

Open Pluggable Specification (OPS)

Electrical, Mechanical, and Thermal Specification

September 2012

Document Number: 324427-005

NOTICE

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Contents

1	Introd	uction	7				
	1.1	Purpose and Scope	7				
	1.2	Overview	7				
	1.3	Terminology	8				
	1.4	Reference Documents	9				
2	Electri	cal and Connector Specification	10				
	2.1	JAE Connector Features					
		2.1.1 Pin Assignment					
		2.1.2 Signal Description					
3	Mecha	nical Specification	21				
	3.1	Physical Dimension of the Pluggable Module					
	3.2	Location of the JAE Plug Connector					
	3.3	The Lock Holes on the Pluggable Module					
	3.4	Rating Labels					
	3.5	Dimensions of the Pluggable Module Slot on the Display Panel					
	3.6	Venting Area on the Display Panel for the Pluggable Module					
4							
4		al Specifications					
	4.1	Thermal Management for the Pluggable System					
	4.2	Thermal Consideration for Display Panel	30				
Figures							
i igai es							
	Figure	1. Functional Block Diagram	7				
	Figure	2. JAE TX24/TX25 Plug and Receptacle Connectors	10				
		3. JAE TX24/25 connector pin layout					
		4. Illustration of PWR_STATUS implementation example					
		5. Illustration of PS_ON# implementation example					
		6. Illustration of PB_DET implementation example					
		7. Dimensions of the Pluggable Module					
		8. Location of JAE TX25 Plug Connector					
		10. Keep-out-zones for the Rating Labels					
		11. Minimum dimension of the module slot on a reference display panel					
		Figure 12. Minimum dimension of the venting area on a reference display panel					
		nodule plugs in from bottom of the display panel)	26				
		13. Minimum dimension of the venting area on a reference display panel					
		nodule plugs in from right side of the display panel)					
		14. Wind Tunnel Test (No Pluggable Module Present in This Setup)					
	Figure	15. Wind Tunnel Dimension and Location of the Pluggable Module	30				

Tables

Table 1. Pin Assignment JAE TX24/25 (80 Pins)	
Table 2. Power and Ground Signals	
Table 3. DVI-D/TMDS† signals	
Table 4. Display Port Signals	
Table 5. Audio Signals	
Table 6. USB Signals	
Table 7. UART signals	
Table 8. Control signals	
Table 9. Reserved Pins	

Revision History

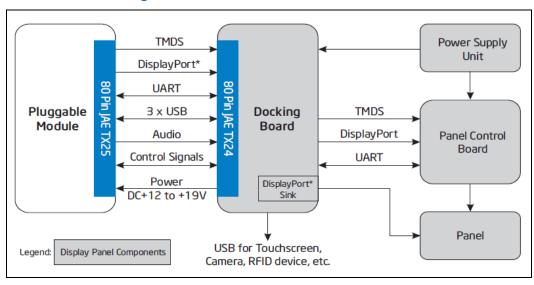
Document Number	Revision Number	Description	Revision Date
324427	001	Initial release.	October 2010
322427	002	Updated Figure 1.	April 2011
		Updated Table 1 pin assignment – removed HDMI term and replaced with DVI-D. Pin renamed to DVI_HPD, DVI_DDC_CLK, DVI_DDC_DATA, CEC.	
		Updated Signal description for Table 3 DVI-D signals and Table 8 CEC signal.	
		Updated airflow speed and ambient temperature requirements in the wind tunnel test.	
		Updated the location of the imaginary plane for airflow speed measurement in the wind tunnel test.	
322427	003	Refreshed image on Figure 1	June 2012
		Added additional reference documents	
		Updated Table 2 power rating requirement for OPS: 1. Removed recommended current rating of 500mA for each pin and updated DC IN current (A) spec to 8A max(1A per pin) 2. In-rush current of pluggable module shall not exceed 10A 3. Highlighted the requirement for manufacturers to provide power rating label on their respective(module and display panel) products	
		Included disclaimer notice for TMDS implementation	
		Updated Table 3 title to DVI-D/TMDS signals	
		Included recommendation for display panel firmware detection for all TMDS based display interface type expected from the pluggable module	
		Updated Table 3 and Table 4 HPD pins to be active high	
		Included digital audio as the default audio if any of the digital display interface is being used	
		Updated Table 7 for COM1 as default UART port for the pluggable module	
		Updated Table 8 PS_ON# for pulse width timing within 200ms	
322427	004	Added title to Notice section	June 2012

322427 005	Added Section 3.5, Dimensions of the Pluggable Module Slot on the Display Panel Added Section 3.6, Venting Area on the Display Panel for the Pluggable Module Added Section 4.2, Thermal Consideration for Display Panel	September 2012
------------	--	-------------------

1 Introduction

1.1 Purpose and Scope

The purpose of this document is to describe the electrical, mechanical and thermal specifications of the digital signage Open Pluggable Specification (OPS) which enables a standard and easier integration of a digital signage computing system or a pluggable module into the display panel. The scope covers the detailed electrical and connector specifications defined for the interoperability of the OPS, as well as the mechanical and thermal specifications that need to be adhered to when designing the physical system and its thermal solution.


Note: Throughout this document the digital signage computing system will be referred to as the 'Pluggable Module'.

Throughout this document the 80pin JAE TX24/TX25 blind mate connector will be referred to as the 'JAE connector'.

Dimensions shown in all figures are in unit mm.

1.2 Overview

Figure 1. Functional Block Diagram

The OPS involves the integration concept of a Pluggable Module into the display panel thru a single and standard interfacing based on the 80 pin JAE plug and receptacle connectors. The power supply to the Pluggable Module together with the defined feature interfaces are being routed through this set of connectors to provide a functional system level computing solution for digital signage.

The Pluggable Module consists of a computing board (e.g., EPIC size board or smaller) in a wrapper chassis. The JAE connector enables plug and unplug mechanism between the Pluggable Module and the docking board inside the display panel.

1.3 Terminology

Term	Description		
AC/DC	Alternating Current/Direct Current		
AMT	Intel® Active Management Technology		
CEC	Consumer Electronics Control, for Proof of Play/Display and panel detection		
DDR	Double Data Rate – referring to random access memory(RAM)		
DIMM	Dual In-line Memory Module		
DP	DisplayPort		
DVI-D	Digital Video Interface - Digital		
EPIC	Embedded Platform for Industrial Computing (165mm x 115mm)		
FAR	Free Area Ratio		
GbE	Gigabit Ethernet		
GPIO	General Purpose Input Output		
LAN	Local Area Network		
LV	Low Voltage		
OPS	Open Pluggable Specification		
PCIe	PCI Express		
PoP	Proof of Play		
RFID	Radio Frequency Identification technology		
RJ45	Ethernet cable connector		
SATA	Serial ATA		
SSD	Solid State Drive		
TMDS	Transition Minimized Differential Signaling		
UART	Universal Asynchronous Receiver/Transmitter		
USB	Universal Serial Bus		
WiFi	Wireless IEEE 802.11 technology		

1.4 Reference Documents

Document	Document No./Location
JAE TX24/TX25 connector product brief	http://jae-connectors.com/en/pdf/2008-40- TX24TX25.pdf
JAE plug connector details and drawing	http://jae- connectors.com/en/product_en.cfm?l_code=EN andseries_code=TX24/TX25andproduct_numbe r=TX25-80P-LT-H1E
JAE receptacle connector details and drawing	http://jae- connectors.com/en/product_en.cfm?l_code=EN andseries_code=TX24/TX25andproduct_numbe r=TX24-80R-LT-H1E
Whitepaper: Designing Intel® vPRO™ Technology Capable OPS Display Panels	http://download.intel.com/design/intarch/paper s/327052.pdf?iid=6077
Thermal & Mechanical Design Guide: Digital Signage Open Pluggable Specification (OPS)	http://edc.intel.com/Link.aspx?id=3892
Design Guide: Pluggable Board & Docking Board Interconnect for Digital Signage Open Pluggable Specification (OPS)	http://edc.intel.com/Link.aspx?id=3974
Video: Introduction to the Intel® Open Pluggable Specification	http://edc.intel.com/Video- Player.aspx?id=6045

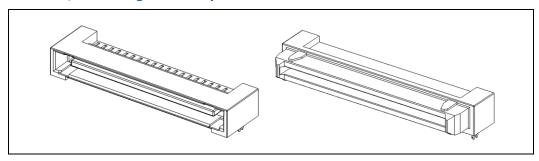
2 Electrical and Connector Specification

2.1 JAE Connector Features

The connector used for the Pluggable Module and the docking board interconnect is based on the JAE TX24/TX25 family of plug and receptacle connectors. The JAE connector pins are capable of supporting up to a maximum current of 1A. For details refer to the JAE connector datasheet or contact a JAE representative. The 80-pin right angle blind mate plug connector (p/n: TX25-80P-LT-H1E) and its receptacle (p/n: TX24-80R-LT-H1E) provide interfacing for the following features:

Power: DC IN +12V~+19V @ 8A max

Display Interface: DVI-D/TMDS[†] and DisplayPort


Audio: Left and Right Channel

USB: 3*USB 2.0 (when USB3.0 is not used) or 2*USB 2.0 and 1*USB 3.0

UART: Serial communication (Tx and Rx only)

Control Signals: Pluggable Module Power Status, Power ON via display panel, Pluggable Board Detect, Consumer Electronics Control (CEC), and System Fan Control.

Figure 2. JAE TX24/TX25 Plug and Receptacle Connectors

Note: Left: Plug connector (p/n: TX25-80P-LT-H1E), Right: Receptacle connector (p/n: TX24-80R-LT-H1E). Connector series image, reference only.

†User assumes full risk for using this specification including use of any interface implementation other than the interface specified in this document. Refer also to the Notice section.

2.1.1 Pin Assignment

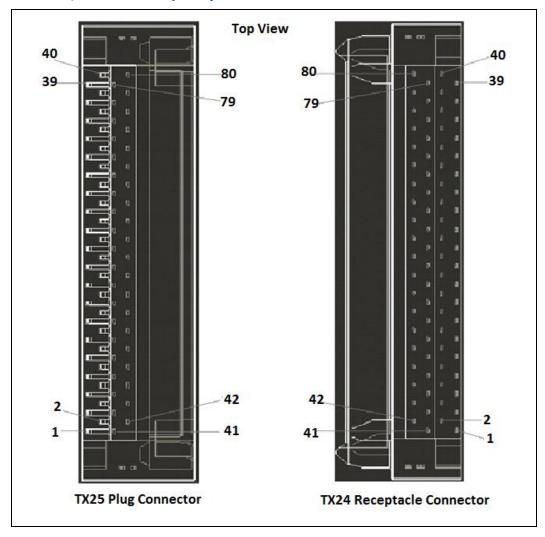
The JAE connector pin definition and assignment with regards to the features are listed in Table 1. The pin mapping indicated was based on the placement on the connector from top view as indicated in Figure 3.

Table 1. Pin Assignment JAE TX24/25 (80 Pins)

Pin No.	Signal	Description	I/O
40	+12V~+19V	Power	-
39	+12V~+19V	Power	-
38	+12V~+19V	Power	-
37	+12V~+19V	Power	-
36	+12V~+19V	Power	-
35	+12V~+19V	Power	-
34	+12V~+19V	Power	-
33	+12V~+19V	Power	-
32	GND	Ground	-
31	DVI_HPD	DVI-D	IN
30	DVI_DDC_CLK	DVI-D	I/O
29	DVI_DDC_DATA	DVI-D	I/O
28	GND	Ground	-
27	TMDS2+	DVI-D	OUT
26	TMDS2-	DVI-D	OUT
25	GND	Ground	-
24	TMDS1+	DVI-D	OUT
23	TMDS1-	DVI-D	OUT
22	GND	Ground	-
21	TMDS0+	DVI-D	OUT
20	TMDS0-	DVI-D	OUT
19	GND	Ground	-

1			
Pin No.	Signal	Description	1/0
80	GND	Ground	-
79	GND	Ground	-
78	GND	Ground	-
77	GND	Ground	-
76	GND	Ground	-
75	GND	Ground	-
74	PWR_STATUS	PowerGood	OUT (OC)
73	PS_ON#	Pluggable Signal ON	IN
72	PB_DET	Pluggable Board Detect	OUT
71	CEC	Consumer Electronic Control	I/O
70	AZ_LINEOUT_R	Audio-Rch	OUT
69	AZ_LINEOUT_L	Audio-Lch	OUT
68	GND	Ground	-
67	USB_PP0	USB	I/O
66	USB_PN0	USB	I/O
65	GND	Ground	-
64	USB_PP1	USB	I/O
63	USB_PN1	USB	1/0
62	GND	Ground	-
61	USB_PP2	USB	I/O
60	USB_PN2	USB	I/O
59	GND	Ground	-

Electrical and Connector Specification


Pin No.	Signal	Description	I/O
18	TMDS_CLK+	DVI-D	OUT
17	TMDS_CLK-	DVI-D	OUT
16	GND	Ground	-
15	DDP_HPD	DisplayPort	IN
14	DDP_AUXP	DisplayPort	I/O
13	DDP_AUXN	DisplayPort	I/O
12	GND	Ground	-
11	DDP_0P	DisplayPort	OUT
10	DDP_0N	DisplayPort	OUT
9	GND	Ground	-
8	DDP_1P	DisplayPort	OUT
7	DDP_1N	DisplayPort	OUT
6	GND	Ground	-
5	DDP_2P	DisplayPort	OUT
4	DDP_2N	DisplayPort	OUT
3	GND	Ground	-
2	DDP_3P	DisplayPort	OUT
1	DDP_3N	DisplayPort	OUT

Pin No.	Signal	Description	1/0
58	StdA_SSTX+	USB3.0	OUT
57	StdA_SSTX-	USB3.0	OUT
56	GND	GND	-
55	StdA_SSRX+	USB3.0	IN
54	StdA_SSRX-	USB3.0	IN
53	GND	Ground	-
52	UART_TXD	UART 3.3V	OUT
51	UART RXD	UART 3.3V	IN
50	SYS_FAN	System Fan Control	OUT
49	RSVD	Reserved pins	-
48	RSVD	Reserved pins	-
47	RSVD	Reserved pins	-
46	RSVD	Reserved pins	_
45	RSVD	Reserved pins	_
44	RSVD	Reserved pins	_
43	RSVD	Reserved pins	_
42	RSVD	Reserved pins	_
41	RSVD	Reserved pins	
41	טאט	neserveu piris	

Note 1: The I/O column definition is in reference to the pluggable board Note 2: OC= Open Collector

Figure 3. JAE TX24/25 connector pin layout

2.1.2 Signal Description

This section provides a detailed description of each signal passing through the JAE connector. The signals are arranged in functional groups according to their associated interface.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at the high voltage level.

The following notations are used to describe the signal type with regards to the pluggable board:

- I Input Pin
- O Output Pin
- **OC** Open Collector Output Pin.

The "Type" for each signal is indicative of the functional operating mode of the signal.

2.1.2.1 Power and Ground

Table 2. Power and Ground Signals

Pin No.	Name	Туре	Description
33, 34, 35, 36, 37, 38, 39, 40	+12V~+19V		The Pluggable Module supports a voltage range of +12V~+19V DC IN (mandatory). The maximum total current rating shall not exceed 8A (1A per pin). The in-rush current of the pluggable module shall not exceed 10A to ensure successful power up operation.
		-	It is mandatory for the Pluggable Module(OPS) manufacturers to provide a Power Rating label on the Pluggable Module and/or product brief/catalog which indicates the power consumption of the module (e.g. 40W). Display manufacturers must indicate the power supply spec for OPS on the product brief/catalogue (e.g. 16V/4A)
3, 6, 9, 12, 16, 19, 22, 25, 28, 32, 53, 56, 59, 62, 65, 68, 75, 76, 77, 78, 79, 80	GND	-	Ground

2.1.2.2 Display Interface

Table 3. DVI-D/TMDS† signals

Pin No.	Name	Туре	Description
31	DVI_HPD	I	DVI Hot Plug Detect. Active High
30	DVI_DDC_CLK	I/O	Display Data Channel Signals DVI Control Data and Clock. These are single ended control signals used for communications between the chipset DVI display port and a panel device (Sink).
29	DVI_DDC_DATA		, , , , , , , , , , , , , , , , , , , ,
27	TMDS2+		TMDS Data Channel
26	TMDS2-		
24	TMDS1+	О	
23	TMDS1-		
21	TMDS0+		
20	TMDS0-		
18	TMDS_CLK+	0	TMDS Clock Channel
17	TMDS_CLK-	J	

Note: Recommended for display panel firmware to include detection of all TMDS based type of display interfaces to avoid interoperability related issues.

Table 4. Display Port Signals

Pin No.	Name	Туре	Description
15	DDP_HPD	I	Display Port Hot Plug Detect. Active High
14	DDP_AUXP	I/O	Display Port Auxiliary Channel
13	DDP_AUXN		
11	DDP_0P		Display Port Data Channel
10	DDP_0N	0	
8	DDP_1P		
7	DDP_1N		
5	DDP_2P		
4	DDP_2N		
2	DDP_3P		
1	DDP_3N		

†User assumes full risk for using this specification including use of any interface implementation other than the interface specified in this document. Refer also to the Notice section.

2.1.2.3 Audio

Table 5. Audio Signals

Pin No.	Name	Туре	Description
70	AZ_LINEOUT_R	0	Audio Right Channel
69	AZ_LINEOUT_L	0	Audio Left Channel

Note: These audio signals will be used when DVI-D is implemented/ used. By default, if any of the digital display interface type is being used for example, DisplayPort then the audio source shall be from the digital audio within the DP channel.

2.1.2.4 USB Interface

Table 6. USB Signals

Pin No.	Name	Туре	Description
67	USB_PP0		USB2.0 Differential Pair
66	USB_PN0		
64	USB_PP1	I/O	
63	USB_PN1		
61	USB_PP2		
60	USB_PN2		
58	StdA_SSTX+	0	USB3.0 SuperSpeed Transmitter Differential Pair
57	StdA_SSTX-		
55	StdA_SSRX+	т	USB3.0 SuperSpeed Receiver Differential Pair
54	StdA_SSRX-	I	

2.1.2.5 UART Interface

Table 7. UART signals

Pin No.	Name	Туре	Description
52	UART_TXD	0	Transmitted UART data from pluggable board, UART 3.3V LVTTL signal. Assign as COM 1 for the UART Port in the pluggable module
51	UART_RXD	I	Received UART data for pluggable board, UART 3.3V LVTTL signal. Assign as COM 1 for the UART Port in the pluggable module

2.1.2.6 OPS Control Interface

Table 8. Control signals

Pin No.	Name	Туре	Description
74	PWR_STATUS	ос	Power status indication signal or Power Good status of the pluggable board. This pin shall be Open Collector and pull up to +3.3V on the docking/control board side. High: Pluggable board power off state Low: Pluggable board power on state See Figure 4 for illustration example.
73	PS_ON#	I	Pluggable Signal ON: This is meant for signal initiation to power ON or boot up the Pluggable Module. PS_ON# shall be asserted at least 500ms after power is delivered from PSU to the board via the JAE connector (G3 to S5 state). Pull up to +3.3V on the pluggable board.
			A pulse width present on the PS_ON# shall be detected and responded within 200ms to ensure successful operation.
			Use case: Power Button initiation from the panel control board to the Pluggable board via for e.g., IR remote control ON. The PWRBTN# pin on the Intel ICH/PCH can be utilized for this purpose. PWRBTN# has a 16 ms of internal debounce logic. External debouncing circuit is not required. Refer to the respective platform design guide and chipset datasheet.
			+If the pluggable board present state is S5, the transitions start as soon as the PWRBTN# is pressed (but after the debounce logic), and does not depend on when the Power Button is released. +If pluggable board present state is S0-S4 and if PWRBTN# held low for at least four consecutive seconds, this will initiate unconditional transition to S5 state. **This timing spec applies only for Intel ICHx series and 5 series chipset. For other platforms, refer to the respective component Power Button spec. Refer to Figure 5 for illustration example.

Pin No.	Name	Туре	Description
72	PB_DET	0	Pluggable board detection. Output signal, recommend grounded on the pluggable board side with pull up to +3.3V on the docking/control board side High: No Pluggable Low: Pluggable board Present Refer to Figure 6 for illustration example.
71	CEC	I/O	Consumer Electronics Control for Proof of Play/Display initiative. Can also be used for display panel status detection and other control functions. The display panel control CPU shall support this functionality.
50	SYS_FAN	0	System Fan: This signal shall be used to control the display panel system fan. Recommended pull up +3.3V on docking board side and routed to the system fan control. High: System Fan OFF Low: System Fan ON *1 Note *1: This signal shall be triggered ON by the thermal management system (EC) in the pluggable module only when needed. Use case: In situation where display panel is in standby mode and the Pluggable Module is still operating (e.g., remote maintenance etc), system fan solution may still be needed and since display panel is in standby mode there is no way to control the system fan. This pin therefore serves as an option to trigger the system fan to operate when necessary.

2.1.2.7 Reserved

Table 9. Reserved Pins

Pin No.	Name	Туре	Description
41, 42, 43, 44, 45, 46, 47, 48, 49	RSVD	-	These pins are RESERVED for future expansion and shall be left as No Connect(NC)

Figure 4. Illustration of PWR_STATUS implementation example

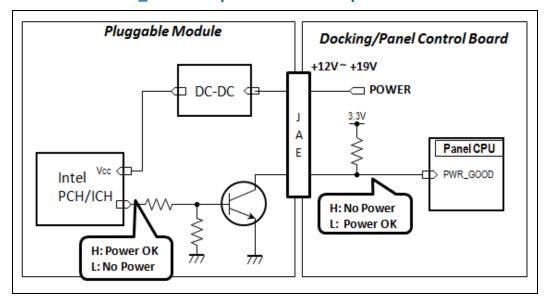


Figure 5. Illustration of PS_ON# implementation example

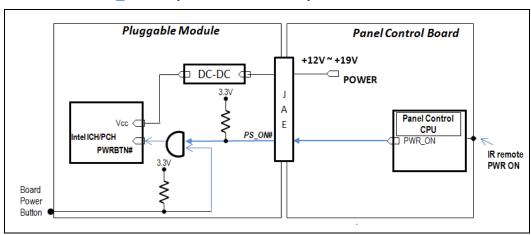
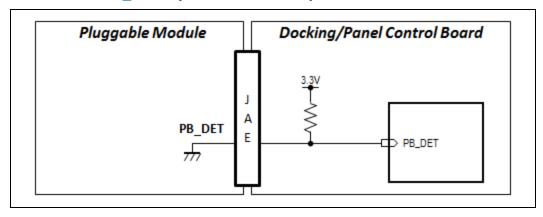
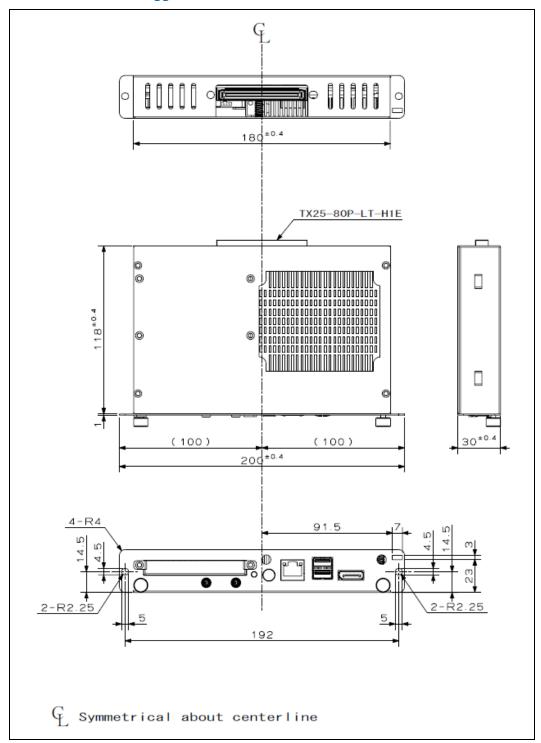



Figure 6. Illustration of PB_DET implementation example


3 Mechanical Specification

3.1 Physical Dimension of the Pluggable Module

Figure 7 shows the dimensions of the Pluggable Module. The overall dimension of the module including the mounting frame is 200 mm x 119 mm x 30 mm. Figure 7 also shows the dimension and location of the front panel screw holes as well as the security lock. For the precise location of the JAE plug connector (TX25-80P-LT-H1E), refer to Figure 8.

Figure 7. Dimensions of the Pluggable Module

3.2 Location of the JAE Plug Connector

Figure 8 shows the detailed location of the JAE TX25 plug connector. Pin 1 of the connector is located at 114.8 mm from the edge of the module, and 106.9 mm from the inner side of the front panel. For mating tolerance of TX25 plug connector and TX24 receptacle connector, refer to the JAE specification.

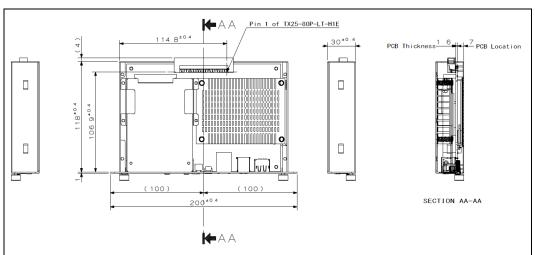


Figure 8. Location of JAE TX25 Plug Connector

3.3 The Lock Holes on the Pluggable Module

There are two lock holes on each side of the Pluggable Module. These holes, mated with the matching lock pins from the guiding rail on the display system, provide locking effect to the module during docking/undocking process. Figure 9 shows the dimension and the location of these locks holes on the Pluggable Module. Guiding rail implementation has to adhere to the location of the lock holes, as well as the thickness and depth of the Pluggable Module.

Lock holes(x4) Top View

SEE DETAIL B

SEE DETAIL A

DETAIL A

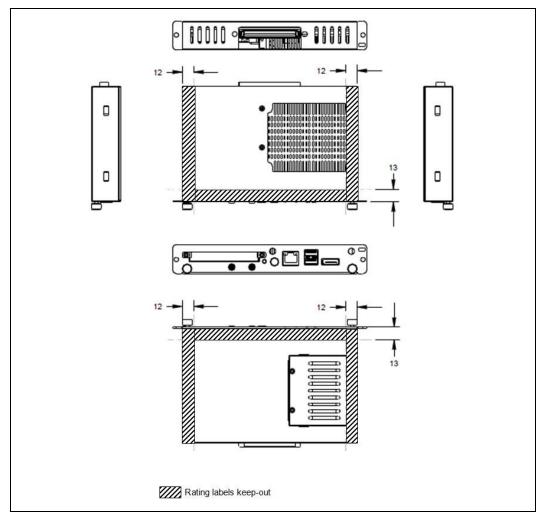
SCALE 2:1

Lock holes (x4)

Side View

DETAIL B

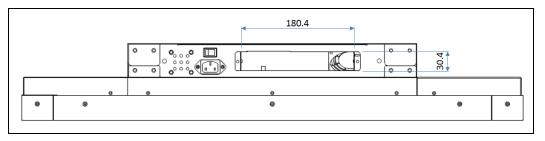
SCALE 2:1


Figure 9. Location of Lock Hole on the Pluggable Module

3.4 Rating Labels

Rating labels **should not** be placed on keep-out-zones on the Pluggable Module due to potential interference with the guiding mechanism that guides the module box during the mating/un-mating process. The dimensions of these keep-out-zones are shown in Figure 10. Also, the rating labels **should not** be placed on the ventilation holes on the heat sink and the DIMM service windows as that would prevent air intake to the components.

Figure 10. Keep-out-zones for the Rating Labels



3.5 Dimensions of the Pluggable Module Slot on the Display Panel

Figure 11 shows the location of the module slot on a reference display panel. Here, the module plugs in from the bottom of the display panel. However, it can either be plugged in from the bottom, or from the side of the display panel. It is imperative that the module slot must be big enough to accommodate the Pluggable Module so that it plugs in smoothly. Therefore, the slot should be at the maximum manufacturing tolerance of the module as indicated in Figure 7.

Figure 11. Minimum dimension of the module slot on a reference display panel

3.6 Venting Area on the Display Panel for the Pluggable Module

Vent holes must be opened at the location of the Pluggable Module so that air can enter the heat sink on top of the module. It is required that the venting area should at least cover the Pluggable Module so that the entire top surface is exposed to ambient air. Figure 12 shows the minimum venting area for the Pluggable Module in a reference display panel. Please note that Figure 12 is only an illustration for the venting area for modules that plug in from the bottom the display panel. For modules that plug in from the side, the orientation of the venting area should follow accordingly as shown in Figure 13.

Figure 12. Minimum dimension of the venting area on a reference display panel (module plugs in from bottom of the display panel)

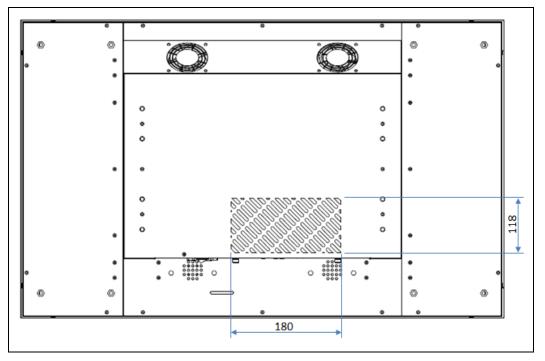
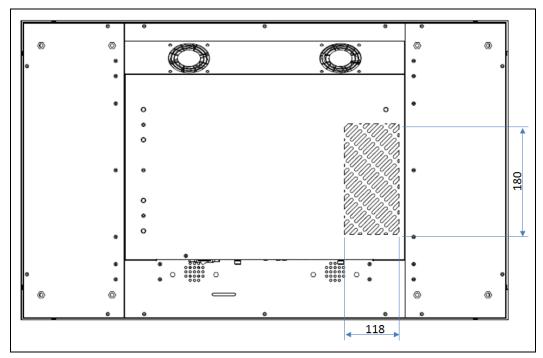
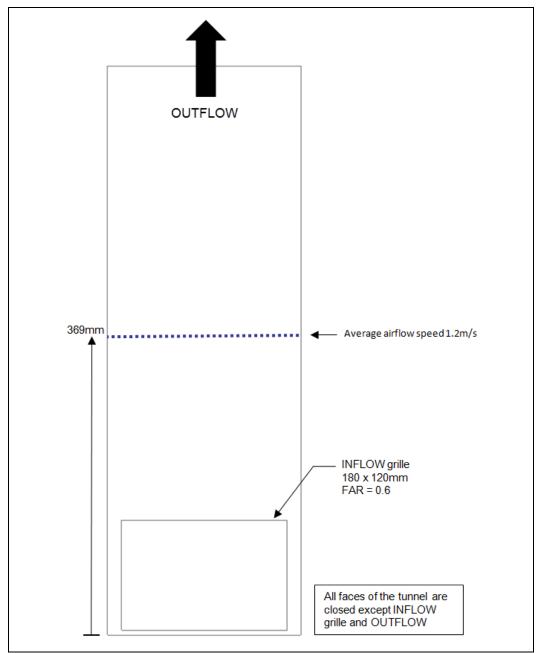



Figure 13. Minimum dimension of the venting area on a reference display panel (module plugs in from right side of the display panel)

4 Thermal Specifications


4.1 Thermal Management for the Pluggable System

The thermal management of the Pluggable Module must be handled carefully in order to ensure all components comply with the thermal specifications. This section illustrates a simple wind tunnel test to quantify the airflow needed for module cooling. Figure 14 shows the top view of an empty wind tunnel (the module should not present in this test). There is an opening at the top where air from the surrounding enters the wind tunnel. The Free Area Ratio (FAR) for the opening is set to 0.6 for reference. It is imperative that all other surfaces be sealed off so that air enters the wind tunnel only from the top opening. Figure 14 also shows an imaginary plane located approximately at the mid-section of the wind tunnel. It is required that the average airflow speed through this plane is **1.2m/s** in order to ensure sufficient airflow is provided to the module for forced convection cooling.

Figure 15 shows the wind tunnel dimension and the location of the module. The module can be tested in an environment temperature **not higher than 45°C** in order to ensure all components pass the thermal requirement. It is the responsibility of module designer to ensure all components comply with the thermal specification.

Figure 14. Wind Tunnel Test (No Pluggable Module Present in This Setup)

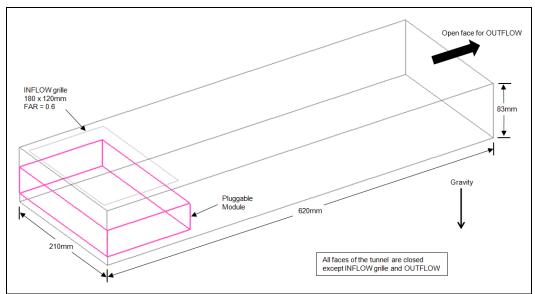


Figure 15. Wind Tunnel Dimension and Location of the Pluggable Module

4.2 Thermal Consideration for Display Panel

The display panel should be designed in such a way that there is sufficient airflow provided to the Pluggable Module within the panel in the desired operating environment. The operating temperature and airflow being provided to the Pluggable Module are keys to good thermal design. While there are vast varieties of possible display panel design, it is hard to achieve a point solution that satisfies the Pluggable Module and display panel thermal requirements. However, the display panel design must ensure the thermally critical components in the Pluggable Module are meeting their thermal requirements.

In order to ensure the display panel is thermally friendly to the Pluggable Module, a dummy module is available for thermal test. Please contact an Intel representative for further details.