Embedded Real Time Systems
A Specification and Design Methodology by Jean Paul Calvez

Request a free copy of any of the books below by filling out the Intel® CoFluent™: Inquiry form.

Embedded Real Time Systems
A Specification and Design Methodology
by Jean Paul Calvez
English - 647 pages
View the table of contents >

Spécification et Conceptions des Systèmes
Une Méthodologie
by Jean Paul Calvez
French - 630 pages

Spécification et Conceptions des Systèmes
Des Etudes de Cas
by Jean Paul Calvez
French - 276 pages
CONTENTS

PREFACE

xxiii

Part 1 : METHODOLOGY OVERVIEW

Ch 1 - INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 OBJECTIVES FOR A DEVELOPMENT</td>
<td>4</td>
</tr>
<tr>
<td>1.2 DIFFICULTIES OF THE DESIGNER’S WORK</td>
<td>4</td>
</tr>
<tr>
<td>1.3 ADVANTAGES OF A METHODOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>1.4 GENESIS OF THE MCSE METHODOLOGY</td>
<td>7</td>
</tr>
<tr>
<td>1.5 OBJECTIVE OF THIS BOOK</td>
<td>9</td>
</tr>
</tbody>
</table>

Ch 2 - SYSTEMS CHARACTERISTICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 EVOLUTION OF IMPLEMENTATION TECHNIQUES AND METHODS</td>
<td>13</td>
</tr>
<tr>
<td>2.2 THE INDUSTRIAL DATA PROCESSING FIELD</td>
<td>14</td>
</tr>
<tr>
<td>2.3 EMBEDDED SYSTEMS</td>
<td>16</td>
</tr>
<tr>
<td>2.4 REAL-TIME SYSTEMS</td>
<td>16</td>
</tr>
<tr>
<td>2.5 SYSTEM QUALITIES</td>
<td>18</td>
</tr>
<tr>
<td>2.6 SYSTEM CATEGORIES</td>
<td>18</td>
</tr>
</tbody>
</table>

Ch 3 - SYSTEM DEVELOPMENT LIFE CYCLE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 DEVELOPMENT CONTEXT</td>
<td>22</td>
</tr>
<tr>
<td>3.2 DEVELOPMENT PHASES</td>
<td>24</td>
</tr>
<tr>
<td>3.3 LIFE CYCLE MODELS</td>
<td>26</td>
</tr>
</tbody>
</table>
3.3.1 The "Waterfall" model 26
3.3.2 The V cycle 27
3.3.3 The "Spiral" model 28
3.3.4 The "Contractual" model 29
3.4 A FEW OBSERVATIONS 29
3.4.1 Phase overlapping 29
3.4.2 Cost of error correction 31
3.4.3 Productivity factors 32
3.4.4 Effort distribution 33
3.5 DEVELOPMENT OF AN ELECTRONIC SYSTEM 34
3.6 SCOPE OF MCSE 36

Ch 4 - METHODOLOGY BASIS 39
4.1 TERMINOLOGY 39
4.1.1 Problem: definition, solution 39
4.1.2 Model and modeling 40
4.1.3 Method and methodology 40
4.2 DESIGN WORK CHARACTERIZATION 40
4.2.1 Design: a human activity 40
4.2.2 The design process 42
4.2.3 Refinement and abstraction 43
4.3 MAIN FEATURES OF A METHODOLOGY 44
4.3.1 Description model 44
4.3.2 Method and technique for each step 45
4.3.3 Solution models 45

Ch 5 - MCSE OVERVIEW 47
5.1 DEVELOPMENT OF THE METHODOLOGY 47
5.2 THE DESCRIPTION MODEL 49
5.2.1 The functional model 51
5.2.2 The behavioral model 52
5.2.3 The executive model 53
5.2.4 Advantage of this model 54
5.3 THE DEVELOPMENT PROCESS 55
5.3.1 The specification step 57
5.3.2 The functional design step 58
5.3.3 The implementation specification step 58
5.3.4 The implementation step 58
5.4 MCSE CHARACTERISTICS 59
Contents

7.5 JACKSON’S METHODOLOGY (JSD)
7.5.1 The models
7.5.2 The process
7.5.3 Comments
7.6 SREM
7.6.1 The model
7.6.2 The SREM method for specification
7.6.3 The SYSREM method for design
7.6.4 Comments
7.7 WARD AND MELLOR’S METHODOLOGY (SDRTS OR RTSA)
7.7.1 The model
7.7.2 The procedure
7.8 HATLEY AND PIRBHAI’S METHODOLOGY
7.8.1 The model
7.8.2 The process
7.9 LAVI AND HAREL’S METHODOLOGY
7.9.1 The ECS (Embedded Computer Systems) model
7.9.2 The process
7.9.3 Comments
7.10 DARTS (DESIGN APPROACH FOR REAL-TIME SYSTEMS)
7.10.1 The DARTS model
7.10.2 The process
7.11 OBJECT-ORIENTED DESIGN (OOD)
7.11.1 The object model
7.11.2 Design process
7.12 SYSTEM DESIGN WITH MACHINE CHARTS
7.12.1 The model
7.12.2 The method
7.12.3 Comments
7.13 NIJESEN AND SHUMATE’S METHODOLOGY
7.13.1 The models
7.13.2 The design process
7.13.3 Comments
7.14 CONCLUSION

Ch 8 - MODELS SURVEY
8.1 BASIS FOR MODEL ANALYSIS
8.1.1 Model qualities
8.1.2 Model classification
8.1.3 Analytic models
8.1.4 Conceptual models
8.2 OBJECTIVES OF MODELS FOR SYSTEMS
8.2.1 Modeling for specification
8.2.2 Modeling in design
8.3 MODELS SURVEY
 8.3.1 Activities model 156
 8.3.2 Data models 156
 8.3.3 Function models 158
 8.3.4 Behavior models 160
8.4 CONCLUSION: THE MCSE MODELS 164

REFERENCES PART 2 165

Part 3 : SYSTEM SPECIFICATION

Ch 9 - SYSTEM REQUIREMENTS 177
 9.1 THE CUSTOMER: THE SOURCE OF THE NEED 178
 9.2 THE DESIGNER: EXPERT IN THE IMPLEMENTATION FIELD 178
 9.3 THE REQUIREMENTS DEFINITION: EXPRESSION OF THE NEED 178
 9.4 CUSTOMER’S WISHES 179
 9.5 REQUIREMENTS DEFINITION PURPOSE AND IMPLICATION 179
 9.6 REQUIREMENTS CONTENTS AND GUIDE 181
 9.7 ANSWER TO A REQUIREMENTS DEFINITION 182
 9.8 PROBLEM EXAMPLES 183
 9.8.1 Centrifuge speed control system 183
 9.8.2 Automation with a wire-guided trolley 184
 9.9 SUMMARY 187

Ch 10 - SYSTEM SPECIFICATIONS 189
 10.1 SPECIFICATION ROLE 190
 10.1.1 Distance between customer and designers 190
 10.1.2 Diversity of customer partners 190
 10.1.3 Importance of verification 191
 10.1.4 A specification as a formal verifiable document 192
 10.2 NATURE OF THE SPECIFICATION 194
 10.3 SPECIFICATION CHARACTERISTICS 195
 10.4 SPECIFICATION CONTENT GUIDELINES 196
 10.5 SPECIFICATION WORK PROBLEMS 197
 10.6 COMPETENCE FOR SPECIFYING 198
 10.7 SUMMARY 199

Ch 11 - MODELING CONCEPTS 201
 11.1 WHAT MUST BE CHARACTERIZED? 202
 11.2 CHARACTERIZATION NATURE: MODELING 204
 11.3 ENTITY MODELING 204
 11.3.1 Nature of an entity 205
 11.3.2 Nature of characteristic elements 205
 11.3.3 Dependency between characteristic elements 206
 11.3.4 Nature of inputs and outputs 207
 11.4 THREE VIEWS FOR AN ENTITY DESCRIPTION 207
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>DATA/INFORMATION MODELING</td>
<td>209</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Two-level models</td>
<td>209</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Model for the data entity description</td>
<td>210</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Relation description model</td>
<td>213</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Data modeling technique</td>
<td>214</td>
</tr>
<tr>
<td>11.6</td>
<td>BEHAVIOR MODELING</td>
<td>215</td>
</tr>
<tr>
<td>11.6.1</td>
<td>The various discrete state models</td>
<td>215</td>
</tr>
<tr>
<td>11.6.2</td>
<td>State modeling technique</td>
<td>217</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Stimuli/response modeling technique</td>
<td>219</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Recommended rules for the finite state behavior model</td>
<td>220</td>
</tr>
<tr>
<td>11.7</td>
<td>ACTIVITY MODELING</td>
<td>222</td>
</tr>
<tr>
<td>11.8</td>
<td>MODELING GUIDE</td>
<td>226</td>
</tr>
<tr>
<td>11.9</td>
<td>SUMMARY</td>
<td>228</td>
</tr>
<tr>
<td>12.1</td>
<td>SPECIFICATION COMPONENTS</td>
<td>232</td>
</tr>
<tr>
<td>12.2</td>
<td>SPECIFICATION PROCESS DESCRIPTION</td>
<td>233</td>
</tr>
<tr>
<td>12.3</td>
<td>ENVIRONMENT ANALYSIS AND MODELING</td>
<td>235</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Modeling each entity</td>
<td>235</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Functional environment description</td>
<td>238</td>
</tr>
<tr>
<td>12.4</td>
<td>DELIMITATION OF SYSTEM INPUTS AND OUTPUTS</td>
<td>240</td>
</tr>
<tr>
<td>12.5</td>
<td>EXAMPLE 1: CENTRIFUGE SPEED CONTROL</td>
<td>240</td>
</tr>
<tr>
<td>12.6</td>
<td>FUNCTIONAL SPECIFICATIONS</td>
<td>242</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Nature of functional specifications</td>
<td>242</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Approaches for producing a functional specification</td>
<td>243</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Functional specification method</td>
<td>249</td>
</tr>
<tr>
<td>12.6.4</td>
<td>Examples</td>
<td>251</td>
</tr>
<tr>
<td>12.7</td>
<td>OPERATIONAL SPECIFICATIONS</td>
<td>252</td>
</tr>
<tr>
<td>12.8</td>
<td>TECHNOLOGICAL SPECIFICATIONS</td>
<td>253</td>
</tr>
<tr>
<td>12.9</td>
<td>INSTALLATION AND OPERATING PROCEDURES</td>
<td>256</td>
</tr>
<tr>
<td>12.10</td>
<td>EXAMPLE 2: WIRE-GUIDED TROLLEY AUTOMATION</td>
<td>257</td>
</tr>
<tr>
<td>12.10.1</td>
<td>Modeling the environment</td>
<td>257</td>
</tr>
<tr>
<td>12.10.2</td>
<td>System specifications</td>
<td>259</td>
</tr>
<tr>
<td>12.11</td>
<td>SPECIFICATION VERIFICATION AND VALIDATION</td>
<td>261</td>
</tr>
<tr>
<td>12.11.1</td>
<td>The participants</td>
<td>261</td>
</tr>
<tr>
<td>12.11.2</td>
<td>Scheduling work and reviews</td>
<td>262</td>
</tr>
<tr>
<td>12.12</td>
<td>SPECIFICATION CHARACTERISTICS</td>
<td>263</td>
</tr>
<tr>
<td>12.13</td>
<td>SUMMARY</td>
<td>264</td>
</tr>
<tr>
<td>13.1</td>
<td>FUNCTIONAL MODEL COMPONENTS</td>
<td>271</td>
</tr>
<tr>
<td>13.2</td>
<td>THE FUNCTIONAL STRUCTURE MODEL</td>
<td>273</td>
</tr>
</tbody>
</table>
13.2.1 Graphical representation 273
13.2.2 FS coherence and understandability 275
13.2.3 Interpretation of an FS 276
13.2.4 Refinement and abstraction of an FS 279
13.2.5 Maximum decomposition: elementary functions or actions 280
13.2.6 Behavior rules for an elementary function 281
13.2.7 Functional structure properties 284

13.3 ELEMENTARY FUNCTION SPECIFICATION 285
13.3.1 Specification objectives 285
13.3.2 Description language choice 286
13.3.3 The description model 287
13.3.4 Model interpretation 292

13.4 DATA SPECIFICATION 293
13.4.1 Data specification objectives 293
13.4.2 Description model 294
13.4.3 Data categories: structures 295
13.4.4 Data decomposition: minimization and standardization 297
13.4.5 Use of data 298

13.5 GLOBAL FUNCTIONAL MODEL PROPERTIES 299

13.6 SUMMARY 301

Ch 14 - DESIGN PRINCIPLES 303

14.1 SUBJECT-ORIENTED DESIGN 304
14.2 TECHNOLOGY INDEPENDENT DESIGN 305
14.2.1 Interface functions with the physical environment 306
14.2.2 Man-machine dialog functions 307
14.2.3 Geographic distribution 307
14.2.4 Maintenance, operating safety 309
14.2.5 Importance of specification categories 309

14.3 MINIMUM COMPLEXITY AND INDEPENDENCE 310
14.3.1 Orthogonality or function coherence 310
14.3.2 Reducing couplings 311

14.4 SOLUTION DEDUCTION PROCEDURE 311
14.4.1 Analysis rather than intuition 311
14.4.2 Data-oriented approach rather than function-oriented approach 312
14.4.3 Refinement rather than abstraction 313

14.5 VERTICAL OR HORIZONTAL DECOMPOSITION 314
14.6 SOLUTION TEMPLATE MODELS 315
14.7 SUMMARY 317

Ch 15 - THE FUNCTIONAL DESIGN PROCESS 319

15.1 OVERVIEW OF THE DESIGN PROCESS 320
15.2 INPUT AND OUTPUT DOCUMENTS FOR THE DESIGN STEP 322
15.2.1 Specification document 322
15.2.2 Design document 322
15.3 FUNCTIONAL INPUT AND OUTPUT DELIMITATION 323
 15.3.1 Process 323
 15.3.2 Example 1: Centrifuge speed control system 324
 15.3.3 Example 2: Automation with a wire-guided trolley 326
15.4 SEARCH FOR AN INITIAL FUNCTIONAL DECOMPOSITION 328
 15.4.1 Importance of the first functional decomposition 328
 15.4.2 Decomposition process 329
 15.4.3 Example 1: Centrifuge speed control system 331
 15.4.4 Example 2: Automation with a wire-guided trolley 332
15.5 FUNCTIONAL REFINEMENT 333
 15.5.1 Refinement stop criterion 334
 15.5.2 Refinement process 334
 15.5.3 Example 1: Centrifuge speed control system 334
 15.5.4 Example 2: Automation with a wire-guided trolley 335
15.6 BEHAVIOR OF ELEMENTARY FUNCTIONS 337
 15.6.1 Method of obtaining an algorithmic description 337
 15.6.2 Example 1: Centrifuge speed control system 339
 15.6.3 Example 2: Automation with a wire-guided trolley 341
15.7 DATA DESCRIPTION 343
 15.7.1 Data description method 343
 15.7.2 Illustration by an example 344
15.8 SOLUTION EVALUATION CRITERIA 347
 15.8.1 Coupling analysis 347
 15.8.2 Coherence analysis 347
 15.8.3 Complexity analysis 348
 15.8.4 Solution understandability 348
15.9 DOCUMENTATION 349
15.10 SUMMARY 349

Ch 16 - TEMPLATE MODELS FOR DESIGN 351
16.1 TEMPLATE MODEL ROLE AND BENEFIT 352
16.2 CONTROLLER/PROCESS MODEL 352
 16.2.1 Principle 352
 16.2.2 The model 353
 16.2.3 The method 354
 16.2.4 Example 354
16.3 SUPERVISION/CONTROL MODEL 356
 16.3.1 Principle 356
 16.3.2 The model 357
 16.3.3 The method 358
 16.3.4 Examples 358
18.4.1 Function --> Task correspondence 397
18.4.2 Translation of relations by variable sharing 397
18.4.3 Translation of synchronizations by event 398
18.4.4 Translation for message transfers 399
18.5 IMPLEMENTATION WITH OR WITHOUT A REAL-TIME EXECUTIVE 401
18.5.1 Implementation without real-time executive 402
18.5.2 Implementation with a real-time executive 403
18.5.3 Software implementation technique selection criteria 405
18.6 INTEGRATION MODEL CHARACTERISTICS 406
18.7 SUMMARY 407

Ch 19 - THE IMPLEMENTATION SPECIFICATION PROCESS 409
19.1 OBJECTIVES TO BE ACHIEVED 410
19.1.1 Hardware specifications 410
19.1.2 Timing constraints 411
19.1.3 Reducing development costs 411
19.1.4 Reducing the organizational part 412
19.1.5 Quality rules 413
19.1.6 Contradictory objectives 413
19.2 PRESENTATION OF THE IMPLEMENTATION PROCESS 414
19.3 INTRODUCING GEOGRAPHIC DISTRIBUTION CONSTRAINTS 415
19.4 INTRODUCING INTERFACES 418
19.4.1 Template model for introducing interfaces 418
19.4.2 Introducing physical interfaces 419
19.4.3 Introducing man-machine interfaces 421
19.4.4 Example 1: centrifuge speed control system 422
19.4.5 Example 2: automation with a wire-guided trolley 427
19.5 CONSTRAINTS FOR AN EXECUTIVE STRUCTURE 429
19.5.1 Evaluation of timing constraints 430
19.5.2 Techniques for deducing an executive structure 436
19.6 DETERMINATION OF THE EXECUTIVE STRUCTURE 437
19.6.1 Choice of the hardware/software distribution 437
19.6.2 Example 1: Centrifuge speed control system 438
19.6.3 Example 2: automation with a wire-guided trolley 439
19.7 SOFTWARE IMPLEMENTATION DIAGRAM FOR EACH PROCESSOR 441
19.7.1 Translating a temporal dependence between two actions 441
19.7.2 Example 1: Centrifuge speed control system 442
19.7.3 Example 2: a wire-guided trolley automation 444
19.7.4 Implementation of an action sequence 445
19.7.5 Implementation of a looped action sequence 445
19.7.6 Implementation of several action sequences 446
19.7.7 Port capacity 446
19.7.8 Using the services of a processor 447
19.7.9 Module implementation 448
19.8 IMPLEMENTATION OF DATA
 19.8.1 Data implementation criteria 449
 19.8.2 Implementation for structured data 451
 19.8.3 Implementation for collections and relations 451
19.9 HARDWARE IMPLEMENTATION SPECIFICATION 452
 19.9.1 Example 1: centrifuge speed control system 453
 19.9.2 Example 2: automation with a wire-guided trolley 453
 19.9.3 Coupling between processors 454
19.10 SOLUTION DOCUMENTATION AND CHARACTERISTICS 456
19.11 SUMMARY 457

REFERENCES PART 5 459

Part 6 : IMPLEMENTATION

Ch 20 - THE IMPLEMENTATION PROCESS 463
 20.1 IMPLEMENTATION OBJECTIVE 463
 20.1.1 Implementation step characterization 464
 20.1.2 Variety of implementation methods and tools 465
 20.1.3 Time involved in the implementation step 467
 20.2 IMPLEMENTATION STEPS 468
 20.3 SPECIFICATION VERIFICATION AND ACCEPTANCE 469
 20.4 HARDWARE IMPLEMENTATION 470
 20.4.1 Process 470
 20.4.2 The tools 471
 20.4.3 Rules to be respected 471
 20.5 SOFTWARE IMPLEMENTATION 472
 20.5.1 Process 472
 20.5.2 The tools 472
 20.5.3 Rules to be respected 473
 20.5.4 Error processing 474
 20.6 INTEGRATION AND TEST 475
 20.7 SOURCES OF ERRORS 476
 20.8 REFINEMENT DURING IMPLEMENTATION 477
 20.8.1 Hardware implementation refinement 477
 20.8.2 Software implementation refinement 478
 20.9 ADVANTAGE OF REUSE 479
 20.10 SUMMARY 479

Ch 21 - HARDWARE IMPLEMENTATION TECHNIQUES 481
 21.1 IMPLEMENTATION SEARCH METHOD 481
 21.2 IMPLEMENTATION TECHNIQUES 482
 21.2.1 Implementation with existing components 482
 21.2.2 Development of specific components 483
Part 7: PROJECT MANAGEMENT

Ch 23 - THE PROJECT MANAGEMENT PROCESS
- 23.1 PRESENTATION OF THE PROBLEM
 - 23.1.1 Modeling a development step
 - 23.1.2 Entropy types
 - 23.1.3 Causes of entropy
- 23.2 MANAGEMENT ORGANIZATION
- 23.3 PLANNING
 - 23.3.1 Objectives
 - 23.3.2 Principles
- 23.4 PLANNING TECHNIQUES
- 23.5 ORGANIZATION
- 23.6 STAFFING
- 23.7 PROJECT DIRECTING
- 23.8 CONTROL

Ch 24 - PROJECT PLANNING AND COST
- 24.1 EXECUTION CONSTRAINTS FOR EACH STEP
 - 24.1.1 Specification step
 - 24.1.2 Design step
 - 24.1.3 Implementation specification step
 - 24.1.4 Implementation step
- 24.2 TOTAL PROJECT DURATION
- 24.3 SCHEDULE OPTIMIZATION
- 24.4 METHOD OR NO METHOD
- 24.5 PROJECT COST ESTIMATE

Ch 25 - PROJECT VERIFICATION AND VALIDATION
- 25.1 TERMINOLOGY
- 25.2 OBJECTIVES
- 25.3 ERROR TYPES
- 25.4 NATURE OF VERIFICATIONS
- 25.5 DESIGN METHODS
 - 25.5.1 Design review technique
 - 25.5.2 Simulation/modeling as evaluation tool
- 25.6 IMPLEMENTATION PHASE METHODS
 - 25.6.1 Static analysis
 - 25.6.2 Dynamic analysis
 - 25.6.3 Test procedure
- 25.7 INTEGRATION TECHNIQUES
 - 25.7.1 Assembly by phase
 - 25.7.2 Incremental assembly
 - 25.7.3 Objective-oriented tests
 - 25.7.4 Comments on these procedures
- 25.8 TEST ENVIRONMENT
- 25.9 AUTOMATIC TESTS