/16/32 GT/

s)

x 8

X130/x132

x32 or x16
or x8

TxSyncHeader
TxStartBlock

PCLK

Loopback path
from receiver

TxMargin (PCIe
only)
TxDeemph

TxDataSkip

Figure 4-3: Transmitter Block Diagram (8.0/10/16 GT/s)

4.1.3 Receiver Block Diagram (2.5 and 5.0 GT/s)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 30 of 161

Serial to Parallel

Differential Receiver

D+ D-

Clock Recovery
Circuit

Recovered
Bit Clock

K28.5 Detection

Recovered
Symbol Clock

Elastic Buffer

RxPolarity

Buffer Overflow/Underflow

SKP added/removed

2.5 or 5.0 GHz

Data Recovery
Circuit (DRC)

x 10

Rec
Sta

Loopback path

Figure 4-4: Receiver Block Diagram

4.1.4 Receiver Block Diagram (8.0/10.0/16/32 GT/s)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 31 of 161

Serial to Parallel

Differential Receiver

D+ D-

Clock Recovery
Circuit

RxElecIdle

Recovered
Bit Clock

Block Aligner

128b 130b Decode
128b 132b Decode

Recovered
Symbol Clock

Elastic Buffer

RxPolarity
RxValid

Decode Error

Buffer Overflow/Underflow

SKP added/removed

8.0/10.0 GHz

Optional 8->16, 32

Data

Data Recovery
Circuit (DRC)

400/500/
800/1600

MHz

PCLK

x 10

x130

x32 or x16 or x8

Receiver
Status

RxStatus
Loopback path
to transmitter

x128

RxSyncHeader
RxStartBlock

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 32 of 161

Figure 4-5: Receiver Block Diagram (8.0/10/16 GT/s)

4.1.5 Clocking

PLL

Bit Rate Clk
2.5, 5.0, 8.0,

16.0 or 32 GT/s

CLK PCLK

Max PCLK

Figure 4-6: Clocking Block Diagram

4.2 SerDes Architecture
With the SerDes architecture, the PHY implements minimal digital logic compared to the original
PIPE architecture. Figure 4-7 shows the transmitter functionality implemented in the PHY. The
data received from the MAC goes through a parallel to serial converter before being driven out on
differential wires. Note that in the SerDes architecture, all loopback logic resides in the MAC.
Figure 4-8 shows the receiver functionality implemented in the PHY. The data received on the
input differential wires goes through a serial to parallel converter before being forwarded to the
MAC along with a recovered clock, RxCLK.

4.2.1 SerDes Architecture: Transmitter Block Diagram

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 33 of 161

Parallel to Serial

Transmitter Differential
Driver

D+ D-

Data

TxDetectRx
TxElecIdle[3:0]

Optional 80, 40, 20->10

Bit rate clk

x 10

X80 or x40
or x20 or

x10

PCLK

TxMargin (PCIe
only)

TxDeemph

TxDataValid

Figure 4-7. SerDes Architecture: PHY Transmitter Block Diagram

4.2.2 SerDes Architecture: Receiver Block Diagram

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 34 of 161

Differential Receiver

Clock Recovery
Circuit

Data Recovery
Circuit (DRC)

Serial to Parallel

Data
x80 or x40 or

x20 or x10

PLL Clock

D+ D-

RxElecIdle

RxCLK

Recovered Bit
Clock

RxValid

Figure 4-8. SerDes Architecture: PHY Receiver Block Diagram

5 SATA PHY Functionality
Figure 4-1 shows the functional block diagram of a SATA PHY. The functional blocks shown are
not intended to define the internal architecture or design of a compliant PHY but to serve as an
aid for signal grouping.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 35 of 161

TX BLOCK

RX BLOCK

PLL

Command Signals

32, 16 or 8

4, 2 or 1

TxData

TxDataK

Status Signals

32, 16 or 8

4, 2 or 1

RxData

RxDataK

CLK

Tx+, Tx-

Rx+, Rx-

PCLK

Figure 5-1: PHY Functional Block Diagram

Sections below provide descriptions of each of the blocks shown in Figure 5-1. These blocks
represent high-level functionality that is required to exist in the PHY implementation. These
descriptions and diagrams describe general architecture and behavioral characteristics. Different
implementations are possible and acceptable.

5.1 Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s)

8b10b encoding

Parallel to Serial

Transmitter Differential
Driver

D+ D-

Data

TxDataK

TxDetectRx
TxElecIdle

Bit rate clk / 10

Optional 32,16->8

Bit rate clk (1.5G,
3.0G or 6.0G)

x 8

x 10

X32 or x16
or x8

PCLK

Loopback path
from receiver

Figure 5-2: Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 36 of 161

5.2 Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s)

Serial to Parallel

Differential Receiver

D+ D-

Clock Recovery
Circuit

RxElecIdle

Recovered
Bit Clock

K28.5 Detection

8b10b Decode

Recovered
Symbol Clock

Elastic Buffer

RxValid

RxDataK

Decode Error
Disparity Error

Buffer Overflow/Underflow

SKP added/removed

1.5, 3.0, or 6.0
GHz

Optional 8->16, 32

Data

Data Recovery
Circuit (DRC)

150, 300 or
600 MHz

PCLK

x 10

x 10

X32 or X16 or x8

Receiver
Status

RxStatus
Loopback path
to transmitter

x 8

Figure 5-3: Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s)

5.3 Clocking

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 37 of 161

PLL

Bit Rate Clk
1.5, 3.0 or
6.0 GT/s

CLK

PCLK

Figure 5-4: Clocking Block Diagram

6 PIPE Interface Signal Descriptions

The PHY input and output signals are described in the following tables. Note that Input/Output is
defined from the perspective of a PIPE compliant PHY component. Thus a signal described as an
“Output” is driven by the PHY and a signal described as an “Input” is received by the PHY. A
basic description of each signal is provided. More details on their operation and timing can be
found in following sections. All signals on the ‘parallel’ side of a PIPE implementation are
synchronous with PCLK, with exceptions noted in the tables below. In SerDes architecture,
RxData is synchronous with RxCLK. PHYs that only support SerDes architecture do not require
the signals marked as “not used in the SerDes architecture”; however, PHYs that support both
original PIPE and SerDes architecture must implement all the signals.

Notes: For Converged IO and DisplayPort, the low speed side channel is not part of the PIPE
definition; however the appendix does list DisplayPort AUX signals.

6.1 PHY/MAC Interface Signals – Common for SerDes and Original PIPE
This section describes signals that are applicable to both SerDes architecture and Original PIPE.
Any deltas in usage between the two architectures are noted in the description.

6.1.1 Data Interface
Table 6-1. Transmit Data Interface Input Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 38 of 161

Name Active
Level Description Relevant

Protocols
Original PIPE:
TxData[31:0]
for 32-bit
interface
TxData[15:0]
for 16-bit
interface
TxData[7:0] for
8-bit interface

SerDes arch:
TxData[79:0]
for 80-bit
interface
TxData[39:0]
for 40-bit
interface
TxData[19:0]
for 20-bit
interface
TxData[9:0] for
10-bit interface

N/A Parallel data input bus.

For Original PIPE architecture, the
TxData signal width options are 32, 16,
and 8 bits. For the 16-bit interface, 16
bits represent 2 symbols of transmit
data. Bits [7:0] are the first symbol to
be transmitted, and bits [15:8] are the
second symbol. For the 32-bit
interface, 32 bits represent the 4
symbols of transmit data. Bits [23:16]
are the third symbol to be transmitted,
and bits [31:24] are the fourth symbol.
Bit zero is the first to be transmitted.

For SerDes architecture, the TxData
signal width options are 80, 40, 20,
and 10 bits. For the 80-bit interface,
80 bits represent 8 symbols of transmit
data. Bits [49:40], bits [59:50],
bits[69:60], and bits[79:70] are the fifth,
sixth, seventh, and eighth symbols,
respectively. For block encoded data3,
only 8 bits out of each 10-bit slice are
used, e.g. [7:0] represent byte0, [9:8]
are reserved, [17:10] represent byte1,
and [19:18] are reserved, etc.

PCIe, SATA,
USB, DisplayPort
TX, Converged
IO

3 For PCIe operating at 8 GT/s or higher link speed, Converged IO, and USB 10 GT/s link speed,
the data bits are utilized as per the block encoded data description detailed in the tables above.
For all other modes, all the data bits are utilized.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 39 of 161

TxDataValid N/A PCI Express Mode and SATA Mode
and USB Mode (original PIPE only) :
This signal allows the MAC to instruct
the PHY to ignore the data interface
for one clock cycle. A value of one
indicates the phy will use the data, a
value of zero indicates the phy will not
use the data.

It is recommended that the MAC
assert TxDataValid at all times
when the PHY is in a mode that
does not require the signal. All PCI
Express modes at 8 GT/s, 16 GT/s,
and 32 GT/s and all USB modes at
10 GT/s use TxDataValid. Refer to
Table 3-1, Table 3-2, and Table 3-3
for a list of other modes that use
TxDataValid. Refer to section 8.27
for details on USB usage; this
signal is not applicable to USB
SerDes architecture designs.

PCIe, SATA,
USB (original
PIPE only)

Table 6-2. Transmit Data Interface Output Signals

Name Active
Level Description

Relevant
Protocols

Tx+,
Tx-

N/A The differential outputs from the PHY. All
transmitters shall be AC coupled to the media.
See section 4.3.1.2 of the PCI Express Base
Specification or section 6.2.2 of the USB 3.1
Specification.

PCIe, SATA,
USB, DisplayPort
TX, Converged
IO

Table 6-3. Receive Data Interface Input Signals

Name Active
Level Description Relevant

Protocols
Rx+, Rx- N/A The differential inputs to the PHY. PCIe, SATA,

USB, DisplayPort
RX, Converged
IO

Table 6-4. Receive Data Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 40 of 161

Name Active
Level Description Relevant

Protocols
Original
PIPE:
RxData[31:0]
for 32-bit
interface
RxData[15:0]
for 16-bit
interface or
RxData[7:0]
for 8-bit
interface

SerDes arch:
RxData[79:0]
for 80-bit
interface
RxData[39:0]
for 40-bit
interface
RxData[19:0]
for 20-bit
interface or
RxData[9:0]
for 10-bit
interface

N/A Parallel data output bus. For 16-bit
interface, 16 bits represents 2 symbols of
receive data. Bits [7:0] are the first symbol
received, and bits [15:8] are the second
symbol. For the 32 bit interface, 32 bits
represent the 4 symbols of receive data.
Bits [23:16] are the third symbol received,
and bits [31:24] are the fourth symbol
received. Bit zero is the first bit received.

When the PHY is in a SATA mode, the first
valid data following an ALIGN primitive
must appear as byte 0 in the receive data.

For SerDes architecture, the RxData signal
width options are 80, 40, 20, and 10 bits.
For the 80-bit interface, 80 bits represent 8
symbols of receive data. Bits [49:40], bits
[59:50], bits[69:60], and bits[79:70] are the
fifth, sixth, seventh, and eighth symbols,
respectively. For block encoded data4,
only 8 bits out of each 10-bit slice are
used, e.g. [7:0] represent byte0, [9:8] are
reserved, [17:10] represent byte1, and
[19:18] are reserved, etc.

PCIe, SATA,
USB,
DisplayPort RX,
Converged IO

6.1.2 Command Interface

Table 6-5. Command Interface Input Signals

4 For PCIe operating at 8 GT/s or higher link speed, Converged IO, and USB 10 GT/s link speed,
the data bits are utilized as per the block encoded data description detailed in the tables above.
For all other modes, all the data bits are utilized.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 41 of 161

Name
Acti
ve

Lev
el

Description
Releva

nt
Protoc

ols
PHY Mode[3:0] N/A Selects PHY operating mode.

Value Description
0 PCI Express
1 USB
2 SATA
3 DisplayPort
4 Reserved
5 Reserved
6 Reserved
7 Converged IO
All
others

Reserved

Implementation of this signal is not required for
PHYs that only support only a single mode.

PCIe,
SATA,
USB,
Display
Port,
Conver
ged IO

DP_Mode_TX_
RX

N/A This signal is used to distinguish between DPTX and
DPRX when PHY Mode=0x3. A value of ‘0’ specifies
DPTX; a value of ‘1’ specificies DPRX.

Display
Port

SerDesArch N/A This signal indicates whether SerDes architecture is
enabled. Displayport and Converged IO must always set
this to ‘1’.

PCIe,
SATA,
USB,
Display
Port,
Conver
ged IO

SRISEnable Hig
h

Used to tell the PHY to configure itself to support SRIS
for PCIe.

SRISEnable must be set by the MAC before the first
receiver detection. The PHY internally does sequencing
and gates the exit to P0 with having setup for SRIS if
SRISEnable is asserted.

For PCLK as PHY output, this signal must be set before
the PLL is configured.

PCIe

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 42 of 161

TxDetectRx/
Loopback

Hig
h

Used to tell the PHY to begin a receiver detection
operation or to begin loopback or to signal LFPS
during P0 for USB Polling state. Refer to Sections
8.22 and 8.23 for details on the required values for
all control signals to perform loopback and receiver
detection operations and to signal Polling.LFPS.
For receive detect in PHY power states where
PCLK can be gated, this signal is asynchronous; in
all other states, it is synchronous to PCLK.

Converged IO Mode: Used to tell the PHY to signal
LFPS.

Sata Mode:
Loopback support is optional for SATA PHYs.
Loopback is only valid in Sata Mode when
EncodeDecodeBypass is asserted. The RX
elasticity buffer must be active during loopback. If
the PHY runs out of data to transmit during
loopback – it must transmit ALIGNs.

TxDetectRX is not used in SATA mode.

PCIe,
SATA,
USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 43 of 161

TxElecIdle[3:0] Hig
h

Forces Tx output to electrical idle when asserted
except in loopback.

See Section 8.22 (PCI Express Mode) or Section
8.23 (USB mode and Converged IO Mode) or
Section 8.24 (SATA Mode) for the full description
and usage of this pin.

Note: The MAC must always have TxDataValid
asserted when TxElecIdle transitions to either
asserted or deasserted; TxDataValid is a qualifier
for TxElecIdle sampling.

See section 8.3 for the definitions of PHY power
states.

For original PIPE architecture and for non-PCIe
mode SerDes architecture, only bit 0 of this signal is
used and all other bits are reserved.

For SerDes architecture in PCIe mode, one bit is
required per two symbols of interface data. For
example, for an eight symbol wide interface, bit 0
would apply to symbols 0 and 1, bit 1 would apply
to symbols 2 and 3, bit 2 would apply to symbols 4
and 5, bit 3 would apply to symbols 6 and 7. For
narrower interfaces, unused bits of this signal are
reserved. This is due to EIOS truncation rules in
section 4.2.4.2 of the PCIe 4.0 Base specification
and due to the maximum time to transition to a valid
Electrical Idle after sending an EIOS.

PCIe,
SATA
USB,
Conver
ged IO

Reset# Low Resets the transmitter and receiver. This signal is
asynchronous.

The PHY reports its default power state after reset
as defined in section 8.2.

PCIe,
SATA,
USB,
Display
Port

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 44 of 161

PowerDown[3:
0]

N/A Power up or down the transceiver. Power states
PCI Express Mode:

[3] [2] [1] [0] Description
0 0 0 0 P0, normal operation
0 0 0 1 P0s, low recovery time

latency, power saving state
0 0 1 0 P1, longer recovery time

latency, lower power state
0 0 1 1 P2, lowest power state
0 1 0 0 POWER_STATE_4 Phy specific
0 1 0 1 POWER_STATE_5 Phy specific
0 1 1 0 POWER_STATE_6 Phy specific
0 1 1 1 POWER_STATE_7 Phy specific
1 0 0 0 POWER_STATE_8 Phy specific
1 0 0 1 POWER_STATE_9 Phy specific
1 0 1 0 POWER_STATE_10 Phy specific
1 0 1 1 POWER_STATE_11 Phy specific
1 1 0 0 POWER_STATE_12 Phy specific
1 1 0 1 POWER_STATE_13 Phy specific
1 1 1 0 POWER_STATE_14 Phy specific
1 1 1 1 POWER_STATE_15 Phy specific

In PCLK as PHY output mode, when transitioning
from P2 to P1, the signaling is asynchronous (since
PCLK is not running).

A PIPE phy that supports PCI Express L1 PM
Substates managed exclusively via this
PowerDown signal must support at least one PHY
specific power state meeting each of the
requirements shown in the following table in
addition to the legacy power states. If the PHY
supports multiple suitable states with different exit
latencies it is the responsibility of the Mac to decide
which states to use.

PCLK
State

TX
Common
Mode
State

RxElecIdle
Supported

When to
return
PhyStatus
when
exiting?

Exit Latency
to P0

Off Off No Before
transmit
common
mode
established

Implementation
Specific

Off On No N/A Implementation
Specific

When managing L1 substates via sideband signals,
the PHY must define at least one PowerDown
encoding where PCLK can be turned off and
TxCommonModeState and RxElecIdle are

PCIe,
USB,
Conver
ged IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 45 of 161

controlled through TxCommonModeDisable and
RxEIDetectDisable; in this case, the MAC must hold
the PowerDown value constant when in L1
substates.

USB Mode and Converged IO Mode:

[3] [2] [1] [0] Description
0 0 0 0 P0, normal operation
0 0 0 1 P1, low recovery time latency,

power saving state
0 0 1 0 P2, longer recovery time

latency, lower power state
0 0 1 1 P3, lowest power state
0 1 0 0 POWER_STATE_4 Phy specific
0 1 0 1 POWER_STATE_5 Phy specific
0 1 1 0 POWER_STATE_6 Phy specific
0 1 1 1 POWER_STATE_7 Phy specific
1 0 0 0 POWER_STATE_8 Phy specific
1 0 0 1 POWER_STATE_9 Phy specific
1 0 1 0 POWER_STATE_10 Phy specific
1 0 1 1 POWER_STATE_11 Phy specific
1 1 0 0 POWER_STATE_12 Phy specific
1 1 0 1 POWER_STATE_13 Phy specific
1 1 1 0 POWER_STATE_14 Phy specific
1 1 1 1 POWER_STATE_15 Phy specific

When transitioning from P3 to P0, the signaling is
asynchronous (since PCLK is not running).

For USB, below are the characteristics of the power
states that must be minimally implemented:

PowerDown PCLK
State

TX
Common
Mode
State

Operations

P0 On On Transmit/Receive
high speed data
Transmit/Receive
LFPS
Termination
control

P1 On On Transmit/Receive
LFPS
Termination
control

P2 On Off Receive LFPS
Termination
control
Remote receiver
detection

P3 Off Off Receive LFPS
Termination

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 46 of 161

control
Remote receiver
detection

PowerDown[3:
0]
Sata Mode

N/A Sata Mode:

Power up or down the transceiver. Power states

[3] [2] [1] [0] Description
0 0 0 0 POWER_STATE_0 Operational

state
0 0 0 1 POWER_STATE_1 Phy specific
0 0 1 0 POWER_STATE_2 Phy specific
0 0 1 1 POWER_STATE_3 Phy specific
0 1 0 0 POWER_STATE_4 Phy specific
0 1 0 1 POWER_STATE_5 Phy specific
0 1 1 0 POWER_STATE_6 Phy specific
0 1 1 1 POWER_STATE_7 Phy specific
1 0 0 0 POWER_STATE_8 Phy specific
1 0 0 1 POWER_STATE_9 Phy specific
1 0 1 0 POWER_STATE_10 Phy specific
1 0 1 1 POWER_STATE_11 Phy specific
1 1 0 0 POWER_STATE_12 Phy specific
1 1 0 1 POWER_STATE_13 Phy specific
1 1 1 0 POWER_STATE_14 Phy specific
1 1 1 1 POWER_STATE_15 Phy specific

A PIPE compliant SATA PHY is recommended to support at least 4
states other than POWER_STATE_0. There must be at least one
power state meeting each of the requirements shown in the following
table

PCLK State TX Common
Mode State

Exit Latency to
POWER_STATE_0

Off Off < 10 ms
Off On < 10 us
On On < 10 us
On Off < 300 us

Exit latency to POWER_STATE_0 is measured from when the MAC
changes the Power down value to when the PHY deasserts PHY
status. The actual PHY latency must provide enough margin from the
indicated limits to enable compliant device behavior per the SATA
specification. A MAC must map the available PHY states to SATA
states.

Note: PLL shutdown is only possible if PowerDown is set to a state
with PCLK off.

SATA

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 47 of 161

PowerDown[3:
0]
DisplayPort
Mode

N/A DisplayPort mode power states:

[3] [2] [1] [0] Description
0 0 0 0 POWER_STATE_0

Operational state
0 0 0 1 POWER_STATE_1

Phy specific
0 0 1 0 POWER_STATE_2

Phy specific
0 0 1 1 POWER_STATE_3

Phy specific
0 1 0 0 POWER_STATE_4

Phy specific
0 1 0 1 POWER_STATE_5

Phy specific
0 1 1 0 POWER_STATE_6

Phy specific
0 1 1 1 POWER_STATE_7

Phy specific
1 0 0 0 POWER_STATE_8

Phy specific
1 0 0 1 POWER_STATE_9

Phy specific
1 0 1 0 POWER_STATE_10

Phy specific
1 0 1 1 POWER_STATE_11

Phy specific
1 1 0 0 POWER_STATE_12

Phy specific
1 1 0 1 POWER_STATE_13

Phy specific
1 1 1 0 POWER_STATE_14

Phy specific
1 1 1 1 POWER_STATE_15

Phy specific

A PIPE compliant DPRX PHY is recommended to
support the following power states, although the
mapping to the above power state encodings is PHY
implementation specific:

Main
Link RX

Aux Link Exit
Latency

Required

Enabled Enabled N/A Yes
Disabled Enabled

for
differential
signal
monitoring

<1ms Yes

Disabled Enabled
for
differential
signal
monitoring

<80ms No

Disabled Enabled <0.5us Yes for
eDP

Display
Port

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 48 of 161

only
Disabled Enabled <20us Yes for

eDP
only

A PIPE compliant DPTX PHY is recommended to
support the following power states, although the
mapping to specific power state encodings is PHY
implementation specific: (TBD: may want to specify exit
latency)

Main Link TX Aux Link DP_PWR
Enabled Enabled Enabled
Disabled Enabled Enabled

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 49 of 161

RxEIDetectDis
able

Hig
h

PCIe:
Optionally implemented to facilitate PCIe L1
substate management. When asserted, this signal
asynchronously disables the receiver Electrical Idle
detect logic, forcing the RxElecIdle PHY output to a
value of ‘1’. If this signal transitions to deasserted
after being asserted, the RxElecIdle output shall be
forced to a high value until the Electrical Idle detect
logic is functional.

The PHY may choose to support managing L1
substates via this signal and the
TxCommonModeDisable signal instead of the
PowerDown[3:0] signal. In this case, the
PowerDown[3:0] signal must be held at a constant
value through the L1 substate transitions.

In addition to legacy states, the following are the
minimum combinations required to be implemented
by designs that support L1 substates:

PC
LK
Stat
e

TX Common
Mode State

RxElecIdle
Supported

When
to
return
PhySt
atus
when
exitin
g?

Exit
Latency
to P0

Off TxCommonMode
Disable = ‘1’

RxEIDetectDi
sable=’1’

Before
transm
it
comm
on
mode
establi
shed

Impleme
ntation
Specific

Off TxCommonMode
Disable=’0’

RxEIDetectDi
sable=’1’

N/A Impleme
ntation
Specific

USB:
This signal may be optionally implemented by the PHY
to allow the MAC to disable the LFPS circuit to provide
power savings. The PHY datasheet specifies whether
this usage is available.

PCIe,
USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 50 of 161

TxCommonMo
deDisable

Hig
h

Optionally implemented by the PHY to facilitate L1
substate management. When asserted, this signal
asynchronously disables the transmitter DC
common mode logic. Note: The PHY may choose
to support managing L1 substates via this signal
and the RxEIDetectDisable signal instead of the
PowerDown[3:0] signal.

This signal is only valid when PowerDown is at a value
that supports L1 substate management via
TxCommonModeDisable and RxEIDetectDisable.

This signal is only used by PHYs that support PCIe L1
substates.

PCIe

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 51 of 161

Rate[3:0] N/A Control the link signaling rate.

PCI Express Mode:

Value Description
0 Use 2.5 GT/s signaling rate
1 Use 5.0 GT/s signaling rate
2 Use 8.0 GT/s signaling rate
3 Use 16.0 GT/s signaling rate
4 Use 32.0 GT/ signaling rate
5 thru
15

Reserved

Sata Mode:

Value Description
0 Use 1.5 GT/s signaling rate
1 Use 3.0 GT/s signaling rate
2 Use 6.0 GT/s signaling rate
3 thru
15

Reserved

USB Mode:

Value Description
0 Use 5.0 GT/s signaling rate
1 Use 10.0 GT/s signaling rate
2 Reserved
3 thru
15

Reserved

DisplayPort Mode:
Value Description
0 Use 1.62 Gbps signaling rate
1 Use 2.7 Gbps signaling rate
2 Use 5.4 Gbps signaling rate
3 Use 8.1 Gbps signaling rate
4 Use 2.16 Gbps signaling rate
5 Use 2.43 Gbps signaling rate
6 Use 3.24 Gbps signaling rate
7 Use 4.32 Gbps signaling rate
8 thru
15

Reserved

Converged IO Mode:

Value Description
0 Use 10.0 GT/s signaling rate
1 Use 20.0 GT/s signaling rate
2 thru
15

Reserved

PIPE implementations that only support one

PCIe,
SATA,
USB,
Display
Port,
Conver
ged IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 52 of 161

signaling rate do not implement this signal.
Width[1:0] N/A Controls the PIPE data path width. For SerDes

architecture, this applies only to the transmit side
and RxWidth[1:0] controls the receive side.

If EncodeDecodeBypass is ‘0’
Value Datapath Width
0 8 bits
1 16 bits
2 32 bits
3 Reserved

If EncodeDecodeBypass is ‘1’ or in SerDes
architecture
Value Datapath Width
0 10 bits
1 20 bits
2 40 bits
3 80 bits (PCIe SerDes only)

Note: PHYs that support greater than x4 link width
must provide option of 32-bit data width or smaller.

PIPE implementations that only support one option
at each signaling rate do not implement this signal.

PCIe,
SATA,
USB,
Display
Port

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 53 of 161

PCLK Rate[4:0] N/A Control the PIPE PCLK rate

SATA Mode:

0 37.5 Mhz
1 75 Mhz
2 150 Mhz
3 300 Mhz
4 600 Mhrz
All others Reserved

PCI Express Mode:
0 62.5 Mhz
1 125 Mhz
2 250 Mhz
3 500 Mhz
4 1000 Mhz
5 2000 Mhz
6 4000 Mhz
All others Reserved

USB Mode:
0 125 Mhz
1 250 Mhz
2 312.5 Mhz (10 GT/s)
3 500 Mhz
4 625 Mhz (10 GT/s)
5 1250 Mhz (10 GT/s)
All others Reserved

DisplayPort Mode:
Value Rate
0 40.5 Mhz
1 62.52 Mhz
2 81 Mhz
3 135 Mhz
4 162 Mhz
5 202.5 Mhz
6 270 Mhz
7 405 Mhz
8 540 Mhz
9 810 Mhz
10 54 Mhz
11 60.75 Mhz
12 108 Mhz
13 121.5 Mhz
14 160 Mhz
15 216 Mhz
16 243 Mhz

PCIe,
SATA,
USB,
Display
Port

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 54 of 161

17 324 Mhz
18 432 Mhz
All
others

Reserved

Converged IO Mode:
This signal is not used.

PIPE implementations that do not support more
than one PCLK rate for any analog signaling rate do
not implement this signal.

RXTermination Hig
h

Controls presence of receiver terminations:
Value Description
0 Terminations removed
1 Terminations present

Implementation of this signal is only required for
PHYs that support USB mode; this signal is optional
for other protocols.

USB,
PCIe

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 55 of 161

RxStandby Low SATA Mode:

Controls whether the PHY RX is active when the
PHY is in any power state with PCLK on.
0 – Active
1 – Standby

RxStandby is ignored when the PHY is in any
power state where the high speed receiver is
always off.

PCI Express Mode:

Controls whether the PHY RX is active when the
PHY is in P0 or P0s.
0 – Active
1 – Standby

RxStandby is ignored when the PHY is in states
other than P0 or P0s.

USB Mode and Converged IO Mode:

Controls whether the PHY RX is active when the
PHY is in any power state with PCLK on.
0 – Active
1 – Standby

RxStandby is ignored when the PHY is in any
power state where the high speed receiver is
always off.

PCIe,
SATA,
USB,
Conver
ged IO

Table 6-6. Command Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 56 of 161

Name
Acti
ve

Leve
l

Description
Relevant
Protocols

RefClkRequired

Low This signal is deasserted by the PHY
when the reference clock can be safely
removed in low power states.

This signal shall remain asserted low in
all states except P2 and PowerDown
states assigned to L1 substate support.
While in P2 or L1 substate PowerDown
states, the PHY deasserts this signal
when it is ready for reference clock
removal. While in P2 or L1 substate
PowerDown states, the PHY asserts this
signal when it detects a P2 or L1 substate
exit request.

This signal is optionally implemented by
the PHY. The MAC is required to prevent
CLKREQ# from being deasserted if this
signal is asserted.

PCIe

RxStandbyStatus Low SATA Mode and PCI Express Mode and
Converged IO Mode:

The PHY uses this signal to indicate its
RxStandby state.
0 – Active
1 – Standby

RxStandbyStatus reflects the state of the
high speed receiver. The high speed
receiver is always off in PHY states that
do not provide PCLK.
PCI Express Mode:
RxStandbyStatus is undefined when the
power state is P1 or P2.

This signal is not applicable to USB
mode.

PCIe, SATA,
Converged IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 57 of 161

6.1.3 Status Interface

Table 6-7. Status Interface Input Signals

Name Active
Level Description Relevant

Protocols
PclkChangeAck High Only used when PCLK is a PHY input.

Asserted by the MAC when a PCLK rate
change or rate change or, if required,
width change is complete and stable.

After the MAC asserts PclkChangeAck
the PHY responds by asserting
PhyStatus for one cyle and de-asserts
PclkChangeOk at the same time as
PhyStatus. The controller shall deassert
PclkChangeAck when PclkChangeOk is
sampled low.

This signal is not used by any PhyMode that
does not perform dynamic rate changes.

PCIe, SATA,
USB

AsyncPowerCha
ngeAck

High Only used when transitioning between
two power states without PCLK.

After the PHY asserts PhyStatus to
acknowledge the power state change the
MAC responds by asserting
AsyncPowerChangeAck until it samples
PhyStatus deasserted.

Implementation of this signal is only
required for PHYs that support PCI
Express L1 PM Substates managed via
the PowerDown signal.

PCIe

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 58 of 161

Table 6-8. Status Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 59 of 161

Name
Activ

e
Leve

l
Description

Relevant
Protocols

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 60 of 161

RxValid High Indicates symbol lock and valid
data on RxData and RxDataK and
further qualifies RxDataValid
when used.

PCI Express Mode at 8 GT/s and
16 GT/s and 32 GT/s and USB
Mode at 10 GT/s only:
When BlockAlignControl=1:
- RxValid indicates that the block
aligner is conceptually in the
“Aligned” state (see PCI Express
or USB 3.1 Spec)
- If the block aligner transitions
“Aligned” -> “Unaligned” state
RxValid can deassert anywhere
within a block
- If the block aligner transitions
“Unaligned” -> “Aligned” state
RxValid is asserted at the start of
a block

Note that a PHY is not required to
force its block aligner to the
unaligned state when
BlockAlignControl transitions to
one.
When BlockAlignControl=0:
- RxValid is constantly high
indicating that the block aligner is
conceptually in the “Locked” state
(see PCI Express or USB 3.1 Spec).
RxValid can be dropped on
detecting and elastic buffer
underflow or overflow. If de-
asserted it must not re-assert
while BlockAlignControl is de-
asserted.

In the SerDes architecture,
RxValid is used to indicate that
the recovered clock is stable. The
MAC can start symbol or block
lock after RxValid is asserted.

PCIe, USB, SATA
DisplayPort RX

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 61 of 161

PhyStatus High Used to communicate completion
of several PHY functions including
stable PCLK and/or Max PCLK
(depending on clocking mode)
after Reset# deassertion, power
management state transitions,
rate change, and receiver
detection. When this signal
transitions during entry and exit
from any PHY state where PCLK
is not provided, then the signaling
is asynchronous. In error
situations (where the PHY fails to
assert PhyStatus) the MAC can
take MAC-specific error recovery
actions.

PCIe, SATA, USB,
DisplayPort,
Converged IO

RxElecIdle High Indicates receiver detection of an
electrical idle. While deasserted
with the PHY in P2 (PCI Express
mode) or the PHY in P0, P1, P2,
or P3 (USB Mode and Converged
IO Mode), indicates detection of
either:
PCI Express Mode: a beacon.
USB Mode and Converged IO
Mode : LFPS
This is an asynchronous signal.
See RxEIDetectDisable for
additional information.

PCI Express Mode:
It is required at the 5.0 GT/s, 8.0
GT/s, 16 GT/s, and 32 GT/s rates
that a MAC uses logic to detect
electrical idle entry instead of
relying on the RxElecIdle signal.

Sata Mode:
The time the signal is asserted
must match the actual idle time on
the analog bus within -16/+0 ns.

PCIe, SATA, USB,
Converged IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 62 of 161

RxStatus[2:0]

N/A Encodes receiver status and error
codes for the received data
stream when receiving data.

[
2
]

[
1
]

[
0
]

Description

0 0 0 Received data OK
0 0 1 PCI Express Mode: 1

SKP added
USB Mode: 1 SKP
Ordered Set added
Sata Mode: 1 ALIGN
added
Asserted with first byte
of Align that was
added. An align may
only be added in
conjunction with
receiving one or more
aligns in the data
stream and only when
the elasticity buffer is
operating in half full
mode

0 1 0 PCI Express Mode: 1
SKP removed
USB Mode: 1 SKP
Ordered Set removed
SATA Mode: 1 or more
ALIGNs removed
This status is asserted
with first non ALIGN
byte following an
ALIGN. This status
message is applicable
to both EB buffer
modes.

0 1 1 PCI Express and USB
Modes:
Receiver detected
SATA Mode: Misalign
Signaled on the first
symbol of an ALIGN
that was received
misaligned in elasticity
buffer nominal half full
mode. Signaled on the
first data following an
align in elasticity buffer
nominal empty mode.

PCIe, SATA, USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 63 of 161

1 0 0 Both 8B/10B
(128B/130B5) decode
error and (optionally)
Receive Disparity error
Note: This error is
never reported if
EncodeDecodeBypass
is asserted.

1 0 1 Elastic Buffer overflow
1 1 0 Elastic Buffer

underflow.
This error code is not
used if the elasticity
buffer is operating in
the nominal buffer
empty mode.

1 1 1 Receive disparity error
(Reserved if Receive
Disparity error is
reported with code
0b100)
Not used if
EncodeDecodeBypass
is asserted.
For USB3 Gen2,
indicates “SKP
Corrected”.

The only status applicable to
SerDes architecture is ‘Receiver
detected’ (0x3).

PowerPresent High USB Mode: Indicates the
presence of VBUS.
Implementation of this signal is
only required for PHYs that
support USB mode.

USB

5 Disparity errors are not reported when the rate is 8.0 GT/s, 16 GT/s, or 32 GT/s.

Errors in SKP ordered sets shall be reported by the PHY as 128/130 decode errors. An error in a
SKP ordered set shall be reported if there is an error in the first 4N+1 symbols of the skip ordered
set.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 64 of 161

PclkChangeOk High Only used when PCLK is a PHY
input. Asserted by the PHY when
it is ready for the MAC to change
the PCLK rate or Rate or, if
required, width. The PHY shall
only assert this signal after the
MAC has requested a PCLK rate
change by changing PCLK_Rate
or rate change by changing Rate
or, if required, a width change by
changing Width.

This signal is not used for
DisplayPort or Converged IO
Mode.

PCIe, SATA, USB

6.1.4 Message Bus Interface

The message bus interface provides a way to initiate and participate in non-latency sensitive PIPE
operations using a small number of wires, and it enables future PIPE operations to be added
without adding additional wires. The use of this interface requires the device to be in a power
state with PCLK running. Control and status bits used for PIPE operations are mapped into 8-bit
registers that are hosted in 12-bit address spaces in the PHY and the MAC. The registers are
accessed via read and write commands driven over the signals listed in Table 6-9. These signals
are synchronous with PCLK and are reset with Reset#. The specific commands and framing of
the transactions sent over the message bus interface are described in the following subsections.

Table 6-9 Message Bus Interface Signals
Name Direction Description
M2P_MessageBus[7:0] Input The MAC multiplexes command, any

required address, and any required data
for sending read and write requests to
access PHY PIPE registers and for
sending read completion responses and
write ack responses to PHY initiated
requests.

P2M_MessageBus[7:0] Output The PHY multiplexes command, any
required address, and any required data
for sending read and write requests to
access MAC PIPE registers and for
sending read completion responses and
write ack responses to MAC initiated
requests.

6.1.4.1 Message Bus Interface Commands

The 4-bit commands used for accessing the PIPE registers across the message bus are defined in
Table 6-10. A transaction consists of a command and any associated address and data, as

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 65 of 161

specified in the table. The table also specifies the number of PCLK cycles that it takes to transfer
the transaction across the message bus interface. The order in which the bits are transferred
across the interface are illustrated in Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4.

To address the case where multiple PIPE interface signals can change on the same PCLK, the
concept of write_uncommitted and write_committed is introduced. A series of
write_uncommitted transactions followed by one write_committed transaction provides a
mechanism by which all the uncommitted writes and the final committed write are executed in an
atomic manner, thus taking effect during the same PCLK cycle.

To enable the write_uncommitted command, designs must implement a write buffer in the PHY
and the MAC, where each write buffer entry can accommodate the three bytes worth of
information associated with each write transaction. The minimum write buffer depth required is
five; however, this number may increase in the future when new PIPE operations are mapped into
the message bus interface.

Table 6-10 Message Bus Commands
Encoding Command Description Required

Fields
Cycles to
Transmit

4’b0000 NOP Idle. See Figure 6-1. Command[3:0] 1
4’b0001 write_uncommitted The current write should be

saved off into a write buffer
and its associated data
values are updated into the
relevant PIPE register at a
future time when a
write_committed is
received. This is useful for
signals that must change in
the same cycle but that are
distributed among multiple
registers. See Figure 6-4.

Command[3:0],
Address[11:0],
Data[7:0]

3

4’b0010 write_committed The current write as well as
any previously
uncommitted writes saved
into the write buffer should
be committed, i.e. their
values should be updated
into the PIPE registers.
Once a write_committed is
sent, no new writes,
whether committed or
uncommitted, may be sent
until a write_ack is
received. See Figure 6-4.

Command[3:0],
Address[11:0],
Data[7:0]

3

4’b0011 read Used to read contents of a
PIPE register. Only one
read can be outstanding at a
time in each direction. See

Command[3:0],
Address[11:0]

2

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 66 of 161

Figure 6-2.
4’b0100 read completion Data response to a read.

See Figure 6-3.
Command[3:0],
Data[7:0]

2

4’b0101 write_ack Used to acknowledge
receipt of a
write_committed and
readiness to accept another
write. The ack is sent when
the write buffer is flushed
and the resulting PIPE
operation is guaranteed to
start in a deterministic
amount of time. Note: This
does not provide
confirmation that the PIPE
operation triggered by the
write has completed. See
Figure 6-1.

Command[3:0] 1

All others Reserved N/A N/A N/A

 M2P/P2M_MessageBus

Tim
e

 7 6 5 4 3 2 1 0
t Cmd[3:0] 0000b

Figure 6-1. Command Only Message Bus Transaction Timing (NOP,
write_ack)

 M2P/P2M_MessageBus

 7 6 5 4 3 2 1 0

Tim
e

t Cmd[3:0] Addr[11:8]
t+1 Addr[7:0]

Figure 6-2. Command+Address Message Bus Transaction Timing (Read)

 M2P/P2M_MessageBus

 7 6 5 4 3 2 1 0

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 67 of 161

Tim
e

t Cmd[3:0] 0000b
t+1 Data[7:0]

Figure 6-3. Command+Data Message Bus Transaction Timing (Read

completion)

 M2P/P2M_MessageBus

 7 6 5 4 3 2 1 0

Tim
e

t Cmd[3:0] Addr[11:8]
t+1 Addr[7:0]
t+2 Data[7:0]

Figure 6-4. Command+Address+Data Message Bus Transaction Timing
(Write_uncommitted, Write_committed)

6.1.4.2 Message Bus Interface Framing

The framing of transactions is implicitly derived by adhering to the following rules:

1. All zeroes must be driven on the message bus when idle.
2. An idle to non-idle transition indicates the start of a transaction; a new transaction can

start immediately the cycle after the end of the previous transaction without an
intervening idle.

3. The number of cycles to transmit a transaction depends on the command and is
specified in Table 6-10.

4. The cycles associated with one transaction must be transferred in contiguous cycles.

Figure 6-5 illustrates the framing of a couple of transactions on the message bus. The start of the
first transaction is inferred by the idle to non-idle transition. The command is decoded as a write,
which takes three cycles to transmit. Since the cycle following the end of the write is non-idle, it
is inferred to be the start of the next transaction, which is decoded to be another write that takes
three cycles to transmit.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 68 of 161

PCLK

Cmd[3:0],
addr[11:8]

M2P_MessageBus[7:0] or
P2M_MessageBus[7:0]

addr[7:0] data[7:0]8'd0 = IDLE

Transition from IDLE
to non-IDLE

indicates start of
transaction Write takes 3 cycles

Cmd[3:0],
addr[11:8] addr[7:0]

Write takes 3 cycles

data[7:0]

Figure 6-5. Message Bus Transaction Framing

6.2 PHY/MAC Interface Signals – SerDes Architecture Only
This section describes any signals for SerDes architecture that are required in addition to those
defined in section 6.1.

6.2.1 Data Interface

Table 6-11. SerDes Only: Receive Data Interface Output Signals

Name Active
Level Description Relevant

Protocols
RxCLK Rising

Edge
This clock signal is only used in the
SerDes architecture.

Recovered clock used for RxData in the
SerDes architecture.

PCIe, USB,
DisplayPort RX,
Converged IO

6.2.2 Command Interface
Table 6-12. SerDes Only: Command Interface Input Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 69 of 161

Name Active
Level Description Relevant

Protocols
RxWidth[1:0] N/A This signal is only used in the SerDes

architecture.

Controls the PIPE receive data path width

Value Datapath Width
0 10 bits
1 20 bits
2 40 bits
3 80 bits (PCIe SerDes only)

Note: PHYs that support greater than x4
link width must provide option of 32-bit data
width or smaller.

PIPE implementations that only support
one option at each signaling rate do not
implement this signal.

PCIe,
SATA,
USB,
DisplayPort

6.3 PHY/MAC Interface Signals – Original PIPE Only
This section describes signals for Original PIPE that are required in addition to those define in
section 6.1.

6.3.1 Data Interface
Table 6-13. Original PIPE Only: Transmit Data Interface Input Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 70 of 161

Name Active
Level Description Relevant

Protocols
TxDataK[7:0]
for 64-bit
interface
TxDataK[3:0]
for 32-bit
interface
TxDataK[1:0]fo
r 16-bit
interface
TxDataK for 8-
bit interface

N/A This signal is not used in the SerDes
architecture.

Data/Control for the symbols of
transmit data. For 64-bit interfaces, Bit
0 corresponds to the low-byte of
TxData and bit 7 corresponds to the
upper byte. For 32-bit interfaces, Bit 0
corresponds to the low-byte of TxData,
Bit3 corresponds to the upper byte.
For 16-bit interfaces, Bit 0 corresponds
to the low-byte of TxData, Bit 1 to the
upper byte. A value of zero indicates a
data byte, a value of 1 indicates a
control byte.

Not used in PCI Express mode at 8
GT/s, 16 GT/s, or 32 GT/s.
Not used in USB mode at 10 GT/s.
Not used in Converged IO mode.

PCIe, SATA,
USB

TxStartBlock N/A This signal is not used in the SerDes
architecture.

PCI Express Mode and USB Mode:
Only used at the 8.0 GT/s, 16 GT/s,
and 32 GT/s PCI Express signaling
rates and the 10 GT/s USB signaling
rate. This signals allow the MAC to tell
the PHY the starting byte for a 128b
block. The starting byte for a 128b
block must always start with byte 0 of
the data interface.

PCIe, USB

Table 6-14. Original PIPE Only: Receive Data Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 71 of 161

Name Active
Level Description Relevant

Protocols
RxDataK[3:0]
for 32-bit
interface
RxDataK[1:0]
for 16-bit
interface
RxDataK for
8-bit
interface

N/A This signal is not used in the SerDes
architecture.

Data/Control bit for the symbols of receive
data. For 32-bit interfaces, Bit 0
corresponds to the low-byte of RxData,
Bit3 corresponds to the upper byte. For 16-
bit interface, Bit 0 corresponds to the low-
byte of RxData[15:0], Bit 1 to the upper
byte. A value of zero indicates a data byte;
a value of 1 indicates a control byte.

Not used in PCI Express mode at 8 GT/s,
16 GT/s, or 32 GT/s or USB mode at 10
GT/s or Converged IO mode.

When the PHY is in a SATA mode, the first
valid data following an ALIGN primitive
must appear as byte 0 in the receive data.

PCIe, SATA,
USB

RxDataValid N/A This signal is not used in the SerDes
architecture.

PCI Express Mode and SATA Mode and
USB Mode:
This signal allows the PHY to instruct the
MAC to ignore the data interface for one
clock cycle. A value of one indicates the
MAC will use the data, a value of zero
indicates the MAC will not use the data.
RxDataValid shall not assert when RXvalid
is de-asserted in PHY modes that require
the use of RxDataValid. If a PHY supports
the RxDataValid signal it shall keep
RxDataValid asserted when the PHY is in
a mode that does not require the signal.
The MAC may ignore RxDataValid when it
is in a mode that does not require the
signal.

PCIe, SATA,
USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 72 of 161

RxStartBlock N/A This signal is not used in the SerDes
architecture.

PCI Express Mode and USB Mode:
Only used at the 8.0 GT/s, 16 GT/s, or 32
GT/s PCI Express signaling rates and the
10 GT/s USB signaling rate. This signal
allows the PHY to tell the MAC the starting
byte for a 128b block. The starting byte for
a 128b block must always start with byte 0
of the data interface.

Note: If there is an invalid sync header
decoded on RxSyncHeader[3:0] and block
alignment is still present (RxValid == 1),
then the PHY will assert RxStartBlock with
the invalid sync header on
RxSyncHeader[3:0]

RxStartBlock shall not assert when
RxValid is de-asserted

PCIe, USB

6.3.2 Command Interface

Table 6-15. Command Interface Input Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 73 of 161

Name Active
Level Description Relevant

Protocols
TxCompliance High This signal is not used in the SerDes

architecture.

PCI Express Mode:
Sets the running disparity to negative.
Used when transmitting the PCI
Express compliance pattern.
Implementation of this signal is only
required for PHYs that support PCI
Express mode. This signal is
sampled by TxDataValid.

PCIe

TxSyncHeader[3:0] N/A This signal is not used in the SerDes
architecture.

PCI Express Mode:
Only the lower two bits ([1:0]) are
utilized. Provides the sync header for
the PHY to use in the next 130b block.
The PHY reads this value when the
TXStartBlock signal is asserted.
This signal is only used at the 8.0
GT/s, 16 GT/s, and 32 GT/s signaling
rates.
USB Mode:
Provides the sync header for the PHY
to use in the next 132b block. The
PHY reads this value when the
TXStartBlock signal is asserted.
This signal is only used at the 10 GT/s
signaling rate.

PCIe, USB

Table 6-16. Original PIPE Only: Command Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 74 of 161

Name
Acti
ve

Leve
l

Description
Relevant
Protocols

RxSyncHeader[3:
0]

N/A This signal is not used in the SerDes
architecture.

PCI Express Mode:
Only the lower two bits ([1:0]) are utilized.
Provides the sync header for the MAC to
use with the next 128b block. The MAC
reads this value when the RxStartBlock
signal is asserted.
This signal is only used at the 8.0 GT/s,
16 GT/s, and 32 GT/s signaling rates.

USB Mode:
Provides the sync header for the MAC to
use with the next 128b block. The MAC
reads this value when the RxStartBlock
signal is asserted.
This signal is only used at the 10.0 GT/s
signaling rate.

Note: The PHY shall pass blocks and
headers normally across the PIPE
interface even if the decoded SyncHeader
is invalid.

PCIe, USB

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 75 of 161

Table 6-17. Original PIPE only: Status Interface Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 76 of 161

Name Active
Level Description Relevant

Protocols
AlignDetect High This signal is not used in the SerDes

architecture.

Indicates receiver detection of an
Align.
A PHY is only required to assert this
signal when the Elasticity Buffer is
running in nominal empty mode.

The PHY shall only toggle this signal
after obtaining bit and symbol lock.

Each ALIGN received shall map to
AlignDetect being asserted for one
PCLK.

The spacing between PCLK pulses for
ALIGNs should map analog spacing of
received ALIGNs as closely as
possible. However there is no
guarantee to have PCLK domain
spacing between back to back
AlignDetect pulses match the analog
spacing exactly due to differences in
the receive clock domain and the
PCLK domain.

For example:
1.5 GT/s with 8-bit data path
PCLK=150MHz, the nominal spacing
is 4 PCLK’s.

3.0 GT/s with 8-bit data path
PCLK=300MHz, the nominal spacing
is 4 PCLK’s.

6.0 GT/s with 16-bit data path
PCLK=300MHz, the nominal spacing
is every other PCLK.

Due to differences in the PCLK and
receive clocks, the nominal spacing
can be off by one PCLK in either
direction. In the example with PCLK
rate being equal to Gen3 received
clock rate, clock domain crossing
could lead to AlignDetect being
asserted for consecutive PCLK cycles
without gap.

SATA

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 77 of 161

6.4 External Signals – Common for SerDes and Original PIPE
Table 6-18. External Input Signals

Name
Activ

e
Level

Description
Relevant
Protocols

CLK Edge This differential Input is used to generate
the bit-rate clock for the PHY transmitter
and receiver. Specs for this clock signal
(frequency, jitter, …) are implementation
dependent and must be specified for
each implementation. This clock may
have a spread spectrum modulation.

PCIe,
SATA, USB,
DisplayPort,
Converged
IO

PCLK Rising
Edge

This signal is relevant for “PCLK as PHY
Input” mode only.

All data movement across the parallel
interface is synchronized to this clock.
This clock operates at a frequency set by
PCLK Rate. The rising edge of the clock
is the reference for all signals. Spread
spectrum modulation on this clock is
allowed.

PCIe,
SATA, USB,
DisplayPort,
Converged
IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 78 of 161

Table 6-19. External Output Signals

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 79 of 161

Name Active
Level Description Relevant

Protocols
PCLK Rising

Edge
This signal is relevant for “PCLK as PHY
Input” mode only.

All data movement across the parallel
interface is synchronized to this clock.
This clock operates at a frequency set by
PCLK Rate. The rising edge of the clock
is the reference for all signals. Spread
spectrum modulation on this clock is
allowed.

PCIe,
SATA, USB,
DisplayPort,
Converged
IO

Max PCLK Rising
Edge

Parallel interface data clock. This fixed
rate clock operates at the following rate:

PCI Express Mode:

Max rate supported Maximum Max PCLK
2.5 GT/s 250 MHz.
5.0 GT/s 500 MHz.
8.0 GT/s 1000 MHz.
16.0 GT/s 2000 MHz.
32.0 GT/s 4000 Mhz
This clock is provided whenever PCLK is
active.

SATA Mode:
Max rate supported Maximum Max PCLK
1.5 GT/s 150 MHz.
3.0 GT/s 300 MHz.
6.0 GT/s 600 MHz.
This clock is provided whenever PCLK is
active.

USB Mode:
Max rate supported Maximum Max PCLK
5.0 GT/s 500 MHz.
10.0 GT/s 1250 MHz.
This clock is provided whenever PCLK is
active.

Spread spectrum modulation on this
clock is allowed.

This signal is optional for most cases in
“PCLK as PHY Output” mode and required
for “PCLK as PHY Input” mode

PCIe,
SATA, USB,
DisplayPort,
Converged
IO

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 80 of 161

DataBusWidth[1:
0]

N/A This field reports the width of the data
bus that the PHY is configured for.

This field is optional.

For Original PIPE architecture:

[1] [0] Description
0 0 32-bit mode
0 1 16-bit mode
1 0 8-bit mode
1 1 Reserved

For SerDes architecture:

[1] [0] Description
0 0 10-bit mode
0 1 20-bit mode
1 0 40-bit mode
1 1 80-bit mode

PCIe,
SATA, USB,
DisplayPort,
Converged
IO

7 PIPE Message Bus Address Spaces
The PIPE specification defines 12-bit address spaces to enable the message bus interface; the
MAC and the PHY each implement unique 12-bit address spaces as shown in Figure 7-1. These
address spaces are used to host registers associated with certain PIPE operations. The MAC and
PHY access specific bits in the registers to initiate operations, to participate in handshakes, or to
indicate status. The MAC initiates requests on the message bus interface to access registers
hosted in the PHY address space. The PHY initiates requests on the message bus interface to
access registers hosted in the MAC address space.

Each 12-bit address space is divided into four main regions: receiver address region, transmitter
address region, common address region, and vendor specific address region. The receiver address
region is used to configure and report status related to receiver operation; it spans the 1024KB
region from 12’h000 to 12’h3FF and supports up to two receivers with 512KB allocated to each.
The transmitter address region is used to configure and report status related to transmitter
operation; it spans the 1024KB region from 12’h400 to 12’h7FF and supports up to two
transmitters, TX1 and TX2, with a 512KB region associated with each. The common address
region hosts registers relevant to both receiver and transmitter operation; it spans the 1024KB
region from 12’h800 to 12’hBFF and supports up two sets of Rx/Tx pairs with 512KB allocated
toward the common registers for each pair. The vendor specific address region is the 1024K
region from 12’hC00 to 12’hFFF and enables individual vendors to define registers as needed
outside of those defined in this PIPE specification.

As noted above, the address space is defined to support configurable Rx/Tx pairs. Up to two
differential pairs are assumed to be operational at any one time. Supported combinations are one
Rx and one Tx pair, two Tx pairs, or two Rx pairs.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 81 of 161

Figure 7-1. Message Bus Address Space
12'h000

12'hFFF

12'h400

12'h800

12'hC00

RX1

RX2

TX1

TX2

CMN2

VDR

512Bytes PCIERX

PCIETX

Type-C Configurable
RX1

Type-C Configurable
RX2

Type-C Configurable
TX1

Type-C Configurable
TX2

CMN1 PCIE
CMN

Type-C Configurable
CMN1

Type-C Configurable
CMN2

The PCIe RX margining operations and elastic buffer depth are controlled via registers hosted in
these address spaces. Additionally, several legacy pipe control and status signals have been
mapped into registers hosted in these address spaces.

The following subsections define the PHY registers and the MAC registers. Individual register
fields are specified as required or optional. In addition, each field has an attribute description of
either level or 1-cycle assertion. When a level field is written, the value written is maintained by
the hardware until the next write to that field or until a reset occurs. When a 1-cycle field is

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 82 of 161

written to assert the value high, the hardware maintains the assertion for only a single cycle and
then automatically resets the value to zero on the next cycle.

7.1 PHY Registers
Table 7-1 lists the PHY registers and their associated address. The details of each register are
provided in the subsections below.

To support configurable pairs, the same registers defined for RX1 are also defined for RX2, the
same registers defined for TX1 are defined for TX2, and the same registers defined for CMN1 are
defined for CMN2. Only two differential pairs are active at a time based on configuration; valid
combinations correspond to registers defined in RX1+TX1+CMN1, RX1+RX2+CMN1+CMN2,
or TX1+TX2+CMN1+CMN2.

A PHY that does not support configurable pairs only implements registers defined for RX1, TX1,
and CMN1.

Table 7-1 PHY Registers
Byte Address Register Name Notes
12’h0 RX1: RX Margin Control0
12’h1 RX1: RX Margin Control1
12’h2 RX1: Elastic Buffer Control N/A for SerDes Architecture
12’h3 RX1: PHY RX Control0 N/A for SerDes Architecture
12’h4 RX1: PHY RX Control1
12’h5 RX1: PHY RX Control2
12’h6 RX1: PHY RX Control3
12’h7 RX1: Elastic Buffer Location Update Frequency N/A for SerDes Architecture
12’h8 RX1: PHY RX Control4 N/A for SerDes Architecture
12’h9-12’h1FF RX1: Reserved
12’h200 to
12’h3FF

RX2: Same registers are defined in this region for
RX2 as for RX1 above.

12’h400 TX1: PHY TX Control0 N/A for SerDes Architecture
12’h401 TX1: PHY TX Control1 N/A for SerDes Architecture
12’h402 TX1: PHY TX Control2
12’h403 TX1: PHY TX Control3
12’h404 TX1: PHY TX Control4
12’h405 TX1: PHY TX Control5
12’h406 TX1: PHY TX Control6
12’h407 TX1: PHY TX Control7
12’h408 TX1: PHY TX Control8
12’h409-
12’h5FF

TX1: Reserved

12’h600-
12’h7FF

TX2: Same registers are defined in this region for
TX2 as for TX1 above

12’h800 CMN1: PHY Common Control0 N/A for SerDes Architecture
12’h801-
12’h9FF

CMN1: Reserved

12’hA00 –
12’BFF

CMN2: Same registers are defined in this region for
CMN2 as for CMN1 above

12’hC00- VDR: Reserved

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 83 of 161

12’hFFF

7.1.1 Address 0h: RX Margin Control0

This register is used along with RX Margin Control1 to control PCIe Lane Margining at the
Receiver.

Bit Default Attribute Required Description
[7:4] 0h N/A N/A Reserved
[3] 0h 1-cycle PCIe

(Optional)
Sample Count Reset – This field is used to reset
the ‘Sample Count[6:0]’ field of the RX Margin
Status1 register.

[2] 0h 1-cycle PCIe
(Optional)

Error Count Reset – This field is used to reset the
‘Error Count[5:0]’ field of the RX Margin Status2
register.

[1] 0h Level PCIe Margin Voltage or Timing – This field is used to
select between margining voltage (1‘b0) or
margining timing (1’b1). The value can be
changed only when margining is stopped.

[0] 0h Level PCIe Start Margin – This field is used to start and stop
margining. A transition from 1’b0 to 1’b1 starts
the margining process. A transition from 1’b1 to
1’b0 stops the margining process.

7.1.2 Address 1h: RX Margin Control1

This register is used along with RX Margin Control0 to control PCIe RX margining.

Bit Default Attribute Required Description
[7] 0h Level PCIe Margin Direction – This field is used to control

time or voltage direction for margining. For timing
margining, this field steps time left (1’b0) or right
(1’b1).6 For voltage margining, this field steps
voltage up (1’b0) or down (1’b1). This value can be
changed only when margining is stopped. This field
should by ignored by PHYs that do not support
individual time or voltage margining as advertised in
the PHY datasheet.

[6:0] 0h Level PCIe Margin Offset – This field is used to change the
margin offset a number of steps from the default
position. This value can be changed even during the
margining process.

7.1.3 Address 2h: Elastic Buffer Control

This register is used to control the elastic buffer depth, enabling the controller to optimize latency
in nominal half full mode. The ability to control elastic buffer depth is an optional feature that

6 Note: This is reversed from the timing margining direction convention used in the PCI Express
Base Specification.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 84 of 161

may be especially beneficial for retimers operating in PCIe SRIS mode.

Bit Default Attribute Required Description
[7:0] 0h Level PCIe

(optional)
Elastic Buffer Depth Control – This field is used
to set the elastic buffer depth. The MAC must
choose from the supported values advertised in the
PHY datasheet. This value can only be changed
during transmission of TS1 ordered sets. The PHY
performs the adjustment as quickly as possible
without waiting for SKPs. The PHY signals
completion of elastic buffer depth adjustment by
setting the Elastic Buffer Status register.

Note: This field is not used in the SerDes
architecture.

7.1.4 Address 3h: PHY RX Control0

This register is used to control receiver functionality.

Bit Default Attribute Required Description
[7:2] 0h N/A N/A Reserved
[1] 0h Level PCIe,

USB,
SATA,
Converged
IO

RxPolarity -- This field is used to control polarity
inversion on the received data.

Value Description
0 PHY does no polarity inversion
1 PHY does polarity inversion

Note: This field is not used in the SerDes
architecture.

[0] 0h Level PCIe
(optional),
SATA
(optional),
USB
(optional)

Elasticity Buffer Mode -- This field is used to
select the Elasticity Buffer operating mode.

Value Description
0 Nominal Half Full Buffer mode
1 Nominal Empty Buffer Mode

This field can only be changed when the receiver is
OFF and Pclk is running, e.g. P0 with RXStandby
asserted or P1.

This field is not valid when TxDetectRx/Loopback
is asserted. The PHY is responsible for switching
to Nominal Half Full Buffer mode when loopback
slave is requested. The PCS is responsible for
making stream switch and abiding by PCIE base
spec rules for slave loopback stream switching, e.g.
switch on 10b boundary in 8b/10b modes, etc.

Note: This field is not used in the SerDes
architecture.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 85 of 161

7.1.5 Address 4h: PHY RX Control1

This register is used to control receiver functionality.

Bit Default Attribute Required Description
[7:1] 0h N/A N/A Reserved
[0] 0h Level USB RxEqTraining – This field is set to 1’b1 to instruct

the receiver to bypass normal operation to perform
equalization training. While performing training the
state of the RxData interface is undefined.

7.1.6 Address 5h: PHY RX Control2

This register is used to control receiver functionality.

Bit Default Attribute Required Description
[7:3] 0h N/A N/A Reserved
[2:0] 0h N/A N/A Reserved

7.1.7 Address 6h: PHY RX Control3

This register is used to control receiver functionality.

Bit Default Attribute Required Description
[7:3] 0h N/A N/A Reserved
[2] 0h Level PCIe InvalidRequest – This field is used to indicate

that the Link Evaluation feedback requested a
link partner TX EQ setting that was out of
range. The MAC sets this bit to ‘1’ when it
detects an out of range error locally based on
calculated link partner transmitter coefficients
based on the last valid link equalization
feedback or it receives a NACK response from
the link partner. The MAC resets this bit to ‘0’
the next time it asserts RxEQEval. When a
MAC sets this bit, it shall subsequently ask the
PHY to perform an RxEQ evaluation using the
last valid setting a second time.

This field is only applicable at the 8.0 GT/s, 16
GT/s, and 32 GT/s signaling rates.

[1] 0h Level PCIe,
Converged IO,
DisplayPort
RX (optional)

RxEqInProgress – This field is used by the
MAC to indicate when link equalization
evaluation is in progress.

The PHY may optionally use this field to
enable and disable functionality that is only
needed during link equalization evaluations.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 86 of 161

For PCIe:
The MAC sets this bit to ‘1’ at the same time as
it sets RxEqEval to ‘1’ in phase 2 or phase 3 of
the link equalization process. The MAC resets
this bit to ‘0’ at the end of phase 2 or phase 3.

[0] 0h Level PCIe,
Converged IO,
DisplayPort
RX (optional)

RxEqEval -- This field is set to ‘1’ by the
MAC to instruct the PHY to start evaluation of
the far end transmitter TX EQ settings.

For PCI Express, this field is only used at the
8.0 GT/s, 16 GT/s, and 32 GT/s signaling rates.

7.1.8 Address 7h: Elastic Buffer Location Update Frequency

Bit Default Attribute Required Description
[7:0] 5h Level No ElasticBufferLocationUpdateFrequency -- This

field specifies the maximum update frequency to the
ElasticBufferLocation field; the frequency of update
should not exceed 16*N symbol times, where N is
the value programmed in this register.

Note: This field is not used in the SerDes
architecture.

7.1.9 Address 8h: PHY RX Control4

This register is used to control receiver functionality.

Bit Default Attribute Required Description
[7:2] 0h N/A N/A Reserved
[1] 0h 1-cycle PCIe,

USB
ElasticBufferResetControl – When asserted, this
signal causes the PHY to initiate an EB reset
sequence. See section 8.15.3.1 for details.

Note: This field is not used in the SerDes
architecture

[0] 0h Level PCIe,
USB

BlockAlignControl -- This field controls whether
the PHY performs block alignment. When
BlockAlignControl=0 the PHY disables searching
for EIEOS (PCIe)/SYNC OS (USB) on a bit
boundary. When BlockAlignControl = 1 the PHY
enables searching for EIEOS(PCIe)/SYNC OS
(USB) on a bit boundary.

A MAC shall set BlockAlignControl to the same
value for all active lanes in a link. A MAC shall set
BlockAlignControl to ‘0’ when in a datastream and
shall set it to ‘1’ otherwise.
This field is only used at the PCI Express 8.0 GT/s,

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 87 of 161

16 GT/s, and 32 GT/s signaling rates and at the USB
10.0 GT/s signaling rate.

When the PHY is in Loopback Slave mode it
ignores BlockAlignControl and is responsible for
maintaining alignment.

Note: This field is not used in the SerDes
architecture.

7.1.10 Address 400h: PHY TX Control0

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:2] 0h N/A N/A Reserved
[1:0] 0h Level SATA TX Pattern[1:0] – This field controls which pattern

the PHY sends at the Gen 1 rate when sending OOB
or initialization signaling. The PHY transmits this
pattern at the Gen 1 rate regardless of what rate the
PHY is configured at.

0 ALIGN
1 D24.3
2 D10.2
3 Reserved

See Section 8.24 for a more detailed description of
the usage of these pins.

Note: This field is not used in the SerDes
architecture.

7.1.11 Address 401h: PHY TX Control1

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:1] 0h N/A N/A Reserved
[0] 0h Level USB TxOnesZeros – This field is used when transmitting

USB compliance patterns CP7 or CP8. When this
field is set, the transmitter to transmit an alternating
sequence of 50-250 ones and 50-250 zeros –
regardless of the state of the TxData interface. This
field is only applicable to 8b/10b modes.

Note: This field is not used in the SerDes
architecture.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 88 of 161

7.1.12 Address 402h: PHY TX Control2

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 1h Level PCIe,

USB,
Converged
IO

TxDeemph[5:0] – This field is part of
TxDeemph[17:0], which selects transmitter de-
emphasis.

PCI Express Mode, when the rate is 2.5 or 5.0
GT/s:

Value Description
0 -6dB de-emphasis
1 -3.5dB de-emphasis
2 No de-emphasis
3 Reserved

PIPE implementations that only support 2.5 GT/s
do not implement this field. PIPE PHY
implementations that do not support low swing are
not required to support the no-de-emphasis mode.

PCI Express Mode, when the rate is 8.0 GT/s, 16
GT/s, or 32 GT/s:
 [5:0] C-1
 [11:6] C0
 [17:12] C+1

USB Mode, when the rate is 10.0 GT/s:
 [5:0] C-1
 [11:6] C0
 [17:12] C+1

The field is not defined for USB Mode when the
rate is 5.0 GT/s

Converged IO Mode, when the rate is 10 GT/s or
20 GT/s:
 [5:0] C-1
 [11:6] C0
 [17:12] C+1

Note: The MAC must ensure that only supported
values are used for TxDeemph. In cases where the
implementation is required to keep track of TX
coefficients from previous states, this shall be done
by the MAC.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 89 of 161

7.1.13 Address 403h: PHY TX Control3

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe, USB,

Converged IO
TxDeemph[11:6] -- This field is part of
TxDeemph[17:0], which selects transmitter de-
emphasis. See TxDeemph[5:0] for detailed
description.

7.1.14 Address 404h: PHY TX Control4

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe, USB,

Converged IO
TxDeemph[17:12] -- This field is part of
TxDeemph[17:0], which selects transmitter de-
emphasis. See TxDeemph[5:0] for detailed
description.

7.1.15 Address 405h: PHY TX Control5

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7] 0h 1-cycle PCIe GetLocalPresetCoefficients – This field is used to

request a preset to co-efficient mapping for the
preset on LocalPresetIndex[5:0] to coefficients on
LocalTxPresetCoefficient[17:0]

Maximum Response time of PHY is 128 nSec.

Note. A MAC can make this request any time after
reset.

Note. This field is only used with a PHY that
requires dynamic preset coefficient updates

[6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalPresetIndex[5:0] – This field is used to

indicate the index for the local PHY preset
coefficients requested by the MAC.

The preset index value is encoded as follows:

000000b – 8 GT/s Preset P0.
000001b – 8 GT/s Preset P1.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 90 of 161

000010b – 8 GT/s Preset P2.
000011b – 8 GT/s Preset P3.
000100b – 8 GT/s Preset P4.
000101b – 8 GT/s Preset P5.
000110b – 8 GT/s Preset P6.
000111b – 8 GT/s Preset P7.
001000b – 8 GT/s Preset P8.
001001b – 8 GT/s Preset P9.
001010b – 8 GT/s Preset P10.
001011b – 16 GT/s Preset P0
001100b – 16 GT/s Preset P1
001101b – 16 GT/s Preset P2
001110b – 16 GT/s Preset P3
001111b – 16 GT/s Preset P4
010000b – 16 GT/s Preset P5
010001b – 16 GT/s Preset P6
010010b – 16 GT/s Preset P7
010011b – 16 GT/s Preset P8
010100b – 16 GT/s Preset P9
010101b – 16 GT/s Preset P10
010110b – 32 GT/s Preset P0
010111b – 32 GT/s Preset P1
011000b – 32 GT/s Preset P2
011001b – 32 GT/s Preset P3
011010b – 32 GT/s Preset P4
011011b – 32 GT/s Preset P5
011100b – 32 GT/s Preset P6
011101b – 32 GT/s Preset P7
011110b – 32 GT/s Preset P8
011111b – 32 GT/s Preset P9
100000b – 32 GT/s Preset P10
All others -- Reserved

This field is only used with a PHY that requires
dynamic preset coefficient updates.

7.1.16 Address 406h: PHY TX Control6

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe FS[5:0] -- This field reflects the FS value

advertised by the link partner. The MAC shall only
change this value when a new FS value is captured
during link training. A PHY may optionally
consider this value when deciding how long to
evaluate TX equalization settings of the link partner.
The MAC shall only change this field when a new
FS value is captured during link training or if there

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 91 of 161

is a rate change. The MAC shall drive the relevant 8
GT/s values when the operational rate is 8 GT/s, it
shall drive the relevant 16 GT/s values when the
operational rate is 16 GT/s, and it shall drive the
relevant 32 GT/s values when the operational rate is
32 GT/s.

7.1.17 Address 407h: PHY TX Control7

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LF[5:0] – This field reflects the LF value advertised

by the link partner. The MAC shall only change this
value when a new LF value is captured during link
training or when there is a rate change. A PHY may
optionally consider this value when deciding how
long to evaluate TX equalization settings of the link
partner.
The MAC shall drive the relevant 8 GT/s values
when the operational rate is 8 GT/s, it shall drive the
relevant 16 GT/s values when the operational rate is
16 GT/s, and it shall drive the relevant 32 GT/s
values when the operational rate is 32 GT/s.

7.1.18 Address 408h: PHY TX Control8

This register is used to control transmitter functionality.

Bit Defaul
t

Attribut
e

Require
d

Description

[7:4
]

0h N/A N/A Reserved

[3] 0h Level PCIe TxSwing – This field controls transmitter voltage
swing level.

Value Description
0 Full swing
1 Low swing (optional)

Implementation of this signal is optional if only Full
swing is supported.
This field is not used at the 8.0 GT/s, 16 GT/s, or 32
GT/s signaling rates.

[2:0
]

0h Level PCIe TxMargin[2:0] -- This field selects transmitter
voltage levels.

[2] [1] [0] Description
0 0 0 TxMargin value 0 = Normal

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 92 of 161

operating range
0 0 1 TxMargin value 1 = 800-1200mV

for Full swing* OR
400-700mV for Half swing*

0 1 0 TxMargin value 2 = required and
vendor defined

0 1 1 TxMargin value 3 = required and
vendor defined

1 0 0 TxMargin value 4 = required and
200-400mV for Full swing* OR
100-200mV for Half swing* if the
last value or vendor defined

1 0 1 TxMargin value 5 = optional and
200-400mV for Full swing* OR
100-200mV for Half swing* if the
last value OR vendor defined OR
Reserved if no other values
supported

1 1 0 TxMargin value 6 = optional and
200-400mV for Full swing* OR
100-200mV for Half swing* if the
last value OR vendor defined OR
Reserved if no other values
supported

1 1 1 TxMargin value 7 = optional and
200-400mV for Full swing* OR
100-200mV for Half swing* if the
last value OR Reserved if no other
values supported

PIPE implementations that only support PCI Express
mode and the 2.5GT/s signaling rate do not
implement this field.

7.1.19 Address 409h: PHY TX Control9

This register is used to control transmitter functionality.

Bit Default Attribute Required Description
[7:0] 0h N/A N/A Reserved (original contents moved to RX Control4)

7.1.20 Address 800h: PHY Common Control0

This register is used to control functionality relevant to both the receiver and the transmitter
functionality.

Bit Default Attribute Required Description
[7:1] 0h N/A N/A Reserved
[0] 0h Level PCIe

(optional),
EncodeDecodeBypass -- This field controls
whether the PHY performs 8b/10b (or

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 93 of 161

USB
(optional),
SATA

128b/13xb) encode and decode.
0 – Encode/decode performed normally by the
PHY.
1 – Encode/decode bypassed.

The MAC can only change this signal during
reset or in a power state other than
POWER_STATE_0 (SATA Mode) or P0 (PCI
Express Mode).

SATA Mode:
.

When EncodeDecodeBypass is one the TxDataK
and RxDataK interfaces are not used and the data
bus width is 10, 20, or 40 bits.

PCI Express Mode and USB Mode:

When EncodeDecodeBypass is one the TxDataK
and RxDataK interfaces are not used. The data
bus width is 10, 20, or 40 bits if rate is 2.5 or 5.0
GT/s. The data bus width is 8, 16, or 32 bits if
the rate is 8.0 GT/s, 16 GT/s, or 32 GT/s (PCI
Express) or 10 GT/s (USB). The TxStartBlock
and RxStartBlock signals are not used.

Note: This field is not used in the SerDes
architecture.

7.2 MAC Registers
Table 7-2 lists the MAC registers and their associated address. The details of each register are
provided in the subsections below.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 94 of 161

Table 7-2 MAC Registers
Byte Address Register Name Notes

12’h0 RX1: RX Margin Status0

12’h1 RX1: RX Margin Status1

12’h2 RX1: RX Margin Status2

12’h3 RX1: Elastic Buffer Status N/A for SerDes
Architecture

12’h4 RX1: Elastic Buffer Location N/A for SerDes
Architecture

12’h5 RX1: Reserved

12’h6 RX1: RX Status0

12’h7 RX1: RX Status1

12’h8 RX1: RX Status2

12’h9 RX1: RX Status3

12’hA RX1: RX Link Evaluation Status0

12’hB RX1: RX Link Evaluation Status1

12’hC RX1: RX Status 4

12’hD RX1: RX Status 5

12’hE-12’h1FF RX1: Reserved

12’h200 to
12’h3FF

RX2: Same registers are defined in this region for
RX2 as for RX1 above.

.

12’h400 TX1: TX Status0

12’h401 TX1: TX Status1

12’h402 TX1: TX Status2

12’h403-
12’h5FF

TX1: Reserved

12’h600-
12’h7FF

TX2: Same registers are defined in this region for
TX2 as for TX1 above

12’h800-
12’h9FF

CMN1: Reserved

12’hA00-
12’hBFF

CMN2: Reserved

12’hC00-
12’hFFF

VDR: Reserved

7.2.1 Address 0h: RX Margin Status0
Bit Default Attribute Required Description

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 95 of 161

[7:2] 0h N/A N/A Reserved
[1] 0h 1-cycle PCIe

(optional)
Margin Nak – This field is used by the PHY to
indicate that a voltage margin request corresponds
to an unsupported offset that falls within the
advertised range. This field may be asserted in
response to a change to the ‘Start Margin’ field or
‘Margin Offset[6:0]’ field or ‘Margin Direction’
field during voltage margining only. This field is
only written once per committed write affecting
either of the above three fields. When this field is
set, the ‘Margin Status’ should not be set. The
design must support the minimum voltage offset
requirement stated in the PCIe base specification.
Note: If the voltage margin offset requested falls
outside of the PHY advertised range, the PHY is not
required to communicate a NAK by setting this
field; this is assumed to be a MAC error and PHY
behavior is undefined.

[0] 0h 1-cycle PCIe Margin Status – This field is used by the PHY to
acknowledge a valid change to the ‘Start Margin’
field or the ‘Margin Offset[6:0]’ field. This field is
only written once per committed write affecting
either of the above two fields. For example, if both
‘Start Margin’ and ‘Margin Offset[6:0]’ are
changed, but one is changed with an uncommitted
write and one is changed with a committed write,
this ‘Margin Status’ field is only written once to
acknowledge both changes.

7.2.2 Address 1h: RX Margin Status1

Bit Default Attribute Required Description
[7] 0h N/A N/A Reserved
[6:0] 0h Level PCIe

(optional)
Sample Count – This field indicates the number of
bits that have been margined and can increment
only when ‘Start Margin’ is asserted. The value of
this field is 3*log2(number of bits margined). This
field stops incrementing when the ‘Error Count’
saturates. This field only resets on a PIPE reset or
when the MAC writes to the ‘Sample Count Reset’
bit in the RX Margin Control1 register. This field is
only required if the Sampling Rate is not reported in
the PHY datasheet. If used, this field must be
updated by the PHY every time the associated value
changes; implementations may collapse multiple
updates into a single write only to avoid creating a
backlog of writes.

7.2.3 Address 2h: RX Margin Status2

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 96 of 161

[5:0] 0h Level PCIe
(optional)

Error Count – This field is only required if errors
do not happen in the data stream and thus an
independent error sampler is implemented in the
PHY. This field is used by the PHY to report actual
bit errors to the MAC. This field can increment
only when ‘Start Margin’ is asserted. This field
only resets on a PIPE reset or when the MAC writes
to the ‘Error Count Reset’ bit in the RX Margin
Control1 register. If used, this field must be
updated by the PHY every time the associated value
changes; implementations may collapse multiple
updates into a single write to avoid creating a
backlog of writes.

7.2.4 Address 3h: Elastic Buffer Status

Bit Default Attribute Required Description
[7:1] 0h N/A N/A Reserved
[0] 0h 1-cycle PCIe

(optional)
Elastic Buffer Status – The PHY sets this status
bit to 1’b1 when it has completed its elastic buffer
depth adjustment to the value specified in the
Elastic Buffer Control register.

Note: This field is not used in the SerDes
architecture.

7.2.5 Address 4h: Elastic Buffer Location

Bit Default Attribute Required Description
[7:0] 0h Level PCIe

(optional),
USB
(optional)

ElasticBufferLocation -- This field reflects the
number of entries currently in the elastic buffer.

Whenever the number of entries in the elastic
buffer changes the PHY schedules an update to
this register, with the frequency of update not to
exceed that programmed in the
ElasticBufferLocationUpdateFrequency field.

Note: This field is not used in the SerDes
architecture.

7.2.6 Address 5h: Reserved

Bit Default Attribute Required Description
[7:0] 0h N/A N/A Reserved

7.2.7 Address 6h: RX Status0

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalFS[5:0] -- This field reflects the FS value for

the PHY. These signals are only used by a PHY that
requires dynamic preset coefficient updates. The FS
value is valid for 8 GT/s.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 97 of 161

This field shall be updated by the PHY before
PhyStatus deasserts after RESET# and before the
first PhyStatus pulse after a rate change to 8 GT/s or
in response to GetLocalPresetCoefficients when
LocalPresetIndex[5:0] < 11.

7.2.8 Address 7h: RX Status1

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalLF[5:0] -- This field reflects the LF value for

the PHY. This signal is only used by a PHY that
requires dynamic preset coefficient updates. The LF
value is valid for 8GT/s.

LocalLF[5:0] must updated whenever LocalFS[5:0]
is updated

7.2.9 Address 8h: RX Status2

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG4FS[5:0] This field reflects the FS value for

the PHY. These signals are only used by a PHY that
requires dynamic preset coefficient updates. The FS
value is valid for 16 GT/s.

This field shall be updated by the PHY before the
first PhyStatus pulse after a rate change to 16 GT/s
or in response to GetLocalPresetCoefficients when
LocalPresetIndex[5:0] > 10 and <=21.

7.2.10 Address 9h: RX Status3

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG4LF[5:0] This field reflects the LF value for

the PHY. This signal is only used by a PHY that
requires dynamic preset coefficient updates. The LF
value is valid for 16 GT/s.

LocalG4LF[5:0] must be sampled whenever
LocalG4FS[5:0] is sampled.

7.2.11 Address Ah: RX Link Evaluation Status0

Bit Default Attribute Required Description
[7:0] 0h Level PCIe,

Converged
IO,
DisplayPort

LinkEvaluationFeedbackFigureMerit[7:0] –
This field provides the PHY link equalization
evaluation Figure of Merit value. The value is
encoded as an unsigned integer from 0 to 255.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 98 of 161

RX
(optional)

An encoding of 0 is the worst, and an encoding of
255 is the best.

A PHY does not update this field if it is does not
provide link equalization evaluation feedback
using the Figure of Merit format.

For PCIe, this field is only used at the 8.0 GT/s,
16 GT/s, and 32 GT/s signaling rates.

Note: The write_committed associated with an
update to this field indicates that the RxEqEval
has completed.

7.2.12 Address Bh: RX Link Evaluation Status1

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LinkEvaluationFeedbackDirectionChange[5:0] --

This field provides the link equalization evaluation
feedback in the direction change format. Feedback
is provided for each coefficient:

[1:0] C-1
[3:2] C0
[5:4] C1

The feedback value for each coefficient is encoded
as follows:

00 - No change
01 – Increment
10 – Decrement
11 - Reserved

A PHY does not update this field if it is does not
provide link equalization evaluation feedback using
the Direction Change format.

Note: In 8.0 GT/s mode the MAC shall ignore the
C0 value and use the correct value per the PCI
Express specification.

These signals are only used at the 8.0 GT/s, 16 GT/s,
and 32 GT/s signaling rates.

Note that C-1 and C1 are encoded as the absolute
value of the actual FIR coefficient and thus
incrementing or decrementing either value refers to
the magnitude of the actual FIR coefficient.
For example, if C-1 is 000001b the FIR coefficient

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 99 of 161

is negative one and a request to increment C-1 will
increase it in the direction of 000002b which
decreases the FIR coefficient.

Note: The write_committed associated with an
update to this field indicates that the RxEqEval has
completed.

7.2.13 Address Ch: RX Status4

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG5FS[5:0] This field reflects the FS value for

the PHY. These signals are only used by a PHY that
requires dynamic preset coefficient updates. The FS
value is valid for 32 GT/s.

This field shall be updated by the PHY before the
first PhyStatus pulse after a rate change to 32 GT/s
or in response to GetLocalPresetCoefficients when
LocalPresetIndex[5:0] > 21 and <=32.

7.2.14 Address Dh: RX Status5

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG5LF[5:0] This field reflects the LF value for

the PHY. This signal is only used by a PHY that
requires dynamic preset coefficient updates. The LF
value is valid for 32 GT/s.

LocalG5LF[5:0] must be sampled whenever
LocalG5FS[5:0] is sampled.

7.2.15 Address 400h: TX Status0

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h level PCIe LocalTxPresetCoefficients[5:0] -- This field forms

part of LocalTxPresetCoefficients[17:0], which are
the coefficients for the preset on the
LocalPresetIndex[5:0] after a
GetLocalPresetCoeffcients request:

[5:0] C-1
[11:6] C0
[17:12] C+1

The MAC will reflect these coefficient values on the
TxDeemph bus when MAC wishes to apply this

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 100 of 161

preset.

These field is only updated by a PHY that requires
dynamic preset coefficient updates

7.2.16 Address 401h: TX Status1

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h level PCIe LocalTxPresetCoefficients[11:6] -- This field

forms part of LocalTxPresetCoefficients[17:0],
which are the coefficients for the preset on the
LocalPresetIndex[5:0] after a
GetLocalPresetCoeffcients request. See
LocalTxPresetCoefficients[5:0] description for
details.

7.2.17 Address 402h: TX Status2

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h level PCIe LocalTxPresetCoefficients[17:12]] -- This field

forms part of LocalTxPresetCoefficients[17:0],
which are the coefficients for the preset on the
LocalPresetIndex[5:0] after a
GetLocalPresetCoeffcients request. See
LocalTxPresetCoefficients[5:0] description for
details.

7.2.18 Address 403h: TX Status3

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalFS[5:0] -- This field reflects the FS value for

the PHY. These signals are only used by a PHY that
requires dynamic preset coefficient updates. The FS
value is valid for 8 GT/s.

This field shall be updated by the PHY before
PhyStatus deasserts after RESET# and before the
first PhyStatus pulse after a rate change to 8 GT/s or
in response to GetLocalPresetCoefficients when
LocalPresetIndex[5:0] < 11.

7.2.19 Address 404h: TX Status4

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalLF[5:0] -- This field reflects the LF value for

the PHY. This signal is only used by a PHY that
requires dynamic preset coefficient updates. The LF
value is valid for 8GT/s.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 101 of 161

LocalLF[5:0] must updated whenever LocalFS[5:0]
is updated

7.2.20 Address 405h: TX Status5

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG4FS[5:0] This field reflects the FS value for

the PHY. These signals are only used by a PHY that
requires dynamic preset coefficient updates. The FS
value is valid for 16 GT/s.

This field shall be updated by the PHY before the
first PhyStatus pulse after a rate change to 16 GT/s
or in response to GetLocalPresetCoefficients when
LocalPresetIndex[5:0] > 10 and <=21.

7.2.21 Address 406h: TX Status6

Bit Default Attribute Required Description
[7:6] 0h N/A N/A Reserved
[5:0] 0h Level PCIe LocalG4LF[5:0] This field reflects the LF value for

the PHY. This signal is only used by a PHY that
requires dynamic preset coefficient updates. The LF
value is valid for 16 GT/s.

LocalG4LF[5:0] must be sampled whenever
LocalG4FS[5:0] is sampled.

8 PIPE Operational Behavior

8.1 Clocking
There are three clock signals used by the PHY Interface component. The first (CLK) is a
reference clock that the PHY uses to generate internal bit rate clocks for transmitting and
receiving data. The specifications for this signal are implementation dependent and must be fully
specified by vendors. The specifications may vary for different operating modes of the PHY.
This clock may have spread spectrum modulation that matches a system reference clock (for
example, the spread spectrum modulation could come from REFCLK from the Card Electro-
Mechanical Specification).

The second clock (PCLK) is an output from the PHY in “PCLK as PHY Output” mode and an
input to each PHY lane in “PCLK as PHY Input ” mode and is the parallel interface clock used to
synchronize data transfers across the parallel interface. This clock runs at a rate dependent on the
Rate, PCLK Rate, and PHY Mode control inputs and data interface width. The rising edge of this
clock is the reference point. This clock may also have spread spectrum modulation. CLK and
PCLK must be sourced from the same reference clock and must contain the same clocking
characteristics, i.e. mesochronous with each other.

The third clock (MAX PCLK) is a constant frequency clock with a frequency determined by the
maximum signaling rate supported by the PHY and is only required in “PCLK as PHY Input ”

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 102 of 161

mode or in all modes for a PHY that supports PCI Express at 8GT/s or higher maximum speed.
The Max PCLK value should be set to the maximum PCLK supported by the PHY.

8.1.1 Clocking Topologies

This section describes some clocking topologies that are compatible with PIPE. Figure 8-1 shows
PCLK as a PHY output. This topology is only applicable for legacy PIPE implementations and is
not supported for PCIe Gen5 designs, Converged IO or Displayport. Figure 8-2 shows PCLK as
a PHY input with the PLL residing in the PHY; the PHY provides a source for PCLK, in this case
MAX PCLK) that is mesochronous to the PHY’s bit rate clock. Figure 8-3 shows PCLK as a
PHY input with the PLL that provides the PCLK source residing outside of the PHY; the
reference clock for PLL that sources the bit rate clock and the PLL that provides the PCLK
source must be the same. Figure 8-4 shows CLK as a PHY input with a single PLL that provides
the source for PCLK as well as for the bit rate clock.

Figure 8-1. PCLK as PHY output

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 103 of 161

Figure 8-2. PCLK as PHY Input w/PHY owned PLL

Figure 8-3. PCLK as PHY Input w/External PLL and PHY PLL

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 104 of 161

Figure 8-4. PCLK as PHY Input with External PLL

8.2 Reset
When the MAC wants to reset the PHY (e.g.; initial power on), the MAC must hold the PHY in
reset until power and CLK to the PHY are stable. For PCLK as PHY output, the PHY signals that
PCLK and/or Max PCLK are valid (i.e. PCLK and/or Max PCLK has been running at its
operational frequency for at least one clock) and the PHY is in the specified power state by the
deassertion of PhyStatus after the MAC has stopped holding the PHY in reset. The MAC must
not perform any operational sequences until PhyStatus is returned for the Reset# deassertion.
While Reset# is asserted the MAC should have TxDetectRx/Loopback deasserted, TxElecIdle
asserted, TxCompliance deasserted, PowerDown = P1 (PCI Express mode) or PowerDown = P2
(USB Mode) or PowerDown set to the default value reported by the PHY (SATA Mode), PHY
Mode set to the desired PHY operating mode, and Rate set to 2.5GT/s signaling rate for a PHY in
PCI Express mode or 5.0 GT/s or 10 GT/s (highest supported) for a PHY in USB mode or any
rate supported by the PHY in SATA mode. The state of TxSwing during Reset# assertion is
implementation specific. RxTermination assertion in USB mode is implementation specific.

Figure 8-5. Reset# Deassertion and PhyStatus for PCLK as PHY Output

PCLK running at any frequency less than or
equal to final operational frequency

Reset

PCLK

Reset#

PhyStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 105 of 161

8.3 Power Management – PCI Express Mode
The power management signals allow the PHY to minimize power consumption. The PHY must
meet all timing constraints provided in the PCI Express Base Specification regarding clock
recovery and link training for the various power states. The PHY must also meet all terminations
requirements for transmitters and receivers.

Four standard power states are defined, P0, P0s, P1, and P2. P0 state is the normal operational
state for the PHY. When directed from P0 to a lower power state, the PHY can immediately take
whatever power saving measures are appropriate. A PHY is allowed to implement additional
PHY specific power states; L1 substate support requires implementation of additional PHY
specific power states. A MAC may use any of the PHY specific states as long as the PCI Express
base specification requirements are still met.

In states P0, P0s and P1, PCLK is required to be kept operational. For all state transitions
between these three states and any PHY specific states where PCLK is operational, the PHY
indicates successful transition into the designated power state by a single cycle assertion of
PhyStatus. Transitions into and out of P2 or a PHY specific state where PCLK is not operational
are described below. For all power state transitions, the MAC must not begin any operational
sequences or further power state transitions until the PHY has indicated that the initial state
transition is completed.

Mapping of PHY power states to states in the Link Training and Status State Machine (LTSSM)
found in the base specification are included below. A MAC may alternately use PHY specific
states as long as the base specification requirements are still met.

• P0 state: All internal clocks in the PHY are operational. P0 is the only state where the PHY

transmits and receives PCI Express signaling.
P0 is the appropriate PHY power management state for most states in the Link Training and
Status State Machine (LTSSM). Exceptions are listed below for each lower power PHY
state.

• P0s state: PCLK must stay operational. The MAC may move the PHY to this state only
when the transmit channel is idle.
P0s state can be used when the transmitter is in state Tx_L0s.Idle.

While the PHY is in either P0 or P0s power states, if the receiver is detecting an electrical
idle, the receiver portion of the PHY can take appropriate power saving measures. Note that
the PHY must be capable of obtaining bit and symbol lock within the PHY-specified time
(N_FTS with/without common clock) upon resumption of signaling on the receive channel.
This requirement only applies if the receiver had previously been bit and symbol locked
while in P0 or P0s states.

• P1 state: Selected internal clocks in the PHY can be turned off. PCLK must stay operational.
The MAC will move the PHY to this state only when both transmit and receive channels are
idle. The PHY must not indicate successful entry into P1 (by asserting PhyStatus) until
PCLK is stable and the operating DC common mode voltage is stable and within
specification (as per the base spec).
P1 can be used for the Disabled state, all Detect states, and L1.Idle state (only if L1 substates
are not supported) of the Link Training and Status State Machine (LTSSM).

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 106 of 161

• P2 state: Selected internal clocks in the PHY can be turned off. The parallel interface is in
an asynchronous mode and PCLK is turned off. P2 can be used for the L1.Idle, L2.Idle and
L2.TransmitWake states of the Link Training and Status State Machine (LTSSM).

PCLK as PHY Output: When transitioning into P2, the PHY must assert PhyStatus before PCLK
is turned off and then deassert PhyStatus when PCLK is fully off and when the PHY is in the P2
state. When transitioning out of P2, the PHY asserts PhyStatus as soon as possible and leaves it
asserted until after PCLK is stable.

PCLK as PHY Input: When transitioning into P2, the PHY must assert PhyStatus for one input
PCLK cycle when it is ready for PCLK to be removed. When transitioning out of P2, the PHY
must assert PhyStatus for one input PCLK cycle as soon as possible once it has transitioned to P0
and is ready for operation.

When transitioning out of a state that does not provide PCLK to another state that does not
provide PCLK, the PHY asserts PhyStatus as soon as the PHY state transition is complete and
and leaves it asserted until the MAC asserts AsyncPowerChangeAck. Once the MAC asserts
AsyncPowerChangeAck the PHY deasserts PhyStatus.

PHYs should be implemented to minimize power consumption during P2 as this is when the
device will have to operate within Vaux power limits (as described in the PCI Express Base
Specification).

 P0 P2

 P2 Entry

PCLK

PowerDown

PhyStatus

 P2 P1

 P2 Exit

PCLK

PowerDown

PhyStatus

Figure 8-6 PCI Express P2 Entry and Exit with PCLK as PHY Output

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 107 of 161

PCLK

PhyStatus

PowerDown P0 P2 (for PCI Express Mode) P0

Figure 8-7 PCI Express P2 Entry and Exit with PCLK as PHY Input
There is a limited set of legal power state transitions that a MAC can ask the PHY to make.
Those legal transitions are: P0 to P0s, P0 to P1, P0 to P2, P0s to P0, P1 to P0, and P2 to P0. The
base spec also describes what causes those state transitions.

Transitions to and from any pair of PHY power states including at least one PHY specific power
state are also allowed by PIPE (unless otherwise prohibited). However, a MAC must ensure that
PCI Express specification timing requirements are met.

For L1 substate entry, the PHY must support a state where PCLK is disabled, REFCLK can be
removed, and RX electrical idle and TX common mode are on; this can be P2 or a P2-like state.
Figure 8-4 illustrates how a transition into and out of an L1 substate could occur. P2 or a P2-like
state maps to L1.Idle; and PhyStatus and AsyncPowerChangeAck signals are used as described
earlier in this section. Alternatively, the PHY may implement L1 substate management using a
single PowerDown[3:0] encoding augmented with the RxEIDetectDisable and
TxCommonModeDisable signals; the PowerDown state must remain constant across L1 substate
transitions when this alternative mechanism is used. Using distinct PowerDown[3:0] encodings
to define the L1 substates allows flexibility to specify different exit latencies; while using
RxEIDetectDisable and TxCommonModeDisable may eliminate the need to do a handshake with
AsyncPowerChangeAck. The PHY may support either mechanism or both; this capability must
be advertised in the PHY datasheet. The sideband mechanism of L1 substate management via
RxEIDetectDisable and TxCommonModeDisable requires PCLK as PHY input mode.

Ref Clk

PCLK

PowerDown[3:0]

PhyStatus

AsyncPowerChangeAck

Active Inactive Active

Active Inactive Active

P0 P2 or P2-like state L1.1/L1.2 state P2 or P2-like state P1 or P0

Figure 8-8. L1 SubState Entry and Exit with PCLK as PHY Output

8.4 Power Management – USB Mode
The power management signals allow the PHY to minimize power consumption. The PHY must
meet all timing constraints provided in the USB 3.1 Specification regarding clock recovery and
link training for the various power states. The PHY must also meet all termination requirements
for transmitters and receivers.

Four power states are defined, P0, P1, P2, and P3. The P0 state is the normal operational state for
the PHY. When directed from P0 to a lower power state, the PHY can immediately take

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 108 of 161

whatever power saving measures are appropriate.

In states P0, P1 and P2, the PCLK must be kept operational. For all state transitions between
these three states, the PHY indicates successful transition into the designated power state by a
single cycle assertion of PhyStatus. Transitions into and out of P3 are described below. For all
power state transitions, the MAC must not begin any operational sequences or further power state
transitions until the PHY has indicated that the initial state transition is completed.

Mapping of PHY power states to states in the Link Training and Status State Machine found in
the USB specification are included below. A MAC may alternately use PHY specific states as
long as the base specification requirements are still met.

• P0 state: All internal clocks in the PHY are operational. P0 is the only state where the PHY

transmits and receives USB signaling.
P0 is the appropriate PHY power management state for all cases where the link is in U0 and
all other link state except those listed below for P1, P2, and P3.

• P1 state: PCLK must stay operational. The MAC will move the PHY to this state only when
the PHY is transmitting idles and receiving idles. The P1 state can be used for the U1 link
state.

• P2 state: Selected internal clocks in the PHY can be turned off. PCLK must stay operational.
The MAC will move the PHY to this state only when both transmit and receive channels are
idle. The PHY must not indicate successful entry into P2 (by asserting PhyStatus) until
PCLK is stable and the operating DC common mode voltage is stable and within
specification (as per the base spec).

• P2 can be used for the U2, Rx.Detect, and SS.Inactive.
• P3 state: Selected internal clocks in the PHY can be turned off. The parallel interface is in

an asynchronous mode and PCLK output is turned off.

PCLK as PHY Output: When transitioning into P3, the PHY must assert PhyStatus before
PCLK is turned off and then deassert PhyStatus when PCLK is fully off and when the PHY is
in the P3 state. When transitioning out of P3, the PHY asserts PhyStatus as soon as possible
and leaves it asserted until after PCLK is stable.

PCLK as PHY Input: When transitioning into P3, the PHY must assert PhyStatus for one
input PCLK cycle when it is ready for PCLK to be removed. When transitioning out of P3,
the PHY must assert PhyStatus for one input PCLK cycle as soon as possible once it has
transitioned to P0 and is ready for operation.

PHYs should be implemented to minimize power consumption during P3 as this is when the

device will have to operate within power limits described in the USB 3.0 Specification.

• The P3 state shall be used in states SS.disabled and U3.
• There is a limited set of legal power state transitions that a MAC can ask the PHY to make.

Referencing the main state diagram in the USB spec and the mapping of link states to PHY
power states described in the preceding paragraphs, those legal transitions are: P0 to P1, P0 to
P2, P0 to P3, P1 to P0, P2 to P0, P3 to P0, and P1 to P2. The base spec also describes what
causes those state transitions.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 109 of 161

U1 has strict exit latency requirements as described in the USB base specification. Figure 8-5
illustrates the timing requirements for PIPE signals associated with U1 exit with the following
explanation:

• T2-T1: PHY decodes LFPS and reflects it through RxElecIdle (120ns max)
• T4-T3: P1 to P0 transition latency (300ns max)
• T6-T5: LFPS transmit latency (100ns max)
• T7-T1: 0.6 to 0.9us from USB Spec

Figure 8-9. USB U1 Exit

8.5 Power Management – SATA Mode
The power management signals allow the PHY to minimize power consumption. The PHY must
meet all timing constraints provided in the SATA Specification regarding clock recovery and link
training for the various power states. The PHY must also meet all termination requirements for
transmitters and receivers.

A minimum of five power states are defined, POWER_STATE_0 and a minimum of four additional
states that meet minimum requirements defined in section 6.1. POWER_STATE_0 state is the
normal operational state for the PHY. When directed from POWER_STATE_0 to a lower power
state, the PHY can immediately take whatever power saving measures are appropriate.

For all state transitions between POWER_STATE_0 and lower power states that provide PCLK,
the PHY indicates successful transition into the designated power state by a single cycle assertion
of PhyStatus. The PHY must complete transmitting all data transferred across the PIPE interface
before the change in the PowerDown signals before assertion of PhyStatus. Transitions into and
out of power states that do not provide PCLK are described below. For all power state
transitions, the MAC must not begin any operational sequences or further power state transitions
until the PHY has indicated that the initial state transition is completed. Power state transitions
between two power states that do not provide PCLK are not allowed.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 110 of 161

Mapping of PHY power states to link states in the SATA specification is MAC specific.
• POWER_STATE_0 : All internal clocks in the PHY are operational. POWER_STATE_0 is the

only state where the PHY transmits and receives SATA signaling.
POWER_STATE_0 is the appropriate PHY power management state for most link states in the
SATA specification. When transitioning into a power state that does not provide PCLK , the
PHY must assert PhyStatus before PCLK is turned off and then deassert PhyStatus when
PCLK is fully off and when the PHY is in the low power state. The PHY must leave PCLK
on for at least one cycle after asserting PhyStatus. For PCLK as PHY output, when
transitioning out of a state that does not provide PCLK , the PHY asserts PhyStatus as soon as
possible and leaves it asserted until after PCLK is stable.

Transitions between any pair of PHY power states (except two states that do not provide PCLK)
are allowed by PIPE. However, a MAC must ensure that SATA specification timing
requirements are met.

8.6 Changing Signaling Rate, PCLK Rate, or Data Bus Width

8.6.1 PCI Express Mode
The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the
PHY is in the P0 or P1 power state and TxElecIdle and RxStandby (P0 only) are asserted. When
the MAC changes the Rate signal, and/or the Width signal, and/or the PCLK rate signal in PCLK
as PHY Output mode, the PHY performs the rate change and/or the width change and/or the
PCLK rate change and signals its completion with a single cycle assertion of PhyStatus. The
MAC must not perform any operational sequences, power state transitions, deassert TxElecIdle or
RxStandby, or further signaling rate changes until the PHY has indicated that the signaling rate
change has completed. The sequence is the same in PCLK as PHY Input mode except the MAC
needs to know when the input PCLK rate or Rate, or potentially width, can be safely changed.
After the MAC changes Rate and either PCLK_Rate, Data Width, or both, any change to the
PCLK can happen only after the PclkChangeOk output has been driven high by the PHY. The
MAC changes the input PCLK, if necessary, and then handshakes by asserting PclkChangeAck.
The PHY responds by asserting PhyStatus for one input PCLK cycle and de-asserts
PclkChangeOk on the trailing edge of PhyStatus. Note: PclkChangeOk is used by the PHY if the
MAC changes PCLK_Rate and Rate. The PHY datasheet indicates whether the same handshake
is also required for every rate change. Table 8-1 summarizes the handshake requirements. The
MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low and may de-assert
TxElecIdle and/or RxStandby after PhyStatus is sampled high. There are instances where LTSSM
state machine transitions indicate both a speed change and/or width and/or PCLK rate change and
a power state change for the PHY. In these instances, the MAC must change (if necessary) the
signaling rate, width and/or PCLK rate before changing the power state.

Table 8-1. PclkChangeOK/PclkChangeAck Requirements
Rate Width PCLK

Rate
PclkChangeOK /PclkChangeAck Handshake
Required?

Stable Don’t
care

Don’t care Don’t care

Change Stable Stable Optional (parameter)
Change Stable Change Required

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 111 of 161

Change Change Stable Optional (parameter)
Change Change Change Required

Some PHY architectures may allow a speed change and a power state change to occur at the same
time as a rate and/or width and/or PCLK rate change. If a PHY supports this, the MAC must
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the
PowerDown signals. This can happen when transitioning the PHY from P0 to either P1 or P2
states. The completion mechanisms are the same as previously defined for the power state
changes and indicate not only that the power state change is complete, but also that the rate and/or
width and/or PCLK rate change is complete.

8.6.2 USB Mode

The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the
PHY is in the P0 or P2 power state and TxElecIdle and RxStandby are asserted. Any
combination of at least two of the rate and width and PCLK rate, can be changed simultaneously.
The MAC is not allowed to change only one of the three. When the MAC changes the Rate
signal, and/or the Width signal, and/or the PCLK rate signal in PCLK as PHY Output mode, the
PHY performs the rate change and/or the width change and/or the PCLK rate change and signals
its completion with a single cycle assertion of PhyStatus. The MAC must not perform any
operational sequences, power state transitions, deassert TxElecIdle or RxStandby, or further
signaling rate changes until the PHY has indicated that the signaling rate change has completed.
The sequence is the same in PCLK as PHY Input mode except the MAC needs to know when the
input PCLK rate or Rate can be safely changed. After the MAC changes PCLK_Rate the change
to the PCLK can happen only after the PclkChangeOk output has been driven high by the PHY.
The MAC changes the input PCLK, and then handshakes by asserting PclkChangeAck. The PHY
responds by asserting PhyStatus for one input PCLK cycle and de-asserts PclkChangeOk on the
trailing edge of PhyStatus. Note: PclkChangeOk is only used by the PHY if the MAC changes
PCLK_Rate or Rate. The MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low
and may de-assert TxElecIdle and/or RxStandby after PhyStatus is sampled high.

Some PHY architectures may allow a speed change and a power state change to occur at the same
time as a rate and/or width and/or PCLK rate change. If a PHY supports this, the MAC must
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the
PowerDown signals. This can happen when transitioning the PHY from P0 to either P2 or P3
states. The completion mechanisms are the same as previously defined for the power state
changes and indicate not only that the power state change is complete, but also that the rate and/or
width and/or PCLK rate change is complete.

8.6.3 SATA Mode
The signaling rate of the link, PCLK rate, or the Data Bus Width can be changed only when the
PHY is in POWER_STATE_0 and TxElecIdle and RxStandby are asserted, or in a lowpower
state where PCLK is provided. When the MAC changes the Rate signal, and/or the Width signal,
and/or the PCLK rate signal in PCLK as PHY Output mode, the PHY performs the rate change
and/or the width change and/or the PCLK rate change and signals its completion with a single
cycle assertion of PhyStatus. The MAC must not perform any operational sequences, power state
transitions, deassert TxElecIdle or RxStandby, or further signaling rate and/or width changes until
the PHY has indicated that the change has completed.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 112 of 161

The sequence is the same in PCLK as PHY Input mode except the MAC needs to know when the
input PCLK rate can be safely changed. After the MAC changes PCLK_Rate the change to the
PCLK can happen only after the PclkChangeOk output has been driven high by the PHY. The
MAC changes the input PCLK, and then handshakes by asserting PclkChangeAck. The PHY
responds by asserting PhyStatus for one input PCLK cycle and de-asserts PclkChangeOk on the
trailing edge of PhyStatus. Note: PclkChangeOk is only used by the PHY if the MAC changes
PCLK_Rate. The MAC de-asserts PclkChangeAck when PclkChangeOk is sampled low and
may de-assert TxElecIdle and/or RxStandby after PhyStatus is sampled high.
There are instances where conditions indicate both a speed change and/or width and/or PCLK rate
change and a power state change for the PHY. In such cases the MAC must change the
signaling rate and/or width and/or PCLK rate, before changing the power state.
Some PHY architectures may allow a speed change and a power state change to occur at the same
time as a rate and/or width and/or PCLK rate change. If a PHY supports this, the MAC must
change the rate and/or width and/or PCLK rate at the same PCLK edge that it changes the
PowerDown signals. The completion mechanisms are the same as previously defined for the
power state changes and indicate not only that the power state change is complete, but also that
the rate and/or width and/or PCLK rate change is complete.

8.6.4 Fixed data path implementations
The figure below shows logical timings for implementations that change PCLK frequency when
the MAC changes the signaling rate and PCLK is a PHY Output. Implementations that change
the PCLK frequency when changing signaling rates must change the clock such that the time the
clock is stopped (if it is stopped) is minimized to prevent any timers using PCLK from exceeding
their specifications. Also during the clock transition period, the frequency of PCLK must not
exceed the PHY’s defined maximum clock frequency. The amount of time between when Rate is
changed and the PHY completes the rate change is a PHY specific value. These timings also
apply to implementations that keep the data path fixed by using options that make use of the
TxDataValid and RxDataValid signals.

 00b

PCLK

TxElecIdle

PhyStatus

Pow erDow n[1:0]

Rate

Rate change with fixed data path

Figure 8-6 shows logical timings for an implementation that changes PCLK frequency when the
MAC changes the signaling rate and PCLK is a PHY Input.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 113 of 161

Rate[1:0]

PhyStatus

TxElecIdle

2'b00 2'b01

TxData good TX data invalid TX data

PclkChangeOk

PclkChangeAck

PCLK

good TX data

RxStandbyStatus

Figure 8-10 Change from PCI Express 2.5 Gt/s to 5.0 Gt/s with PCLK as PHY Input.
8.6.5 Fixed PCLK implementations
The figure below shows logical timings for implementations that change the width of the data
path for different signaling rates. PCLK may be stopped during a rate change. These timings
also apply to fixed PCLK implementations that make use of the TxDataValid and RxDataValid
signals.

 Useable

 Useable

 Useable

 Useable

PCLK

TxElecIdle

PhyStatus

Rate

TxData[7:0]

TxData[15:8]

RxData[7:0]

RxData[15:8]
Rate change with fixed PCLK frequency

8.7 Transmitter Margining – PCI Express Mode and USB Mode
While in the P0 power state, the PHY can be instructed to change the value of the voltage at the
transmitter pins. When the MAC changes TxMargin[2:0], the PHY must be capable of
transmitting with the new setting within 128 ns.

There is a limited set of legal TxMargin[2:0] and Rate combinations that a MAC can select.
Refer to the PCIe Base Specification for a complete description of legal settings when the PHY is
in PCI Express Mode. Refer to the USB specification for a complete description of the legal
settings when the PHY is in USB mode.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 114 of 161

8.8 Selectable De-emphasis – PCI Express Mode
While in the P0 power state and transmitting at 5.0GT/s, 8.0 GT/s, 16 GT/s or 32 GT/s, the PHY
can be instructed to change the value of the transmitter equalization. When the signaling rate is
5.0 GT/s and the MAC changes TxDeemph, the PHY must be capable of transmitting with the
new setting within 128 ns. When the signaling rate is 8.0 GT/s, 16 GT/s, or 32 GT/s and the
MAC changes TxDeemph, the PHY must be capable of transmitting with the new setting within
256 ns.

There is a limited set of legal TxDeemph and Rate combinations that a MAC can select. Refer to
the PCIe Base Specification for a complete description.

The MAC must ensure that TxDeemph is selecting -3.5db whenever Rate is selecting 2.5 GT/s.

8.9 Receiver Detection – PCI Express Mode and USB Mode
While in the P1 or optionally P2 power state and PCI Express mode or in the P2 or P3 power state
and USB mode, the PHY can be instructed to perform a receiver detection operation to determine
if there is a receiver at the other end of the link. Basic operation of receiver detection is that the
MAC requests the PHY to do a receiver detect sequence by asserting TxDetectRx/Loopback.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 115 of 161

When the PHY has completed the receiver detect sequence, it asserts PhyStatus for one clock and
drives the RxStatus signals to the appropriate code. After the receiver detection has completed (as
signaled by the assertion of PhyStatus), the MAC must deassert TxDetectRx/Loopback before
initiating another receiver detection, a power state transition, or signaling a rate change.
Once the MAC has requested a receiver detect sequence (by asserting TxDetectRx/Loopback), the
MAC must leave TxDetectRx/Loopback asserted until after the PHY has signaled completion by
the assertion of PhyStatus. When receiver detection is performed in USB mode with the PHY in
P3 or PCIe in P2, the PHY asserts PhyStatus and signals the appropriate receiver detect value
until the MAC deasserts TxDetectRx/Loopback.

Detected Condition RxStatus code
Receiver not present 000b
Receiver present 011b

8.10 Transmitting a beacon – PCI Express Mode
When the PHY has been put in the P2 power state, and the MAC wants to transmit a beacon, the
MAC deasserts TxElecIdle and the PHY should generate a valid beacon until TxElecIdle is
asserted. The MAC must assert TxElecIdle before transitioning the PHY to P0.

P2

Valid beacon signaling

Beacon Transmit

PowerDown[1:0]

TxElecIdle

Tx+/Tx-

8.11 Transmitting LFPS – USB Mode
When the PHY is in P1 and the MAC wants to transmit LFPS, the MAC deasserts TxElecIdle and
the PHY should generate valid LFPS until TxElecIdle is asserted. The MAC must assert
TxElecIdle before transitioning the PHY to P0. The length of time TxElecIdle is deasserted is

10b

000b 011b 000b

Receiver Detect - Receiver present

PCLK

TxDetectRx/Loopback

PhyStatus

PowerDown[1:0]

RxStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 116 of 161

varied for different events. When the PHY is in P0 and the MAC wants to transmit LFPS, the
MAC must assert both TxElecIdle and TxDetectRx/Loopback for the desired duration of an LFPS
burst. The PHY is required to complete a full LFPS period before transitioning to SuperSpeed
data, and as a consequence may drop SuperSpeed data if these requests overlap. This
requirement does not apply to TxOnesZeros requests. Refer to chapter 6 in the USB 3.0
specification for more details.

P2

Valid LFPS signaling

LFPS Transmit

PowerDown[1:0]

TxElecIdle

Tx+/Tx-

8.12 Detecting a beacon – PCI Express Mode
The PHY receiver must monitor at all times (except during reset or when RxEIDetectDisable is
set) for electrical idle. When the PHY is in the P2 power state, and RxElecIdle is deasserted, then
a beacon is being detected.

P2

Valid beacon s ignaling

Beacon Receive

PowerDown[1:0]

RxElecIdle

Rx+/Rx-

8.13 Detecting Low Frequency Periodic Signaling – USB Mode
The PHY receiver must monitor at all times (except during reset, when RX terminations are
removed, or when RxEIDetectDisable is set) for LFPS. When the PHY is in the P0, P1, P2, or P3
power state, and RxElecIdle is deasserted, then LFPS is being detected. The length of time
RxElecIdle is deasserted indicates the length of time Low Frequency Periodic Signaling is
detected. Refer to chapter 6 in the USB 3.0 specification for more details on the length of Low
Frequency Periodic Signaling (LFPS) for various events.

The PHY needs to differentiate LPFS received for Ping from Exit LFPS. When the PHY receives
LFPS for up to 2 cycles only, it should deassert RxElecIdle for a maximum of 200ns. For U1,
there is a strict latency requirement for a USB controller to detect and respond back as defined in
the USB Spec chapter 6 LPFS section. The PHY should not take more than 120ns to deassert
RxElecIdle after detecting LFPS in P0 and P1, and P2. For P3, the PHY is allowed to take us to
10us to deassert RxElecIdle.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 117 of 161

P2

Valid LFPS signaling

LFPS Receive

PowerDown[1:0]

RxElecIdle

Rx+/Rx-

8.14 Clock Tolerance Compensation
The PHY receiver contains an elastic buffer used to compensate for differences in frequencies
between bit rates at the two ends of a Link. The elastic buffer must be capable of holding enough
symbols to handle worst case differences in frequency and worst case intervals between symbols
that can be used for rate compensation for the selected PHY mode.

Two models are defined for the elastic buffer operation in the PHY. The PHY may support one
or both of these models. The Nominal Empty buffer model is only supported in PCI Express,
USB or SATA Mode.

For the Nominal Empty buffer model the PHY attempts to keep the elasticity buffer as close to
empty as possible. In Nominal Empty mode the PHY uses the RxDataValid interface to tell the
MAC when no data is available. The Nominal Empty buffer model provides a smaller worst case
and average latency then the Nominal Half Full buffer model, but requires the MAC to support
the RxDataValid signal. The PHY removes all SKP symbols in Nominal Empty buffer mode.

For the Nominal Half Full buffer model, the PHY is responsible for inserting or removing SKP
symbols, ordered sets, or ALIGNs in the received data stream to avoid elastic buffer overflow or
underflow. The PHY monitors the receive data stream, and when a Skip ordered-set or ALIGN is
received, the PHY can add or remove one SKP symbol (PCI Express Mode at 2.5 or 5 GT/s) or
four SKP symbols (PCI Express Mode at 8 GT/s, 16 GT/s, or 32 GT/s) or one SKP ordered set
(USB Mode at 5 GT/s) or one ALIGN from each SKP or ALIGN as appropriate to manage its
elastic buffer to keep the buffer as close to half full as possible. In USBmode at 5 GT/S the PHY
shall only add or remove SKP ordered sets. In USB mode at 10 GT/s the PHY shall only add or
remove multiples of four SKP symbols. Whenever SKP symbol(s) or an ordered set is added to or
removed, the PHY will signal this to the MAC using the RxStatus[2:0] signals. These signals
have a non-zero value for one clock cycle and indicate whether a SKP symbol or ordered set was
added to or removed from the received SKP ordered-set(s). For PCI Express, the timing of
RxStatus[2:0] assertion depends on the operational rate since SKP ordered sets are encoded
differently in 8b/10b mode versus 128/130b mode. In PCI Express Mode at 2.5 or 5 GT/s,
RxStatus[2:0] shall be asserted during the clock cycle when the COM symbol of the SKP
ordered-set is moved across the parallel interface. In PCI Express Mode at 8, 16 GT/s or 32
GT/s, RxStatus[2:0] shall assert anytime between and including the start of the SKP ordered set
and the SKP_END symbol. In SATA Mode whenever a ALIGN symbol is added or removed, the
PHY will signal this to the MAC using the RxStatus[2:0] signals. These signals have a non-zero
value for one clock cycle and indicate whether an ALIGN was added or removed. RxStatus shall
be asserted during the clock cycle when the first symbol of the added ALIGN is moved across the
parallel interface.

In PCI Express mode, the rules for operating in Nominal Empty buffer mode are as follows:

• Use of RxDataValid is required

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 118 of 161

• All SKP symbols of SOS are removed (8b/10b SKP or 128/130 AA)
• When an empty condition happens (caused by clock drift or SOS removal)

• RxValid must remain high
• RxValid should only be dropped for symbol alignment loss or block

alignment loss
• RxDataValid must be de-asserted
• RxStatus must be 0

• EB full can still occur and is considered an error
• Notification of an SOS coming through the EB must be reported in the following manner

• 8b/10b: COM of SOS must be passed with RxStatus = SKP removed (010), SKP
symbols dropped

• 128/130: Start of SOS block, with first byte SKP_END or SKP_END_CTRL,
must be passed with RxStatus = SKP Removed (010), all AA SKP symbols
dropped

• The EB is permitted to start RxDataValid as soon as data is available, but should never
assert faster than the usual RxDataValid rate

• i.e. rate=1, width=2, pclk_rate=2, RxDataValid should never assert for two
consecutive pclk cycles

• i.e. rate=1, width=2, pclk_rate=3, RxDataValid assertions must always have at
least 3 pclk cycles of de-assertion between them

• Example of valid optimization by EB:
• Rate=1, width=2, pclk_rate=3
• RxDataValid (t=0,t=1, etc., E=EB Empty):

• 1000100010001000EE100010001
• Vs. non-optimized:

• 1000100010001000EE00100010001
• Non-optimized design builds EB depth in-order to maintain

RxDataValid fixed cycle rate

In USB mode for the Nominal Empty buffer model the PHY attempts to keep the elasticity buffer
as close to empty as possible. This means that the PHY will be required to insert SKP ordered
sets into the received data stream when no SKP ordered sets have been received, unless the
RxDataValid signal is used. The Nominal Empty buffer model provides a smaller worst case and
average latency then the Nominal Half Full buffer model, but requires the MAC to support
receiving SKP ordered sets any point in the data stream.

In SATA mode for the Nominal Empty buffer model the PHY attempts to keep the elasticity
buffer as close to empty as possible. In Nominal Empty mode the PHY uses the RxDataValid
interface to tell the MAC when no data is available. The Nominal Empty buffer model provides a
smaller worst case and average latency then the Nominal Half Full buffer model, but requires the
MAC to support the RxDataValid signal.

It is recommended that a PHY and MAC support the Nominal Empty buffer model in USB mode
using the RxDataValid signal. The alternative of inserting SKPs in the data stream when no
SKPs have been received is not recommended. The figure below shows a sequence where a
PHY operating in PCI Express Mode added a SKP symbol in the data stream.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 119 of 161

The figure below shows a sequence where a PHY operating in PCI Express mode removed a SKP
symbol from a SKP ordered-set that only had one SKP symbol, resulting in a ‘bare’ COM
transferring across the parallel interface.

8.15 Error Detection
The PHY is responsible for detecting receive errors of several types. These errors are signaled to
the MAC layer using the receiver status signals (RxStatus[2:0]). Because of higher level error
detection mechanisms (like CRC) built into the Data Link layer there is no need to specifically
identify symbols with errors, but reasonable timing information about when the error occurred in
the data stream is important. When a receive error occurs, the appropriate error code is asserted
for one clock cycle at the point in the data stream across the parallel interface closest to where the
error actually occurred. There are four error conditions (five for SATA mode) that can be
encoded on the RxStatus signals. If more than one error should happen to occur on a received
byte (or set of bytes transferred across a 16-bit, 32-bit or 64-bit interface), the errors should be
signaled with the priority shown below.

1. 8B/10B decode error or block decode error
2. Elastic buffer overflow
3. Elastic buffer underflow (Cannot occur in Nominal Empty buffer model)
4. Disparity errors
5. Misalign (SATA mode only)

If an error occurs during a SKP ordered-set or ALIGN, such that the error signaling and SKP or
ALIGN added/removed signaling on RxStatus would occur on the same PCLK, then the error

Active COM SKP SKP Active

Active SKP SKP Active

000b 001b 000b

Clock Correction - Add a SKP

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

Active COM Active

Active

000b 010b 000b

Clock Correction - Remove a SKP

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 120 of 161

signaling has precedence.

Note that the PHY does not signal 128/130B (PCI Express) or 128/132B (USB) header errors.
The raw received header bits are passed across the interface and the controller is responsible for
any block header error detection/handling.

8.15.1 8B/10B Decode Errors
For a detected 8B/10B decode error, the PHY should place an EDB symbol (for PCIe or SATA) or
SUB symbol (for USB) in the data stream in place of the bad byte, and encode RxStatus with a
decode error during the clock cycle when the effected byte is transferred across the parallel
interface. In the example below, the receiver is receiving a stream of bytes Rx-a through Rx-z,
and byte Rx-f has an 8B/10B decode error. In place of that byte, the PHY places an EDB (for
PCIe or SATA) or SUB (for USB) on the parallel interface, and sets RxStatus to the 8B/10B decode
error code. Note that a byte that can’t be decoded may also have bad disparity, but the 8B/10B
error has precedence. Also note that for greater than 8-bit interface, if the bad byte is on the
lower byte lane, one of the other bytes may have bad disparity, but again, the 8B/10B error has
precedence.

8.15.2 Disparity Errors
For a detected disparity error, the PHY should assert RxStatus with the disparity error code during
the clock cycle when the affected byte is transferred across the parallel interface. For greater than
8-bit interfaces, it is not possible to discern which byte (or possibly both) had the disparity error.
In the example below, the receiver detected a disparity error on either (or both) Rx-e or Rx-f data
bytes, and indicates this with the assertion of RxStatus. Optionally, the PHY can signal disparity
errors as 8B/10B decode error (using code 0b100). (MACs often treat 8B/10B errors and
disparity errors identically.). When operating in USBmode signaling disparity errors is optional.

Rx-b Rx-d EDB Rx-I Rx-k

Rx-a Rx-c Rx-e Rx-h Rx-j

000b 100b 000b

8B/10B Decode Error

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 121 of 161

8.15.3 Elastic Buffer Errors
For elastic buffer errors, an underflow should be signaled during the clock cycle or clock cycles
when a spurious symbol is moved across the parallel interface. The symbol moved across the
interface should be the EDB symbol (for PCIe or SATA) or SUB symbol (for USB). In the timing
diagram below, the PHY is receiving a repeating set of symbols Rx-a thru Rx-z. The elastic
buffer underflows causing the EDB symbol (for PCIe) or SUB symbol (for USB) to be inserted
between the Rx-g and Rx-h Symbols. The PHY drives RxStatus to indicate buffer underflow
during the clock cycle when the EDB (for PCIe) or SUB (for USB) is presented on the parallel
interface.

Note that underflow is not signaled when the PHY is operating in Nominal Empty buffer mode.
In this mode SKP ordered sets are moved across the interface whenever data needs to be inserted
or the RxDataValid signal is used. The RxDataValid method is preferred.

For an elastic buffer overflow, the overflow should be signaled during the clock cycle where the
dropped symbol or symbols would have appeared in the data stream. For the 16-bit interface it is
not possible, or necessary, for the MAC to determine exactly where in the data stream the symbol
was dropped. In the timing diagram below, the PHY is receiving a repeating set of symbols Rx-a
thru Rx-z. The elastic buffer overflows causing the symbol Rx-g to be discarded. The PHY
drives RxStatus to indicate buffer overflow during the clock cycle when Rx-g would have
appeared on the parallel interface.

Rx-b Rx-d Rx-f Rx-I Rx-k

Rx-a Rx-c Rx-e Rx-h Rx-j

00b 111b 000b

Disparity Error

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

Rx-b Rx-d Rx-f EDB Rx-I

Rx-a Rx-c Rx-e Rx-g Rx-h

00b 110b 00b

Elastic Buffer Underflow

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 122 of 161

8.15.3.1 Elastic Buffer Reset
The MAC can set the ElasticBufferResetControl bit (see section 7.1.9) to initiate an EB reset
sequence in the PHY. The PHY must complete the EB reset sequence within 16 PCLK cycles as
follows:

• Assert RxStatus to value of 1xx with RxValid
• Hold RxStatus to 1xx while maintaining RxValid and RxDataValid
• Move pointers back to their initial state
• Release RxStatus to indicate clean data is being forwarded again

8.16 Loopback
• For USB and PCI Express Modes the PHY must support an internal loopback as

described in the corresponding base specification.

• For SATA the PHY may optionally support an internal loopback mode when
EncodeDecodeBypass is asserted.

• In the SerDes architecture, loopback is handled in the MAC instead of the PHY.

The PHY begins to loopback data when the MAC asserts TxDetectRx/Loopback while doing
normal data transmission (i.e. when TxElecIdle is deasserted). The PHY must, within the
specified receive and transmit latencies, stop transmitting data from the parallel interface, and
begin to loopback received symbols. While doing loopback, the PHY continues to present
received data on the parallel interface.

The PHY stops looping back received data when the MAC deasserts TxDetectRx/Loopback.
Transmission of data on the parallel interface must begin within the specified transmit latency.

The timing diagram below shows example timing for beginning loopback. In this example, the
receiver is receiving a repeating stream of bytes, Rx-a thru Rx-z. Similarly, the MAC is causing
the PHY to transmit a repeating stream of bytes Tx-a thru Tx-z. When the MAC asserts
TxDetectRx/Loopback to the PHY, the PHY begins to loopback the received data to the
differential Tx+/Tx- lines. Timing between assertion of TxDetectRx/Loopback and when Rx data
is transmitted on the Tx pins is implementation dependent.

Rx-b Rx-d Rx-f Rx-I Rx-k

Rx-a Rx-c Rx-e Rx-h Rx-j

00b 101b 000b

Elastic Buffer Overflow

PCLK

RxData[7:0]

RxData[15:8]

RxValid

RxStatus

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 123 of 161

Rx-d Rx-f Rxh Rx-j Rx-l Rx-n Rx-p

Rx-c Rx-e Rx-g Rx-I Rx-k Rx-m Rx-o

Tx-n Tx-p Tx-r Tx-t Tx-v Tx-x Tx-z

Tx-g/Tx-h Tx-I/Tx-j Tx-k/Tx-l Tx-m/Tx-n Tx-o/Tx-p Rx-g/Rx-h Rx-I/Rx

Tx-m Tx-o Tx-q Tx-s Tx-u Tx-w Tx-y

Loopback start

PCLK

TxData[7:0]

TxData[15:8]

RxData[7:0]

RxData[15:8]

TxDetectRx/Loopback

TxElecIdle

Tx+/Tx-

The next timing diagram shows an example of switching from loopback mode to normal mode
when the PHY is operating in PCI Express Mode.

In PCI Express Mode, when the MAC detects an electrical idle ordered-set, the MAC deasserts
TxDetectRx/Loopback and asserts TxElecIdle. The PHY must transmit at least three bytes of the
electrical idle ordered-set before going to electrical idle. (Note, transmission of the electrical idle
ordered-set should be part of the normal pipeline through the PHY and should not require the
PHY to detect the electrical idle ordered-set). The base spec requires that a Loopback Slave be
able to detect and react to an electrical idle ordered set within 1ms. The PHY’s contribution to
this time consists of the PHY’s Receive Latency plus the PHY’s Transmit Latency (see section
6.13).

When the PHY is operating in USBMode, the device shall only transition out of loopback on
detection of LFPS signaling (reset) or when VBUS is removed. When valid LFPS signaling is
detected, the MAC transitions the PHY to the P2 power state in order to begin the LFPS
handshake.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 124 of 161

Looped back RX data Junk

IDL IDL Junk

COM IDL Junk

Loopback end

PCLK

RxData[7:0]

RxData[15:8]

RxValid

TxDetectRx/Loopback

TxElecIdle

Tx+/Tx-

Includes electrical idle
ordered set

8.17 Polarity Inversion – PCI Express and USBModes
To support lane polarity inversion, the PHY must invert received data when RxPolarity is
asserted. Inverted data must begin showing up on RxData[] within 20 PCLKs of when
RxPolarity is asserted.

8.18 Setting negative disparity (PCI Express Mode)
To set the running disparity to negative, the MAC asserts TxCompliance for one clock cycle that
matches with the data that is to be transmitted with negative disparity. For a 16-bit interface, the
low order byte will be the byte transmitted where running disparity is negative. The example
shows how TxCompliance is used to transmit the PCI Express compliance pattern in PCI Express
mode. TxCompliance is only used in PCI Express mode and is qualified by TxDataValid when
TxDataValid is being used.

D21.5 D21.5 D21.5 D10.2 D10.2

D21.5 D21.5 D21.5 D10.2 D10.2

Polarity inversion

PCLK

RxData(K)[7:0]

RxData(K)[16:8]

RxValid

RxCodeErr

RxDispErr

RxPolarity

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 125 of 161

Data D21.5 D10.2 D21.5 D10.2 D21.5 D10.2

Data Data K28.5 K28.5 K28.5 K28.5 K28.5

Val id Data K28.5-/D21.5 K28.5+/D10.2 K28.5-/D21.5 K28.5+/D1

Loopback end

PCLK

TxData[7:0]

TxData[15:8]

TxCompliance

Tx+/Tx-

Byte transmitted
with negative disparity

Setting negative disparity

8.19 Electrical Idle – PCI Express Mode
The base spec requires that devices send an Electrical Idle ordered set before Tx+/Tx- goes to the
electrical idle state. For a 16-bit interface or 32-bit interface, the MAC must always align the
electrical idle ordered set on the parallel interface so that the COM symbol is on the low-order
data lines (TxDataK[7:0]). Figure 8-7 shows an example of electrical idle exit and entry for a
PCI Express 8 GT/s or 16 GT/s interface. TxDataValid must be asserted whenever TxElecIdle
toggles as it is used as a qualifier for sampling TxElecIdle. Note: For SerDes architecture, 1 bit
of TxElecIdle is required per 16-bits of data.

Active (Ends wi th electrical idle ordered set)

ScZero IDL

ScZero COM IDL

Electrical Idle

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

Tx+/Tx-

COM placed on low-order
data lines

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 126 of 161

P0

Sync
Hdr

Sync
HdrTxSyncHeader[1:0]

TxData[n:0]

TxStartBlock

TxDataValid

TxElecIdle

PowerDown[2:0]

Note:
• TxDataValid can assert earlier before TxElecIdle toggles.
• TxDataValid can de-assert anytime after TxElecIdle asserts as long as it does not overlap with the next Electrical Idle exit sequence.
• TxElecIdle must de-assert at the same clock TxStartBlock asserts.

128-bit Block 128-bit Block

Figure 8-11 – PCI Express 3.0 TxDataValid Timings for Electrical Idle Exit
and Entry.
Note: Figure 8-7 only shows two blocks of TxData and thus TxDataValid does not de—assert
during the data. Other examples in the specification show longer sequences where TxDataValid
de-asserts.

When data throttling is happening, TxElecIdle must be set long enough to be sampled by
TxDataValid as shown in Figure 8-8.

TxDataValid

TxElecIdle

Rate 00 (2.5GT/s)

PCLK Rate 11 (500MHz)

Width 01 (16b)

TxData/K

4 pclk
periods

Figure 8-12. Data Throttling and TxElecIdle

The PIPE specification does not require RxStandby to be asserted within any amount of time after
Electrical Idle or that it be asserted at all. Individual PHYs must specify their own timing
requirements for RxStandby assertion, which may vary depending on whether they have
staggering requirements.

8.20 Link Equalization Evaluation
While in the P0 power state, the PHY can be instructed to perform evaluation of the current TX
equalization settings of the link partner. Basic operation of the equalization evaluation is that

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 127 of 161

the MAC requests the PHY to evaluate the current equalization settings by asserting RxEqEval.
When the PHY has completed evaluating the current equalization settings, it asserts PhyStatus for
one clock and drives the LinkEvaluationFeedback signals to the appropriate feedback response.
After link equalization evaluation has completed (as signaled by the assertion of PhyStatus), the
MAC must deassert RxEqEval before initiating another evaluation. Figure 8-9 shows an
example of the timings for a successful link equalization evaluation request. Figure 8-10 shows
an example of the timings for a link equalization evaluation request resulting in feedback that is
an invalid request.

PCLK

PowerDown

RxEqEval

PhyStatus

LinkEvaluation
Feedback

InvalidRequest

TS Requested
Coeff

P0

Coeff Req #1 Coeff Req #2

Block Lock Delay
PIPE-PHY Eval Time

Note:
• RxEqEval can de-assert at the same clock the corresponding PhyStatus de-asserts or later as long as RxEqEval de-asserts prior to the next RX Equalization Request.
• Back-to-back RxEqEval request can happen as close as one clock apart (i.e. RxEqEval can de-assert for one clock before it re-asserts again to start the next RX Equalization request.

Figure 8-13 – PCI Express 8GT/s or higher Successful Equalization
Evaluation Request

PCLK

PowerDown

RxEqEval

PhyStatus

LinkEvaluation
Feedback

InvalidRequest

TS Requested
Coeff

P0

Valid Coeff to Link Partner Hold Prior Coeff to Link Partner

Note:
• InvalidRequest assertion happens after the de-assertion of RxEqEval.
• InvalidRequest must de-assert at the same clock RxEqEval for the next RX Equalization request asserts.
• InvalidRequest could be asserted for as little as one PCLK pulse.

Figure 8-14 – PCI Express 3.0 Equalization Evaluation Request Resulting in
Invalid Feedback
Once the MAC has requested link equalization evaluation (by asserting RxEqEval), the MAC
must leave RxEqEval asserted until after the PHY has signaled completion by the assertion of
PhyStatus unless the MAC needs to abort the evaluation due to high level timeouts or error
conditions. To abort an evaluation the MAC de-asserts RxEqEval before the PHY has signaled
completion. If the MAC aborts the evaluation the PHY must signal completion as quickly as
possible. The MAC ignores returned evaluation values in an abort scenario.

Note: If a race condition occurs where the MAC aborts by deasserting RxEqEval on same cycle
as the PHY asserts PhyStatus then the PHY shall not take any further action.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 128 of 161

8.21 Implementation specific timing and selectable parameter support
PHY vendors (macrocell or discrete) must specify typical and worst case timings for the cases
listed in Table 8-1. Other implementation specific parameters listed in Table 8-1 must also be
specified advertised by the PHY in its datasheet.

Table 8-2 Parameters Advertised in PHY Datasheet
Transmit Latency Time for data moving between the parallel

interface and the PCI Express, SATA or USB
serial lines. Timing is measured from when the
data is transferred across the parallel interface
(i.e. the rising edge of PCLK) and when the first
bit of the equivalent 10-bit symbol is transmitted
on the Tx+/Tx- serial lines. The PHY reports the
latency for each operational mode the PHY
supports.

Note: If the transmit latency is different when
EncodeDecodeBypass is asserted – the PHY
must report this latency separately.

Receive Latency Time for data moving between the parallel
interface and the PCI Express, SATA or USB
serial lines. Timing is measured from when the
first bit of a 10-bit symbol is available on the
Rx+/Rx- serial lines to when the corresponding
8-bit data is transferred across the parallel
interface (i.e. the rising edge of PCLK). The
PHY reports the latency for each operational
mode the PHY supports. The reported latency is
the nominal latency assuming the elasticity
buffer is full to its nominal operating level.

Note: If the receive latency is different when
EncodeDecodeBypass is asserted – the PHY
must report this latency separately. Additionally,
the expected latency must be reported separately
for both elasticity buffer operating modes.

Power State After Reset The PHY power state immediately following
reset. The state after reset needs to provide
PCLK and have common mode off.

Reporting this parameter is required if the PHY
supports either SATA mode or PCI Express
mode at 8 GT/s.

Loopback enable latency Amount of time it takes the PHY to begin
looping back receive data. Timed from when
TxDetectRx/Loopback is asserted until the
receive data is being transmitted on the serial
pins. The PHY reports the latency for each
operational mode the pHY supports.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 129 of 161

Transmit Beacon – PCI Express Mode. Timed from when the MAC directs the PHY to
send a beacon (power state is P2 and TxElecIdle
is deasserted) until the beacon signaling begins at
the serial pins.

Receive Beacon – PCI Express Mode Timed from when valid beacon signaling is
present at the receiver pins until RxElecIdle is
deasserted.

Transmit LFPS – USB Mode Timed from when the MAC directs the PHY
to send LFPS signaling until the LFPS
signaling begins at the serial pins. Times are
reported for each possible P state if the times
are different for different power states.

Receive LFPS – USB Mode Timed from when valid LFPS signaling is
present at the receiver pins until RxElecIdle
is deasserted.

N_FTS with common clock (PCI Express
Mode)

Number of FTS ordered sets required by the
receiver to obtain reliable bit and symbol
lock when operating with a common clock.
Note: This value may be required to be
reported separately per rate.

N_FTS without common clock (PCI
Express Mode)

Number of FTS ordered sets required by the
receiver to obtain reliable bit and symbol
lock when operating without a common
clock. Note: This value may be required to
be reported separately per rate.

PHY lock time Amount of time for the PHY receiver to obtain
reliable bit and symbol lock after valid symbols
are present at the receiver. The PHY reports the
time for each operational mode the PHY
supports.

P0s to P0 transition time PCI Express
Mode.

Amount of time for the PHY to return to P0 state,
after having been in the P0s state. Time is
measured from when the MAC sets the
PowerDown signals to P0 until the PHY asserts
PhyStatus. PHY asserts PhyStatus when it is
ready to begin data transmission and reception.

P1 to P0 transition time. PCI Express
Mode.

Amount of time for the PHY to return to P0 state,
after having been in the P1 state. Time is
measured from when the MAC sets the
PowerDown signals to P0 until the PHY asserts
PhyStatus. PHY asserts PhyStatus when it is
ready to begin data transmission and reception.

P2 to P0 transition time PCI Express
Mode.

Amount of time for the PHY to go to P0 state,
after having been in the P2 state. Time is
measured from when the MAC sets the
PowerDown signals to P1 until the PHY
deasserts PhyStatus.

P1 to P0 transition time. USB Mode. Amount of time for the PHY to return to P0 state,
after having been in the P1 state. Time is

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 130 of 161

measured from when the MAC sets the
PowerDown signals to P0 until the PHY asserts
PhyStatus. PHY asserts PhyStatus when it is
ready to begin data transmission and reception.

P2 to P0 transition time. USB Mode. Amount of time for the PHY to return to P0 state,
after having been in the P2 state. Time is
measured from when the MAC sets the
PowerDown signals to P0 until the PHY asserts
PhyStatus. PHY asserts PhyStatus when it is
ready to begin data transmission and reception.

P3 to P0 transition time USB Mode. Amount of time for the PHY to go to P0 state,
after having been in the P3 state. Time is
measured from when the MAC sets the
PowerDown signals to P0 until the PHY
deasserts PhyStatus. PHY asserts PhyStatus
when it is ready to begin data transmission and
reception.

Power state transition times between two
power states that provide PCLK.

Amount of time for the PHY to transition to a
new power state. Time is measured from when
the MAC sets the PowerDown signals to
POWER_STATE_X until the PHY asserts
PhyStatus. PHY asserts PhyStatus when it is
ready to begin data transmission and reception.
The PHY reports this transition between each
pair of power states it supports in each PHY
mode it supports.

Power state transition times between a
power state without PCLK and a power
state with PCLK.

Amount of time for the PHY to go to a power
state providing PCLK, after having been in a
power state that does not provide PCLK. Time is
measured from when the MAC sets the
PowerDown signals to the new power state until
the PHY deasserts PhyStatus. The PHY reports
this time for each possible transition between a
power state that does not provide PCLK and a
power state that does provide PCLK. The PHY
reports this transition time between each pair of
power states it supports in each PHY mode it
supports.

Power state transition times between a
power state without PCLK and a power
state without PCLK.

Amount of time for the PHY to go to a power
state without PCLK, after having been in a power
state that does not provide PCLK. Time is
measured from when the MAC sets the
PowerDown signals to the new power state until
the PHY deasserts PhyStatus. The PHY reports
this time for each possible transition between a
power state that does not provide PCLK and a
power state that does not provide PCLK. The
PHY reports this transition time between each
pair of power states it supports in each PHY
mode it supports.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 131 of 161

Supported power states. The PHY lists each power state it supports for
each PHY mode it supports. For each power
state supported it reports whether PCLK is
provided, the exit latency to the active power
state, whether RxElecIdle is supported in the
state, and the common mode state.
Note: This is done for all states not already
listed separately.

L1 Substate Management Mechanism The PHY reports which of the following
mechanisms it supports for L1 substate
management:

1) Exclusively managed via
PowerDown[3:0]

2) Managed via RxEIDetectDisable and
TxCommonModeDisable

3) Both of the above mechanisms are
supported

LFPS Circuit Disable for USB Mode The PHY reports whether the MAC can use
RxEIDetectDisable to disable the LFPS circuit
for power savings.

Simultaneous Rate and Power State
Change

The PHY reports if it supports simultaneous rate
and power state changes for each PHY mode it
supports.

Data Rate change time. PCI Express
Mode and SATA Mode.

Amount of time the PHY takes to perform a data
rate change. Time is measured from when the
MAC changes Rate to when the PHY signals rate
change complete with the single clock assertion
of PhyStatus. There may be separate values for
each possible change between different
supported rates for each supported PHY mode.

Transmit Margin values supported. PCI
Express Mode and USB Mode.

Transmitter voltage levels.
[2] [1] [0] Description
0 0 0 TxMargin value 0 =
0 0 1 TxMargin value 1 =
0 1 0 TxMargin value 2 =
0 1 1 TxMargin value 3 =
1 0 0 TxMargin value 4 =
1 0 1 TxMargin value 5 =
1 1 0 TxMargin value 6 =
1 1 1 TxMargin value 7 =

Max Equalization Settings for C-1 Reports the maximum number of settings
supported by the PHY for the 8.0 GT/s, 16 GT/s,
and 32 GT/s equalization. The maximum
number of settings must be less than 64.

Max Equalization Settings for C0 Reports the maximum number of settings
supported by the PHY for the 8.0 GT/s, 16 GT/s,
and 32 GT/s equalization. The maximum
number of settings must be less than 64.

Max Equalization Settings for C1 Reports the maximum number of settings
supported by the PHY for the 8.0 GT/s, 16 GT/s,

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 132 of 161

and 32 GT/s equalization. The maximum
number of settings must be less than 64.

Default Equalization settings for full
swing preset Pn.

Reports the recommended setting values for C-1,

C0, C1 for each full swing preset. Note: This
should be reported separately per rate.

Default Equalization settings for half
swing preset Pn.

Reports the recommended setting values for C-1,

C0, C1 for each half swing preset. Note: This
should be reported separately per rate.

Default Equalization settings for
recommended TX EQ value of 0 dB
preshoot and -2.5 dB de-emphasis.

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.1 0 dB preshoot and -2.5 dB
de-emphasis recommended TX EQ setting.

Default Equalization settings for
recommended TX EQ value of 2.7 dB
preshoot and -3.3 dB de-emphasis.

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.1 0 dB preshoot and -2.5 dB
de-emphasis recommended TX EQ setting.

Default Equalization settings for
recommended TX EQ value of 2.2 dB
preshoot and -3.1 dB de-emphasis

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.2 2.2 dB preshoot and -3.1
dB de-emphasis.

Default Equalization settings for
recommended TX EQ value of 0 dB
preshoot and 0 dB de-emphasis

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.2 0 dB preshoot and 0 dB
de-emphasis.

Default Equalization settings for
recommended TX EQ value of 0 dB
preshoot and -3.1 dB de-emphasis

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.2 0 dB preshoot and -3.1 dB
de-emphasis.

Default Equalization settings for
recommended TX EQ value of 2.2 dB
preshoot and 0 dB de-emphasis

Reports the recommended setting values for C-1,

C0, C1 for the USB 3.2 2.2 dB preshoot and 0 dB
de-emphasis.

Dynamic Preset Coefficient Update
Support

A PHY indicates if it dynamically updates
coefficients.

Figure of Merit range If the PHY reports link equalization feedback in
the Figure of Merit format it reports the
maximum value it will report. The maximum
value must be less than 256.

Figure of Merit for BER target If the PHY reports link equalization feedback in
the Figure of Merit format it reports the
minimum value that the PHY estimates
corresponds to a link BER of E-12.

Default Link Partner Preset[3:0] If the PHY prefers the link parter to start with a
specific preset during link evaluation it reports
the preferred starting preset.

The default link partner preset value is encoded
as follows:

0000b – Preset P0.
0001b – Preset P1.
0010b – Preset P2.
0011b – Preset P3.
0100b – Preset P4.
0101b – Preset P5.
0110b – Preset P6.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 133 of 161

0111b – Preset P7.
1000b – Preset P8.
1001b – Preset P9.
1010b – Preset P10.
1011b – Reserved
1100b – Reserved
1101b – Reserved
1110b – Reserved
1111b – No Preference.

Note: This should be reported separately per
rate.

Beacon Support The PHY indicates whether it supports beacon
transmission. Beacon transmission is optional.
1: Beacon transmission is supported.
0: Beacon transmission is not supported.

EncodeDecodeBypassSupport[3:0] The PHY indicates whether it supports optional
EncodeDecodeBypass mode at each signaling
rate.
[0] Rate[1:0] = 0
[1] Rate[1:0] = 1
[2] Rate[1:0] = 2
[3] Rate[1:0] = 3

The support value for each rate is encoded as
follows:

0 - No support for EncodeDecodeBypass
1 – Support for EncodeDecodeBypass

NoDeemphasisSupport[1:0] The PHY indicates whether it supports an
optional No De-emphasis signaling mode at 2.5
and 5.0 GT/s signaling rates.
[0] Support at 2.5 GT/s
[1] Support at 5.0 GT/s

The support value for each rate is encoded as
follows:
0 – No support for a no de-emphasis signaling
mode.
1 – Support for a no de-emphasis signaling
mode.

SupportedLFPresets List of presets the PHY supports at 8 GT/s, 16
GT/s, and 32 GT/s for half swing in addition to
the 5 required by the base spec.

PCLK Mode[1:0] The PHY indicates whether it support PCLK as a
PHY output or PCLK as a PHY input.
[0] Supports PCLK as an output
[1] Supports PCLK as an input

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 134 of 161

The support value for each rate is encoded as
follows:
0 – No support.
1 – Support.

Configuration for a PHY that supports both
PCLK modes is PHY specific.

PHYClockInsertionDelay A PHY that supports “PCLK as an input” mode
must report the maximum delay and the
minimum delay (insertion delay) for any
sequential logic at the MAC/PHY interface that
will use PCLK in the PHY in picoseconds.

SupportedPhyModes List of all modes the PHY supports for the PHY
Mode[1:0] input.

MaximumPCIExpressRate Value for DataRate input corresponding to the
maximum rate the PHY supports while in PCI
Express mode.
This field is undefined if the PHY does not
support PCI Express mode.

MaximumSataRate Value for the DataRate input corresponding to
the maximum rate the PHY supports while in
Sata Mode.
This field is undefined if the PHY does not
support Sata mode.

ListofSupportedSataModes List of all supported signaling rate, width, PCLK
rate combinations supported in Table 3-2.

ListofSupportedPCIExpressModes List of all supported signaling rate, width, PCLK
rate combinations supported in Table 3-1.

MaximumEntriesInElasticityBuffer Maximum number of entries that can be stored in
the elasticity buffer. The PHY reports the
maximum number of entries for each operational
mode the PHY supports.

ElasticityBufferEntrySize Size of a data entry in the elasticity buffer in bits.
The PHY reports this size for each operation
mode the PHY supports.

MaximumElasticBufferLocationUpdateFr
equency

Maximum update frequency the PHY supports
for updating the ElasticBufferLocation register.
This field is only relevant for original PIPE
architecture.

MinimumElasticBufferLocationUpdateFr
equency

Minimum update frequency the PHY supports
for updating the ElasticBufferLocation register.
This field is only relevant for original PIPE
architecture.

EnhancedPTMTimingSupport The PHY indicates whether it supports optional
elasticity buffer location information through the
ElasticBufferLocation control signals to allow
more accurate timing of received packets within
the MAC.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 135 of 161

The support value is encoded as follows:
0 – No support.
1 – Support.

L1PMSubStatesSupport The PHY indicates whether it supports optional
L1 PM Substates. A PHY which supports L1
PM Substates must support asynchronous power
state transitions.

The support value is encoded as follows:
0 – No support.
1 – Support.

RXMarginingVoltageSupported7 The PHY indicates whether it supports voltage
margining, encoded as follows:
0 – No Support
1 – Support.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingSamplingRateVoltage[5:0]7 Percentage of bits margined during voltage
margining mode is calculated as
1/64*(Sampling_Rate[5:0]+1). Allowable
values: 0-63.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingSamplingRateTiming[5:0]7 Percentage of bits margined during timing
margining mode is calculated as
1/64*(Sampling_Rate[5:0]+1). Allowable
values: 0-63.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingIndependentLeftRight7 The PHY indicates whether it supports
independent left and right time margining. The
support value is encoded as follows:
0 – No Support
1 – Support.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingIndependentUpDown7 The PHY indicates whether it supports
independent up and down voltage margining.
The support value is encoded as follows:
0 – No Support
1 – Support.

The PHY needs to specify this value for PCI

7 See PCIe Base Specification. In case of discrepancy, the PCIe Base Specification shall
supercede the PIPE specification.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 136 of 161

Express at 16 GT/s and 32 GT/s.
RXMarginingIndependentErrorSampler7 The PHY indicates whether it supports an error

sampler independent from the main sampler to
allow higher BER’s to be measured. The support
value is encoded as follows:
0 – No Support
1 – Support.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingVoltageSteps[6:0]7 Total number of voltage steps, minimum range
+/- 50mV. A value of zero indicates that voltage
margining is not supported. Allowable non-zero
values: 32-127.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingTimingSteps[5:0]7 Total number of timing steps, minimum range
+/-0.2UI. Allowable values: 8-63.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingMaxVoltageOffset[6:0]7 Offset at maximum step value as percentage of
one volt. Allowable values: 5-50.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingMaxTimingOffset[6:0]7 Offset at maximum step value as percentage of
nominal UI. Allowable values: 20-50.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingMaxLanes[5:0]7 Maximum number of lanes that can be margined
simultaneously. Allowable values:1-32.
Recommended value=number of lanes the PHY
supports.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingSampleReportingMethod7 Indicates whether a sample frequency or a
sample count is reported. This value is encoded
as follows:
0 – Sample Count Reported
1 – Sample Frequency Reported

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingMaxTimingOffsetChange[6
:0]

Maximum number of steps margin offset can be
changed with one command during timing
margining. Allowable values: 1-127.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 137 of 161

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMarginingMaxVoltageOffsetChange[
6:0]

Maximum number of steps margin offset can be
changed with one command during voltage
margining. Allowable values: 1-127.

The PHY needs to specify this value for PCI
Express at 16 GT/s and 32 GT/s.

RXMessageBusWriteBufferDepth[3:0] The PHY indicates the number of write buffer
entries that it has implemented to receive writes
from the MAC, where one entry can hold the
three bytes of information associated with each
write transaction.

TXMessageBusMinWriteBufferDepth[3:
0]

The PHY indicates the minimum number of
write buffer entries it expects the MAC to
implement to receive writes from the PHY.
Allowable values: 0-8. The MAC may choose to
implement more than the minimum required by
the PHY; however, there may not be any benefit
in doing so.

WidthChangeHandshakeRequirement The PHY indicates whether it needs the MAC to
use the PclkChangeOk/PclkChangeAck
handshake for rate plus width changes.

RateChangeHandshakeRequirement The PHY indicates whether it needs the MAC to
use the PclkChangeOK/PclkChangeAck
handshake for all rate changes.

AsynchReceiverDetectSupport The PHY indicates whether is supports
asynchronous receiver detection in PCIe P2
power state.

EIOS to Valid Electrical Idle Transition
Time (PCIe mode)

The PHY indicates the value of TTX-IDLE-SET-TO-

IDLE.

Datapath Options Supported The PHY indicates whether it supports SerDes
architecture and/or Original PIPE. The PHY
specifies how it should be configured to use one
or the other option.

Control Path Options Supported The PHY indicates whether it support the Low
Pin Count signal interface and/or the legacy
signal interface. The PHY specifies how it
should be configured to use one or the other
option.

8.22 Control Signal Decode table – PCI Express Mode
The following table summarizes the encodings of four of the seven control signals that cause
different behaviors depending on power state. For the other three signals, Reset# always
overrides any other PHY activity. TxCompliance and RxPolarity are only valid when the PHY is
in P0 and is actively transmitting. Note that these rules only apply to lanes that have not been

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 138 of 161

‘turned off’ as described in section 8 (Multi-lane PIPE).

PowerDown[1:0] TxDetectRx/
Loopback

TxElecIdle Description

P0: 00b

0 0 PHY is transmitting data. MAC is providing
data bytes to be sent every clock cycle.

0 1 PHY is not transmitting and is in electrical
idle.

1 0 PHY goes into loopback mode.
1 1 Illegal. MAC should never do this.

P0s: 01b Don’t care

0 Illegal. MAC should always have PHY doing
electrical idle while in P0s. PHY behavior is
undefined if TxElecIdle is deasserted while in
P0s or P1.

1

PHY is not transmitting and is in electrical
idle.
Note that any data transferred across the PIPE
interface before TxElecIdle is asserted, but not
yet signaled on the analog interface is signaled
before the analog interface becomes idle.

P1: 10b
Don’t care

0 Illegal. MAC should always have PHY doing
electrical idle while in P1. PHY behavior is
undefined if TxElecIdle is deasserted while in
P0s or P1.

0 1 PHY is idle.
1 1 PHY does a receiver detection operation.

P2: 11b

Don’t care 0 PHY transmits Beacon signaling

0 1 PHY is idle

1 1 PHY does a receiver detection operation

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 139 of 161

8.23 Control Signal Decode table – USB Mode and Converged IO Mode
The following table summarizes the encodings of four of the seven control signals that cause
different behaviors depending on power state. For the other three signals, Reset# always
overrides any other PHY activity. RxPolarity is only valid, and therefore should only be asserted,
when the PHY is in P0 and is actively transmitting.

PowerDown[1:0] TxDetectRx/
Loopback

TxElecIdle Description

P0: 00b

0 0 PHY is transmitting data. MAC is providing
data bytes to be sent every clock cycle.

0 1 PHY is not transmitting and is in electrical
idle.
Note that any data transferred across the PIPE
interface before TxElecIdle is asserted, but not
yet signaled on the analog interface is signaled
before the analog interface becomes idle.

1 0 PHY goes into loopback mode.
1 1 PHY transmits LFPS signaling.

P1: 01b Don’t care

0 PHY transmits LFPS signaling

1
PHY is not transmitting and is in electrical
idle.

P2: 10b
or

P3: 11b

Don’t care 0 Not allowed
0 1 PHY is idle.
1 1 PHY does a receiver detection operation.

8.24 Control Signal Decode table – SATA Mode
The following table summarizes the encodings of the control signals that cause different
behaviors in POWER_STATE_0. For other control signals, Reset# always overrides any other
PHY activity.
Note: The PHY transmit latency reported in section 8.210must be consistent for all the different
behaviors in POWER_STATE_0. This means that the amount of time OOB signaling is present
on the analog TX pair must be the same as the time OOB signaling was indicated on the PIPE
interface.

PowerDown[2:0] TxDetectRx/
Loopback

TxElecIdle Description

POWER_STATE_0:
00b

0 0 PHY is transmitting data. MAC is
providing data bytes to be sent every clock
cycle.

0 1 PHY is not transmitting and is in electrical
idle.
Note that any data transferred across the
PIPE interface before TxElecIdle is
asserted, but not yet signaled on the analog
interface is signaled before the analog
interface becomes idle.

1 0 PHY goes into loopback mode.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 140 of 161

1 1 PHY transmits OOB signaling with pattern
determined by TX Pattern.
Note that a PHY must ensure the transition
between OOB signaling and data signaling
is performed smoothly on a symbol
boundary on the analog interface.

Power Stater other
than

POWER_STATE_0
Don’t care

Don’t care PHY is not transmitting and is in electrical
idle.

PHY is not transmitting and is in electrical
idle.

8.25 Required synchronous signal timings
To improve interoperability between MACs and PHYs from different vendors the following
timings for synchronous signals are required:

Setup time for input signals No greater than 25% of cycle time
Hold time for input signals 0ns
PCLK to data valid for outputs No greater than 25% of cycle time

8.26 128b/130b Encoding and Block Synchronization (PCI Express 8 GT/s,
16 GT/s, and 32 GT/s)

For every block (usually 128 bits – shorter/longer SKP blocks are sometimes transmitted by
Retimers) that is moved across the PIPE TxData interface at the 8.0 GT/s rate, 16 GT/s rate, or 32
GT/s rate, the PHY must transmit 2 extra bits. The MAC must use the TxDataValid signal
periodically to allow the PHY to transmit the built up backlog of data. For example – if the
TxData bus is 16 bits wide and PCLK is 500 Mhz then every 8 blocks the MAC must deassert
TxDataValid for one PCLK to allow the PHY to transmit the 16 bit backlog of built up data. The
buffers used by the PHY to store TX data related to the 128/130b encoding rate mismatch must
be empty when the PHY comes out of reset and must be empty whenever the PHY exits electrical
idle (since TX buffers are flushed before entry to idle). The PHY must use RxDataValid in a
similar fashion. TxDataValid and RxDataValid must be de-asserted for one clock exactly every
N blocks when the PIPE interface is operating at 8 GT/s or 16 GT/s, where N is 4 for an 8 bit
wide interface, 8 for a 16 bit wide interface, and 16 for a 32 bit wide interface. The MAC must
first de-assert TxDataValid immediately after the end of the Nth transmitted block following reset
or exit from electrical idle. Examples of the timing for TxDataValid are shown in Figure 8-11 for
a 8 bit interface and in Figure 8-12 for a 16 bit interface. The PHY must first de-assert
RxDataValid immediately after the end of the Nth received block transmitted across the PIPE
interface following reset or exit from electrical idle. Examples of timings for RxDataValid and
other Rx related signals for a 16 bit wide interface are shown in Figure 8-13.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 141 of 161

P0

Block0 Block1 Block2 Block3 Block0 ... Block2

TxSyncHeader[1:0]

TxData[15:0]

TxStartBlock

TxDataValid ‘1’

TxElecIdle

PowerDown[2:0]

4 Blocks 4 Blocks

Block3

Figure 8-15 – PCI Express 8 GT/s or higher TxDataValid Timing for 8 Bit
Wide TxData Interface

P0

Block0 Block1 ... Block7 Block0 ... BlocknTxData[15:0]

TxStartBlock

TxDataValid ‘1’

TxElecIdle

PowerDown[2:0]

8 Blocks 8 Blocks

Blockn+1

Figure: TxDataValid Timing for 16-bit TxData Interface

Figure 8-16 – PCI Express 8 GT/s or higher TxDataValid Timing for 16 Bit
Wide TxData Interface

RxElecIdle

RxStartBlock

PowerDown

RxSyncHeader

RxData

P1

BlockAlignControl

P0

RxValid

RxDataValid

N
o

R
elation

Notes:
• RxValid assertion indicates that PHY has achieved block alignment.
• RxValid assertion aligns with the first RxStartBlock.
• RxDataValid can assert before RxValid toggles or at the latest the same clock when RxValid toggles.
• There is no required relationship between BlockAlignControl de-assertion and RxStartBlock.

Block Lock

Delay

Figure 8-17 – PCI Express 8 GT/s or higher RxDataValid Timing for 16 Bit
Wide RxData Interface
There are situations, such as upconfigure, when a MAC must start transmissions on idle lanes
while some other lanes are already active. In any such situation the MAC must wait until the
cycle after TxDataValid is de-asserted to allow the PHY to transmit the backlog of data due to

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 142 of 161

128b/130b to start transmissions on previously idle lanes.

8.27 128b/132b Encoding and Block Synchronization (USB 10 GT/s)
For every 128 bits that are moved across the PIPE TxData interface at the 10.0 GT/s rate the PHY
must transmit 132 bits. The MAC must use the TxDataValid signal periodically to allow the
PHY to transmit the built up backlog of data. For example – if the TxData bus is 16 bits wide and
PCLK is 625 Mhz then every 4 blocks the MAC must deassert TxDataValid for one PCLK to
allow the PHY to transmit the 16 bit backlog of built up data. The buffers used by the PHY to
store TX data related to the 128/132b encoding rate mismatch must be empty when the PHY
comes out of reset and must be empty whenever the PHY exits electrical idle (since TX buffers
are flushed before entry to idle). The PHY must use RxDataValid in a similar fashion.
TxDataValid and RxDataValid must be de-asserted for one clock exactly every N blocks when
the PIPE interface is operating at 10 GT/s, where N is 2 for an 8 bit wide interface, 4 for a 16 bit
wide interface, and 8 for a 32 bit wide interface. The MAC must first de-assert TxDataValid
immediately after the end of the Nth transmitted block following reset or exit from electrical idle.

8.28 Message Bus Interface
8.28.1 General Operational Rules
The message bus interface can be used after Reset# is deasserted and PCLK is stable. The
message bus interface must return to its idle state immediately upon assertion of Reset# and must
remain idle until Reset# is deasserted and PhyStatus is deasserted . Since the MAC is aware of
when PCLK is stable, the requirement that PCLK must be an input to use the message bus allows
the MAC to only issue transactions on the message bus after PCLK becomes stable.

For each write_committed issued, the initiator must wait for a write_ack response before issuing
any new write_uncommitted or write_committed transactions. A sequence of write_uncommitted
transactions must always be followed by a write_committed transaction; only a single write_ack
response is expected. The initiator must ensure that the total number of outstanding writes, i.e.
writes issued since the last write_ack was received, must not exceed the write buffer storage
implemented by the receiver.

Transmission of a write_ack must not depend on receiving a write_ack.

Only one read can be outstanding at a time in each direction. The initiator must wait for a read
completion before issuing a new read since there are no transaction IDs associated with
outstanding reads.

To facilitate design simplicity, reads and writes cannot be mixed. There must not be any reads
outstanding when a write is issued; conversely, there must not be any writes outstanding when a
read is issued. An outstanding write is any write_committed that hasn’t received a write_ack or
any write_uncommitted without a subsequent write_committed that has received a write_ack.

Posted-to-posted MAC to PHY writes are those that result in a PHY to MAC write to be
generated in response. For simplification of the verification space, the MAC must only have one
outstanding post-to-posted write that is waiting for a write in response. Table 8-2 lists the posted-
to-posted writes generated by the MAC. Additionally, any vendor defined writes with posted-to-
posted properties most conform to the same restriction of only one outstanding.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 143 of 161

Table 8-3. Posted-to-Posted Writes

Post-to-Posted Register Write PHY Write Generated in Response

RX Margin Control0 register to stop/start
margining

RX Margin Status0

PHY TX Control5 register to assert
GetLocalPresetCoefficients

TX Status0, TX Status1, TX Status2

PHY RX Control3 register to assert RxEqEval RX Link Evaluation Status0 and RX Link
Evaluation Status1

Elastic Buffer Control Elastic Buffer Status

Certain registers are defined as part of a register group. To simplify validation space, whenever
one register in a register group needs to be updated, all the registers in the register group must be
updated using a sequence of uncommitted writes and a single committed write. The defined
register groups are listed in Table 8-3, where each row corresponds to a register group.

Table 8-4. Defined Register Groups
Register Groups (one per row)

MAC TX Status 0/1/2

PHY TX Control 2/3/4

MAC RX Status 0/1

MAC RX Status 2/3

MAC RX Status 4/5

8.28.2 Message Bus Operations vs Dedicated Signals
For simplicity, dependencies between message bus operations and dedicated signals are kept to a
minimum. The dependencies that do exist are there only because no acceptable workarounds for
eliminating them have been identified; these dependencies are documented in this section:

• The PHY must wait for the write_ack to come back for any write to LocalLF, LocalFS,
LocalG4LF, or LocalG4FS, if any, before it asserts PhyStatus for a rate change.

8.29 PCI Express Lane Margining at the Receiver
Table 8-4 provides the sequence of PIPE message bus commands associated with various receiver
margining operations; different sequences are shown for independent and dependent samplers.

Table 8-5. Lane Margining at the Receiver Sequences
Operation Type of

Sampler
Sequence
Direction Msg

Bus
Description

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 144 of 161

Cmd
Start
Margining
Success

independent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

M-->P CWr RxMarginControl0=8'b000011?1 (clear
error/sample and set start)

 Mac clears its error count snapshot
P-->M Ack
 PHY clears its error and sample counters due

to MAC setting Sample Count Reset and
Error Count Reset bits in RxMarginControl0

P-->M UWr RxMarginStatus1.SampleCount=0
P-->M UWr RxMarginStatus2.ErrorCount=0
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

M-->P CWr RxMarginControl0=8'b000011?1 (set start)
(error/sample clears are a don't care)

 Mac clears its error count snapshot
P-->M Ack
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

Offset
Change
Success

independent M-->P UWr RxMarginControl0=8'b000011?1 (clear
error/sample counts)

M-->P CWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

 Mac clears its error count snapshot
P-->M Ack
 PHY clears its error and sample counters due

to MAC setting Sample Count Reset and
Error Count Reset bits in RxMarginControl0

P-->M UWr RxMarginStatus1.SampleCount=0
P-->M UWr RxMarginStatus2.ErrorCount=0
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

dependent M-->P CWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

 Mac clears its error count snapshot
P-->M Ack
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

Clear Error independent M-->P CWr RxMarginControl0=8'b000001?1 (clear error,
hold t vs v, maintain start)

P-->M Ack
P-->M UWr RxMarginStatus1.SampleCount=current
P-->M CWr RxMarginStatus2.ErrorCount=0
M-->P Ack

dependent Mac clears its error count snapshot
Stop independent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 145 of 161

Margining offset)
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear

t vs v)
P-->M Ack
P-->M UWr RxMarginStatus1.SampleCount=Final
P-->M UWr RxMarginStatus2.ErrorCount=Final
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

M-->P CWr RxMarginControl0=8'b00000000 (stop, clear
t vs v)

P-->M Ack
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack

Start
Margining
NAK

independent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

M-->P CWr RxMarginControl0=8'b000011?1 (clear
error/sample and start)

 Mac clears its error count snapshot
P-->M Ack
 PHY clears its error and sample counters due

to MAC setting Sample Count Reset and
Error Count Reset bits in RxMarginControl0

P-->M UWr RxMarginStatus1.SampleCount=0
P-->M UWr RxMarginStatus2.ErrorCount=0
P-->M CWr RxMarginStatus0.MarginNak=1
M-->P Ack
 MAC changes execution status to 11 (NAK)
 The “Stop Margining” sequence should be

followed.
dependent M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,

offset)
M-->P CWr RxMarginControl0=8'b000011?1 (set start)

(error/sample clears are a don't care)
 Mac clears its error count snapshot
P-->M Ack
 PHY detects bad margin request,

places/keeps margin logic in normal
functional operation mode

P-->M CWr RxMarginStatus0.MarginNak=1
M-->P Ack
 MAC changes execution status to 11 (NAK)
 The “Stop Margining” sequence should be

followed.
Offset
Change
NAK

independent M-->P UWr RxMarginControl0=8'b000011?1 (clear
error/sample counts)

M-->P CWr RxMarginControl1={1'b?,7'b?} (direction,
offset)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 146 of 161

 Mac clears its error count snapshot
P-->M Ack
 "PHY clears its error and sample counters

due to MAC setting Sample Count Reset and
Error Count Reset bits in RxMarginControl0.
PHY detects bad offset, places/keeps margin
logic in normal functional operation mode
(margin off)"

P-->M UWr RxMarginStatus1.SampleCount=0
P-->M UWr RxMarginStatus2.ErrorCount=0
P-->M CWr RxMarginStatus0.MarginNak=1
M-->P Ack
 MAC changes execution status to 11 (NAK)
 The “Stop Margining” sequence should be

followed.
dependent M-->P CWr RxMarginControl1={1'b?,7'b?} (direction,

offset)
 Mac clears its error count snapshot
P-->M Ack
 PHY detects bad offset, places/keeps margin

logic in normal functional operation mode
(margin off)

P-->M CWr RxMarginStatus0.MarginNak=1
M-->P Ack
 MAC changes execution status to 11 (NAK)
 The “Stop Margining” sequence should be

followed.
Error &
Sample
Counts
Update
(under
limit)

independent PHY detects a change in error or sample
count (note: multiple updates may be
combined into single write to avoid backlog)

P-->M UWr RxMarginStatus1.SampleCount= new current
P-->M CWr RxMarginStatus2.ErrorCount= new current
M-->P Ack
 MAC changes execution status to new

error/sample count
dependent MAC detects a change in error count

 MAC changes execution status to new error
count

Error Limit
Exceeded

independent PHY detects a change in error or sample
count

P-->M UWr RxMarginStatus1.SampleCount= current
P-->M CWr RxMarginStatus2.ErrorCount= new current
M-->P Ack
 MAC compares error update to limit, detects

limit exceeded
M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,

offset)
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear

t vs v)

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 147 of 161

P-->M Ack
P-->M UWr RxMarginStatus1.SampleCount=Final
P-->M UWr RxMarginStatus2.ErrorCount=Final
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack
 MAC changes execution status to 00 (error

limit exceeded)
dependent MAC observes error count has exceeded

limit
M-->P UWr RxMarginControl1={1'b?,7'b?} (direction,

offset)
M-->P CWr RxMarginControl0=8'b00000000 (stop, clear

t vs v)
P-->M Ack
P-->M CWr RxMarginStatus0.MarginStatus=1
M-->P Ack
 MAC changes execution status to 00 (error

limit exceeded)
Sample
Count
Saturated

independent PHY detects a change in error or sample
count

P-->M UWr RxMarginStatus1.SampleCount= ==7'h7F
P-->M CWr RxMarginStatus2.ErrorCount= new current
M-->P Ack

dependent N/A

9 Sample Operational Sequences
These sections show sample timing sequences for some of the more common PCI Express, SATA
and USB operations. These are sample sequences and timings and are not required operation.

9.1 Active PM L0 to L0s and back to L0 – PCI Express Mode
This example shows one way a PIPE PHY can be controlled to perform Active State Power
Management on a link for the sequence of the link being in L0 state, transitioning to L0s state,
and then transitioning back to L0 state.

When the MAC and higher levels have determined that the link should transition to L0s, the
MAC transmits an electrical idle ordered set and then has the PHY transmitter go idle and enter
P0s. Note that for a 16-bit or 32-bit interface, the MAC should always align the electrical idle on
the parallel interface so that the COM symbol is in the low-order position (TxDataK[7:0]).

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 148 of 161

00b 01b

ScZero IDL

Active (Ends with electrical idle ordered set)

ScZero COM IDL

L0 to L0s

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

PowerDown[1:0]

PhyStatus

Tx+/Tx-

To cause the link to exit the L0s state, the MAC transitions the PHY from the P0s state to the P0
state, waits for the PHY to indicate that it is ready to transmit (by the assertion of PhyStatus), and
then begins transmitting Fast Training Sequences (FTS). Note, this is an example of L0s to L0
transition when the PHY is running at 2.5GT/s.

 01b 00b

 FTS

 Active

 FTS

 L0s to L0

PCLK

Pow erDow n[1:0]

PhyStatus

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

Tx+/Tx-

9.2 Active PM to L1 and back to L0 - – PCI Express Mode
This example shows one way a PIPE PHY can be controlled to perform Active State Power
Management on a link for the sequence of the link being in L0 state, transitioning to L1 state, and
then transitioning back to L0 state. This example assumes that the PHY is on an endpoint (i.e. it
is facing upstream) and that the endpoint has met all the requirements (as specified in the base
spec) for entering L1.

After the MAC has had the PHY send PM_Active_State_Request_L1 messages, and has received
the PM_Request_ACK message from the upstream port, it then transmits an electrical idle

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 149 of 161

ordered set, and has the PHY transmitter go idle and enter P1.

00b 10b

ScZero IDL

Active (Ends wi th electrical idle ordered set)

ScZero COM IDL

L0 to L1

PCLK

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

PowerDown[1:0]

PhyStatus

Tx+/Tx-

To cause the link to exit the 1 state, the MAC transitions the PHY from the P1 state to the P0
state, waits for the PHY to indicate that it is ready to transmit (by the assertion of PhyStatus), and
then begins transmitting training sequence ordered sets (TS1s). Note, this is an example when the
PHY is running at 2.5GT/s.

10b 00b

TS1.1 TS1.3 TS1.x+1 TS1.x+3

Active

COM TS1.2 TS1.x TS1.x+2

L1 to L0

PCLK

PowerDown[1:0]

PhyStatus

TxData[7:0]

TxDataK[0]

TxData[15:8]

TxDataK[1]

TxElecIdle

Tx+/Tx-

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 150 of 161

9.3 Downstream Initiated L1 Substate Entry Using Sideband Mechanism
Figure 9-1. L1 Substate Management using RxEIDetectDisable and
TxCommonModeDisable

valid validPCLK

PHY Specific State for Sideband Management of L1 substates

L0

L0

PM_L1_Req

PM_Ack

valid valid

RCVY L0

RECOVERY L0

L1.2 Downstream Port Initiated Exit

L1.0

L1.0

Drive Low TriState Drive Low

TriState

Enabled Disabled Enabled

L1.0

L1.0

Upstream Port State

Downstream Port State

CLKREQ#

REFCLK

Up Port CLKREQ#

Dn Port CLKREQ#

Dn Port EI Exit Detect
& Tx Cmn Mode

Upstream Port PHY interface Signaling/State

P0MAC_PHY_PowerDown

PHY_MAC_PhyStatus

MAC_PHY_RxEIDetectDisable

Enabled Disabled EnabledUp Port EI Exit Detect

Drive Low

P0

Tri

MAC_PHY_TxCommonModeDisable

Up Port Tx Common Mode

L1.2L1.2.ENTRY L1.2.EXIT

L1.2L1.2.ENTRY L1.2.EXIT

Enabled Disabled Enabled

PHY_MAC_RxElecIdle

TcommonmodeTpower_Off Tpower_On

9.4 Receivers and Electrical Idle – PCI Express Mode Example
This section only applies to a PHY operating to 2.5GT/s. Note that when operating at 5.0 GT/s or
8 GT/s signaling rates, RxElecIdle may not be reliable. MACs should refer to the PCI Express
Revision 3.0 Base Specification or USB 3.0 Specification for methods of detecting entry into the
electrical idle condition. Refer to

Status Interface for the definition of RxElecIdle when operating at 5.0 GT/s. This section shows
some examples of how PIPE interface signaling may happen as a receiver transitions from active
to electrical idle and back again. In these transitions there may be a significant time difference
between when RxElecIdle transitions and when RxValid transitions.

The first diagram shows how the interface responds when the receive channel has been active and
then goes to electrical idle. In this case, the delay between RxElecIdle being asserted and RxValid
being deasserted is directly related to the depth of the implementations elastic buffer and symbol
synchronization logic. Note that the transmitter that is going to electrical idle may transmit

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 151 of 161

garbage data and this data will show up on the RxData[] lines. The MAC should discard any
symbols received after the electrical idle ordered-set until RxValid is deasserted.

The second diagram shows how the interface responds when the receive channel has been idle
and then begins signaling again. In this case, there can be significant delay between the
deassertion of RxElecIdle (indicating that there is activity on the Rx+/Rx- lines) and RxValid
being asserted (indicating valid data on the RxData[] signals). This delay is composed of the
time required for the receiver to retrain as well as elastic buffer depth.

9.5 Using CLKREQ# with PIPE – PCI Express Mode
CLKREQ# is used in some implementations by the downstream device to cause the upstream
device to stop signaling on REFCLK. When REFCLK is stopped, this will typically cause the
CLK input to the PIPE PHY to stop as well. The PCI Express CEM spec allows the downstream
device to stop REFCLK when the link is in either L1 or L2 states. For implementations that use
CLKREQ# to further manage power consumption, PIPE compliant PHYs can be used as follows:

The general usage model is that to stop REFCLK the MAC puts the PHY into the P2 power state,
then deasserts CLKREQ#. To get the REFCLK going again, the MAC asserts CLKREQ#, and

Data

Data Data Data Data Data

Receiver Active to Idle

PCLK

RxData[]

RxValid

RxElecIdle

Rx+/Rx-

Data

Data Data Data

Receiver Idle to Active

PCLK

RxData[]

RxValid

RxElecIdle

Rx+/Rx-

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 152 of 161

then after some PHY and implementation specific time, the PHY is ready to use again.

CLKREQ# in L1
If the MAC is moving the link to the L1 state and intends to deassert CLKREQ# to stop
REFCLK, then the MAC follows the proper sequence to get the link to L1, but instead of
finishing by transitioning the PHY to P1, the MAC transition the PHY to P2. Then the MAC
deasserts CLKREQ#.

When the MAC wants to get the link alive again, it can:

• Assert CLKREQ#
• Wait for REFCLK to be stable (implementation specific)
• Wait for the PHY to be ready (PHY specific)
• Transition the PHY to P0 state and begin training.

CLKREQ# in L2
If the MAC is moving the link to the L1 state and intends to deassert CLKREQ# to stop
REFCLK, then the MAC follows the proper sequence to get the link to L2. Then the MAC
deasserts CLKREQ#.

When the MAC wants to get the link alive again, it can:

• Assert CLKREQ#
• Wait for REFCLK to be stable (implementation specific)
• Wait for the PHY to be ready (PHY specific)
• Transition the PHY to P0 state and begin training.

Delayed CLKREQ# in L1
The MAC may want to stop REFCLK after the link has been in L1 and idle for awhile. In this
case, the PHY is in the P1 state and the MAC must transition the PHY into the P0 state, and then
the P2 state before deasserting CLKREQ#. Getting the link operational again is the same as the
preceding cases.

9.6 Block Alignment
Figure 9-2 provides an example of a block alignment sequence using the BlockAlignControl pin.
The PHY attempts to do alignment when BlockAlignControl is asserted and the PHY receiver is
active.

Figure 9-2. BlockAlignControl Example Timing

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 153 of 161

LTSSM State

BlockAlignControl

RxValid

RxStartBlock

L0 Recovery.RcvrLck/Cfg Rec.Idle

detecting underflow/
overflow

PHY enables searching
for EIEOS(PCIe)/SYNC OS
(USB) on a bit boundary.

RxValid can be re-asserted
after de-assertion when

BlockAlignControl = 1

Note:
• BlockAlignControl assertion and RxValid deassertion. The PHY will attempt to re-do block alignment.
• The BlockAlignControl assertion does not require the PHY to force the block aligner into the unaligned state.
• There is no requried relationship between the de-assertion of RxValid and RxStartBlock.

9.7 Message Bus: RX Margining Sequence
Figure 9-3 shows an example of an RX margining sequence. The MAC issues a
write_uncommitted to address 0x1 followed by a write_committed to address 0x0 to set up the
margining parameters and to start margining in the RX Margin Control1 and RX Margin Control0
registers. The PHY issues a write_ack to acknowledge that it has flushed the write buffer.
Subsequently, upon processing a change in the ‘Start Margin’ bit of the RX Margin Control0
register, the PHY issues a write_committed to address 0x0 to assert the ‘Margin Status’ bit.
During the margining process, the PHY periodically issues write_committed transactions to
address 0x2 to update the ‘Error Count[3:0]’ value. The MAC acknowledges receipt of these
writes by issuing corresponding write_ack transactions. Finally, the MAC stops the margining
process by issuing a write_committed to address 0x0 to deassert the ‘Start Margin’ bit. The PHY
issues a write_ack to acknowledge that it has flushed the write buffer. In response to the ‘Start
Margin’ deassertion, the PHY pushes it’s final ‘Error Count[3:0]’ value to the MAC via a
write_uncommitted transaction to the ‘RX Margin Status2’ register, and then issues a
write_committed to assert ‘RX Margin Status0.Margin Status’.

Wr Com
(Margin
Status)

Wr UnCom
(Rx Margin
Control 1)

Wr Com
(Rx Margin
Control 0)

Wr
AK

(1)
Controller starts Rx

Margin programming
and set Start Margin

(3)
PHY starts updating

Error Count

(4)
Controller stops Rx

Margining by clearing
Start Margin

M2P_MessageBus[7:0]

P2M_MessageBus[7:0] Wr Com
(Error
Count)

Wr
AK

Wr Com
(Error
Count)

Wr
AK

Wr Com
(Rx Margin
Control 0)

Wr
AK

PCLK

Wr Com
(Margin
Status)

Wr
AK

(2)
Margin Status update

From PHY

Wr uCom
(Error
Count)

Wr
AK

(5)
PHY updates Margin
Status with the last
Error Count value

Figure 9-3. Sample RX Margining Sequence

9.8 Message Bus: Updating LocalFS/LocalLF and LocalG4FS/LocalG4LF
Figure 9-4 shows a sequence where LocalFS and LocalLF are updated out of reset and,

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 154 of 161

subsequently, LocalG4FS and LocalG4LF are updated after a rate change. Note that PhyStatus
deasserts only after the write_ack returns for the LocalFS and LocalLF update out of reset.
Similarly, the one cycle PhyStatus assertion occurs after the write_ack returns for the LocalG4FS
and LocalG4LF update after a rate change. This is one of the rare cases where a dependency
between a message bus operation and a dedicated signal exists. While this example shows
LocalG4FS and LocalG4LF being updated after a rate change, it is not a requirement to wait until
after the rate change to update these values; e.g. they can be updated out of reset if their values
are already known by then. Note, this flexibility in timing of when updates can occur was
intentionally introduced with the low pin count interface by allocating separate Local*FS and
Local*LF registers per data rate.

Figure 9-4. LocalFS/LocalLF/LocalG4FS/LocalG4LF Updates Out of Reset
and After Rate Change

2'b11

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr Uncom
(RX Status0)

Wr com
(RX Status1)

Wr
Ack

(1)
PHY writes to MAC

LocalFS and LocalLF

Wr Uncom
(RX Status2)

Wr com
(RX Status3)

Wr
Ack

rate

phystatus

2'b10

reset#

(2)
PHY writes to MAC

LocalG4FS and LocalG4LF

pclkchangeok

pclkchangeack

Figure 9-5 shows a sequence where LocalFS and LocalLF are updated in response to a
GetLocalPresetCoefficients request where the LocalPresetIndex corresponds to an 8GT/s rate.
Note that the LocalFS and LocalLF values must be updated before or at the same cycle as the
LocalTxPresetCoefficents are returned.

Figure 9-5. LocalFS/LocalLF Update Due to GetLocalPresetCoefficients

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr Com
(PHY TX Control5)

Wr Uncom
(TX Status1)

Wr com
(TX Status2)

Wr
Ack

(1)
Controller requests

LocalPresetCoefficients

(2)
PHY updates LocalFS/LocalLS, followed by

LocalTxPresetCoefficients[17:0], all with one write burst

Wr Uncom
(TX Status0)

Wr Uncom
(RX Status0)

Wr Uncom
(RX Status1)

9.9 Message Bus: Updating TxDeemph
Figure 9-6 shows a sequence where the MAC makes a GetLocalPresetCoefficients request for
one or more values of LocalPresetIndex and the, subsequently, update the TxDeemph value.
Note that for every GetLocalPresetCoefficients request, there is a 128ns maximum response time
for the PHY to return the LocalTxPresetCoefficients value; this time is shown in the diagram

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 155 of 161

from the end of the second write_committed to the end of the third write_committed. This
maximum response time requirement only exists for designs that use just-in-time fetching of
GetLocalPresetCoefficients in response to Tx coefficients request from the link partner; designs
that fetch ahead of time can circumvent this requirement. Additionally, after the write_committed
for TxDeemph, the new TxDeemph value must be reflected on the pins within 128ns. Note that
while Figure 9-6 does not show LocalLF and LocalFS getting returned in response to a
GetLocalPresetCoefficients request, they can be returned along with LocalTxPresetCoefficients
similar to what is done in Figure 9-5.

Figure 9-6. Updating TxDeemph after GetLocalPresetCoefficients Request

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr
Ack

Wr Com
(PHY TX Control5)

Wr Uncom
TX Status1

Wr Com
TX Status2

Wr
Ack

Wr Uncom
(PHY TX Control2)

Wr com
(PHY TX Control4)

(2)
Controller requests

LocalPresetCoefficients

(3)
PHY responds with

LocalTxPresetCoefficients[17:0]

Wr Uncom
TX Status0

Wr Uncom
(PHY TX Control3)

(5)
Controller sets

TxDeemph[17:0]

(4)
Repeats for

rest of PresetIndex

Wr Com
(PHY TX Control7)

Wr
Ack

Wr UnCom
(PHY TX Control6)

(1)
Controller sets FS/LF per link

partner or rate change

PHY response time of
LocalTxPresetCoefficients[17:0] < 128ns

(6)
New

TxDeemph[17:0]
appear on pins within

128ns

9.10 Message Bus: Equalization
Figure 9-7 shows a successful equalization sequence. RxEqInProgress is asserted for the entire
duration of equalization. Multiple RxEqEval requests are made during the equalization process
corresponding to different coefficient requests to the far end transmitter. When all the RxEqEval
requests are complete, RxEqInProcess is deasserted. Note, the PHY does not necessarily have to
write to both the LinkEvaluationFeedbackFigureMerit and
LinkEvaluationFeedbackDirectionChange register fields; it could write to only to one.

Figure 9-7. Successful Equalization

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Uncom(RX Link
Evaluation Status0)

Wr Com(RX Link
Evaluation Status1)

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

(1)
Controller starts RX

Equalization and Coeff Req
#1 by asserting

RxEqInProgress and
RxEqEval

(2)
PHY responds with

LinkEvaluationFeedbackFigureMerit and
LinkEvaluationFeedbackDirectionChange

(3)
Controller completes Coeff Req

#1 by deasserting RxEqEval

(4)
Controller starts Coeff Request

#2 and repeats the process

(5)
Controller completes last

Coeff Request

(6)
Controller completes RX Equalization

by deasserting RxEqInProgress

Figure 9-8 shows an equalization sequence where the feedback received indicates an invalid
coefficient request for the link partner. Note that the write to assert InvalidRequest must happen
before a new request is initiated; the write to deassert InvalidRequest can happen in the same
cycle as an RxEqEval request for a new coefficient.

Figure 9-8. Equalization with Invalid Request

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Uncom (RX Link
Evaluation Status0)

Wr Com (RX Link
Evaluation Status1)

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

(1)
Controller starts Coeff Req by

asserting RxEqEval

(2)
PHY responds with

LinkEvaluationFeedbackFigureMerit and
LinkEvaluationFeedbackDirectionChange

(3)
Controller completes Coeff

Req by deasserting RxEqEval

(6)
PHY responds with new LinkEvaluationFeedbackFigureMerit

and LinkEvaluationFeedbackDirectionChange

(5)
Controller starts another Coeff Req and at
the same time de-asserts InvalidRequest

Wr Uncom (RX Link
Evaluation Status0)

Wr Com(RX Link
Evaluation Status1)

Wr
Ack

Wr
Ack

(4)
Controller indicates to PHY
previous feedback is invalid

with InvalidRequest=1

Wr Com
(PHY RX Control3)

Wr
Ack

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 156 of 161

Figure 9-9 shows a sequence where the MAC aborts the RxEqEval request before the link
evaluation feedback is returned by the PHY. Figure 9-10 shows a sequence where the MAC
aborts the RxEqEval request while the link evaluation feedback is being returned by the PHY, i.e.
there is an overlap. In both abort case, the MAC must ignore the feedback value returned by the
PHY.

Figure 9-9. Aborted Equalization, Scenario #1

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

(1)
Controller starts Coeff Req by

asserting RxEqEval

(2)
Controller aborts Coeff Req after

timing out waiting for PHY feedback

Wr
Ack

(3)
PHY returns FOM but

controller ignores

Wr Uncom(RX Link
Evaluation Status0)

Wr Com(RX Link
Evaluation Status1)

Figure 9-10. Aborted Equalization, Scenario #2

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

pclk

Wr
Ack

Wr Com
(PHY RX Control3)

Wr Com
(PHY RX Control3)

(1)
Controller starts Coeff Req by

asserting RxEqEval

(2)
Controller aborts Coeff Req after

timing out waiting for PHY feedback by deasserting RxEqVal

(3)
PHY returns FOM at the same time as controller
aborts transaction. Controller must ignore FOM

Wr Uncom(RX Link
Evaluation Status0)

Wr Com(RX Link
Evaluation Status1)

Wr
Ack

Wr
Ack

9.11 Message Bus: BlockAlignControl
Figure 9-11 shows a sequence where BlockAlignControl is used to reestablish block alignment
after a loss of alignment is detected. This sequence also shows how RxValid transitions during
this process.

Figure 9-11 Message Bus: BlockAlignControl Example

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

PCLK

24h 09h 00h

50h

LTSSM State

RxValid

RxStartBlock

Mac sets the
BlockAlignControl

register to 1'b0 with
write_committed

command

BlockAlignControl = 0

24h 09h 01h

50h

Recovery.RcrLck/Cfg L0L0

24h 09h 00h

50h

RxValid is constantly high
indicating that the block

aligner is conceptually in the
“Locked” state

Rxvalid remains de-asserted.

BlockAlignControl = 1

Mac sets the
BlockAlignControl

register to 1'b1 with
write_committed

command

PHY is searching for EIEOS
(PCIe)/SYNC OS (USB) on a

bit boundary

The block aligner
transitions “Unaligned” -

> “Aligned” state
RxValid is asserted at

the start of a block

PHY is searching for EIEOS
(PCIe)/SYNC OS (USB) on a

bit boundary

The block aligner
transitions “Unaligned” -

> “Aligned” state
RxValid is asserted at

the start of a block

The block aligner
transitions “Aligned” ->

“Unaligned” state
RxValid can deassert

anywhere within a block

BlockAlignControl = 0

Mac sets the
BlockAlignControl

register to 1'b0 with
write_committed

command

detecting underflow/
overflow

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 157 of 161

9.12 Message Bus: ElasticBufferLocation Update
Figure 9-12 shows the update of ElasticBufferLocation across the message bus. The frequency of
update across the message bus is controlled by the MAC by setting the value in the
ElasticBufferLocationUpdateFrequency register.

Figure 9-12. Message Bus: Updating ElasticBufferLocation

50h

20h 04h Ndxxh

M2P_MessageBus[7:0]

P2M_MessageBus[7:0]

PCLK

PHY reports the number
of entries in ebuf, N, to

MAC register
ElasticBufferLocation
with write_committed

command one PCLK
cycle after the change

ElasticBufferLocation
value needs to be

communicated across
message bus to MAC

MAC sends the
write_ack command to

PHY

20h 04h Nd

50h

1xh xxh 2xh xxh xxh

50h

20h 04h Nd

50h00h 00h 00h 00h 00h 00h

00h 00h 00h 00h 00h

ElasticBufferLocation
value needs to be

communicated across
message bus to MAC

during a
write_uncommitted

PHY ends the current
message bus transaction
with write_committed
command, writing the
number of entries in
elastic buffer to the

MAC

ElasticBufferLocation
value needs to be

communicated across
message bus to MAC

during a
write_committed or

read command

MAC sends the
write_ack command to

PHY

MAC sends the
write_ack command to

PHY

After completing the
previous write_committed or
read command, PHY reports

the number of entries in
ebuf, N, to MAC register

ElasticBufferLocationwith
write_committed command

one PCLK cycle after the
change

MAC sends the
write_ack command to

PHY

The PHY should only update
ElasticBufferLocation every 16*N

symbox times as set in
ElasticBufferLocationUpdateFrequency.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 158 of 161

10 Multi-lane PIPE – PCI Express Mode
This section describes a suggested method for combining multiple PIPEs together to form a
multi-lane implementation. It describes which PIPE signals can be shared between each PIPE of
a multi-lane implementation, and which signals should be unique for each PIPE. There are two
types of PHYs. “Variable” PHYs that are designed to support multiple links of variable
maximum widths and “Fixed” PHYs that are designed to support a fixed number of links with
fixed maximum widths.

The figure shows an example 4-lane implementation of a multilane PIPE solution with PCLK as a
PHY input. The signals that can be shared are shown in the figure as “Shared Signals” while
signals that must be replicated for each lane are shown as ‘Per-lane signals’.

MAC Layer

PIPE
Per-lane Signals

To
 D

at
a

Li
nk

 L
ay

er Tx+,Tx-

Rx+,Rx-

CLK

Shared
Signals

PIPE

PIPE

PIPE

Per-lane Signals

Per-lane Signals

Per-lane Signals

Tx+,Tx-

Rx+,Rx-

Tx+,Tx-

Rx+,Rx-

Tx+,Tx-

Rx+,Rx-

4-lane
implementation

Shared Signals

PLL
Max PCLK

PCLK

PCLK

PCLK

PCLK

4-lane PIPE implementation

The MAC layer is responsible for handling lane-to-lane deskew and it may be necessary to use
the per-lane signaling of SKP insertion/removal to help perform this function.

 Shared Signals Per-Lane Signals or
Shared Signals

Per-lane Signals

 CLK
Max PCLK

EncodeDecodeBypas
s
BlockAlignControl
TxSwing
TxMargin[2:0]
TxDetectRx/Loopback
Rate
Width[1:0]
PCLK Rate[2:0]
Reset#
TxDataValid
PCLK

TxData[], TxDataK[]
RxData[], RxDataK[]
TxStartBlock
TxElecIdle
TxCompliance
RxPolarity
RxValid
RxElecIdle
RxStatus[2:0]
RxDataValid
RxStartBlock
TxDeemph[17:0]
PowerDown[1:0]

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 159 of 161

PhyStatus
RxPresetHint[2:0]
RxEqEval
LinkEvaluationFeedbackFigureMerit[7:0]
LinkEvaluationFeedbackDirectionChange[7:0]
InvalidRequest
TxSyncHeader[1:0]
RxSyncHeader[1:0]
RxStandby
RxStandbyStatus
FS[5:0]
LF[5:0]
PHYMode[1:0]
SRISEnable
Elasticity Buffer Mode
TxPattern[1:0]
TxOnesZeros
RxEqTraining
LocalTxPresetCoefficients[17:0]
LocalFS[5:0]
LocalLF[5:0]
LocalPresetIndex[5:0]
GetLocalPresetCoefficients
LocalTxCoefficientsValid
RxEqInProgress
RXTermination
AlignDetect
PowerPreset
PclkChangeOk
PclkChangeAck
ElasticBufferLocation[N:0]
AsyncPowerChangeAck
M2P_MessageBus[7:0]
P2M_MessageBus[7:0]
RxCLK

A MAC must use all “Per-Lane Signals or Shared Signals” that are inputs to the PHY consistently
on all lanes in the link. A PHY in “PCLK as PHY Output ” mode must ensure that PCLK and
Max PCLK are synchronized across all lanes in the link. A MAC must provide a synchronized
PCLK as an input for each lane when controlling a PHY in “PCLK as PHY Input ” mode with no
more than 300 ps of skew on PCLK across all lanes.
It is recommended that a MAC be designed to support both PHYs that implement all signals per
lane and those that implement the “Per-Lane or Shared Signals” per link. A “Variable” PHY
must implement the signals in “Per-Lane Signals or Shared Signals” per lane. A “Fixed” PHY
may implement the signals in “Per-Lane Signals or Shared Signals” as either Shared or Per-Lane.
A “Fixed” PHY should implement all the signals in “Per-Lane Signals or Shared Signals”
consistently as either Shared or Per-Lane.

Note: The following method to turn off a lane using TxElecIdle and TxCompliance is deprecated
and will be removed in future spec revisions.
In cases where a multi-lane has been ‘trained’ to a state where not all lanes are in use (like a x4
implementation operating in x1 mode), a special signaling combination is defined to ‘turn off’ the

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 160 of 161

unused lanes allowing them to conserve as much power as the implementation allows. This
special ‘turn off’ signaling is done using the TxElecIdle and TxCompliance signals. When both
are asserted, that PHY can immediately be considered ‘turned off’ and can take whatever power
saving measures are appropriate. The PHY ignores any other signaling from the MAC (with the
exception of Reset# assertion) while it is ‘turned off’. Similarly, the MAC should ignore any
signaling from the PHY when the PHY is ‘turned off’. There is no ‘handshake’ back to the MAC
to indicate that the PHY has reached a ‘turned off’ state.

There are two normal cases when a lane can get turned off:

1. During LTSSM Detect state, the MAC discovers that there is no receiver present and will
‘turn off’ the lane.

2. During LTSSM Configuration state (specifically Configuration.Complete), the MAC will
‘turn off’ any lanes that didn’t become part of the configured link.

As an example, both of these cases could occur when a x4 device is plugged into a x8 slot. The
upstream device (the one with the x8 port) will not discover receiver terminations on four of its
lanes so it will turn them off. Training will occur on the remaining 4 lanes, and let’s suppose that
the x8 device cannot operate in x4 mode, so the link configuration process will end up settling on
x1 operation for the link. Then both the upstream and downstream devices will ‘turn off’ all but
the one lane configured in the link.

When the MAC wants to get ‘turned off’ lanes back into an operational state, there are two cases
that need to be considered:

1. If the MAC wants to reset the multi-lane PIPE, it asserts Reset# and drives other interface
signals to their proper states for reset (see section 6.2). Note that this stops signaling
‘turned off’ to all lanes because TxCompliance is deasserted during reset. The multi-lane
PHY asserts PhyStatus in response to Reset# being asserted, and will deassert PhyStatus
when PCLK is stable.

2. When normal operation on the active lanes causes those lanes to transition to the LTSSM
Detect state, then the MAC sets the PowerDown[1:0] signals to the P1 PHY power state
at the same time that it deasserts ‘turned off’ signaling to the inactive lanes. Then as with
normal transitions to the P1 state, the multi-lane PHY will assert PhyStatus for one clock
when all internal PHYs are in the P1 state and PCLK is stable.

11 Appendix

11.1 DisplayPort AUX Signals

Table 11-1. DisplayPort AUX Signals
Name Direction Active

Level
Description

TxAuxData Input N/A DisplayPort asynchronous transmit data for AUX
CH

TxAuxOE Input High DisplayPort asynchronous data output enable
for AUX CH. Assertion of this signal must be
mutually exclusive with assertion of RxAuxIE.

RxAuxIE Input High DisplayPort asynchronous data input enable for
AUX CH. Assertion of this signal must be
mutually exclusive with assertion of TxAuxOE.

PHY Interface for PCI Express, SATA, USB 3.1, DisplayPort, and Converged IO Architectures,
ver 5.1

©2007-2018 Intel Corporation – All rights reserved Page 161 of 161

RxAuxData Output N/A DisplayPort asynchronous data output for AUX
CH

DCAux+ Output Low Optional: DPRX asynchronous AUX+ pulldown
status signal indicates a source is connected
(DC voltage)

DCAux- Output High Optional: DPRX asynchronous AUX- pullup
status status signal indicates a connected
source is powered up (DC voltage)

AuxRxElecIdle Output High Indicates whether differential signaling is
detected

	1 Preface
	1.1 Scope of this Revision
	1.2 Revision History

	2 Introduction
	2.1 PCI Express PHY Layer
	2.2 USB PHY Layer
	2.3 Converged IO PHY Layer
	2.4 SATA PHY Layer
	2.5 Low Pin Count Interface and SerDes Architecture

	3 PHY/MAC Interface
	4 PCI Express, USB, and Converged IO PHY Functionality
	4.1 Original PIPE Architecture
	4.1.1 Transmitter Block Diagram (2.5 and 5.0 GT/s)
	4.1.2 Transmitter Block Diagram (8.0/10/16 GT/s/32 GT/s)
	4.1.3 Receiver Block Diagram (2.5 and 5.0 GT/s)
	4.1.4 Receiver Block Diagram (8.0/10.0/16/32 GT/s)
	4.1.5 Clocking

	4.2 SerDes Architecture
	4.2.1 SerDes Architecture: Transmitter Block Diagram
	4.2.2 SerDes Architecture: Receiver Block Diagram

	5 SATA PHY Functionality
	5.1 Transmitter Block Diagram (1.5, 3.0, and 6.0 GT/s)
	5.2 Receiver Block Diagram (1.5, 3.0 and 6.0 GT/s)
	5.3 Clocking

	6 PIPE Interface Signal Descriptions
	6.1 PHY/MAC Interface Signals – Common for SerDes and Original PIPE
	6.1.1 Data Interface
	6.1.2 Command Interface
	6.1.3 Status Interface
	6.1.4 Message Bus Interface
	6.1.4.1 Message Bus Interface Commands
	6.1.4.2 Message Bus Interface Framing

	6.2 PHY/MAC Interface Signals – SerDes Architecture Only
	6.2.1 Data Interface
	6.2.2 Command Interface

	6.3 PHY/MAC Interface Signals – Original PIPE Only
	6.3.1 Data Interface
	6.3.2 Command Interface

	6.4 External Signals – Common for SerDes and Original PIPE

	7 PIPE Message Bus Address Spaces
	7.1 PHY Registers
	7.1.1 Address 0h: RX Margin Control0
	7.1.2 Address 1h: RX Margin Control1
	7.1.3 Address 2h: Elastic Buffer Control
	7.1.4 Address 3h: PHY RX Control0
	7.1.5 Address 4h: PHY RX Control1
	7.1.6 Address 5h: PHY RX Control2
	7.1.7 Address 6h: PHY RX Control3
	7.1.8 Address 7h: Elastic Buffer Location Update Frequency
	7.1.9 Address 8h: PHY RX Control4
	7.1.10 Address 400h: PHY TX Control0
	7.1.11 Address 401h: PHY TX Control1
	7.1.12 Address 402h: PHY TX Control2
	7.1.13 Address 403h: PHY TX Control3
	7.1.14 Address 404h: PHY TX Control4
	7.1.15 Address 405h: PHY TX Control5
	7.1.16 Address 406h: PHY TX Control6
	7.1.17 Address 407h: PHY TX Control7
	7.1.18 Address 408h: PHY TX Control8
	7.1.19 Address 409h: PHY TX Control9
	7.1.20 Address 800h: PHY Common Control0

	7.2 MAC Registers
	7.2.1 Address 0h: RX Margin Status0
	7.2.2 Address 1h: RX Margin Status1
	7.2.3 Address 2h: RX Margin Status2
	7.2.4 Address 3h: Elastic Buffer Status
	7.2.5 Address 4h: Elastic Buffer Location
	7.2.6 Address 5h: Reserved
	7.2.7 Address 6h: RX Status0
	7.2.8 Address 7h: RX Status1
	7.2.9 Address 8h: RX Status2
	7.2.10 Address 9h: RX Status3
	7.2.11 Address Ah: RX Link Evaluation Status0
	7.2.12 Address Bh: RX Link Evaluation Status1
	7.2.13 Address Ch: RX Status4
	7.2.14 Address Dh: RX Status5
	7.2.15 Address 400h: TX Status0
	7.2.16 Address 401h: TX Status1
	7.2.17 Address 402h: TX Status2
	7.2.18 Address 403h: TX Status3
	7.2.19 Address 404h: TX Status4
	7.2.20 Address 405h: TX Status5
	7.2.21 Address 406h: TX Status6

	8 PIPE Operational Behavior
	8.1 Clocking
	8.1.1 Clocking Topologies

	8.2 Reset
	8.3 Power Management – PCI Express Mode
	8.4 Power Management – USB Mode
	8.5 Power Management – SATA Mode
	8.6 Changing Signaling Rate, PCLK Rate, or Data Bus Width
	8.6.1 PCI Express Mode
	8.6.2 USB Mode
	8.6.3 SATA Mode
	8.6.4 Fixed data path implementations
	8.6.5 Fixed PCLK implementations

	8.7 Transmitter Margining – PCI Express Mode and USB Mode
	8.8 Selectable De-emphasis – PCI Express Mode
	8.9 Receiver Detection – PCI Express Mode and USB Mode
	8.10 Transmitting a beacon – PCI Express Mode
	8.11 Transmitting LFPS – USB Mode
	8.12 Detecting a beacon – PCI Express Mode
	8.13 Detecting Low Frequency Periodic Signaling – USB Mode
	8.14 Clock Tolerance Compensation
	8.15 Error Detection
	8.15.1 8B/10B Decode Errors
	8.15.2 Disparity Errors
	8.15.3 Elastic Buffer Errors
	8.15.3.1 Elastic Buffer Reset

	8.16 Loopback
	8.17 Polarity Inversion – PCI Express and USBModes
	8.18 Setting negative disparity (PCI Express Mode)
	8.19 Electrical Idle – PCI Express Mode
	8.20 Link Equalization Evaluation
	8.21 Implementation specific timing and selectable parameter support
	8.22 Control Signal Decode table – PCI Express Mode
	8.23 Control Signal Decode table – USB Mode and Converged IO Mode
	8.24 Control Signal Decode table – SATA Mode
	8.25 Required synchronous signal timings
	8.26 128b/130b Encoding and Block Synchronization (PCI Express 8 GT/s, 16 GT/s, and 32 GT/s)
	8.27 128b/132b Encoding and Block Synchronization (USB 10 GT/s)
	8.28 Message Bus Interface
	8.28.1 General Operational Rules
	8.28.2 Message Bus Operations vs Dedicated Signals

	8.29 PCI Express Lane Margining at the Receiver

	9 Sample Operational Sequences
	9.1 Active PM L0 to L0s and back to L0 – PCI Express Mode
	9.2 Active PM to L1 and back to L0 - – PCI Express Mode
	9.3 Downstream Initiated L1 Substate Entry Using Sideband Mechanism
	9.4 Receivers and Electrical Idle – PCI Express Mode Example
	9.5 Using CLKREQ# with PIPE – PCI Express Mode
	9.6 Block Alignment
	9.7 Message Bus: RX Margining Sequence
	9.8 Message Bus: Updating LocalFS/LocalLF and LocalG4FS/LocalG4LF
	9.9 Message Bus: Updating TxDeemph
	9.10 Message Bus: Equalization
	9.11 Message Bus: BlockAlignControl
	9.12 Message Bus: ElasticBufferLocation Update

	10 Multi-lane PIPE – PCI Express Mode
	11 Appendix
	11.1 DisplayPort AUX Signals

