

328332-001

Fast Multi-buffer

IPsec

Implementations

on Intel®

Architecture

Processors
 December 2012

White Paper

Jim Guilford

Sean Gulley

Erdinc Ozturk

Kirk Yap

Vinodh Gopal

Wajdi Feghali

IA Architects

Intel Corporation

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

2

Executive Summary
This paper describes the Intel® Multi-Buffer Crypto for IPsec Library, a

family of highly-optimized software implementations of the core

cryptographic processing for IPsec, which provides industry-leading

performance on a range of Intel® Processors.

 This paper describes the usage of the IPsec library and presents a

summary of the performance for some algorithm pairs. We can

achieve a single-thread throughput performance of ~14

Gigabits/second on an Intel® Core™ i7 processor 2600, for AES-128

encryption in the CBC-XCBC mode.1

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

www.intel.com/embedded/edc.

1 Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Configurations: Refer to the Performance section on page 16. For more information

go to http://www.intel.com/performance.

http://www.intel.com/embedded/edc

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 3

Contents

Overview .. 4

Background of IPsec ... 4

Supported Algorithms ... 5

APIs .. 5

Multi-buffer API ... 5

Basic API .. 5
Integration into an Application ... 7
Flushing .. 7
Job structure ... 9
Pre-expanded AES Keys .. 11
HMAC IPad and OPad ... 12
AES XCBC Precomputes .. 13
Selecting a Set of Functions .. 14

GCM API ... 15

Building .. 15

Performance .. 16

Methodology .. 16
Results ... 17

Conclusion .. 19

Contributors .. 20

References .. 20

328332-001

Overview

This paper describes the Intel® Multi-Buffer Crypto for IPsec Library [5], a set

of functions that implement the computationally intensive authentication and

encryption algorithms for IPsec. These functions provide an easy way for an

IPsec implementation to take advantage of the benefits of multi-buffer

processing.

This paper assumes that the reader is at least somewhat familiar with Intel’s

Multi-buffer processing. If not, the reader may want to read [1] first for

background.

Background of IPsec

Internet Protocol Security (IPsec) is a suite of protocols for securing internet

traffic using the Internet Protocol (IP). Two of the most computationally

intensive operations on the bulk data within IPsec are encryption and

authentication.

IPsec is embedded in the IP stack in a number of implementations, for

example within Linux. Once a connection is established and data is flowing, a

significant number of CPU cycles is spent in encrypting or decrypting the bulk

data, and in computing a cryptographic hash (MAC) of the data in order to

validate its authenticity.

We’ve previously shown [1] that multi-buffer processing can significantly

speed up processing in many cases. The IPsec functions described in this

paper extend that work to handling combined encryption and authentication

using a variety different underlying algorithms.

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 5

Supported Algorithms

This version of the library supports the following cryptographic and hash

algorithms (for both encryption and decryption):

Encryption Authentication

AES-128 CBC

AES-192 CBC

AES-256 CBC

AES-128 CTR

AES-192 CTR

AES-256 CTR

HMAC SHA-1

HMAC SHA-224

HMAC SHA-256

HMAC SHA-384

HMAC SHA-512

HMAC MD5

AES-128-XCBC

AES-128 GCM2

APIs

There are two independent sets of APIs in the associated code [5]. One

handles multi-buffer processing for packets requiring AES and HMAC

processing. It is primarily with this interface that this paper is concerned.

There is an independent set of APIs for GCM processing. This code is the

same as described in [2] and separately released.

Multi-buffer API

The multi-buffer API is essentially an extension of the API described in [1].

One “theme” of the interface is to pre-compute data that is likely to be

shared between many packets, so that it does not need to be recalculated

multiple times. These calculations will be described in detail later.

Basic API

The basic API exists in three forms, with one version using the SSE

instruction set, one using AVX, and one using AVX2. Each of the following

functions exists in three forms, one with the suffix “_sse”, one with “_avx”,

and one with “_avx2”. In the following discussion, the functions will use the

suffix “_xxx” to represent one of the above.

Note that the data structures are independent of the suffix; however they are

initialized differently based on the suffix. Thus, one cannot mix different

suffixes when using the same multi-buffer manager object.

2 Not Multi-buffered

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

6

The functions are summarized below:

init_mb_mgr_xxx Initialize the MB_MGR state object

get_next_job_xxx Get a new job object

submit_job_xxx Submit the job that was previously gotten

flush_job_xxx Return the oldest job object

get_completed_job_xxx Return the oldest job object only if is already completed

The basic idea is that the application needs to provide multiple jobs before

the previous jobs complete their processing. This can be called an

“asynchronous” interface. The application does this by submitting jobs to the

multi-buffer manager (MB_MGR). For every job that it submits, it may

receive a completed job, or it may receive NULL. In general, if a job is

returned, it will not be the one that was just submitted. However, jobs will be

returned in the same order that they were submitted.

These routines are not thread-safe. If they are being called by multiple

threads, then the application must take care that calls are not made from

different threads at the same time, i.e. thread-safety should be implemented

at a level higher than these routines. These routines do not make operating-

system calls, and in particular they do not allocate memory.

In general, there will be an arbitrary number of jobs that have been

submitted, but which have not yet been returned, and are therefore

“outstanding”. To avoid having the application manage this arbitrary number

of job objects, the management of the job objects is handled by the

MB_MGR. The application gets a pointer to the next available job object by

calling get_next_job_xxx(). The application then fills in the job data fields

appropriately, and then submits it by calling submit_job_xxx(). If this returns

a non-NULL job, then that job has been completed (unless its arguments are

invalid) and the application should do whatever it needs to in order to finish

processing that job.

The returned job object is not explicitly returned to the MB_MGR. Rather, it is

implicitly returned by the next call to get_next_job_xxx(). Another way to put

this is that the returned job object may be referenced until the next call to

get_next_job_xxx(). After this, it is no longer safe to access the previous

job’s fields.

One measure of job latency is the number of submit_job_xxx() calls that

must be made before the submitted job is returned. Since jobs are returned

in order, and at most one job is returned for every job submitted, this

“latency” can never decrease; it can only stay the same or increase. To allow

the latency to decrease, there is an optional function that may be called,

get_completed_job_xxx(). This will return the next job if it was already

completed. If the next job is not yet completed, no processing will be done,

and this function will return NULL.

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 7

The usage of these functions may be illustrated by the following pseudo-

code:

 init_mb_mgr_xxx(&mb_mgr);

 ...

 while (work_to_be_done) {

 job = get_next_job_xxx(&mb_mgr);

 // TODO: Fill in job fields

 job = submit_job_xxx(&mb_mgr);

 while (job) {

 // TODO: Complete processing on job

 job = get_completed_job(&mb_mgr);

 }

 }

Integration into an Application

In general, how this library is integrated into an application depends on the

design of the application and is beyond the scope of this paper, but here are

some approaches.

One main issue is how to accumulate multiple jobs without blocking, waiting

for the jobs to finish. In the best case, there is already an asynchronous

interface, either providing a stream of jobs, or perhaps providing a work-

queue containing jobs, which can feed the library.

In other designs, there may be many threads, where each thread wants to

submit a job and then block until that job completes. One way to deal with

this is to have each thread enqueue its job into a thread-safe queue, and

then to have a compute thread pull jobs off of this queue and process them.

Alternately, each thread could take a mutex, submit its job, signal the

returned job (if any) as complete, and then release the mutex and wait for its

job to be so signaled.

Note that the library is designed to fully utilize the core, so there is no

performance to be gained by having two instances of the library running on

the same processor.

There are probably many other designs or architectures that one could use to

interface the sources of jobs with the multi-buffer manager.

Flushing

Using the API described in the previous section, when the stream of incoming

jobs ends, there is no way to get back the remaining outstanding jobs. That

functionality is provided by flush_job_xxx(). This is similar to

submit_job_xxx() except that no new job is submitted, and that a completed

job will always be returned unless there are no outstanding jobs.

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

8

Note that a “flushed” job is completed normally; i.e. it is correctly and fully

processed. The flush_job_xxx() function is different from

get_completed_job_xxx() in that flushing will, in general, perform algorithmic

processing, and will always return the oldest job unless there are no

outstanding jobs; whereas get_completed_job_xxx() will never perform

algorithmic processing, and will only return the oldest job if it was completed

in a previous function call.

Flushing is more expensive than submitting in that the system is less efficient

when flushing than when submitting. So, for example, one could use the

library by always calling “flush” after every “submit”. This would result in

correct behavior, but the performance would be worse than if one used well-

implemented single-buffer code. The presumption of the multi-buffer code is

that flushing will occur much less often than submitting.

A typical reason to use flushing is to deal with a lull in incoming jobs. Imagine

that there was a steady stream of incoming jobs, but then for a short period

of time there were no new jobs. In the absence of flushing, the last jobs

submitted before the lull would not be returned until after the lull, when more

new jobs appeared. This would result in an unreasonably long latency for

these jobs. In this case, flushing can be used to complete these remaining

jobs before new jobs arrive.

In a sense, the concept of submitting vs. flushing is that when jobs are

coming at a rapid rate, they are all submitted, and the multi-buffer efficiency

is high. When jobs are arriving at a slow rate or not at all, then flushing is

invoked, which reduces efficiency. But since the jobs are coming at a slow

rate, the overall system can tolerate a lower efficiency.

Exactly when and how to use flush_job_xxx() is up to the application, and is

a balancing act. The processing of flush_job_xxx() is less efficient than that

of submit_jo_xxx(), so calling flush_job_xxx() too often will lower the system

efficiency. Conversely, calling flush_job_xxx() too rarely may result in some

jobs seeing excessive latency.

There are several strategies that the application may employ for flushing.

One usage model is that there is a (thread-safe) queue containing work

items. One or more threads put work onto this queue, and one or more3

processing threads remove items from this queue and process them through

the MB_MGR. In this usage, a simple flushing strategy is that when the

processing thread wants to do more work, but the queue is empty, it then

proceeds to flush jobs until either the queue contains more work, or the

MB_MGR no longer contains jobs (i.e. that flush_job_xxx() returns NULL). A

variation on this is that when the work queue is empty, the processing thread

3 If multiple threads are processing jobs from the same queue, then unless

the application takes steps to prevent this, the jobs may be completed in a

different order than that in which they entered the queue.

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 9

might pause for a short time to see if any new work appears, before it starts

flushing.

In other usage models, there may be no such queue. An alternate flushing

strategy is to have a separate "flush thread" hanging around. It wakes up

periodically and checks to see if any work has been requested since the last

time it woke up. If some period of time has gone by with no new work

appearing, it would proceed to flush the MB_MGR (after taking necessary

inter-thread interlocks to prevent the main thread from accessing the

MB_MGR while the flush is in progress).

Job structure

At a high level, the paradigm is that the application gets an object that

represents a job, where a job is a unit of work. It corresponds to one packet

or buffer that needs to undergo encryption and authentication or to undergo

authentication and decryption.

The job object/structure is filled in with all of the information needed to

process that job. It is then returned to the system for processing. At this time

a job object may or may not be returned to the application, where the

returned job has completed its processing. In general the returned job, if

any, will not be the same as the submitted job. However, the jobs will be

returned in the same order that they were submitted.

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

10

The job structure is defined as:

typedef struct {

 const UINT32 *aes_enc_key_expanded; /* 16-byte aligned pointer. */

 const UINT32 *aes_dec_key_expanded;

 UINT64 aes_key_len_in_bytes; /* Only 16, 24, and 32 byte (128, 192 and 256-

 bit) keys supported at this time. */

 const UINT8 *src; /* Input. May be cipher text or plaintext. In-place

 ciphering allowed. */

 UINT8 *dst; /* Output. May be cipher text or plaintext. In-place ciphering

 allowed, i.e. destination = source. */

 UINT64 cipher_start_src_offset_in_bytes;

 UINT64 msg_len_to_cipher_in_bytes; /* Max len = 65472 bytes. */

 UINT64 hash_start_src_offset_in_bytes;

 UINT64 msg_len_to_hash_in_bytes; /* Max len = 65496 bytes. */

 const UINT8 *iv; /* AES IV. */

 UINT64 iv_len_in_bytes; /* AES IV Len in bytes. */

 UINT8 *auth_tag_output; /* HMAC Tag output. This may point to a location in

 the src buffer (for in place)*/

 UINT64 auth_tag_output_len_in_bytes; /* HMAC Tag output length in bytes.

 (May be a truncated value)*/

 /* Start algorithm-specific fields */

 union {

 struct _HMAC_specific_fields{

 const UINT8 *_hashed_auth_key_xor_ipad; /* Hashed result of HMAC key

 xor'd with ipad (0x36). */

 const UINT8 *_hashed_auth_key_xor_opad; /* Hashed result of HMAC key

 xor'd with opad (0x5c). */

 } HMAC;

 struct _AES_XCBC_specific_fields{

 const UINT32 *_k1_expanded; /* 16-byte aligned pointer. */

 const UINT8 *_k2; /* 16-byte aligned pointer. */

 const UINT8 *_k3; /* 16-byte aligned pointer. */

 } XCBC;

 } u;

 JOB_STS status;

 JOB_CIPHER_MODE cipher_mode; // CBC or CNTR

 JOB_CIPHER_DIRECTION cipher_direction; // Encrypt/decrypt

 // Ignored as the direction is implied

 // by the chain _order field.

 JOB_HASH_ALG hash_alg; // SHA-1 or others...

 JOB_CHAIN_ORDER chain_order; // CIPHER_HASH or HASH_CIPHER

 void *user_data;

 void *user_data2;

} JOB_AES_HMAC;

#define hashed_auth_key_xor_ipad u.HMAC._hashed_auth_key_xor_ipad

#define hashed_auth_key_xor_opad u.HMAC._hashed_auth_key_xor_opad

#define _k1_expanded u.XCBC._k1_expanded

#define _k2 u.XCBC._k2

#define _k3 u.XCBC._k3

Most of the fields should be self-explanatory. The data to be encrypted or

decrypted starts at (src + cipher_start_src_offset_in_bytes) and extends for

a length of msg_len_to_cipher_in_bytes. The data to be hashed starts at

(src + hash_start_src_offset_in_bytes) and extends for a length of

msg_len_to_hash_in_bytes.

The output of the encryption/decryption is (dst). The encryption can be done

“in place”, i.e. (dst) can be equal to (src + cipher_start_src_offset_in_bytes).

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 11

The msg_len_to_hash_in_bytes can be any non-zero value. The

msg_len_to_cipher_in_bytes can be any non-zero multiple of the cipher

block size.

In the present version of the code, auth_tag_output_len_in_bytes must be

12. No other value is supported.

The cipher_direction field indicates whether the data should be encrypted or

decrypted. The chain_order field indicates whether the crypto or hash

operation should be done first. This is provided in the API in order to support

possible future enhancements. However, in IPsec, the hash is always done on

the cipher text rather than the plain text. So the only valid combinations of

these parameters are “ENCRYPT / CIPHER_HASH” or

“DECRYPT / HASH_CIPHER”. Because of this, the cipher_direction field is

actually ignored, and its value is inferred from the value of chain_order.

However, it is always safer (to account for future changes) to set both of

these values correctly.

If an invalid parameter is passed in, then when the job object is returned, it

will have a status of STS_INVALID_ARGS. Otherwise, it will have a status of

STS_COMPLETED. Note that in general, it will not be returned immediately if

the arguments are invalid. This is because the jobs are returned in the same

order in which they were submitted.

There are two “user_data” fields in the structure. These are not used by the

IPsec code and can be used by the application to associate other data with

the job.

Pre-expanded AES Keys

In the AES algorithms, the primary key is “expanded” into an array of keys,

each of which is used for one round. To avoid having to expand the key for

every buffer/packet, the API takes a pointer to an array of pre-expanded keys

rather than the key itself.

The sizes of the data fields are given in the table below:

Algorithm Key size in bytes Expanded key array size in bytes

AES-128 16 176 = 16 * 11

AES-192 24 208 = 16 * 13

AES-256 32 240 = 16 * 15

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

12

The API to generate the expanded key values is:

void aes_keyexp_128_xxx(void *key,

 void *enc_exp_keys,

 void *dec_exp_keys);

void aes_keyexp_192_xxx(void *key,

 void *enc_exp_keys,

 void *dec_exp_keys);

void aes_keyexp_256_xxx(void *key,

 void *enc_exp_keys,

 void *dec_exp_keys);

where key points to the key, enc_exp_keys points to appropriately-sized

buffer to receive the expanded keys for encryption, and dec_exp_keys points

to a buffer to receive the expanded keys for decryption.

These arrays need to be 16-byte aligned for use with the IPsec APIs, so one

way to declare them (using an OS-neutral alignment macro defined in

os.h)would be:

DECLARE_ALIGNED(unsigned char enc_exp_keys[16*15], 16);

DECLARE_ALIGNED(unsigned char dec_exp_keys[16*15], 16);

In this way, the arrays are sized large enough to hold any of the AES

expanded keys. These expanded key arrays are then passed into the IPsec

APIs as inputs representing the keys.

There is also a function to expand just the encryption keys, which is needed

for GCM:

void aes_keyexp_128_enc_xxx(void *key, void *enc_exp_keys);

HMAC IPad and OPad

In the HMAC algorithm, the underlying hash is performed on two buffers.

Each of these buffers is pre-pended with a one-block long buffer consisting of

a fixed pattern XORed with a secret key. (The details can be found in [3].)

Implemented directly, each of these blocks would have to be re-hashed for

every data packet. But this is wasteful, as the same key is used for many

packets. So instead of taking the secret key as input, the IPsec API takes the

results of applying the underlying hash algorithm on each of these two

blocks. This then becomes the starting state for hashing the rest of the data.

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 13

To assist with this process, there are a set of function to perform a raw hash

of a single block:

void sha1_one_block_xxx(void *data, void *digest);

void sha224_one_block_xxx(void *data, void *digest);

void sha256_one_block_xxx(void *data, void *digest);

void sha384_one_block_xxx(void *data, void *digest);

void sha512_one_block_xxx(void *data, void *digest);

void md5_one_block_xxx(void *data, void *digest);

These functions will initialize the digest, hash a single data block, and then

return the result. The digest sizes are given in the following table:

Algorithm Digest size in bytes Block size in bytes

MD5 16 = 4 * 4 64

SHA-1 20 = 4 * 5 64

SHA-224 32 = 4 * 8 64

SHA-256 32 = 4 * 8 64

SHA-384 64 = 8 * 8 128

SHA-512 64 = 8 * 8 128

Note that in the case of SHA-224 and SHA-384, the entire (256-bit and 512-

bit respectively) digest is returned rather than the truncated digest.

The digests do not need to be aligned in particular.

For example, to compute the IPad for HMAC/SHA-1, one could use code

similar to:

unsigned char opad[64];

for (i=0; i<64; i++) opad[i] = 0x5c;

for (i=0; i<key_size; i++) opad[i] ^= key[i];

sha1_one_block_xxx(opad, opad_hash);

Similar code would be used for the ipad, except for each byte of the buffer

being initialized with 0x36.

AES XCBC Precomputes

The AES XCBC algorithm is defined in [4]. It defines three 16-byte keys (K1,

K2, and K3) derived from the secret key. K1 is used to encrypt the data, so it

needs to be expanded as described earlier. So the sizes of the three data

structures are:

Field Size in bytes

K1 176 = 11*16

K2 16

K3 16

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

14

They are generated / expanded by:

void aes_xcbc_expand_key_xxx(void *key,

 void *k1_exp,

 void *k2,

 void *k3);

Selecting a Set of Functions

Some applications might want to only use the SSE functions, or the AVX

functions, etc. Other applications might want to choose the family of

functions at run time.

One way that this could be done is via conditional branches based on some

flag. For example, this could be wrapped in a macro along the lines of:

 #define submit_job(mb_mgr) \

 if (_use_avx2) submit_job_avx2(mb_mgr); \

 else if (_use_avx) submit_job_avx(mb_mgr); \

 else submit_job_sse(mb_mgr)

Another approach would be to embed the function addresses into a structure,

call them indirectly through this structure, and change the structure based on

which family should be used. For example:

 struct funcs_t {

 init_mb_mgr_t init_mb_mgr;

 get_next_job_t get_next_job;

 submit_job_t submit_job;

 get_completed_job_t get_completed_job;

 flush_job_t flush_job;

 };

 funcs_t funcs_sse = {

 init_mb_mgr_sse,

 get_next_job_sse,

 submit_job_sse,

 get_completed_job_sse,

 flush_job_sse

 };

 funcs_t funcs_avx = {

 init_mb_mgr_avx,

 get_next_job_avx,

 submit_job_avx,

 get_completed_job_avx,

 flush_job_avx

 };

 ...

 funcs_t *funcs = &funcs_sse;

 ...

 if (do_avx)

 funcs = &funcs_avx;

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 15

 ...

 funcs->init_mb_mgr(&mb_mgr);

GCM API

Since the GCM code is implemented in an efficient single-buffer manner,

there is no advantage to trying to process GCM jobs using the multi-buffer

interface. Therefore, the GCM code is packaged as a separate set of single-

buffer routines, which are essentially the code described in [2].

Similar to the multi-buffer interface, the GCM API comes in three families,

with suffixes “_sse”, “_avx_gen2” and “_avx_gen4”. This reflects the

implementation where the gen4 version has been optimized for generation-4

processors, but it still uses the AVX instruction set (i.e. the gen4 code will still

run on gen2 processors).

Within each family, there are three functions. One takes the hash_subkey

and pre-computes a number of values into a data structure. The other two

perform either an encrypt or a decrypt operation using those pre-computed

values.

Note also that key expansion of the primary key needs to be done before the

pre-computes. So a typical sequence of operations would be:

gcm_data gdata;

…

aes_keyexp_128_enc_xxx(key, gdata.expanded_keys);

aesni_gcm_precomp_xxx(&gdata, hashSubKey);

…

aesni_gcm_enc_xxx(&gdata, cipher_text, plain_text, text_size,

 iv, aad, sizeof(aad),

 auth_tag, sizeof(auth_tag));

// or

aesni_gcm_dec_xxx(&gdata, plain_text, cipher_text, text_size,

 iv, aad, sizeof(aad),

 auth_tag, sizeof(auth_tag));

For more details on the GCM interface, see the comments in “gcm_defines.h”

or [2].

Building

A Linux Makefile is provided in the release. It will build the sources into a

library. That Makefile will need to be tweaked to point to the user’s local

version of YASM.

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

16

There is a sub-directory, LibTestApp, which has a small test application and

associated trivial Makefile for verifying that all of the required APIs are in the

library.

The main thing to note about building is that for Linux, for both the C and

ASM files, the pre-processor symbol “LINUX” needs to be defined. For a

Windows build, the symbol “WIN_ABI” needs to be defined.

There are three top-level include files:

mb_mgr.h Main include file for Multi-buffer API

aux_funcs.h Auxiliary functions needed to assist with Multi-buffer API

gcm_defines.h GCM interface

A (fairly trivial) example of using these can be found in LibTestApp.

Performance

The performance results provided in this section were measured on widely

available Intel® Processors. The SSE version was run on an Intel® Xeon®

processor X5670, running at 2.9 GHz (SSE instruction set), and the AVX1

version was run on an Intel® Core™ i7 processor 2600, running at 3.4 GHz

(AVX instruction set, second generation). In each case, the buffer size was

swept in 64-byte increments. The tests were run with Intel® Turbo Boost

Technology off.

Methodology

We measured the performance of the functions on data buffers of different

sizes. For each size, we called the functions to process the same buffer a

large number of times in a loop, to generate one timing measurement. This

process was repeated a number of times, collecting many timing

measurements. The main processing functions were included in the loop, but

the pre-compute/auxiliary functions (e.g. AES key expansion) were not.

For each data buffer, we discarded the first and last 1/8th samples, sorted the

timings, discarded the largest/smallest quarter, and averaged the remaining

quarter.

The timing was measured using the rdtsc() function which returns the

processor time stamp counter (TSC). The TSC is the number of clock cycles

since the last reset. The ‘TSC_initial’ is the TSC recorded before the function

is called. After the function is complete, the rdtsc() was called again to

record the new cycle count ’TSC_final’. The effective cycle count for the called

routine is computed using

of cycles = (TSC_final-TSC_initial).

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 17

A large number of such measurements were made for each data buffer and

then averaged as described above to get the number of cycles for that buffer

size. Finally, that value was divided by the buffer size times the number of

iterations of the inner loop to express the performance in cycles per byte.

This was then divided into the clock rate to get the performance in

bytes/second.

Note: Software and workloads used in performance tests may have been

optimized for performance only on Intel microprocessors. Performance tests,

such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any

of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when

combined with other products.

For more information go to http://www.intel.com/performance

Results

There are too many combinations of algorithms to give results for each

combination. So the results will be presented for three of these. These were

chosen to be illustrative of the performance and to emphasize different

features of the processor:

Algorithms Emphasizes

AES128 CBC Encrypt / HMAC SHA1 Vector Registers

AES128 CBC Encrypt / XCBC AESNI

GCM Encrypt AESNI, PCLMULQDQ

For the HMAC and XCBC examples, the indicated buffer size is the size of the

data being encrypted. The data to be hashed is 24 bytes larger, to reflect

IPsec normal usage. For the GCM examples, the buffer size reflects the size

of the data being encrypted and the data being hashed.

http://www.intel.com/performance

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

18

The following figure gives the single-thread throughput as a function of buffer

size for the AVX version of the code (when run on an Intel® Core™ i7

processor 2600, running at 3.4 GHz)4:

4 Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Configurations: Refer to the Performance section on page 16. For more information go

to http://www.intel.com/performance.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 256 512 768 1024 1280 1536 1792 2048

Gbps

AES128 CBC HMAC SHA1 Encrypt
AES128 CBC XCBC Encrypt
AES128 GCM Encrypt

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 19

The following figure gives the relative performance of these algorithms for the

SSE, AVX, and AVX2 versions of the code, when run on corresponding

processors (all normalized to the same clock rate)5:

Note the dramatic increase in performance of GCM on Gen-4 due to

PCLMULQDQ improvements.

Conclusion

This paper presents three IPSec implementations, optimized for different

generations of Intel® processors. It describes how to build and use the

library, and it presents some basic performance data.

5 Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and

MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Configurations: Refer to the Performance section on page 16. For more information go

to http://www.intel.com/performance.

Gen 1 Gen 2 Gen 4

Generational Performance Gains

AES128 CBC HMAC SHA1
Encrypt

AES128 CBC XCBC Encrypt

AES128 GCM Encrypt

Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

20

Contributors

We thank Malini Bhandaru and Gil Wolrich for their substantial contributions

to this work.

References

[1] “Processing Multiple Buffers in Parallel to Increase Performance on Intel®

Architecture Processors”

[2] “Enabling High-Performance Galois-Counter-Mode on Intel® Architecture

Processors

[3] RFC2104: “HMAC: Keyed-Hashing for Message Authentication”

http://tools.ietf.org/html/rfc2104

[4] RFC3566: “The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec”

http://www.ietf.org/rfc/rfc3566.txt

[5] Optimized IPSec Cryptographic Library:
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-

license?id=6543

The Intel® Embedded Design Center provides qualified developers with web-

based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://intel.com/embedded/edc.

Authors

Jim Guilford, Vinodh Gopal, Sean Gulley, Erdinc Ozturk,

Kirk Yap, and Wajdi Feghali are IA Architects with the IAG

Group at Intel Corporation.

Acronyms

IA Intel® Architecture

http://download.intel.com/design/intarch/papers/324101.pdf
http://download.intel.com/design/intarch/papers/324101.pdf
http://edc.intel.com/Download.aspx?id=6537&returnurl=/Embedded/HwSw/Technology/Packet-Processing/Default.aspx
http://edc.intel.com/Download.aspx?id=6537&returnurl=/Embedded/HwSw/Technology/Packet-Processing/Default.aspx
http://tools.ietf.org/html/rfc2104
http://www.ietf.org/rfc/rfc3566.txt
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6543
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6543
http://intel.com/embedded/edc

 Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors

 21

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S

PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD

INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,

OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND

EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY

CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH

MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS

PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request. Contact your local Intel sales office or your distributor to obtain the latest

specifications and before placing your product order. Copies of documents which have an order

number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending

on the specific hardware and software you use. For more information including details on which

processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance

will vary depending on your hardware and software configurations. Consult with your system vendor

for more information.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and

overall system configuration. Check with your PC manufacturer on whether your system delivers Intel

Turbo Boost Technology.For more information, see http://www.intel.com/technology/turboboost.

Intel, Intel Turbo Boost Technology, Intel Hyper Threading Technology, Intel Xeon are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/technology/turboboost

