Lustre* Troubleshooting

Legal Disclaimer

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS" WITH NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS
DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE
OF THIS DOCUMENT.

All products, preduct descriptions, plans, dates, and figures are preliminary based on current expectations and subject to change
without notice. Availability in different channels may vary.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation in the United States and other countries.
*Other names and brands may be claimed as the property of others.

Copyright 2016 @ Intel Corporation. All rights reserved.

Module Overview

.
Topics covered in this module include:

* Preventing data loss

» Types of Lustre* failures

« Data collection

* Troubleshooting Lustre* - Sample flowchart

* Resolving specific Lustre* issues

(intel‘

Preventing Data Loss
An ounce of prevention is worth a pound of cure

Preventing Data Loss

-

Lustre* distributes data across multiple storage targets
« Storage targets constructed from arrays of many disks

« Disks occasionally fail - sectors, heads, firmware, etc.

With many arrays, mean time between failure decreases

« Storage targets need redundancy and hot spares

The Lustre* architecture protects against data loss very well

= Keeping backups of critical files is recommended

Lustre* does not protect against loss of disks or arrays

Lustre* Failures and Kernel Errors

Types of Lustre* Failures

(’Automatically recoverable failures

* Normal for distributed file systems with many components

* Lustre* clients and servers maintain file system consistency
Manually recoverable failures

* Loss of AC power

« Component failures without implementing any high availability

Unrecoverable failures

+ Complete failure of a storage target, or a system administrator “goof”

Kernel Errors (103

r’1_u5tre“‘ runs (mostly) in the Linux kernel

Types of kernel errors
+ Hard Panic (Aiee!)
* Soft Panic (Oops!)
 Linux Bug (BUG)
* Lustre* Bug (LBUG)

Next two slides will cover these kernel errors

.

Kernel Errors ¢ of3)

rHard Panic (Aiee!)

 Panic routine called: registers / stack trace on console — crash dump saved
« Capture console / note prior events for analysis [/ analyze dump
* Reboot node, run hardware diagnostics, put back into service...?

Soft Panic (Oops!)

» Kernel assertion failure, exception, etc.
« Thread killed / system not trusted / should reboot

= Can force panic with /proc/sys/kernel/panic_on_oops
+ Collect console and events data / reboot node / run diags

Kernel Errors of3)

rLinux Bug (BUG)

* Pointer error, divide by zero, etc.
» Should be caught in a subsequent OOPS
* Lockups
= Soft lockup (no new tasks started)
= Hard Lockup (no more interrupts happen, either)
= Can trigger kernel panic - see doc "lockup-watchdogs.txt"

Lustre* Bug (LBUG)

* Panic-style assertion for the executing thread

* Thread is halted / reboot needed to remove halted thread
= Thread / system untrusted, gather stack trace and reboot
= Lustre* log file written to /tmp/lustre-log.{timestamp}

* Or, can force panic with /proc/sys/lnet/panic_on_lbug
= Collect console data / reboot node / run diags

Data Collection

Iltems of Concern

e
If you suspect a Lustre* error, examining the recent kernel logs is a great start in trying to
identify a Lustre* issue

Clients

 Lustre*, Applications, Client Hardware, ...

Servers

» Lustre*, Attached Storage, Server Hardware, ...

Networks

» Fabric Manager, Connectors, Cabling, Switches, ...
N

Some Places to Check

(Network Management System (NMS)

* Intel® Manager for Lustre* software, etc.

Consoles

» Servers, Switches, Fabric Manager, ...

Logs (see additional information in the Elite - Lustre* Debugging Module)

« Servers, Clients, Switches, ...

Kernel (ring) Buffers (see additional information in the Elite - Lustre* Debugging Module)

* Lustre* Servers and Clients

Data Collection

(Intel® Manager for Lustre* software - or other NMS

* Intel® Manager for Lustre* software troubleshooting covered in the next module

Simple tools and scripts for system status
« Use pdsh/dshbak to parallelize data collection
= Start with something simple (clientdf.sh), then expand upon it
= Then create another script for another check, and another

= Soon, you will have a set of powerful, easy to use tools

Easy Checks via Scripting

(Lustre* provides a high-level health status

[proc/fs/lustre/health_check
Should contain the text "healthy" - anything else is bad

“pdsh it” across all the Lustre* nodes

pdsh -g allnodes "Ictl get_param health_check" | dshbak -c
Should return "healthy" for all nodes

Other easy checks to “pdsh” include

Ifs check servers
Ictl dl (print device list - all should show UP)

Troubleshooting Lustre* - Sample Flowchart

Troubleshooting Example

Serverornetwork
ssue ely

ID or Target info
avadable from error

mndicator?

Check server NID andlor
server providing target

Yes

Check S

seen?

Servers

No

No

Gather more information about
the issue. Enable Lustre and LNet
de bugging on the suspect server.

!

Resolve
issue

Enable
Lustre and
LNet
debugging on
chent and
reproduce
emor

Resolving Specific Lustre* Issues

OST Troubleshooting

»
Deactivating an OST (no new creates)

« A use case is where the OST starts to get too full

Disabling an OST (remove from service)

* A use case is that an entire OST has failed

Marking an OST as degraded (performance)

* A use case is where the RAID set is rebuilding

Deactivating an OST

/When to deactivate an OST
* When the OST is in danger of reaching full capacity

Deactivate the OST on the MDS
* Determine the device number of the OST to be deactivated

mds# Ictl dl | grep “osc*
22 UP osc bleefs-OST0O000-osc-ffff8800384efc00 <UUID> 5

23 UP osc bleefs-OST0001-osc-ffff8800384efc00 <UUID> 5
24 UP osc bleefs-OST0002-0sc-ffff8800384efc00 <UUID> 5
* Deactivate OST0001 via its device number
mds# lctl --device 23 deactivate
« |[f OST is still serviceable, do not deactivate on clients
= This allows reads and writes from a deactivated OST to continue

Verify the correct OST is inactive (IN)

mds# Ictl dl | grep “osc”
22 UP osc bleefs-OSTO000-o0sc-ffff8800384efc00 <UUID> 5

23 IN osc bleefs-OST0001-o0sc-ffff8800384efc00 <UUID> 5
N 24 UP osc bleefs-OST0002-0sc-ffff8800384efc00 <UUID> 5 =

Disabling an OST

(Used when an OST is com pletely unavailable

+ e.g: fatal RAID controller failure, or server permanently decommissioned

Needs to be disabled on both the MDS and clients:

Ictl conf param osc.<fsname>-<0OST name>-*active=0

For example: # Ictl conf param osc.bleefs-OSTO001-*.active=0

Reads/writes to that OST will fail with |/O error

To enable the OST again:

» Make sure the OST is restored and running

Then run the command: mds# Ictl conf _param osc.bleefs-OSTO001-*.active="1

After enabled, OST will move into recovery

« And after recovery the reads/writes to the OST resume

Marking an OST Degraded

fMarking an OST as degraded does not stop 10, but rather it is a hint to the MDS to not
allocate new files on that particular OST

On the OSS, write a non-zero value:
oss# Ictl set_param obdfilter.bleefs-OST0O000.degraded=1
oss# Ictl get param —n obdfilter.bleefs-OSTO000.degraded="1

MDS is informed by the OSS that an OST is degraded
OST is avoided, if possible, in new object allocation

Helps to prevent global slow-down of file system

Striping policy may still override

Should be combined with monitoring of the health of the array

Return to normal by writing zero to the degraded file. Flag is reset to zero by a remount
of the OST

OST Imbalances - Effect of Full OST

OST Imbalances: OSTs that have a high percentage of utilization — meaning, the amount of b
free space on the storage target is low
It is fine to have a significant amount of deviation when the capacity utilization for each OST
is low, but not so much when the utilization is high
Lustre* attempts to maintain OST balance
If striping policy causes a write to a full OST:
« Application will receive out-of-space error (ENOSPC)
« Even if other OSTs have free space available 'f h 4 h @)
.
3GB file
Stripe-width = 3
2 y 9 P 9 4
2GB free 0GB free 4GB free
98 Total filesystem space free = 6GB f

OST Imbalances - Query OST Capacity Utilization
(Linux df reports aggregated utilization k.
Lustre* Ifs df reports aggregated and individual target utilization
Ifs df
UuID 1K-blocks Used Available Use% Mounted on
bleefs-MDT0000_UUID 786256 35796 698032 5% /lustre[MDT:0]
bleefs-OSTO000 UUID 10446648 549016 9373280 6% [lustre[OST:0]
filesystem summary: 10446648 549016 9373280 6% lustre
Ifs df -i
UulID Inodes IUsed IFree IlUse% Mounted on
bleefs-MDT0000_UUID 524288 24 524264 0% [lustre[MDT:0]
bleefs-OSTO000_UUID 153600 88 153512 0% [lustre[OST:0]
filesystem summary: 524288 24 524264 0% [lustre
" # Ifs df -h (human readable format) 4

OST Imbalances - Automated Rebalancing

Disks are fastest when they are empty!

MDS has two (2) algorithms for object allocation

* Round Robin (RR)
= Allocates objects equally across OSTs
« Quality of Service (QOS)
= Uses weighted free space for allocation decisions

Only one of the algorithms is used for each new file

QOS tunables are configurable on the MDS

* Use “lctl get_param” and “Ictl set_param” to fetch and set parameters
- lov.*.qos_threshold _rr is free space skew between OSTs for QOS
- lov.*.qos_prio_free is weighting given to balance space vs. performance

File Allocation Algorithms — Round Robin

(Round Robin (RR)

* |s the faster algorithm of the two
+ Allocates objects sequentially across all the available OSTs
* Object allocation example using different stripe counts

= File 1: OSTO, OST1,0S5T2

= File 2: OST3, OST4, OST5, OST6

= File 3: OST7, OSTO, OST1, OST2, OST3, 0ST4, OSTS

= File 4. OST6, OST7,0STO, OST1, OST2

Note: The MDS does NOT order OSTs by their index number as shown above. Also, the ordered list is
not a static list, as it changes over time

RR always used when OST's are "equally full”

» "Equally full" is defined by the value in:
/proc/fs/lustre/lov/*/qos_threshold _rr (default value is 17%)
« Meaning: If OST % available space differs by less than 17%, RR is used

File Allocation Algorithms — Quality of Service

» Always used when OST's are not "equally full"
= OST % available space differs by qos_threshold_rr or more
» OST's are sorted by capacity utilization

Allocation of objects is based on the sorted list
= QOS uses a weighted free space algorithm
= % utilization, as well as other factors
» May, but more likely may not, allocate objects equally across OSTs
= Meaning, some OSTs may get more than one object, while others may get no objects

Allocation of objects to OST's is impacted by this variable
[proc/fs/lustre/lov/*/qos_prio_free (default valueis 91%)

= 0 means each OST is allocated once (priority for balance)

= 100 means OSTs are selected proportional to % utilization

= Less full OSTs are more likely to be selected more than once

Rebalancing OSTs Manually

(Use [fs_migrate script to re-balance OSTs

« Simple process

Client# Ifs_migrate [lustre <— Entire file system
Client# Ifs_migrate /lustre/bigfiles <— Subset of the file system

« What happens in the lfs_migrate process

= Objects “move” AWAY from more full OSTs, and TO less full OSTs
o While the Lustre* file reference stays in the same directory
o Keeps the same stripe count, stripe size, etc.

= Objects are redistributed by
o Creating new objects on different OSTs
o Deleting the old objects
- Before the deletion of the old objects, a “file” verification takes place

\ * In short: Copy, checksum, delete old, rename new 5

Rebalancing OSTs Manually - Examples

(These examples demonstrate how to use [fs_migrate to move objects away from full
OSTs, as well as to move objects to new or lesser filled OSTs

Example 1: Migrate objects away from OSTs
OSTO000[2,4] are too full from files from last 2 days
$ Ifs find /myth -type f -mtime -2 -size +2G\
--ost myth-OST0002 --ost myth-OST0004 | Ifs_migrate -y

Example 2: Migrate objects to OSTs
OSTO0Q[5,6] are newly added (empty) OSTs
- Move files TO the empty OST's
- Argument (!) means find files not on the named OSTs
$ Ifs find /myth -mtime +90 -size +20G -name “*.iso”
I --ost myth-OSTO0005 ! --ost myth-OSTO0O06 | Ifs_migrate -y

Storage Target(s) Not in Service

(Lustre* uses ldiskfs and ZFS* as storage target (backing) file systems

» Services associated with targets cannot start without the target mounted
» Services unable to start if backing file system corrupted

Causes
» Hard shutdown, hardware failure or errors, operational errors, etc.

Options
» Debugging the storage target(s)
* Run a file system check (e2fsck) to repair the ldiskfs targets

» Perform a “writeconf” to clear and regenerate the targets' config logs

 Restore from backup and reintegrate restored target(s) into the file system

Storage Target(s) Not in Service - Debugging

(Start by debugging the problem

» Attempt to mount the target in service mode

= Monitor client output as well as syslog/console output on the server
» Attempt to mount the target in non-service mode

= Pass the “-i nosvc” option to the mount command

° Mount occurs but Lustre* services do not start

= If the nosvc mount fails, run e2fsck in “non-fixing mode” (-n arg)
* |f e2fsck finds errors, a full e2fsck should be executed

= Covered later

Storage Target(s) Not in Service - Writeconf (10f2)

into a functional state

Performing a writeconf

» Erases the system configuration logs on all targets
+ Forces the regeneration of the configuration logs on mount
+ MGS gets a new copy of the file system information

Uses

* Recover from catastrophic damage to existing config logs

» Changing a server NID

« Mount an OST on an OSS that is not a designated failnode
Concerns

* File system must be down (all clients and servers un-mounted)

» Erases all pool definitions and changes made with conf_param
= Keep pool definitions and conf_param settings in a script!

(If the configuration logs get corrupted; a Lustre* writeconf can help get those logs back i

Storage Target(s) Not in Service - Writeconf 2.t 2)

(Al Lustre* services must be stopped

* Ensure that all clients and all management, metadata, and object storage targets are unmounted
« Ensure that failover software is stopped (if in use)
* Ensure Lustre* backing file systems are healthy

- mgs# tunefs.lustre --writeconf <MGT disk device>

- mds# tunefs.lustre --writeconf <MDT disk device>

- oss# tunefs.lustre --writeconf <OST disk device>
Restart Lustre* in the following order:

« MGS, MDT, OSTs, and then mount all clients

Storage Target(s) Not in Service - LFSCK (1 of2)

-

Most serious of the options - not a Linux fsck

Use when file system corruption exists

= Dangling inode — inode exists but missing object on OST
= Orphaned objects — OST has object but no MDT inode

= Corrupted MDT — multiple inodes reference objects

Use after MDT is restored / out of sync with OSTs

Should be run on a quiesced file system
= Fastest if run on an idle system

Time to run depends on size of file system
= Can take a very long time on a large file system

Rarely necessary to run Lustre* fsck
= Lustre* can work fine without it

Run in a script session to save the output

Storage Target(s) Not in Service - LFSCK @ of2)

(The Lustre* fsck (lfsck) process has several steps:

For all targets, run the Lustre* “e2fsck -f” to fix any problems with the underlying file system
On the MDS:
> Create a database of the MDS inodes - MDS DB
> Run e2fsck in non-fixing mode (-n) — create an MDS DB using the mdsdb option
o Make the MDS DB (a file) available on all the OSS's
For every OST:
> Run e2fsck in non-fixing mode (-n) — create a OST DB using the ostdb option
Mount all targets as type Lustre*
Mount the Lustre* file system on any client or MDS
Run the Lustre* lfsck from the node where the Lustre* file system is mounted
o Lustre*'s [fsck uses the mdsdb and ostdb's to resolve corruption

Summary

Summary

-

Preventing data loss

Types of Lustre* failures

Data collection

Troubleshooting Lustre* - Sample flowchart

Resolving specific Lustre* issues

Congratulations! You have completed:

