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1. Multithreading Consistency Guide 
1.1 Motivation 
The objective of the Multithreading Consistency Guide is to provide guidelines for 
developing efficient multithreaded applications across Intel-based symmetric 
multiprocessors (SMP) and/or systems with Hyper-Threading Technology. An application 
developer can use the advice in this document to improve multithreading performance 
and minimize unexpected performance variations on current as well as future SMP 
architectures built with Intel® processors. 

The first version of the Guide provides general advice on multithreaded performance. 
Hardware-specific optimizations have deliberately been kept to a minimum. In future 
versions of the Guide, topics covering hardware-specific optimizations will be added for 
developers willing to sacrifice portability for higher performance. 

1.2 Prerequisites  
Readers should have programming experience in a high-level language, preferably C, 
C++, and/or Fortran, though many of the recommendations in this document also apply to 
languages such as Java, C#, and Perl. Readers must also understand basic concurrent 
programming and be familiar with one or more threading methods, preferably OpenMP*, 
POSIX threads (also referred to as Pthreads), or the Win32* threading API. 

1.3 Scope 
The main objective of the Guide is to provide a quick reference to design and 
optimization guidelines for multithreaded applications on Intel® platforms. This Guide is 
not intended to serve as a textbook on multithreading nor is it a porting guide to Intel 
platforms. 

1.4 Organization 
The Multithreading Consistency Guide covers topics ranging from general advice 
applicable to any multithreading method to usage guidelines for Intel® software products 
to API-specific issues. Each topic in the Multithreading Consistency Guide is designed to 
stand on its own. However, the topics fall naturally into four categories: 

1. Programming Tools – This chapter describes how to use Intel software products to 
develop, debug, and optimize multithreaded applications. 

2. Application Threading – This chapter covers general topics in parallel performance 
but occasionally refers to API-specific issues. 

3. Synchronization – The topics in this chapter discuss techniques to mitigate the 
negative impact of synchronization on performance. 
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4. Memory Management – Threads add another dimension to memory management that 
should not be ignored. This chapter covers memory issues that are unique to 
multithreaded applications. 

Though each topic is a standalone discussion of some issue important to threading, many 
topics complement each other. Cross-references to related topics are provided throughout. 

Editors 
Henry Gabb and Prasad Kakulavarapu 

Authors 
Clay Breshears, Aaron Coday, Martyn Corden, Henry Gabb, Judi Goldstein, Bruce Greer, 
Grant Haab, Jay Hoeflinger, Prasad Kakulavarapu, Phil Kerly, Bill Magro, Paul Petersen, 
Sanjiv Shah, Vasanth Tovinkere 

Reviewers 
Clay Breshears, Henry Gabb, Grant Haab, Jay Hoeflinger, Peggy Irelan, Lars Jonsson, 
Prasad Kakulavarapu, Rajiv Kapoor, Bill Magro, Paul Petersen, Tim Prince, Sanjiv Shah, 
Vasanth Tovinkere 

Technical Writers 
Shihjong Kuo and Jack Thornton 

Intel® Multithreading Consistency Working Group Chairs 
Robert Cross, Michael Greenfield, Bill Magro 
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2. Intel® Software  
Development Products 

Intel software development products enable developers to rapidly thread their 
applications, assist in debugging, and tune multithreaded performance on Intel 
processors. The product suite supports multiple threading methods, listed here in 
increasing order of complexity – automatic parallelization, compiler-directed threading 
with OpenMP, and manual threading using standard libraries such as Pthreads and the 
Win32 threading API. 

This chapter introduces the components of Intel’s software development suite by 
presenting a high-level overview of each product and its key features. The Intel software 
development suite consists of the following products: 

 Intel® C/C++ and Fortran Compilers 

 Intel® Performance Libraries 

 Intel® VTune™ Performance Analyzer 

 Intel® Thread Checker 

 Intel Thread Profiler 

For more information on Intel software development products, please refer to the 
following web site: http://www.intel.com/software/products. 

The Intel® Software College provides training in all Intel products as well as instruction 
in multithreaded programming. Please refer to the following web site for more 
information on the Intel Software College: https://shale.intel.com/softwarecollege. 

Intel® C/C++ and Fortran Compilers  
In addition to high-level code optimizations, the Intel compilers also enable threading 
through automatic parallelization and OpenMP support. With automatic parallelization, 
the compiler detects loops that can be safely and efficiently executed in parallel and 
generates multithreaded code. OpenMP allows programmers to express parallelism using 
compiler directives and C/C++ preprocessor pragmas. 

Intel® Performance Libraries  
The Intel® Math Kernel Library (MKL) and Intel® Integrated Performance Primitives 
(IPP) provide consistent performance across all Intel® microprocessors. MKL provides 
support for BLAS, LAPACK, and vector math functions. All level-2 and level-3 BLAS 
functions are threaded with OpenMP. IPP is a cross-platform software library which 
provides a range of library functions for multimedia, audio and video codecs, signal and 
image processing, speech compression, and computer vision plus math support routines. 
IPP is optimized for Intel microprocessors and many of its component functions are 
already threaded with OpenMP. 

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/perflib/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/threading/tcwin/
http://www.intel.com/software/products/threading/tp/
http://www.openmp.org/
http://www.intel.com/software/products/mkl/mkl52/
http://www.intel.com/software/products/ipp/
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Intel® VTune™ Performance Analyzer 
The VTune Performance Analyzer helps developers tune their applications for optimum 
performance on Intel® architectures. The VTune performance counters monitor events 
inside Intel microprocessors to give a detailed view of application behavior, which helps 
identify performance bottlenecks. VTune provides time- and event-based sampling, call-
graph profiling, hotspot analysis, a tuning assistant, and many other features to assist 
performance tuning. It also has an integrated source viewer to link profiling data to 
precise locations in source code. 

Intel® Thread Checker 
The Intel Thread Checker facilitates debugging of multithreaded programs by 
automatically finding common errors such as storage conflicts, deadlock, API violations, 
inconsistent variable scope, thread stack overflows, etc. The non-deterministic nature of 
concurrency errors makes them particularly difficult to find with traditional debuggers. 
Thread Checker pinpoints error locations down to the source lines involved and provides 
stack traces showing the paths taken by the threads to reach the error. It also identifies the 
variables involved. 

Intel Thread Profiler 
The Intel Thread Profiler facilitates analysis of applications written using Win32 
threading API, Posix Threading API or OpenMP pragmas. The OpenMP Thread Profiler 
provides details on the time spent in serial regions, parallel regions, and critical sections 
and graphically displays performance bottlenecks due to load imbalance, lock contention, 
and parallel overhead in OpenMP applications. Performance data can be displayed for the 
whole program, by region, and even down to individual threads.  

The Win32 API or Posix Threads API Thread Profiler facilitates understanding the 
threading patterns in multi-threaded software by visual depiction of thread hierarchies 
and their interactions. It will also help identify and compare the performance impact of 
different synchronization methods, different numbers of threads, or different algorithms. 
Since Thread Profiler plugs in to the VTune Performance analyzer, multiple runs across 
different number of processors can be compared to determine the scalability profile. It 
also helps locate synchronization constructs that directly impact execution time and 
correlates to the corresponding source line in the application.  
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2.1 Automatic Parallelization with Intel Compilers 
Category 
Software 

Scope 

Applications built with the Intel compilers for deployment on symmetric multiprocessors 
(SMP) and/or systems with Hyper-Threading Technology (HT). 

Keywords 
Auto-parallelization, data dependences, programming tools, compiler 

Abstract 

Multithreading an application to improve performance can be a time consuming activity. 
For applications where most of the computation is carried out in simple loops, the Intel 
compilers may be able to generate a multithreaded version automatically. 

Background 

The Intel C++ and Fortran compilers have the ability to analyze the dataflow in loops to 
determine which loops can be safely and efficiently executed in parallel. Automatic 
parallelization can sometimes result in shorter execution times on SMP and HT-enabled 
systems. It also relieves the programmer from: 
 Searching for loops that are good candidates for parallel execution 
 Performing dataflow analysis to verify correct parallel execution 
 Adding parallel compiler directives manually. 

Adding the -Qparallel (Windows*) or -parallel (Linux*) option to the compile 
command is the only action required of the programmer. However, successful 
parallelization is subject to certain conditions that are described in the next section. 

The following Fortran program contains a loop with a high iteration count: 
PROGRAM TEST 

PARAMETER (N=100000000) 

REAL A, C(N) 

DO I = 1, N 

   A = 2 * I – 1 

   C(I) = SQRT(A) 

ENDDO 

PRINT*, N, C(1), C(N) 

END 

Dataflow analysis confirms that the loop does not contain data dependencies. The 
compiler will generate code that divides the iterations as evenly as possible among the 
threads at runtime. The number of threads defaults to the number of processors but can be 
set independently via the OMP_NUM_THREADS environment variable. The parallel speed-up 

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/compilers/
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for a given loop depends on the amount of work, the load balance among threads, the 
overhead of thread creation and synchronization, etc. but will, in general, be less than the 
number of threads. For a whole program, speed-up depends on the ratio of parallel to 
serial computation (see any good textbook on parallel computing for a description of 
Amdahl’s Law). 

Advice 

Three requirements must be met for the compiler to parallelize a loop. First, the number 
of iterations must be known before entry into a loop so that the work can be divided in 
advance. A while-loop, for example, usually cannot be made parallel. Second, there can 
be no jumps into or out of the loop. Third, and most important, the loop iterations must be 
independent. In other words, correct results most not logically depend on the order in 
which the iterations are executed. There may, however, be slight variations in the 
accumulated rounding error, as, for example, when the same quantities are added in a 
different order. In some cases, such as summing an array or other uses of temporary 
scalars, the compiler may be able to remove an apparent dependency by a simple 
transformation. 

Potential aliasing of pointers or array references is another common impediment to safe 
parallelization. Two pointers are aliased if both point to the same memory location. The 
compiler may not be able to determine whether two pointers or array references point to 
the same memory location, for example, if they depend on function arguments, run-time 
data, or the results of complex calculations. If the compiler cannot prove that pointers or 
array references are safe and that iterations are independent, it will not parallelize the 
loop, except in limited cases when it is deemed worthwhile to generate alternative code 
paths to test explicitly for aliasing at run-time. If the programmer knows that 
parallelization of a particular loop is safe, and that potential aliases can be ignored, this 
can be communicated to the compiler with a C pragma (#pragma parallel) or Fortran 
directive (!DIR$ PARALLEL). An alternative way in C to assert that a pointer is not aliased 
is to use the restrict keyword in the pointer declaration, along with the -Qrestrict 
(Windows) or -restrict (Linux) command-line option. However, the compiler will 
never parallelize a loop that it can prove to be unsafe. 

The compiler can only effectively analyze loops with a relatively simple structure. For 
example, it cannot determine the thread-safety of a loop containing external function calls 
because it does not know whether the function call has side effects that introduce 
dependences. Fortran 90 programmers can use the PURE attribute to assert that 
subroutines and functions contain no side effects. Another way, in C or Fortran, is to 
invoke inter-procedural optimization with the -Qipo (Windows) or -ipo (Linux) compiler 
option. This gives the compiler the opportunity to analyze the called function for side 
effects. 

When the compiler is unable to parallelize automatically loops that the programmer 
knows to be parallel, OpenMP should be used. In general, OpenMP is the preferred 
solution because the programmer typically understands the code better than the compiler 
and can express parallelism at a coarser granularity (see 3.2: Granularity and Parallel 
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Performance). On the other hand, automatic parallelization can be effective for nested 
loops, such as those in a matrix multiply. Moderately coarse-grained parallelism results 
from threading of the outer loop, allowing the inner loops to be optimized for fine-
grained parallelism using vectorization or software pipelining. 

Just because a loop can be parallelized does not mean that it should be parallelized. The 
compiler uses a threshold parameter to decide whether to parallelize a loop. The 
-Qpar_threshold[n] (Windows) and -par_threshold[n] (Linux) compiler options 
adjust this parameter. The value of n ranges from 0 to 100, where 0 means to always 
parallelize a safe loop and 100 tells the compiler to only parallelize those loops for which 
a performance gain is highly probable. The default value of n is 75. 

The switches -Qpar_report[n] (Windows) or -par_report[n] (Linux), where n is 1 to 
3, can be used to learn which loops were parallelized. Look for messages such as: 

test.f90(6) : (col. 0) remark:  LOOP WAS AUTO-PARALLELIZED 

The compiler will also report which loops could not be parallelized and the reason why, 
e.g.: 

serial loop: line 6 

flow data dependence from line 7 to line 8, due to “c” 

This is illustrated by the following example: 
void add (int k, float *a, float *b) 

{ 

   for (int i = 1; i < 10000; i++) 

      a[i] = a[i+k] + b[i]; 

} 

The compile command ‘icl -c -Qparallel -Qpar_report3 add.cpp’ results in the 
following messages: 

add.cpp 

   procedure: add 

   serial loop: line 2 

      anti data dependence assumed from line 2 to line 2, due to "a" 

      flow data dependence assumed from line 2 to line 2, due to "a" 

      flow data dependence assumed from line 2 to line 2, due to "a" 

Because the compiler does not know the value of k, it must assume that the iterations 
depend on each other, as for example if k equals -1. However, the programmer may know 
otherwise, due to specific knowledge of the application (e.g., k always greater than 
10000), and can override the compiler by inserting a pragma: 

void add (int k, float *a, float *b) 

{ 

   #pragma parallel 

      for (int i = 1; i < 10000; i++) 

         a[i] = a[i+k] + b[i]; 

} 
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The messages now show that the loop is parallelized: 
add.cpp 

add.cpp(3) : (col. 3) remark: LOOP WAS AUTO-PARALLELIZED. 

   procedure: add 

   parallel loop: line 3 

      shared: {"b", "a", "k"} 

      private: {"i"} 

      first private: { } 

      reductions: { } 

However, it is now the programmer’s responsibility not to call this function with a value 
of k that is less than 10000, as this could lead to incorrect results. 

Usage Guidelines 

Try building the computationally intensive kernel of your application with the -parallel 
(Linux) or -Qparallel (Windows) compiler switch. Enable reporting with -par_report3 
(Linux) or -Qpar_report3 (Windows) to find out which loops were parallelized and 
which loops could not be parallelized. For the latter, try to remove data dependencies 
and/or help the compiler disambiguate potentially aliased memory references. 

The transformations necessary to parallelize a loop may sometimes impact other high-
level optimizations (e.g., loop inversion). This can often be recognized from the compiler 
optimization reports. Always measure performance with and without parallelization to 
verify that a useful speedup is being achieved. 

If -openmp and -parallel are both specified on the same command line, the compiler 
will only attempt to parallelize those functions that do not contain OpenMP directives. 

For builds with separate compiling and linking steps, be sure to link the OpenMP runtime 
library when using automatic parallelization. The easiest way to do this is to use the 
compiler driver for linking, e.g.: icl -Qparallel (IA-32 Windows) or efc -parallel 
(Itanium® processor for Linux). 

References 

In this manual, see also: 

 2.2: Multithreaded Functions in the  
Intel Math Kernel Library 
2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 3.2: Granularity and Parallel Performance 

 3.5: Expose Parallelism by Avoiding or Removing Artificial Dependencies 
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See also: 

• The Intel® C++ Compiler User’s Guide or The Intel® Fortran Compiler User’s 
Guide, see “Compiler Optimizations/Parallelization/Automatic Parallelization” 

• “Efficient Exploitation of Parallelism on Pentium® III and Pentium 4 Processor-Based 
Systems”, Aart Bik, Milind Girkar, Paul Grey and Xinmin Tian, Intel Technology 
Journal 

• http://www.intel.com/technology/itj/q12001/articles/art_6.htm 

• The Intel Software College provides extensive training material on Intel software 
development products. 

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp
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2.2 Multithreaded Functions in the  
Intel Math Kernel Library 

Category 
Software 

Scope 

Applicable to 32-bit processors from the Pentium processor through the Intel® Xeon™ 
processor and to the Intel® Itanium® processor family on both the Windows and Linux 
operating systems 

Keywords 
Math Kernel Library, BLAS, LAPACK, FFT, programming tools 

Abstract 

A number of key and appropriate routines within the Intel Math Kernel Library (MKL) 
have been threaded to provide increased performance on systems with multiple 
processors in a shared-memory environment. We will show that the use of this library 
makes available to the user an easy way to get high performance on key algorithms both 
on single processor systems and on multiprocessor systems. The user need only tell the 
system how many processors to use. 

Background 

A great deal of scientific code can be parallelized, but not all of it will run faster on 
multiple processors on an SMP system because there is inadequate memory bandwidth to 
support the operations. Fortunately, important elements of technical computation in 
finance, engineering and science rely on arithmetic operations that can effectively use 
cache, which reduces the demands on the memory system. The basic condition that must 
be met in order for multiple processors to be effectively used on a task is that the reuse of 
data in cache must be high enough to free the memory bus for the other processors. 
Operations such as factorization of dense matrices and matrix multiplication (a key 
element in factorization) can meet this condition if the operations are structured properly. 

It may be possible to get a substantial percentage of peak performance on a processor 
simply by compiling the code, possibly along with some high-level code optimizations. 
However, if the resulting code relies heavily on memory bandwidth, then it probably will 
not scale well when the code is parallelized because, it will not scale well because there 
will be inadequate cache usage, and with that, inadequate memory bandwidth to supply 
all the processors. 

Widely used functions such as the level-3 BLAS (basic linear algebra subroutines) (all 
matrix-matrix operations), many of the LAPACK (linear algebra package) functions, and, 
to a lesser degree, DFT’s (discrete Fourier transforms) all can reuse data in cache 
sufficiently that multiple processors can be supported on the memory bus. 

http://www.intel.com/software/products/mkl/mkl52/
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Advice 

There are really two parts to the advice. First, wherever possible the user should employ 
the widely used, de facto standard functions from BLAS and LAPACK since these are 
available in source code form (the user can build them) and many hardware vendors 
supply optimized versions of these functions for their machines. Just linking to the high-
performance library may improve the performance of an application substantially, 
depending on the degree to which the application depends on LAPACK, and by 
implication, the BLAS (since LAPACK is built on the BLAS). 

MKL is Intel’s library containing these functions. The level-3 BLAS have been tuned for 
high performance on a single processor but have also been threaded to run on multiple 
processors and to give good scaling when more than one processor is used. Key functions 
of LAPACK have also been threaded. Good performance on multiple processors is 
possible just with the threaded BLAS but threading LAPACK improves performance for 
smaller-sized problems. The LINPACK benchmark, which solves a set of equations, 
demonstrates well the kind of scaling that threading of these functions can yield. This 
benchmark employs two high-level functions from LAPACK – a factorization and a 
solving routine. Most of the time is spent in the factorization. For the largest test problem, 
MKL achieved a 3.84 speedup on four processors, or 96% parallel efficiency. 

In addition to these threaded routines, the DFT’s are also threaded and scale very well. 
For example, on 1280x1280 single precision complex 2D transforms, the performance on 
the Itanium 2 processor for one, two, and four processors is respectively 1908, 3225 (1.69 
speedup), and 7183 MFLOPS (3.76 speedup). 

Usage Guidelines 

There are caveats in the use of these functions with the current releases of MKL (up 
through MKL 6.0 beta update) that have nothing to do with the library directly. Problems 
can arise depending on the environment. 

OpenMP is used to thread MKL. MKL uses the same OpenMP runtime library as the Intel 
compilers. Therefore, problems can arise when OpenMP applications that use MKL are 
not compiled with the Intel compilers. Specifically, the application will attempt to use 
two different OpenMP libraries, one from the non-Intel compiler and the other from 
MKL. When the OMP_NUM_THREADS environment variable is greater than one, chaos 
results when both libraries attempt to create threads and the program will fail. A future 
version of MKL will provide an alternate means of controlling thread creation. In the 
meantime, if this problem is encountered, the issue should be submitted to Intel through 
http://premier.intel.com for an interim solution. 

A second issue can arise on clusters with symmetric multiprocessor nodes1. MPI or PVM 
applications running on such clusters often create one process for each processor in a 
node. If these applications use MKL, threads may also be created by each MPI or PVM 

                                                 
1  A node is defined as a computer with an operating system image. In a typical cluster, an operating system 
is installed on each computer in the cluster. 
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process. This could result in over-subscription of processor resources within a node. For 
MPI or PVM applications that create one process per processor, it is recommended that 
OMP_NUM_THREADS be set to one. 

References 

In this manual, see also: 

 2.1: Automatic Parallelization with Intel Compilers 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 

See also: 

• The Intel Math Kernel Library can be obtained at 
http://developer.intel.com/software/products/perflib/. 

• The Intel Software College provides extensive training material on Intel software 
development products. 

• Information about the BLAS and LAPACK can be obtained at http://www.netlib.org. 

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp


 
 

Multithreading Consistency Guide   15 

2.3 Avoiding and Identifying False Sharing Among 
Threads with the VTune Performance Analyzer 

Category 
Software 

Scope 

General multithreading 

Keywords 
VTune, cache coherence, data alignment, profiler, programming tools 

Abstract 

In symmetric multiprocessors (SMP), each processor has a local cache. The memory 
system must guarantee cache coherence. False sharing occurs when threads on different 
processors modify different variables that reside on the same cache line. Each write will 
invalidate the line in other caches, forcing an update and hurting performance. This topic 
covers methods to detect and correct false sharing using the Intel VTune Performance 
Analyzer. 

Background 

False sharing is a well-known performance issue on SMP where each processor has a 
local cache. It occurs when threads on different processors modify variables that reside 
on the same cache line, as illustrated in. The reason this is called false sharing is because 
each thread is not actually sharing access to the same variable. Access to the same 
variable, or true sharing, would require programmatic synchronization constructs to 
ensure ordered data access. 

The source line highlighted in red in the following example code causes false sharing: 
double sum=0.0, sum_local[NUM_THREADS]; 

 

#pragma omp parallel num_threads(NUM_THREADS) 

{ 

   int me = omp_get_thread_num(); 

   sum_local[me] = 0.0; 

 

   #pragma omp for 

   for (i = 0; i < N; i++) 

      sum_local[me] += x[i] * y[i]; 

 

   #pragma omp atomic 

   sum += sum_local[me]; 

} 

http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/
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There is a potential for false sharing on array sum_local. This array is dimensioned 
according to the number of threads and is small enough to fit in a single cache line. When 
executed in parallel, the threads modify different, but adjacent, elements of sum_local 
(the source line highlighted in red), which invalidates the cache line for all processors. 

 

 
Figure 1: False sharing occurs when threads on different processors modify variables that reside on 
the same cache line. This invalidates the cache line and forces a memory update to maintain cache 

coherency. This is illustrated in the diagram (top). Threads 0 and 1 require variables that are adjacent 
in memory and reside on the same cache line. The cache line is loaded into the caches of CPU 0 and 
CPU 1 (gray arrows). Even though the threads modify different variables (red and blue arrows), the 

cache line is invalidated. This forces a memory update to maintain cache coherency. 

To ensure data consistency across multiple caches, Intel multiprocessor-capable 
processors follow the MESI (Modified/Exclusive/Shared/Invalid) protocol. On first load 
of a cache line, the processor will mark the cache line as ‘Exclusive’ access. As long as 
the cache line is marked exclusive, subsequent loads are free to use the existing data in 
cache. If the processor sees the same cache line loaded by another processor on the bus, it 
marks the cache line with ‘Shared’ access. If the processor stores a cache line marked as 
‘S’, the cache line is marked as ‘Modified’ and all other processors are sent an ‘Invalid’ 
cache line message. If the processor sees the same cache line which is now marked ‘M’ 
being accessed by another processor, the processor stores the cache line back to memory 
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and marks its cache line as ‘Shared’. The other processor that is accessing the same cache 
line incurs a cache miss.  

The frequent coordination required between processors when cache lines are marked 
‘Invalid’ require cache lines to be written to memory and subsequently loaded. False 
sharing increases this coordination and can significantly degrade application 
performance. 

Advice 

The basic advice of this section is to avoid false sharing in multithreaded applications. 
However, detecting false sharing when it is already present is another matter. The first 
method of detection is through code inspection. Look for instances where threads access 
global or dynamically allocated shared data structures. These are potential sources of 
false sharing. Note that false sharing can be obscure in that threads are accessing 
completely different global variables that just happen to be relatively close together in 
memory. Thread-local storage or local variables can be ruled out as sources of false 
sharing. 

A better detection method is to use the Intel VTune Performance Analyzer. For 
multiprocessor systems, configure VTune analyzer to sample the ‘2nd Level Cache 
Load Misses Retired’ event. For Hyper-Threading enabled processors, configure 
VTune analyzer to sample the ‘Memory Order Machine Clear’ event. If you have a high 
occurrence and concentration of these events at or near load/store instructions within 
threads, you likely have false sharing. Inspect the code to determine the likelihood that 
the memory locations reside on the same cache line. 

Once detected, there are several techniques to correct false sharing. The goal is to ensure 
that variables causing false sharing are spaced far enough apart in memory that they 
cannot reside on the same cache line. Not all possible techniques are discussed here. 
Below are three possible methods. 

One technique is to use compiler directives to force individual variable alignment. The 
following source code demonstrates the compiler technique using ‘__declspec 
(align(n))’ where n equals 16 (128 byte boundary) to align the individual variables on 
cache line boundaries.  

__declspec (align(16)) int thread1_global_variable; 

__declspec (align(16)) int thread2_global_variable; 

When using an array of data structures, pad the structure to the end of a cache line to 
ensure that the array elements begin on a cache line boundary. If you cannot ensure that 
the array is aligned on a cache line boundary, pad the data structure to twice the size of a 
cache line. The following source code demonstrates padding a data structure to a cache 
line boundary and ensuring the array is also aligned using the compiler ‘__declspec 
(align(n))’ statement where n equals 16 (128 byte boundary). If the array is 
dynamically allocated, you can increase the allocation size and adjust the pointer to align 
with a cache line boundary. 
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struct ThreadParams 

{ 

 // For the following 4 variables: 4*4 = 16 bytes 

 unsigned long thread_id; 

 unsigned long v;   // Frequent read/write access variable 

 unsigned long start; 

 unsigned long end; 

   // expand to 128 bytes to avoid false-sharing  

   // (4 unsigned long variables + 28 padding)*4 = 128 

 int padding[28]; 

}; 

 

__declspec (align(16)) struct ThreadParams Array[10]; 

It is also possible to reduce the frequency of false sharing by using thread-local copies of 
data. The thread-local copy can be read and modified frequently, and the result copied 
back to the data structure only when complete. The following source code demonstrates 
using a local copy to avoid false sharing. 

struct ThreadParams 

{ 

   // For the following 4 variables: 4*4 = 16 bytes 

   unsigned long thread_id; 

   unsigned long v;   //Frequent read/write access variable 

   unsigned long start; 

   unsigned long end; 

}; 

 

void threadFunc(void *parameter)  

{ 

   ThreadParams *p = (ThreadParams*) parameter; 

   // local copy for read/write access variable 

   unsigned long local_v = p->v; 

 

   for(local_v = p->start; local_v < p->end; local_v++) 

   { 

      // Functional computation 

   } 

   p->v = local_v; // Update shared data structure only once 

} 

Usage Guidelines 

Avoid false sharing but use these techniques sparingly. Overuse of these techniques, 
where they are not needed, can hinder the effective use of the processor’s available cache. 

Even with multiprocessor shared-cache designs, it is recommended that you avoid false 
sharing. The small potential gain for trying to maximize cache utilization on multi-
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processor shared cache designs does not generally outweigh the software maintenance 
costs required to support multiple code paths for different cache architectures. 

References 

In this manual, see also: 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 5.3: Offset Thread Stacks to Avoid Cache Conflicts on Intel Processors with 
Hyper-Threading Technology 

The Intel Software College provides extensive training material on Intel software 
development products. The online course “Getting Started with the VTune Performance 
Analyzer” is recommended with respect to the present topic. 

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp
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2.4 Find Multithreading Errors with the  
Intel Thread Checker  

Category  
Software 

Scope  

Automated debugging of multithreaded applications in the Windows and Linux 
environments 

Keywords  
Thread Checker, VTune, debugger, programming tools, race conditions 

Abstract  

The Intel Thread Checker, one of the Intel Threading Tools, is used to debug 
multithreading errors in applications that use Win32, PThreads or OpenMP threading 
models. Thread Checker automatically finds storage conflicts, deadlock or conditions that 
could lead to deadlock, thread stalls, abandoned locks, and more. 

Background 

Multithreaded programs have temporal component that makes them more difficult to 
debug than serial programs. Concurrency errors (e.g., data races, deadlock) are difficult to 
find and reproduce because they are non-deterministic. If the programmer is lucky, the 
error will always crash or deadlock the program. If the programmer is not so lucky, the 
program will execute correctly 99% of the time, or the error will result in slight numerical 
drift that only becomes apparent after long execution times. 

Traditional debugging methods are poorly suited to multithreaded programs. Debugging 
probes (i.e., print statements) often mask errors by changing the timing of multithreading 
programs. Executing a multithreaded program inside a debugger can give some 
information, provided the bugs can be consistently reproduced. However, the 
programmer must sift through multiple thread states (i.e., instruction pointer, stack) to 
diagnose the error. 

The Intel Thread Checker is designed specifically for debugging multithreaded programs. 
It finds the most common concurrent programming errors and pinpoints their locations in 
the program. All error examples shown below use examples from the Win32 application 
domain: 
 Storage conflicts – The most common concurrency error involves unsynchronized 

modification of shared data. For example, multiple threads simultaneously 
incrementing the same static variable can result in data loss but is not likely to crash 
the program. The next section shows how to use the Intel Thread Checker to find such 
errors. 

http://www.intel.com/software/products/threading/tcwin/
http://www.intel.com/software/products/threading
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 Deadlock – When a thread must wait for a resource or event that will never occur, it is 
deadlocked. Bad locking hierarchies are a common cause. For example, a thread tries 
to acquire locks A and B, in that order, while another thread tries to acquire the locks 
in the reverse order. Sometimes the code executes without deadlock (Table 2.1). 

Table 2.1: A bad locking hierarchy can sometimes execute without deadlock. 

Time Thread 1 Thread 2 

T0 Acquire lock A  

T1 Acquire lock B  

T2 Perform task  

T3 Release lock B  

T4 Release lock A  

T5  Acquire lock A 

T6  Acquire lock B 

T7  Perform task 

T8  Release lock B 

T9  Release lock A 

However, this locking hierarchy can also deadlock both threads (Table 2.2). Both 
threads are waiting for resources that they can never acquire. Thread Checker 
identifies deadlock and the potential for deadlock, as well as the contested resources. 

Table 2.2: Deadlock due to a bad locking hierarchy. 

Time Thread 1 Thread 2 

T0 Acquire lock A  

T1  Acquire lock B 

T2  Wait for lock A 

T3 Wait for lock B  

 Abandoned locks – Thread Checker detects when a thread terminates while holding a 
Win32 critical section or mutex variable because this can lead to deadlock or 
unexpected behavior. Threads waiting on an abandoned critical section are 
deadlocked. Abandoned mutexes are reset. 

 Lost signals – Thread Checker detects when a Win32 event variable is pulsed (i.e., the 
Win32 PulseEvent function) when no threads are waiting on that event because this 
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is a common symptom of deadlock. For example, the programmer expects a thread to 
be waiting before an event is pulsed. If the event is pulsed before the thread arrives, 
the thread may wait for a signal that will never come. 

Thread Checker also finds many other types of errors, including API usage violations, 
thread stack overflows, and scope violations. 

Advice 

Use the Intel Thread Checker to facilitate debugging of OpenMP, PThreads and Win32 
multithreaded applications. Errors in multithreaded programs are harder to find than 
errors in serial programs not only because of the temporal component mentioned above, 
but also because such errors are not restricted to a single location. Threads operating in 
distant parts of the program can cause errors. Thread Checker can save an enormous 
amount of debugging time, as illustrated by the simple example shown below. 

To prepare a program for Thread Checker analysis, compile with optimization disabled 
and debugging symbols enabled. Link the program with the /fixed:no option so that the 
executable can be relocated. Thread Checker instruments the resulting executable image 
when it is run under the VTune Performance Analyzer, Intel’s performance tuning 
environment. For binary instrumentation, either the Microsoft Visual C++ compiler 
(version 6.0) or the Intel C++ and Fortran compilers (version 7.0 or later) may be used. 
However, the Intel compilers support source-level instrumentation (the /Qtcheck option), 
which provides more detailed information. 

The following program contains a subtle race condition: 
#include <stdio.h> 

#include <windows.h> 

 

#define THREADS 4 

 

DWORD WINAPI ReportID (LPVOID my_id) 

{ 

   printf (“Thread %d reporting\n”, *(int *)my_id); 

} 

 

int main (int argc, char *argv[]) 

{ 

   int id; 

   HANDLE h[THREADS]; 

   DWORD barrier, thread_id; 

 

   for (id = 0; id < THREADS; id++) 

      h[id] = CreateThread (NULL, 

                            0, 

                            ReportID, 

                            (LPVOID)&id, 

                            0, 
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                            &thread_id); 

 

   barrier = WaitForMultipleObjects (THREADS, h, TRUE, INFINITE); 

} 

The program is supposed to create four threads that report their identification numbers. 
Sometimes the program gives the expected output: 

Thread 0 reporting 

Thread 1 reporting 

Thread 2 reporting 

Thread 3 reporting 

Threads do not always report in the order of their identification numbers but all threads 
print a message. Other times, some threads appear to report more than once, others do not 
report at all, and a mysterious new thread appears, e.g.: 

Thread 2 reporting 

Thread 3 reporting 

Thread 3 reporting 

Thread 4 reporting 

Thread Checker easily finds the error in this program and shows the statements 
responsible (Figure 2): 
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Figure 2: The Intel Thread Checker 

The error description (see the red box in Figure 2) explains the storage conflict in plain 
English – a thread is reading variable my_id on line-7 while another thread is 
simultaneously writing variable id on line-15. The variable my_id in function ReportID 
is a pointer to variable id, which is changing in the main routine. The programmer 
mistakenly assumes that a thread begins executing the moment it is created. However, the 
operating system may schedule threads in any order. The main thread can create all 
worker threads before any of them begin executing. Correct this error by passing each 
thread a pointer to a unique location that is not changing. 
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Usage Guidelines 

Intel Thread Checker currently is available for the 32-bit versions of the Microsoft 
Windows 2000 and Windows XP operating systems, 32-bit and 64-bit versions of Linux 
operating systems. Thread Checker supports OpenMP, the Win32 threading API and the 
POSIX PThreads threading API. The Intel compilers are required for OpenMP support. 
They are also required for more detailed source-level instrumentation on 32-bit operating 
systems and the only mode available on 64-bit Linux operating systems.  

Note that the Intel Thread Checker performs dynamic analysis, not static analysis. Thread 
Checker only analyzes code that is executed. Therefore, multiple analyses exercising 
different parts of the program may be necessary to ensure adequate code coverage. 

Thread Checker instrumentation increases the CPU and memory requirements of an 
application so choosing a small but representative test problem is very important. 
Workloads with runtimes of a few seconds are best. Workloads do not have to be realistic. 
They just have to exercise the relevant sections of multithreaded code. For example, 
when debugging an image processing application, a 10 x 10 pixel image is sufficient for 
Thread Checker analysis. A larger image would take significantly longer to analyze but 
would not yield additional information. Similarly, when debugging a multithreaded loop, 
reduce the number of iterations. 

References 

• The Intel Thread Checker web site 

• “Getting Started with the Intel Threading Tools,” distributed with  
Intel Threading Tools. 

• “Intel Thread Checker Lab,” distributed with the Intel Threading Tools. 

• The Intel Software College provides extensive training material on Intel software 
development products. The online course “Using the Intel Threading Tools” is 
recommended with respect to the present topic. 

• Using Intel Thread Profiler for Win32 Threads: Philosophy and Theory  
• Using Intel Thread Profiler for Win32 Threads: Nuts and Bolts 

 

 

 

 

 

http://www.intel.com/software/products/threading/tcwin/
https://shale.intel.com/SoftwareCollege/CourseCatalog.asp
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/84200.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/84766.htm
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2.5 Using Thread Profiler to Evaluate  
OpenMP Performance 

Category 
Software 

Scope 

OpenMP performance tuning on Windows platforms 

Keywords 
Profiler, programming tools, OpenMP, VTune, parallel overhead 

Abstract 

Thread Profiler is one of the Intel Threading Tools. It is used to evaluate performance of 
OpenMP threaded codes, identify performance bottlenecks, and gauge scalability of 
OpenMP applications. 

Background 

Once an application has been debugged and is running correctly, engineers often turn to 
performance tuning. Traditional profilers are of limited use for tuning OpenMP for a 
variety of reasons (unaware of OpenMP constructs, cannot report load imbalance, do not 
report contention for synchronization objects). 

Thread Profiler is designed to understand OpenMP threading constructs and measure 
their performance over the whole application run, within each OpenMP region, and down 
to individual threads. Thread Profiler is able to detect and measure load imbalance (from 
uneven amounts of computation assigned to threads), time spent waiting for 
synchronization objects as well as time spent in critical regions, time spent at barriers, 
and time spent in the Intel OpenMP Runtime Engine (parallel overhead). 

Advice 

To prepare an OpenMP application for use with the Thread Profiler, build an executable 
that includes the OpenMP profiling library (use /Qopenmp_profile compiler switch). 
When setting up a Thread Profiler Activity in VTune Performance Analyzer, be sure to 
use a full, production data set running with an appropriate number of threads. Best results 
for production performance tuning will be obtained using a representative data set that 
exercises the code as close to normal as possible. Small, test data sets may not fully 
exercise the parallelism of the code or the interaction between threads, which can lead to 
overlooking serious performance problems. While the execution time will be increased 
by the instrumentation of the OpenMP threads, this increase is minimal. 

Once the application has completed execution, summary performance results are 
displayed in the Thread Profiler window. There are three graphical views of the 
performance data that can be used. Each is accessible from separate tabs found below the 
Legend pane. These three views are summarized below: 

http://www.intel.com/software/products/threading/tp/
http://www.intel.com/software/products/threading
http://www.openmp.org/
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 Summary View – This view is the default for the Thread Profiler (Figure 3). The 
histogram bar is divided into a number of regions indicating the average amount 
of time the application spent in the observed performance category. These 
performance categories are: 

o parallel execution (time within OpenMP parallel regions) in green, 
o sequential time in blue, 
o idle time due to load imbalance between threads in red, 
o idle time waiting at barriers in purple, 
o idle time spent waiting to gain access to synchronization objects in orange, 
o time spent executing within critical regions in gray, and 
o parallel (time spent in OpenMP Runtime Engine) and sequential (time 

spent in OpenMP regions that are not executed in parallel) overheads in 
yellow and olive, respectively. 

Left clicking on the bar will populate the legend with numerical details about total 
execution time for each category over the entire run of the application. 

 

 
Figure 3: Summary View in Thread Profiler 

Of course, the best possible display is a histogram that is mostly green with minimal 
amounts of blue sequential time. Large amounts of other colors within the summary 
histogram are an indication of performance problems. The severity of any problems 
noted will depend on the type of problem cited and the actual amount of time spent in 
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that category. Relatively small performance problems may be tolerable, especially if 
it is determined that no easy fix would be possible due to algorithmic implementation. 

The Summary View can also be used to compare scalability of an application with 
varying numbers of threads. Just drag and drop different activity runs of the same 
code with the same data executed with different numbers of threads onto the 
Summary View. Besides showing scalability, some performance obstacles may 
manifest themselves as the number of threads is varied. For example, lock contention 
often increases as more threads are added, which can prevent some applications from 
scaling well even when adequate resources are available. 

After deciding to pursue a performance problem seen in the Summary View, a more 
detailed analysis will need to be done in order to locate and identify the source of the 
problem. Examining the timing data through the Regions View does this. 
 Regions View: This view breaks down the summary data by each region within 

the source code (Figure 4). These include the OpenMP parallel regions and the 
surrounding sequential regions. The Regions View gives you the power to 
determine which parts of the code are causing the performance problems, whether 
it is one single region or all regions. Observation of large sequential regions could 
be used to identify portions of the code for further parallel development. Click on 
regional histograms in order to populate the Legend pane with numerical details 
about the time spent within each performance category. Multiple regions can be 
selected and compared in the Legend. 

 
Figure 4: Regions View and Legend in Thread Profiler 
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The Figure 4 shows a set of parallel and serial regions from an application. This 
view contains one parallel region (A0R39) that accounts for much of the time 
spent in the application, several smaller parallel regions, and several sequential 
regions. The sequential regions shown are too small to consider further 
parallelization. 

Right-clicking on a selected region histogram (surrounded with blue outline) pops 
up a menu dialog that includes an option to display source code. Thus, once 
you’ve determined a region that you wish to tune, you can find the corresponding 
source code for assessment of the cause and devise a solution. The source code 
locations for regions are also noted in the Legend pane. 

 Threads View: The Threads View gives a more detailed presentation of timing 
characteristics of the application (Figure 5). A separate histogram will be present 
for each thread that was used in the execution. The data will, by default, be 
summary data for the entire run broken down to the performance of each thread. 
The master thread will be the only one with sequential time; all other thread 
histograms will be shorter by this sequential time. 

 
Figure 5: Threads View in Thread Profiler 

By starting with the Regions view and first filtering out all but the relevant region(s) 
of interest, the Threads View can then be used to focus on individual thread 
performance within specific regions. This level of detail can give more clues as to the 
cause of performance problems. For instance, do all threads exhibit roughly the same 
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amount of performance overhead? Is the performance overhead only exhibited within 
a single thread? Or is there some other pattern of performance being seen? 

In Figure 5, the Threads View has been filtered down to a single parallel region. You 
can see a “stair step” of load imbalance across the four threads used in the region. 
This performance relationship indicates a regular pattern of increasing computation 
over loop iterations. That is, successive loop iterations require more processing time 
than previous iterations. OpenMP uses static scheduling by default. Since the rise in 
computation time between iterations is fairly constant, static scheduling with a small 
chunk size will achieve good load balance and fix the performance bottleneck. If the 
variation of work for each loop iteration were less predictable, dynamic scheduling of 
the iterations would be more appropriate. 

Usage Guidelines  

The Thread Profiler currently supports OpenMP threaded codes running on Microsoft 
Windows operating systems for 32-bit architectures and Linux operating systems running 
on 32-bit and 64-bit architectures. The Intel 7.1 compilers or higher are needed to be able 
to compile for OpenMP threading and to have the OpenMP profiling library available. 

References 

In this manual, see also: 

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune 
Performance Analyzer 

 3.2: Granularity and Parallel Performance 

 3.3: Load Balance and Parallel Performance  

 3.8: Exploiting Data Parallelism in Ordered Data Streams 

 3.9: Manipulate Loop Parameters to Optimize OpenMP Performance 

 4.1: Managing Lock Contention, Large and  
Small Critical Sections  

 5.2: Use Thread-Local Storage to  
Reduce Synchronization 

 

See also: 

• The Thread Profiler web site 

• “Getting Started with the Intel Threading Tools,” distributed with Intel Threading 
Tools. 

• The Intel Software College provides extensive training material on Intel software 
development products. The online course “Using the Intel Threading Tools” is 
recommended with respect to the present topic. 

http://www.intel.com/software/products/threading/tp/
https://shale.intel.com/SoftwareCollege/CourseCatalog.asp
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3. Application Threading 
This chapter covers general topics in application threading, particularly with respect to 
parallel performance. The topics occasionally refer to API-specific issues but much of the 
advice applies to any parallel programming method. 

The chapter begins with a discussion of data vs. functional decomposition. The opening 
topic gives advice on choosing the most appropriate threading method for either parallel 
model. This is followed by topics on granularity and load balance. These are critical 
issues in parallel programming because they directly affect the efficiency and scalability 
of a multithreaded application. 

Tailoring thread behavior to a particular runtime environment is often overlooked in 
multithreaded programs. On a single-user system, for example, allowing idle threads to 
spin may be more efficient than putting them to sleep. On shared systems, however, 
forcing idle threads to yield the CPU may be more efficient. The issues involved in 
threading for high turnaround vs. high throughput are discussed. 

Many algorithms contain optimizations that benefit serial performance but inadvertently 
introduce dependencies that inhibit parallelism. It is often possible to remove such 
dependencies through simple transformations. Techniques for exposing parallelism by 
avoiding or removing artificial dependencies are discussed. 

The next two topics describe how to choose an appropriate number of threads and how to 
minimize overhead due to thread creation. Creating too many threads hurt performance 
for many reasons, including increased system overhead, decreased granularity, increased 
lock contention, etc. Therefore, it is a good idea to control the number of threads through 
runtime heuristics and thread pools. Heuristics allow the programmer to create threads 
based on workload requirements that may not be known until runtime. Thread pools to 
limit the overhead of thread creation is described. The advice in this topic is primarily for 
applications threaded with Pthreads or the Win32 thread API. Thread pools are already 
used in the Intel OpenMP implementation. 

The chapter closes with techniques for handling order-dependent output and loop 
optimizations designed to boost OpenMP performance. 
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3.1 Choosing an Appropriate Threading Method: 
OpenMP Versus Explicit Threading 

Category 
Application Threading 

Scope 

General multithreading 

Keywords 
OpenMP, POSIX threads, Pthreads, Win32 threads, data parallelism, functional decomposition 

Abstract 

Of the two most common approaches to multithreading, compiler-based and library-based 
methods, neither is appropriate to all situations. Compiler-based threading methods like 
OpenMP are best suited to data parallelism. Methods based on threading libraries, 
primarily the Win32 and POSIX thread API’s, are best suited to functional 
decomposition. 

Background 

Programmers have used threads for many years to express the natural concurrency of 
their applications. For example, threads allow an application to continue processing while 
still receiving GUI input. Thus, the application is not frozen from the user’s perspective. 
On a symmetric multiprocessor and/or CPU’s with Hyper-Threading Technology, threads 
can significantly improve performance through parallel computing. 

Broadly speaking, two threading methods are available (i.e., library-based and compiler-
directed), each suited to a particular type of multithreaded programming. Library-based 
threading methods (the Win32 multithreading API on Windows and the Pthreads library 
on Linux) require the programmer to manually map concurrent tasks to threads. There is 
no explicit parent-child relationship between the threads – all threads are peers. This 
makes the threading model very general. The libraries also give the programmer control 
over low-level aspects of thread creation, management, and synchronization. This 
flexibility is the key advantage of library-based threading methods but it comes at a price. 
Threading an existing serial application with a library-based method is an invasive 
process requiring significant code modifications. Concurrent tasks must be encapsulated 
in functions that can be mapped to threads. POSIX and Win32 threads only accept one 
argument so it is often necessary to modify function prototypes and data structures. 

OpenMP, a compiler-based threading method, provides a high-level interface to the 
underlying thread libraries. With OpenMP, the programmer uses pragmas (or directives in 
the case of Fortran) to describe parallelism to the compiler. This removes much of the 
complexity of explicit threading because the compiler handles the details. OpenMP is less 
invasive too. Significant source code modifications are not usually necessary. A non-

http://www.openmp.org/
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OpenMP compiler simply ignores the pragmas, leaving the underlying serial code intact. 
However, much of the fine control over threads is lost. Among other things, OpenMP 
does not give the programmer a way to set thread priorities or perform event-based or 
inter-process synchronization. Also, OpenMP is a fork-join threading model with an 
explicit master-worker relationship among threads. This narrows the range of problems 
for which OpenMP is suited. 

A typical word processor has many opportunities for concurrency. While the user is 
typing, several background tasks occur simultaneously without interrupting keyboard 
input. For example, the application periodically saves changes, checks spelling and 
grammar, and prints documents. This is a good example of functional decomposition, in 
which different tasks are mapped to threads for concurrent execution. The number of 
tasks determines the degree of concurrency. The generality and fine control of library-
based methods makes them better suited to expressing this type of concurrency. For 
example, the thread handling keyboard input would be given higher priority than threads 
handling other, less critical tasks like printing. 

OpenMP is designed to express data parallelism, in which threads perform the same task 
on different data. A web server is a good example of a data parallel application. The same 
task (servicing HTTP requests) is performed repeatedly on different data (web pages). In 
a data parallel problem, the amount of data determines the degree of parallelism. The 
spell checker in a word processor is a good example. The words of the document can be 
divided among threads, with each thread performing its comparisons independently. The 
amount of parallel work increases with the number of words in the document. 

Advice 

In general, OpenMP is best suited to expressing data parallelism while explicit threading 
methods (i.e., the Pthreads library and the Win32 threading API) are best suited to 
functional decomposition. Do not try to shoehorn explicit threading methods into a data 
parallel problem or vice versa, as the following examples illustrate. The following 
program calculates by numerical integration. The parallelism can be expressed with a 
single OpenMP pragma. (As mentioned previously, a non-OpenMP compiler will simply 
ignore the pragma, leaving the underlying serial code intact.) 

#include <stdio.h> 

#define INTERVALS 100000 

 

int main () 

{ 

   int i; 

   float h, x, pi = 0.0; 

   h = 1.0 / INTERVALS; 

 

#pragma omp parallel for private(x) reduction(+:pi) 

   for (i = 0; i < INTERVALS; i++) 

   { 

      x = h * (float(i) – 0.5); 

      pi += 4.0 / (1.0 + x * x); 
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   } 

   pi *= h; 

   printf (“Pi = %f\n”, pi); 

} 

It is possible to express data parallelism with explicit threading methods like Pthreads or 
the Win32 threading API but it is not convenient: 

#include <stdio.h> 

#include <pthreads.h> 

 

#define INTERVALS 100000 

#define THREADS 4 

 

float global_sum = 0.0; 

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER; 

void *pi_calc (void *num); 

 

int main () 

{ 

   pthread_t tid[THREADS];   

   int i, t_num[THREADS]; 

 

   for (i = 0; i < THREADS; i++) 

   { 

      t_num[i] = i; 

      pthread_create (&tid[i], NULL, pi_calc, &t_num[i]); 

   } 

 

   for (i = 0; i < THREADS; i++) 

      pthread_join (tid[i], NULL); 

 

   printf (“Pi = %f\n”, global_sum); 

} 

 

void *pi_calc (void *num) 

{ 

   int i, myid, start, end; 

   float h, x, my_sum = 0.0; 

 

   myid = *(int *)num; 

   h = 1.0 / INTERVALS; 

   start = (INTERVALS / THREADS) * myid; 

   end = start + (INTERVALS / THREADS); 

 

   for (i = start; i < end; i++) 

   { 

      x = h * ((float)i - 0.5); 
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      my_sum += 4.0 / (1.0 + x * x); 

   } 

   pthread_mutex_lock (&global_lock); 

      global_sum += my_sum; 

   pthread_mutex_unlock (&global_lock); 

} 

The size and complexity of the program is increased significantly and the original serial 
code is barely recognizable. Notice how the computation must be encapsulated in a 
function so that it can be mapped to threads. Within this function, the work must be 
manually divided among the threads. 

Explicit threading methods are designed to express functional decomposition, where 
work is divided by task rather than data. With explicit threading methods, the 
programmer manually maps concurrent tasks to threads. Consider the standard producer-
consumer problem described in most concurrent programming textbooks. Coding a 
producer-consumer is straightforward with explicit threading API’s because the 
programmer can dynamically create and destroy threads. Also, synchronization is not 
limited to just data access. Threads can be made to wait for events. The lack of event-
based synchronization makes even this simple problem difficult to code efficiently in 
OpenMP. The OpenMP sections pragma provides some ability to code functional 
decomposition but the inherent fork-join threading model limits flexibility and scalability. 
Specifically, the number of parallel sections is fixed at compile-time so the number of 
producer and/or consumer threads cannot change dynamically at runtime as processor 
resources change. OpenMP also lacks the ability to assign priorities to threads. 

Usage Guidelines 

Portability should also be considered when choosing between OpenMP, Pthreads, or 
Win32 threads. OpenMP-compliant compilers are available for most operating systems, 
including Windows and Linux. Thread libraries, on the other hand, are not portable. 
Obviously, the Win32 API is only available on Microsoft operating systems. Even then 
there are slight differences in supported features between different versions of Windows. 
The same can be said of Pthreads on Linux and various other flavors of Unix. 

Scalability should be taken into account when threading an application for parallel 
performance. Does parallelism increase with the number of independent tasks, the 
amount of data to be processed, or both? Consider an application with only two compute-
intensive, independent tasks. On a multiprocessor system with four CPU’s, for example, 
mapping the tasks to Win32 or POSIX threads will only use half of the system. If the two 
tasks are data parallel, adding OpenMP to each task might be a better solution. However, 
if one task is data parallel and the other is not, an OpenMP-only solution will not give full 
system utilization (see Amdahl’s Law). A good solution for this example might be to map 
both independent tasks to a Win32 or POSIX thread then use OpenMP to express data 
parallelism within each task. 
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3.2 Granularity and Parallel Performance 
Category 
Application Threading 

Scope 

General multithreading and performance 

Keywords 
Granularity, load balance, parallel overhead, VTune, Thread Profiler 

Abstract 

A key to attaining good parallel performance is choosing the right granularity for your 
application. Granularity is the amount of work in the parallel task. If granularity is too 
fine, then performance can suffer from communication overhead. If granularity is too 
coarse, then performance can suffer from load imbalance. The goal is to determine the 
right granularity (coarser granularity is usually better) for the parallel tasks, while 
avoiding load imbalance and communication overhead to achieve the best performance. 

Background 

The amount of work per parallel task, or granularity, of a multithreaded application 
greatly affects its parallel performance. When threading an application, the first step is to 
partition the problem into as many parallel tasks as possible. The next step is to 
determine the necessary communication in terms of data and synchronization. In the third 
step, the performance of the algorithm is considered. Since communication and 
partitioning are not free operations, one often needs to agglomerate, or combine 
partitions, to overcome the overheads and achieve the most efficient implementation. The 
agglomeration step is the process of determining the best granularity for the application. 
The granularity is often related to how balanced the workload is between threads. It is 
easier to balance the workload of a large number of small tasks but too many small tasks 
can lead to excessive parallel overhead. Therefore, coarse granularity is usually best. 
However, increasing granularity too much can create load imbalance (see 3.3: Load 
Balance and Parallel Performance). Tools such as the Intel® Thread Profiler (see 2.5: 
Using Thread Profiler to Evaluate OpenMP Performance) can help identify the right 
granularity for your application. 

The following examples will show how to improve the performance of a parallel program 
by decreasing the synchronization overhead and finding the right granularity for the 
threads. The example used throughout this topic is that of prime number generation (i.e., 
find all prime numbers between 0 and 1 million). Example code 1 shows a parallel 
version using OpenMP. 

 

 

http://www.intel.com/software/products/threading/tp/
http://www.openmp.org/
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#pragma omp parallel for \ 

                  schedule(dynamic, 1) \ 

                  private(j, limit, prime) 

for (i = start; i <= end; i += 2)   // Between 0 and 1 million 

{ 

   limit = (int) sqrt((float)i) + 1; 

   prime = 1;   // Assume number is prime 

   j = 3; 

   while (prime && (j <= limit)) 

   { 

      if (i%j == 0) prime = 0; 

      j += 2; 

   } 

 

   if (prime) 

   { 

      #pragma omp critical  

      { 

         number_of_primes++; 

         if (i%4 == 1) number_of_41primes++;   // 4n+1 primes 

         if (i%4 == 3) number_of_43primes++;   // 4n-1 primes 

      } 

   } 

} 

Example code 1. Prime number generation parallelized with OpenMP. 

This code has both high communication overhead, in the form of synchronization, and a 
workload that is too small to merit threads. First you will notice a critical section inside 
the loop to provide a safe mechanism for incrementing the counting variables. The 
critical section adds synchronization and lock overhead to the parallel loop as shown by 
the Intel Thread Profiler display in Figure 6a. 
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Figure 6: VTune Analyzer Thread Profiler Display 

a) A0: 1st run, synchronization and lock overhead, b) A1: 2nd run, parallel overhead, c) A2: 3rd run, 
load imbalance, d) A3: 4th run, performance problems solved 

The lock and synchronization overhead can be removed by replacing the critical section 
with an OpenMP reduction (Example code 2). Incrementing counter variables is a 
common operation, commonly known as a reduction. The OpenMP reduction clause 
provides an efficient way to handle reduction operations. 

#pragma omp parallel for \ 

                  schedule(dynamic, 1) private(j, limit, prime) \ 

                  reduction(+: number_of_primes, \ 

                               number_of_41primes, \ 

                               number_of_43primes) 

for (i = start; i <= end; i += 2)   // Between 0 and 1 million 

{ 

   limit = (int) sqrt((float)i) + 1; 

   prime = 1;   // Assume number is prime 

   j = 3; 

   while (prime && (j <= limit)) 

   { 

      if (i%j == 0) prime = 0; 

      j += 2; 

   } 
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   if (prime) 

   { 

      number_of_primes++; 

      if (i%4 == 1) number_of_41primes++;   // 4n+1 primes 

      if (i%4 == 3) number_of_43primes++;   // 4n-1 primes 

   } 

} 

Example code 2. Prime number generation parallelized with OpenMP using the  
reduction clause instead of the critical pragma. 

The Intel Thread Profiler shows that the lock and synchronization overheads have been 
eliminated but the parallel overhead is still present (Figure 6b). Dynamic scheduling 
incurs a small amount of overhead. The schedule(dynamic, 1) clause directs the 
scheduler to dynamically distribute one iteration (i.e., the chunk size) at a time to each 
thread. Each thread processes a loop iteration then returns to the scheduler to get another 
iteration. Increasing the chunk size in the schedule clause reduces the number of times a 
thread must return to the scheduler. 

If the chunk size is too large, however, load imbalance can occur. For example, the Intel 
Thread Profiler shows a load imbalance when the chunk size is increased to 100,000 
(Figure 6c). Load imbalance occurs because iterations 900,000 to 1,000,000 contain more 
work than previous chunks. Setting the chunk size to 100 eliminates the parallel overhead 
and the load imbalance (Figure 6d). 

Advice 

The parallel performance of a multithreaded application depends on granularity, or the 
amount of work per parallel task. In general, try to achieve the coarsest granularity 
possible without creating a load imbalance between threads. Make sure that the amount 
of work per thread is much larger than the threading overhead. Use the Intel Thread 
Profiler to find excessive parallel overhead, excessive synchronization, and load 
imbalance. 

Usage Guidelines 

While the discussion above makes frequent reference to OpenMP, all of the advice and 
principles described apply to other threading methods, such as Win32 and POSIX 
threads. 

References  

In this manual, see also: 
 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit 
Threading 

 3.3: Load Balance and Parallel Performance 
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 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at 
Runtime 

 4.1: Managing Lock Contention, Large and  
Small Critical Sections 

 

See also: 

• Rohit Chandra et al., Parallel Programming in OpenMP, Morgan Kaufman, 2001. 

• Ian T. Foster, Designing and Building Parallel Programs: Concepts and Tools for 
Parallel Software Engineers, Addision-Wesley, 1995. 

• Ding-Kai Chen et al., “The Impact of Synchronization and Granularity on Parallel 
Systems”, Proceedings of the 17th Annual International Symposium on Computer 
Architecture 1990. 
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3.3 Load Balance and Parallel Performance 
Category 
Application Threading 

Scope 

General multithreading 

Keywords 
Granularity, load balance, thread scheduling, VTune, Thread Profiler 

Abstract 

Load balancing application workload among threads is critical to the application 
performance. The key objective for load balancing is to minimize idle time on threads. 
Sharing the workload equally across all threads with minimal work sharing overheads 
results in the shortest critical path of execution, and thereby best performance. However, 
achieving perfect load balance is non-trivial, and depends on the parallelism within the 
application, workload, the number of threads, load balancing policy, and the threading 
implementation. 

Background 

An idle processor during computation is a wasted resource and increases the overall 
execution time of the computation. This idleness can result from many different causes, 
for example, fetching from memory or I/O. While it may not be possible to completely 
eliminate a processor from being idle at times, there are measures that programmers can 
apply to reduce idle time (overlapped I/O, memory prefetching, reordering data access 
patterns for better cache utilization). 

Similarly, idle threads are also wasted resources in multithreaded executions. An unequal 
amount of work assigned to threads is a condition known as a load imbalance. The 
greater the imbalance, the more threads will remain idle and the greater the time needed 
to complete the computation. The more equitable the distribution of computational tasks 
to available threads, the lower the overall execution time will be. 

As an example, consider a set of twelve independent tasks with the following set of times 
{10, 6, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1}. Assuming four threads are available for computing this 
set of tasks, a simple method of task assignment would schedule each thread with three 
total tasks distributed in order. Thus, Thread-1 would be assigned work totaling 20 time 
units (10+6+4), Thread-2 would require eight time units (4+2+2), Thread-3 would require 
five time units (2+2+1), while Thread-4 would be able to execute the three tasks assigned 
in only three time units (1+1+1). Figure 7 illustrates this distribution of work and shows 
that the overall execution time for these twelve tasks would be 20 time units. 

 

 



 
 

Multithreading Consistency Guide   43 

 
Figure 7: Illustration of task distribution showing load imbalance. 

A better distribution of work would have been Thread-1 {10}, Thread-2 {6, 1, 1}, 
Thread-3 {4, 2, 1, 1}, and Thread-4 {4, 2, 2, 2}. This schedule would take only ten time 
units to complete and would only have two of the four threads idle for two time units 
each (Figure 8). 

 

 
Figure 8: Illustration of task distribution showing better load balance. 

Advice 

For the case when all tasks are the same length, a simple static division of tasks among 
available threads – dividing the total number of tasks into (nearly) equal-sized groups 
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assigned to each thread – is the best solution. In the general case, though, even when all 
task lengths are known in advance, finding an optimal, balanced assignment of tasks to 
threads is an intractable problem. When the lengths of individual tasks are not the same, 
dynamic assignment of tasks to threads is a better solution. 

OpenMP provides four scheduling methods for iterative work-sharing constructs (see the 
OpenMP specification for a detailed description of each method). Static scheduling of 
iterations is used by default. When the amount of work per iteration varies, and the 
pattern is unpredictable, dynamic scheduling of iterations can better balance the 
workload. In OpenMP, the dynamic scheduling alternatives are dynamic and guided 
which are specified in the schedule clause. Under dynamic scheduling, chunks of 
iterations are assigned to threads; when the assignment has been completed, threads 
request a new chunk of iterations. The optional chunk argument of the schedule clause 
denotes the fixed number of iterations to be assigned under dynamic scheduling. In 
guided scheduling, iterations are assigned to threads in gradually decreasing chunk sizes. 
Because of the pattern of assignment, guided scheduling requires less overhead than 
dynamic scheduling. The optional chunk argument of the schedule clause denotes the 
minimum number of iterations to be assigned under guided scheduling. 

A special case is when the amount of work per iteration increases (or decreases) 
monotonically. For example, the number of elements per row in a lower triangular matrix 
increases regularly. For such cases, setting the chunk size with static scheduling may 
provide adequate load balance without the added overhead of dynamic or guided 
scheduling. 

When the choice of scheduling method is not apparent, use the runtime schedule to 
specify scheduling method and chunk size at runtime. This allows experimentation 
without requiring recompilation of the program. 

Explicit threading methods (e.g., Win32 and POSIX threads) do not have any means to 
automatically schedule a set of independent tasks to threads. When needed, such 
capability must be programmed into the application. Static scheduling of tasks is a 
straightforward exercise. For dynamic scheduling, two related methods are easily 
implemented: Producer/Consumer and Manager/Worker. In the former, one or more 
threads (Producer) places tasks into a queue while the Consumer threads remove tasks to 
be processed, as needed. While not strictly necessary, the Producer/Consumer model is 
often used when there is some pre-processing to be done before tasks are made available 
to Consumer threads. In the Manager/Worker model, Worker threads rendezvous with the 
Manager thread, whenever more work is needed, to receive assignments directly. 

Whatever model is used, consideration must be given to using the correct number and 
mix of threads to ensure that threads tasked to perform the required computations are not 
left idle. While a single Manager thread is easy to code and ensures proper distribution of 
tasks, should Consumer threads stand idle at times, a reduction in the number of 
Consumers or an additional Producer thread may be needed. The appropriate solution will 
depend on algorithmic considerations as well as the number and length of tasks to be 
assigned. 

http://www.openmp.org/
http://www.openmp.org/specs
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Usage Guidelines  

Dynamic scheduling incurs some overhead from parceling out tasks. Bundling small, 
independent tasks together as a single unit of assignable work can reduce this overhead. 
The best choice for how much computation constitutes a task will be based on the 
computation to be done as well as the number of threads and other resources available at 
execution time (see 3.2: Granularity and Parallel Performance). 

While the discussion above makes frequent reference to OpenMP, all of the advice and 
principles described apply to other threading methods, such as Win32 and POSIX 
threads. 

References 

In this manual, see also: 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit 
Threading 

 3.2: Granularity and Parallel Performance 

 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at 
Runtime 

 3.9: Manipulate Loop Parameters to Optimize OpenMP Performance 

 

See also: 

• M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall International, Inc., 
1982. 

• Ian Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995. 

• Steven Brawer, Introduction to Parallel Programming, Academic Press, Inc., 1989. 
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3.4 Threading for Turnaround Versus Throughput 
Category 
Application Threading 

Scope 

General multithreading 

Keywords 
Spin-wait, OpenMP, Pthreads, Win32 threads, idle policy 

Abstract 

Exactly what threads do when waiting for certain kinds of events can make the difference 
between a fast running application and a slow one, but attention must also be paid to 
other jobs on the system. Otherwise, the result can be a slow, sluggish system instead of a 
fast, responsive one. Understanding the usage model of an application can let one 
optimize for turnaround time of the application or focus on keeping overall system 
throughput reasonable. 

Background 

Usage of computers can be classified into two broad categories – dedicated compute 
engines whose purpose is to produce results as quickly as possible for a single job 
performing a computation, and dedicated throughput engines whose purpose is to make 
reasonable progress on all the running jobs. For example, computers performing weather 
forecasts tend to be dedicated compute engines whereas computers running web servers 
tend to be throughput engines. Interactive workstations tend to fall somewhere in the 
middle: for “background” applications the behavior is like throughput engines; for 
“foreground” applications the behavior is like dedicated compute engines. When 
designing multithreaded applications, it is very important to understand whether users 
will run the application expecting high turnaround, high throughput, or perhaps both. 
Once the usage is understood, the application can be designed to favor a particular 
scenario, switch between the scenarios, or function reasonably well in both. 

Threads in multithreaded programs communicate by exchanging data through shared 
resources. Pthreads provides condition variables, semaphores, and mutexes for this 
purpose, whereas the Win32 threading API provides events, semaphores, mutexes and a 
specialized form of mutex variable called a critical section. The programmer can also 
create such resources using a memory location as a flag to communicate between 
cooperating threads, and carefully writing to the location using some kind of volatile or 
acquire/release semantics. Regardless of the underlying method, when a thread tries to 
acquire such a resource and a different thread already holds that resource (in an exclusive 
state), the acquiring thread must wait. What the thread does when waiting is crucial to the 
performance of the application and the overall system. The two extreme cases of what 
threads do when waiting are: spin-waiting, in which the thread keeps the processor busy 
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and repeatedly checks on the resource to see if it has become free; blocking, in which the 
thread immediately relinquishes the CPU to the operating system and asks to be woken 
up when the resource becomes available. Modern implementations provide a middle 
ground between these extremes with adaptive switching from spin-waiting to yielding to 
blocking so other jobs can progress. 

Different functions perform different kinds of operations when waiting. For example, 
older Linux Pthreads wait functions spin-wait when waiting, whereas the Win32 
WaitForSingleObject and WaitForMultipleObjects functions block and the Win32 
EnterCriticalSection function spin waits for a user-controllable period then blocks on 
an associated kernel object. The OpenMP API facilitates synchronous, compute-bound 
applications that usually allocate no more than one thread per processor. Thus, the 
OpenMP critical and ordered constructs and the lock API typically spin-wait. The 
Intel OpenMP implementation provides controls to adjust the period for which a thread 
spin-waits before blocking. 

Advice 

If resources are held for very short periods of time (e.g., a few hundred clock cycles), it is 
usually better to employ a spin-wait because the overhead of relinquishing the CPU to the 
operating system may be greater than the time that the resource is held (see 4.1: 
Managing Lock Contention, Large and  
Small Critical Sections). The Windows critical section functions (see 4.3: Win32 Atomics 
Versus User-Space Locks Versus Kernel Objects for Synchronization) and the OpenMP 
critical constructs and locks API serve this purpose well. 

For compute-bound applications running on dedicated systems, where the number of 
simultaneous active threads is expected to be less than or equal to the number of 
processors, using an API that spin-waits for at least a short period of time will usually 
result in a better performing application. Spin waiting is usually non-disruptive on an 
otherwise idle CPU. However, performing a spin-wait on a virtual processor on a Hyper-
Threading-enable CPU can be disruptive to the other virtual processors on the CPU. The 
OpenMP implementation in the Intel compilers is ideal for such types of applications. 
The OpenMP runtime library automatically adjusts the spin parameters to account for 
HyperThreading Technology. The Windows critical section functions with the user 
controlled spin counts can also serve these applications (see 4.1: Managing Lock 
Contention, Large and  
Small Critical Sections). 

Conversely, for throughput-oriented applications, or for applications where the number of 
active threads exceeds the number of processors on the system, a blocking API will result 
in better overall throughput because blocking ensures that other ready-to-run threads in 
the application or other jobs on the system can run immediately. The Windows 
semaphore, event, and mutex variables provide appropriate functionality for this class of 
application. 

Most modern locking algorithms do not spin-wait indefinitely. They usually employ a 
“back-off” scheme whereby after spinning for some time, they relinquish the CPU to the 
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operating system. Except for specialized situations like real-time applications, when 
designing your own locks via memory operations, you should design an appropriate 
“back-off” scheme to avoid bogging down the entire system, which could happen with 
pure spin-waits. 

Another important point to keep in mind when designing your own spin-waiting loops is 
the use of the PAUSE instruction inside the spin-wait loop on Pentium 4 systems. The 
PAUSE instruction is a low latency instruction that releases the processor bus for use by 
other processors in a multi-processor configuration. On CPU’s with Hyper-Threading 
Technology, PAUSE makes spin-waiting less disruptive to the other virtual processors on 
the CPU. On systems where spin-waiting is non-disruptive in the processor, PAUSE has no 
effect. 

For OpenMP applications, use the Intel compilers and set the environment variable 
KMP_LIBRARY=turnaround to spin-wait with a back-off algorithm and use 
KMP_LIBRARY=throughput to spin-wait with back-off algorithm that eventually yields the 
CPU to the operating system. 

Usage Guidelines 

Spin-waiting consumes CPU cycles. However, it can be a good technique for reducing 
turnaround time when you expect to acquire the resource that you are waiting on quickly. 
This is true because acquiring a lock is much faster than getting woken up by another 
thread via events or condition variables. When long waits are expected, spin-waiting can 
disrupt other jobs and result in sluggish system-wide performance. When spin-waiting is 
used, it should only be used for short periods of time (typically on the order of 
hundredths of a second) to avoid such problems. On CPU’s with Hyper-Threading 
Technology, spin-waiting can be especially wasteful because the virtual processors share 
execution resources. On such systems, it is very important to minimize the disruption of 
the virtual processors by using PAUSE instruction in spin-wait loops and by tuning spin-
wait counts to very low values. The OpenMP runtime library in the Intel compilers makes 
these adjustments automatically. 

References 

In this manual, see also: 

 4.1: Managing Lock Contention, Large and  
Small Critical Sections 

 4.2: Use Synchronization Routines Provided by the Threading API Rather than 
Hand-Coded Synchronization 

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for 
Synchronization 

http://www.openmp.org/
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3.5 Expose Parallelism by Avoiding or Removing 
Artificial Dependencies 

Category 
Application Threading 

Scope 

General multithreading but especially data decomposition and OpenMP 

Keywords 
Data dependencies, compiler optimizations, blocking algorithms, Win32 Threads, OpenMP, Pthreads 

Abstract 

Many applications and algorithms contain serial optimizations that inadvertently 
introduce data dependencies and inhibit parallelism. One can often remove such 
dependences, through simple transforms, or even avoid them altogether, through 
techniques such as domain decomposition or blocking. 

Background 

While multithreading for parallelism is an important source of performance, it is equally 
important to ensure that each thread runs efficiently. While optimizing compilers do the 
bulk of this work, it is not uncommon for programmers to make source code changes that 
improve performance by exploiting data reuse and selecting instructions that favor 
machine strengths. Unfortunately, the same techniques that improve serial performance 
can inadvertently introduce data dependencies that make it difficult to achieve additional 
performance through multithreading. 

One example is the reuse of intermediate results to avoid duplicate computations. As an 
example, softening an image through blurring can be achieved by replacing each image 
pixel by a weighted average of the pixels in its neighborhood, itself included. Example 
code 3 shows pseudo-code describing a 3 x 3 blurring stencil. 

for each pixel in (imageIn) 

   sum = value of pixel 

   // compute the average of 9 pixels from imageIn 

   for each neighbor of (pixel) 

      sum += value of neighbor 

   // store the resulting value in imageOut 

   pixelOut = sum / 9 

Example code 3. Pseudo-code describing a 3 x 3 blurring stencil. 

The fact that each pixel value feeds into multiple calculations allows one to exploit data 
reuse for performance. In the following pseudo-code, intermediate results are computed 
and used three times, resulting in better serial performance: 
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subroutine BlurLine(lineIn, lineOut) 

   for each pixel j in (lineIn) 

      // compute the average of 3 pixels from line 

      // and store the resulting value in lineout 

      pixelOut = (pixel j-1 + pixel j + pixel j+1) / 3 

 

declare lineCache[3] 

lineCache[0] = 0 

BlurLine(line 1 of imageIn, lineCache[1]) 

for each line i in (imageIn) 

   BlurLine (line i+1 of imageIn, lineCache[i mod 3]) 

   lineSums = lineCache[0] + lineCache[1] + lineCache[2] 

   lineOut = lineSums / 3 

This optimization introduces a dependence between the computations of neighboring 
lines of the output image. If one attempts to compute the iterations of this loop in parallel, 
the dependencies will cause incorrect results. 

Another common example is pointer offsets inside a loop (Example code 4). By 
incrementing ptr, the code potentially exploits the fast operation of a register increment 
and avoids the arithmetic of computing someArray[i] for each iteration. While each call 
to compute may be independent of the others, the pointer becomes an explicit dependence 
– its value in each iteration depends on that in the last. If this loop is parallelized with 
OpenMP, for example, the Intel Thread Checker will report memory conflicts on the use 
of ptr. 

ptr = &someArray[0]; 

 

for (i = 0; i < N; i++) 

{ 

   Compute (ptr); 

   ptr++; 

} 

Example code 4. Pointer offsets inside a loop. 

Finally, there are often situations where the algorithms invite parallelism but the data 
structures have been designed to a different purpose that unintentionally prevents 
parallelism. Sparse matrix algorithms are one such example. Because most matrix 
elements are zero, the usual matrix representation is often replaced with a “packed” form, 
consisting of element values and relative offsets, used to skip zero-valued entries. 

This article aims to present strategies to effectively introduce parallelism in these 
challenging situations. 

Advice 

Naturally, it’s best to find ways to exploit parallelism without having to remove existing 
optimizations or make extensive source code changes. Before removing any serial 
optimization to expose parallelism, consider whether applying the existing kernel to a 
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subset of the overall problem can preserve the optimization. Normally, if the original 
algorithm contains parallelism, it is also possible to define subsets as independent units 
and compute them in parallel. 

To efficiently thread the blurring operation, consider subdividing the image into sub-
images, or blocks, of fixed size. The blurring algorithm allows the blocks of data to be 
computed independently. The following pseudo-code illustrates the use of image 
blocking: 

// One time operation: 

// Decompose the image into non-overlapping blocks. 

blockList = Decompose (image, xRes, yRes) 

foreach (block in blockList) 

{ 

   BlurBlock (block, imageIn, imageOut) 
} 

The existing code to blur the entire image – Example code 3 – can be reused in the 
implementation of BlurBlock. Using OpenMP or explicit threads to operate on multiple 
blocks in parallel yields the benefits of multithreading and retains the original optimized 
kernel. 

In other cases, the benefit of the existing serial optimization is small compared to the 
overall cost of each iteration, making blocking unnecessary. This is often the case when 
the iterations are sufficiently coarse-grained to expect a speedup from parallelization. The 
pointer increment example (Example code 4) is one such instance. The induction 
variables can be easily replaced with explicit indexing, removing the dependence and 
allowing simple parallelization of the loop. 

ptr = &someArray[0]; 

 

for (i = 0; i < N; i++) 

{ 

   Compute (ptr[i]); 

} 

Note that the original optimization, though small, is not necessarily lost. Compilers often 
optimize index calculations aggressively – by utilizing increment or other fast operations 
– allowing you to enjoy the benefits of both serial and parallel performance. 

Other situations, such as code involving packed sparse matrices can be more challenging 
to thread. Normally, it is not practical to unpack data structures but it is often possible to 
subdivide the matrices into blocks, storing pointers to the beginning of each block. When 
these matrices are paired with appropriate block-based algorithms, the benefits of a 
packed representation and parallelism can be simultaneously realized. 

The blocking techniques described above are a case of a more general technique called 
domain decomposition. After decomposition, each thread works independently on one or 
more domains. In some situations, the nature of the algorithms and data dictate that the 
work per domain will be nearly constant. In other situations, the amount of work may 
vary from domain to domain. In these cases, if the number of domains equals the number 
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of threads, parallel performance can be limited by load imbalance. In general, it is best to 
ensure that the number of domains is reasonably large compared to the number of 
threads. This will allow techniques such as dynamic scheduling to balance the load across 
threads. 

Usage Guidelines 

Some serial optimizations deliver large performance gains. Consider the number of 
processors you are targeting to ensure that speedups from parallelism will outweigh the 
performance loss of any lost optimization. 

Introducing blocking algorithms can sometimes hinder the compiler’s ability to 
distinguish aliased from unaliased data. If, after blocking, the compiler can no longer 
determine that data is unaliased, performance may suffer. Consider using the restrict 
keyword to explicitly prohibit aliasing (see 2.1: Automatic Parallelization with Intel 
Compilers). Enabling inter-procedural optimizations also helps the compiler detect 
unaliased data. 

References 

In this manual, see also: 

 2.1: Automatic Parallelization with Intel Compilers 

 2.4: Find Multithreading Errors with the  
Intel Thread Checker 

 3.2: Granularity and Parallel Performance 

 3.3: Load Balance and Parallel Performance 
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3.6 Use Workload Heuristics to Determine Appropriate 
Number of Threads at Runtime 

Category 
Application Threading 

Scope 

General multithreading, OpenMP, POSIX threads, Win32 threads 

Keywords 
Load balance, granularity, Win32 Threads, OpenMP, Pthreads 

Abstract 

Most application and workload pairs have a finite amount of work, and therefore a finite 
speedup due to multithreading. Choosing the right number of threads can be an important 
consideration in the performance delivered by multithreaded applications. This article 
will discuss the factors involved in designing a heuristic to choose an appropriate number 
of threads. 

Background 

When applications are threaded for functionality, programmers often dedicate particular 
functions to particular threads, and it is rare for all of the threads to be active at the same 
time. In such functionally threaded systems, the choice of the number of threads is often 
based on the functionality desired, and is not easily varied. Fortunately, this choice is 
normally not performance critical. 

However, for applications – or portions of applications – that have been threaded for 
performance reasons, programmers often have the ability to choose how many threads to 
apply to the problem. Most applications cannot use an arbitrary number of threads 
effectively based on various implicit and explicit costs associated with threading. For 
example, the implicit costs include the extra scheduling burden on the operating system, 
the cost of migrating data to the thread and the increased memory pressure on the system 
to keep all the threads supplied with data. Explicit costs include thread startup and 
shutdown and thread coordination. These costs, together with the amount of work, the 
number of independent work items available for parallel execution and their granularity, 
play an important part in choosing an appropriate number of threads to apply to a 
problem. 

When using operating system threads, the programmer makes this decision explicitly by 
creating and using the number of threads desired. However, when using OpenMP, 
programmers sometimes let the system decide how many threads to use, and most 
OpenMP implementations, including the Intel implementation, default to the number of 
processors on the system. For most applications this is not the best choice because they 
are unlikely to scale to the entire range of parallel systems available, from single-CPU 
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systems with Hyper-Threading Technology all the way to 64-CPU and larger SMP 
systems. 

For all these reasons, it is best to let either let the user determine the number of threads to 
use, or to use runtime heuristics or measurements to understand the size of the 
computation and data and then choose an appropriate number of threads. 

Advice 

For applications where the workload depends on application input that can vary widely, 
defer the decisions of how many threads to employ until runtime when the input sizes can 
be examined. Examples of workload input parameters that affect the thread count include 
things like matrix size, database size, image/video size and resolution, 
depth/breadth/bushiness of tree based structures, and size of list based structures. 

Similarly, for applications designed to run on systems where the processor count can vary 
widely, defer the number of threads to employ decision till application run-time when the 
machine size can be examined. 

Using the above workload and system size inputs, heuristics should be developed, based 
on empirical data, to set the thread count at application run-time. 

For applications where the amount of work is unpredictable from the input data, consider 
using a calibration step to understand the workload and system characteristics to aid in 
choosing an appropriate number of threads. If the calibration step is expensive, it can be 
made persistent by storing in a permanent place like the file system. 

Avoid creating more threads than the number of processors on the system, when all the 
threads can be active simultaneously. This situation causes the operating system to 
multiplex the processors and typically yields sub-optimal performance. 

When developing a library as opposed to an entire application, provide a mechanism 
whereby the user of the library can conveniently select the number of threads used by the 
library, because it is possible that the user has higher-level parallelism that renders the 
parallelism in the library unnecessary or even disruptive. 

Finally, for OpenMP, use the num_threads clause on parallel regions to control the 
number of threads employed and use the if clause on parallel regions to decide whether 
to employ multiple threads at all. The omp_set_num_threads function can also be used 
but it is not recommended except in specialized well-understood situations because its 
affect is global and persists even after the current function ends, possibly affecting 
parents in the call tree. The num_threads clause is local in its effect and so does not 
impact the calling environment. 

Usage Guidelines 

With each new generation of computer systems, the implicit and explicit costs can change 
because of underlying changes in CPU to memory speed ratios, different algorithms, and 
the topological layout of systems, from simple SMP systems to multithreaded SMP 
systems to NUMA systems and combinations of each. Such changes can require a 
reevaluation of the number of threads to use. This can be a particularly vexing problem 
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for applications with fine-grained parallelism, because these tend to be particularly 
sensitive to the issues listed. Applications with coarse-grained parallelism tend to be more 
stable in this regard and ought to be favored. 

In addition to the application specific factors considered here, it is important to pay 
attention to the computing environment. For systems dedicated to running just a single 
application, the heuristic for the number of threads chosen can be quite different than for 
systems shared with other jobs. 

References 

In this manual, see also: 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 3.2: Granularity and Parallel Performance 

 3.3: Load Balance and Parallel Performance  

 3.4: Threading for Turnaround Versus Throughput 
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3.7 Reduce System Overhead with Thread Pools 
Category 
Application Threading 

Scope 

General multithreading 

Keywords 
Thread pool, system overhead, Win32 threads, OpenMP, Pthreads 

Abstract 

Many threaded applications manage their threads with a threads-on-demand policy. With 
this policy, threads are created as needed and deleted immediately after use. A key benefit 
of the policy is the simplicity of coding and thread management. However, creating many 
threads during execution can complicate the control logic of a program in order to 
account for instances when the operating system is unable to create a thread. Many 
applications ignore the possibility of such failures and are potentially unsafe. Further, 
frequent thread creation causes performance penalties, as the cost of creating a thread is 
substantial. The thread management cost can be very high for applications, such as server 
applications, which deal with many threads. As the number of threads increases, thread 
creation, termination, scheduling, and context-switching costs can increase to the point 
where benefits of multithreading are overcome by system overhead. 

Background 

Thread pools offer a cost-effective approach to managing threads. A thread pool is a 
group of threads waiting for work assignments. In this approach, threads are created once 
during an initialization step and terminated during a finalization step. This simplifies the 
control logic for checking for failures in thread creation midway through the application 
and amortizes the cost of thread creation over the entire application. Once created, the 
threads in the thread pool wait for work to become available. Other threads in the 
application assign tasks to the thread pool. Typically, this is a single thread called the 
thread manager or dispatcher. After completing the task, each thread returns to the thread 
pool to await further work. Depending upon the work assignment and thread pooling 
policies employed, it is possible to add new threads to the thread pool if the amount of 
work grows. This approach has obvious benefits: 

 Possible runtime failures midway through application execution due to inability 
to create threads can be avoided with simple control logic. 

 Thread management costs from thread creation are minimized. This in turn leads 
to better response times for processing workloads and allows for multithreading 
of finer-grained workloads (see 3.2: Granularity and Parallel Performance). 

A typical usage scenario for thread pools is in server applications, which often launch a 
thread for every new request. A better strategy is to queue service requests for processing 
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by an existing thread pool. A thread from the pool grabs a service request from the queue, 
processes it, and returns to the queue to get more work. 

Thread pools can also be used to perform overlapping asynchronous I/O. The I/O 
completion ports provided with the Win32 API allow a pool of threads to wait on an I/O 
completion port, and process packets from overlapped I/O operations. 

OpenMP is a strictly fork/join threading model. In some OpenMP implementations, 
threads are created at the start of a parallel region and destroyed at the end of the parallel 
region. OpenMP applications typically have several parallel regions with intervening 
serial regions. Creating and destroying threads for each parallel region can result in 
significant system overhead, especially if a parallel region is inside a loop. Therefore, the 
Intel OpenMP implementation uses thread pools. A pool of worker threads is created at 
the first parallel region. These threads exist for the duration of program execution. More 
threads may be added automatically if requested by the program. The threads are not 
destroyed until the last parallel region is executed. 

Thread pools can be created on Windows and Linux using the thread creation API. For 
instance, a custom thread pool using Win32 threads may be created as follows: 

// Initialization method/function 

{ 

   DWORD tid; 

   // 

   // Create initial pool of threads 

   // 

   for (int i = 0; i < MIN_THREADS; i++) 

   { 

      HANDLE *ThHandle = CreateThread (NULL, 

                                       0, 

                                       CheckPoolQueue, 

                                       NULL, 

                                       0, 

                                       &tid); 

      if (ThHandle == NULL) 

          // Handle Error 

      else 

          RegisterPoolThread (ThHandle); 

   } 

} 

The function CheckPoolQueue executed by each thread in the pool is designed to enter a 
wait state until work is available on the queue. The thread manager can keep track of 
pending jobs in the queue and dynamically increase the number of threads in the pool 
based on the demand. 

Advice 

Use thread pools to minimize thread management overheads, and improve application 
performance (throughput, response time, scalability). 

http://www.openmp.org/
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The Intel OpenMP implementation already uses thread pools to minimize overhead. 
OpenMP is well suited for synchronous threaded applications, particularly data parallel 
applications (see 3.1: Choosing an Appropriate Threading Method: OpenMP Versus 
Explicit Threading). 

Use thread pools with I/O completion ports to improve asynchronous I/O performance in 
Windows applications. 

Applications can create and manage thread pools using the Win32 and POSIX threads 
API’s. Standard thread pool functions/classes are available with Win32, C# in .Net, Java, 
and RogueWave. 

References 

In this manual, see also: 

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit 
Threading 

 3.2: Granularity and Parallel Performance 

 3.4: Threading for Turnaround Versus Throughput 
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3.8 Exploiting Data Parallelism in Ordered Data Streams 
Category 
Application Threading 

Scope 

General multithreading, any programming language or operating system 

Keywords 
Data parallelism, I/O, order dependence 

Abstract 

Many compute-intensive applications involve complex transformations of ordered input 
data to ordered output data. Examples include sound and video transcoding, lossless data 
compression, and even seismic data processing. While the algorithms employed in these 
transformations are often parallel, managing the I/O order dependence can be a challenge. 
This topic identifies some of these challenges and illustrates strategies for addressing 
them, all while maintaining parallel performance. 

Background 

Consider the problem of threading a video compression engine designed to perform real-
time processing of uncompressed video from a live video source to disk or a network 
client. Clearly, harnessing the power of multiple processors can be key to meeting the 
real-time requirements of such an application. 

Video compression standards such as MPEG-2 and MPEG-4 are designed for streaming 
over unreliable links. Consequently, it is easy to treat a single video stream as a sequence 
of smaller, standalone streams. One can achieve substantial speedups by processing these 
smaller streams in parallel. Some of the challenges in exploiting this parallelism through 
multithreading, however, include: 

1. defining non-overlapping subsets of the problem and assigning them to threads 

2. ensuring the input data is read exactly once and in the correct order 

3. outputting blocks in the correct order, regardless of the order in which processing 
actually completes and without significant performance penalties 

4. performing the above without a priori knowledge of the actual extent of the input 
data. 

In other situations, such as lossless data compression, it is often possible to determine the 
input data size in advance and explicitly partition the data into independent input blocks. 
The techniques outlined here apply equally well to this case. 
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Advice 

The temptation might be to set up a chain of producers and consumers, but this approach 
is not scalable and is vulnerable to load imbalance. Instead, let’s address each of the 
challenges above to achieve a more scalable design using data decomposition. 

The basic approach is to create a team of threads, with each thread reading a block of 
video, encoding it, and outputting it to a reorder buffer. Upon completion of each block, a 
thread returns to read and process the next block of video, and so on. This dynamic 
allocation of work minimizes load imbalance. The reorder buffer ensures that blocks of 
coded video are written in the correct order, regardless of their order of completion. 

The original video encoding algorithm might take this form: 
inFile = OpenFile () 

outFile == InitializeOutputFile () 

WriteHeader (outFile) 

outputBuffer = AllocateBuffer (bufferSize) 

 

while (frame = ReadNextFrame (inFile)) 

{ 

   EncodeFrame (frame, outputBuffer) 

   if (outputBuffer size > bufferThreshold) 

      FlushBuffer(outputBuffer, outFile) 

} 

FlushBuffer (outputBuffer, outFile) 

The first task is to replace the read and encode frame sequence with a block-based 
algorithm. This sets up the problem for decomposition across a team of threads: 

WriteHeader (outFile) 

 

while (block = ReadNextBlock (inFile)) 

{ 

   while(frame = ReadNextFrame (block)) 

   { 

      EncodeFrame (frame, outputBuffer) 

      if (outputBuffer size > bufferThreshold) 

         FlushBuffer (outputBuffer, outFile) 

   } 

   FlushBuffer (outputBuffer, outFile) 

} 

The definition of a block of data will vary from one application to another, but in the case 
of a video stream, a natural block boundary might be the first frame at which a scene 
change is detected in the input, subject to constraints of minimum and maximum block 
sizes. Block-based processing requires allocation of an input buffer and minor changes to 
the source code to fill the buffer before processing. Likewise, the ReadNextFrame method 
must be changed to read from the buffer rather than the file. 
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The next step is to change the output buffering strategy to ensure that entire blocks are 
written as a unit. This approach simplifies output reordering substantially, since we need 
only ensure that the blocks are output in the correct order. The following code reflects the 
change to block-based output: 

WriteHeader (outFile) 

 

while (block = ReadNextBlock (inFile)) 

{ 

   while (frame = ReadNextFrame (block)) 

   { 

      EncodeFrame (frame, outputBuffer) 

   } 

   FlushBuffer (outputBuffer, outFile) 

} 

Depending on the maximum block size, a larger output buffer may be required. 

Because each block is independent of the others, a special header typically begins each 
output block. In the case of an MPEG video stream, this header precedes a complete 
frame, known as an I-frame, relative to which future frames are defined. Consequently, 
the header is moved inside the loop over blocks: 

while (block = ReadNextBlock (inFile)) 

{ 

   WriteHeader (outputBuffer) 

   while (frame = ReadNextFrame (block)) 

   { 

      EncodeFrame (frame, outputBuffer) 

   } 

   FlushBuffer (outputBuffer, outFile) 

} 

With these changes, it is possible to introduce parallel threads, using a thread library (i.e., 
Pthreads or the Win32 threading API) or OpenMP parallel sections2: 

// Create a team of threads with private copies of outputBuffer, 

// block, and frame and shared copies of inFile and outFile 

while (AcquireLock, 

       block = ReadNextBlock (inFile), 

       ReleaseLock, block) 

{ 

   WriteHeader (outputBuffer) 

   while (frame = ReadNextFrame (block)) 

   { 

      EncodeFrame (frame, outputBuffer) 

   } 

                                                 
2 The code can be made even simpler using the Intel WorkQueue extensions to OpenMP. 
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   FlushBuffer (outputBuffer, outFile) 

} 

This is a simple but effective strategy for reading data safely and in order. Each thread 
acquires a lock, reads a block of data, then releases the lock. Sharing the input file 
ensures that blocks of data are read in order and exactly once. Because a ready thread 
always acquires the lock, the blocks are allocated to threads on a dynamic, or first-come-
first-served basis, which typically minimizes load imbalance. 

The final task is to ensure that blocks are output safely and in the correct order. A simple 
strategy would be to use locks and a shared output file to ensure only one block is written 
at a time. This approach ensures thread-safety, but would allow the blocks to be output in 
something other than the original order. Alternately, threads could wait until all previous 
blocks have been written before flushing their output. Unfortunately, this approach 
introduces inefficiency because a thread sits idle waiting for its turn to write. 

A better approach is to establish a circular reorder buffer for output blocks3. Each block is 
assigned a sequential serial number. The “tail” of the buffer establishes the next block to 
be written. If a thread finishes processing a block of data other than that pointed to by the 
tail, it simply enqueues its block in the appropriate buffer position and returns to read and 
process the next available block. Likewise, if a thread finds that its just-completed block 
is that pointed to by the tail, it writes that block and any contiguous blocks that were 
previously enqueued. Finally, it updates the buffer’s tail to point to the next block to be 
output. The reorder buffer allows completed blocks to be enqueued out-of-order, while 
ensuring they are written in order. 

 
Figure 9: State of example reorder buffer before writing. 

Figure 9 illustrates one possible state of the reorder buffer. Blocks 0 through 35 have 
already been processed and written, while blocks 37, 38, 39, 40 and 42 have been 
processed and are enqueued for writing. When the thread processing block 36 completes, 
it writes out blocks 36 through 40, leaving the reorder buffer in the state shown in Figure 
10. Block 42 remains enqueued until block 41 completes. 

                                                 
3 This approach is analogous to the reorder buffers used in some microprocessors to allow instructions to be 
processed out of order but retired in order. 
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Figure 10: State of Example Reorder Buffer After Writing 

Naturally, one needs to take certain precautions to ensure the algorithm is robust and fast: 
 The shared data structures must be locked when read or written 
 The number of slots in the buffer must exceed the number of threads 
 Threads must efficiently wait, if an appropriate slot is not available in the buffer 
 Pre-allocate multiple output buffers per thread. This allows one to enqueue a 

pointer to the buffer and avoids extraneous data copies and memory allocations. 

Using the output queue, the final algorithm is: 
inFile = OpenFile () 

outFile == InitializeOutputFile () 

 

// Create a team of threads with private  

// copies of outputBuffer, block, and frame, shared 

// copies of inFile and outFile. 

while (AcquireLock, 

       block = ReadNextBlock (inFile), 

       ReleaseLock, block) 

{ 

   WriteHeader (outputBuffer) 

   while (frame = ReadNextFrame (block)) 

   { 

      EncodeFrame (frame, outputBuffer) 

   } 

   QueueOrFlush (outputBuffer, outFile) 

} 

This algorithm allows in-order I/O but still affords the flexibility of high performance, 
out-of-order parallel processing. 

Usage Guidelines 

In some instances, the time to read and write data is comparable to the time required to 
process the data. In these cases, the following techniques may be beneficial: 

Asynchronous I/O – Linux and Windows provide APIs to initiate a read or write and later 
wait on or be notified of its completion. Using these interfaces to “pre-fetch” input data 
and “post-write” output data while performing other computation can effectively hide I/O 
latency. On Windows, files are opened for asynchronous I/O by providing the 
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FILE_FLAG_OVERLAPPED attribute. On Linux, asynchronous operations are effected 
through a number of aio_* functions provided by libaio. 

When the amount of input data is significant, static decomposition techniques can lead to 
physical disk “thrashing”, as the hardware attempts to service a number of concurrent but 
non-contiguous reads. Following the advice above of a shared file descriptor and a 
dynamic, first-come-first-served scheduling algorithm can enforce in-order, contiguous 
reads, which in turn improve overall I/O subsystem throughput. 

It is important to carefully choose the size and number of data blocks. Normally, a large 
number of blocks affords the most scheduling flexibility, which can reduce load 
imbalance. On the other hand, very small blocks can introduce unnecessary locking 
overhead and even hinder the effectiveness of data compression algorithms. See the load 
balance and granularity sections of this document for more advice on choosing the 
number and size of blocks, relative to the number of threads. 
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3.9 Manipulate Loop Parameters to Optimize OpenMP 
Performance 

Category 
Application Threading 

Scope 

OpenMP applications on any operating system 

Keywords 
Loop optimizations, granularity, load balance, OpenMP, barrier 

Abstract 

In data parallel applications, the same independent operation is performed repeatedly on 
different data. Loops are usually the compute-intensive segments of data parallel 
applications so loop optimizations directly impact performance. 

Background 

Loop optimizations offer a good opportunity to improve the performance of data parallel 
applications. These optimizations, such as loop fusion, loop interchange, and loop 
unrolling, are usually targeted at improving granularity, load balance, and data locality, 
while minimizing synchronization and other parallel overhead. As a rule of thumb, loops 
with high trip counts are the best candidates for parallelization. A higher trip count 
enables better load balance due to the greater availability of tasks that can be distributed 
among the threads. However, the amount of work per loop iteration is also a factor. 
Unless otherwise stated, we shall assume that the amount of work in each iteration is 
(roughly) equal to every other iteration in the same loop. 

Consider the scenario of a loop using the OpenMP for work-sharing construct shown in 
Error! Reference source not found.. In this case, the low trip count leads to a load 
imbalance (see 3.3: Load Balance and Parallel Performance) when the loop iterations are 
distributed over four threads. If a single iteration takes only a few seconds, this imbalance 
may not cause a significant impact. However, if each iteration takes an hour, three of the 
threads remain idle for 60 minutes while the fourth continues working. Contrast this to 

1003 one-hour  

 

#pragma omp for 
   for (i = 0; i < 13; i++) 

   { 

      // Computation 

   } 

 

 

 

 

 

4 3 3 3 

http://www.openmp.org/


 
 

66  Multithreading Consistency Guide 

Figure 11: Parallelizing loops with low trip count can sometimes lead to load imbalance. 

iterations and four threads. In this case, a single hour of idle time after ten days of 
execution is insignificant. 

3.9.1.1 Advice 

For multiply nested loops, choose the outermost loop that is safe to parallelize. This 
generally gives the coarsest granularity (see 3.2: Granularity and Parallel Performance). 
Ensure that work can be evenly distributed to each thread. If this is not possible because 
the outermost loop has a low trip count, an inner loop with a high trip count may be a 
better candidate for threading, e.g.: 

void copy (int imx, int jmx, int kmx, 

           double**** w, double**** ws) 

{ 

   for (int nv = 0; nv < 5; nv++) 

      for (int k = 0; k < kmx; k++) 

         for (int j = 0; j < jmx; j++) 

            for (int i = 0; i < imx; i++) 

               ws[nv][k][j][i] = w[nv][k][j][i]; 

} 

With any number of threads besides five, parallelizing the outer loop will result in load 
imbalance and idle threads. The inefficiency would be especially severe if the array 
dimensions imx, jmx, and kmx are very large. Parallelizing an inner loop is probably a 
better option in this case. 

Merging nested loops to increase the iteration count is another loop optimization that can 
help parallel performance. For example, two nested loops with trip counts of 8 and 9, 
respectively, can be combined into a single loop of 72 iterations (Figure 12). However, if 
both loop counters are used to index arrays, the new loop counter must be translated back 
into the corresponding index values. This creates extra operations that original nested 
loop did not have. However, this slight increase in work is offset by the loss of overhead 
from one loop and the greater parallelism that is exposed by merging the two loops into 
one. 

#pragma omp parallel for 

   for (i = 0; i < 8; i++) 

      for (j = 0; j < 9; j++) 

         a[i][j] = b[j] * c[i]; 

 

#pragma omp parallel for 

   for (ij = 0; ij < 72; ij++) 

   { 

      int i = ij / 9; 

      int j = ij % 9; 

      a[i][j] = b[j] * c[i]; 

   } 

Figure 12: Merging nested loops to increase trip count can expose  
more parallelism and help performance. 

Avoid the implicit barrier at the end of OpenMP work-sharing constructs when it is safe 
to do so. All OpenMP work-sharing constructs (for, sections, single) have an implicit 
barrier at the end of their structured blocks. All threads must rendezvous at this barrier 
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before execution can proceed. Sometimes these barriers are unnecessary and negatively 
impact performance. Use the OpenMP nowait clause to disable this barrier, e.g.: 

void copy (int imx, int jmx, int kmx, 

           double**** w, double**** ws) 

{ 

   #pragma omp parallel shared(w, ws) 

   { 

      for (int nv = 0; nv < 5; nv++) 

         for (int k = 0; k < kmx; k++)   // kmx is usually small 

            #pragma omp for shared(nv, k) nowait 

            for (int j = 0; j < jmx; j++) 

               for (int i = 0; i < imx; i++) 

                  ws[nv][k][j][i] = w[nv][k][j][i]; 

   } 

} 

Since the computations in the innermost loop are all independent, there is no reason for 
threads to wait at the implicit barrier before going on to the next k iteration. If the amount 
of work per iteration is unequal, the nowait clause allows threads to proceed with useful 
work rather than sit idle at the implicit barrier. 

Use the OpenMP if clause to choose serial or parallel execution based on runtime 
information (see 3.6: Use Workload Heuristics to Determine Appropriate Number of 
Threads at Runtime). Sometimes the number of iterations in a loop cannot be determined 
until runtime. If there is a negative performance impact for executing an OpenMP 
parallel region with multiple threads (e.g., a small number of iterations), specifying a 
minimum threshold will help maintain performance, e.g.: 

#pragma omp parallel for if (N >= threshold) 

   for (i = 0; i < N; i++) 

   { 

      // Computation 

   } 

For this example code, the loop is only executed in parallel if the number of iterations 
exceeds the threshold specified by the programmer. 

Fuse parallel loops with similar indices to improve granularity and data locality while 
minimizing overhead. In Figure 13 the first two loops (left-hand example code) can be 
easily merged (right-hand example code). Merging these loops increases the amount of 
work per iteration (i.e., granularity) and reduces loop overhead. The third loop is not 
easily merged because its iteration count is different. More important, however, a data 
dependence exists between the third loop and the previous two loops. 
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   for (j = 0; j < N; j++) 

      a[j] = b[j] + c[j]; 

 

   for (j = 0; j < N; j++) 

      d[j] = e[j] + f[j]; 

 

   for (j = 5; j < N – 5; j++) 

      g[j] = d[j+1] + a[j+1]; 

   for (j = 0; j < N; j++) 

   { 

      a[j] = b[j] + c[j]; 

      d[j] = e[j] + f[j]; 

   } 

 

   for (j = 5; j < N – 5; j++) 

      g[j] = d[j+1] + a[j+1]; 

Figure 13: Fusing parallel loops with similar indices improves granularity and data locality. 

References 

In this manual, see also: 
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4. Synchronization 
In order to avoid race conditions during the execution of a threaded application, mutual 
exclusion to shared resources is required to allow a single thread to access and change the 
state of shared resources. The shared resource can be a data structure, or memory in the 
address space. Minimizing synchronization overheads is a critical to application 
performance. This chapter discusses effective synchronization practices in multithreaded 
applications. 

In multithreaded applications, while a thread is executing a code section that accesses 
shared resource (critical section), competing threads are either spinning or waiting in a 
queue. In order to ensure fairness in scheduling control over the lock among all 
competing threads, it is important to minimize the time spent by a thread within a critical 
section. This usually means reducing code within the critical section to the bare minimum 
to process the state change. The first topic in this chapter addresses design issues for 
optimally sized critical sections. 

The standard threading implementations provide synchronization primitives that are 
optimized for the architecture, and have been widely tested in varying application 
scenarios. Typically these primitives include optimized spin-waits, efficient scheduling 
algorithms, and as result minimal synchronization, and scheduling overheads. Further the 
synchronization primitives with the standard threading implementations are portable, 
usually are forward and backward compatible, and can be easily migrated across 
platforms. The second topic in this chapter discusses the benefits of using standard 
threading API’s in preference to hand-coded synchronization functions. 

The Windows multithreading API provides multiple synchronization primitives – critical 
section, mutex, semaphore, events, and interlocked operations. All of these primitives 
implement mutual exclusion but have varying performance benefits and usage models. A 
comparison of the different synchronization primitives is discussed in the next chapter. 

Most threading implementations provide non-blocking threading primitives as a cost-
effective alternative to their blocking counterparts. The non-blocking threading calls are 
reviewed next. 

The final topic of this chapter deals with the merits of using double-check pattern locks to 
minimize lock acquisition costs for events that are executed only once such as 
initialization, file opening/closing, dynamic memory allocation, etc. 
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4.1 Managing Lock Contention, Large and  
Small Critical Sections 

Category 
Synchronization  

Scope 

General multithreading 

Keywords 
Lock contention, synchronization, spin-wait, critical section, lock size 

Abstract 

In multithreaded applications, locks are used to synchronize entry to regions of code that 
access shared resources. The region of code protected by these locks is called a critical 
section. While one thread is inside a critical section, no other thread can enter. Therefore, 
critical sections serialize execution. This topic introduces the concept of critical section 
size – the length of time a thread spends inside a critical section – and its effect on 
performance. 

Background 

Critical sections ensure data integrity when multiple threads attempt to access shared 
resources. They also serialize the execution of code within the critical section. Threads 
should spend as little time inside a critical section as possible to reduce the amount of 
time other threads sit idle waiting to acquire the lock, or lock contention. In other words, 
it is best to keep critical sections small. However, using a multitude of small, separate 
critical sections can quickly introduce system overheads, from acquiring and releasing 
each separate lock, to such a degree that the performance advantage of multithreading is 
negated. In this latter case, one larger critical section could be best. Scenarios illustrating 
when it is best to use large or small critical sections will be explored below. 

The thread function in Example code 5 contains two critical sections. Assume that the 
critical sections protect different data and that the work in functions DoFunc1 and 
DoFunc2 is independent. Let’s also assume that the amount of time to perform either of 
the update functions is always very small. The critical sections are separated by a call to 
DoFunc1. If the threads only spend a small amount of time in DoFunc1, the 
synchronization overhead of two critical sections may not be justified. In this case, a 
better scheme might be to merge the two small critical sections into one larger critical 
section, as in Example code 6. If the time spent in DoFunc1 is much higher than the 
combined time to execute both update routines, this might not be a viable option because 
the increased size of the critical section increases the likelihood of lock contention, 
especially as the number of threads increases. 
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Begin Thread Function () 

   Initialize () 

 

   BEGIN CRITICAL SECTION 1 

      UpdateSharedData1 () 

   END CRITICAL SECTION 1 

 

   DoFunc1 () 

 

   BEGIN CRITICAL SECTION 2 

      UpdateSharedData2 () 

   END CRITICAL SECTION 2 

 

   DoFunc2 () 

End Thread Function () 

Example code 5: A threaded function containing two critical sections to  
protect updates to different shared data. 

Begin Thread Function () 

   Initialize () 

 

   BEGIN CRITICAL SECTION 1 

      UpdateSharedData1 () 

      DoFunc1 () 

      UpdateSharedData2 () 

   END CRITICAL SECTION 1 

 

     DoFunc2 () 

End Thread Function () 

Example code 6: A threaded function containing one critical section that  
protects updates to all shared data used by the function. 

Let’s consider a variation of the previous example. This time, assume the threads spend a 
large amount of time in the UpdateSharedData2 function. Using a single critical section 
to synchronize access to UpdateSharedData1 and UpdateSharedData2, as in Example 
code 6, is no longer a good solution because the likelihood of lock contention is higher. 
On execution, the thread that gains access to the critical section spends a considerable 
amount of time in the critical section, while all the remaining threads are blocked. When 
the thread holding the lock releases it, one of the waiting threads is allowed to enter the 
critical section and all other waiting threads remain blocked for a long time. Therefore, 
two critical sections, as in Example code 5, is a better solution for this case. 

It is good programming practice to associate locks with particular shared data. Protecting 
all accesses of a shared variable with the same lock does not prevent other threads from 
accessing different shared variables protected by a different lock. Consider a shared data 
structure. A separate lock could be created for each element of the structure or a single 
lock could be created to protect access to the whole structure. Depending on the 
computational cost of updating the elements, either of these extremes could be a practical 
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solution. The best lock granularity might lie somewhere in the middle. For example, 
given a shared array, a pair of locks could be used: one to protect the even numbered 
elements and the other to protect the odd numbered elements. 

In the case where UpdateSharedData2 requires a substantial amount of time to complete, 
dividing the work in this routine and creating new critical sections may be a better option. 
In Example code 7, the original UpdateSharedData2 has been broken up into two 
functions operating on different data. It is hoped that using separate critical sections will 
reduce lock contention. If the entire execution of UpdateSharedData2 did not need 
protection, rather than enclose the function call, critical sections inserted into the function 
at points where shared data are accessed should be considered. 

Begin Thread Function () 

   Initialize () 

 

   BEGIN CRITICAL SECTION 1 

      UpdateSharedData1 () 

   END CRITICAL SECTION 1 

 

   DoFunc1 () 

 

   BEGIN CRITICAL SECTION 2 

      UpdateSharedData2 () 

   END CRITICAL SECTION 2 

 

   BEGIN CRITICAL SECTION 3 

      UpdateSharedData3 () 

   END CRITICAL SECTION 3 

 

   DoFunc2 () 

End Thread Function () 

Example code 7: Separating one critical section into two can help reduce lock contention. 

Advice 

Balance the size of critical sections against the overhead of acquiring and releasing locks. 
Consider aggregating small critical sections to amortize locking overhead. Divide large 
critical sections with significant lock contention into smaller critical sections. Associate 
locks with particular shared data such that lock contention is minimized. The optimum 
probably lies somewhere between the extremes of a different lock for every shared datum 
and a single lock for all shared data. 

Remember that synchronization serializes execution. Large critical sections indicate that 
the algorithm has little natural concurrency or that data partitioning among threads is sub-
optimal. Nothing can be done about the former except changing the algorithm. For the 
latter, try to create local copies of shared data that the threads can access asynchronously. 

The previous discussion of critical section size and lock granularity does not take the cost 
of context switching into account. When a thread blocks at a critical section waiting to 
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acquire the lock, the operating system swaps an active thread for the idle thread. This is 
known as a context switch. In general, this is the desired behavior because it releases the 
CPU to do useful work. For a thread waiting to enter a small critical section, however, a 
spin-wait may be more efficient than a context switch. The waiting thread does not 
relinquish the CPU when spin-waiting. Therefore, a spin-wait is only recommended when 
the time spent in a critical section is less than the cost of a context switch. 

Example code 8 shows a useful heuristic to employ when using the Win32 threading API. 
This example uses the spin-wait option on Win32 CRITICAL_SECTION objects. A thread 
that is unable to enter a critical section will spin rather than relinquish the CPU. If the 
CRITICAL_SECTION becomes available during the spin-wait, a context switch is avoided. 
The spin-count parameter determines how many times the thread will spin before 
blocking. On uniprocessor systems the spin-count parameter is ignored. Code Sample 4 
uses a spin-count of 1000 for each thread in the application but a maximum spin-count of 
8000. 

int gNumThreads; 

CRITICAL_SECTION gCs; 

 

int  main () 

{ 

   int spinCount = 0; 

   ... 

   spinCount = gNumThreads * 1000; 

   if (spinCount > 8000) spinCount = 8000; 

   InitializeCriticalSectionAndSpinCount (&gCs, spinCount); 

   ... 

} 

 

DWORD WINAPI ThreadFunc (void *data) 

{ 

   ... 

   EnterCriticalSection (&gCs) 

   ...  

   LeaveCriticalSection (&gCs); 

} 

Example code 8: Heuristic to control the behavior of waiting threads. 

Usage Guidelines 

The spin-count parameter used in Example code 8 should be tuned differently on Intel 
processors with Hyper-Threading Technology. In general, spin-waits are detrimental to 
Hyper-Threading performance. Unlike true symmetric multiprocessors (SMP), which 
have multiple physical CPU’s, Hyper-Threading Technology creates two logical 
processors on the same CPU core. Spinning threads and threads doing useful work must 
compete for logical processors. Thus, spinning threads can impact the performance of 
multithreaded applications to a greater extent on Hyper-Threaded systems compared to 
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SMP systems. The spin-count for the heuristic in Example code 8 should be lower or not 
used at all. 

References 

In this manual, see also: 

 2.4: Find Multithreading Errors with the  
Intel Thread Checker 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 5.2: Use Thread-Local Storage to  
Reduce Synchronization 
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4.2 Use Synchronization Routines Provided by the 
Threading API Rather than Hand-Coded 
Synchronization 

Category 
Synchronization 

Scope 

General multithreading 

Keywords 
Synchronization, spin-wait, Hyper-Threading, Win32 threads, OpenMP, Pthreads 

Abstract 

Application programmers sometimes write hand-coded synchronization routines rather 
than using constructs provided by a threading API in order to reduce synchronization 
overhead or provide different functionality than existing constructs offer. Unfortunately, 
using hand-coded synchronization routines may have a negative impact on performance, 
performance tuning, or debugging of multi-threaded applications. 

Background 

It is often tempting to write hand-coded synchronization to avoid the overhead sometimes 
associated with the synchronization routines from the threading API. Another reason 
programmers write their own synchronization routines is that those provided by the 
threading API do not exactly match the desired functionality. Unfortunately, there are 
serious disadvantages to hand-coded synchronization compared to using the threading 
API routines. 

One disadvantage of writing hand-coded synchronization is that it is difficult to guarantee 
good performance across different hardware architectures and operating systems. The 
following example is a hand-coded spin lock written in C that will help illustrate these 
problems: 

#include <ia64intrin.h> 

 

void acquire_lock( int *lock ) 

{ 

   while 

      (_InterlockedCompareExchange (lock, TRUE, FALSE) == TRUE ); 

} 

 

void release_lock (int *lock) 

{ 

   *lock = FALSE; 

} 
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The _InterlockedCompareExchange compiler intrinsic is an interlocked memory 
operation which guarantees that no other thread can modify the specified memory 
location during its execution. It first compares the memory contents of the address in the 
first argument with the value in the third argument, and if a match occurs, stores the value 
in the second argument to the memory address specified in the first argument. The 
original value found in the memory contents of the specified address is returned by the 
intrinsic. In this example, the acquire_lock routine spins until the contents of the 
memory location lock are in the unlocked state (FALSE) at which time the lock is 
acquired (by setting the contents of lock to TRUE) and the routine returns. The 
release_lock routine sets the contents of the memory location lock back to FALSE to 
release the lock. 

Although this lock implementation may appear simple and reasonably efficient at first 
glance, it has several problems. First, if many threads are spinning on the same memory 
location, cache invalidations and memory traffic can become excessive at the point when 
the lock is released, resulting in poor scalability as the number of threads increases. 
Second, this code uses an atomic memory primitive which may not be available on all 
processor architectures, limiting portability. Third, the tight spin loop may result in poor 
performance for certain processor architecture features, such as Hyper-Threading 
Technology. Fourth, the while loop appears to the operating system to be doing useful 
computation, which could negatively impact the fairness of operating system scheduling. 
Although techniques exist for solving all these problems, they often complicate the code 
enormously, making it difficult to verify correctness. Tuning the code while maintaining 
portability is also difficult. These problems are better left to the authors of the threading 
API who have more time to spend verifying and tuning the synchronization constructs to 
be portable and scalable. 

Another serious disadvantage of hand-coded synchronization is that it often decreases the 
accuracy of programming tools for threaded environments. For example, the Intel® 
Threading Tools need to be able to identify synchronization constructs in order to provide 
accurate information about performance (see 2.5: Using Thread Profiler to Evaluate 
OpenMP Performance) and correctness (see 2.4: Find Multithreading Errors with the  
Intel Thread Checker) of the threaded application program. Threading tools are often 
designed to identify and characterize the functionality of the synchronization constructs 
provided by the supported threading API(s). Synchronization is difficult for the tools to 
identify and understand if standard synchronization API’s are not used to implement it, 
which is the case in the example above. Sometimes tools support hints from the 
programmer in the form of tool-specific directives, pragmas, or API calls to identify and 
characterize hand-coded synchronization. Such hints, even if they are supported by a 
particular tool, may result in less accurate analysis of the application program than if 
threading API synchronization were used: the reasons for performance problems may be 
difficult to detect or threading correctness tools may report spurious race conditions or 
missing synchronization. 

http://www.intel.com/software/products/threading
http://www.intel.com/software/products/threading
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Advice  

Avoid the use of hand-coded synchronization if possible. Instead, use the routines 
provided by your preferred threading API, such as omp_set_lock/omp_unset_lock or 
critical/end critical directives for OpenMP, 
pthread_mutex_lock/pthread_mutex_unlock for Pthreads, and 
EnterCriticalSection/LeaveCriticalSection or WaitForSingleObject or 
WaitForMultipleObjects and ReleaseMutex for the Win32 API. Study the threading 
API synchronization routines and constructs to find one that is appropriate for your 
application. 

If a synchronization construct is not available that provides the needed functionality in 
the threading API, consider using a different algorithm for the program that requires less 
or different synchronization. Furthermore, expert programmers could build a custom 
synchronization construct from simpler synchronization API constructs instead of starting 
from scratch. If hand-coded synchronization must be used for performance reasons, 
consider using pre-processing directives to enable easy replacement of the hand-coded 
synchronization with a functionally equivalent synchronization from the threading API; 
thus increasing the accuracy of the threading tools. 

Usage Guidelines  

Programmers who build custom synchronization constructs from simpler synchronization 
API constructs should avoid using spin loops on shared locations to avoid non-scalable 
performance. If the code must also be portable, avoiding the use of atomic memory 
primitives is also advisable. The accuracy of threading performance and correctness tools 
may suffer because the tools may not be able to deduce the functionality of the custom 
synchronization construct, even though the simpler synchronization constructs from 
which it is built may be correctly identified. 

References 

In this manual, see also: 

 2.4: Find Multithreading Errors with the  
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 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for 
Synchronization 

 4.4: Use Non-Blocking Locks when Possible 
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4.3 Win32 Atomics Versus User-Space Locks Versus 
Kernel Objects for Synchronization 

Category 
Synchronization 

Scope 

Win32 multithreading 

Keywords 
Synchronization, lock contention, system overhead, mutual exclusion, Win32 threads 

Abstract 

When threads wait at a synchronization point, they are not doing useful work. 
Unfortunately, some degree of synchronization is usually necessary in multithreaded 
programs. The Win32 API provides several synchronization mechanisms with varying 
utility and system overhead. 

Background 

Synchronization constructs, by their very nature, serialize execution. However, very few 
multithreaded programs are entirely synchronization-free. Fortunately, it is possible to 
mitigate some of the system overhead associated with synchronization by choosing 
appropriate constructs. An increment statement (e.g., var++) will be used to illustrate the 
different constructs. If the variable being updated is shared among threads, the 
load→write→store instructions must be atomic (i.e., the sequence of instructions must 
not be preempted before completion). The Win32 API provides several mechanisms to 
guarantee atomicity, three of which are shown below: 

#include <windows.h> 

 

CRITICAL_SECTION cs;   /* Initialized  in main() */ 

HANDLE mtx;            /* CreateMutex called in main() */ 

static LONG counter= 0; 

 

void IncrementCounter () 

{ 

   // Synchronize with Win32 interlocked function 

   InterlockedIncrement (&counter); 

 

   // Synchronize with Win32 critical section 

   EnterCriticalSection (&cs); 

      counter++; 

   LeaveCriticalSection (&cs); 
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   // Synchronize with Win32 mutex 

   WaitForSingleObject (mtx, INFINITE); 

      counter++ 

   ReleaseMutex (mtx); 

} 

The advantages and disadvantages of each construct will now be discussed. 

The Win32 interlocked functions (InterlockedIncrement, InterlockedDecrement, 
InterlockedExchange, InterlockedExchangeAdd, InterlockedCompareExchange) are 
limited to simple operations but they are faster than critical regions. In addition, fewer 
function calls are required. To enter and exit a Win32 critical region requires calls to 
EnterCriticalSection and LeaveCriticalSection or WaitForSingleObject and 
ReleaseMutex. The interlocked functions are also non-blocking whereas 
EnterCriticalSection and WaitForSingleObject (or WaitForMultipleObjects) block 
threads if the synchronization object is not available. 

When a critical region is necessary, synchronizing on a Win32 CRITICAL_SECTION 
requires significantly less system overhead than Win32 mutex, semaphore, and event 
HANDLEs because the former is a user-space object whereas the latter are kernel-space 
objects. Though Win32 critical sections are usually faster than Win32 mutexes, they are 
not as versatile. Mutexes, like other kernel objects, can be used for inter-process 
synchronization. Timed-waits are also possible with the WaitForSingleObject and 
WaitForMultipleObjects functions. Rather than wait indefinitely to acquire a mutex the 
threads continue after the specified time limit expires. Setting the wait-time to zero 
allows threads to test whether a mutex is available without blocking. (Note that it is also 
possible to check the availability of a CRITICAL_SECTION without blocking using the 
TryEnterCriticalSection function.) Finally, if a thread terminates while holding a 
mutex, the operating system signals the handle to prevent waiting threads from becoming 
deadlocked. If a thread terminates while holding a CRITICAL_SECTION, threads waiting to 
enter this CRITICAL_SECTION are deadlocked. 

A Win32 thread immediately relinquishes the CPU to the operating system when it tries 
to acquire a CRITICAL_SECTION or mutex HANDLE that is already held by another thread. 
In general, this is good behavior. The thread is blocked and the CPU is free to do useful 
work. However, blocking and unblocking a thread is expensive. Sometimes it is better for 
the thread to try to acquire the lock again before blocking (e.g., on SMP systems, at small 
critical sections). Win32 CRITICAL_SECTIONs have a user-configurable spin-count to 
control how long threads should wait before relinquishing the CPU. The 
InitializeCriticalSectionAndSpinCount and SetCriticalSectionSpinCount 
functions set the spin-count for threads trying to enter a particular CRITICAL_SECTION. 

Advice 

For simple operations on variables (i.e., increment, decrement, exchange) use fast, low-
overhead Win32 interlocked functions. 
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Use Win32 mutex, semaphore, or event HANDLEs when inter-process synchronization or 
timed-waits are required. Otherwise, use Win32 CRITICAL_SECTIONs, which have lower 
system overhead. 

Control the spin-count of Win32 CRITICAL_SECTIONs using the 
InitializeCriticalSectionAndSpinCount and SetCriticalSectionSpinCount 
functions. Controlling the how long a waiting thread spins before relinquishing the CPU 
is especially important for small and high-contention critical sections. Spin-count can 
significantly impact performance on SMP systems and CPUs with Hyper-Threading 
Technology. 

Usage Guidelines 

Beware of thread preemption when making successive calls to Win32 interlocked 
functions. For example, the two code segments in Figure 14 will not always yield the 
same value for localVar when executed with multiple threads. In the example using 
interlocked functions, thread preemption between any of the function calls can produce 
unexpected results. The critical section example is safe because both atomic operations 
(i.e., the update of global variable N and assignment to localVar) are protected. 
   static LONG N = 0; 

   LONG localVar; 

 

   InterlockedIncrement (&N); 

   InterlockedIncrement (&N); 

   InterlockedExchange (&localVar, N);

   static LONG N = 0; 

   LONG localVar; 

 

   EnterCriticalSection (&lock); 

      localVar = (N += 2); 

   LeaveCriticalSection (&lock); 

Figure 14: Fundamental differences between interlocked functions and critical sections. 

For safety, Win32 critical regions, whether built with CRITICAL_SECTION variables or 
mutex HANDLEs, should have only one point of entry and exit. Jumping into critical 
sections defeats synchronization. Jumping out of a critical section without calling 
LeaveCriticalSection or ReleaseMutex will deadlock waiting threads. Single entry and 
exit points also make for clearer code. 

Prevent situations where threads terminate while holding CRITICAL_SECTION variables 
because this will deadlock waiting threads. 

References 

In this manual, see also: 
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4.4 Use Non-Blocking Locks when Possible 
Category 
Synchronization 

Scope 

Windows threads, Pthreads, IA-32, Itanium processor 

Keywords 
Non-blocking lock, synchronization, critical section, context switch, spin-wait 

Abstract 

Threads synchronize on shared resources by executing synchronization primitives offered 
by the supporting threading implementation.  These primitives (such as mutex, 
semaphore, etc.) allow a single thread to own the lock, while the other threads either spin 
or block depending on their timeout mechanism. Blocking results in costly context-
switch, whereas spinning results in wasteful use of CPU execution resources (unless used 
for very short duration). Non-blocking system calls, on the other hand, allow the 
competing thread to return on an unsuccessful attempt to the lock, and allow useful work 
to be done and thereby avoiding wasteful utilization of execution resources at the same 
time. 

Background 

Most threading implementations, including the Win32 and POSIX threads API’s provide 
both blocking and non-blocking thread synchronization primitives. Often the blocking 
primitives are used as default. When the lock attempt is successful, the thread gains 
control of the lock, and executes the code in the critical section. However, in the case of 
an unsuccessful attempt, a context-switch occurs and the thread is placed in a queue of 
waiting threads. A context-switch is costly and is avoidable for the following reasons: 
 Context-switch overheads are considerable, especially if the threads implementation 

is based on kernel threads. 
 Any useful work in the application following the synchronization call needs to wait 

execution until the thread gains control of the lock. 

Using non-blocking system calls can alleviate the performance penalties. In this case, the 
application thread resumes execution following an unsuccessful attempt to lock the 
critical section. This avoids context-switch overheads, and also avoidable spinning on the 
lock. Instead the thread performs useful work before a next attempt to gain control of the 
lock. 

Advice 

Use non-blocking synchronization functions to avoid context-switch overheads. Non-
blocking synchronization functions usually start with ‘try.’ For instance, the Win32 API 
provides blocking and non-blocking critical sections: 
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void EnterCriticalSection (LPCRITICAL_SECTION cs); 

bool TryEnterCriticalSection (LPCRITICAL_SECTION cs); 

If the attempt to gain ownership of the critical section is successful, 
TryEnterCriticalSection returns the Boolean value TRUE. Otherwise, it returns FALSE 
and the thread can continue. 

The following example shows a typical use of non-blocking synchronization: 
CRITICAL_SECTION cs; 

 

void threadfoo() 

{ 

   while (TryEnterCriticalSection (&cs) == FALSE) 
   { 

      // Useful work 

   } 

   // 
   // Code requiring protection by critical section 
   // 

   LeaveCriticalSection (&cs); 

} 

Similarly, Pthreads provides non-blocking versions of its mutex functions: 
int pthread_mutex_lock (pthread_mutex_t *mutex); 

int pthread_mutex_trylock (pthread_mutex_t *mutex); 

It is also possible to specify timeouts for Win32 synchronization primitives. The Win32 
API provides the WaitForSingleObject and WaitForMultipleObjects functions to 
synchronize on kernel objects (i.e., HANDLE), e.g.: 

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds); 

where hHandle is the handle to the kernel object, and dwMilliseconds is the timeout 
interval after which the function returns if the kernel object is not signaled. A value of 
INFINITE indicates that the thread waits indefinitely. The thread waits until the relevant 
kernel object is signaled or a user-specified time interval has passed. Once the time 
interval elapses, the thread can resume execution. The following example demonstrates 
the use of WaitForSingleObject for non-blocking synchronization: 

void threadfoo () 

{ 

   DWORD ret_value; 

   HANDLE hHandle; 

 

   ret_value = WaitForSingleObject (hHandle, 0); 

   if (ret_value == WAIT_TIME_OUT) 

   { 

      // Thread could not acquire lock within the time interval 

      // 

      // Other useful work 



 
 

84  Multithreading Consistency Guide 

      // 

   } 
   else if (ret_value == WAIT_OBJECT_0) 

   { 

      // Thread acquired lock within the time interval 

      // 

      // Code requiring protection by critical section 

      // 

   } 

} 

Similarly, WaitForMultipleObjects allows the thread to wait on the signal status of 
multiple kernel objects. 

Usage Guidelines 

When using non-blocking synchronization, for instance TryEnterCriticalSection, 
verify the return value to see if the request is successful before releasing the shared 
object. 

References 

In this manual, see also: 

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune 
Performance Analyzer 

 4.2: Use Synchronization Routines Provided by the Threading API Rather than 
Hand-Coded Synchronization 

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for 
Synchronization 

 4.4: Use Non-Blocking Locks when Possible 

 4.5: Use a Double-Check Pattern to Avoid Lock Acquisition for One-Time Events 

 

See also: 

Aaron Cohen and Mike Woodring, Win32 Multithreaded Programming, O’Reilly and 
Associates, 1998. 

Jim Beveridge and Robert Wiener, Multithreading Applications in Win32 – the Complete 
Guide to Threads, Addison Wesley, 1997. 

Bil Lewis and Daniel J Berg, Multithreaded Programming with Pthreads, Sun 
Microsystems Press, 1998. 
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4.5 Use a Double-Check Pattern to Avoid Lock Acquisition for 
One-Time Events 

Category 
Synchronization 

Scope 

General multithreading 

Keywords 
Lock contention, synchronization, mutual exclusion, Win32 threads, Pthreads 

Abstract 

Acquiring locks, like synchronization, is an expensive operation. For one-time events 
(e.g., initialization, file opening/closing, dynamic memory allocation), it is often possible 
to use double-check locking (DCL) to avoid unnecessary lock acquisition. 

Background 

Synchronization, in this case lock acquisition, requires two interactions (i.e., locking and 
unlocking) with the operating system – an expensive overhead. When initializing a 
global, read-only table, for example, it is not necessary for every thread to perform the 
operation but every thread must check that the initialization occurred. For operations that 
are only executed once (e.g., initialization, file opening/closing, dynamic memory 
allocation), it is often possible to use DCL to avoid unnecessary lock acquisition. In DCL, 
if-tests are used to avoid locking after the first initialization, as the following pseudo-code 
illustrates: 

Boolean initialized = FALSE 

 

function InitOnce 

{ 

   if not initialized 

   { 

      acquire lock 

      if not initialized   Double-check! 

      { 

         perform initialization 

         initialized = TRUE 

      } 

      release lock 

   } 

} 

There are several interesting points about this pseudo-code. First, multiple threads can 
evaluate the first if-test as true. However, only the first thread to acquire the lock may 
perform the initialization and set the Boolean variable to true. When the lock is released, 
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subsequent threads re-check the Boolean variable. Failure to double-check the Boolean 
control variable can result in re-initialization, possibly with different data, which could 
lead to unexpected results. Second, threads that call the function after initialization has 
occurred do not acquire the lock. The first if-test evaluates to false. Third, no thread can 
return unless the initialization is complete. Finally, a data race exists for the Boolean 
variable. Specifically, a thread can read its value while another thread is modifying its 
value. This data race is benign because only the thread holding the lock can modify the 
variable. However, the Intel Thread Checker will still report storage conflicts on the 
Boolean variable (see 2.4: Find Multithreading Errors with the  
Intel Thread Checker). 

Advice 

Use DCL to avoid repeated lock acquisition when performing one-time operations. DCL 
is especially useful when threads repeatedly check whether the operation is complete. The 
following source code shows one way to implement DCL using C and the Win32 API: 

#include <windows.h> 

 

CRITICAL_SECTION lock;   /* Initialized elsewhere */ 

static int initialized = 0; 

 

void init_once () 

{ 

   if (!initialized) 

   { 

      EnterCriticalSection (&lock); 

      if (!initialized) 

      { 

         /* Perform initialization */ 

         initialized = 1; 

      } 

      LeaveCriticalSection (&lock); 

   } 

} 

The following source code shows how to implement DCL using C and Pthreads: 
#include <pthread.h> 

 

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 

static int initialized = 0; 

 

void init_once () 

{ 

   if (!initialized) 

   { 

      pthread_mutex_lock (&lock); 

      if (!initialized) 

http://www.intel.com/software/products/threading/tcwin/
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      { 

         /* Perform initialization */ 

         initialized = 1; 

      } 

      pthread_mutex_unlock (&lock); 

   } 

} 

For completeness, an example of DCL using OpenMP is shown below: 
subroutine init_once 

   logical, save :: init = .FALSE. 

   if (.not. init) then 

      !$omp critical (once) 

         if (.not. init) then 

            ! Perform initialization 

            init = .TRUE. 

         endif 

      !$omp end critical 

   endif 

end subroutine init_once 

 

It is unlikely that DCL will ever be needed in an OpenMP program because OpenMP 
contains pragmas to express this capability (i.e., the single worksharing construct or the 
master/barrier combination). 

Usage Guidelines 

When initializing shared, read-only data, it is tempting to let multiple threads perform the 
initialization asynchronously. The initialization will be correct provided the threads are 
all writing the same values to the global data. However, asynchronous initialization could 
incur a serious performance penalty as multiple threads invalidate each other’s cache 
lines. 

The pthread_once function can be used in the same situations as DCL, but it has greater 
system overhead. 

DCL should be used with caution in Java because some Java Virtual Machines implement 
the Java Memory Model incorrectly. 

References 

In this manual, see also: 

 2.4: Find Multithreading Errors with the  
Intel Thread Checker 

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for 
Synchronization 

 4.4: Use Non-Blocking Locks when Possible 

http://www.openmp.org/
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See also: 

Douglas C. Schmidt and Tim Harrison, “Double-Checked Locking”, Pattern Languages 
of Program Design 3 (Eds: Robert Martin, Frank Buschmann, and Dirke Riehle), 
Addison-Wesley, 1997. 

Brian Goetz, “Double-check locking: Clever, but broken” JavaWorld, February 2001. 
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5. Memory Management 
Adding concurrency to applications can improve performance in obvious ways. Previous 
chapters have dealt with many of the issues that can impact the performance of threaded 
applications. Avoiding contention for heap resources, using storage that is local to threads 
rather than shared to reduce synchronization, and carefully managing memory allocations 
are some of the less obvious, but no less important, considerations that can also impact 
threaded performance. These memory management issues are covered in this chapter. 

5.1 Avoiding Heap Contention among Threads 
Category 
Memory Management 

Scope 

General multithreading 

Keywords 
Heap contention, synchronization, dynamic memory allocation, lock contention, stack allocation 

Abstract 

Allocating memory from the system heap can be an expensive operation. To make 
allocation thread-safe, a lock is used to synchronize access to the heap. The contention on 
this lock can limit the performance benefits from multithreading. To solve this problem, 
change the allocation strategy to avoid using shared lock. 

Background 

The system heap (as used by malloc) is a shared resource. To make it safe to use by 
multiple threads it is necessary to add synchronization to gate access to the shared heap. 
Synchronization, in this case lock acquisition, requires two interactions (i.e., locking and 
unlocking, with the operating system – an expensive overhead. 

The OpenMP implementation in the Intel 7.0 compilers exports two functions, 
kmp_malloc and kmp_free. These functions maintain a per-thread heap attached to each 
thread of the OpenMP team. Threads that call these functions avoid the use of the lock 
that protects access to the standard system heap. The threadprivate directive can be 
used as well to create a private copy of globally declared variables for each thread in the 
OpenMP team. 

The Win32 HeapCreate function can be used to allocate separate heaps for all of the 
threads used by the application. The flag HEAP_NO_SERIALIZE is used to disable the use of 
synchronization on this new heap since only a single thread will access it. 

If the heap handle is stored in a Thread Local Storage (TLS) location, this heap can be 
used whenever an application thread needs to allocate or free memory. Note that memory 
allocated in this manner must be explicitly released by the same thread that performs the 

http://www.openmp.org/
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allocation. For Pthreads applications, the pthread_key_create and 
pthread_{get|set}specific API can be used to obtain access to TLS but the 
management of this global storage is the programmer’s responsibility. 

If you need to use a more general replacement (where the thread which allocates the 
memory is not necessarily the thread which releases the memory, then it may be more 
appropriate to look into using a commercial replacement to the heap manager as listed in 
the references section. 

The following example uses several features of the Win32 API: 
#include <windows.h> 

 

static DWORD tls_key; 

 

__declspec (dllexport) void* thr_malloc (size_t n) 

{ 

   return HeapAlloc (TlsGetValue (tls_key), 0, n); 

} 

 

__declspec (dllexport) void thr_free (void *ptr) 

{ 

   HeapFree (TlsGetValue (tls_key), 0, ptr); 

} 

 

BOOL WINAPI DllMain (HINSTANCE hinstDLL, 

                     DWORD fdwReason, 

                     LPVOID lpReserved) 

{ 

   switch (fdwReason) 

   { 

      case DLL_PROCESS_ATTACH: 

         // Use Thread Local Storage to remember the heap 

         tls_key = TlsAlloc (); 

         TlsSetValue (tls_key, GetProcessHeap ()); 

         break; 

 

      case DLL_THREAD_ATTACH: 

         // Use HEAP_NO_SERIALIZE to avoid lock contention 

         TlsSetValue 

               (tls_key, HeapCreate (HEAP_NO_SERIALIZE, 0, 0)); 

         break; 

 

      case DLL_THREAD_DETACH: 

         HeapDestroy (TlsGetValue (tls_key)); 

         break; 

 

      case DLL_PROCESS_DETACH: 



 
 

Multithreading Consistency Guide   91 

         TlsFree (tls_key); 

         break; 

    } 

    return TRUE;   // Successful DLL_PROCESS_ATTACH 

} 

First, it uses a dynamic load library (DLL) to allow the threads to be registered at the 
point of creation. It also uses TLS to remember the heap that is assigned to each thread. 
Finally, it uses the ability of the Win32 API to independently manage unsynchronized 
heaps. 

Advice 

In addition to the use of multiple independent heaps, it is also possible to incorporate 
other techniques to minimize the lock contention caused by a shared lock that is used to 
protect the system heap. If the memory is only to be accessed within a small lexical 
context, the alloca routine can sometimes be used to allocate memory from the current 
stack frame. This memory is automatically deallocated upon function return. 

A per-thread free list is another technique. Initially, memory is allocated from the system 
heap with malloc. When the memory would normally be released it is added to a per-
thread linked-list. If the thread needs to reallocate memory of the same size, it can 
immediately retrieve the stored allocation from the list without going back to the system 
heap. 

struct MyObject 

{ 

   struct MyObject *next; 

}; 

 

static __declspec(thread) struct MyObject *freelist_MyObject = 0; 

 

struct MyObject *malloc_MyObject () 

{ 

   struct MyObject *p = freelist_MyObject; 

 

   if (p == 0) 

      return malloc (sizeof (struct MyObject)); 

 

   freelist_MyObject = p->next; 

   return p; 

} 

 

void free_MyObject (struct MyObject *p) 

{ 

   p->next = freelist_MyObject; 

   freelist_MyObject = p; 

} 
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Usage Guidelines 

With any optimization you encounter trade-offs. In this case the trade-off is in 
exchanging lower contention on the system heap for higher memory usage. When each 
thread is maintaining its own private heap or collection of objects, these areas are not 
available to other threads. This may result in a “memory imbalance” between the threads, 
similar to the “load imbalance” you encounter when threads are performing varying 
amount of work (see 3.3: Load Balance and Parallel Performance). The memory 
imbalance may cause the working set size to increase and the total memory usage by the 
application to also increase. The increase in memory usage usually has a minimal 
performance impact. An exception occurs when the increase in memory usage exhausts 
the available memory. If this happens it may cause the application to either abort or swap 
to disk. 

References 

In this manual, see also: 

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune 
Performance Analyzer 

 2.4: Find Multithreading Errors with the  
Intel Thread Checker 

 4.1: Managing Lock Contention, Large and  
Small Critical Sections 

 

See also: 

MicroQuill SmartHeap for SMP 

The HOARD memory allocator 

Documentation for the following Win32 functions: 

HeapAlloc, HeapCreate, HeapFree 

TlsAlloc, TlsGetValue, TlsSetValue 

Alloca 

http://www.microquill.com/smartheapsmp/index.html
http://www.cs.utexas.edu/users/emery/hoard/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/memory_management_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/process_and_thread_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_CRT__alloca.asp
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5.2 Use Thread-Local Storage to  
Reduce Synchronization 

Category 
Memory Management 

Scope 

General multithreading 

Keywords 
Thread-local storage, synchronization, OpenMP, Pthreads, Win32 threads 

Abstract 

Synchronization is often an expensive operation that can limit the performance of a 
multi-threaded program. Using thread-local data structures instead of data structures 
shared by the threads can reduce synchronization in certain cases, thus allowing a 
program to run faster. 

Background 

When data structures are shared by a group of threads and at least one thread is writing 
into them, synchronization between the threads is sometimes necessary to make sure that 
all threads see a consistent view of the shared data at all times. The typical synchronized 
access regime for threads in this situation is for a thread to acquire a lock, read or write 
the shared data structures, then release the lock. 

All forms of locking have overhead to maintain the lock data structures and they use 
atomic instructions that slow down modern processors. Also, synchronization slows down 
the program because it eliminates parallel execution inside the synchronized code, 
forming a serial execution bottleneck. Therefore, when synchronization occurs within a 
time-critical section of code, code performance can suffer. 

The synchronization can be eliminated from the multithreaded, time-critical code sections 
if the program can be re-written to use thread-local storage instead of shared data 
structures. This is possible if the nature of the code is such that real-time ordering of the 
accesses to the shared data is unimportant. Synchronization can also be eliminated when 
the ordering of accesses is important, if the ordering can be safely postponed to execute 
during infrequent, non-time-critical sections of code. 

Consider, for example, the use of a variable to count events that happen on several 
threads. The following code shows one way to write such a program in OpenMP: 

int count=0; 

 

#pragma omp parallel shared(count) 

{ 

   if (event_happened) 

http://www.openmp.org/
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   { 

      #pragma omp atomic 

         count++; 

   } 

} 

This program pays a price each time the event occurs because it must synchronize to 
guarantee that only one thread at a time increments count. Every event causes 
synchronization. Removing the synchronization makes the program run faster. One way 
to do this safely is to have each thread count its own events in the parallel region then 
sum the individual counts later. The following code demonstrates this technique: 

int count=0; 

int tcount=0; 

#pragma omp threadprivate(tcount) 

 

#pragma omp parallel 

{ 

   if (event_happened) 

   { 

      tcount++; 

   } 

} 

 

#pragma omp parallel shared(count) 

{ 

   #pragma omp atomic 

      count += tcount; 

} 

This program uses a tcount variable that is private to each thread to store the count for 
each thread. After the first parallel region counts all the local events, a subsequent region 
adds this count into the overall count. This solution trades synchronization per event for 
synchronization per thread. Performance will improve if the number of events is much 
larger than the number of threads. 

An additional advantage of using thread-local storage during time-critical portions of the 
program is that the data may stay live in a processor’s cache longer than shared data, if 
the processors do not share a data cache. When the same address exists in the data cache 
of several processors and is written by one of them, it must be invalidated in the caches of 
all other processors, causing it to be re-fetched from memory when the other processors 
access it. But thread-local data will never be written by any other processors and will 
therefore be more likely to remain in the cache of its processor. 

The previous example code shows one way to specify thread-local storage in OpenMP. 
To do the same thing with Pthreads, the programmer must create a key to access thread-
local storage, e.g.: 
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#include <pthread.h> 

 

pthread_key_t tsd_key; 

<arbitrary data type> value; 

 

if (pthread_key_create (&tsd_key, NULL)) 

   err_abort(status, “Error creating key”); 

 

if (pthread_setspecific( tsd_key, value)) 

   err_abort(status, “Error in pthread_setspecific”); 

 

value = (<arbitrary data type>)pthread_getspecific( tsd_key ); 

With the Win32 API, the programmer allocates a TLS index with TlsAlloc then uses that 
index to set a thread-local value, e.g.: 

DWORD tls_index; 

LPVOID value; 

 

tls_index = TlsAlloc(); 

 

if (tls_index == TLS_OUT_OF_INDEXES) 

   err_abort( tls_index, “Error in TlsAlloc”); 

 

status = TlsSetValue( tls_index, value ); 

 

if (status == 0) 

   err_abort( status, “Error in TlsSetValue”); 

 

value = TlsGetValue (tls_index); 

In OpenMP, one can also create thread-local variables by specifying them in a private 
clause on the parallel pragma or the threadprivate pragma. These variables are 
automatically deallocated at the end of the parallel region. Of course, another way to 
specify thread-local data, regardless of the threading model, is to use variables allocated 
on the stack in a given scope. Such variables are deallocated at the end of the scope. 

Advice 

The technique of thread-local storage is applicable if synchronization is coded within a 
time-critical section of code, and if the operations being synchronized need not be 
ordered in real-time. If the real-time order of the operations is important, then the 
technique can still be applied if enough information can be captured during the time-
critical section to reproduce the ordering later, during a non-time-critical section of code. 
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Consider the following example where threads write data into a shared buffer: 
int buffer[ENTRIES]; 

 

main() 

{ 

   #pragma omp parallel 

   { 

      update_log (time, value1, value2); 

   } 

} 

 

void update_log (time, value1, value2) 

{ 

   #pragma omp critical 

   { 

      if (current_ptr + 3 > ENTRIES) 

      { 

         print_buffer_overflow_message (); 

      } 

      buffer[current_ptr] = time; 

      buffer[current_ptr+1] = value1; 

      buffer[current_ptr+2] = value2; 

      current_ptr += 3; 

   } 

} 

Let’s assume that time is some monotonically increasing value and the only real 
requirement of the program for this buffer data is that it be written to a file occasionally 
sorted according to time. We can eliminate the synchronization in the update_log 
routine by using thread-local buffers. Each thread allocates a separate copy of tpbuffer 
and tpcurrent_ptr. This allows us to eliminate the critical section in update_log. The 
entries from the various thread-private buffers can be merged later, in a non-time-critical 
portion of the program. 

Usage Guidelines  

One must be careful about the trade-offs involved in this technique. The technique does 
not remove the need for synchronization. It only moves the synchronization from a time-
critical section of the code to a non-time-critical section of the code. First, determine 
whether the original section of code containing the synchronization is actually being 
slowed down significantly by the synchronization. (The Intel VTune Performance 
Analyzer can be used to generate a performance profile.) Second, determine whether the 
time ordering of the operations is critical to the application. If not, synchronization can be 
removed, as in the event-counting code. If time ordering is critical, can the ordering be 
correctly re-constructed later? Third, verify that moving synchronization to another place 
in the code will not cause similar performance problems in the new location. One way to 

http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/
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do this is to show that the number of synchronizations will decrease dramatically because 
of your work (such as in the event-counting example above). 

References 

In this manual, see also: 

 2.4: Find Multithreading Errors with the  
Intel Thread Checker 

 2.5: Using Thread Profiler to Evaluate OpenMP Performance 

 3.5: Expose Parallelism by Avoiding or Removing Artificial Dependencies 

See also: 

David R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997. 

Johnson M. Hart, Win32 System Programming (2nd Edition), Addison-Wesley, 2001. 

Jim Beveridge and Robert Weiner, Multithreading Applications in Win32, Addison-
Wesley, 1997. 
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5.3 Offset Thread Stacks to Avoid Cache Conflicts on 
Intel Processors with Hyper-Threading Technology 

Category 
Memory Management 

Scope 

Multithreading with Pthreads or the Win32 API on Intel processors with Hyper-Threading 
Technology 

Keywords 
Hyper-Threading Technology, cache-coherence, data alignment, VTune, stack allocation 

Abstract 

Hyper-Threading enabled processors share the first level data cache on a cache line basis 
among the logical processors. Frequent accesses to the virtual addresses on cache lines 
modulo 64 KB apart can cause alias conflicts that negatively impact performance. Since 
thread stacks are generally created on modulo 64 KB boundaries, accesses to the stack 
often conflict. By adjusting the start of the stack, the conflicts can be reduced and result 
in significant performance gains. Note that the 64 KB alias conflict is processor 
implementation dependent. Future processors may adjust the modulo boundary or 
eliminate this conflict altogether. 

Background 

Intel processors with Hyper-Threading Technology share the first level data cache among 
logical processors. Cache lines whose virtual addresses are modulo 64 KB apart will 
conflict for the same slot in the first level data cache. This can affect both the first level 
data cache performance as well as impact the branch prediction unit. In addition to 64 KB 
alias conflicts, it is possible to increase the number of branch miss predictions when the 
processor core logic uses speculative data with addresses modulo one megabyte apart. 
Under Microsoft Windows operating systems, thread stacks are currently created on a 
multiple of one megabyte boundaries by default. Two threads with very similar stack 
frame images and access patterns to local variables on the stack are very likely to cause 
alias conflicts resulting in substantial degradation. Future implementations of the Intel 
processor with Hyper-Threading Technology will likely address both sources of alias 
conflicts. Adjusting the initial thread stack address of each thread is a simple work-
around and can restore considerable performance to your application on Intel processors 
with Hyper-Threading Technology. 

Advice 

Create a stack offset for each thread to avoid first-level data cache-line conflicts between 
threads on Hyper-Threading-enabled processors. 
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There are two ways to determine if your application performance on Hyper-Threading 
enabled processors is suffering from these alias conflicts. The first, and most definitive, 
method is to try the suggested work-around across your application’s performance 
workloads. By comparing the resulting performance with and without Hyper-Threading 
technology enabled, you can directly measure the relative performance difference. The 
second method is to use the Intel VTune Performance Analyzer. You will need to collect 
both clock tick events as well as 64 KB alias conflict events across your application’s 
performance workloads with and without Hyper-Threading Technology enabled. After 
sorting the modules and functions in your application by clock ticks from highest to 
lowest, compare the number of 64 KB alias events. It’s not unusual to see an increase on 
the order of three times the number of 64 KB alias events with Hyper-Threading 
technology enabled. However, applications with a difference of eight times or greater at a 
module or function level have been shown to improve performance significantly using 
the optimization described below. If a sizeable portion of the total execution time is spent 
in the module or function, this will translate directly to an overall application level 
performance improvement. 

Note that enabling or disabling Hyper-Threading support in Intel processors requires 
support in the system BIOS. Some BIOS implementations between vendors may not 
support user level access to enable or disable the Hyper-Threading feature. 

Typically, threads are created using an operating system specific application interface and 
passing it a pointer to a function as well as a pointer to a block of data specific to the 
thread. The key to adjusting the initial thread stack address is to replace the original 
function pointer with an intermediate function that can adjust the stack by a variable 
amount depending on the number of threads created. A new intermediate parameter block 
is needed that contains a pointer to the original thread function, a thread id, and a pointer 
to the original parameter data block. The intermediate function can adjust the stack 
address and then call the original function passing on the original thread specific 
parameter data. Using the new parameter block with a function pointer is a generic 
implementation that can be used for a pool of threads that may need to invoke different 
functions for a thread. As a less general alternative, you could avoid the function pointer 
technique and have the intermediate function call the original function directly. However, 
be careful that the compiler does not in-line the original thread function within the 
alternative thread function. If the original thread function is ‘in-lined’, the benefit of the 
adjusted stack address for the original function is lost. Using the intermediate function 
method with a function pointer avoids this possibility because the compiler cannot 
determine which function to in-line at compile time. 

The easiest way to adjust the initial stack address for each thread is to call the memory 
allocation function, _alloca, with varying byte amounts in the intermediate thread 
function. The _alloca function allocates memory directly on the stack. By adjusting the 
number of bytes passed to the _alloca function, you can adjust the next function’s 
starting stack address. The _alloca function is found in the malloc.h header file. Using 
this technique to adjust the stack address is allocating virtual memory in each thread’s 
stack frame that will go unused. In Example code 9, a one kilobyte offset multiplied by 
the thread ID number is used to offset the thread stack frames. One kilobyte is not a 

http://www.intel.com/software/products/vtune/
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magic number but one that has generally worked across various applications. One 
important point to note is that current versions of Microsoft Windows operating systems 
have a limit on the amount of virtual memory accessible to a given process. If the limit on 
virtual memory is an important consideration for your application, you will need to 
determine the best offset or modify this technique within this constraint. 

// Original thread parameter data structure 

struct ParameterBlk 

{ 

   int thread_specific_data; 

 

// Padding to keep thread data at least a cache-line apart 

   char padding[2 * CACHE_LINE_SZ – sizeof (int)]; 

}; 

 

typedef DWORD (*PFI) (void*); 

 

// Structure containing arguments provided to each thread 

struct FunctionBlk 

{ 

   PFI ThreadFuncPtr;  

   struct ParameterBlk* function_parameters; 

   unsigned int thread_number; 

 

   // Padding to keep thread data at least a cache-line apart 

   char padding[2 * CACHE_LINE_SZ – sizeof (PFI) - 

                                sizeof(struct ParameterBlk*) - 

                                sizeof(unsigned int)]; 

}; 

 

DWORD WINAPI OriginalThreadProc (LPVOID ptr) 

{ 

   // This would have been the original thread function 

   return 0; 

} 

 

#define STACK_OFFSET 1024 

 

DWORD WINAPI IntermediateThreadProc (LPVOID ptr) 

{ 

   struct FunctionBlk* parameter = (struct FunctionBlk*) ptr; 

   // Adjusting stack address 

   _alloca (parameter->thread_number * STACK_OFFSET); 

 

   // Calling original thread procedure using a function pointer. 

   // You could call the function directly as shown blow but be 

   // careful that the function doesn’t get inlined. 
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   return 

     (*parameter->ThreadFuncPtr)(parameter->function_parameters); 

} 

Example code 9: Offsetting thread stacks with _alloca can avoid cache conflicts. 

When determining how many threads to create, you should consider using the main 
thread to do a portion of the work. The main thread is already likely to have a very 
different stack frame image and data access pattern from the child threads that start with a 
clean stack frame aligned on one megabyte boundaries. Plus, there is one less child thread 
to synchronize and manage. Note that this may not be desirable if the main thread must 
manage other tasks or be responsive to user input.  

Usage Guidelines 

A single source implementation of the thread stack offsets can be used for multi-
processor systems without performance impact. However, use of the stack offset can 
reduce the overall virtual memory available to an application. In general, this will affect 
only very large applications with a large number of threads. By adjusting the stack offset 
amount, you can balance performance needs versus virtual memory. 

The best size for the stack offset is application dependent. Thread functions that have 
deep thread stacks due to local variables with subsequent function calls or operate on 
large local data structures within a loop tend to perform better with a larger stack offset 
size. Conversely, thread functions with smaller stack sizes can perform well with a 
smaller stack offset. In general, increments of one kilobyte stack offsets per thread have 
worked well for many applications. 

References 

In this manual, see also: 

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune 
Performance Analyzer 

 5.1: Avoiding Heap Contention among Threads 

 

See also: 

“Adjusting Thread Stack Address To Improve Performance on Intel Xeon Processors,” 
Phil Kerly (http://developer.intel.com) 
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6. Investigating Poor Parallel  
Application Scaling 

The previous chapters provide guidelines for developing efficient multithreaded 
applications. This chapter looks at the opposite issues of identifying the causes of poor 
parallel scaling of multithreaded applications. Using real life examples, this chapter 
examines the issues and the processes for identifying those issues and resolving them. 
Each section is cross-referenced to the previous chapters, which may guide the developer 
in the application-redesign effort. 

The chapter is structured in the following way. First, tools and general preparatory steps 
are discussed, followed by individual sections providing guidance related to specific 
threading issues with examples. 

Software Tools for Root-Cause Analysis 
The following software-development tools have proven to be indispensable in identifying 
parallel scaling issues. The Intel® software development tools are discussed in detail in 
Chapter 2. This section lists a summary of specific tools, features, and counters of 
particular usefulness in this context. 

Intel® VTune™ Performance Analyzer: The following features are most useful for 
understanding threading-related issues:  

• Time-based sampling: samples are collected at regular time-based intervals (the 
default setting is 1ms)  

• Event-based sampling (with events displayed over time) 

• Counter monitor 

• The ability to break up samples on per-CPU, per-Process, or per-Thread basis 

• Call Graph Profiling 

Perfmon*: This tool is shipped with Microsoft Windows* operating systems. Perfmon 
allows one to watch various performance counters defined by the Windows OS 
interactively. Note that the sampling interval is limited to one second or higher. Using 
Counter Monitor in the VTune analyzer provides the same counter, and for some 
counters, the VTune analyzer allows for shorter refresh intervals. Data can be logged to 
an output file as well, for later analysis. Among the many performance objects provided, 
the most valuable objects and counters for identifying threading issues are the following: 

• Processor: %Processor time; total and for each processor 

• Thread: %Processor time; Context Switches / sec 

• Physical Disk: %Disk Time; Disk Bytes /sec 

• System: various counters (e.g. Threads, SystemCalls / sec, ContextSwitches / sec) 
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Intel® Thread Checker: This tool can be very useful in finding and debugging 
threading issues such as deadlock conditions, race conditions, and access-violation issues. 

Intel® Thread Profiler: This tool can be used to determine serial versus parallel time, 
as well as to measure the wait time on synchronization objects and other performance 
problems. Thread Profiler supports OpenMP* and Win32* threads. 

Preparing for Root Cause Analysis 
Baselining and characterization of the application builds the foundation for any root-
cause analysis. The following list outlines possible steps that are recommended during 
this stage of the analysis: 
• Get information from the application-design team about the threading model used 

(e.g. functional or domain decomposition). Which parts of the application are 
threaded? 

• Gain a fundamental understanding of how the threading is done, how the threads are 
synchronized, how many threads are spawned, and what are they doing. 

• Obtain or develop workloads that exercise the threaded areas. For each of these 
workloads, determine the percentage of time that is spent in the multithreaded part of 
the application. Identify performance metrics that can be used for comparing results. 

• Depending on the specific situation, it may be advantageous to prepare a performance 
lab or to obtain access to a lab with various platform configurations, in order to test 
the application on the following systems: 

o Uni-Processor (UP) systems with a single threaded Operating System kernels 
o Uni-Processor (UP) systems with a Multi-Processor Operating System kernel 

(UP-MP kernel)s 
o Dual Processor (DP) systems. 
o Four-Way Multi-Processor (MP) system (required for comparisons to Dual 

Processor Systems manufactured by Intel that support Hyper-Threading 
Technology). 

• Execute the workloads on the test systems and collect performance data using tools 
such as the VTune Performance Analyzer and Microsoft Perfmon. Understand how 
much of the workload time is spent in serial as opposed to parallel execution (the 
VTune environment counter monitor, Perfmon, or Thread Profiler can provide this 
information). 

Contributing Authors  
Thanks to the following Intel® Software and Application Engineers: Clay 
Breshears, Rajshree Chabukswar, Erik Niemeyer and Ram Ramanujam. 

http://www.openmp.org/
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6.1 Estimating the Degree of Parallelism for a Given 
Application and Workload 

Keywords 

Amdahl’s law, serial and parallel fraction, multithreaded application, resource sharing 
issue 

Abstract 

This section describes the process of identifying the degree of parallelism of an 
application based on measurements on a Dual Processor system using the VTune 
Performance Analyzer. 

Background 

Recalling Amdahl’s law, if a workload is dominated by serial time, only limited 
multithreaded (MT) scaling can be expected. Hence, it is important to understand the 
serial versus parallel nature of the workload. In cases where the workload is dominated 
by serial time, it is advantageous to focus on threading the serial sections if the algorithm 
in question allows it. Converting a serial section to a parallel section increases the portion 
of the application that is multithreaded. Code optimizations that reduce the amount of 
time spent within the serial section of the code will increase the parallel scaling. 
Conversely, improving the application performance within the parallel region will result 
in a decrease of the parallel scaling, since the amount of time spent in the parallel region 
has been reduced and the serial time remained the same; however the overall 
performance of the application will increase.  

Advice 

• Serial versus parallel run time of the workload: Serial versus parallel time can be 
quantified using tools such as the VTune environment Counter Monitor or Perfmon 
when utilization of all CPUs is watched. (Note: The VTune analyzer counter monitor 
and Perfmon report data in one-second intervals, and the data is expressed as a time 
average, so short idle periods might be missed by the tool.) If only one CPU is active 
on a DP/MP system, it is essentially a serial section; if all the CPUs are active, then it 
is a parallel section. This explanation is slightly oversimplified, since thread 
migration between CPUs is not considered. In rare cases, a single-threaded 
application might appear to be running on multiple processors, due to thread 
migration initiated by the operating system. A more in-depth analysis can be done by 
using the VTune analyzer to collect Instructions Retired samples while running the 
workload. Then use the Sample Over Time feature of the VTune environment to look 
at the per-CPU/Process/Thread patterning over time. In addition, by using the Thread 
Profiler, one can obtain the actual parallel-cruise time. When performing these tests, 
one should ensure that no other application is running on the system. The 
measurements should be repeated if other processes, including OS processes, are 
active for a significant amount of time during the workload. 
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A scenario where all CPUs are active but overall CPU utilization is <100% might 
indicate resource-sharing issues among the application threads. 

Example: Multithreaded Application Showing Small Speedup 

When the workload was monitored using Perfmon on a DP system, this application 
showed that about 25% of total run time was parallel. Figure 6.1.1 shows CPU 
utilization of all active application threads as measured by Perfmon. (Thread Object 
=> %Processor Time). Note that parallel run time could also be obtained by 
monitoring the % Processor time for two CPUs.  

 
Figure 6.1.1: Example of a Thread Utilization Profile for a multithreaded application. 

A first approximation of theoretical MP scaling can be calculated by the following 
formula when total serial and parallel times are known (e.g., from an analysis such as 
that shown above).  
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Figure 6.1.2: Total run time as the sum of serial and parallel run time for  

different numbers of processors. 

 
Note: One can arrive at a better estimate for theoretical DP/MP scaling by factoring 
in observed CPU utilization in parallel regions. From the graph in Figure 6.1.1, 
average overall CPU utilization in the parallel region is about 50%. If optimization 
yields 100% CPU utilization, DP run time for the parallel region would be reduced by 
half. 

References 

In this manual, see also:  

This chapter, 6.2: Identifying load imbalance among threads and processors 

Intel® Software Development Products, 2: VTune™ Performance Analyzer, 
Intel® Thread Profiler 

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate 
OpenMP Performance  

Application Threading, 3.2: Granularity and Parallel Performance  

Ts = sum of serial times measured on DP system 

Tp = sum of parallel times measured on DP system 

 

Uni-Processor run time  =  Ts + 2*Tp 

Dual-Processor run time  =  Ts + Tp 

4-Processor run time  =  Ts + 0.5*Tp 
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Application Threading, 3.3: Load Balance and Parallel Performance 

See also: 
Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by 
Clay P. Breshears, available from Intel® Developer Services: 
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm 
 
Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P. 
Breshears, available from Intel® Developer Services:  
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm 

Microsoft Perfmon: Introduction to Performance: 
http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDO
WSXP/home/using/productdoc/en/sag_mpmonperf_01.asp 

http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDOWSXP/home/using/productdoc/en/sag_mpmonperf_01.asp
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6.2 Identifying Load Imbalance among  
Threads and Processors 

Keywords 

Load balance, Thread Profiler, workload dependency 

Abstract 

This section discusses load balance between running threads of an application/workload 
and the process of identifying load-balance issues. For many applications, the load 
balance is dependent on the specific workload, because the serial and parallel fractions of 
the algorithm generally scale differently with workload size and and/or workload 
characteristic. 

Background 

To gain the highest-possible parallel speedup, the workload has to be distributed equally 
among processors. In general, applications are being used with different workloads that 
might be very different in their characteristics. Thus, a dynamic process to distribute the 
work is warranted.  

One common strategy to distribute work equally is to divide the work into independent 
chunks that are distributed using a “bin packing” algorithm. That is, the chunks are sorted 
in decreasing order and are then assigned to threads starting from the largest chunk being 
given to the thread with the least amount of assigned work. The process is then continued 
until all chunks are distributed; always assigning the chunk to the thread that currently 
has the least amount of assigned work.  

To achieve good load balance, applications often use heuristics that are derived from a set 
of representative workloads. Furthermore, workloads change over the lifespan of an 
application, and this can result in load-balance issues, even though the application 
originally showed good load balance.  
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Figure 6.2.1: Bin-Packing algorithm for distributing workload equally. 

Advice 

• Load balancing between threads and among CPUs: If one thread is assigned more 
work than others, the application may not be using the processors effectively, which 
may impact performance scaling achieved. In this case, at certain times, the number 
of active threads might be less than the number of processors (this is called “under 
subscription” as pointed out by Thread Profiler). An efficient application design 
generally sets the number of active threads to be equal or close to the number of 
processors. (If active threads exceed number of processors, Thread Profiler will report 
“over subscription.”) Thread Profiler will show load balance directly. 

Load-balancing data can be seen by checking processor utilization of all CPUs, as 
well as monitoring thread activities while running the application. One reason for 
load imbalance might be that one of the threads has to process high-latency 
instructions or instructions with a high micro-instruction count. Analysis using the 
VTune environment that shows instructions-retired data for each thread can give a 
good measure of the amount of work each thread is doing 

For load-balance analysis, a representative workload set, which also includes limiting 
cases such as a specifically small and large workload size, should be used. Often, a 
larger workload size results in better load balance, and thus, better parallel scaling. 
This fact can be explained by the observation that the serial and parallel portions of 
the algorithm generally scale differently with workload size. In many cases, the serial 
time increases less compared to the increase in the parallel time when the workload is 
increased. An example is the fixed cost of a sequential file open, followed by a 
parallel file read.  

Load-balancing issues can usually be resolved by first determining why one or more 
threads are doing a larger portion of the computation. In most cases, code inspection 
and re-implementing a more balanced threading model and/or modifying the load-
balancing algorithm used in the application will be sufficient. In extreme cases, you 
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may need to re-architect how data is structured and handled externally to the 
application, along with the code modifications needed to process the new data 
formats. 

Example: Multithreaded client application 

As an example, consider an application that implemented a functional-decomposition 
threading model with two threads. During application development, specific design 
decisions were made, based on a representative workload that showed good load 
balance across all tests. Both threads were taking almost equal time. Later, it was 
observed that when the workload size was reduced to a very small size, one of the 
threads would finish much faster than the other thread. This example illustrates a 
common occurrence, where load balancing changes dynamically with workload size 
and shows the need to study a representative workload set that covers a wide range of 
workload sizes. 

References 
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6.3 Analyzing Threading Design of Applications  
and Identifying Issues 

Keywords 

Threading model, thread creation, fine-grain versus coarse-grain parallelism, thread-
pool, synchronization primitives 

Abstract 

Typically, performance analysis and tuning is an activity in the later stages of the 
application-development cycle. During this stage, possible threading issues are identified, 
and recommendations for design changes are made. This section discusses the impact of 
frequent thread creation, granularity of the parallel implementation, synchronization, and 
data sharing.  

Background 

During the application design and initial implementation phase, decisions might have 
been made that resulted in suboptimal parallel performance of the application. It is in the 
performance analysis and tuning phase that issues are identified that must be resolved to 
improve performance. 

Advice 

• Thread-Pool: Many applications that employ dynamic thread creation create and 
destroy threads frequently instead of re-using these threads by maintaining a thread 
pool. The overhead of constantly creating and destroying threads may cause 
performance issues. The use of a thread pool is generally recommended. In a thread 
pool, threads can be suspended when not in use. This practice has the potential to 
significantly reduce the overhead associated with thread creation and destruction. 

There are no specific counters in VTune Performance Analyzer for thread creation 
and destruction. However, the VTune analyzer does track thread creation and shows 
performance data on a per-thread basis (see Figure 6.3.1 for details on how to 
configure the VTune environment). 
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Figure 6.3.1: VTune Performance Analyzer configuration to track thread creation. 

 

A high number of system calls (NTOSKRNL) in the time-based analysis drill-down 
of VTune Performance Analyzer, however, might indicate frequent thread creation 
and destruction. Thread Profiler can also measure time spent in the overhead of 
threading API calls. Furthermore, inspection of the “Timeline View” of Thread 
Profiler can reveal numerous short-lived threads being created and destroyed. 

In the initial implementation of a given application, threads were created every time 
the parallel task (parallel rendering of a page) had to be executed, and these threads 
were terminated at the end of the section. After implementing a thread-pool, a 3% 
performance gain was seen on a DP system with this application and the tested 
workload.  

• Granularity of the parallel implementation (fine-grain versus coarse-grain): As 
part of the performance analysis, the parallelization granularity should be 
investigated. Granularity describes the amount of parallel work to be done before any 
type of synchronization or serial step needs to be performed. The relative size of this 
parallel chunk of work will determine the coarseness of the parallel implementation. 
Generally, best scaling is observed when the parallelization is implemented on the 
coarsest level. An example of this precept is encoding multiple music files 
simultaneously, compared to encoding a single file in parallel.  

 
Best scaling is achieved when threads work at a “coarse-grain” level and load balance 
can be obtained. For a video-encoding application, when frames of images need to be 
processed in an identical manner, it is advantageous for each thread to work on its 
own image frame (coarse grain), rather than work on scan lines in a single image 
frame (fine grain). Likely, there will be more contention around shared resources and 
a higher threading overhead for fine-grain implementations. Increased contention 
between threads will impact scaling and performance. 
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If possible, identify granularity through source-code inspection. VTune analyzer call 
graph analysis can provide insight into the application and show function-call 
patterns, which include threading API calls.  
 

Example: MP3 encoder  
A parallel MP3 encoder showed good speedup, although a small imbalance between 
threads was observed that is inherent to the application. A typical use case is the 
encoding of a list of songs. For this specific use case, a higher throughput can be 
achieved by workload-level parallelism; that is, multiple songs (usually two) are 
encoded simultaneously, using the serial version of the algorithm in parallel.  

An alternative to the above case would be to implement a solution using multiple 
threads to encode a single file. In this case, the parallel code has a smaller granularity 
of work per thread, compared to the workload-level parallel approach. If, however, 
the user is most interested in reducing the time it takes to have the first song encoded 
(fastest turnaround time), the threaded version working on a single file at a time 
should be selected. This example illustrates that the user’s priorities (throughput 
versus turnaround time) can determine the specific strategy that should be chosen. 

 
• Choice of synchronization primitives: To perform thread synchronization, the 

application designer has a variety of choices, each with a different performance 
impact. By using VTune analyzer call graph analysis, one can identify the 
synchronization primitives that are being used in the application. Judicious use of the 
proper synchronization primitives plays a paramount role in limiting parallelization 
overhead. As an example, for Win32 threads, if a simple variable needs to be 
automatically incremented and if the locks are short-lived, use 
InterLockedIncrement instead of using a critical section object. The 
InterLockedxxx routines do not require spin locks, and hence, they are relatively 
faster. However, in terms of cost, critical sections are less expensive than mutexes. In 
addition, a good parallel application design will require each synchronization object 
(spin lock, critical section, condition variable, mutex, etc.) to be held for the least 
amount of time necessary. This should be particularly true for objects that are 
frequently acquired. For example, traversing a long linked list in a linear order while 
holding a heavily used spin lock can cause a performance bottleneck. 

 
• Reduce data sharing between threads: Large amounts of data sharing between 

threads might result in frequent use of synchronization objects. These synchronization 
steps will have a negative impact on performance, not only due to call overhead, but 
more significantly due to the time a thread needs to wait for release of these objects 
prior to acquiring them. It is a good practice to strive for minimal data dependency 
between threads, thus allowing threads to execute independently in parallel and to 
eliminate idle wait time caused by synchronization. The locking of shared resources is 
further discussed in Section 6.4. 
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Intel VTune Performance Analyzer Event Based Sampling and Thread Profiler can be 
used to identify this issue of frequent synchronization. To modify the application 
design, code inspection and detailed understanding of the application is needed. One 
common method to reduce the use of synchronization objects is to use local variables 
instead of protected global variables. Periodic updates of global variables from local 
copies will reduce the number of times a synchronization object needs to be acquired. 
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6.4 Locking of Shared Resources 
Keywords 
Data sharing, lock contention 

Abstract 

This section discusses lock contention that can occur when accessing shared resources 
and provides a process to identify the issue using Thread Profiler or VTune analyzer call 
graph analysis. 

Background 

In most applications, threads need to access shared resources periodically. To ensure data 
integrity, exclusive access to shared resources must be guaranteed by a locking primitive 
or other synchronization object. Mutual exclusion of threads to access shared resources is 
a “necessary evil” of threaded applications, but it should be used as little as possible to 
ensure correct results. Excessive and inappropriate lock contention can result in poor 
parallel performance and scaling.  

Advice 

• Exercise care in locking of shared resources: If not designed carefully, applications 
may experience thread contention/thrashing over certain “hot locks.” One indicator 
for thread contention/thrashing is the occurrence of a large number of context 
switches or a large percentage of processing time spent in “system time.” It is 
recommended that thread-context switches be kept to less than 5000 per second. 

“Hot locks” can be identified by using Thread Profiler or by VTune analyzer call 
graph analysis. When using Call Graph, use the “Thread View” and sort this data on 
“Self Wait Time.” For portability, application architects often choose to define private 
(i.e., application-specific) locking APIs that are derived from OS synchronization 
primitives. When performing this analysis, one has to look for the occurrence of these 
private lock/unlock functions. A high “Self Wait Time” of these functions is a good 
indicator for potential thread contention around that particular lock. Another way to 
identify the issue is to examine the call stack at the particular lock (using caller and 
callee data as provided by the tool) to see which calling sequences show most “Self 
Wait Time”. 

Example: Application with large number of context switches 

When negative scaling was observed for this particular benchmark, VTune analyzer 
event-based sampling analysis was performed. In the event-based sampling data, it 
was observed that NTOSKRNL.exe had the biggest hotspot, with “Spin Lock” and 
“YieldExecution” as the highest contributors.  

In addition, a large number of context switches was observed (200,000 per sec), as 
shown in Figure 6.4.1 below. Note that all four CPUs are active, and overall CPU 
utilization is around 50%, which indicates that even though all CPUs are active, none 
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is being utilized fully. The conclusion was that some contention was keeping the 
threads from full utilization of processors. 

 

 
Figure 6.4.1: Perfmon graph showing high number of context switches. 

 
VTune analyzer call-graph analysis showed significant “Self Wait Time” spent in the 
private implementation of the Lock and Unlock methods.  

By source investigation, following caller and callee paths in VTune analyzer call 
graph analysis, it was observed that a property class defined a critical section as a 
“static” member variable. The application had multiple properties. In this design, all 
property objects share one critical section, on which the four threads contend. Thus, 
even if Thread1 needs Property1, and Thread2 needs Property2, one of the threads 
will be blocked (see Figure 6.4.2 for illustration). To eliminate the issue, each 
property object was designed with its own private lock by removing the “static” 
keyword. For this specific application, this single change resulted in a four-processor 
scaling improvement of from 0.7x to 1.3x. 
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Figure 6.4.2: Redesign of a locking construct. Left: original design with single lock object for all 

properties. Right: new design with individual lock objects for each property. 
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6.5 Identifying and Reducing Frequent Operating 
System Calls 

Keywords 

OS calls, GUI update 

Abstract 

This section discusses the performance impact of frequent operating-system (OS) calls. 
Many OS functions are serialized. That is, only one thread at a time can perform those 
functions. To increase the performance of the parallel application, the number of OS calls 
should therefore be minimized. 

Background 

The OS kernel supporting a multiprocessor system is different from the OS kernel 
supporting a uniprocessor system. Many OS functions are serialized by encapsulating the 
functions with a locking construct that allows only one thread at a time to execute the 
function. If an application is calling these OS functions too frequently, thread contention 
as described in Section 6.4 “Locking of shared resources” can occur.  

Advice 

• Compare performance on a single-threaded OS kernel with a multithreaded OS 
kernel: If the application shows poor scaling on a DP system, collect performance 
measurements on a uniprocessor system with a single threaded OS kernel and on a 
uniprocessor system with a multithreaded kernel. [See article “Hyper Threading 
Implications and Setup on Microsoft Operating Systems”, by Robert Godley, in 
Reference section, for information on how to install a multithreaded OS kernel on a 
uniprocessor system.] If performance degradation is observed going from the single-
threaded kernel to multithreaded kernel on a uniprocessor system, perform analysis 
using VTune Performance Analyzer and identify any hotspots in OS components. 
Using call graph analysis can help identify exact calls and call-tree chains that should 
be rewritten to reduce the number of OS calls. Frequent OS calls can also cause 
unintended context switches.  

 

Example: Application with GUI update 

VTune analyzer event-based sampling and call graph data showed very frequent OS 
calls. An analysis of the call graph data and source inspection indicated the issue was 
a direct result of frequent screen updates. The application requested a status bar 
update in the GUI after performing only a small number of operations. This affected 
the threading performance, as the threads were blocked until the screen update was 
completed. Modifications were made to the code to update the screen less often. As a 
result, DP scaling was increased by 3%. 
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http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm 
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6.6 Potential Windows* XP Scheduler Issue on 
Processors with Hyper-Threading Technology 

Keywords 

Processor scheduling, Hyper-Threading Technology Dual Processor systems, 
multithreaded application 

Abstract 

This section discusses potential performance issues on processors with Hyper-Threading 
Technology that are caused by the Windows XP process scheduler. A process to identify 
the issue is given, and a possible remedy is presented. 

Background 

When Hyper-Threading Technology is enabled, the Windows OS process scheduler 
cannot guarantee that threads are scheduled on a free physical processor, since the 
scheduling is done on logical-processor basis. Conceivably, even though the scheduler 
schedules a new thread on a different logical processor, it might result in the thread being 
scheduled on the same physical processor that is already running another thread from the 
application. Windows currently has no weighting system for logical processors versus 
physical processors. One possible remedy is to use the processor-affinity functions to 
“pin” threads to specific processors manually. 

Advice 

• Use Perfmon to identify resource-contention issues: Some applications demonstrate 
good scaling on UP-HT and DP systems, but poor scaling with DP-HT systems. One 
of the reasons for the degradation on DP-HT systems may be due to Windows XP 
scheduling. On a DP-HT system, the operating system will see four (logical) 
processors available for use. If the application is running multiple threads, the OS will 
assign them to any available logical processor, without giving preference to “free” 
physical processors. Assigning threads on two logical processors that are on the same 
physical processor can cause resource-contention issues, and hence performance 
degradation may be seen on DP-HT.  

Such issues can be identified by running Perfmon with the application and workload. 
The %Processor time counter can provide the necessary information to identify the 
issue. 

 

Example: Threaded application with two main threads and two support threads 

This application demonstrated good UP-HT (1.14x) and DP (1.33x) scaling but 
degraded with DP-HT system (0.90x). Perfmon data (Figure 6.6.1) shows that the 
majority of the work is done on one physical CPU (CPU 0), and the other physical 
processor (CPU 1) is not fully utilized (performing only background tasks). 
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Figure 6.6.1: Perfmon output from DP-HT run of an application with four threads. 
Two of the threads perform a majority of the computations, while the other two do 

periodic update work. This figure shows the threads doing the bulk of the work 
assigned to a single physical processor (but different logical processors). 

 

One possible remedy is to use processor affinity in order to better distribute the 
computations to processors. The processor affinity can be set within the application. 
The SetProcessAffinityMask function sets a processor affinity mask for the threads of 
the specified process. A process affinity mask is a bit vector in which each bit 
represents the processor on which all threads of the process are allowed to run. 
Additionally, SetThreadAffinityMask provides the means to specify for each thread a 
specific processor mapping. Note that the thread-affinity mask must be a proper 
subset of the process-affinity mask for the containing process of a thread. A thread is 
only allowed to run on the processors on which its process is allowed to run. 

Setting processor affinity of threads restricts the process scheduler and in some 
instances might lead to a negative performance impact. For that reason, the 
performance of the application must be reassessed after explicit processor affinity is 
implemented. For details on setting process and thread affinity mask, see the 
Microsoft Developer Network (MSDN) article referenced below.  

Another possible remedy that should be considered is to use SetThreadIdealProcessor 
function in Windows, which does guide the OS-scheduler without demanding a 
certain affinity. The SetThreadIdealProcessor function sets a preferred processor for a 
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thread. The system schedules threads on their preferred processors whenever possible. 
The performance of the application should be reassessed after implementing this 
function. For details on using this function, see the Microsoft Developer Network 
(MSDN) article referenced below.  
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Microsoft Developer Network (MSDN): SetThreadAffinityMask 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
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Intel Developer Services:  
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