
Developing Multithreaded
Applications: A Platform
Consistent Approach

V. 2.0, February 2005

Copyright © Intel Corporation 2003-2005

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document or by the sale of Intel
products. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel
products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for
use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to its test specifications at any time, without notice.

The hardware vendor remains solely responsible for the design, sale and functionality of its product,
including any liability arising from product infringement or product warranty.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance. Buyers should consult other
sources of information to evaluate the performance of systems or components they are considering
purchasing. For more information on performance tests and on the performance of Intel products, reference
www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

The Pentium® III Xeon™ processors, Pentium® 4 processors and Itanium® processors may contain design
defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © Intel Corporation 2003-2005

Other names and brands may be claimed as the property of others.

Multithreading Consistency Guide 1

Contents

1. Multithreading Consistency Guide ..3
1.1 Motivation..3
1.2 Prerequisites ...3
1.3 Scope ..3
1.4 Organization..3

Editors 4
Authors 4
Reviewers 4
Technical Writers ...4
Intel® Multithreading Consistency Working Group Chairs ...4

2. Intel® Software Development Products ...5

Intel® C/C++ and Fortran Compilers ...5

Intel® Performance Libraries...5
Intel® VTune™ Performance Analyzer..6

Intel® Thread Checker ..6
Intel Thread Profiler...6

2.1 Automatic Parallelization with Intel Compilers...7
2.2 Multithreaded Functions in the Intel Math Kernel Library ...12
2.3 Avoiding and Identifying False Sharing Among Threads with the VTune Performance Analyzer15
2.4 Find Multithreading Errors with the Intel Thread Checker ..20
2.5 Using Thread Profiler to Evaluate OpenMP Performance ..26
3. Application Threading...31
3.1 Choosing an Appropriate Threading Method: OpenMP Versus Explicit Threading..............................32
3.2 Granularity and Parallel Performance ...37
3.3 Load Balance and Parallel Performance ...42
3.4 Threading for Turnaround Versus Throughput ..46
3.5 Expose Parallelism by Avoiding or Removing Artificial Dependencies ..49
3.6 Use Workload Heuristics to Determine Appropriate Number of Threads at Runtime53
3.7 Reduce System Overhead with Thread Pools...56
3.8 Exploiting Data Parallelism in Ordered Data Streams ...59
3.9 Manipulate Loop Parameters to Optimize OpenMP Performance...65
4. Synchronization...69
4.1 Managing Lock Contention, Large and Small Critical Sections ..70
4.2 Use Synchronization Routines Provided by the Threading API Rather than Hand-Coded

Synchronization...75

2 Multithreading Consistency Guide

4.3 Win32 Atomics Versus User-Space Locks Versus Kernel Objects for Synchronization.......................78
4.4 Use Non-Blocking Locks when Possible ...82

4.5 Use a Double-Check Pattern to Avoid Lock Acquisition for One-Time Events...................85
5. Memory Management..89
5.1 Avoiding Heap Contention among Threads...89
5.2 Use Thread-Local Storage to Reduce Synchronization..93
5.3 Offset Thread Stacks to Avoid Cache Conflicts on Intel Processors with

 Hyper-Threading Technology ..98
6. Investigating Poor Parallel Application Scaling..103

Software Tools for Root-Cause Analysis ...103
Preparing for Root Cause Analysis..104
Contributing Authors..104

6.1 Estimating the Degree of Parallelism for a Given Application and Workload.....................................105
6.2 Identifying Load Imbalance among Threads and Processors...109
6.3 Analyzing Threading Design of Applications and Identifying Issues ... 112
6.4 Locking of Shared Resources ... 117
6.5 Identifying and Reducing Frequent Operating System Calls ...120
6.6 Potential Windows* XP Scheduler Issue on Processors with Hyper-Threading Technology122

Multithreading Consistency Guide 3

1. Multithreading Consistency Guide
1.1 Motivation
The objective of the Multithreading Consistency Guide is to provide guidelines for
developing efficient multithreaded applications across Intel-based symmetric
multiprocessors (SMP) and/or systems with Hyper-Threading Technology. An application
developer can use the advice in this document to improve multithreading performance
and minimize unexpected performance variations on current as well as future SMP
architectures built with Intel® processors.

The first version of the Guide provides general advice on multithreaded performance.
Hardware-specific optimizations have deliberately been kept to a minimum. In future
versions of the Guide, topics covering hardware-specific optimizations will be added for
developers willing to sacrifice portability for higher performance.

1.2 Prerequisites
Readers should have programming experience in a high-level language, preferably C,
C++, and/or Fortran, though many of the recommendations in this document also apply to
languages such as Java, C#, and Perl. Readers must also understand basic concurrent
programming and be familiar with one or more threading methods, preferably OpenMP*,
POSIX threads (also referred to as Pthreads), or the Win32* threading API.

1.3 Scope
The main objective of the Guide is to provide a quick reference to design and
optimization guidelines for multithreaded applications on Intel® platforms. This Guide is
not intended to serve as a textbook on multithreading nor is it a porting guide to Intel
platforms.

1.4 Organization
The Multithreading Consistency Guide covers topics ranging from general advice
applicable to any multithreading method to usage guidelines for Intel® software products
to API-specific issues. Each topic in the Multithreading Consistency Guide is designed to
stand on its own. However, the topics fall naturally into four categories:

1. Programming Tools – This chapter describes how to use Intel software products to
develop, debug, and optimize multithreaded applications.

2. Application Threading – This chapter covers general topics in parallel performance
but occasionally refers to API-specific issues.

3. Synchronization – The topics in this chapter discuss techniques to mitigate the
negative impact of synchronization on performance.

4 Multithreading Consistency Guide

4. Memory Management – Threads add another dimension to memory management that
should not be ignored. This chapter covers memory issues that are unique to
multithreaded applications.

Though each topic is a standalone discussion of some issue important to threading, many
topics complement each other. Cross-references to related topics are provided throughout.

Editors
Henry Gabb and Prasad Kakulavarapu

Authors
Clay Breshears, Aaron Coday, Martyn Corden, Henry Gabb, Judi Goldstein, Bruce Greer,
Grant Haab, Jay Hoeflinger, Prasad Kakulavarapu, Phil Kerly, Bill Magro, Paul Petersen,
Sanjiv Shah, Vasanth Tovinkere

Reviewers
Clay Breshears, Henry Gabb, Grant Haab, Jay Hoeflinger, Peggy Irelan, Lars Jonsson,
Prasad Kakulavarapu, Rajiv Kapoor, Bill Magro, Paul Petersen, Tim Prince, Sanjiv Shah,
Vasanth Tovinkere

Technical Writers
Shihjong Kuo and Jack Thornton

Intel® Multithreading Consistency Working Group Chairs
Robert Cross, Michael Greenfield, Bill Magro

Multithreading Consistency Guide 5

2. Intel® Software
Development Products

Intel software development products enable developers to rapidly thread their
applications, assist in debugging, and tune multithreaded performance on Intel
processors. The product suite supports multiple threading methods, listed here in
increasing order of complexity – automatic parallelization, compiler-directed threading
with OpenMP, and manual threading using standard libraries such as Pthreads and the
Win32 threading API.

This chapter introduces the components of Intel’s software development suite by
presenting a high-level overview of each product and its key features. The Intel software
development suite consists of the following products:

 Intel® C/C++ and Fortran Compilers

 Intel® Performance Libraries

 Intel® VTune™ Performance Analyzer

 Intel® Thread Checker

 Intel Thread Profiler

For more information on Intel software development products, please refer to the
following web site: http://www.intel.com/software/products.

The Intel® Software College provides training in all Intel products as well as instruction
in multithreaded programming. Please refer to the following web site for more
information on the Intel Software College: https://shale.intel.com/softwarecollege.

Intel® C/C++ and Fortran Compilers
In addition to high-level code optimizations, the Intel compilers also enable threading
through automatic parallelization and OpenMP support. With automatic parallelization,
the compiler detects loops that can be safely and efficiently executed in parallel and
generates multithreaded code. OpenMP allows programmers to express parallelism using
compiler directives and C/C++ preprocessor pragmas.

Intel® Performance Libraries
The Intel® Math Kernel Library (MKL) and Intel® Integrated Performance Primitives
(IPP) provide consistent performance across all Intel® microprocessors. MKL provides
support for BLAS, LAPACK, and vector math functions. All level-2 and level-3 BLAS
functions are threaded with OpenMP. IPP is a cross-platform software library which
provides a range of library functions for multimedia, audio and video codecs, signal and
image processing, speech compression, and computer vision plus math support routines.
IPP is optimized for Intel microprocessors and many of its component functions are
already threaded with OpenMP.

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/perflib/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/threading/tcwin/
http://www.intel.com/software/products/threading/tp/
http://www.openmp.org/
http://www.intel.com/software/products/mkl/mkl52/
http://www.intel.com/software/products/ipp/

6 Multithreading Consistency Guide

Intel® VTune™ Performance Analyzer
The VTune Performance Analyzer helps developers tune their applications for optimum
performance on Intel® architectures. The VTune performance counters monitor events
inside Intel microprocessors to give a detailed view of application behavior, which helps
identify performance bottlenecks. VTune provides time- and event-based sampling, call-
graph profiling, hotspot analysis, a tuning assistant, and many other features to assist
performance tuning. It also has an integrated source viewer to link profiling data to
precise locations in source code.

Intel® Thread Checker
The Intel Thread Checker facilitates debugging of multithreaded programs by
automatically finding common errors such as storage conflicts, deadlock, API violations,
inconsistent variable scope, thread stack overflows, etc. The non-deterministic nature of
concurrency errors makes them particularly difficult to find with traditional debuggers.
Thread Checker pinpoints error locations down to the source lines involved and provides
stack traces showing the paths taken by the threads to reach the error. It also identifies the
variables involved.

Intel Thread Profiler
The Intel Thread Profiler facilitates analysis of applications written using Win32
threading API, Posix Threading API or OpenMP pragmas. The OpenMP Thread Profiler
provides details on the time spent in serial regions, parallel regions, and critical sections
and graphically displays performance bottlenecks due to load imbalance, lock contention,
and parallel overhead in OpenMP applications. Performance data can be displayed for the
whole program, by region, and even down to individual threads.

The Win32 API or Posix Threads API Thread Profiler facilitates understanding the
threading patterns in multi-threaded software by visual depiction of thread hierarchies
and their interactions. It will also help identify and compare the performance impact of
different synchronization methods, different numbers of threads, or different algorithms.
Since Thread Profiler plugs in to the VTune Performance analyzer, multiple runs across
different number of processors can be compared to determine the scalability profile. It
also helps locate synchronization constructs that directly impact execution time and
correlates to the corresponding source line in the application.

Multithreading Consistency Guide 7

2.1 Automatic Parallelization with Intel Compilers
Category
Software

Scope

Applications built with the Intel compilers for deployment on symmetric multiprocessors
(SMP) and/or systems with Hyper-Threading Technology (HT).

Keywords
Auto-parallelization, data dependences, programming tools, compiler

Abstract

Multithreading an application to improve performance can be a time consuming activity.
For applications where most of the computation is carried out in simple loops, the Intel
compilers may be able to generate a multithreaded version automatically.

Background

The Intel C++ and Fortran compilers have the ability to analyze the dataflow in loops to
determine which loops can be safely and efficiently executed in parallel. Automatic
parallelization can sometimes result in shorter execution times on SMP and HT-enabled
systems. It also relieves the programmer from:
 Searching for loops that are good candidates for parallel execution
 Performing dataflow analysis to verify correct parallel execution
 Adding parallel compiler directives manually.

Adding the -Qparallel (Windows*) or -parallel (Linux*) option to the compile
command is the only action required of the programmer. However, successful
parallelization is subject to certain conditions that are described in the next section.

The following Fortran program contains a loop with a high iteration count:
PROGRAM TEST

PARAMETER (N=100000000)

REAL A, C(N)

DO I = 1, N

 A = 2 * I – 1

 C(I) = SQRT(A)

ENDDO

PRINT*, N, C(1), C(N)

END

Dataflow analysis confirms that the loop does not contain data dependencies. The
compiler will generate code that divides the iterations as evenly as possible among the
threads at runtime. The number of threads defaults to the number of processors but can be
set independently via the OMP_NUM_THREADS environment variable. The parallel speed-up

http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/compilers/

8 Multithreading Consistency Guide

for a given loop depends on the amount of work, the load balance among threads, the
overhead of thread creation and synchronization, etc. but will, in general, be less than the
number of threads. For a whole program, speed-up depends on the ratio of parallel to
serial computation (see any good textbook on parallel computing for a description of
Amdahl’s Law).

Advice

Three requirements must be met for the compiler to parallelize a loop. First, the number
of iterations must be known before entry into a loop so that the work can be divided in
advance. A while-loop, for example, usually cannot be made parallel. Second, there can
be no jumps into or out of the loop. Third, and most important, the loop iterations must be
independent. In other words, correct results most not logically depend on the order in
which the iterations are executed. There may, however, be slight variations in the
accumulated rounding error, as, for example, when the same quantities are added in a
different order. In some cases, such as summing an array or other uses of temporary
scalars, the compiler may be able to remove an apparent dependency by a simple
transformation.

Potential aliasing of pointers or array references is another common impediment to safe
parallelization. Two pointers are aliased if both point to the same memory location. The
compiler may not be able to determine whether two pointers or array references point to
the same memory location, for example, if they depend on function arguments, run-time
data, or the results of complex calculations. If the compiler cannot prove that pointers or
array references are safe and that iterations are independent, it will not parallelize the
loop, except in limited cases when it is deemed worthwhile to generate alternative code
paths to test explicitly for aliasing at run-time. If the programmer knows that
parallelization of a particular loop is safe, and that potential aliases can be ignored, this
can be communicated to the compiler with a C pragma (#pragma parallel) or Fortran
directive (!DIR$ PARALLEL). An alternative way in C to assert that a pointer is not aliased
is to use the restrict keyword in the pointer declaration, along with the -Qrestrict
(Windows) or -restrict (Linux) command-line option. However, the compiler will
never parallelize a loop that it can prove to be unsafe.

The compiler can only effectively analyze loops with a relatively simple structure. For
example, it cannot determine the thread-safety of a loop containing external function calls
because it does not know whether the function call has side effects that introduce
dependences. Fortran 90 programmers can use the PURE attribute to assert that
subroutines and functions contain no side effects. Another way, in C or Fortran, is to
invoke inter-procedural optimization with the -Qipo (Windows) or -ipo (Linux) compiler
option. This gives the compiler the opportunity to analyze the called function for side
effects.

When the compiler is unable to parallelize automatically loops that the programmer
knows to be parallel, OpenMP should be used. In general, OpenMP is the preferred
solution because the programmer typically understands the code better than the compiler
and can express parallelism at a coarser granularity (see 3.2: Granularity and Parallel

Multithreading Consistency Guide 9

Performance). On the other hand, automatic parallelization can be effective for nested
loops, such as those in a matrix multiply. Moderately coarse-grained parallelism results
from threading of the outer loop, allowing the inner loops to be optimized for fine-
grained parallelism using vectorization or software pipelining.

Just because a loop can be parallelized does not mean that it should be parallelized. The
compiler uses a threshold parameter to decide whether to parallelize a loop. The
-Qpar_threshold[n] (Windows) and -par_threshold[n] (Linux) compiler options
adjust this parameter. The value of n ranges from 0 to 100, where 0 means to always
parallelize a safe loop and 100 tells the compiler to only parallelize those loops for which
a performance gain is highly probable. The default value of n is 75.

The switches -Qpar_report[n] (Windows) or -par_report[n] (Linux), where n is 1 to
3, can be used to learn which loops were parallelized. Look for messages such as:

test.f90(6) : (col. 0) remark: LOOP WAS AUTO-PARALLELIZED

The compiler will also report which loops could not be parallelized and the reason why,
e.g.:

serial loop: line 6

flow data dependence from line 7 to line 8, due to “c”

This is illustrated by the following example:
void add (int k, float *a, float *b)

{

 for (int i = 1; i < 10000; i++)

 a[i] = a[i+k] + b[i];

}

The compile command ‘icl -c -Qparallel -Qpar_report3 add.cpp’ results in the
following messages:

add.cpp

 procedure: add

 serial loop: line 2

 anti data dependence assumed from line 2 to line 2, due to "a"

 flow data dependence assumed from line 2 to line 2, due to "a"

 flow data dependence assumed from line 2 to line 2, due to "a"

Because the compiler does not know the value of k, it must assume that the iterations
depend on each other, as for example if k equals -1. However, the programmer may know
otherwise, due to specific knowledge of the application (e.g., k always greater than
10000), and can override the compiler by inserting a pragma:

void add (int k, float *a, float *b)

{

 #pragma parallel

 for (int i = 1; i < 10000; i++)

 a[i] = a[i+k] + b[i];

}

10 Multithreading Consistency Guide

The messages now show that the loop is parallelized:
add.cpp

add.cpp(3) : (col. 3) remark: LOOP WAS AUTO-PARALLELIZED.

 procedure: add

 parallel loop: line 3

 shared: {"b", "a", "k"}

 private: {"i"}

 first private: { }

 reductions: { }

However, it is now the programmer’s responsibility not to call this function with a value
of k that is less than 10000, as this could lead to incorrect results.

Usage Guidelines

Try building the computationally intensive kernel of your application with the -parallel
(Linux) or -Qparallel (Windows) compiler switch. Enable reporting with -par_report3
(Linux) or -Qpar_report3 (Windows) to find out which loops were parallelized and
which loops could not be parallelized. For the latter, try to remove data dependencies
and/or help the compiler disambiguate potentially aliased memory references.

The transformations necessary to parallelize a loop may sometimes impact other high-
level optimizations (e.g., loop inversion). This can often be recognized from the compiler
optimization reports. Always measure performance with and without parallelization to
verify that a useful speedup is being achieved.

If -openmp and -parallel are both specified on the same command line, the compiler
will only attempt to parallelize those functions that do not contain OpenMP directives.

For builds with separate compiling and linking steps, be sure to link the OpenMP runtime
library when using automatic parallelization. The easiest way to do this is to use the
compiler driver for linking, e.g.: icl -Qparallel (IA-32 Windows) or efc -parallel
(Itanium® processor for Linux).

References

In this manual, see also:

 2.2: Multithreaded Functions in the
Intel Math Kernel Library
2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.2: Granularity and Parallel Performance

 3.5: Expose Parallelism by Avoiding or Removing Artificial Dependencies

Multithreading Consistency Guide 11

See also:

• The Intel® C++ Compiler User’s Guide or The Intel® Fortran Compiler User’s
Guide, see “Compiler Optimizations/Parallelization/Automatic Parallelization”

• “Efficient Exploitation of Parallelism on Pentium® III and Pentium 4 Processor-Based
Systems”, Aart Bik, Milind Girkar, Paul Grey and Xinmin Tian, Intel Technology
Journal

• http://www.intel.com/technology/itj/q12001/articles/art_6.htm

• The Intel Software College provides extensive training material on Intel software
development products.

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp

12 Multithreading Consistency Guide

2.2 Multithreaded Functions in the
Intel Math Kernel Library

Category
Software

Scope

Applicable to 32-bit processors from the Pentium processor through the Intel® Xeon™
processor and to the Intel® Itanium® processor family on both the Windows and Linux
operating systems

Keywords
Math Kernel Library, BLAS, LAPACK, FFT, programming tools

Abstract

A number of key and appropriate routines within the Intel Math Kernel Library (MKL)
have been threaded to provide increased performance on systems with multiple
processors in a shared-memory environment. We will show that the use of this library
makes available to the user an easy way to get high performance on key algorithms both
on single processor systems and on multiprocessor systems. The user need only tell the
system how many processors to use.

Background

A great deal of scientific code can be parallelized, but not all of it will run faster on
multiple processors on an SMP system because there is inadequate memory bandwidth to
support the operations. Fortunately, important elements of technical computation in
finance, engineering and science rely on arithmetic operations that can effectively use
cache, which reduces the demands on the memory system. The basic condition that must
be met in order for multiple processors to be effectively used on a task is that the reuse of
data in cache must be high enough to free the memory bus for the other processors.
Operations such as factorization of dense matrices and matrix multiplication (a key
element in factorization) can meet this condition if the operations are structured properly.

It may be possible to get a substantial percentage of peak performance on a processor
simply by compiling the code, possibly along with some high-level code optimizations.
However, if the resulting code relies heavily on memory bandwidth, then it probably will
not scale well when the code is parallelized because, it will not scale well because there
will be inadequate cache usage, and with that, inadequate memory bandwidth to supply
all the processors.

Widely used functions such as the level-3 BLAS (basic linear algebra subroutines) (all
matrix-matrix operations), many of the LAPACK (linear algebra package) functions, and,
to a lesser degree, DFT’s (discrete Fourier transforms) all can reuse data in cache
sufficiently that multiple processors can be supported on the memory bus.

http://www.intel.com/software/products/mkl/mkl52/

Multithreading Consistency Guide 13

Advice

There are really two parts to the advice. First, wherever possible the user should employ
the widely used, de facto standard functions from BLAS and LAPACK since these are
available in source code form (the user can build them) and many hardware vendors
supply optimized versions of these functions for their machines. Just linking to the high-
performance library may improve the performance of an application substantially,
depending on the degree to which the application depends on LAPACK, and by
implication, the BLAS (since LAPACK is built on the BLAS).

MKL is Intel’s library containing these functions. The level-3 BLAS have been tuned for
high performance on a single processor but have also been threaded to run on multiple
processors and to give good scaling when more than one processor is used. Key functions
of LAPACK have also been threaded. Good performance on multiple processors is
possible just with the threaded BLAS but threading LAPACK improves performance for
smaller-sized problems. The LINPACK benchmark, which solves a set of equations,
demonstrates well the kind of scaling that threading of these functions can yield. This
benchmark employs two high-level functions from LAPACK – a factorization and a
solving routine. Most of the time is spent in the factorization. For the largest test problem,
MKL achieved a 3.84 speedup on four processors, or 96% parallel efficiency.

In addition to these threaded routines, the DFT’s are also threaded and scale very well.
For example, on 1280x1280 single precision complex 2D transforms, the performance on
the Itanium 2 processor for one, two, and four processors is respectively 1908, 3225 (1.69
speedup), and 7183 MFLOPS (3.76 speedup).

Usage Guidelines

There are caveats in the use of these functions with the current releases of MKL (up
through MKL 6.0 beta update) that have nothing to do with the library directly. Problems
can arise depending on the environment.

OpenMP is used to thread MKL. MKL uses the same OpenMP runtime library as the Intel
compilers. Therefore, problems can arise when OpenMP applications that use MKL are
not compiled with the Intel compilers. Specifically, the application will attempt to use
two different OpenMP libraries, one from the non-Intel compiler and the other from
MKL. When the OMP_NUM_THREADS environment variable is greater than one, chaos
results when both libraries attempt to create threads and the program will fail. A future
version of MKL will provide an alternate means of controlling thread creation. In the
meantime, if this problem is encountered, the issue should be submitted to Intel through
http://premier.intel.com for an interim solution.

A second issue can arise on clusters with symmetric multiprocessor nodes1. MPI or PVM
applications running on such clusters often create one process for each processor in a
node. If these applications use MKL, threads may also be created by each MPI or PVM

1 A node is defined as a computer with an operating system image. In a typical cluster, an operating system
is installed on each computer in the cluster.

14 Multithreading Consistency Guide

process. This could result in over-subscription of processor resources within a node. For
MPI or PVM applications that create one process per processor, it is recommended that
OMP_NUM_THREADS be set to one.

References

In this manual, see also:

 2.1: Automatic Parallelization with Intel Compilers

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

See also:

• The Intel Math Kernel Library can be obtained at
http://developer.intel.com/software/products/perflib/.

• The Intel Software College provides extensive training material on Intel software
development products.

• Information about the BLAS and LAPACK can be obtained at http://www.netlib.org.

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp

Multithreading Consistency Guide 15

2.3 Avoiding and Identifying False Sharing Among
Threads with the VTune Performance Analyzer

Category
Software

Scope

General multithreading

Keywords
VTune, cache coherence, data alignment, profiler, programming tools

Abstract

In symmetric multiprocessors (SMP), each processor has a local cache. The memory
system must guarantee cache coherence. False sharing occurs when threads on different
processors modify different variables that reside on the same cache line. Each write will
invalidate the line in other caches, forcing an update and hurting performance. This topic
covers methods to detect and correct false sharing using the Intel VTune Performance
Analyzer.

Background

False sharing is a well-known performance issue on SMP where each processor has a
local cache. It occurs when threads on different processors modify variables that reside
on the same cache line, as illustrated in. The reason this is called false sharing is because
each thread is not actually sharing access to the same variable. Access to the same
variable, or true sharing, would require programmatic synchronization constructs to
ensure ordered data access.

The source line highlighted in red in the following example code causes false sharing:
double sum=0.0, sum_local[NUM_THREADS];

#pragma omp parallel num_threads(NUM_THREADS)

{

 int me = omp_get_thread_num();

 sum_local[me] = 0.0;

 #pragma omp for

 for (i = 0; i < N; i++)

 sum_local[me] += x[i] * y[i];

 #pragma omp atomic

 sum += sum_local[me];

}

http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/

16 Multithreading Consistency Guide

There is a potential for false sharing on array sum_local. This array is dimensioned
according to the number of threads and is small enough to fit in a single cache line. When
executed in parallel, the threads modify different, but adjacent, elements of sum_local
(the source line highlighted in red), which invalidates the cache line for all processors.

Figure 1: False sharing occurs when threads on different processors modify variables that reside on
the same cache line. This invalidates the cache line and forces a memory update to maintain cache

coherency. This is illustrated in the diagram (top). Threads 0 and 1 require variables that are adjacent
in memory and reside on the same cache line. The cache line is loaded into the caches of CPU 0 and
CPU 1 (gray arrows). Even though the threads modify different variables (red and blue arrows), the

cache line is invalidated. This forces a memory update to maintain cache coherency.

To ensure data consistency across multiple caches, Intel multiprocessor-capable
processors follow the MESI (Modified/Exclusive/Shared/Invalid) protocol. On first load
of a cache line, the processor will mark the cache line as ‘Exclusive’ access. As long as
the cache line is marked exclusive, subsequent loads are free to use the existing data in
cache. If the processor sees the same cache line loaded by another processor on the bus, it
marks the cache line with ‘Shared’ access. If the processor stores a cache line marked as
‘S’, the cache line is marked as ‘Modified’ and all other processors are sent an ‘Invalid’
cache line message. If the processor sees the same cache line which is now marked ‘M’
being accessed by another processor, the processor stores the cache line back to memory

Multithreading Consistency Guide 17

and marks its cache line as ‘Shared’. The other processor that is accessing the same cache
line incurs a cache miss.

The frequent coordination required between processors when cache lines are marked
‘Invalid’ require cache lines to be written to memory and subsequently loaded. False
sharing increases this coordination and can significantly degrade application
performance.

Advice

The basic advice of this section is to avoid false sharing in multithreaded applications.
However, detecting false sharing when it is already present is another matter. The first
method of detection is through code inspection. Look for instances where threads access
global or dynamically allocated shared data structures. These are potential sources of
false sharing. Note that false sharing can be obscure in that threads are accessing
completely different global variables that just happen to be relatively close together in
memory. Thread-local storage or local variables can be ruled out as sources of false
sharing.

A better detection method is to use the Intel VTune Performance Analyzer. For
multiprocessor systems, configure VTune analyzer to sample the ‘2nd Level Cache
Load Misses Retired’ event. For Hyper-Threading enabled processors, configure
VTune analyzer to sample the ‘Memory Order Machine Clear’ event. If you have a high
occurrence and concentration of these events at or near load/store instructions within
threads, you likely have false sharing. Inspect the code to determine the likelihood that
the memory locations reside on the same cache line.

Once detected, there are several techniques to correct false sharing. The goal is to ensure
that variables causing false sharing are spaced far enough apart in memory that they
cannot reside on the same cache line. Not all possible techniques are discussed here.
Below are three possible methods.

One technique is to use compiler directives to force individual variable alignment. The
following source code demonstrates the compiler technique using ‘__declspec
(align(n))’ where n equals 16 (128 byte boundary) to align the individual variables on
cache line boundaries.

__declspec (align(16)) int thread1_global_variable;

__declspec (align(16)) int thread2_global_variable;

When using an array of data structures, pad the structure to the end of a cache line to
ensure that the array elements begin on a cache line boundary. If you cannot ensure that
the array is aligned on a cache line boundary, pad the data structure to twice the size of a
cache line. The following source code demonstrates padding a data structure to a cache
line boundary and ensuring the array is also aligned using the compiler ‘__declspec
(align(n))’ statement where n equals 16 (128 byte boundary). If the array is
dynamically allocated, you can increase the allocation size and adjust the pointer to align
with a cache line boundary.

18 Multithreading Consistency Guide

struct ThreadParams

{

 // For the following 4 variables: 4*4 = 16 bytes

 unsigned long thread_id;

 unsigned long v; // Frequent read/write access variable

 unsigned long start;

 unsigned long end;

 // expand to 128 bytes to avoid false-sharing

 // (4 unsigned long variables + 28 padding)*4 = 128

 int padding[28];

};

__declspec (align(16)) struct ThreadParams Array[10];

It is also possible to reduce the frequency of false sharing by using thread-local copies of
data. The thread-local copy can be read and modified frequently, and the result copied
back to the data structure only when complete. The following source code demonstrates
using a local copy to avoid false sharing.

struct ThreadParams

{

 // For the following 4 variables: 4*4 = 16 bytes

 unsigned long thread_id;

 unsigned long v; //Frequent read/write access variable

 unsigned long start;

 unsigned long end;

};

void threadFunc(void *parameter)

{

 ThreadParams *p = (ThreadParams*) parameter;

 // local copy for read/write access variable

 unsigned long local_v = p->v;

 for(local_v = p->start; local_v < p->end; local_v++)

 {

 // Functional computation

 }

 p->v = local_v; // Update shared data structure only once

}

Usage Guidelines

Avoid false sharing but use these techniques sparingly. Overuse of these techniques,
where they are not needed, can hinder the effective use of the processor’s available cache.

Even with multiprocessor shared-cache designs, it is recommended that you avoid false
sharing. The small potential gain for trying to maximize cache utilization on multi-

Multithreading Consistency Guide 19

processor shared cache designs does not generally outweigh the software maintenance
costs required to support multiple code paths for different cache architectures.

References

In this manual, see also:

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 5.3: Offset Thread Stacks to Avoid Cache Conflicts on Intel Processors with
Hyper-Threading Technology

The Intel Software College provides extensive training material on Intel software
development products. The online course “Getting Started with the VTune Performance
Analyzer” is recommended with respect to the present topic.

https://shale.intel.com/SoftwareCollege/CourseCatalog.asp

20 Multithreading Consistency Guide

2.4 Find Multithreading Errors with the
Intel Thread Checker

Category
Software

Scope

Automated debugging of multithreaded applications in the Windows and Linux
environments

Keywords
Thread Checker, VTune, debugger, programming tools, race conditions

Abstract

The Intel Thread Checker, one of the Intel Threading Tools, is used to debug
multithreading errors in applications that use Win32, PThreads or OpenMP threading
models. Thread Checker automatically finds storage conflicts, deadlock or conditions that
could lead to deadlock, thread stalls, abandoned locks, and more.

Background

Multithreaded programs have temporal component that makes them more difficult to
debug than serial programs. Concurrency errors (e.g., data races, deadlock) are difficult to
find and reproduce because they are non-deterministic. If the programmer is lucky, the
error will always crash or deadlock the program. If the programmer is not so lucky, the
program will execute correctly 99% of the time, or the error will result in slight numerical
drift that only becomes apparent after long execution times.

Traditional debugging methods are poorly suited to multithreaded programs. Debugging
probes (i.e., print statements) often mask errors by changing the timing of multithreading
programs. Executing a multithreaded program inside a debugger can give some
information, provided the bugs can be consistently reproduced. However, the
programmer must sift through multiple thread states (i.e., instruction pointer, stack) to
diagnose the error.

The Intel Thread Checker is designed specifically for debugging multithreaded programs.
It finds the most common concurrent programming errors and pinpoints their locations in
the program. All error examples shown below use examples from the Win32 application
domain:
 Storage conflicts – The most common concurrency error involves unsynchronized

modification of shared data. For example, multiple threads simultaneously
incrementing the same static variable can result in data loss but is not likely to crash
the program. The next section shows how to use the Intel Thread Checker to find such
errors.

http://www.intel.com/software/products/threading/tcwin/
http://www.intel.com/software/products/threading

Multithreading Consistency Guide 21

 Deadlock – When a thread must wait for a resource or event that will never occur, it is
deadlocked. Bad locking hierarchies are a common cause. For example, a thread tries
to acquire locks A and B, in that order, while another thread tries to acquire the locks
in the reverse order. Sometimes the code executes without deadlock (Table 2.1).

Table 2.1: A bad locking hierarchy can sometimes execute without deadlock.

Time Thread 1 Thread 2

T0 Acquire lock A

T1 Acquire lock B

T2 Perform task

T3 Release lock B

T4 Release lock A

T5 Acquire lock A

T6 Acquire lock B

T7 Perform task

T8 Release lock B

T9 Release lock A

However, this locking hierarchy can also deadlock both threads (Table 2.2). Both
threads are waiting for resources that they can never acquire. Thread Checker
identifies deadlock and the potential for deadlock, as well as the contested resources.

Table 2.2: Deadlock due to a bad locking hierarchy.

Time Thread 1 Thread 2

T0 Acquire lock A

T1 Acquire lock B

T2 Wait for lock A

T3 Wait for lock B

 Abandoned locks – Thread Checker detects when a thread terminates while holding a
Win32 critical section or mutex variable because this can lead to deadlock or
unexpected behavior. Threads waiting on an abandoned critical section are
deadlocked. Abandoned mutexes are reset.

 Lost signals – Thread Checker detects when a Win32 event variable is pulsed (i.e., the
Win32 PulseEvent function) when no threads are waiting on that event because this

22 Multithreading Consistency Guide

is a common symptom of deadlock. For example, the programmer expects a thread to
be waiting before an event is pulsed. If the event is pulsed before the thread arrives,
the thread may wait for a signal that will never come.

Thread Checker also finds many other types of errors, including API usage violations,
thread stack overflows, and scope violations.

Advice

Use the Intel Thread Checker to facilitate debugging of OpenMP, PThreads and Win32
multithreaded applications. Errors in multithreaded programs are harder to find than
errors in serial programs not only because of the temporal component mentioned above,
but also because such errors are not restricted to a single location. Threads operating in
distant parts of the program can cause errors. Thread Checker can save an enormous
amount of debugging time, as illustrated by the simple example shown below.

To prepare a program for Thread Checker analysis, compile with optimization disabled
and debugging symbols enabled. Link the program with the /fixed:no option so that the
executable can be relocated. Thread Checker instruments the resulting executable image
when it is run under the VTune Performance Analyzer, Intel’s performance tuning
environment. For binary instrumentation, either the Microsoft Visual C++ compiler
(version 6.0) or the Intel C++ and Fortran compilers (version 7.0 or later) may be used.
However, the Intel compilers support source-level instrumentation (the /Qtcheck option),
which provides more detailed information.

The following program contains a subtle race condition:
#include <stdio.h>

#include <windows.h>

#define THREADS 4

DWORD WINAPI ReportID (LPVOID my_id)

{

 printf (“Thread %d reporting\n”, *(int *)my_id);

}

int main (int argc, char *argv[])

{

 int id;

 HANDLE h[THREADS];

 DWORD barrier, thread_id;

 for (id = 0; id < THREADS; id++)

 h[id] = CreateThread (NULL,

 0,

 ReportID,

 (LPVOID)&id,

 0,

Multithreading Consistency Guide 23

 &thread_id);

 barrier = WaitForMultipleObjects (THREADS, h, TRUE, INFINITE);

}

The program is supposed to create four threads that report their identification numbers.
Sometimes the program gives the expected output:

Thread 0 reporting

Thread 1 reporting

Thread 2 reporting

Thread 3 reporting

Threads do not always report in the order of their identification numbers but all threads
print a message. Other times, some threads appear to report more than once, others do not
report at all, and a mysterious new thread appears, e.g.:

Thread 2 reporting

Thread 3 reporting

Thread 3 reporting

Thread 4 reporting

Thread Checker easily finds the error in this program and shows the statements
responsible (Figure 2):

24 Multithreading Consistency Guide

Figure 2: The Intel Thread Checker

The error description (see the red box in Figure 2) explains the storage conflict in plain
English – a thread is reading variable my_id on line-7 while another thread is
simultaneously writing variable id on line-15. The variable my_id in function ReportID
is a pointer to variable id, which is changing in the main routine. The programmer
mistakenly assumes that a thread begins executing the moment it is created. However, the
operating system may schedule threads in any order. The main thread can create all
worker threads before any of them begin executing. Correct this error by passing each
thread a pointer to a unique location that is not changing.

Multithreading Consistency Guide 25

Usage Guidelines

Intel Thread Checker currently is available for the 32-bit versions of the Microsoft
Windows 2000 and Windows XP operating systems, 32-bit and 64-bit versions of Linux
operating systems. Thread Checker supports OpenMP, the Win32 threading API and the
POSIX PThreads threading API. The Intel compilers are required for OpenMP support.
They are also required for more detailed source-level instrumentation on 32-bit operating
systems and the only mode available on 64-bit Linux operating systems.

Note that the Intel Thread Checker performs dynamic analysis, not static analysis. Thread
Checker only analyzes code that is executed. Therefore, multiple analyses exercising
different parts of the program may be necessary to ensure adequate code coverage.

Thread Checker instrumentation increases the CPU and memory requirements of an
application so choosing a small but representative test problem is very important.
Workloads with runtimes of a few seconds are best. Workloads do not have to be realistic.
They just have to exercise the relevant sections of multithreaded code. For example,
when debugging an image processing application, a 10 x 10 pixel image is sufficient for
Thread Checker analysis. A larger image would take significantly longer to analyze but
would not yield additional information. Similarly, when debugging a multithreaded loop,
reduce the number of iterations.

References

• The Intel Thread Checker web site

• “Getting Started with the Intel Threading Tools,” distributed with
Intel Threading Tools.

• “Intel Thread Checker Lab,” distributed with the Intel Threading Tools.

• The Intel Software College provides extensive training material on Intel software
development products. The online course “Using the Intel Threading Tools” is
recommended with respect to the present topic.

• Using Intel Thread Profiler for Win32 Threads: Philosophy and Theory
• Using Intel Thread Profiler for Win32 Threads: Nuts and Bolts

http://www.intel.com/software/products/threading/tcwin/
https://shale.intel.com/SoftwareCollege/CourseCatalog.asp
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/84200.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/hyperthreading/84766.htm

26 Multithreading Consistency Guide

2.5 Using Thread Profiler to Evaluate
OpenMP Performance

Category
Software

Scope

OpenMP performance tuning on Windows platforms

Keywords
Profiler, programming tools, OpenMP, VTune, parallel overhead

Abstract

Thread Profiler is one of the Intel Threading Tools. It is used to evaluate performance of
OpenMP threaded codes, identify performance bottlenecks, and gauge scalability of
OpenMP applications.

Background

Once an application has been debugged and is running correctly, engineers often turn to
performance tuning. Traditional profilers are of limited use for tuning OpenMP for a
variety of reasons (unaware of OpenMP constructs, cannot report load imbalance, do not
report contention for synchronization objects).

Thread Profiler is designed to understand OpenMP threading constructs and measure
their performance over the whole application run, within each OpenMP region, and down
to individual threads. Thread Profiler is able to detect and measure load imbalance (from
uneven amounts of computation assigned to threads), time spent waiting for
synchronization objects as well as time spent in critical regions, time spent at barriers,
and time spent in the Intel OpenMP Runtime Engine (parallel overhead).

Advice

To prepare an OpenMP application for use with the Thread Profiler, build an executable
that includes the OpenMP profiling library (use /Qopenmp_profile compiler switch).
When setting up a Thread Profiler Activity in VTune Performance Analyzer, be sure to
use a full, production data set running with an appropriate number of threads. Best results
for production performance tuning will be obtained using a representative data set that
exercises the code as close to normal as possible. Small, test data sets may not fully
exercise the parallelism of the code or the interaction between threads, which can lead to
overlooking serious performance problems. While the execution time will be increased
by the instrumentation of the OpenMP threads, this increase is minimal.

Once the application has completed execution, summary performance results are
displayed in the Thread Profiler window. There are three graphical views of the
performance data that can be used. Each is accessible from separate tabs found below the
Legend pane. These three views are summarized below:

http://www.intel.com/software/products/threading/tp/
http://www.intel.com/software/products/threading
http://www.openmp.org/

Multithreading Consistency Guide 27

 Summary View – This view is the default for the Thread Profiler (Figure 3). The
histogram bar is divided into a number of regions indicating the average amount
of time the application spent in the observed performance category. These
performance categories are:

o parallel execution (time within OpenMP parallel regions) in green,
o sequential time in blue,
o idle time due to load imbalance between threads in red,
o idle time waiting at barriers in purple,
o idle time spent waiting to gain access to synchronization objects in orange,
o time spent executing within critical regions in gray, and
o parallel (time spent in OpenMP Runtime Engine) and sequential (time

spent in OpenMP regions that are not executed in parallel) overheads in
yellow and olive, respectively.

Left clicking on the bar will populate the legend with numerical details about total
execution time for each category over the entire run of the application.

Figure 3: Summary View in Thread Profiler

Of course, the best possible display is a histogram that is mostly green with minimal
amounts of blue sequential time. Large amounts of other colors within the summary
histogram are an indication of performance problems. The severity of any problems
noted will depend on the type of problem cited and the actual amount of time spent in

28 Multithreading Consistency Guide

that category. Relatively small performance problems may be tolerable, especially if
it is determined that no easy fix would be possible due to algorithmic implementation.

The Summary View can also be used to compare scalability of an application with
varying numbers of threads. Just drag and drop different activity runs of the same
code with the same data executed with different numbers of threads onto the
Summary View. Besides showing scalability, some performance obstacles may
manifest themselves as the number of threads is varied. For example, lock contention
often increases as more threads are added, which can prevent some applications from
scaling well even when adequate resources are available.

After deciding to pursue a performance problem seen in the Summary View, a more
detailed analysis will need to be done in order to locate and identify the source of the
problem. Examining the timing data through the Regions View does this.
 Regions View: This view breaks down the summary data by each region within

the source code (Figure 4). These include the OpenMP parallel regions and the
surrounding sequential regions. The Regions View gives you the power to
determine which parts of the code are causing the performance problems, whether
it is one single region or all regions. Observation of large sequential regions could
be used to identify portions of the code for further parallel development. Click on
regional histograms in order to populate the Legend pane with numerical details
about the time spent within each performance category. Multiple regions can be
selected and compared in the Legend.

Figure 4: Regions View and Legend in Thread Profiler

Multithreading Consistency Guide 29

The Figure 4 shows a set of parallel and serial regions from an application. This
view contains one parallel region (A0R39) that accounts for much of the time
spent in the application, several smaller parallel regions, and several sequential
regions. The sequential regions shown are too small to consider further
parallelization.

Right-clicking on a selected region histogram (surrounded with blue outline) pops
up a menu dialog that includes an option to display source code. Thus, once
you’ve determined a region that you wish to tune, you can find the corresponding
source code for assessment of the cause and devise a solution. The source code
locations for regions are also noted in the Legend pane.

 Threads View: The Threads View gives a more detailed presentation of timing
characteristics of the application (Figure 5). A separate histogram will be present
for each thread that was used in the execution. The data will, by default, be
summary data for the entire run broken down to the performance of each thread.
The master thread will be the only one with sequential time; all other thread
histograms will be shorter by this sequential time.

Figure 5: Threads View in Thread Profiler

By starting with the Regions view and first filtering out all but the relevant region(s)
of interest, the Threads View can then be used to focus on individual thread
performance within specific regions. This level of detail can give more clues as to the
cause of performance problems. For instance, do all threads exhibit roughly the same

30 Multithreading Consistency Guide

amount of performance overhead? Is the performance overhead only exhibited within
a single thread? Or is there some other pattern of performance being seen?

In Figure 5, the Threads View has been filtered down to a single parallel region. You
can see a “stair step” of load imbalance across the four threads used in the region.
This performance relationship indicates a regular pattern of increasing computation
over loop iterations. That is, successive loop iterations require more processing time
than previous iterations. OpenMP uses static scheduling by default. Since the rise in
computation time between iterations is fairly constant, static scheduling with a small
chunk size will achieve good load balance and fix the performance bottleneck. If the
variation of work for each loop iteration were less predictable, dynamic scheduling of
the iterations would be more appropriate.

Usage Guidelines

The Thread Profiler currently supports OpenMP threaded codes running on Microsoft
Windows operating systems for 32-bit architectures and Linux operating systems running
on 32-bit and 64-bit architectures. The Intel 7.1 compilers or higher are needed to be able
to compile for OpenMP threading and to have the OpenMP profiling library available.

References

In this manual, see also:

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune
Performance Analyzer

 3.2: Granularity and Parallel Performance

 3.3: Load Balance and Parallel Performance

 3.8: Exploiting Data Parallelism in Ordered Data Streams

 3.9: Manipulate Loop Parameters to Optimize OpenMP Performance

 4.1: Managing Lock Contention, Large and
Small Critical Sections

 5.2: Use Thread-Local Storage to
Reduce Synchronization

See also:

• The Thread Profiler web site

• “Getting Started with the Intel Threading Tools,” distributed with Intel Threading
Tools.

• The Intel Software College provides extensive training material on Intel software
development products. The online course “Using the Intel Threading Tools” is
recommended with respect to the present topic.

http://www.intel.com/software/products/threading/tp/
https://shale.intel.com/SoftwareCollege/CourseCatalog.asp

Multithreading Consistency Guide 31

3. Application Threading
This chapter covers general topics in application threading, particularly with respect to
parallel performance. The topics occasionally refer to API-specific issues but much of the
advice applies to any parallel programming method.

The chapter begins with a discussion of data vs. functional decomposition. The opening
topic gives advice on choosing the most appropriate threading method for either parallel
model. This is followed by topics on granularity and load balance. These are critical
issues in parallel programming because they directly affect the efficiency and scalability
of a multithreaded application.

Tailoring thread behavior to a particular runtime environment is often overlooked in
multithreaded programs. On a single-user system, for example, allowing idle threads to
spin may be more efficient than putting them to sleep. On shared systems, however,
forcing idle threads to yield the CPU may be more efficient. The issues involved in
threading for high turnaround vs. high throughput are discussed.

Many algorithms contain optimizations that benefit serial performance but inadvertently
introduce dependencies that inhibit parallelism. It is often possible to remove such
dependencies through simple transformations. Techniques for exposing parallelism by
avoiding or removing artificial dependencies are discussed.

The next two topics describe how to choose an appropriate number of threads and how to
minimize overhead due to thread creation. Creating too many threads hurt performance
for many reasons, including increased system overhead, decreased granularity, increased
lock contention, etc. Therefore, it is a good idea to control the number of threads through
runtime heuristics and thread pools. Heuristics allow the programmer to create threads
based on workload requirements that may not be known until runtime. Thread pools to
limit the overhead of thread creation is described. The advice in this topic is primarily for
applications threaded with Pthreads or the Win32 thread API. Thread pools are already
used in the Intel OpenMP implementation.

The chapter closes with techniques for handling order-dependent output and loop
optimizations designed to boost OpenMP performance.

32 Multithreading Consistency Guide

3.1 Choosing an Appropriate Threading Method:
OpenMP Versus Explicit Threading

Category
Application Threading

Scope

General multithreading

Keywords
OpenMP, POSIX threads, Pthreads, Win32 threads, data parallelism, functional decomposition

Abstract

Of the two most common approaches to multithreading, compiler-based and library-based
methods, neither is appropriate to all situations. Compiler-based threading methods like
OpenMP are best suited to data parallelism. Methods based on threading libraries,
primarily the Win32 and POSIX thread API’s, are best suited to functional
decomposition.

Background

Programmers have used threads for many years to express the natural concurrency of
their applications. For example, threads allow an application to continue processing while
still receiving GUI input. Thus, the application is not frozen from the user’s perspective.
On a symmetric multiprocessor and/or CPU’s with Hyper-Threading Technology, threads
can significantly improve performance through parallel computing.

Broadly speaking, two threading methods are available (i.e., library-based and compiler-
directed), each suited to a particular type of multithreaded programming. Library-based
threading methods (the Win32 multithreading API on Windows and the Pthreads library
on Linux) require the programmer to manually map concurrent tasks to threads. There is
no explicit parent-child relationship between the threads – all threads are peers. This
makes the threading model very general. The libraries also give the programmer control
over low-level aspects of thread creation, management, and synchronization. This
flexibility is the key advantage of library-based threading methods but it comes at a price.
Threading an existing serial application with a library-based method is an invasive
process requiring significant code modifications. Concurrent tasks must be encapsulated
in functions that can be mapped to threads. POSIX and Win32 threads only accept one
argument so it is often necessary to modify function prototypes and data structures.

OpenMP, a compiler-based threading method, provides a high-level interface to the
underlying thread libraries. With OpenMP, the programmer uses pragmas (or directives in
the case of Fortran) to describe parallelism to the compiler. This removes much of the
complexity of explicit threading because the compiler handles the details. OpenMP is less
invasive too. Significant source code modifications are not usually necessary. A non-

http://www.openmp.org/

Multithreading Consistency Guide 33

OpenMP compiler simply ignores the pragmas, leaving the underlying serial code intact.
However, much of the fine control over threads is lost. Among other things, OpenMP
does not give the programmer a way to set thread priorities or perform event-based or
inter-process synchronization. Also, OpenMP is a fork-join threading model with an
explicit master-worker relationship among threads. This narrows the range of problems
for which OpenMP is suited.

A typical word processor has many opportunities for concurrency. While the user is
typing, several background tasks occur simultaneously without interrupting keyboard
input. For example, the application periodically saves changes, checks spelling and
grammar, and prints documents. This is a good example of functional decomposition, in
which different tasks are mapped to threads for concurrent execution. The number of
tasks determines the degree of concurrency. The generality and fine control of library-
based methods makes them better suited to expressing this type of concurrency. For
example, the thread handling keyboard input would be given higher priority than threads
handling other, less critical tasks like printing.

OpenMP is designed to express data parallelism, in which threads perform the same task
on different data. A web server is a good example of a data parallel application. The same
task (servicing HTTP requests) is performed repeatedly on different data (web pages). In
a data parallel problem, the amount of data determines the degree of parallelism. The
spell checker in a word processor is a good example. The words of the document can be
divided among threads, with each thread performing its comparisons independently. The
amount of parallel work increases with the number of words in the document.

Advice

In general, OpenMP is best suited to expressing data parallelism while explicit threading
methods (i.e., the Pthreads library and the Win32 threading API) are best suited to
functional decomposition. Do not try to shoehorn explicit threading methods into a data
parallel problem or vice versa, as the following examples illustrate. The following
program calculates by numerical integration. The parallelism can be expressed with a
single OpenMP pragma. (As mentioned previously, a non-OpenMP compiler will simply
ignore the pragma, leaving the underlying serial code intact.)

#include <stdio.h>

#define INTERVALS 100000

int main ()

{

 int i;

 float h, x, pi = 0.0;

 h = 1.0 / INTERVALS;

#pragma omp parallel for private(x) reduction(+:pi)

 for (i = 0; i < INTERVALS; i++)

 {

 x = h * (float(i) – 0.5);

 pi += 4.0 / (1.0 + x * x);

34 Multithreading Consistency Guide

 }

 pi *= h;

 printf (“Pi = %f\n”, pi);

}

It is possible to express data parallelism with explicit threading methods like Pthreads or
the Win32 threading API but it is not convenient:

#include <stdio.h>

#include <pthreads.h>

#define INTERVALS 100000

#define THREADS 4

float global_sum = 0.0;

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER;

void *pi_calc (void *num);

int main ()

{

 pthread_t tid[THREADS];

 int i, t_num[THREADS];

 for (i = 0; i < THREADS; i++)

 {

 t_num[i] = i;

 pthread_create (&tid[i], NULL, pi_calc, &t_num[i]);

 }

 for (i = 0; i < THREADS; i++)

 pthread_join (tid[i], NULL);

 printf (“Pi = %f\n”, global_sum);

}

void *pi_calc (void *num)

{

 int i, myid, start, end;

 float h, x, my_sum = 0.0;

 myid = *(int *)num;

 h = 1.0 / INTERVALS;

 start = (INTERVALS / THREADS) * myid;

 end = start + (INTERVALS / THREADS);

 for (i = start; i < end; i++)

 {

 x = h * ((float)i - 0.5);

Multithreading Consistency Guide 35

 my_sum += 4.0 / (1.0 + x * x);

 }

 pthread_mutex_lock (&global_lock);

 global_sum += my_sum;

 pthread_mutex_unlock (&global_lock);

}

The size and complexity of the program is increased significantly and the original serial
code is barely recognizable. Notice how the computation must be encapsulated in a
function so that it can be mapped to threads. Within this function, the work must be
manually divided among the threads.

Explicit threading methods are designed to express functional decomposition, where
work is divided by task rather than data. With explicit threading methods, the
programmer manually maps concurrent tasks to threads. Consider the standard producer-
consumer problem described in most concurrent programming textbooks. Coding a
producer-consumer is straightforward with explicit threading API’s because the
programmer can dynamically create and destroy threads. Also, synchronization is not
limited to just data access. Threads can be made to wait for events. The lack of event-
based synchronization makes even this simple problem difficult to code efficiently in
OpenMP. The OpenMP sections pragma provides some ability to code functional
decomposition but the inherent fork-join threading model limits flexibility and scalability.
Specifically, the number of parallel sections is fixed at compile-time so the number of
producer and/or consumer threads cannot change dynamically at runtime as processor
resources change. OpenMP also lacks the ability to assign priorities to threads.

Usage Guidelines

Portability should also be considered when choosing between OpenMP, Pthreads, or
Win32 threads. OpenMP-compliant compilers are available for most operating systems,
including Windows and Linux. Thread libraries, on the other hand, are not portable.
Obviously, the Win32 API is only available on Microsoft operating systems. Even then
there are slight differences in supported features between different versions of Windows.
The same can be said of Pthreads on Linux and various other flavors of Unix.

Scalability should be taken into account when threading an application for parallel
performance. Does parallelism increase with the number of independent tasks, the
amount of data to be processed, or both? Consider an application with only two compute-
intensive, independent tasks. On a multiprocessor system with four CPU’s, for example,
mapping the tasks to Win32 or POSIX threads will only use half of the system. If the two
tasks are data parallel, adding OpenMP to each task might be a better solution. However,
if one task is data parallel and the other is not, an OpenMP-only solution will not give full
system utilization (see Amdahl’s Law). A good solution for this example might be to map
both independent tasks to a Win32 or POSIX thread then use OpenMP to express data
parallelism within each task.

36 Multithreading Consistency Guide

References

In this manual, see also:

 3.2: Granularity and Parallel Performance

 3.3: Load Balance and Parallel Performance

 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at
Runtime

 3.8: Exploiting Data Parallelism in Ordered Data Streams

See also:

• OpenMP C and C++ Application Program Interface (version 2.0), OpenMP
Architecture Review Board, March 2002.

• OpenMP Fortran Application Program Interface (version 2.0), OpenMP Architecture
Review Board, November 2000.

• “Multithreading: Taking Advantage of Intel Architecture-based Multiprocessor
Workstations,” Intel White Paper, 1999.

• “Performance improvements on Intel architecture-based multiprocessor workstations:
Multithreaded applications using OpenMP,” Intel White Paper, 2000.

• “Threading Methodology: Principles and Practices,” Intel Technical Report, 2002.

• M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall International,
1982.

• David R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997.

• Johnson M. Hart, Win32 System Programming (2nd Edition), Addison-Wesley, 2001.

• Jim Beveridge and Robert Wiener, Multithreading Applications in Win32, Addison-
Wesley, 1997.

http://www.openmp.org/specs
http://www.openmp.org/specs

Multithreading Consistency Guide 37

3.2 Granularity and Parallel Performance
Category
Application Threading

Scope

General multithreading and performance

Keywords
Granularity, load balance, parallel overhead, VTune, Thread Profiler

Abstract

A key to attaining good parallel performance is choosing the right granularity for your
application. Granularity is the amount of work in the parallel task. If granularity is too
fine, then performance can suffer from communication overhead. If granularity is too
coarse, then performance can suffer from load imbalance. The goal is to determine the
right granularity (coarser granularity is usually better) for the parallel tasks, while
avoiding load imbalance and communication overhead to achieve the best performance.

Background

The amount of work per parallel task, or granularity, of a multithreaded application
greatly affects its parallel performance. When threading an application, the first step is to
partition the problem into as many parallel tasks as possible. The next step is to
determine the necessary communication in terms of data and synchronization. In the third
step, the performance of the algorithm is considered. Since communication and
partitioning are not free operations, one often needs to agglomerate, or combine
partitions, to overcome the overheads and achieve the most efficient implementation. The
agglomeration step is the process of determining the best granularity for the application.
The granularity is often related to how balanced the workload is between threads. It is
easier to balance the workload of a large number of small tasks but too many small tasks
can lead to excessive parallel overhead. Therefore, coarse granularity is usually best.
However, increasing granularity too much can create load imbalance (see 3.3: Load
Balance and Parallel Performance). Tools such as the Intel® Thread Profiler (see 2.5:
Using Thread Profiler to Evaluate OpenMP Performance) can help identify the right
granularity for your application.

The following examples will show how to improve the performance of a parallel program
by decreasing the synchronization overhead and finding the right granularity for the
threads. The example used throughout this topic is that of prime number generation (i.e.,
find all prime numbers between 0 and 1 million). Example code 1 shows a parallel
version using OpenMP.

http://www.intel.com/software/products/threading/tp/
http://www.openmp.org/

38 Multithreading Consistency Guide

#pragma omp parallel for \

 schedule(dynamic, 1) \

 private(j, limit, prime)

for (i = start; i <= end; i += 2) // Between 0 and 1 million

{

 limit = (int) sqrt((float)i) + 1;

 prime = 1; // Assume number is prime

 j = 3;

 while (prime && (j <= limit))

 {

 if (i%j == 0) prime = 0;

 j += 2;

 }

 if (prime)

 {

 #pragma omp critical

 {

 number_of_primes++;

 if (i%4 == 1) number_of_41primes++; // 4n+1 primes

 if (i%4 == 3) number_of_43primes++; // 4n-1 primes

 }

 }

}

Example code 1. Prime number generation parallelized with OpenMP.

This code has both high communication overhead, in the form of synchronization, and a
workload that is too small to merit threads. First you will notice a critical section inside
the loop to provide a safe mechanism for incrementing the counting variables. The
critical section adds synchronization and lock overhead to the parallel loop as shown by
the Intel Thread Profiler display in Figure 6a.

Multithreading Consistency Guide 39

Figure 6: VTune Analyzer Thread Profiler Display

a) A0: 1st run, synchronization and lock overhead, b) A1: 2nd run, parallel overhead, c) A2: 3rd run,
load imbalance, d) A3: 4th run, performance problems solved

The lock and synchronization overhead can be removed by replacing the critical section
with an OpenMP reduction (Example code 2). Incrementing counter variables is a
common operation, commonly known as a reduction. The OpenMP reduction clause
provides an efficient way to handle reduction operations.

#pragma omp parallel for \

 schedule(dynamic, 1) private(j, limit, prime) \

 reduction(+: number_of_primes, \

 number_of_41primes, \

 number_of_43primes)

for (i = start; i <= end; i += 2) // Between 0 and 1 million

{

 limit = (int) sqrt((float)i) + 1;

 prime = 1; // Assume number is prime

 j = 3;

 while (prime && (j <= limit))

 {

 if (i%j == 0) prime = 0;

 j += 2;

 }

40 Multithreading Consistency Guide

 if (prime)

 {

 number_of_primes++;

 if (i%4 == 1) number_of_41primes++; // 4n+1 primes

 if (i%4 == 3) number_of_43primes++; // 4n-1 primes

 }

}

Example code 2. Prime number generation parallelized with OpenMP using the
reduction clause instead of the critical pragma.

The Intel Thread Profiler shows that the lock and synchronization overheads have been
eliminated but the parallel overhead is still present (Figure 6b). Dynamic scheduling
incurs a small amount of overhead. The schedule(dynamic, 1) clause directs the
scheduler to dynamically distribute one iteration (i.e., the chunk size) at a time to each
thread. Each thread processes a loop iteration then returns to the scheduler to get another
iteration. Increasing the chunk size in the schedule clause reduces the number of times a
thread must return to the scheduler.

If the chunk size is too large, however, load imbalance can occur. For example, the Intel
Thread Profiler shows a load imbalance when the chunk size is increased to 100,000
(Figure 6c). Load imbalance occurs because iterations 900,000 to 1,000,000 contain more
work than previous chunks. Setting the chunk size to 100 eliminates the parallel overhead
and the load imbalance (Figure 6d).

Advice

The parallel performance of a multithreaded application depends on granularity, or the
amount of work per parallel task. In general, try to achieve the coarsest granularity
possible without creating a load imbalance between threads. Make sure that the amount
of work per thread is much larger than the threading overhead. Use the Intel Thread
Profiler to find excessive parallel overhead, excessive synchronization, and load
imbalance.

Usage Guidelines

While the discussion above makes frequent reference to OpenMP, all of the advice and
principles described apply to other threading methods, such as Win32 and POSIX
threads.

References

In this manual, see also:
 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit
Threading

 3.3: Load Balance and Parallel Performance

Multithreading Consistency Guide 41

 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at
Runtime

 4.1: Managing Lock Contention, Large and
Small Critical Sections

See also:

• Rohit Chandra et al., Parallel Programming in OpenMP, Morgan Kaufman, 2001.

• Ian T. Foster, Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineers, Addision-Wesley, 1995.

• Ding-Kai Chen et al., “The Impact of Synchronization and Granularity on Parallel
Systems”, Proceedings of the 17th Annual International Symposium on Computer
Architecture 1990.

42 Multithreading Consistency Guide

3.3 Load Balance and Parallel Performance
Category
Application Threading

Scope

General multithreading

Keywords
Granularity, load balance, thread scheduling, VTune, Thread Profiler

Abstract

Load balancing application workload among threads is critical to the application
performance. The key objective for load balancing is to minimize idle time on threads.
Sharing the workload equally across all threads with minimal work sharing overheads
results in the shortest critical path of execution, and thereby best performance. However,
achieving perfect load balance is non-trivial, and depends on the parallelism within the
application, workload, the number of threads, load balancing policy, and the threading
implementation.

Background

An idle processor during computation is a wasted resource and increases the overall
execution time of the computation. This idleness can result from many different causes,
for example, fetching from memory or I/O. While it may not be possible to completely
eliminate a processor from being idle at times, there are measures that programmers can
apply to reduce idle time (overlapped I/O, memory prefetching, reordering data access
patterns for better cache utilization).

Similarly, idle threads are also wasted resources in multithreaded executions. An unequal
amount of work assigned to threads is a condition known as a load imbalance. The
greater the imbalance, the more threads will remain idle and the greater the time needed
to complete the computation. The more equitable the distribution of computational tasks
to available threads, the lower the overall execution time will be.

As an example, consider a set of twelve independent tasks with the following set of times
{10, 6, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1}. Assuming four threads are available for computing this
set of tasks, a simple method of task assignment would schedule each thread with three
total tasks distributed in order. Thus, Thread-1 would be assigned work totaling 20 time
units (10+6+4), Thread-2 would require eight time units (4+2+2), Thread-3 would require
five time units (2+2+1), while Thread-4 would be able to execute the three tasks assigned
in only three time units (1+1+1). Figure 7 illustrates this distribution of work and shows
that the overall execution time for these twelve tasks would be 20 time units.

Multithreading Consistency Guide 43

Figure 7: Illustration of task distribution showing load imbalance.

A better distribution of work would have been Thread-1 {10}, Thread-2 {6, 1, 1},
Thread-3 {4, 2, 1, 1}, and Thread-4 {4, 2, 2, 2}. This schedule would take only ten time
units to complete and would only have two of the four threads idle for two time units
each (Figure 8).

Figure 8: Illustration of task distribution showing better load balance.

Advice

For the case when all tasks are the same length, a simple static division of tasks among
available threads – dividing the total number of tasks into (nearly) equal-sized groups

44 Multithreading Consistency Guide

assigned to each thread – is the best solution. In the general case, though, even when all
task lengths are known in advance, finding an optimal, balanced assignment of tasks to
threads is an intractable problem. When the lengths of individual tasks are not the same,
dynamic assignment of tasks to threads is a better solution.

OpenMP provides four scheduling methods for iterative work-sharing constructs (see the
OpenMP specification for a detailed description of each method). Static scheduling of
iterations is used by default. When the amount of work per iteration varies, and the
pattern is unpredictable, dynamic scheduling of iterations can better balance the
workload. In OpenMP, the dynamic scheduling alternatives are dynamic and guided
which are specified in the schedule clause. Under dynamic scheduling, chunks of
iterations are assigned to threads; when the assignment has been completed, threads
request a new chunk of iterations. The optional chunk argument of the schedule clause
denotes the fixed number of iterations to be assigned under dynamic scheduling. In
guided scheduling, iterations are assigned to threads in gradually decreasing chunk sizes.
Because of the pattern of assignment, guided scheduling requires less overhead than
dynamic scheduling. The optional chunk argument of the schedule clause denotes the
minimum number of iterations to be assigned under guided scheduling.

A special case is when the amount of work per iteration increases (or decreases)
monotonically. For example, the number of elements per row in a lower triangular matrix
increases regularly. For such cases, setting the chunk size with static scheduling may
provide adequate load balance without the added overhead of dynamic or guided
scheduling.

When the choice of scheduling method is not apparent, use the runtime schedule to
specify scheduling method and chunk size at runtime. This allows experimentation
without requiring recompilation of the program.

Explicit threading methods (e.g., Win32 and POSIX threads) do not have any means to
automatically schedule a set of independent tasks to threads. When needed, such
capability must be programmed into the application. Static scheduling of tasks is a
straightforward exercise. For dynamic scheduling, two related methods are easily
implemented: Producer/Consumer and Manager/Worker. In the former, one or more
threads (Producer) places tasks into a queue while the Consumer threads remove tasks to
be processed, as needed. While not strictly necessary, the Producer/Consumer model is
often used when there is some pre-processing to be done before tasks are made available
to Consumer threads. In the Manager/Worker model, Worker threads rendezvous with the
Manager thread, whenever more work is needed, to receive assignments directly.

Whatever model is used, consideration must be given to using the correct number and
mix of threads to ensure that threads tasked to perform the required computations are not
left idle. While a single Manager thread is easy to code and ensures proper distribution of
tasks, should Consumer threads stand idle at times, a reduction in the number of
Consumers or an additional Producer thread may be needed. The appropriate solution will
depend on algorithmic considerations as well as the number and length of tasks to be
assigned.

http://www.openmp.org/
http://www.openmp.org/specs

Multithreading Consistency Guide 45

Usage Guidelines

Dynamic scheduling incurs some overhead from parceling out tasks. Bundling small,
independent tasks together as a single unit of assignable work can reduce this overhead.
The best choice for how much computation constitutes a task will be based on the
computation to be done as well as the number of threads and other resources available at
execution time (see 3.2: Granularity and Parallel Performance).

While the discussion above makes frequent reference to OpenMP, all of the advice and
principles described apply to other threading methods, such as Win32 and POSIX
threads.

References

In this manual, see also:

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit
Threading

 3.2: Granularity and Parallel Performance

 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at
Runtime

 3.9: Manipulate Loop Parameters to Optimize OpenMP Performance

See also:

• M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall International, Inc.,
1982.

• Ian Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995.

• Steven Brawer, Introduction to Parallel Programming, Academic Press, Inc., 1989.

46 Multithreading Consistency Guide

3.4 Threading for Turnaround Versus Throughput
Category
Application Threading

Scope

General multithreading

Keywords
Spin-wait, OpenMP, Pthreads, Win32 threads, idle policy

Abstract

Exactly what threads do when waiting for certain kinds of events can make the difference
between a fast running application and a slow one, but attention must also be paid to
other jobs on the system. Otherwise, the result can be a slow, sluggish system instead of a
fast, responsive one. Understanding the usage model of an application can let one
optimize for turnaround time of the application or focus on keeping overall system
throughput reasonable.

Background

Usage of computers can be classified into two broad categories – dedicated compute
engines whose purpose is to produce results as quickly as possible for a single job
performing a computation, and dedicated throughput engines whose purpose is to make
reasonable progress on all the running jobs. For example, computers performing weather
forecasts tend to be dedicated compute engines whereas computers running web servers
tend to be throughput engines. Interactive workstations tend to fall somewhere in the
middle: for “background” applications the behavior is like throughput engines; for
“foreground” applications the behavior is like dedicated compute engines. When
designing multithreaded applications, it is very important to understand whether users
will run the application expecting high turnaround, high throughput, or perhaps both.
Once the usage is understood, the application can be designed to favor a particular
scenario, switch between the scenarios, or function reasonably well in both.

Threads in multithreaded programs communicate by exchanging data through shared
resources. Pthreads provides condition variables, semaphores, and mutexes for this
purpose, whereas the Win32 threading API provides events, semaphores, mutexes and a
specialized form of mutex variable called a critical section. The programmer can also
create such resources using a memory location as a flag to communicate between
cooperating threads, and carefully writing to the location using some kind of volatile or
acquire/release semantics. Regardless of the underlying method, when a thread tries to
acquire such a resource and a different thread already holds that resource (in an exclusive
state), the acquiring thread must wait. What the thread does when waiting is crucial to the
performance of the application and the overall system. The two extreme cases of what
threads do when waiting are: spin-waiting, in which the thread keeps the processor busy

Multithreading Consistency Guide 47

and repeatedly checks on the resource to see if it has become free; blocking, in which the
thread immediately relinquishes the CPU to the operating system and asks to be woken
up when the resource becomes available. Modern implementations provide a middle
ground between these extremes with adaptive switching from spin-waiting to yielding to
blocking so other jobs can progress.

Different functions perform different kinds of operations when waiting. For example,
older Linux Pthreads wait functions spin-wait when waiting, whereas the Win32
WaitForSingleObject and WaitForMultipleObjects functions block and the Win32
EnterCriticalSection function spin waits for a user-controllable period then blocks on
an associated kernel object. The OpenMP API facilitates synchronous, compute-bound
applications that usually allocate no more than one thread per processor. Thus, the
OpenMP critical and ordered constructs and the lock API typically spin-wait. The
Intel OpenMP implementation provides controls to adjust the period for which a thread
spin-waits before blocking.

Advice

If resources are held for very short periods of time (e.g., a few hundred clock cycles), it is
usually better to employ a spin-wait because the overhead of relinquishing the CPU to the
operating system may be greater than the time that the resource is held (see 4.1:
Managing Lock Contention, Large and
Small Critical Sections). The Windows critical section functions (see 4.3: Win32 Atomics
Versus User-Space Locks Versus Kernel Objects for Synchronization) and the OpenMP
critical constructs and locks API serve this purpose well.

For compute-bound applications running on dedicated systems, where the number of
simultaneous active threads is expected to be less than or equal to the number of
processors, using an API that spin-waits for at least a short period of time will usually
result in a better performing application. Spin waiting is usually non-disruptive on an
otherwise idle CPU. However, performing a spin-wait on a virtual processor on a Hyper-
Threading-enable CPU can be disruptive to the other virtual processors on the CPU. The
OpenMP implementation in the Intel compilers is ideal for such types of applications.
The OpenMP runtime library automatically adjusts the spin parameters to account for
HyperThreading Technology. The Windows critical section functions with the user
controlled spin counts can also serve these applications (see 4.1: Managing Lock
Contention, Large and
Small Critical Sections).

Conversely, for throughput-oriented applications, or for applications where the number of
active threads exceeds the number of processors on the system, a blocking API will result
in better overall throughput because blocking ensures that other ready-to-run threads in
the application or other jobs on the system can run immediately. The Windows
semaphore, event, and mutex variables provide appropriate functionality for this class of
application.

Most modern locking algorithms do not spin-wait indefinitely. They usually employ a
“back-off” scheme whereby after spinning for some time, they relinquish the CPU to the

48 Multithreading Consistency Guide

operating system. Except for specialized situations like real-time applications, when
designing your own locks via memory operations, you should design an appropriate
“back-off” scheme to avoid bogging down the entire system, which could happen with
pure spin-waits.

Another important point to keep in mind when designing your own spin-waiting loops is
the use of the PAUSE instruction inside the spin-wait loop on Pentium 4 systems. The
PAUSE instruction is a low latency instruction that releases the processor bus for use by
other processors in a multi-processor configuration. On CPU’s with Hyper-Threading
Technology, PAUSE makes spin-waiting less disruptive to the other virtual processors on
the CPU. On systems where spin-waiting is non-disruptive in the processor, PAUSE has no
effect.

For OpenMP applications, use the Intel compilers and set the environment variable
KMP_LIBRARY=turnaround to spin-wait with a back-off algorithm and use
KMP_LIBRARY=throughput to spin-wait with back-off algorithm that eventually yields the
CPU to the operating system.

Usage Guidelines

Spin-waiting consumes CPU cycles. However, it can be a good technique for reducing
turnaround time when you expect to acquire the resource that you are waiting on quickly.
This is true because acquiring a lock is much faster than getting woken up by another
thread via events or condition variables. When long waits are expected, spin-waiting can
disrupt other jobs and result in sluggish system-wide performance. When spin-waiting is
used, it should only be used for short periods of time (typically on the order of
hundredths of a second) to avoid such problems. On CPU’s with Hyper-Threading
Technology, spin-waiting can be especially wasteful because the virtual processors share
execution resources. On such systems, it is very important to minimize the disruption of
the virtual processors by using PAUSE instruction in spin-wait loops and by tuning spin-
wait counts to very low values. The OpenMP runtime library in the Intel compilers makes
these adjustments automatically.

References

In this manual, see also:

 4.1: Managing Lock Contention, Large and
Small Critical Sections

 4.2: Use Synchronization Routines Provided by the Threading API Rather than
Hand-Coded Synchronization

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for
Synchronization

http://www.openmp.org/

Multithreading Consistency Guide 49

3.5 Expose Parallelism by Avoiding or Removing
Artificial Dependencies

Category
Application Threading

Scope

General multithreading but especially data decomposition and OpenMP

Keywords
Data dependencies, compiler optimizations, blocking algorithms, Win32 Threads, OpenMP, Pthreads

Abstract

Many applications and algorithms contain serial optimizations that inadvertently
introduce data dependencies and inhibit parallelism. One can often remove such
dependences, through simple transforms, or even avoid them altogether, through
techniques such as domain decomposition or blocking.

Background

While multithreading for parallelism is an important source of performance, it is equally
important to ensure that each thread runs efficiently. While optimizing compilers do the
bulk of this work, it is not uncommon for programmers to make source code changes that
improve performance by exploiting data reuse and selecting instructions that favor
machine strengths. Unfortunately, the same techniques that improve serial performance
can inadvertently introduce data dependencies that make it difficult to achieve additional
performance through multithreading.

One example is the reuse of intermediate results to avoid duplicate computations. As an
example, softening an image through blurring can be achieved by replacing each image
pixel by a weighted average of the pixels in its neighborhood, itself included. Example
code 3 shows pseudo-code describing a 3 x 3 blurring stencil.

for each pixel in (imageIn)

 sum = value of pixel

 // compute the average of 9 pixels from imageIn

 for each neighbor of (pixel)

 sum += value of neighbor

 // store the resulting value in imageOut

 pixelOut = sum / 9

Example code 3. Pseudo-code describing a 3 x 3 blurring stencil.

The fact that each pixel value feeds into multiple calculations allows one to exploit data
reuse for performance. In the following pseudo-code, intermediate results are computed
and used three times, resulting in better serial performance:

50 Multithreading Consistency Guide

subroutine BlurLine(lineIn, lineOut)

 for each pixel j in (lineIn)

 // compute the average of 3 pixels from line

 // and store the resulting value in lineout

 pixelOut = (pixel j-1 + pixel j + pixel j+1) / 3

declare lineCache[3]

lineCache[0] = 0

BlurLine(line 1 of imageIn, lineCache[1])

for each line i in (imageIn)

 BlurLine (line i+1 of imageIn, lineCache[i mod 3])

 lineSums = lineCache[0] + lineCache[1] + lineCache[2]

 lineOut = lineSums / 3

This optimization introduces a dependence between the computations of neighboring
lines of the output image. If one attempts to compute the iterations of this loop in parallel,
the dependencies will cause incorrect results.

Another common example is pointer offsets inside a loop (Example code 4). By
incrementing ptr, the code potentially exploits the fast operation of a register increment
and avoids the arithmetic of computing someArray[i] for each iteration. While each call
to compute may be independent of the others, the pointer becomes an explicit dependence
– its value in each iteration depends on that in the last. If this loop is parallelized with
OpenMP, for example, the Intel Thread Checker will report memory conflicts on the use
of ptr.

ptr = &someArray[0];

for (i = 0; i < N; i++)

{

 Compute (ptr);

 ptr++;

}

Example code 4. Pointer offsets inside a loop.

Finally, there are often situations where the algorithms invite parallelism but the data
structures have been designed to a different purpose that unintentionally prevents
parallelism. Sparse matrix algorithms are one such example. Because most matrix
elements are zero, the usual matrix representation is often replaced with a “packed” form,
consisting of element values and relative offsets, used to skip zero-valued entries.

This article aims to present strategies to effectively introduce parallelism in these
challenging situations.

Advice

Naturally, it’s best to find ways to exploit parallelism without having to remove existing
optimizations or make extensive source code changes. Before removing any serial
optimization to expose parallelism, consider whether applying the existing kernel to a

Multithreading Consistency Guide 51

subset of the overall problem can preserve the optimization. Normally, if the original
algorithm contains parallelism, it is also possible to define subsets as independent units
and compute them in parallel.

To efficiently thread the blurring operation, consider subdividing the image into sub-
images, or blocks, of fixed size. The blurring algorithm allows the blocks of data to be
computed independently. The following pseudo-code illustrates the use of image
blocking:

// One time operation:

// Decompose the image into non-overlapping blocks.

blockList = Decompose (image, xRes, yRes)

foreach (block in blockList)

{

 BlurBlock (block, imageIn, imageOut)
}

The existing code to blur the entire image – Example code 3 – can be reused in the
implementation of BlurBlock. Using OpenMP or explicit threads to operate on multiple
blocks in parallel yields the benefits of multithreading and retains the original optimized
kernel.

In other cases, the benefit of the existing serial optimization is small compared to the
overall cost of each iteration, making blocking unnecessary. This is often the case when
the iterations are sufficiently coarse-grained to expect a speedup from parallelization. The
pointer increment example (Example code 4) is one such instance. The induction
variables can be easily replaced with explicit indexing, removing the dependence and
allowing simple parallelization of the loop.

ptr = &someArray[0];

for (i = 0; i < N; i++)

{

 Compute (ptr[i]);

}

Note that the original optimization, though small, is not necessarily lost. Compilers often
optimize index calculations aggressively – by utilizing increment or other fast operations
– allowing you to enjoy the benefits of both serial and parallel performance.

Other situations, such as code involving packed sparse matrices can be more challenging
to thread. Normally, it is not practical to unpack data structures but it is often possible to
subdivide the matrices into blocks, storing pointers to the beginning of each block. When
these matrices are paired with appropriate block-based algorithms, the benefits of a
packed representation and parallelism can be simultaneously realized.

The blocking techniques described above are a case of a more general technique called
domain decomposition. After decomposition, each thread works independently on one or
more domains. In some situations, the nature of the algorithms and data dictate that the
work per domain will be nearly constant. In other situations, the amount of work may
vary from domain to domain. In these cases, if the number of domains equals the number

52 Multithreading Consistency Guide

of threads, parallel performance can be limited by load imbalance. In general, it is best to
ensure that the number of domains is reasonably large compared to the number of
threads. This will allow techniques such as dynamic scheduling to balance the load across
threads.

Usage Guidelines

Some serial optimizations deliver large performance gains. Consider the number of
processors you are targeting to ensure that speedups from parallelism will outweigh the
performance loss of any lost optimization.

Introducing blocking algorithms can sometimes hinder the compiler’s ability to
distinguish aliased from unaliased data. If, after blocking, the compiler can no longer
determine that data is unaliased, performance may suffer. Consider using the restrict
keyword to explicitly prohibit aliasing (see 2.1: Automatic Parallelization with Intel
Compilers). Enabling inter-procedural optimizations also helps the compiler detect
unaliased data.

References

In this manual, see also:

 2.1: Automatic Parallelization with Intel Compilers

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 3.2: Granularity and Parallel Performance

 3.3: Load Balance and Parallel Performance

Multithreading Consistency Guide 53

3.6 Use Workload Heuristics to Determine Appropriate
Number of Threads at Runtime

Category
Application Threading

Scope

General multithreading, OpenMP, POSIX threads, Win32 threads

Keywords
Load balance, granularity, Win32 Threads, OpenMP, Pthreads

Abstract

Most application and workload pairs have a finite amount of work, and therefore a finite
speedup due to multithreading. Choosing the right number of threads can be an important
consideration in the performance delivered by multithreaded applications. This article
will discuss the factors involved in designing a heuristic to choose an appropriate number
of threads.

Background

When applications are threaded for functionality, programmers often dedicate particular
functions to particular threads, and it is rare for all of the threads to be active at the same
time. In such functionally threaded systems, the choice of the number of threads is often
based on the functionality desired, and is not easily varied. Fortunately, this choice is
normally not performance critical.

However, for applications – or portions of applications – that have been threaded for
performance reasons, programmers often have the ability to choose how many threads to
apply to the problem. Most applications cannot use an arbitrary number of threads
effectively based on various implicit and explicit costs associated with threading. For
example, the implicit costs include the extra scheduling burden on the operating system,
the cost of migrating data to the thread and the increased memory pressure on the system
to keep all the threads supplied with data. Explicit costs include thread startup and
shutdown and thread coordination. These costs, together with the amount of work, the
number of independent work items available for parallel execution and their granularity,
play an important part in choosing an appropriate number of threads to apply to a
problem.

When using operating system threads, the programmer makes this decision explicitly by
creating and using the number of threads desired. However, when using OpenMP,
programmers sometimes let the system decide how many threads to use, and most
OpenMP implementations, including the Intel implementation, default to the number of
processors on the system. For most applications this is not the best choice because they
are unlikely to scale to the entire range of parallel systems available, from single-CPU

54 Multithreading Consistency Guide

systems with Hyper-Threading Technology all the way to 64-CPU and larger SMP
systems.

For all these reasons, it is best to let either let the user determine the number of threads to
use, or to use runtime heuristics or measurements to understand the size of the
computation and data and then choose an appropriate number of threads.

Advice

For applications where the workload depends on application input that can vary widely,
defer the decisions of how many threads to employ until runtime when the input sizes can
be examined. Examples of workload input parameters that affect the thread count include
things like matrix size, database size, image/video size and resolution,
depth/breadth/bushiness of tree based structures, and size of list based structures.

Similarly, for applications designed to run on systems where the processor count can vary
widely, defer the number of threads to employ decision till application run-time when the
machine size can be examined.

Using the above workload and system size inputs, heuristics should be developed, based
on empirical data, to set the thread count at application run-time.

For applications where the amount of work is unpredictable from the input data, consider
using a calibration step to understand the workload and system characteristics to aid in
choosing an appropriate number of threads. If the calibration step is expensive, it can be
made persistent by storing in a permanent place like the file system.

Avoid creating more threads than the number of processors on the system, when all the
threads can be active simultaneously. This situation causes the operating system to
multiplex the processors and typically yields sub-optimal performance.

When developing a library as opposed to an entire application, provide a mechanism
whereby the user of the library can conveniently select the number of threads used by the
library, because it is possible that the user has higher-level parallelism that renders the
parallelism in the library unnecessary or even disruptive.

Finally, for OpenMP, use the num_threads clause on parallel regions to control the
number of threads employed and use the if clause on parallel regions to decide whether
to employ multiple threads at all. The omp_set_num_threads function can also be used
but it is not recommended except in specialized well-understood situations because its
affect is global and persists even after the current function ends, possibly affecting
parents in the call tree. The num_threads clause is local in its effect and so does not
impact the calling environment.

Usage Guidelines

With each new generation of computer systems, the implicit and explicit costs can change
because of underlying changes in CPU to memory speed ratios, different algorithms, and
the topological layout of systems, from simple SMP systems to multithreaded SMP
systems to NUMA systems and combinations of each. Such changes can require a
reevaluation of the number of threads to use. This can be a particularly vexing problem

Multithreading Consistency Guide 55

for applications with fine-grained parallelism, because these tend to be particularly
sensitive to the issues listed. Applications with coarse-grained parallelism tend to be more
stable in this regard and ought to be favored.

In addition to the application specific factors considered here, it is important to pay
attention to the computing environment. For systems dedicated to running just a single
application, the heuristic for the number of threads chosen can be quite different than for
systems shared with other jobs.

References

In this manual, see also:

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.2: Granularity and Parallel Performance

 3.3: Load Balance and Parallel Performance

 3.4: Threading for Turnaround Versus Throughput

56 Multithreading Consistency Guide

3.7 Reduce System Overhead with Thread Pools
Category
Application Threading

Scope

General multithreading

Keywords
Thread pool, system overhead, Win32 threads, OpenMP, Pthreads

Abstract

Many threaded applications manage their threads with a threads-on-demand policy. With
this policy, threads are created as needed and deleted immediately after use. A key benefit
of the policy is the simplicity of coding and thread management. However, creating many
threads during execution can complicate the control logic of a program in order to
account for instances when the operating system is unable to create a thread. Many
applications ignore the possibility of such failures and are potentially unsafe. Further,
frequent thread creation causes performance penalties, as the cost of creating a thread is
substantial. The thread management cost can be very high for applications, such as server
applications, which deal with many threads. As the number of threads increases, thread
creation, termination, scheduling, and context-switching costs can increase to the point
where benefits of multithreading are overcome by system overhead.

Background

Thread pools offer a cost-effective approach to managing threads. A thread pool is a
group of threads waiting for work assignments. In this approach, threads are created once
during an initialization step and terminated during a finalization step. This simplifies the
control logic for checking for failures in thread creation midway through the application
and amortizes the cost of thread creation over the entire application. Once created, the
threads in the thread pool wait for work to become available. Other threads in the
application assign tasks to the thread pool. Typically, this is a single thread called the
thread manager or dispatcher. After completing the task, each thread returns to the thread
pool to await further work. Depending upon the work assignment and thread pooling
policies employed, it is possible to add new threads to the thread pool if the amount of
work grows. This approach has obvious benefits:

 Possible runtime failures midway through application execution due to inability
to create threads can be avoided with simple control logic.

 Thread management costs from thread creation are minimized. This in turn leads
to better response times for processing workloads and allows for multithreading
of finer-grained workloads (see 3.2: Granularity and Parallel Performance).

A typical usage scenario for thread pools is in server applications, which often launch a
thread for every new request. A better strategy is to queue service requests for processing

Multithreading Consistency Guide 57

by an existing thread pool. A thread from the pool grabs a service request from the queue,
processes it, and returns to the queue to get more work.

Thread pools can also be used to perform overlapping asynchronous I/O. The I/O
completion ports provided with the Win32 API allow a pool of threads to wait on an I/O
completion port, and process packets from overlapped I/O operations.

OpenMP is a strictly fork/join threading model. In some OpenMP implementations,
threads are created at the start of a parallel region and destroyed at the end of the parallel
region. OpenMP applications typically have several parallel regions with intervening
serial regions. Creating and destroying threads for each parallel region can result in
significant system overhead, especially if a parallel region is inside a loop. Therefore, the
Intel OpenMP implementation uses thread pools. A pool of worker threads is created at
the first parallel region. These threads exist for the duration of program execution. More
threads may be added automatically if requested by the program. The threads are not
destroyed until the last parallel region is executed.

Thread pools can be created on Windows and Linux using the thread creation API. For
instance, a custom thread pool using Win32 threads may be created as follows:

// Initialization method/function

{

 DWORD tid;

 //

 // Create initial pool of threads

 //

 for (int i = 0; i < MIN_THREADS; i++)

 {

 HANDLE *ThHandle = CreateThread (NULL,

 0,

 CheckPoolQueue,

 NULL,

 0,

 &tid);

 if (ThHandle == NULL)

 // Handle Error

 else

 RegisterPoolThread (ThHandle);

 }

}

The function CheckPoolQueue executed by each thread in the pool is designed to enter a
wait state until work is available on the queue. The thread manager can keep track of
pending jobs in the queue and dynamically increase the number of threads in the pool
based on the demand.

Advice

Use thread pools to minimize thread management overheads, and improve application
performance (throughput, response time, scalability).

http://www.openmp.org/

58 Multithreading Consistency Guide

The Intel OpenMP implementation already uses thread pools to minimize overhead.
OpenMP is well suited for synchronous threaded applications, particularly data parallel
applications (see 3.1: Choosing an Appropriate Threading Method: OpenMP Versus
Explicit Threading).

Use thread pools with I/O completion ports to improve asynchronous I/O performance in
Windows applications.

Applications can create and manage thread pools using the Win32 and POSIX threads
API’s. Standard thread pool functions/classes are available with Win32, C# in .Net, Java,
and RogueWave.

References

In this manual, see also:

 3.1: Choosing an Appropriate Threading Method: OpenMP Versus Explicit
Threading

 3.2: Granularity and Parallel Performance

 3.4: Threading for Turnaround Versus Throughput

See also:

Win32 API: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/queueuserworkitem.asp

C# with .Net: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemThreadingThreadPoolClassTopic.asp

RogueWave: http://www.roguewave.com/support/docs/sourcepro/threadsug/3-7.html

Multithreading Consistency Guide 59

3.8 Exploiting Data Parallelism in Ordered Data Streams
Category
Application Threading

Scope

General multithreading, any programming language or operating system

Keywords
Data parallelism, I/O, order dependence

Abstract

Many compute-intensive applications involve complex transformations of ordered input
data to ordered output data. Examples include sound and video transcoding, lossless data
compression, and even seismic data processing. While the algorithms employed in these
transformations are often parallel, managing the I/O order dependence can be a challenge.
This topic identifies some of these challenges and illustrates strategies for addressing
them, all while maintaining parallel performance.

Background

Consider the problem of threading a video compression engine designed to perform real-
time processing of uncompressed video from a live video source to disk or a network
client. Clearly, harnessing the power of multiple processors can be key to meeting the
real-time requirements of such an application.

Video compression standards such as MPEG-2 and MPEG-4 are designed for streaming
over unreliable links. Consequently, it is easy to treat a single video stream as a sequence
of smaller, standalone streams. One can achieve substantial speedups by processing these
smaller streams in parallel. Some of the challenges in exploiting this parallelism through
multithreading, however, include:

1. defining non-overlapping subsets of the problem and assigning them to threads

2. ensuring the input data is read exactly once and in the correct order

3. outputting blocks in the correct order, regardless of the order in which processing
actually completes and without significant performance penalties

4. performing the above without a priori knowledge of the actual extent of the input
data.

In other situations, such as lossless data compression, it is often possible to determine the
input data size in advance and explicitly partition the data into independent input blocks.
The techniques outlined here apply equally well to this case.

60 Multithreading Consistency Guide

Advice

The temptation might be to set up a chain of producers and consumers, but this approach
is not scalable and is vulnerable to load imbalance. Instead, let’s address each of the
challenges above to achieve a more scalable design using data decomposition.

The basic approach is to create a team of threads, with each thread reading a block of
video, encoding it, and outputting it to a reorder buffer. Upon completion of each block, a
thread returns to read and process the next block of video, and so on. This dynamic
allocation of work minimizes load imbalance. The reorder buffer ensures that blocks of
coded video are written in the correct order, regardless of their order of completion.

The original video encoding algorithm might take this form:
inFile = OpenFile ()

outFile == InitializeOutputFile ()

WriteHeader (outFile)

outputBuffer = AllocateBuffer (bufferSize)

while (frame = ReadNextFrame (inFile))

{

 EncodeFrame (frame, outputBuffer)

 if (outputBuffer size > bufferThreshold)

 FlushBuffer(outputBuffer, outFile)

}

FlushBuffer (outputBuffer, outFile)

The first task is to replace the read and encode frame sequence with a block-based
algorithm. This sets up the problem for decomposition across a team of threads:

WriteHeader (outFile)

while (block = ReadNextBlock (inFile))

{

 while(frame = ReadNextFrame (block))

 {

 EncodeFrame (frame, outputBuffer)

 if (outputBuffer size > bufferThreshold)

 FlushBuffer (outputBuffer, outFile)

 }

 FlushBuffer (outputBuffer, outFile)

}

The definition of a block of data will vary from one application to another, but in the case
of a video stream, a natural block boundary might be the first frame at which a scene
change is detected in the input, subject to constraints of minimum and maximum block
sizes. Block-based processing requires allocation of an input buffer and minor changes to
the source code to fill the buffer before processing. Likewise, the ReadNextFrame method
must be changed to read from the buffer rather than the file.

Multithreading Consistency Guide 61

The next step is to change the output buffering strategy to ensure that entire blocks are
written as a unit. This approach simplifies output reordering substantially, since we need
only ensure that the blocks are output in the correct order. The following code reflects the
change to block-based output:

WriteHeader (outFile)

while (block = ReadNextBlock (inFile))

{

 while (frame = ReadNextFrame (block))

 {

 EncodeFrame (frame, outputBuffer)

 }

 FlushBuffer (outputBuffer, outFile)

}

Depending on the maximum block size, a larger output buffer may be required.

Because each block is independent of the others, a special header typically begins each
output block. In the case of an MPEG video stream, this header precedes a complete
frame, known as an I-frame, relative to which future frames are defined. Consequently,
the header is moved inside the loop over blocks:

while (block = ReadNextBlock (inFile))

{

 WriteHeader (outputBuffer)

 while (frame = ReadNextFrame (block))

 {

 EncodeFrame (frame, outputBuffer)

 }

 FlushBuffer (outputBuffer, outFile)

}

With these changes, it is possible to introduce parallel threads, using a thread library (i.e.,
Pthreads or the Win32 threading API) or OpenMP parallel sections2:

// Create a team of threads with private copies of outputBuffer,

// block, and frame and shared copies of inFile and outFile

while (AcquireLock,

 block = ReadNextBlock (inFile),

 ReleaseLock, block)

{

 WriteHeader (outputBuffer)

 while (frame = ReadNextFrame (block))

 {

 EncodeFrame (frame, outputBuffer)

 }

2 The code can be made even simpler using the Intel WorkQueue extensions to OpenMP.

62 Multithreading Consistency Guide

 FlushBuffer (outputBuffer, outFile)

}

This is a simple but effective strategy for reading data safely and in order. Each thread
acquires a lock, reads a block of data, then releases the lock. Sharing the input file
ensures that blocks of data are read in order and exactly once. Because a ready thread
always acquires the lock, the blocks are allocated to threads on a dynamic, or first-come-
first-served basis, which typically minimizes load imbalance.

The final task is to ensure that blocks are output safely and in the correct order. A simple
strategy would be to use locks and a shared output file to ensure only one block is written
at a time. This approach ensures thread-safety, but would allow the blocks to be output in
something other than the original order. Alternately, threads could wait until all previous
blocks have been written before flushing their output. Unfortunately, this approach
introduces inefficiency because a thread sits idle waiting for its turn to write.

A better approach is to establish a circular reorder buffer for output blocks3. Each block is
assigned a sequential serial number. The “tail” of the buffer establishes the next block to
be written. If a thread finishes processing a block of data other than that pointed to by the
tail, it simply enqueues its block in the appropriate buffer position and returns to read and
process the next available block. Likewise, if a thread finds that its just-completed block
is that pointed to by the tail, it writes that block and any contiguous blocks that were
previously enqueued. Finally, it updates the buffer’s tail to point to the next block to be
output. The reorder buffer allows completed blocks to be enqueued out-of-order, while
ensuring they are written in order.

Figure 9: State of example reorder buffer before writing.

Figure 9 illustrates one possible state of the reorder buffer. Blocks 0 through 35 have
already been processed and written, while blocks 37, 38, 39, 40 and 42 have been
processed and are enqueued for writing. When the thread processing block 36 completes,
it writes out blocks 36 through 40, leaving the reorder buffer in the state shown in Figure
10. Block 42 remains enqueued until block 41 completes.

3 This approach is analogous to the reorder buffers used in some microprocessors to allow instructions to be
processed out of order but retired in order.

0 1 2 3 4 5 6 7

Tail

Block37 Block38 Block39 Block40 Block42

Multithreading Consistency Guide 63

Figure 10: State of Example Reorder Buffer After Writing

Naturally, one needs to take certain precautions to ensure the algorithm is robust and fast:
 The shared data structures must be locked when read or written
 The number of slots in the buffer must exceed the number of threads
 Threads must efficiently wait, if an appropriate slot is not available in the buffer
 Pre-allocate multiple output buffers per thread. This allows one to enqueue a

pointer to the buffer and avoids extraneous data copies and memory allocations.

Using the output queue, the final algorithm is:
inFile = OpenFile ()

outFile == InitializeOutputFile ()

// Create a team of threads with private

// copies of outputBuffer, block, and frame, shared

// copies of inFile and outFile.

while (AcquireLock,

 block = ReadNextBlock (inFile),

 ReleaseLock, block)

{

 WriteHeader (outputBuffer)

 while (frame = ReadNextFrame (block))

 {

 EncodeFrame (frame, outputBuffer)

 }

 QueueOrFlush (outputBuffer, outFile)

}

This algorithm allows in-order I/O but still affords the flexibility of high performance,
out-of-order parallel processing.

Usage Guidelines

In some instances, the time to read and write data is comparable to the time required to
process the data. In these cases, the following techniques may be beneficial:

Asynchronous I/O – Linux and Windows provide APIs to initiate a read or write and later
wait on or be notified of its completion. Using these interfaces to “pre-fetch” input data
and “post-write” output data while performing other computation can effectively hide I/O
latency. On Windows, files are opened for asynchronous I/O by providing the

0 1 2 3 4 5 6 7

Tail

Block42

64 Multithreading Consistency Guide

FILE_FLAG_OVERLAPPED attribute. On Linux, asynchronous operations are effected
through a number of aio_* functions provided by libaio.

When the amount of input data is significant, static decomposition techniques can lead to
physical disk “thrashing”, as the hardware attempts to service a number of concurrent but
non-contiguous reads. Following the advice above of a shared file descriptor and a
dynamic, first-come-first-served scheduling algorithm can enforce in-order, contiguous
reads, which in turn improve overall I/O subsystem throughput.

It is important to carefully choose the size and number of data blocks. Normally, a large
number of blocks affords the most scheduling flexibility, which can reduce load
imbalance. On the other hand, very small blocks can introduce unnecessary locking
overhead and even hinder the effectiveness of data compression algorithms. See the load
balance and granularity sections of this document for more advice on choosing the
number and size of blocks, relative to the number of threads.

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 3.2: Granularity and Parallel Performance

 4.1: Managing Lock Contention, Large and
Small Critical Sections

 4.4: Use Non-Blocking Locks when Possible

Multithreading Consistency Guide 65

3.9 Manipulate Loop Parameters to Optimize OpenMP
Performance

Category
Application Threading

Scope

OpenMP applications on any operating system

Keywords
Loop optimizations, granularity, load balance, OpenMP, barrier

Abstract

In data parallel applications, the same independent operation is performed repeatedly on
different data. Loops are usually the compute-intensive segments of data parallel
applications so loop optimizations directly impact performance.

Background

Loop optimizations offer a good opportunity to improve the performance of data parallel
applications. These optimizations, such as loop fusion, loop interchange, and loop
unrolling, are usually targeted at improving granularity, load balance, and data locality,
while minimizing synchronization and other parallel overhead. As a rule of thumb, loops
with high trip counts are the best candidates for parallelization. A higher trip count
enables better load balance due to the greater availability of tasks that can be distributed
among the threads. However, the amount of work per loop iteration is also a factor.
Unless otherwise stated, we shall assume that the amount of work in each iteration is
(roughly) equal to every other iteration in the same loop.

Consider the scenario of a loop using the OpenMP for work-sharing construct shown in
Error! Reference source not found.. In this case, the low trip count leads to a load
imbalance (see 3.3: Load Balance and Parallel Performance) when the loop iterations are
distributed over four threads. If a single iteration takes only a few seconds, this imbalance
may not cause a significant impact. However, if each iteration takes an hour, three of the
threads remain idle for 60 minutes while the fourth continues working. Contrast this to

1003 one-hour

#pragma omp for
 for (i = 0; i < 13; i++)

 {

 // Computation

 }

4 3 3 3

http://www.openmp.org/

66 Multithreading Consistency Guide

Figure 11: Parallelizing loops with low trip count can sometimes lead to load imbalance.

iterations and four threads. In this case, a single hour of idle time after ten days of
execution is insignificant.

3.9.1.1 Advice

For multiply nested loops, choose the outermost loop that is safe to parallelize. This
generally gives the coarsest granularity (see 3.2: Granularity and Parallel Performance).
Ensure that work can be evenly distributed to each thread. If this is not possible because
the outermost loop has a low trip count, an inner loop with a high trip count may be a
better candidate for threading, e.g.:

void copy (int imx, int jmx, int kmx,

 double**** w, double**** ws)

{

 for (int nv = 0; nv < 5; nv++)

 for (int k = 0; k < kmx; k++)

 for (int j = 0; j < jmx; j++)

 for (int i = 0; i < imx; i++)

 ws[nv][k][j][i] = w[nv][k][j][i];

}

With any number of threads besides five, parallelizing the outer loop will result in load
imbalance and idle threads. The inefficiency would be especially severe if the array
dimensions imx, jmx, and kmx are very large. Parallelizing an inner loop is probably a
better option in this case.

Merging nested loops to increase the iteration count is another loop optimization that can
help parallel performance. For example, two nested loops with trip counts of 8 and 9,
respectively, can be combined into a single loop of 72 iterations (Figure 12). However, if
both loop counters are used to index arrays, the new loop counter must be translated back
into the corresponding index values. This creates extra operations that original nested
loop did not have. However, this slight increase in work is offset by the loss of overhead
from one loop and the greater parallelism that is exposed by merging the two loops into
one.

#pragma omp parallel for

 for (i = 0; i < 8; i++)

 for (j = 0; j < 9; j++)

 a[i][j] = b[j] * c[i];

#pragma omp parallel for

 for (ij = 0; ij < 72; ij++)

 {

 int i = ij / 9;

 int j = ij % 9;

 a[i][j] = b[j] * c[i];

 }

Figure 12: Merging nested loops to increase trip count can expose
more parallelism and help performance.

Avoid the implicit barrier at the end of OpenMP work-sharing constructs when it is safe
to do so. All OpenMP work-sharing constructs (for, sections, single) have an implicit
barrier at the end of their structured blocks. All threads must rendezvous at this barrier

Multithreading Consistency Guide 67

before execution can proceed. Sometimes these barriers are unnecessary and negatively
impact performance. Use the OpenMP nowait clause to disable this barrier, e.g.:

void copy (int imx, int jmx, int kmx,

 double**** w, double**** ws)

{

 #pragma omp parallel shared(w, ws)

 {

 for (int nv = 0; nv < 5; nv++)

 for (int k = 0; k < kmx; k++) // kmx is usually small

 #pragma omp for shared(nv, k) nowait

 for (int j = 0; j < jmx; j++)

 for (int i = 0; i < imx; i++)

 ws[nv][k][j][i] = w[nv][k][j][i];

 }

}

Since the computations in the innermost loop are all independent, there is no reason for
threads to wait at the implicit barrier before going on to the next k iteration. If the amount
of work per iteration is unequal, the nowait clause allows threads to proceed with useful
work rather than sit idle at the implicit barrier.

Use the OpenMP if clause to choose serial or parallel execution based on runtime
information (see 3.6: Use Workload Heuristics to Determine Appropriate Number of
Threads at Runtime). Sometimes the number of iterations in a loop cannot be determined
until runtime. If there is a negative performance impact for executing an OpenMP
parallel region with multiple threads (e.g., a small number of iterations), specifying a
minimum threshold will help maintain performance, e.g.:

#pragma omp parallel for if (N >= threshold)

 for (i = 0; i < N; i++)

 {

 // Computation

 }

For this example code, the loop is only executed in parallel if the number of iterations
exceeds the threshold specified by the programmer.

Fuse parallel loops with similar indices to improve granularity and data locality while
minimizing overhead. In Figure 13 the first two loops (left-hand example code) can be
easily merged (right-hand example code). Merging these loops increases the amount of
work per iteration (i.e., granularity) and reduces loop overhead. The third loop is not
easily merged because its iteration count is different. More important, however, a data
dependence exists between the third loop and the previous two loops.

68 Multithreading Consistency Guide

 for (j = 0; j < N; j++)

 a[j] = b[j] + c[j];

 for (j = 0; j < N; j++)

 d[j] = e[j] + f[j];

 for (j = 5; j < N – 5; j++)

 g[j] = d[j+1] + a[j+1];

 for (j = 0; j < N; j++)

 {

 a[j] = b[j] + c[j];

 d[j] = e[j] + f[j];

 }

 for (j = 5; j < N – 5; j++)

 g[j] = d[j+1] + a[j+1];

Figure 13: Fusing parallel loops with similar indices improves granularity and data locality.

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.2: Granularity and Parallel Performance

 3.3: Load Balance and Parallel Performance

 3.6: Use Workload Heuristics to Determine Appropriate Number of Threads at
Runtime

Multithreading Consistency Guide 69

4. Synchronization
In order to avoid race conditions during the execution of a threaded application, mutual
exclusion to shared resources is required to allow a single thread to access and change the
state of shared resources. The shared resource can be a data structure, or memory in the
address space. Minimizing synchronization overheads is a critical to application
performance. This chapter discusses effective synchronization practices in multithreaded
applications.

In multithreaded applications, while a thread is executing a code section that accesses
shared resource (critical section), competing threads are either spinning or waiting in a
queue. In order to ensure fairness in scheduling control over the lock among all
competing threads, it is important to minimize the time spent by a thread within a critical
section. This usually means reducing code within the critical section to the bare minimum
to process the state change. The first topic in this chapter addresses design issues for
optimally sized critical sections.

The standard threading implementations provide synchronization primitives that are
optimized for the architecture, and have been widely tested in varying application
scenarios. Typically these primitives include optimized spin-waits, efficient scheduling
algorithms, and as result minimal synchronization, and scheduling overheads. Further the
synchronization primitives with the standard threading implementations are portable,
usually are forward and backward compatible, and can be easily migrated across
platforms. The second topic in this chapter discusses the benefits of using standard
threading API’s in preference to hand-coded synchronization functions.

The Windows multithreading API provides multiple synchronization primitives – critical
section, mutex, semaphore, events, and interlocked operations. All of these primitives
implement mutual exclusion but have varying performance benefits and usage models. A
comparison of the different synchronization primitives is discussed in the next chapter.

Most threading implementations provide non-blocking threading primitives as a cost-
effective alternative to their blocking counterparts. The non-blocking threading calls are
reviewed next.

The final topic of this chapter deals with the merits of using double-check pattern locks to
minimize lock acquisition costs for events that are executed only once such as
initialization, file opening/closing, dynamic memory allocation, etc.

70 Multithreading Consistency Guide

4.1 Managing Lock Contention, Large and
Small Critical Sections

Category
Synchronization

Scope

General multithreading

Keywords
Lock contention, synchronization, spin-wait, critical section, lock size

Abstract

In multithreaded applications, locks are used to synchronize entry to regions of code that
access shared resources. The region of code protected by these locks is called a critical
section. While one thread is inside a critical section, no other thread can enter. Therefore,
critical sections serialize execution. This topic introduces the concept of critical section
size – the length of time a thread spends inside a critical section – and its effect on
performance.

Background

Critical sections ensure data integrity when multiple threads attempt to access shared
resources. They also serialize the execution of code within the critical section. Threads
should spend as little time inside a critical section as possible to reduce the amount of
time other threads sit idle waiting to acquire the lock, or lock contention. In other words,
it is best to keep critical sections small. However, using a multitude of small, separate
critical sections can quickly introduce system overheads, from acquiring and releasing
each separate lock, to such a degree that the performance advantage of multithreading is
negated. In this latter case, one larger critical section could be best. Scenarios illustrating
when it is best to use large or small critical sections will be explored below.

The thread function in Example code 5 contains two critical sections. Assume that the
critical sections protect different data and that the work in functions DoFunc1 and
DoFunc2 is independent. Let’s also assume that the amount of time to perform either of
the update functions is always very small. The critical sections are separated by a call to
DoFunc1. If the threads only spend a small amount of time in DoFunc1, the
synchronization overhead of two critical sections may not be justified. In this case, a
better scheme might be to merge the two small critical sections into one larger critical
section, as in Example code 6. If the time spent in DoFunc1 is much higher than the
combined time to execute both update routines, this might not be a viable option because
the increased size of the critical section increases the likelihood of lock contention,
especially as the number of threads increases.

Multithreading Consistency Guide 71

Begin Thread Function ()

 Initialize ()

 BEGIN CRITICAL SECTION 1

 UpdateSharedData1 ()

 END CRITICAL SECTION 1

 DoFunc1 ()

 BEGIN CRITICAL SECTION 2

 UpdateSharedData2 ()

 END CRITICAL SECTION 2

 DoFunc2 ()

End Thread Function ()

Example code 5: A threaded function containing two critical sections to
protect updates to different shared data.

Begin Thread Function ()

 Initialize ()

 BEGIN CRITICAL SECTION 1

 UpdateSharedData1 ()

 DoFunc1 ()

 UpdateSharedData2 ()

 END CRITICAL SECTION 1

 DoFunc2 ()

End Thread Function ()

Example code 6: A threaded function containing one critical section that
protects updates to all shared data used by the function.

Let’s consider a variation of the previous example. This time, assume the threads spend a
large amount of time in the UpdateSharedData2 function. Using a single critical section
to synchronize access to UpdateSharedData1 and UpdateSharedData2, as in Example
code 6, is no longer a good solution because the likelihood of lock contention is higher.
On execution, the thread that gains access to the critical section spends a considerable
amount of time in the critical section, while all the remaining threads are blocked. When
the thread holding the lock releases it, one of the waiting threads is allowed to enter the
critical section and all other waiting threads remain blocked for a long time. Therefore,
two critical sections, as in Example code 5, is a better solution for this case.

It is good programming practice to associate locks with particular shared data. Protecting
all accesses of a shared variable with the same lock does not prevent other threads from
accessing different shared variables protected by a different lock. Consider a shared data
structure. A separate lock could be created for each element of the structure or a single
lock could be created to protect access to the whole structure. Depending on the
computational cost of updating the elements, either of these extremes could be a practical

72 Multithreading Consistency Guide

solution. The best lock granularity might lie somewhere in the middle. For example,
given a shared array, a pair of locks could be used: one to protect the even numbered
elements and the other to protect the odd numbered elements.

In the case where UpdateSharedData2 requires a substantial amount of time to complete,
dividing the work in this routine and creating new critical sections may be a better option.
In Example code 7, the original UpdateSharedData2 has been broken up into two
functions operating on different data. It is hoped that using separate critical sections will
reduce lock contention. If the entire execution of UpdateSharedData2 did not need
protection, rather than enclose the function call, critical sections inserted into the function
at points where shared data are accessed should be considered.

Begin Thread Function ()

 Initialize ()

 BEGIN CRITICAL SECTION 1

 UpdateSharedData1 ()

 END CRITICAL SECTION 1

 DoFunc1 ()

 BEGIN CRITICAL SECTION 2

 UpdateSharedData2 ()

 END CRITICAL SECTION 2

 BEGIN CRITICAL SECTION 3

 UpdateSharedData3 ()

 END CRITICAL SECTION 3

 DoFunc2 ()

End Thread Function ()

Example code 7: Separating one critical section into two can help reduce lock contention.

Advice

Balance the size of critical sections against the overhead of acquiring and releasing locks.
Consider aggregating small critical sections to amortize locking overhead. Divide large
critical sections with significant lock contention into smaller critical sections. Associate
locks with particular shared data such that lock contention is minimized. The optimum
probably lies somewhere between the extremes of a different lock for every shared datum
and a single lock for all shared data.

Remember that synchronization serializes execution. Large critical sections indicate that
the algorithm has little natural concurrency or that data partitioning among threads is sub-
optimal. Nothing can be done about the former except changing the algorithm. For the
latter, try to create local copies of shared data that the threads can access asynchronously.

The previous discussion of critical section size and lock granularity does not take the cost
of context switching into account. When a thread blocks at a critical section waiting to

Multithreading Consistency Guide 73

acquire the lock, the operating system swaps an active thread for the idle thread. This is
known as a context switch. In general, this is the desired behavior because it releases the
CPU to do useful work. For a thread waiting to enter a small critical section, however, a
spin-wait may be more efficient than a context switch. The waiting thread does not
relinquish the CPU when spin-waiting. Therefore, a spin-wait is only recommended when
the time spent in a critical section is less than the cost of a context switch.

Example code 8 shows a useful heuristic to employ when using the Win32 threading API.
This example uses the spin-wait option on Win32 CRITICAL_SECTION objects. A thread
that is unable to enter a critical section will spin rather than relinquish the CPU. If the
CRITICAL_SECTION becomes available during the spin-wait, a context switch is avoided.
The spin-count parameter determines how many times the thread will spin before
blocking. On uniprocessor systems the spin-count parameter is ignored. Code Sample 4
uses a spin-count of 1000 for each thread in the application but a maximum spin-count of
8000.

int gNumThreads;

CRITICAL_SECTION gCs;

int main ()

{

 int spinCount = 0;

 ...

 spinCount = gNumThreads * 1000;

 if (spinCount > 8000) spinCount = 8000;

 InitializeCriticalSectionAndSpinCount (&gCs, spinCount);

 ...

}

DWORD WINAPI ThreadFunc (void *data)

{

 ...

 EnterCriticalSection (&gCs)

 ...

 LeaveCriticalSection (&gCs);

}

Example code 8: Heuristic to control the behavior of waiting threads.

Usage Guidelines

The spin-count parameter used in Example code 8 should be tuned differently on Intel
processors with Hyper-Threading Technology. In general, spin-waits are detrimental to
Hyper-Threading performance. Unlike true symmetric multiprocessors (SMP), which
have multiple physical CPU’s, Hyper-Threading Technology creates two logical
processors on the same CPU core. Spinning threads and threads doing useful work must
compete for logical processors. Thus, spinning threads can impact the performance of
multithreaded applications to a greater extent on Hyper-Threaded systems compared to

74 Multithreading Consistency Guide

SMP systems. The spin-count for the heuristic in Example code 8 should be lower or not
used at all.

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 5.2: Use Thread-Local Storage to
Reduce Synchronization

Multithreading Consistency Guide 75

4.2 Use Synchronization Routines Provided by the
Threading API Rather than Hand-Coded
Synchronization

Category
Synchronization

Scope

General multithreading

Keywords
Synchronization, spin-wait, Hyper-Threading, Win32 threads, OpenMP, Pthreads

Abstract

Application programmers sometimes write hand-coded synchronization routines rather
than using constructs provided by a threading API in order to reduce synchronization
overhead or provide different functionality than existing constructs offer. Unfortunately,
using hand-coded synchronization routines may have a negative impact on performance,
performance tuning, or debugging of multi-threaded applications.

Background

It is often tempting to write hand-coded synchronization to avoid the overhead sometimes
associated with the synchronization routines from the threading API. Another reason
programmers write their own synchronization routines is that those provided by the
threading API do not exactly match the desired functionality. Unfortunately, there are
serious disadvantages to hand-coded synchronization compared to using the threading
API routines.

One disadvantage of writing hand-coded synchronization is that it is difficult to guarantee
good performance across different hardware architectures and operating systems. The
following example is a hand-coded spin lock written in C that will help illustrate these
problems:

#include <ia64intrin.h>

void acquire_lock(int *lock)

{

 while

 (_InterlockedCompareExchange (lock, TRUE, FALSE) == TRUE);

}

void release_lock (int *lock)

{

 *lock = FALSE;

}

76 Multithreading Consistency Guide

The _InterlockedCompareExchange compiler intrinsic is an interlocked memory
operation which guarantees that no other thread can modify the specified memory
location during its execution. It first compares the memory contents of the address in the
first argument with the value in the third argument, and if a match occurs, stores the value
in the second argument to the memory address specified in the first argument. The
original value found in the memory contents of the specified address is returned by the
intrinsic. In this example, the acquire_lock routine spins until the contents of the
memory location lock are in the unlocked state (FALSE) at which time the lock is
acquired (by setting the contents of lock to TRUE) and the routine returns. The
release_lock routine sets the contents of the memory location lock back to FALSE to
release the lock.

Although this lock implementation may appear simple and reasonably efficient at first
glance, it has several problems. First, if many threads are spinning on the same memory
location, cache invalidations and memory traffic can become excessive at the point when
the lock is released, resulting in poor scalability as the number of threads increases.
Second, this code uses an atomic memory primitive which may not be available on all
processor architectures, limiting portability. Third, the tight spin loop may result in poor
performance for certain processor architecture features, such as Hyper-Threading
Technology. Fourth, the while loop appears to the operating system to be doing useful
computation, which could negatively impact the fairness of operating system scheduling.
Although techniques exist for solving all these problems, they often complicate the code
enormously, making it difficult to verify correctness. Tuning the code while maintaining
portability is also difficult. These problems are better left to the authors of the threading
API who have more time to spend verifying and tuning the synchronization constructs to
be portable and scalable.

Another serious disadvantage of hand-coded synchronization is that it often decreases the
accuracy of programming tools for threaded environments. For example, the Intel®
Threading Tools need to be able to identify synchronization constructs in order to provide
accurate information about performance (see 2.5: Using Thread Profiler to Evaluate
OpenMP Performance) and correctness (see 2.4: Find Multithreading Errors with the
Intel Thread Checker) of the threaded application program. Threading tools are often
designed to identify and characterize the functionality of the synchronization constructs
provided by the supported threading API(s). Synchronization is difficult for the tools to
identify and understand if standard synchronization API’s are not used to implement it,
which is the case in the example above. Sometimes tools support hints from the
programmer in the form of tool-specific directives, pragmas, or API calls to identify and
characterize hand-coded synchronization. Such hints, even if they are supported by a
particular tool, may result in less accurate analysis of the application program than if
threading API synchronization were used: the reasons for performance problems may be
difficult to detect or threading correctness tools may report spurious race conditions or
missing synchronization.

http://www.intel.com/software/products/threading
http://www.intel.com/software/products/threading

Multithreading Consistency Guide 77

Advice

Avoid the use of hand-coded synchronization if possible. Instead, use the routines
provided by your preferred threading API, such as omp_set_lock/omp_unset_lock or
critical/end critical directives for OpenMP,
pthread_mutex_lock/pthread_mutex_unlock for Pthreads, and
EnterCriticalSection/LeaveCriticalSection or WaitForSingleObject or
WaitForMultipleObjects and ReleaseMutex for the Win32 API. Study the threading
API synchronization routines and constructs to find one that is appropriate for your
application.

If a synchronization construct is not available that provides the needed functionality in
the threading API, consider using a different algorithm for the program that requires less
or different synchronization. Furthermore, expert programmers could build a custom
synchronization construct from simpler synchronization API constructs instead of starting
from scratch. If hand-coded synchronization must be used for performance reasons,
consider using pre-processing directives to enable easy replacement of the hand-coded
synchronization with a functionally equivalent synchronization from the threading API;
thus increasing the accuracy of the threading tools.

Usage Guidelines

Programmers who build custom synchronization constructs from simpler synchronization
API constructs should avoid using spin loops on shared locations to avoid non-scalable
performance. If the code must also be portable, avoiding the use of atomic memory
primitives is also advisable. The accuracy of threading performance and correctness tools
may suffer because the tools may not be able to deduce the functionality of the custom
synchronization construct, even though the simpler synchronization constructs from
which it is built may be correctly identified.

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for
Synchronization

 4.4: Use Non-Blocking Locks when Possible

See also:

• John Mellor-Crummey, “Algorithms for Scalable Synchronization on Shared-
Memory Multiprocessors,” ACM Transactions on Computer Systems, 9, 21-65, 1991.

• Intel Pentium 4 and Intel Xeon Processor Optimization Reference Manual, Chapter 7:
“Multiprocessor and Hyper-Threading Technology,” Intel Developer Services.

http://developer.intel.com/

78 Multithreading Consistency Guide

4.3 Win32 Atomics Versus User-Space Locks Versus
Kernel Objects for Synchronization

Category
Synchronization

Scope

Win32 multithreading

Keywords
Synchronization, lock contention, system overhead, mutual exclusion, Win32 threads

Abstract

When threads wait at a synchronization point, they are not doing useful work.
Unfortunately, some degree of synchronization is usually necessary in multithreaded
programs. The Win32 API provides several synchronization mechanisms with varying
utility and system overhead.

Background

Synchronization constructs, by their very nature, serialize execution. However, very few
multithreaded programs are entirely synchronization-free. Fortunately, it is possible to
mitigate some of the system overhead associated with synchronization by choosing
appropriate constructs. An increment statement (e.g., var++) will be used to illustrate the
different constructs. If the variable being updated is shared among threads, the
load→write→store instructions must be atomic (i.e., the sequence of instructions must
not be preempted before completion). The Win32 API provides several mechanisms to
guarantee atomicity, three of which are shown below:

#include <windows.h>

CRITICAL_SECTION cs; /* Initialized in main() */

HANDLE mtx; /* CreateMutex called in main() */

static LONG counter= 0;

void IncrementCounter ()

{

 // Synchronize with Win32 interlocked function

 InterlockedIncrement (&counter);

 // Synchronize with Win32 critical section

 EnterCriticalSection (&cs);

 counter++;

 LeaveCriticalSection (&cs);

Multithreading Consistency Guide 79

 // Synchronize with Win32 mutex

 WaitForSingleObject (mtx, INFINITE);

 counter++

 ReleaseMutex (mtx);

}

The advantages and disadvantages of each construct will now be discussed.

The Win32 interlocked functions (InterlockedIncrement, InterlockedDecrement,
InterlockedExchange, InterlockedExchangeAdd, InterlockedCompareExchange) are
limited to simple operations but they are faster than critical regions. In addition, fewer
function calls are required. To enter and exit a Win32 critical region requires calls to
EnterCriticalSection and LeaveCriticalSection or WaitForSingleObject and
ReleaseMutex. The interlocked functions are also non-blocking whereas
EnterCriticalSection and WaitForSingleObject (or WaitForMultipleObjects) block
threads if the synchronization object is not available.

When a critical region is necessary, synchronizing on a Win32 CRITICAL_SECTION
requires significantly less system overhead than Win32 mutex, semaphore, and event
HANDLEs because the former is a user-space object whereas the latter are kernel-space
objects. Though Win32 critical sections are usually faster than Win32 mutexes, they are
not as versatile. Mutexes, like other kernel objects, can be used for inter-process
synchronization. Timed-waits are also possible with the WaitForSingleObject and
WaitForMultipleObjects functions. Rather than wait indefinitely to acquire a mutex the
threads continue after the specified time limit expires. Setting the wait-time to zero
allows threads to test whether a mutex is available without blocking. (Note that it is also
possible to check the availability of a CRITICAL_SECTION without blocking using the
TryEnterCriticalSection function.) Finally, if a thread terminates while holding a
mutex, the operating system signals the handle to prevent waiting threads from becoming
deadlocked. If a thread terminates while holding a CRITICAL_SECTION, threads waiting to
enter this CRITICAL_SECTION are deadlocked.

A Win32 thread immediately relinquishes the CPU to the operating system when it tries
to acquire a CRITICAL_SECTION or mutex HANDLE that is already held by another thread.
In general, this is good behavior. The thread is blocked and the CPU is free to do useful
work. However, blocking and unblocking a thread is expensive. Sometimes it is better for
the thread to try to acquire the lock again before blocking (e.g., on SMP systems, at small
critical sections). Win32 CRITICAL_SECTIONs have a user-configurable spin-count to
control how long threads should wait before relinquishing the CPU. The
InitializeCriticalSectionAndSpinCount and SetCriticalSectionSpinCount
functions set the spin-count for threads trying to enter a particular CRITICAL_SECTION.

Advice

For simple operations on variables (i.e., increment, decrement, exchange) use fast, low-
overhead Win32 interlocked functions.

80 Multithreading Consistency Guide

Use Win32 mutex, semaphore, or event HANDLEs when inter-process synchronization or
timed-waits are required. Otherwise, use Win32 CRITICAL_SECTIONs, which have lower
system overhead.

Control the spin-count of Win32 CRITICAL_SECTIONs using the
InitializeCriticalSectionAndSpinCount and SetCriticalSectionSpinCount
functions. Controlling the how long a waiting thread spins before relinquishing the CPU
is especially important for small and high-contention critical sections. Spin-count can
significantly impact performance on SMP systems and CPUs with Hyper-Threading
Technology.

Usage Guidelines

Beware of thread preemption when making successive calls to Win32 interlocked
functions. For example, the two code segments in Figure 14 will not always yield the
same value for localVar when executed with multiple threads. In the example using
interlocked functions, thread preemption between any of the function calls can produce
unexpected results. The critical section example is safe because both atomic operations
(i.e., the update of global variable N and assignment to localVar) are protected.
 static LONG N = 0;

 LONG localVar;

 InterlockedIncrement (&N);

 InterlockedIncrement (&N);

 InterlockedExchange (&localVar, N);

 static LONG N = 0;

 LONG localVar;

 EnterCriticalSection (&lock);

 localVar = (N += 2);

 LeaveCriticalSection (&lock);

Figure 14: Fundamental differences between interlocked functions and critical sections.

For safety, Win32 critical regions, whether built with CRITICAL_SECTION variables or
mutex HANDLEs, should have only one point of entry and exit. Jumping into critical
sections defeats synchronization. Jumping out of a critical section without calling
LeaveCriticalSection or ReleaseMutex will deadlock waiting threads. Single entry and
exit points also make for clearer code.

Prevent situations where threads terminate while holding CRITICAL_SECTION variables
because this will deadlock waiting threads.

References

In this manual, see also:

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune
Performance Analyzer

 4.2: Use Synchronization Routines Provided by the Threading API Rather than
Hand-Coded Synchronization

 4.4: Use Non-Blocking Locks when Possible

Multithreading Consistency Guide 81

See also:

Johnson M. Hart, Win32 System Programming (2nd Edition), Addison-Wesley, 2001

Jim Beveridge and Robert Wiener, Multithreading Applications in Win32, Addison-
Wesley, 1997.

82 Multithreading Consistency Guide

4.4 Use Non-Blocking Locks when Possible
Category
Synchronization

Scope

Windows threads, Pthreads, IA-32, Itanium processor

Keywords
Non-blocking lock, synchronization, critical section, context switch, spin-wait

Abstract

Threads synchronize on shared resources by executing synchronization primitives offered
by the supporting threading implementation. These primitives (such as mutex,
semaphore, etc.) allow a single thread to own the lock, while the other threads either spin
or block depending on their timeout mechanism. Blocking results in costly context-
switch, whereas spinning results in wasteful use of CPU execution resources (unless used
for very short duration). Non-blocking system calls, on the other hand, allow the
competing thread to return on an unsuccessful attempt to the lock, and allow useful work
to be done and thereby avoiding wasteful utilization of execution resources at the same
time.

Background

Most threading implementations, including the Win32 and POSIX threads API’s provide
both blocking and non-blocking thread synchronization primitives. Often the blocking
primitives are used as default. When the lock attempt is successful, the thread gains
control of the lock, and executes the code in the critical section. However, in the case of
an unsuccessful attempt, a context-switch occurs and the thread is placed in a queue of
waiting threads. A context-switch is costly and is avoidable for the following reasons:
 Context-switch overheads are considerable, especially if the threads implementation

is based on kernel threads.
 Any useful work in the application following the synchronization call needs to wait

execution until the thread gains control of the lock.

Using non-blocking system calls can alleviate the performance penalties. In this case, the
application thread resumes execution following an unsuccessful attempt to lock the
critical section. This avoids context-switch overheads, and also avoidable spinning on the
lock. Instead the thread performs useful work before a next attempt to gain control of the
lock.

Advice

Use non-blocking synchronization functions to avoid context-switch overheads. Non-
blocking synchronization functions usually start with ‘try.’ For instance, the Win32 API
provides blocking and non-blocking critical sections:

Multithreading Consistency Guide 83

void EnterCriticalSection (LPCRITICAL_SECTION cs);

bool TryEnterCriticalSection (LPCRITICAL_SECTION cs);

If the attempt to gain ownership of the critical section is successful,
TryEnterCriticalSection returns the Boolean value TRUE. Otherwise, it returns FALSE
and the thread can continue.

The following example shows a typical use of non-blocking synchronization:
CRITICAL_SECTION cs;

void threadfoo()

{

 while (TryEnterCriticalSection (&cs) == FALSE)
 {

 // Useful work

 }

 //
 // Code requiring protection by critical section
 //

 LeaveCriticalSection (&cs);

}

Similarly, Pthreads provides non-blocking versions of its mutex functions:
int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

It is also possible to specify timeouts for Win32 synchronization primitives. The Win32
API provides the WaitForSingleObject and WaitForMultipleObjects functions to
synchronize on kernel objects (i.e., HANDLE), e.g.:

DWORD WaitForSingleObject (HANDLE hHandle, DWORD dwMilliseconds);

where hHandle is the handle to the kernel object, and dwMilliseconds is the timeout
interval after which the function returns if the kernel object is not signaled. A value of
INFINITE indicates that the thread waits indefinitely. The thread waits until the relevant
kernel object is signaled or a user-specified time interval has passed. Once the time
interval elapses, the thread can resume execution. The following example demonstrates
the use of WaitForSingleObject for non-blocking synchronization:

void threadfoo ()

{

 DWORD ret_value;

 HANDLE hHandle;

 ret_value = WaitForSingleObject (hHandle, 0);

 if (ret_value == WAIT_TIME_OUT)

 {

 // Thread could not acquire lock within the time interval

 //

 // Other useful work

84 Multithreading Consistency Guide

 //

 }
 else if (ret_value == WAIT_OBJECT_0)

 {

 // Thread acquired lock within the time interval

 //

 // Code requiring protection by critical section

 //

 }

}

Similarly, WaitForMultipleObjects allows the thread to wait on the signal status of
multiple kernel objects.

Usage Guidelines

When using non-blocking synchronization, for instance TryEnterCriticalSection,
verify the return value to see if the request is successful before releasing the shared
object.

References

In this manual, see also:

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune
Performance Analyzer

 4.2: Use Synchronization Routines Provided by the Threading API Rather than
Hand-Coded Synchronization

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for
Synchronization

 4.4: Use Non-Blocking Locks when Possible

 4.5: Use a Double-Check Pattern to Avoid Lock Acquisition for One-Time Events

See also:

Aaron Cohen and Mike Woodring, Win32 Multithreaded Programming, O’Reilly and
Associates, 1998.

Jim Beveridge and Robert Wiener, Multithreading Applications in Win32 – the Complete
Guide to Threads, Addison Wesley, 1997.

Bil Lewis and Daniel J Berg, Multithreaded Programming with Pthreads, Sun
Microsystems Press, 1998.

Multithreading Consistency Guide 85

4.5 Use a Double-Check Pattern to Avoid Lock Acquisition for
One-Time Events

Category
Synchronization

Scope

General multithreading

Keywords
Lock contention, synchronization, mutual exclusion, Win32 threads, Pthreads

Abstract

Acquiring locks, like synchronization, is an expensive operation. For one-time events
(e.g., initialization, file opening/closing, dynamic memory allocation), it is often possible
to use double-check locking (DCL) to avoid unnecessary lock acquisition.

Background

Synchronization, in this case lock acquisition, requires two interactions (i.e., locking and
unlocking) with the operating system – an expensive overhead. When initializing a
global, read-only table, for example, it is not necessary for every thread to perform the
operation but every thread must check that the initialization occurred. For operations that
are only executed once (e.g., initialization, file opening/closing, dynamic memory
allocation), it is often possible to use DCL to avoid unnecessary lock acquisition. In DCL,
if-tests are used to avoid locking after the first initialization, as the following pseudo-code
illustrates:

Boolean initialized = FALSE

function InitOnce

{

 if not initialized

 {

 acquire lock

 if not initialized Double-check!

 {

 perform initialization

 initialized = TRUE

 }

 release lock

 }

}

There are several interesting points about this pseudo-code. First, multiple threads can
evaluate the first if-test as true. However, only the first thread to acquire the lock may
perform the initialization and set the Boolean variable to true. When the lock is released,

86 Multithreading Consistency Guide

subsequent threads re-check the Boolean variable. Failure to double-check the Boolean
control variable can result in re-initialization, possibly with different data, which could
lead to unexpected results. Second, threads that call the function after initialization has
occurred do not acquire the lock. The first if-test evaluates to false. Third, no thread can
return unless the initialization is complete. Finally, a data race exists for the Boolean
variable. Specifically, a thread can read its value while another thread is modifying its
value. This data race is benign because only the thread holding the lock can modify the
variable. However, the Intel Thread Checker will still report storage conflicts on the
Boolean variable (see 2.4: Find Multithreading Errors with the
Intel Thread Checker).

Advice

Use DCL to avoid repeated lock acquisition when performing one-time operations. DCL
is especially useful when threads repeatedly check whether the operation is complete. The
following source code shows one way to implement DCL using C and the Win32 API:

#include <windows.h>

CRITICAL_SECTION lock; /* Initialized elsewhere */

static int initialized = 0;

void init_once ()

{

 if (!initialized)

 {

 EnterCriticalSection (&lock);

 if (!initialized)

 {

 /* Perform initialization */

 initialized = 1;

 }

 LeaveCriticalSection (&lock);

 }

}

The following source code shows how to implement DCL using C and Pthreads:
#include <pthread.h>

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int initialized = 0;

void init_once ()

{

 if (!initialized)

 {

 pthread_mutex_lock (&lock);

 if (!initialized)

http://www.intel.com/software/products/threading/tcwin/

Multithreading Consistency Guide 87

 {

 /* Perform initialization */

 initialized = 1;

 }

 pthread_mutex_unlock (&lock);

 }

}

For completeness, an example of DCL using OpenMP is shown below:
subroutine init_once

 logical, save :: init = .FALSE.

 if (.not. init) then

 !$omp critical (once)

 if (.not. init) then

 ! Perform initialization

 init = .TRUE.

 endif

 !$omp end critical

 endif

end subroutine init_once

It is unlikely that DCL will ever be needed in an OpenMP program because OpenMP
contains pragmas to express this capability (i.e., the single worksharing construct or the
master/barrier combination).

Usage Guidelines

When initializing shared, read-only data, it is tempting to let multiple threads perform the
initialization asynchronously. The initialization will be correct provided the threads are
all writing the same values to the global data. However, asynchronous initialization could
incur a serious performance penalty as multiple threads invalidate each other’s cache
lines.

The pthread_once function can be used in the same situations as DCL, but it has greater
system overhead.

DCL should be used with caution in Java because some Java Virtual Machines implement
the Java Memory Model incorrectly.

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 4.3: Win32 Atomics Versus User-Space Locks Versus Kernel Objects for
Synchronization

 4.4: Use Non-Blocking Locks when Possible

http://www.openmp.org/

88 Multithreading Consistency Guide

See also:

Douglas C. Schmidt and Tim Harrison, “Double-Checked Locking”, Pattern Languages
of Program Design 3 (Eds: Robert Martin, Frank Buschmann, and Dirke Riehle),
Addison-Wesley, 1997.

Brian Goetz, “Double-check locking: Clever, but broken” JavaWorld, February 2001.

Multithreading Consistency Guide 89

5. Memory Management
Adding concurrency to applications can improve performance in obvious ways. Previous
chapters have dealt with many of the issues that can impact the performance of threaded
applications. Avoiding contention for heap resources, using storage that is local to threads
rather than shared to reduce synchronization, and carefully managing memory allocations
are some of the less obvious, but no less important, considerations that can also impact
threaded performance. These memory management issues are covered in this chapter.

5.1 Avoiding Heap Contention among Threads
Category
Memory Management

Scope

General multithreading

Keywords
Heap contention, synchronization, dynamic memory allocation, lock contention, stack allocation

Abstract

Allocating memory from the system heap can be an expensive operation. To make
allocation thread-safe, a lock is used to synchronize access to the heap. The contention on
this lock can limit the performance benefits from multithreading. To solve this problem,
change the allocation strategy to avoid using shared lock.

Background

The system heap (as used by malloc) is a shared resource. To make it safe to use by
multiple threads it is necessary to add synchronization to gate access to the shared heap.
Synchronization, in this case lock acquisition, requires two interactions (i.e., locking and
unlocking, with the operating system – an expensive overhead.

The OpenMP implementation in the Intel 7.0 compilers exports two functions,
kmp_malloc and kmp_free. These functions maintain a per-thread heap attached to each
thread of the OpenMP team. Threads that call these functions avoid the use of the lock
that protects access to the standard system heap. The threadprivate directive can be
used as well to create a private copy of globally declared variables for each thread in the
OpenMP team.

The Win32 HeapCreate function can be used to allocate separate heaps for all of the
threads used by the application. The flag HEAP_NO_SERIALIZE is used to disable the use of
synchronization on this new heap since only a single thread will access it.

If the heap handle is stored in a Thread Local Storage (TLS) location, this heap can be
used whenever an application thread needs to allocate or free memory. Note that memory
allocated in this manner must be explicitly released by the same thread that performs the

http://www.openmp.org/

90 Multithreading Consistency Guide

allocation. For Pthreads applications, the pthread_key_create and
pthread_{get|set}specific API can be used to obtain access to TLS but the
management of this global storage is the programmer’s responsibility.

If you need to use a more general replacement (where the thread which allocates the
memory is not necessarily the thread which releases the memory, then it may be more
appropriate to look into using a commercial replacement to the heap manager as listed in
the references section.

The following example uses several features of the Win32 API:
#include <windows.h>

static DWORD tls_key;

__declspec (dllexport) void* thr_malloc (size_t n)

{

 return HeapAlloc (TlsGetValue (tls_key), 0, n);

}

__declspec (dllexport) void thr_free (void *ptr)

{

 HeapFree (TlsGetValue (tls_key), 0, ptr);

}

BOOL WINAPI DllMain (HINSTANCE hinstDLL,

 DWORD fdwReason,

 LPVOID lpReserved)

{

 switch (fdwReason)

 {

 case DLL_PROCESS_ATTACH:

 // Use Thread Local Storage to remember the heap

 tls_key = TlsAlloc ();

 TlsSetValue (tls_key, GetProcessHeap ());

 break;

 case DLL_THREAD_ATTACH:

 // Use HEAP_NO_SERIALIZE to avoid lock contention

 TlsSetValue

 (tls_key, HeapCreate (HEAP_NO_SERIALIZE, 0, 0));

 break;

 case DLL_THREAD_DETACH:

 HeapDestroy (TlsGetValue (tls_key));

 break;

 case DLL_PROCESS_DETACH:

Multithreading Consistency Guide 91

 TlsFree (tls_key);

 break;

 }

 return TRUE; // Successful DLL_PROCESS_ATTACH

}

First, it uses a dynamic load library (DLL) to allow the threads to be registered at the
point of creation. It also uses TLS to remember the heap that is assigned to each thread.
Finally, it uses the ability of the Win32 API to independently manage unsynchronized
heaps.

Advice

In addition to the use of multiple independent heaps, it is also possible to incorporate
other techniques to minimize the lock contention caused by a shared lock that is used to
protect the system heap. If the memory is only to be accessed within a small lexical
context, the alloca routine can sometimes be used to allocate memory from the current
stack frame. This memory is automatically deallocated upon function return.

A per-thread free list is another technique. Initially, memory is allocated from the system
heap with malloc. When the memory would normally be released it is added to a per-
thread linked-list. If the thread needs to reallocate memory of the same size, it can
immediately retrieve the stored allocation from the list without going back to the system
heap.

struct MyObject

{

 struct MyObject *next;

};

static __declspec(thread) struct MyObject *freelist_MyObject = 0;

struct MyObject *malloc_MyObject ()

{

 struct MyObject *p = freelist_MyObject;

 if (p == 0)

 return malloc (sizeof (struct MyObject));

 freelist_MyObject = p->next;

 return p;

}

void free_MyObject (struct MyObject *p)

{

 p->next = freelist_MyObject;

 freelist_MyObject = p;

}

92 Multithreading Consistency Guide

Usage Guidelines

With any optimization you encounter trade-offs. In this case the trade-off is in
exchanging lower contention on the system heap for higher memory usage. When each
thread is maintaining its own private heap or collection of objects, these areas are not
available to other threads. This may result in a “memory imbalance” between the threads,
similar to the “load imbalance” you encounter when threads are performing varying
amount of work (see 3.3: Load Balance and Parallel Performance). The memory
imbalance may cause the working set size to increase and the total memory usage by the
application to also increase. The increase in memory usage usually has a minimal
performance impact. An exception occurs when the increase in memory usage exhausts
the available memory. If this happens it may cause the application to either abort or swap
to disk.

References

In this manual, see also:

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune
Performance Analyzer

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 4.1: Managing Lock Contention, Large and
Small Critical Sections

See also:

MicroQuill SmartHeap for SMP

The HOARD memory allocator

Documentation for the following Win32 functions:

HeapAlloc, HeapCreate, HeapFree

TlsAlloc, TlsGetValue, TlsSetValue

Alloca

http://www.microquill.com/smartheapsmp/index.html
http://www.cs.utexas.edu/users/emery/hoard/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/memory_management_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/process_and_thread_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_CRT__alloca.asp

Multithreading Consistency Guide 93

5.2 Use Thread-Local Storage to
Reduce Synchronization

Category
Memory Management

Scope

General multithreading

Keywords
Thread-local storage, synchronization, OpenMP, Pthreads, Win32 threads

Abstract

Synchronization is often an expensive operation that can limit the performance of a
multi-threaded program. Using thread-local data structures instead of data structures
shared by the threads can reduce synchronization in certain cases, thus allowing a
program to run faster.

Background

When data structures are shared by a group of threads and at least one thread is writing
into them, synchronization between the threads is sometimes necessary to make sure that
all threads see a consistent view of the shared data at all times. The typical synchronized
access regime for threads in this situation is for a thread to acquire a lock, read or write
the shared data structures, then release the lock.

All forms of locking have overhead to maintain the lock data structures and they use
atomic instructions that slow down modern processors. Also, synchronization slows down
the program because it eliminates parallel execution inside the synchronized code,
forming a serial execution bottleneck. Therefore, when synchronization occurs within a
time-critical section of code, code performance can suffer.

The synchronization can be eliminated from the multithreaded, time-critical code sections
if the program can be re-written to use thread-local storage instead of shared data
structures. This is possible if the nature of the code is such that real-time ordering of the
accesses to the shared data is unimportant. Synchronization can also be eliminated when
the ordering of accesses is important, if the ordering can be safely postponed to execute
during infrequent, non-time-critical sections of code.

Consider, for example, the use of a variable to count events that happen on several
threads. The following code shows one way to write such a program in OpenMP:

int count=0;

#pragma omp parallel shared(count)

{

 if (event_happened)

http://www.openmp.org/

94 Multithreading Consistency Guide

 {

 #pragma omp atomic

 count++;

 }

}

This program pays a price each time the event occurs because it must synchronize to
guarantee that only one thread at a time increments count. Every event causes
synchronization. Removing the synchronization makes the program run faster. One way
to do this safely is to have each thread count its own events in the parallel region then
sum the individual counts later. The following code demonstrates this technique:

int count=0;

int tcount=0;

#pragma omp threadprivate(tcount)

#pragma omp parallel

{

 if (event_happened)

 {

 tcount++;

 }

}

#pragma omp parallel shared(count)

{

 #pragma omp atomic

 count += tcount;

}

This program uses a tcount variable that is private to each thread to store the count for
each thread. After the first parallel region counts all the local events, a subsequent region
adds this count into the overall count. This solution trades synchronization per event for
synchronization per thread. Performance will improve if the number of events is much
larger than the number of threads.

An additional advantage of using thread-local storage during time-critical portions of the
program is that the data may stay live in a processor’s cache longer than shared data, if
the processors do not share a data cache. When the same address exists in the data cache
of several processors and is written by one of them, it must be invalidated in the caches of
all other processors, causing it to be re-fetched from memory when the other processors
access it. But thread-local data will never be written by any other processors and will
therefore be more likely to remain in the cache of its processor.

The previous example code shows one way to specify thread-local storage in OpenMP.
To do the same thing with Pthreads, the programmer must create a key to access thread-
local storage, e.g.:

Multithreading Consistency Guide 95

#include <pthread.h>

pthread_key_t tsd_key;

<arbitrary data type> value;

if (pthread_key_create (&tsd_key, NULL))

 err_abort(status, “Error creating key”);

if (pthread_setspecific(tsd_key, value))

 err_abort(status, “Error in pthread_setspecific”);

value = (<arbitrary data type>)pthread_getspecific(tsd_key);

With the Win32 API, the programmer allocates a TLS index with TlsAlloc then uses that
index to set a thread-local value, e.g.:

DWORD tls_index;

LPVOID value;

tls_index = TlsAlloc();

if (tls_index == TLS_OUT_OF_INDEXES)

 err_abort(tls_index, “Error in TlsAlloc”);

status = TlsSetValue(tls_index, value);

if (status == 0)

 err_abort(status, “Error in TlsSetValue”);

value = TlsGetValue (tls_index);

In OpenMP, one can also create thread-local variables by specifying them in a private
clause on the parallel pragma or the threadprivate pragma. These variables are
automatically deallocated at the end of the parallel region. Of course, another way to
specify thread-local data, regardless of the threading model, is to use variables allocated
on the stack in a given scope. Such variables are deallocated at the end of the scope.

Advice

The technique of thread-local storage is applicable if synchronization is coded within a
time-critical section of code, and if the operations being synchronized need not be
ordered in real-time. If the real-time order of the operations is important, then the
technique can still be applied if enough information can be captured during the time-
critical section to reproduce the ordering later, during a non-time-critical section of code.

96 Multithreading Consistency Guide

Consider the following example where threads write data into a shared buffer:
int buffer[ENTRIES];

main()

{

 #pragma omp parallel

 {

 update_log (time, value1, value2);

 }

}

void update_log (time, value1, value2)

{

 #pragma omp critical

 {

 if (current_ptr + 3 > ENTRIES)

 {

 print_buffer_overflow_message ();

 }

 buffer[current_ptr] = time;

 buffer[current_ptr+1] = value1;

 buffer[current_ptr+2] = value2;

 current_ptr += 3;

 }

}

Let’s assume that time is some monotonically increasing value and the only real
requirement of the program for this buffer data is that it be written to a file occasionally
sorted according to time. We can eliminate the synchronization in the update_log
routine by using thread-local buffers. Each thread allocates a separate copy of tpbuffer
and tpcurrent_ptr. This allows us to eliminate the critical section in update_log. The
entries from the various thread-private buffers can be merged later, in a non-time-critical
portion of the program.

Usage Guidelines

One must be careful about the trade-offs involved in this technique. The technique does
not remove the need for synchronization. It only moves the synchronization from a time-
critical section of the code to a non-time-critical section of the code. First, determine
whether the original section of code containing the synchronization is actually being
slowed down significantly by the synchronization. (The Intel VTune Performance
Analyzer can be used to generate a performance profile.) Second, determine whether the
time ordering of the operations is critical to the application. If not, synchronization can be
removed, as in the event-counting code. If time ordering is critical, can the ordering be
correctly re-constructed later? Third, verify that moving synchronization to another place
in the code will not cause similar performance problems in the new location. One way to

http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/

Multithreading Consistency Guide 97

do this is to show that the number of synchronizations will decrease dramatically because
of your work (such as in the event-counting example above).

References

In this manual, see also:

 2.4: Find Multithreading Errors with the
Intel Thread Checker

 2.5: Using Thread Profiler to Evaluate OpenMP Performance

 3.5: Expose Parallelism by Avoiding or Removing Artificial Dependencies

See also:

David R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997.

Johnson M. Hart, Win32 System Programming (2nd Edition), Addison-Wesley, 2001.

Jim Beveridge and Robert Weiner, Multithreading Applications in Win32, Addison-
Wesley, 1997.

98 Multithreading Consistency Guide

5.3 Offset Thread Stacks to Avoid Cache Conflicts on
Intel Processors with Hyper-Threading Technology

Category
Memory Management

Scope

Multithreading with Pthreads or the Win32 API on Intel processors with Hyper-Threading
Technology

Keywords
Hyper-Threading Technology, cache-coherence, data alignment, VTune, stack allocation

Abstract

Hyper-Threading enabled processors share the first level data cache on a cache line basis
among the logical processors. Frequent accesses to the virtual addresses on cache lines
modulo 64 KB apart can cause alias conflicts that negatively impact performance. Since
thread stacks are generally created on modulo 64 KB boundaries, accesses to the stack
often conflict. By adjusting the start of the stack, the conflicts can be reduced and result
in significant performance gains. Note that the 64 KB alias conflict is processor
implementation dependent. Future processors may adjust the modulo boundary or
eliminate this conflict altogether.

Background

Intel processors with Hyper-Threading Technology share the first level data cache among
logical processors. Cache lines whose virtual addresses are modulo 64 KB apart will
conflict for the same slot in the first level data cache. This can affect both the first level
data cache performance as well as impact the branch prediction unit. In addition to 64 KB
alias conflicts, it is possible to increase the number of branch miss predictions when the
processor core logic uses speculative data with addresses modulo one megabyte apart.
Under Microsoft Windows operating systems, thread stacks are currently created on a
multiple of one megabyte boundaries by default. Two threads with very similar stack
frame images and access patterns to local variables on the stack are very likely to cause
alias conflicts resulting in substantial degradation. Future implementations of the Intel
processor with Hyper-Threading Technology will likely address both sources of alias
conflicts. Adjusting the initial thread stack address of each thread is a simple work-
around and can restore considerable performance to your application on Intel processors
with Hyper-Threading Technology.

Advice

Create a stack offset for each thread to avoid first-level data cache-line conflicts between
threads on Hyper-Threading-enabled processors.

Multithreading Consistency Guide 99

There are two ways to determine if your application performance on Hyper-Threading
enabled processors is suffering from these alias conflicts. The first, and most definitive,
method is to try the suggested work-around across your application’s performance
workloads. By comparing the resulting performance with and without Hyper-Threading
technology enabled, you can directly measure the relative performance difference. The
second method is to use the Intel VTune Performance Analyzer. You will need to collect
both clock tick events as well as 64 KB alias conflict events across your application’s
performance workloads with and without Hyper-Threading Technology enabled. After
sorting the modules and functions in your application by clock ticks from highest to
lowest, compare the number of 64 KB alias events. It’s not unusual to see an increase on
the order of three times the number of 64 KB alias events with Hyper-Threading
technology enabled. However, applications with a difference of eight times or greater at a
module or function level have been shown to improve performance significantly using
the optimization described below. If a sizeable portion of the total execution time is spent
in the module or function, this will translate directly to an overall application level
performance improvement.

Note that enabling or disabling Hyper-Threading support in Intel processors requires
support in the system BIOS. Some BIOS implementations between vendors may not
support user level access to enable or disable the Hyper-Threading feature.

Typically, threads are created using an operating system specific application interface and
passing it a pointer to a function as well as a pointer to a block of data specific to the
thread. The key to adjusting the initial thread stack address is to replace the original
function pointer with an intermediate function that can adjust the stack by a variable
amount depending on the number of threads created. A new intermediate parameter block
is needed that contains a pointer to the original thread function, a thread id, and a pointer
to the original parameter data block. The intermediate function can adjust the stack
address and then call the original function passing on the original thread specific
parameter data. Using the new parameter block with a function pointer is a generic
implementation that can be used for a pool of threads that may need to invoke different
functions for a thread. As a less general alternative, you could avoid the function pointer
technique and have the intermediate function call the original function directly. However,
be careful that the compiler does not in-line the original thread function within the
alternative thread function. If the original thread function is ‘in-lined’, the benefit of the
adjusted stack address for the original function is lost. Using the intermediate function
method with a function pointer avoids this possibility because the compiler cannot
determine which function to in-line at compile time.

The easiest way to adjust the initial stack address for each thread is to call the memory
allocation function, _alloca, with varying byte amounts in the intermediate thread
function. The _alloca function allocates memory directly on the stack. By adjusting the
number of bytes passed to the _alloca function, you can adjust the next function’s
starting stack address. The _alloca function is found in the malloc.h header file. Using
this technique to adjust the stack address is allocating virtual memory in each thread’s
stack frame that will go unused. In Example code 9, a one kilobyte offset multiplied by
the thread ID number is used to offset the thread stack frames. One kilobyte is not a

http://www.intel.com/software/products/vtune/

100 Multithreading Consistency Guide

magic number but one that has generally worked across various applications. One
important point to note is that current versions of Microsoft Windows operating systems
have a limit on the amount of virtual memory accessible to a given process. If the limit on
virtual memory is an important consideration for your application, you will need to
determine the best offset or modify this technique within this constraint.

// Original thread parameter data structure

struct ParameterBlk

{

 int thread_specific_data;

// Padding to keep thread data at least a cache-line apart

 char padding[2 * CACHE_LINE_SZ – sizeof (int)];

};

typedef DWORD (*PFI) (void*);

// Structure containing arguments provided to each thread

struct FunctionBlk

{

 PFI ThreadFuncPtr;

 struct ParameterBlk* function_parameters;

 unsigned int thread_number;

 // Padding to keep thread data at least a cache-line apart

 char padding[2 * CACHE_LINE_SZ – sizeof (PFI) -

 sizeof(struct ParameterBlk*) -

 sizeof(unsigned int)];

};

DWORD WINAPI OriginalThreadProc (LPVOID ptr)

{

 // This would have been the original thread function

 return 0;

}

#define STACK_OFFSET 1024

DWORD WINAPI IntermediateThreadProc (LPVOID ptr)

{

 struct FunctionBlk* parameter = (struct FunctionBlk*) ptr;

 // Adjusting stack address

 _alloca (parameter->thread_number * STACK_OFFSET);

 // Calling original thread procedure using a function pointer.

 // You could call the function directly as shown blow but be

 // careful that the function doesn’t get inlined.

Multithreading Consistency Guide 101

 return

 (*parameter->ThreadFuncPtr)(parameter->function_parameters);

}

Example code 9: Offsetting thread stacks with _alloca can avoid cache conflicts.

When determining how many threads to create, you should consider using the main
thread to do a portion of the work. The main thread is already likely to have a very
different stack frame image and data access pattern from the child threads that start with a
clean stack frame aligned on one megabyte boundaries. Plus, there is one less child thread
to synchronize and manage. Note that this may not be desirable if the main thread must
manage other tasks or be responsive to user input.

Usage Guidelines

A single source implementation of the thread stack offsets can be used for multi-
processor systems without performance impact. However, use of the stack offset can
reduce the overall virtual memory available to an application. In general, this will affect
only very large applications with a large number of threads. By adjusting the stack offset
amount, you can balance performance needs versus virtual memory.

The best size for the stack offset is application dependent. Thread functions that have
deep thread stacks due to local variables with subsequent function calls or operate on
large local data structures within a loop tend to perform better with a larger stack offset
size. Conversely, thread functions with smaller stack sizes can perform well with a
smaller stack offset. In general, increments of one kilobyte stack offsets per thread have
worked well for many applications.

References

In this manual, see also:

 2.3: Avoiding and Identifying False Sharing Among Threads with the VTune
Performance Analyzer

 5.1: Avoiding Heap Contention among Threads

See also:

“Adjusting Thread Stack Address To Improve Performance on Intel Xeon Processors,”
Phil Kerly (http://developer.intel.com)

Multithreading Consistency Guide 103

6. Investigating Poor Parallel
Application Scaling

The previous chapters provide guidelines for developing efficient multithreaded
applications. This chapter looks at the opposite issues of identifying the causes of poor
parallel scaling of multithreaded applications. Using real life examples, this chapter
examines the issues and the processes for identifying those issues and resolving them.
Each section is cross-referenced to the previous chapters, which may guide the developer
in the application-redesign effort.

The chapter is structured in the following way. First, tools and general preparatory steps
are discussed, followed by individual sections providing guidance related to specific
threading issues with examples.

Software Tools for Root-Cause Analysis
The following software-development tools have proven to be indispensable in identifying
parallel scaling issues. The Intel® software development tools are discussed in detail in
Chapter 2. This section lists a summary of specific tools, features, and counters of
particular usefulness in this context.

Intel® VTune™ Performance Analyzer: The following features are most useful for
understanding threading-related issues:

• Time-based sampling: samples are collected at regular time-based intervals (the
default setting is 1ms)

• Event-based sampling (with events displayed over time)

• Counter monitor

• The ability to break up samples on per-CPU, per-Process, or per-Thread basis

• Call Graph Profiling

Perfmon*: This tool is shipped with Microsoft Windows* operating systems. Perfmon
allows one to watch various performance counters defined by the Windows OS
interactively. Note that the sampling interval is limited to one second or higher. Using
Counter Monitor in the VTune analyzer provides the same counter, and for some
counters, the VTune analyzer allows for shorter refresh intervals. Data can be logged to
an output file as well, for later analysis. Among the many performance objects provided,
the most valuable objects and counters for identifying threading issues are the following:

• Processor: %Processor time; total and for each processor

• Thread: %Processor time; Context Switches / sec

• Physical Disk: %Disk Time; Disk Bytes /sec

• System: various counters (e.g. Threads, SystemCalls / sec, ContextSwitches / sec)

104 Multithreading Consistency Guide

Intel® Thread Checker: This tool can be very useful in finding and debugging
threading issues such as deadlock conditions, race conditions, and access-violation issues.

Intel® Thread Profiler: This tool can be used to determine serial versus parallel time,
as well as to measure the wait time on synchronization objects and other performance
problems. Thread Profiler supports OpenMP* and Win32* threads.

Preparing for Root Cause Analysis
Baselining and characterization of the application builds the foundation for any root-
cause analysis. The following list outlines possible steps that are recommended during
this stage of the analysis:
• Get information from the application-design team about the threading model used

(e.g. functional or domain decomposition). Which parts of the application are
threaded?

• Gain a fundamental understanding of how the threading is done, how the threads are
synchronized, how many threads are spawned, and what are they doing.

• Obtain or develop workloads that exercise the threaded areas. For each of these
workloads, determine the percentage of time that is spent in the multithreaded part of
the application. Identify performance metrics that can be used for comparing results.

• Depending on the specific situation, it may be advantageous to prepare a performance
lab or to obtain access to a lab with various platform configurations, in order to test
the application on the following systems:

o Uni-Processor (UP) systems with a single threaded Operating System kernels
o Uni-Processor (UP) systems with a Multi-Processor Operating System kernel

(UP-MP kernel)s
o Dual Processor (DP) systems.
o Four-Way Multi-Processor (MP) system (required for comparisons to Dual

Processor Systems manufactured by Intel that support Hyper-Threading
Technology).

• Execute the workloads on the test systems and collect performance data using tools
such as the VTune Performance Analyzer and Microsoft Perfmon. Understand how
much of the workload time is spent in serial as opposed to parallel execution (the
VTune environment counter monitor, Perfmon, or Thread Profiler can provide this
information).

Contributing Authors
Thanks to the following Intel® Software and Application Engineers: Clay
Breshears, Rajshree Chabukswar, Erik Niemeyer and Ram Ramanujam.

http://www.openmp.org/

Multithreading Consistency Guide 105

6.1 Estimating the Degree of Parallelism for a Given
Application and Workload

Keywords

Amdahl’s law, serial and parallel fraction, multithreaded application, resource sharing
issue

Abstract

This section describes the process of identifying the degree of parallelism of an
application based on measurements on a Dual Processor system using the VTune
Performance Analyzer.

Background

Recalling Amdahl’s law, if a workload is dominated by serial time, only limited
multithreaded (MT) scaling can be expected. Hence, it is important to understand the
serial versus parallel nature of the workload. In cases where the workload is dominated
by serial time, it is advantageous to focus on threading the serial sections if the algorithm
in question allows it. Converting a serial section to a parallel section increases the portion
of the application that is multithreaded. Code optimizations that reduce the amount of
time spent within the serial section of the code will increase the parallel scaling.
Conversely, improving the application performance within the parallel region will result
in a decrease of the parallel scaling, since the amount of time spent in the parallel region
has been reduced and the serial time remained the same; however the overall
performance of the application will increase.

Advice

• Serial versus parallel run time of the workload: Serial versus parallel time can be
quantified using tools such as the VTune environment Counter Monitor or Perfmon
when utilization of all CPUs is watched. (Note: The VTune analyzer counter monitor
and Perfmon report data in one-second intervals, and the data is expressed as a time
average, so short idle periods might be missed by the tool.) If only one CPU is active
on a DP/MP system, it is essentially a serial section; if all the CPUs are active, then it
is a parallel section. This explanation is slightly oversimplified, since thread
migration between CPUs is not considered. In rare cases, a single-threaded
application might appear to be running on multiple processors, due to thread
migration initiated by the operating system. A more in-depth analysis can be done by
using the VTune analyzer to collect Instructions Retired samples while running the
workload. Then use the Sample Over Time feature of the VTune environment to look
at the per-CPU/Process/Thread patterning over time. In addition, by using the Thread
Profiler, one can obtain the actual parallel-cruise time. When performing these tests,
one should ensure that no other application is running on the system. The
measurements should be repeated if other processes, including OS processes, are
active for a significant amount of time during the workload.

106 Multithreading Consistency Guide

A scenario where all CPUs are active but overall CPU utilization is <100% might
indicate resource-sharing issues among the application threads.

Example: Multithreaded Application Showing Small Speedup

When the workload was monitored using Perfmon on a DP system, this application
showed that about 25% of total run time was parallel. Figure 6.1.1 shows CPU
utilization of all active application threads as measured by Perfmon. (Thread Object
=> %Processor Time). Note that parallel run time could also be obtained by
monitoring the % Processor time for two CPUs.

Figure 6.1.1: Example of a Thread Utilization Profile for a multithreaded application.

A first approximation of theoretical MP scaling can be calculated by the following
formula when total serial and parallel times are known (e.g., from an analysis such as
that shown above).

Multithreading Consistency Guide 107

Figure 6.1.2: Total run time as the sum of serial and parallel run time for

different numbers of processors.

Note: One can arrive at a better estimate for theoretical DP/MP scaling by factoring
in observed CPU utilization in parallel regions. From the graph in Figure 6.1.1,
average overall CPU utilization in the parallel region is about 50%. If optimization
yields 100% CPU utilization, DP run time for the parallel region would be reduced by
half.

References

In this manual, see also:

This chapter, 6.2: Identifying load imbalance among threads and processors

Intel® Software Development Products, 2: VTune™ Performance Analyzer,
Intel® Thread Profiler

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate
OpenMP Performance

Application Threading, 3.2: Granularity and Parallel Performance

Ts = sum of serial times measured on DP system

Tp = sum of parallel times measured on DP system

Uni-Processor run time = Ts + 2*Tp

Dual-Processor run time = Ts + Tp

4-Processor run time = Ts + 0.5*Tp

108 Multithreading Consistency Guide

Application Threading, 3.3: Load Balance and Parallel Performance

See also:
Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by
Clay P. Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm

Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P.
Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm

Microsoft Perfmon: Introduction to Performance:
http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDO
WSXP/home/using/productdoc/en/sag_mpmonperf_01.asp

http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDOWSXP/home/using/productdoc/en/sag_mpmonperf_01.asp

Multithreading Consistency Guide 109

6.2 Identifying Load Imbalance among
Threads and Processors

Keywords

Load balance, Thread Profiler, workload dependency

Abstract

This section discusses load balance between running threads of an application/workload
and the process of identifying load-balance issues. For many applications, the load
balance is dependent on the specific workload, because the serial and parallel fractions of
the algorithm generally scale differently with workload size and and/or workload
characteristic.

Background

To gain the highest-possible parallel speedup, the workload has to be distributed equally
among processors. In general, applications are being used with different workloads that
might be very different in their characteristics. Thus, a dynamic process to distribute the
work is warranted.

One common strategy to distribute work equally is to divide the work into independent
chunks that are distributed using a “bin packing” algorithm. That is, the chunks are sorted
in decreasing order and are then assigned to threads starting from the largest chunk being
given to the thread with the least amount of assigned work. The process is then continued
until all chunks are distributed; always assigning the chunk to the thread that currently
has the least amount of assigned work.

To achieve good load balance, applications often use heuristics that are derived from a set
of representative workloads. Furthermore, workloads change over the lifespan of an
application, and this can result in load-balance issues, even though the application
originally showed good load balance.

110 Multithreading Consistency Guide

Figure 6.2.1: Bin-Packing algorithm for distributing workload equally.

Advice

• Load balancing between threads and among CPUs: If one thread is assigned more
work than others, the application may not be using the processors effectively, which
may impact performance scaling achieved. In this case, at certain times, the number
of active threads might be less than the number of processors (this is called “under
subscription” as pointed out by Thread Profiler). An efficient application design
generally sets the number of active threads to be equal or close to the number of
processors. (If active threads exceed number of processors, Thread Profiler will report
“over subscription.”) Thread Profiler will show load balance directly.

Load-balancing data can be seen by checking processor utilization of all CPUs, as
well as monitoring thread activities while running the application. One reason for
load imbalance might be that one of the threads has to process high-latency
instructions or instructions with a high micro-instruction count. Analysis using the
VTune environment that shows instructions-retired data for each thread can give a
good measure of the amount of work each thread is doing

For load-balance analysis, a representative workload set, which also includes limiting
cases such as a specifically small and large workload size, should be used. Often, a
larger workload size results in better load balance, and thus, better parallel scaling.
This fact can be explained by the observation that the serial and parallel portions of
the algorithm generally scale differently with workload size. In many cases, the serial
time increases less compared to the increase in the parallel time when the workload is
increased. An example is the fixed cost of a sequential file open, followed by a
parallel file read.

Load-balancing issues can usually be resolved by first determining why one or more
threads are doing a larger portion of the computation. In most cases, code inspection
and re-implementing a more balanced threading model and/or modifying the load-
balancing algorithm used in the application will be sufficient. In extreme cases, you

Multithreading Consistency Guide 111

may need to re-architect how data is structured and handled externally to the
application, along with the code modifications needed to process the new data
formats.

Example: Multithreaded client application

As an example, consider an application that implemented a functional-decomposition
threading model with two threads. During application development, specific design
decisions were made, based on a representative workload that showed good load
balance across all tests. Both threads were taking almost equal time. Later, it was
observed that when the workload size was reduced to a very small size, one of the
threads would finish much faster than the other thread. This example illustrates a
common occurrence, where load balancing changes dynamically with workload size
and shows the need to study a representative workload set that covers a wide range of
workload sizes.

References

In this manual, see also:

Intel® Software Development Products, 2: VTune™ Performance Analyzer,
Intel® Thread Profiler

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate
OpenMP Performance

Application Threading, 3.3: Load Balance and Parallel Performance

Application Threading, 3.6: Using Workload Heuristics to Determine Appropriate
Number of Threads at Runtime

See also:
Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by
Clay P. Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm

Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P.
Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm

112 Multithreading Consistency Guide

6.3 Analyzing Threading Design of Applications
and Identifying Issues

Keywords

Threading model, thread creation, fine-grain versus coarse-grain parallelism, thread-
pool, synchronization primitives

Abstract

Typically, performance analysis and tuning is an activity in the later stages of the
application-development cycle. During this stage, possible threading issues are identified,
and recommendations for design changes are made. This section discusses the impact of
frequent thread creation, granularity of the parallel implementation, synchronization, and
data sharing.

Background

During the application design and initial implementation phase, decisions might have
been made that resulted in suboptimal parallel performance of the application. It is in the
performance analysis and tuning phase that issues are identified that must be resolved to
improve performance.

Advice

• Thread-Pool: Many applications that employ dynamic thread creation create and
destroy threads frequently instead of re-using these threads by maintaining a thread
pool. The overhead of constantly creating and destroying threads may cause
performance issues. The use of a thread pool is generally recommended. In a thread
pool, threads can be suspended when not in use. This practice has the potential to
significantly reduce the overhead associated with thread creation and destruction.

There are no specific counters in VTune Performance Analyzer for thread creation
and destruction. However, the VTune analyzer does track thread creation and shows
performance data on a per-thread basis (see Figure 6.3.1 for details on how to
configure the VTune environment).

Multithreading Consistency Guide 113

Figure 6.3.1: VTune Performance Analyzer configuration to track thread creation.

A high number of system calls (NTOSKRNL) in the time-based analysis drill-down
of VTune Performance Analyzer, however, might indicate frequent thread creation
and destruction. Thread Profiler can also measure time spent in the overhead of
threading API calls. Furthermore, inspection of the “Timeline View” of Thread
Profiler can reveal numerous short-lived threads being created and destroyed.

In the initial implementation of a given application, threads were created every time
the parallel task (parallel rendering of a page) had to be executed, and these threads
were terminated at the end of the section. After implementing a thread-pool, a 3%
performance gain was seen on a DP system with this application and the tested
workload.

• Granularity of the parallel implementation (fine-grain versus coarse-grain): As
part of the performance analysis, the parallelization granularity should be
investigated. Granularity describes the amount of parallel work to be done before any
type of synchronization or serial step needs to be performed. The relative size of this
parallel chunk of work will determine the coarseness of the parallel implementation.
Generally, best scaling is observed when the parallelization is implemented on the
coarsest level. An example of this precept is encoding multiple music files
simultaneously, compared to encoding a single file in parallel.

Best scaling is achieved when threads work at a “coarse-grain” level and load balance
can be obtained. For a video-encoding application, when frames of images need to be
processed in an identical manner, it is advantageous for each thread to work on its
own image frame (coarse grain), rather than work on scan lines in a single image
frame (fine grain). Likely, there will be more contention around shared resources and
a higher threading overhead for fine-grain implementations. Increased contention
between threads will impact scaling and performance.

114 Multithreading Consistency Guide

If possible, identify granularity through source-code inspection. VTune analyzer call
graph analysis can provide insight into the application and show function-call
patterns, which include threading API calls.

Example: MP3 encoder
A parallel MP3 encoder showed good speedup, although a small imbalance between
threads was observed that is inherent to the application. A typical use case is the
encoding of a list of songs. For this specific use case, a higher throughput can be
achieved by workload-level parallelism; that is, multiple songs (usually two) are
encoded simultaneously, using the serial version of the algorithm in parallel.

An alternative to the above case would be to implement a solution using multiple
threads to encode a single file. In this case, the parallel code has a smaller granularity
of work per thread, compared to the workload-level parallel approach. If, however,
the user is most interested in reducing the time it takes to have the first song encoded
(fastest turnaround time), the threaded version working on a single file at a time
should be selected. This example illustrates that the user’s priorities (throughput
versus turnaround time) can determine the specific strategy that should be chosen.

• Choice of synchronization primitives: To perform thread synchronization, the

application designer has a variety of choices, each with a different performance
impact. By using VTune analyzer call graph analysis, one can identify the
synchronization primitives that are being used in the application. Judicious use of the
proper synchronization primitives plays a paramount role in limiting parallelization
overhead. As an example, for Win32 threads, if a simple variable needs to be
automatically incremented and if the locks are short-lived, use
InterLockedIncrement instead of using a critical section object. The
InterLockedxxx routines do not require spin locks, and hence, they are relatively
faster. However, in terms of cost, critical sections are less expensive than mutexes. In
addition, a good parallel application design will require each synchronization object
(spin lock, critical section, condition variable, mutex, etc.) to be held for the least
amount of time necessary. This should be particularly true for objects that are
frequently acquired. For example, traversing a long linked list in a linear order while
holding a heavily used spin lock can cause a performance bottleneck.

• Reduce data sharing between threads: Large amounts of data sharing between

threads might result in frequent use of synchronization objects. These synchronization
steps will have a negative impact on performance, not only due to call overhead, but
more significantly due to the time a thread needs to wait for release of these objects
prior to acquiring them. It is a good practice to strive for minimal data dependency
between threads, thus allowing threads to execute independently in parallel and to
eliminate idle wait time caused by synchronization. The locking of shared resources is
further discussed in Section 6.4.

Multithreading Consistency Guide 115

Intel VTune Performance Analyzer Event Based Sampling and Thread Profiler can be
used to identify this issue of frequent synchronization. To modify the application
design, code inspection and detailed understanding of the application is needed. One
common method to reduce the use of synchronization objects is to use local variables
instead of protected global variables. Periodic updates of global variables from local
copies will reduce the number of times a synchronization object needs to be acquired.

References

In this manual, see also:

This chapter, 6.2: Identifying load imbalance among threads and processors

Intel® Software Development Products, 2: VTune™ Performance Analyzer,
Intel® Thread Profiler

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate
OpenMP Performance

Application Threading, 3.2: Granularity and Parallel Performance

Application Threading, 3.3: Load Balance and Parallel Performance

Application Threading, 3.4: Threading for Turnaround versus Throughput

Application Threading, 3.5: Expose Parallelism by Avoiding or Removing
Artificial Dependencies

Application Threading, 3.7: Reduce System Overhead With Thread Pools

See also:
Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by
Clay P. Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm

Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P.
Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm

Microsoft Developer Network (MSDN) Overview Article: Interlocked Variables
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/interlocked_variable_access.asp
Microsoft Developer Network (MSDN): InterlockedIncrement
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/interlockedincrement.asp

116 Multithreading Consistency Guide

Microsoft Developer Network (MSDN): EnterCriticalSection
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/entercriticalsection.asp
Microsoft Developer Network (MSDN): LeaveCriticalSection
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/leavecriticalsection.asp
Microsoft Developer Network (MSDN): CreateMutex
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/createmutex.asp

Multithreading Consistency Guide 117

6.4 Locking of Shared Resources
Keywords
Data sharing, lock contention

Abstract

This section discusses lock contention that can occur when accessing shared resources
and provides a process to identify the issue using Thread Profiler or VTune analyzer call
graph analysis.

Background

In most applications, threads need to access shared resources periodically. To ensure data
integrity, exclusive access to shared resources must be guaranteed by a locking primitive
or other synchronization object. Mutual exclusion of threads to access shared resources is
a “necessary evil” of threaded applications, but it should be used as little as possible to
ensure correct results. Excessive and inappropriate lock contention can result in poor
parallel performance and scaling.

Advice

• Exercise care in locking of shared resources: If not designed carefully, applications
may experience thread contention/thrashing over certain “hot locks.” One indicator
for thread contention/thrashing is the occurrence of a large number of context
switches or a large percentage of processing time spent in “system time.” It is
recommended that thread-context switches be kept to less than 5000 per second.

“Hot locks” can be identified by using Thread Profiler or by VTune analyzer call
graph analysis. When using Call Graph, use the “Thread View” and sort this data on
“Self Wait Time.” For portability, application architects often choose to define private
(i.e., application-specific) locking APIs that are derived from OS synchronization
primitives. When performing this analysis, one has to look for the occurrence of these
private lock/unlock functions. A high “Self Wait Time” of these functions is a good
indicator for potential thread contention around that particular lock. Another way to
identify the issue is to examine the call stack at the particular lock (using caller and
callee data as provided by the tool) to see which calling sequences show most “Self
Wait Time”.

Example: Application with large number of context switches

When negative scaling was observed for this particular benchmark, VTune analyzer
event-based sampling analysis was performed. In the event-based sampling data, it
was observed that NTOSKRNL.exe had the biggest hotspot, with “Spin Lock” and
“YieldExecution” as the highest contributors.

In addition, a large number of context switches was observed (200,000 per sec), as
shown in Figure 6.4.1 below. Note that all four CPUs are active, and overall CPU
utilization is around 50%, which indicates that even though all CPUs are active, none

118 Multithreading Consistency Guide

is being utilized fully. The conclusion was that some contention was keeping the
threads from full utilization of processors.

Figure 6.4.1: Perfmon graph showing high number of context switches.

VTune analyzer call-graph analysis showed significant “Self Wait Time” spent in the
private implementation of the Lock and Unlock methods.

By source investigation, following caller and callee paths in VTune analyzer call
graph analysis, it was observed that a property class defined a critical section as a
“static” member variable. The application had multiple properties. In this design, all
property objects share one critical section, on which the four threads contend. Thus,
even if Thread1 needs Property1, and Thread2 needs Property2, one of the threads
will be blocked (see Figure 6.4.2 for illustration). To eliminate the issue, each
property object was designed with its own private lock by removing the “static”
keyword. For this specific application, this single change resulted in a four-processor
scaling improvement of from 0.7x to 1.3x.

Multithreading Consistency Guide 119

Figure 6.4.2: Redesign of a locking construct. Left: original design with single lock object for all

properties. Right: new design with individual lock objects for each property.

References

In this manual, see also:

Intel® Software Development Products, 2: VTune™ Performance Analyzer,
Intel® Thread Profiler

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate
OpenMP Performance

Application Threading, 3.5: Expose Parallelism by Avoiding or Removing
Artificial Dependencies

Synchronization, 4.1: Managing Lock Contention, Large and Small Critical
Sections

Memory Management, 5.2: Use Thread-Local Storage to Reduce Synchronization

See also:
Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by
Clay P. Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm

Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P.
Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm

Microsoft Perfmon: Introduction to Performance.
http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDO
WSXP/home/using/productdoc/en/sag_mpmonperf_01.asp

http://www.microsoft.com/windowsxp/home/using/productdoc/en/default.asp?url=/WINDOWSXP/home/using/productdoc/en/sag_mpmonperf_01.asp

120 Multithreading Consistency Guide

6.5 Identifying and Reducing Frequent Operating
System Calls

Keywords

OS calls, GUI update

Abstract

This section discusses the performance impact of frequent operating-system (OS) calls.
Many OS functions are serialized. That is, only one thread at a time can perform those
functions. To increase the performance of the parallel application, the number of OS calls
should therefore be minimized.

Background

The OS kernel supporting a multiprocessor system is different from the OS kernel
supporting a uniprocessor system. Many OS functions are serialized by encapsulating the
functions with a locking construct that allows only one thread at a time to execute the
function. If an application is calling these OS functions too frequently, thread contention
as described in Section 6.4 “Locking of shared resources” can occur.

Advice

• Compare performance on a single-threaded OS kernel with a multithreaded OS
kernel: If the application shows poor scaling on a DP system, collect performance
measurements on a uniprocessor system with a single threaded OS kernel and on a
uniprocessor system with a multithreaded kernel. [See article “Hyper Threading
Implications and Setup on Microsoft Operating Systems”, by Robert Godley, in
Reference section, for information on how to install a multithreaded OS kernel on a
uniprocessor system.] If performance degradation is observed going from the single-
threaded kernel to multithreaded kernel on a uniprocessor system, perform analysis
using VTune Performance Analyzer and identify any hotspots in OS components.
Using call graph analysis can help identify exact calls and call-tree chains that should
be rewritten to reduce the number of OS calls. Frequent OS calls can also cause
unintended context switches.

Example: Application with GUI update

VTune analyzer event-based sampling and call graph data showed very frequent OS
calls. An analysis of the call graph data and source inspection indicated the issue was
a direct result of frequent screen updates. The application requested a status bar
update in the GUI after performing only a small number of operations. This affected
the threading performance, as the threads were blocked until the screen update was
completed. Modifications were made to the code to update the screen less often. As a
result, DP scaling was increased by 3%.

Multithreading Consistency Guide 121

References

In this manual, see also:

Intel® Software Development Products, 2: VTune™ Performance Analyzer,
Intel® Thread Profiler

Intel® Software Development Products, 2.5: Using Thread Profiler to Evaluate
OpenMP Performance

See also:

Hyper Threading Implications and Setup on Microsoft Operating Systems, by
Robert Godley, available from Intel® Developer Services:
http://www.Intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/20478.htm

Using Intel® Thread Profiler for Win32* Threads: Philosophy and Theory by Clay
P. Breshears, available from Intel® Developer Services:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84200.htm

Using Intel® Thread Profiler for Win32* Threads: Nuts and Bolts by Clay P.
Breshears, available from Intel® Developer Services:

http://www.intel.com/cd/ids/developer/asmo-
na/eng/technologies/threading/hyperthreading/84766.htm

122 Multithreading Consistency Guide

6.6 Potential Windows* XP Scheduler Issue on
Processors with Hyper-Threading Technology

Keywords

Processor scheduling, Hyper-Threading Technology Dual Processor systems,
multithreaded application

Abstract

This section discusses potential performance issues on processors with Hyper-Threading
Technology that are caused by the Windows XP process scheduler. A process to identify
the issue is given, and a possible remedy is presented.

Background

When Hyper-Threading Technology is enabled, the Windows OS process scheduler
cannot guarantee that threads are scheduled on a free physical processor, since the
scheduling is done on logical-processor basis. Conceivably, even though the scheduler
schedules a new thread on a different logical processor, it might result in the thread being
scheduled on the same physical processor that is already running another thread from the
application. Windows currently has no weighting system for logical processors versus
physical processors. One possible remedy is to use the processor-affinity functions to
“pin” threads to specific processors manually.

Advice

• Use Perfmon to identify resource-contention issues: Some applications demonstrate
good scaling on UP-HT and DP systems, but poor scaling with DP-HT systems. One
of the reasons for the degradation on DP-HT systems may be due to Windows XP
scheduling. On a DP-HT system, the operating system will see four (logical)
processors available for use. If the application is running multiple threads, the OS will
assign them to any available logical processor, without giving preference to “free”
physical processors. Assigning threads on two logical processors that are on the same
physical processor can cause resource-contention issues, and hence performance
degradation may be seen on DP-HT.

Such issues can be identified by running Perfmon with the application and workload.
The %Processor time counter can provide the necessary information to identify the
issue.

Example: Threaded application with two main threads and two support threads

This application demonstrated good UP-HT (1.14x) and DP (1.33x) scaling but
degraded with DP-HT system (0.90x). Perfmon data (Figure 6.6.1) shows that the
majority of the work is done on one physical CPU (CPU 0), and the other physical
processor (CPU 1) is not fully utilized (performing only background tasks).

Multithreading Consistency Guide 123

Figure 6.6.1: Perfmon output from DP-HT run of an application with four threads.
Two of the threads perform a majority of the computations, while the other two do

periodic update work. This figure shows the threads doing the bulk of the work
assigned to a single physical processor (but different logical processors).

One possible remedy is to use processor affinity in order to better distribute the
computations to processors. The processor affinity can be set within the application.
The SetProcessAffinityMask function sets a processor affinity mask for the threads of
the specified process. A process affinity mask is a bit vector in which each bit
represents the processor on which all threads of the process are allowed to run.
Additionally, SetThreadAffinityMask provides the means to specify for each thread a
specific processor mapping. Note that the thread-affinity mask must be a proper
subset of the process-affinity mask for the containing process of a thread. A thread is
only allowed to run on the processors on which its process is allowed to run.

Setting processor affinity of threads restricts the process scheduler and in some
instances might lead to a negative performance impact. For that reason, the
performance of the application must be reassessed after explicit processor affinity is
implemented. For details on setting process and thread affinity mask, see the
Microsoft Developer Network (MSDN) article referenced below.

Another possible remedy that should be considered is to use SetThreadIdealProcessor
function in Windows, which does guide the OS-scheduler without demanding a
certain affinity. The SetThreadIdealProcessor function sets a preferred processor for a

124 Multithreading Consistency Guide

thread. The system schedules threads on their preferred processors whenever possible.
The performance of the application should be reassessed after implementing this
function. For details on using this function, see the Microsoft Developer Network
(MSDN) article referenced below.

References

See also:

 Microsoft Developer Network (MSDN): SetProcessAffinityMask
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/setprocessaffinitymask.asp

Microsoft Developer Network (MSDN): SetThreadIdealProcessor
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/setthreadidealprocessor.asp

Microsoft Developer Network (MSDN): SetThreadAffinityMask
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/setthreadaffinitymask.asp

Intel Developer Services:

Counting Physical and Logical Processors in 32-bit Multi-Core Systems
http://www.intel.com/cd/ids/developer/asmo-na/eng/200678.htm

Multithreading Consistency Guide 125

ter contained or described in this document. No lic
Limited License Grant. Intel hereby grants you a limited copyright license to copy this document for your use and internal distribution only. You may not distribute this document externally, in whole or in part, to any other person or entity.
LIMITED LIABILITY. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO YOU OR TO ANY OTHER THI
Intel, the Intel logo, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2004 Intel Corporation
 The information contained in this document is provided for informationalx

as the property of others.

 Copyright © 2005 Intel Corporation

