

- IPMI -

Intelligent Platform Management
Interface Specification

Second Generation

v2.0

Document Revision 1.1
October 1, 2013

April 21, 2015 E7 Markup

Intel Hewlett-Packard NEC Dell

Intelligent Platform Management Interface Specification

2

Revision History

Date Ver Rev Modifications

9/16/98 1.0 1.0 IPMI v1.0 Initial release

8/26/99 1.0 1.1 Errata Revision. Incorporated errata from revision 1 or the Errata and
Clarifications for the IPMI v1.0 specification.

2/21/01 1.5 1.0 IPMI v1.5 Initial release

2/20/02 1.5 1.1 Updated to include addenda and errata

9/12/03 1.5 1.1 Markup to include 9/12/03 addenda and errata

9/26/03 1.5 1.1 Markup updated to include missing optional 5th byte on Get Chassis Status

command, per errata E317

1/27/04 1.5 1.1 Markup updated per errata document version 5

See v1.5
spec

1.5 1.2 IPMI 1.5 updated per errata document version 5

2/12/04 2.0 1.0 IPMI Second Generation document. Initial release.

6/1/04 2.0 1.0 Markup per IPMI v2.0/v1.5 errata document revision 1.

5/5/05 2.0 1.0 Markup per IPMI v2.0/v1.5 errata document revision 2.

2/15/06 2.0 1.0 Markup per IPMI v2.0/v1.5 errata document revision 3.

6/12/09 2.0 1.0 Markup per IPMI v2.0/v1.5 errata document revision 4.

10/1/13 2.0 1.1 Updated per errata document revision 5.

2/11/14 2.0 1.1 Markup per IPMI v2.0/v1.5 errata document revision 6.
Fixed errors in table heading numbering and parameter numbering error in the
LAN Configuration Parameters starting at Parameter #68.

4/21/15 2.0 1.1 Markup per IPMI v2.0/v1.5 errata document revision 7. Clarifications and updates
on the use of the IPMI GUID on systems with SMBIOS UUID. Note: E6 and
earlier revisions have been accepted and are not highlighted as revisions in this
markup.

Copyright © 2015 Intel Corporation, Hewlett-Packard Company, NEC Corporation, Dell

Inc., All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY

WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY

OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED OR INTENDED HEREBY.

INTEL, HEWLETT-PACKARD, NEC, AND DELL DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR

INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS

SPECIFICATION. INTEL, HEWLETT-PACKARD, NEC, AND DELL, DO NOT WARRANT OR REPRESENT THAT

SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

I2C is a trademark of Philips Semiconductors. All other product names are trademarks, registered trademarks, or servicemarks of

their respective owners.

I2C is a two-wire communications bus/protocol developed by Philips. IPMB is a subset of the I2C bus/protocol and was

developed by Intel. Implementations of the I2C bus/protocol or the IPMB bus/protocol may require licenses from various

entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel, Hewlett-Packard, NEC, and Dell retain the right to make changes to this document at any time, without notice. Intel,

Hewlett-Packard, NEC, and Dell make no warranty for the use of this document and assume no responsibility for any error which

may appear in the document nor does it make a commitment to update the information contained herein.

 Intelligent Platform Management Interface Specification

 3

IPMI NON-DISCLOSURE AGREEMENT
DO NOT download these files (collectively, the “Confidential Information”) until you have carefully read the
following terms and conditions. By downloading the Confidential Information you agree to the terms of this
Agreement. If you do not wish to so agree, do not download the Confidential Information.

1. Confidential Information. The confidential, proprietary and trade secret information being disclosed ("Confidential Information"), is

that information marked with a "confidential", "proprietary", or similar legend, and is described as:
 Confidential Information: Intelligent Platform Management Interface Specification Second Generation (v2.0), Intelligent Platform

Management Bus Bridge Specification (v1.0), Intelligent Chassis Management Bus Bridge Specification (v1.0)
CONFIDENTIAL INFORMATION IS PROVIDED SOLELY FOR YOUR INTERNAL EVALUATION AND REVIEW TO

DETERMINE WHETHER TO ADOPT THE SPECIFICATIONS BY SIGNING A SEPARATE ADOPTER’S AGREEMENT.

THE RECEIVING PARTY IS NOT LICENSED TO IMPLEMENT THE SPECIFICATIONS UNLESS OR UNTIL AN

ADOPTER’S AGREEMENT IS EXECUTED.

 Disclosing party’s representatives for disclosing Confidential Information is: Fadi Zuhayri (Fadi.Zuhayri@intel.com)

2. Obligations of Receiving Party. The receiving party will maintain the confidentiality of the Confidential Information of the disclosing

party with at least the same degree of care that it uses to protect its own confidential and proprietary information, but no less than a
reasonable degree of care under the circumstances. The receiving party will not disclose any of the disclosing party’s Confidential
Information to employees or to any third parties except to the receiving party’s employees, parent company and majority-owned
subsidiaries who have a need to know and who agree to abide by nondisclosure terms at least as comprehensive as those set forth
herein; provided that the receiving party will be liable for breach by any such entity. The receiving party will not make any copies of
Confidential Information received from the disclosing party except as necessary for its employees, parent company and majority-
owned subsidiaries with a need to know. Any copies which are made will be identified as belonging to the disclosing party and marked
"confidential", "proprietary" or with a similar legend.

3. Period of Non-Assertion. Unless a shorter period is indicated below, the disclosing party will not assert any claims for breach of this

Agreement or misappropriation of trade secrets against the receiving party arising out of the receiving party’s disclosure of disclosing
party’s Confidential Information made more than five (5) years from the date of receipt of the Confidential Information by the receiving
party. However, unless at least one of the exceptions set forth in Section 4 below has occurred, the receiving party will continue to
treat such Confidential Information as the confidential information of the disclosing party and only disclose any such Confidential
Information to third parties under the terms of a non-disclosure agreement.

4. Termination of Obligation of Confidentiality. The receiving party will not be liable for the disclosure of any Confidential Information

which is: (a) rightfully in the public domain other than by a breach of this Agreement of a duty to the disclosing party; (b) rightfully
received from a third party without any obligation of confidentiality; (c) rightfully known to the receiving party without any limitation on
use or disclosure prior to its receipt from the disclosing party; (d) independently developed by employees of the receiving party; or
(e) generally made available to third parties by the disclosing party without restriction on disclosure.

5. Title. Title or the right to possess Confidential Information as between the parties will remain in the disclosing party.

6. No Obligation of Disclosure; Termination The disclosing party may terminate this Agreement at any time without cause upon written

notice to the other party; provided that the receiving party’s obligations with respect to information disclosed during the term of this
Agreement will survive any such termination. The disclosing party may, at any time: (a) cease giving Confidential Information to the
other party without any liability, and/or (b) request in writing the return or destruction of all or part of its Confidential Information
previously disclosed, and all copies thereof, and the receiving party will promptly comply with such request, and certify in writing its
compliance.

7. General.

(a) This Agreement is neither intended to nor will it be construed as creating a joint venture, partnership or other form of business
association between the parties, nor an obligation to buy or sell products using or incorporating the Confidential Information.

(b) No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon either party
in this Agreement or by the transfer of any information by one party to the other party as contemplated hereunder, either
expressly, by implication, inducement, estoppel or otherwise, and that any license under any such intellectual property rights
must be express and in writing.

(c) The failure of either party to enforce any right resulting from breach of any provision of this Agreement will not be deemed a
waiver of any right relating to a subsequent breach of such provision or of any other right hereunder.

(d) This Agreement will be governed by the laws of the State of Delaware without reference to conflict of laws principles.
(e) This Agreement constitutes the entire agreement between the parties with respect to the disclosure(s) of Confidential Information

described herein, and may not be amended except in a writing signed by a duly authorized representative of the respective parties.
Any other agreements between the parties, including non-disclosure agreements, will not be affected by this Agreement.

Intelligent Platform Management Interface Specification

4

Table of Contents

1. Introduction .. 28
1.1 Audience .. 28
1.2 Reference Documents .. 28
1.3 Conventions and Terminology ... 32
1.4 Background - Architectural Goals ... 33
1.5 New for IPMI v1.5 ... 34
1.6 New for IPMI v2.0 ... 36
1.7 IPMI Overview .. 38

1.7.1 Intelligent Platform Management ... 38
1.7.2 IPMI Relationship to other Management Standards... 38
1.7.3 Management Controllers and the IPMB ... 39
1.7.4 IPMI Messaging ... 40
1.7.5 Sensor Model ... 40
1.7.6 System Event Log and Event Messages ... 40
1.7.7 Sensor Data Records & Capabilities Commands ... 41
1.7.8 Initialization Agent ... 42
1.7.9 Sensor Data Record Repository ... 42
1.7.10 Private Management Busses ... 42
1.7.11 FRU Information .. 42
1.7.12 FRU Devices .. 42
1.7.13 Entity Association Records .. 43
1.7.14 Linkage between Events and FRU Information ... 43
1.7.15 Differentiation and Feature Extensibility ... 43
1.7.16 System Interfaces ... 43
1.7.17 Other Messaging Interfaces ... 44
1.7.18 Serial/Modem Interface .. 44
1.7.19 LAN Interface .. 45
1.7.19a Payloads ... 45
1.7.20 Serial Over LAN (SOL) ... 45
1.7.21 IPMI and ASF .. 46
1.7.22 LAN Alerting ... 46
1.7.23 Serial/Modem Alerting and Paging .. 46
1.7.24 Platform Event Filtering (PEF) .. 47
1.7.25 Call Down Lists and Alert Policies .. 47
1.7.26 Channel Model, Authentication, Sessions, and Users .. 47
1.7.27 Standardized Watchdog Timer ... 48
1.7.28 Standardized POH Counter .. 48
1.7.29 Firmware Firewall .. 48
1.7.30 Command and Function Discovery .. 48
1.7.31 IPMI Hardware Components ... 49
1.7.32 Configuration Interfaces ... 49

1.8 IPMI and BIOS .. 49
1.9 System Management Software (SMS) ... 50
1.10 SMI Handler .. 50
1.11 Overview of Changes from IPMI v1.0 .. 52

2. Logical Management Device Types ... 54

3. Baseboard Management Controller (BMC) ... 58
3.1 Required BMC Functions .. 60

4. Satellite Controller Required Functions .. 64

5. Message Interface Description ... 66
5.1 Network Function Codes ... 66
5.2 Completion Codes ... 68

 Intelligent Platform Management Interface Specification

 5

5.3 Completion Code Requirements .. 71
5.3.1 Response Field Truncation on non-zero Generic Completion Codes... 71
5.3.2 Summary of Completion Code Use .. 71

5.4 Sensor Owner Identification .. 72
5.5 Software IDs (SWIDs) ... 72
5.6 Isolation from Message Content .. 73

6. IPMI Messaging Interfaces .. 74
6.1 Terminology .. 74
6.2 Channel Model... 74
6.3 Channel Numbers .. 74
6.4 Channel Protocol Type .. 75
6.5 Channel Medium Type .. 76
6.6 Channel Access Modes .. 76
6.7 Logical Channels ... 78
6.8 Channel Privilege Levels ... 78
6.9 Users & Password Support .. 78

6.9.1 ‘Anonymous Login’ Convention.. 79
6.9.2 Anonymous Login Status ... 79

6.10 System Interface Messaging .. 79
6.10.1 BMC Channels and Receive Message Queue .. 79
6.10.2 Event Message Buffer .. 80

6.11 System Interface Discovery and Multiple Interfaces ... 80
6.12 IPMI Sessions .. 81

6.12.1 Session-less Connections ... 81
6.12.2 Single-session Connections .. 82
6.12.3 Multi-session Connections ... 82
6.12.4 Per-Message and User Level Authentication Disables ... 82
6.12.5 Link Authentication ... 83
6.12.6 Summary of Connection Characteristics .. 83
6.12.7 IPMI v1.5 Session Activation and IPMI Challenge-Response ... 84
6.12.8 IPMI v1.5 Session Sequence Numbers .. 85
6.12.9 IPMI v1.5 Session Sequence Number Handling .. 85
6.12.10 IPMI v1.5 Inbound Session Sequence Number Tracking and Handling .. 86
6.12.11 IPMI v1.5 Out-of-order Packet Handling ... 86
6.12.12 IPMI v1.5 Outbound Session Sequence Number Tracking and Handling ... 86
6.12.13 IPMI v2.0 RMCP+ Session Sequence Number Handling ... 86
6.12.14 IPMI v2.0 RMCP+ Sliding Window .. 87
6.12.15 Session Inactivity Timeouts ... 87

6.12a Avoiding ‘Slot Stealing’ .. 87
6.12.16 Additional Session Specifications and Characteristics ... 88

6.13 BMC Message Bridging .. 89
6.13.1 BMC LUN 10b Routing ... 89
6.13.2 Send Message Command From System Interface .. 89
6.13.3 Send Message Command with Response Tracking .. 90
6.13.4 Bridged Request Example .. 91

6.14 Message Size & Private Bus Transaction Size Requirements ... 93

7. IPMB Interface .. 96
7.1 IPMB Access via Master Write-Read command ... 96
7.2 BMC IPMB LUNs ... 96
7.3 Sending Messages to IPMB from System Software .. 96
7.4 Sending IPMB Messages to System Software ... 97
7.5 Testing for Event Message Buffer Support.. 98

8. ICMB Interface .. 100
8.1 Virtual ICMB Bridge Device ... 100

Intelligent Platform Management Interface Specification

6

8.2 ICMB Bridge Commands in BMC using Channels ... 100
8.2.1 ICMB Bridging from System Interface to Remote IPMB using Channels .. 100
8.2.2 ICMB Bridging from Local IPMB to Remote IPMB using Channels ... 101

9. Keyboard Controller Style (KCS) Interface ... 104
9.1 KCS Interface/BMC LUNs .. 104
9.2 KCS Interface-BMC Request Message Format ... 104
9.3 BMC-KCS Interface Response Message Format ... 105
9.4 Logging Events from System Software via KCS Interface.. 105
9.5 KCS Interface Registers... 105
9.6 KCS Interface Control Codes .. 106
9.7 Status Register ... 106

9.7.1 SMS_ATN Flag Usage .. 107
9.8 Command Register .. 108
9.9 Data Registers .. 108
9.10 KCS Control Codes ... 108
9.11 Performing KCS Interface Message Transfers .. 108
9.12 KCS Communication and Non-communication Interrupts .. 109
9.13 Physical Interrupt Line Sharing ... 109
9.14 Additional Specifications for the KCS interface .. 110
9.15 KCS Flow Diagrams .. 111
9.16 Write Processing Summary ... 115
9.17 Read Processing Summary .. 115
9.18 Error Processing Summary .. 115
9.19 Interrupting Messages in Progress ... 116
9.20 KCS Driver Design Recommendations ... 116

10. SMIC Interface .. 118
10.1 SMS Transfer Streams ... 118
10.2 SMIC Communication Register Overview .. 118
10.3 SMIC/BMC Message Interface Registers .. 119

10.3.1 Flags Register ... 119
10.3.2 Control/Status Register .. 120

10.3a Control and Status Codes ... 120
10.3.3 Data Register .. 121

10.4 Performing a single SMIC/BMC Transaction ... 121
10.5 Performing a SMIC/BMC Message Transfer .. 121
10.6 Interrupting Streams in Progress .. 122
10.7 Stream Switching ... 123
10.8 DATA_RDY Flag Handling .. 123
10.9 SMIC Control and Status Code Ranges ... 124
10.10 SMIC SMS Stream Control Codes .. 125
10.11 SMIC SMS Stream Status Codes ... 126
10.12 SMIC Messaging ... 127
10.13 SMIC/BMC LUNs ... 127
10.14 SMIC-BMC Request Message Format .. 127
10.15 BMC-SMIC Response Message Format .. 128
10.16 Logging Events from System Software via SMIC ... 128

11. Block Transfer (BT) Interface ... 130
11.1 BT Interface-BMC Request Message Format .. 130
11.2 BMC-BT Interface Response Message Format ... 131
11.3 Using the Seq Field .. 131
11.4 Response Expiration Handling .. 132
11.5 Logging Events from System Software via BT Interface .. 132
11.6 Host to BMC Interface ... 132

11.6.1 BT Host Interface Registers ... 133

 Intelligent Platform Management Interface Specification

 7

11.6.2 BT BMC to Host Buffer (BMC2HOST) .. 133
11.6.3 BT Host to BMC Buffer (HOST2BMC) .. 133
11.6.4 BT Control Register (BT_CTRL) .. 133
11.6.5 BT Interrupt Mask Register (INTMASK) .. 136

11.7 Communication Protocol ... 137
11.8 Host and BMC Busy States ... 138
11.9 Host Command Power-On/Reset States .. 138

12. SMBus System Interface (SSIF) ... 140
12.1 Single Threaded Interface .. 140
12.2 Single-part Write ... 140
12.3 Multi-part Write ... 141

12.3.1 Error conditions for Multi-part Writes ... 141
12.4 Single-part Read Transaction ... 142
12.5 Multi-part Read Transactions .. 142
12.6 Retention of Output Data ... 143
12.7 SMBAlert Signal Handling .. 144

12.7.1 Enabling/disabling SSIF SMBAlert ... 144
12.8 Polling for output data ... 144
12.9 SMBus NACKs and Error Recovery ... 144
12.10 PEC Handling .. 144
12.11 SMBus Timeout and Hang Handling ... 145
12.12 Discovering SSIF ... 145
12.13 SSIF Support Requirements for IPMI v1.5-only BMCs .. 146
12.14 SSIF Support Requirements for IPMI v2.0 & Later BMCs ... 146
12.15 Summary of SMBus Commands Values for SSIF ... 146
12.16 SSIF IPMI Commands ... 147
12.17 SSIF Timing .. 147

13. IPMI LAN Interface ... 150
13.1 RMCP .. 151

13.1.1 ASF Messages in RMCP .. 151
13.1.2 RMCP Port Numbers ... 152
13.1.3 RMCP Message Format ... 153

13.2 Required ASF/RMCP Messages for IPMI-over-LAN ... 153
13.2.1 RMCP ACK Messages ... 154
13.2.2 RMCP ACK Handling ... 155
13.2.3 RMCP/ASF Presence Ping Message .. 155
13.2.4 RMCP/ASF Pong Message (Ping Response) ... 156

13.3 RMCP+ .. 156
13.4 BMC Support Requirements for v1.5 and v2.0/RMCP+ Protocols ... 157

13.4.1 Session-less Command Support ... 157
13.5 IPMI Messages Encapsulation Under RMCP .. 158

13.5.1 RMCP/ASF and IPMI Byte Order ... 158
13.6 IPMI over LAN Packet using IPv4 .. 159
13.6a IPMI over LAN Packet Using IPv6 ... 162
13.7 VLAN Support... 163
13.8 IPMI LAN Message Format .. 163
13.9 LAN Alerting ... 164
13.10 IPMI LAN Configuration .. 164

13.10.1 IP and MAC Address Configuration .. 164
13.10.2 ‘Teamed’ and Fail-over LAN Channels ... 165

13.11 ARP Handling and Gratuitous ARP .. 165
13.11.1 OS-Absent problems with ARP ... 165
13.11.2 Resolving ARP issues .. 166
13.11.3 BMC-generated ARPs .. 166

13.12 Retaining IP Addresses in a DHCP Environment .. 166

Intelligent Platform Management Interface Specification

8

13.12.1 Resolving DHCP issues ... 167
13.12a IPMI over LAN and LAN Alerting using IPv6 ... 167
13.12b Indicating Support for IPv6 ... 168
13.12c IPv6 BMC Address Configuration Requirements.. 168
13.12d IPv6 Router Address Configuration Requirements.. 168
13.12e IPv6 Router Configuration Capability and Reporting ... 169
13.12f Static Router Address Configuration ... 169
13.12g Dynamic Router Addressing Requirements ... 169
13.12h Neighbor Solicitation Message Handling Requirements ... 169
13.12i IPv6 and DHCPv6 Timing Configuration ... 170
13.12j Alert Processing for IPv6 ... 170
13.13 Discovering Support For IPMI over IP Connections ... 170
13.14 IPMI v1.5 LAN Session Activation ... 171
13.15 IPMI v2.0/RMCP+ Session Activation.. 172
13.16 RMCP+ Session Termination .. 173
13.17 RMCP+ Open Session Request ... 173
13.18 RMCP+ Open Session Response ... 175
13.19 RAKP Messages .. 176
13.20 RAKP Message 1 ... 176
13.21 RAKP Message 2 ... 178
13.22 RAKP Message 3 ... 179
13.23 RAKP Message 4 ... 180
13.24 RMCP+ and RAKP Message Status Codes ... 181
13.25 Differences between v1.5 and v2.0/RMCP+ Sessions ... 181
13.26 IPMI v2.0 RMCP+ Payload Types .. 182
13.27 Payloads and Payload Type Numbers .. 182

13.27.1 IPMI Message Payloads and IPMI Commands .. 183
13.27.2 OEM Payload Type Handles .. 183
13.27.3 Payload Type Numbers .. 184

13.28 Authentication, Integrity, and Confidentiality Algorithm Numbers .. 184
13.28.1 RAKP-HMAC-SHA1 Authentication Algorithm .. 185
13.28.1b RAKP-HMAC-SHA256 Authentication Algorithm ... 185
13.28.2 RAKP-none Authentication Algorithm .. 185
13.28.3 RAKP-HMAC-MD5 Authentication Algorithm .. 185
13.28.4 Integrity Algorithms ... 185
13.28.5 Confidentiality (Encryption) Algorithms ... 186

13.29 AES-CBC-128 Encrypted Payload Format.. 187
13.29.1 Generating the Initialization Vector ... 187
13.29.2 Encryption with AES ... 187
13.29.3 CBC (Cipher Block Chaining) ... 187

13.30 xRC4 Encrypted Payload Format .. 188
13.30.1 Generating the xRC4 Initialization Vector ... 188
13.30.2 Initializing the xRC4 State Machines ... 188

13.31 RMCP+ Authenticated Key-Exchange Protocol (RAKP) ... 189
13.32 Generating Additional Keying Material .. 192
13.33 Setting User Passwords and Keys .. 192
13.34 Random Number Generation ... 192

13.34.1 Random Number Key .. 192
13.34.2 Random Number Generator Counters .. 193
13.34.3 Random Number Generator Operation .. 193

14. IPMI Serial/Modem Interface ... 194
14.1 Serial/Modem Capabilities .. 194
14.2 Connection Modes ... 194

14.2.1 PPP/UDP Proxy Operation... 195
14.2.2 Asynchronous Communication Parameters ... 195

 Intelligent Platform Management Interface Specification

 9

14.2.3 Serial Port Sharing ... 195
14.2.4 Serial Port Switching .. 197
14.2.5 Access Modes .. 197
14.2.6 Console Redirection with Serial Port Sharing .. 197

14.2a Detecting Who Answered The Phone .. 198
14.2b Connecting to the BMC ... 198
14.2c Connecting to the Console Redirection ... 198
14.2d Directing the Connection After Power Up / Reset ... 199
14.2e Interaction with Microsoft ‘Headless’ Operation .. 199
14.2f Pre-boot Only Mode .. 199
14.2g Always Available Mode .. 199
14.2h Shared Mode .. 200

14.2.7 Serial Port Sharing Access Characteristics... 200
14.2.8 Serial Port Sharing Hardware Implementation Notes .. 202
14.2.9 Connection Mode Auto-detect ... 203
14.2.10 Modem-specific Options .. 205
14.2.11 Modem Activation ... 205

14.3 Serial/Modem Connection Active (Ping) Message .. 206
14.3.1 Serial/Modem Connection Active Message Parameters .. 207
14.3.2 Mux Switch Coordination .. 207
14.3.3 Receive During Ping .. 207
14.3.4 Application Handling of the Serial/Modem Connection Active Message ... 207

14.4 Basic Mode .. 208
14.4.1 Basic Mode Packet Framing .. 208
14.4.2 Data Byte Escaping .. 208
14.4.3 Message Fields ... 209
14.4.4 Message Retries ... 210
14.4.5 Packet Handshake .. 210

14.5 PPP/UDP Mode ... 211
14.5.1 PPP/UDP Mode Sessions ... 211
14.5.2 PPP Frame Format ... 211
14.5.3 PPP Frame Implementation Requirements ... 211
14.5.4 Link Control Protocol (LCP) packets ... 212
14.5.5 Configuration Requests .. 212
14.5.6 Maximum Receive Unit Handling ... 214
14.5.7 Protocol Field Compression Handling ... 214
14.5.8 Address & Control Field Compression Handling .. 214
14.5.9 IPMI/RMCP Message Format in PPP Frame ... 215
14.5.10 Example of IPMI Frame with Field Compression ... 216
14.5.11 Frame Data Encoding ... 216
14.5.12 Escaping Algorithm ... 216
14.5.13 Escaped Character Handling .. 216
14.5.14 Asynch Control Character Maps (ACCM) ... 216
14.5.15 IP Network Protocol Negotiation (IPCP) ... 217
14.5.16 CHAP Operation in PPP Mode .. 218

14.6 Serial/Modem Callback ... 219
14.6.1 Callback Control Protocol (CBCP) Support... 219

14.6a CBCP Address Type and Dial String Characters ... 220
14.7 Terminal Mode .. 220

14.7.1 Terminal Mode Versus Basic Mode Differences ... 220
14.7.2 Terminal Mode Message Format ... 221
14.7.3 IPMI Message Data .. 221
14.7.4 Terminal Mode IPMI Message Bridging ... 223
14.7.5 Sending Messages to SMS ... 223
14.7.6 Sending Messages to Other Media ... 224
14.7.7 Terminal Mode Packet Handshake ... 225

Intelligent Platform Management Interface Specification

10

14.7.8 Terminal Mode ASCII Text Commands .. 225
14.7.9 Terminal Mode Text Command and IPMI Message Examples ... 228

14.8 Terminal Mode Line Editing ... 228
14.9 Terminal Mode Input Restrictions ... 229
14.10 Page Blackout Interval ... 229
14.11 Dial Paging .. 229

14.11.1 Alert Strings for Dial Paging .. 230
14.11.2 Dialing Digits ... 230
14.11.3 <Enter> Character (control-M) .. 230
14.11.4 Long Pause Character (control-L) .. 230
14.11.5 Empty (delimiter) Character (FFh)... 230
14.11.6 ‘Null’ Terminator Character (00h) ... 230

14.12 TAP Paging .. 231
14.12.1 TAP Escaping (data transparency) ... 232
14.12.2 TAP Checksum .. 232
14.12.3 TAP Response Codes ... 232
14.12.4 TAP Page Success Criteria ... 232

14.13 PPP Alerting .. 233

15. Serial Over LAN .. 234
15.1 System Serial Controller Requirements ... 234
15.2 SOL and Serial Port Sharing .. 234
15.3 SOL Operation Overview .. 235
15.4 SOL Security ... 236
15.5 SOL Sequence Numbers .. 236
15.6 Flow Control .. 236
15.7 Bit Rate Handling .. 236
15.8 Volatile and Non-volatile SOL Configuration Parameters .. 236
15.9 SOL Payload Data Format ... 237
15.10 Activating SOL using RMCP+ Authentication ... 239
15.11 SOL Packet Acknowledge and Retries .. 240
15.12 SOL Interaction with Windows.NET Escape Sequences .. 241
15.13 SOL Payload Activated with Serial Port Sharing .. 242

16. Event Messages ... 244
16.1 Critical Events and System Event Log Restrictions .. 244
16.2 Event Receiver Handling of Event Messages .. 245
16.3 IPMB Seq Field use in Event Messages .. 246
16.4 Event Status, Event Conditions, and Present State .. 247
16.5 System Software use of Sensor Scanning bits & Entity Info ... 247
16.6 Re-arming .. 248

16.6.1 ‘Global’ Re-arm ... 248

17. ‘Platform Event Filtering (PEF) ... 250
17.1 Alert Policies ... 250
17.2 Deferred Alerts .. 250
17.3 PEF Postpone Timer .. 250
17.4 PEF Startup Delay ... 251

17.4.1 Last Processed Event Tracking .. 251
17.5 Event Processing When The SEL Is Full ... 251
17.6 PEF Actions ... 252
17.7 Event Filter Table .. 252
17.8 Event Data 1 Event Offset Mask ... 255
17.9 Using the Mask and Compare Fields ... 255
17.10 Mask and Compare Field Examples .. 255
17.11 Alert Policy Table .. 256
17.12 Alert Testing .. 257

 Intelligent Platform Management Interface Specification

 11

17.13 Alert Processing ... 258
17.13.1 Alert Processing after Power Loss ... 258
17.13.2 Processing non-Alert Actions after Power Loss ... 258
17.13.3 Alert Processing when IPMI Messaging is in Progress .. 258
17.13.4 Sending Multiple Alerts On One Call .. 258
17.13.5 Serial/Modem Alert Processing ... 259

17.14 PEF and Alert Handling Example.. 260
17.15 Event Filter, Policy, Destination, and String Relationships ... 261
17.16 Populating a PET ... 262

17.16.1 OEM Custom Fields and Text Alert Strings for IPMI v1.5 PET ... 264
17.17 PEF Performance Target .. 264

18. Firmware Firewall & Command Discovery .. 266

19. Command Specification Information ... 268
19.1 Specification of Completion Codes ... 268
19.2 Handling ‘Reserved’ Bits and Fields ... 268
19.3 Logical Unit Numbers (LUNs) for Commands ... 268
19.4 Command Table Notation .. 268

20. IPM Device “Global” Commands ... 270
20.1 Get Device ID Command .. 270
20.2 Cold Reset Command .. 273
20.3 Warm Reset Command .. 274
20.4 Get Self Test Results Command .. 275
20.5 Manufacturing Test On Command .. 275
20.6 Set ACPI Power State Command .. 276
20.7 Get ACPI Power State Command .. 278
20.8 Get Device GUID Command ... 278
20.9 Broadcast ‘Get Device ID’ .. 280

21. Firmware Firewall & Command Discovery Commands ... 282
21.1 Completion Codes with Firmware Firewall ... 282
21.2 Get NetFn Support Command ... 283
21.3 Get Command Support Command ... 284
21.4 Get Command Sub-function Support Command ... 285
21.5 Get Configurable Commands Command ... 287
21.6 Get Configurable Command Sub-functions Command ... 288
21.7 Set Command Enables Command ... 289
21.8 Get Command Enables Command ... 291
21.9 Set Configurable Command Sub-function Enables Command .. 292
21.10 Get Configurable Command Sub-function Enables Command ... 294
21.11 Get OEM NetFn IANA Support Command ... 295

22. IPMI Messaging Support Commands .. 296
22.1 Set BMC Global Enables Command ... 297
22.2 Get BMC Global Enables Command ... 297
22.3 Clear Message Flags Command .. 298
22.4 Get Message Flags Command ... 298
22.5 Enable Message Channel Receive Command .. 299
22.6 Get Message Command ... 299
22.7 Send Message Command ... 302
22.8 Read Event Message Buffer Command ... 305
22.9 Get System Interface Capabilities Command .. 305
22.10 Get BT Interface Capabilities Command ... 307
22.11 Master Write-Read Command ... 308
22.12 Session Header Fields .. 308
22.13 Get Channel Authentication Capabilities Command ... 309

Intelligent Platform Management Interface Specification

12

22.14 Get System GUID Command .. 311
22.14.1 Consistency with SMBIOS UUID ... 312

22.14a Set System Info Parameters Command .. 313
22.14b Get System Info Parameters Command ... 313
22.15 Get Channel Cipher Suites Command ... 316

22.15.1 Cipher Suite Records .. 317
22.15.2 Cipher Suite IDs ... 318

22.16 Get Session Challenge Command .. 319
22.17 Activate Session Command ... 320

22.17.1 AuthCode Algorithms .. 323
22.18 Set Session Privilege Level Command .. 323
22.19 Close Session Command ... 324
22.20 Get Session Info Command ... 324
22.21 Get AuthCode Command... 326
22.22 Set Channel Access Command .. 328
22.23 Get Channel Access Command ... 331
22.24 Get Channel Info Command .. 332
22.25 Set Channel Security Keys Command ... 333
22.26 Set User Access Command .. 334
22.27 Get User Access Command ... 336
22.28 Set User Name Command.. 338
22.29 Get User Name Command ... 338
22.30 Set User Password Command .. 339

23. IPMI LAN Commands... 342
23.1 Set LAN Configuration Parameters Command ... 342
23.2 Get LAN Configuration Parameters Command ... 343
23.2a DHCPv6 Timing Parameters ... 356
23.2b Neighbor Discovery / SLAAC Timing Parameters ... 357
23.3 Suspend BMC ARPs Command .. 358
23.4 Get IP/UDP/RMCP Statistics Command ... 359

24. RMCP+ Support and Payload Commands .. 362
24.1 Activate Payload Command .. 362
24.2 Deactivate Payload Command ... 364
24.3 Suspend/Resume Payload Encryption Command .. 365
24.4 Get Payload Activation Status Command .. 366
24.5 Get Payload Instance Info Command .. 367
24.6 Set User Payload Access Command .. 368
24.7 Get User Payload Access Command ... 369
24.8 Get Channel Payload Support Command .. 369
24.9 Get Channel Payload Version Command .. 370
24.10 Get Channel OEM Payload Info Command .. 371

25. IPMI Serial/Modem Commands .. 372
25.1 Set Serial/Modem Configuration Command .. 372
25.2 Get Serial/Modem Configuration Command ... 373
25.3 Set Serial/Modem Mux Command .. 393
25.4 Get TAP Response Codes Command .. 394
25.5 Set PPP UDP Proxy Transmit Data Command .. 394
25.6 Get PPP UDP Proxy Transmit Data Command ... 394
25.7 Send PPP UDP Proxy Packet Command ... 395
25.8 Get PPP UDP Proxy Receive Data Command ... 395
25.9 Serial/Modem Connection Active (Ping) Command ... 396
25.10 Callback Command ... 397
25.11 Set User Callback Options Command ... 398
25.12 Get User Callback Options Command ... 399

 Intelligent Platform Management Interface Specification

 13

25.13 Set Serial Routing Mux Command .. 399

26. SOL Commands ... 402
26.1 SOL Activating Command .. 402
26.2 Set SOL Configuration Parameters Command .. 403
26.3 Get SOL Configuration Parameters Command ... 403

27. BMC Watchdog Timer Commands ... 408
27.1 Watchdog Timer Actions ... 408
27.2 Watchdog Timer Use Field and Expiration Flags .. 408

27.2.1 Using the Timer Use field and Expiration flags ... 409
27.3 Watchdog Timer Event Logging ... 409
27.4 Pre-timeout Interrupt ... 409

27.4.1 Pre-timeout Interrupt Support Detection .. 409
27.4.2 BIOS Support for Watchdog Timer ... 410

27.5 Reset Watchdog Timer Command ... 410
27.6 Set Watchdog Timer Command .. 410
27.7 Get Watchdog Timer Command .. 412

28. Chassis Commands... 414
28.1 Get Chassis Capabilities Command ... 414
28.2 Get Chassis Status Command .. 416
28.3 Chassis Control Command .. 417
28.4 Chassis Reset Command .. 418
28.5 Chassis Identify Command .. 418
28.6 Set Front Panel Enables ... 418
28.7 Set Chassis Capabilities Command ... 419
28.8 Set Power Restore Policy Command ... 420
28.9 Set Power Cycle Interval ... 420
28.10 Remote Access Boot control .. 420
28.11 Get System Restart Cause Command .. 421
28.12 Set System Boot Options Command .. 421
28.13 Get System Boot Options Command ... 422
28.14 Get POH Counter Command ... 428

29. Event Commands ... 430
29.1 Set Event Receiver Command ... 430
29.2 Get Event Receiver Command .. 431
29.3 Platform Event Message Command ... 431
29.4 Event Request Message Fields .. 431
29.5 IPMB Event Message Formats .. 432
29.6 System Interface Event Request Message Format ... 432
29.7 Event Data Field Formats .. 434

30. PEF and Alerting Commands ... 436
30.1 Get PEF Capabilities Command .. 436
30.2 Arm PEF Postpone Timer Command .. 437
30.3 Set PEF Configuration Parameters Command ... 437
30.4 Get PEF Configuration Parameters Command .. 438
30.5 Set Last Processed Event ID Command .. 443
30.6 Get Last Processed Event ID Command .. 444
30.7 Alert Immediate Command ... 444
30.8 PET Acknowledge Command ... 446

31. System Event Log (SEL) Commands ... 448
31.1 SEL Device Commands ... 448
31.2 Get SEL Info Command .. 449
31.3 Get SEL Allocation Info Command .. 450
31.4 Reserve SEL Command ... 451

Intelligent Platform Management Interface Specification

14

31.4.1 Reservation Restricted Commands .. 452
31.4.2 Reservation Cancellation.. 452

31.5 Get SEL Entry Command .. 453
31.6 Add SEL Entry Command ... 453

31.6.1 SEL Record Type Ranges .. 454
31.7 Partial Add SEL Entry Command.. 454
31.8 Delete SEL Entry Command ... 455
31.9 Clear SEL Command ... 456
31.10 Get SEL Time Command .. 456
31.11 Set SEL Time Command ... 457
31.11a Get SEL Time UTC Offset .. 457
31.11b Set SEL Time UTC Offset ... 457
31.12 Get Auxiliary Log Status Command .. 458
31.13 Set Auxiliary Log Status Command .. 459

32. SEL Record Formats ... 460
32.1 SEL Event Records .. 460
32.2 OEM SEL Record - Type C0h-DFh .. 461
32.3 OEM SEL Record - Type E0h-FFh ... 461

33. SDR Repository .. 462
33.1 SDR Repository Device ... 462
33.2 Modal and Non-modal SDR Repositories ... 463

33.2.1 Command Support while in SDR Repository Update Mode .. 463
33.3 Populating the SDR Repository ... 463

33.3.1 SDR Repository Updating .. 464
33.4 Discovering Management Controllers and Device SDRs .. 464
33.5 Reading the SDR Repository ... 464
33.6 Sensor Initialization Agent .. 465

33.6.1 System Support Requirements for the Initialization Agent .. 465
33.6.2 IPMI and ACPI Interaction .. 465
33.6.3 Recommended Initialization Agent Steps .. 466

33.7 SDR Repository Device Commands .. 466
33.8 SDR ‘Record IDs’ .. 467
33.9 Get SDR Repository Info Command ... 468
33.10 Get SDR Repository Allocation Info Command ... 468
33.11 Reserve SDR Repository Command .. 469

33.11.1 Reservation Restricted Commands .. 470
33.11.2 Reservation Cancellation.. 470

33.12 Get SDR Command ... 470
33.13 Add SDR Command .. 472
33.14 Partial Add SDR Command ... 472
33.15 Delete SDR Command... 473
33.16 Clear SDR Repository Command .. 473
33.17 Get SDR Repository Time Command ... 473
33.18 Set SDR Repository Time Command .. 474
33.19 Enter SDR Repository Update Mode Command ... 475
33.20 Exit SDR Repository Update Mode Command ... 475
33.21 Run Initialization Agent Command ... 475

34. FRU Inventory Device Commands ... 476
34.1 Get FRU Inventory Area Info Command .. 476
34.2 Read FRU Data Command .. 477
34.3 Write FRU Data Command ... 477

35. Sensor Device Commands ... 480
35.1 Static and Dynamic Sensor Devices .. 481
35.2 Get Device SDR Info Command ... 481

 Intelligent Platform Management Interface Specification

 15

35.3 Get Device SDR Command ... 482
35.4 Reserve Device SDR Repository Command ... 483
35.5 Get Sensor Reading Factors Command ... 484
35.6 Set Sensor Hysteresis Command ... 484
35.7 Get Sensor Hysteresis Command... 485
35.8 Set Sensor Thresholds Command .. 485
35.9 Get Sensor Thresholds Command ... 486
35.10 Set Sensor Event Enable Command .. 487
35.11 Get Sensor Event Enable Command .. 489
35.12 Re-arm Sensor Events Command .. 490
35.13 Get Sensor Event Status Command ... 492

35.13.1 Response According to Sensor Type.. 492
35.13.2 Hysteresis and Event Status ... 493
35.13.3 High-going versus Low-going Threshold Events ... 493
35.13.4 Get Sensor Event Status Command Format ... 494

35.14 Get Sensor Reading Command .. 496
35.15 Set Sensor Type Command .. 498
35.16 Get Sensor Type Command ... 498
35.17 Set Sensor Reading And Event Status Command .. 499

35b. Command Forwarding Commands ... 504
35b.1 Get Forwarded Commands Command ... 505
35b.2 Set Forwarded Commands Command ... 506
35b.3 Enable Forwarded Commands Command ... 506
35b.4 Forwarded Command Command ... 509

36. Sensor Types and Data Conversion .. 512
36.1 Linear and Linearized Sensors ... 512
36.2 Non-Linear Sensors ... 512
36.3 Sensor Reading Conversion Formula .. 513
36.4 Resolution, Tolerance and Accuracy ... 513

36.4.1 Tolerance .. 513
36.4.2 Resolution .. 513

36.4a Resolution for Non-linear & Linearizable Sensors .. 513
36.4b Offset Constant Relationship to Resolution ... 514
36.5 Management Software, SDRs, and Sensor Display ... 514

36.5.1 Software Display of Threshold Settings ... 514
36.5.2 Notes on Displaying Sensor Readings & Thresholds ... 515

37. Timestamp Format ... 518
37.1 Special Timestamp values ... 518

38. Accessing FRU Devices .. 520

39. Using Entity IDs ... 522
39.1 System- and Device-relative Entity Instance Values ... 522
39.2 Restrictions on Using Device-relative Entity Instance Values .. 522
39.3 Sensor-to-FRU Association ... 523

40. Handling Sensor Associations ... 524
40.1 Entity Presence .. 524
40.2 Software detection of Entities .. 524
40.3 Using Entity Association Records ... 525

41. Sensor & Event Message Codes .. 528
41.1 Sensor Type Code .. 528
41.2 Event/Reading Type Code ... 528
41.3 SDR Specification of Event Types .. 529
41.4 SDR Specification of Reading Types .. 529

Intelligent Platform Management Interface Specification

16

41.5 Use of Codes in Event Messages ... 529

42. Sensor and Event Code Tables .. 532
42.1 Event/Reading Type Codes ... 532
42.2 Sensor Type Codes and Data ... 535

43. Sensor Data Record Formats ... 550
43.1 SDR Type 01h, Full Sensor Record ... 551
43.2 SDR Type 02h, Compact Sensor Record ... 558
43.3 SDR Type 03h, Event-Only Record .. 564
43.4 SDR Type 08h - Entity Association Record .. 566
43.5 SDR Type 09h - Device-relative Entity Association Record ... 567
43.6 SDR Type 0Ah:0Fh - Reserved Records ... 569
43.7 SDR Type 10h - Generic Device Locator Record ... 570
43.8 SDR Type 11h - FRU Device Locator Record .. 571
43.9 SDR Type 12h - Management Controller Device Locator Record .. 573
43.10 SDR Type 13h - Management Controller Confirmation Record ... 575
43.11 SDR Type 14h - BMC Message Channel Info Record .. 576
43.12 SDR Type C0h - OEM Record .. 578
43.13 Device Type Codes .. 579
43.14 Entity IDs ... 580
43.15 Type/Length Byte Format .. 581
43.16 6-bit ASCII Packing Example ... 583
43.17 Sensor Unit Type Codes .. 584

44. Examples .. 586
44.1 Processor Sensor with Sensor-specific States & Event Generation ... 586
44.2 Processor Sensor with Generic States & Event Generation ... 588

Appendix A - Previous Sequence Number Tracking ... 590

Appendix B - Example PEF Mask Compare Algorithm ... 592

Appendix C1 - Locating IPMI System Interfaces via SM BIOS Tables ... 594
C1-1 IPMI Device Information - BMC Interface ... 595

C1-1.1 Interface Type .. 595
C1-1.2 IPMI Specification Revision Field ... 595
C1-1.3 I2C Slave Address Field ... 595
C1-1.4 NV Storage Device Address Field ... 596
C1-1.5 Base Address Field ... 596
C1-1.6 Base Address Modifier Field .. 596
C1-1.7 System Interface Register Alignment ... 596

C1-1.7.1 Byte-spaced I/O Address Examples ... 596
C1-1.7.2 32-bit Spaced I/O Address Examples .. 596
C1-1.7.3 Memory-mapped Base Address ... 597
C1-1.7.4 Interrupt Info Field ... 597

C1-1.8 Interrupt Number Field .. 597

Appendix C2 - Locating IPMI System Interfaces on PCI ... 598

Appendix C3 - Locating IPMI System Interfaces with ACPI .. 600
C3-1 SPMI Description Table and ACPI Control Methods.. 600
C3-2 Locating IPMI System Interfaces in ACPI Name Space ... 602
C3-3 Example IPMI Definition ASL Code .. 604

Example 1: SMIC Interface in I/O Space .. 604
Example 2: KCS Interface in 64-bit Address Space .. 605
Example 3: SMIC Interface in I/O Space .. 606
Example 4: SSIF Interface ... 606

Appendix D - Determining Message Size Requirements .. 608

 Intelligent Platform Management Interface Specification

 17

Appendix E - Terminal Mode Grammar ... 610
E-1 Notation ... 610
E-2 Grammar for Terminal Mode Input ... 610
E-3 Grammar for Terminal Mode Output .. 611

Appendix F - TAP Flow Summary ... 614

Appendix G - Command Assignments ... 618

Appendix H - Sub-function Assignments ... 624

Intelligent Platform Management Interface Specification

18

List of Figures

Figure 1-1, IPMI and the Management Software Stack... 38
Figure 1-2, IPMI Block Diagram ... 39
Figure 2-1, Intelligent Platform Management Logical Devices ... 56
Figure 6-1, Session Activation .. 84
Figure 6-2, LAN to IPMB Bridged Request Example ... 92
Figure 7-1, IPMB Request sent using Send Message Command ... 97
Figure 7-2, Send Message Command Response .. 97
Figure 7-3, Response for Set Event Receiver in Receive Message Queue .. 98
Figure 7-4, Get Message Command Response .. 98
Figure 9-1, KCS Interface/BMC Request Message Format .. 104
Figure 9-2, KCS Interface/BMC Response Message Format .. 105
Figure 9-3, KCS Interface Event Request Message Format .. 105
Figure 9-4, KCS Interface Event Response Message Format .. 105
Figure 9-5, KCS Interface Registers .. 106
Figure 9-6, KCS Interface SMS to BMC Write Transfer Flow Chart ... 112
Figure 9-7, KCS Interface BMC to SMS Read Transfer Flow Chart .. 113
Figure 9-8, Aborting KCS Transactions in-progress and/or Retrieving KCS Error Status.. 114
Figure 10-1, SMIC/BMC Interface Registers .. 119
Figure 10-2, SMIC/BMC Request Message Format .. 127
Figure 10-3, SMIC/BMC Response Message Format ... 128
Figure 10-4, SMIC Event Request Message Format ... 128
Figure 10-5, SMIC Event Response Message Format ... 128
Figure 11-1, BT Interface/BMC Request Message Format ... 130
Figure 11-2, BT Interface/BMC Response Message Format ... 131
Figure 11-3, BT Interface Event Request Message Format ... 132
Figure 11-4, BT Interface Event Response Message Format .. 132
Figure 11-5, BT_CTRL Register format ... 133
Figure 11-6, BT_INTMASK Register format ... 136
Figure 13-1, Embedded LAN Controller Implementation ... 150
Figure 13-2, PCI Management Bus Implementation ... 151
Figure 13-3, IPMI LAN Packet Layering .. 158
Figure 13-4, IPMI LAN Message Formats .. 163
Figure 13-5, IPMI v1.5 LAN Session Startup ... 172
Figure 14-1, Serial Port Sharing Logical Diagram .. 196
Figure 14-2, Basic Mode Message Fields .. 209
Figure 14-3, PPP Frame Format .. 211
Figure 14-4, Configure-Request, -Ack, -Nak, -Reject Packet Format ... 212
Figure 14-5, IPMI Message in PPP Frame Format .. 215
Figure 14-6, IP Frame with Field Compression... 216
Figure 14-7, Terminal Mode Request to BMC .. 222
Figure 14-8, Terminal Mode Response from BMC ... 222
Figure 14-9, Terminal Mode Request to SMS ... 224
Figure 14-10, Terminal Mode Response from SMS .. 224
Figure 14-11, Send Message Command for Bridged Request ... 224
Figure 14-12, Response to Send Message Command for Bridged Request ... 224
Figure 14-13, Bridged Response to Remote Console .. 224
Figure 15-1, SOL with Serial Port Sharing .. 235
Figure 17-1, Alert Processing Example ... 261
Figure 17-2, Event Filter, Alert Policy, and Alert Destination, & String Relationships .. 262

 Intelligent Platform Management Interface Specification

 19

Figure 20-1, Broadcast Get Device ID Request Message .. 280
Figure 29-1, IPMB Event Request Message Format ... 432
Figure 29-2, Example SMIC Event Request Message Format .. 433
Figure 35-1, High-Going and Low-Going Event Assertion/Deassertion Points .. 494
Figure 39-1, Sensor to FRU Lookup ... 523
Figure 43-1, 6-bit Packed ASCII Example .. 583
Figure B-1, Example Event Data Comparison Algorithm ... 592
Figure D-1, SMBus Write-Block by Master Write-Read through KCS/SMIC ... 608
Figure D-2, Master Write-Read Response via KCS/SMIC .. 608
Figure D-3, Get Message Response via KCS/SMIC .. 608
Figure D-4, Master Write-Read Request via LAN/PPP ... 609
Figure D-5 Master Write-Read Response via LAN/PPP .. 609
Figure D-6, Master Write-Read Response via LAN/PPP ... 609

Intelligent Platform Management Interface Specification

20

List of Tables

Table 1-1, Glossary.. 32
Table 3-1, Required BMC Functions ... 60
Table 5-1, Network Function Codes .. 67
Table 5-2, Completion Codes .. 70
Table 5-3, Sensor Owner ID and Sensor Number Field Definitions ... 72
Table 5-4, System Software IDs .. 73
Table 6-1, Channel Number Assignments ... 75
Table 6-2, Channel Protocol Type Numbers ... 75
Table 6-3, Channel Medium Type Numbers ... 76
Table 6-4, Channel Access Modes .. 77
Table 6-5, Channel Privilege Levels.. 78
Table 6-6, Session-less , Single-session and Multi-session Characteristics .. 83
Table 6-7, Default Session Inactivity Timeout Intervals ... 87
Table 6-8, Message Bridging Mechanism by Source and Destination .. 91
Table 6-9, IPMI Message and IPMB / Private Bus Transaction Size Requirements ... 94
Table 7-1, BMC IPMB LUNs ... 96
Table 8-1, System Interface Request For Delivering Remote IPMB Request via ICMB .. 101
Table 8-2, Send Message Response ... 101
Table 8-2a, Get Message Response Data for Remote IPMB Request Delivered via ICMB 101
Table 8-3, IPMB Request For Delivering Remote IPMB Request via ICMB ... 102
Table 8-4, Send Message Response ... 102
Table 8-5, IPMB Response For Remote IPMB Request Delivered via ICMB .. 102
Table 9-1, KCS Interface Status Register Bits... 107
Table 9-2, KCS Interface State Bits... 107
Table 9-3, KCS Interface Control Codes ... 108
Table 9-4, KCS Interface Status Codes ... 108
Table 10-1, SMIC Flags Register Bits ... 120
Table 10-2, SMS Transfer Stream control codes ... 125
Table 10-3, SMS Transfer Stream Status Codes ... 126
Table 11-1, BT Interface Registers .. 132
Table 11-2, BT_CTRL Register Bit Definitions .. 133
Table 11-3, BT_INTMASK Register Bit Definitions .. 136
Table 11-4, BT Interface Write Transfer ... 137
Table 11-5, BT Interface Read Transfer .. 138
Table 12-1, BMC Single-part Write .. 141
Table 12-2, BMC Multi-part Write Start ... 142
Table 12-3, BMC Multi-part Write Middle ... 142
Table 12-4, BMC Multi-part Write End .. 142
Table 12-5, BMC Single-part Read ... 142
Table 12-6, BMC Multi-part Read Start .. 143
Table 12-7, BMC Multi-part Read Middle .. 143
Table 12-8, BMC Multi-part Read Retry ... 143
Table 12-9, BMC Multi-part Read End ... 143
Table 12-10, Summary of SMBus Commands for SSIF ... 147
Table 12-11, SSIF Commands ... 147
Table 12-12, SSIF Timing Specifications .. 147
Table 13-1, RMCP Port Numbers ... 152
Table 13-2, RMCP Message Format ... 153
Table 13-3, Message Type Determination Under RMCP .. 153

 Intelligent Platform Management Interface Specification

 21

Table 13-4, ASF/RMCP Messages for IPMI-over-LAN ... 154
Table 13-5, RMCP ACK Message Fields .. 154
Table 13-6, RMCP Packet Fields for ASF Presence Ping Message (Ping Request).. 155
Table 13-7, RMCP Packet Fields for ASF Presence Pong Message (Ping Response) .. 156
Table 13-8, RMCP/RMCP+ Packet Format for IPMI via Ethernet using IPv4 ... 159
Table 13-8a, RMCP/RMCP+ Packet Format for IPMI via Ethernet using IPv6 ... 162
Table 13-9, RMCP+ Open Session Request .. 174
Table 13-10, RMCP+ Open Session Response ... 175
Table 13-11, RAKP Message 1 ... 177
Table 13-12, RAKP Message 2 ... 178
Table 13-13, RAKP Message 3 ... 179
Table 13-14, RAKP Message 4 ... 180
Table 13-15, RMCP+ and RAKP Message Status Codes .. 181
Table 13-16, Payload Type Numbers .. 184
Table 13-17, Authentication Algorithm Numbers ... 184
Table 13-18, Integrity Algorithm Numbers ... 186
Table 13-19, Confidentiality Algorithm Numbers ... 186
Table 13-20, AES-CBC Encrypted Payload Fields ... 187
Table 13-21, xRC4-Encrypted Payload Fields .. 188
Table 14-1, Serial Port Switching Triggers ... 197
Table 14-2, Serial Port Sharing Access Characteristics ... 200
Table 14-3, Auto-Connection Mode Patterns .. 204
Table 14-4, Modem String Summary .. 205
Table 14-5, Basic Mode Special Characters .. 208
Table 14-6, BASIC MODE Data Byte Escape Encoding .. 208
Table 14-7, LCP Code Fields .. 212
Table 14-8, Overview of PPP Configure-Ack, -Nak, & -Reject Packet Use ... 212
Table 14-9, PPP Link Configuration Option Support Requirements ... 213
Table 14-10, Default Escaped Characters .. 216
Table 14-11, CBCP Callback Number Options ... 220
Table 14-12, Terminal Mode Message Bridge Field ... 223
Table 14-13, Terminal Mode Text Commands .. 225
Table 14-14, Terminal Mode Examples .. 228
Table 14-15, TAP Escaping ... 232
Table 14-16, TAP Success Codes .. 232
Table 15-1, Mux Settings .. 234
Table 15-2, SOL Payload Data Format ... 237
Table 15-3, Remote Console to BMC SOL Packet Handling .. 240
Table 15-4, Set Serial/Modem Mux Command Operation while SOL Active ... 242
Table 16-1, Event Message Reception .. 245
Table 17-1, PEF Action Priorities ... 252
Table 17-2, Event Filter Table Entry ... 253
Table 17-3, Comparison-type Selection according to Compare Field bits .. 255
Table 17-4, Alert Policy Table Entry... 257
Table 17-5, Serial/Modem Alert Destination Priorities ... 259
Table 17-6, PET Specific Trap Fields ... 262
Table 17-7 - PET Variable Bindings Field .. 263
Table 17-8, IPMI PET Multirecord Field Format .. 264
Table 20-1, IPM Device ‘Global’ Commands ... 270
Table 20-2, Get Device ID Command ... 271
Table 20-3, Cold Reset Command ... 274

Intelligent Platform Management Interface Specification

22

Table 20-4, Warm Reset Command .. 274
Table 20-5, Get Self Test Results Command... 275
Table 20-6, Manufacturing Test On .. 276
Table 20-7, Set ACPI Power State Command ... 277
Table 20-8, Get ACPI Power State Command .. 278
Table 20-9, Get Device GUID Command ... 279
Table 20-10, GUID Format ... 279
Table 21-1, Firmware Firewall Commands ... 282
Table 21-2, Get NetFn Support Command .. 283
Table 21-3, Get Command Support Command ... 284
Table 21-4, Get Command Sub-function Support Command .. 285
Table 21-5, Get Configurable Commands Command ... 287
Table 21-6, Get Configurable Command Sub-functions Command .. 288
Table 21-7, Set Command Enables Command .. 290
Table 21-8, Get Command Enables Command ... 291
Table 21-9, Set Configurable Command Sub-function Enables Command .. 292
Table 21-10, Get Configurable Command Sub-function Enables Command .. 294
Table 21-11, Get OEM NetFn IANA Support Command ... 295
Table 22-1, IPMI Messaging Support Commands .. 296
Table 22-2, Set BMC Global Enables Command .. 297
Table 22-3, Get BMC Global Enables Command ... 298
Table 22-4, Clear Message Flags Command ... 298
Table 22-5, Get Message Flags Command .. 299
Table 22-6, Enable Message Channel Receive Command .. 299
Table 22-7, Get Message Command.. 301
Table 22-8, Get Message Data Fields .. 301
Table 22-9, Send Message Command ... 303
Table 22-10, Message Data for Send Message Command .. 304
Table 22-11, Read Event Message Buffer Command .. 305
Table 22-12, Get System Interface Capabilities Command ... 306
Table 22-13, Get BT Interface Capabilities Command ... 307
Table 22-14, Master Write-Read Command .. 308
Table 22-15, Get Channel Authentication Capabilities Command .. 310
Table 22-16, Get Device GUID Command ... 312
Table 22-17, Get System GUID Command ... 312
Table 22-16a, Set System Info Parameters Command .. 313
Table 22-16b, Get System Info Parameters Command.. 313
Table 22-16c, System Info Parameters .. 313
Table 22-18, Get Channel Cipher Suites Command .. 317
Table 22-19, Cipher Suite Record Format ... 318
Table 22-20, Cipher Suite IDs ... 319
Table 22-21, Get Session Challenge Command .. 320
Table 22-22, Activate Session Command .. 321
Table 22-23, AuthCode Algorithms .. 323
Table 22-24, Set Session Privilege Level Command ... 324
Table 22-24, Close Session Command .. 324
Table 22-25, Get Session Info Command .. 325
Table 22-26, Get AuthCode Command ... 327
Table 22-27, Set Channel Access Command ... 329
Table 22-28, Get Channel Access Command .. 331
Table 22-29, Get Channel Info Command ... 332

 Intelligent Platform Management Interface Specification

 23

Table 22-30, Set Channel Security Keys Command ... 333
Table 22-31, Set User Access Command .. 335
Table 22-32, Get User Access Command .. 337
Table 22-33, Set User Name Command .. 338
Table 22-34, Get User Name Command ... 338
Table 22-35, Set User Password Command .. 340
Table 23-1, IPMI LAN Commands ... 342
Table 23-2, Set LAN Configuration Parameters Command .. 342
Table 23-3, Get LAN Configuration Parameters Command ... 343
Table 23-4, LAN Configuration Parameters .. 343
Table 23-4a, DHCPv6 Timing Parameters .. 357
Table 23-4b, Neighbor Discovery / SLAAC Timing Parameters .. 358
Table 23-5, Suspend BMC ARPs Command ... 359
Table 23-6, Get IP/UDP/RMCP Statistics Command ... 360
Table 24-1, RMCP+ Support and Payload Commands ... 362
Table 24-2, Activate Payload Command ... 363
Table 24-3, Deactivate Payload Command ... 365
Table 24-4, Payload-specific Encryption Behavior ... 365
Table 24-5, Suspend/Resume Payload Encryption Command .. 366
Table 24-6, Get Payload Activation Status Command .. 367
Table 24-7, Get Payload Instance Info Command ... 367
Table 24-8, Set User Payload Access Command ... 368
Table 24-9, Get User Payload Access Command .. 369
Table 24-10, Get Channel Payload Support Command ... 370
Table 24-11, Get Channel Payload Version Command ... 371
Table 24-12, Get Channel OEM Payload Info Command ... 371
Table 25-1, IPMI Serial/Modem Commands... 372
Table 25-2, Set Serial/Modem Configuration Command .. 372
Table 25-3, Get Serial/Modem Configuration Command ... 373
Table 25-4, Serial/Modem Configuration Parameters ... 374
Table 25-5, Set Serial/Modem Mux Command ... 393
Table 25-6, Get TAP Response Codes Command ... 394
Table 25-7, Set PPP UDP Proxy Transmit Data Command .. 394
Table 25-8, Get PPP UDP Proxy Transmit Data Command .. 394
Table 25-9, Send PPP UDP Proxy Packet Command .. 395
Table 25-10, Get PPP UDP Proxy Receive Data Command ... 396
Table 25-11, Serial/Modem Connection Active Command ... 397
Table 25-12, Callback Command .. 397
Table 25-13, Set User Callback Options Command .. 398
Table 25-14, Get User Callback Options Command ... 399
Table 25-15, Set Serial Routing Mux Command ... 400
Table 26-1, SOL Commands ... 402
Table 26-2, SOL Activating Command ... 402
Table 26-3, Set SOL Configuration Parameters Command ... 403
Table 26-4, Get SOL Configuration Parameters Command .. 403
Table 26-5, SOL Configuration Parameters .. 404
Table 27-1, BMC Watchdog Timer Commands .. 408
Table 27-2, Reset Watchdog Timer Command ... 410
Table 27-3, Set Watchdog Timer Command ... 411
Table 27-4, Get Watchdog Timer Command .. 412
Table 28-1, Chassis Commands .. 414

Intelligent Platform Management Interface Specification

24

Table 28-2, Get Chassis Capabilities Command ... 415
Table 28-3, Get Chassis Status Command ... 416
Table 28-4, Chassis Control Command ... 417
Table 28-5, Chassis Reset Command .. 418
Table 28-6, Chassis Identify Command .. 418
Table 28-7, Set Front Panel Button Enables Command .. 419
Table 28-8, Set Chassis Capabilities Command .. 419
Table 28-9, Set Power Restore Policy Command .. 420
Table 28-10, Set Power Cycle Interval Command .. 420
Table 28-11, Get System Restart Cause Command ... 421
Table 28-12, Set System Boot Options Command .. 422
Table 28-13, Get System Boot Options Command ... 422
Table 28-14, Boot Option Parameters ... 423
Table 28-15, Get POH Counter Command .. 428
Table 29-1, Event Commands ... 430
Table 29-2, Set Event Receiver ... 430
Table 29-3, Get Event Receiver Command ... 431
Table 29-4, Platform Event (Event Message) Command .. 431
Table 29-5, Event Request Message Fields ... 432
Table 29-6, Event Request Message Event Data Field Contents ... 434
Table 30-1, PEF and Alerting Commands ... 436
Table 30-2, Get PEF Capabilities Command ... 436
Table 30-2, Get PEF Capabilities Command ... 437
Table 30-3, Arm PEF Postpone Timer Command ... 437
Table 30-4, Set PEF Configuration Parameters Command ... 438
Table 30-5, Get PEF Configuration Parameters Command ... 438
Table 30-6, PEF Configuration Parameters ... 439
Table 30-7, Set Last Processed Event ID Command ... 443
Table 30-8, Get Last Processed Event ID Command .. 444
Table 30-9, Alert Immediate Command .. 444
Table 30-10, PET Acknowledge Command .. 446
Table 31-1, SEL Device Commands ... 448
Table 31-2, Get SEL Info Command ... 450
Table 31-3, Get SEL Allocation Info Command ... 451
Table 31-4, Reserve SEL Command ... 451
Table 31-5, Get SEL Entry .. 453
Table 31-6, Add SEL Entry ... 454
Table 31-7, Partial Add SEL Entry Command .. 455
Table 31-8, Delete SEL Entry ... 455
Table 31-9, Clear SEL ... 456
Table 31-10, Get SEL Time Command ... 456
Table 31-11, Set SEL Time Command .. 457
Table 31-11a, Get SEL Time UTC Offset Command ... 457
Table 31-11b, Set SEL Time UTC Offset Command .. 458
Table 31-12, Get Auxiliary Log Status Command .. 458
Table 31-13, Set Auxiliary Log Status Command ... 459
Table 32-1, SEL Event Records .. 460
Table 32-2, OEM SEL Record (Type C0h-DFh) ... 461
Table 32-3, OEM SEL Record (Type E0h-FFh) ... 461
Table 33-1, Mandatory SDR Update Mode Commands .. 463
Table 33-2, SDR Repository Device Commands .. 467

 Intelligent Platform Management Interface Specification

 25

Table 33-3, Get SDR Repository Info Command .. 468
Table 33-4, Get SDR Repository Allocation Info Command .. 469
Table 33-5, Reserve SDR Repository Command .. 470
Table 33-6, Get SDR Command .. 471
Table 33-7, Add SDR Command ... 472
Table 33-8, Partial Add SDR Command ... 472
Table 33-9, Delete SDR Command ... 473
Table 33-10, Clear SDR Repository Command .. 473
Table 33-11, Get SDR Repository Time Command .. 474
Table 33-12, Set SDR Repository Time Command ... 475
Table 33-13, Enter SDR Repository Update Mode Command .. 475
Table 33-14, Exit SDR Repository Update Mode Command .. 475
Table 33-15, Run Initialization Agent ... 475
Table 34-1, FRU Inventory Device Commands .. 476
Table 34-2, Get FRU Inventory Area Info Command ... 476
Table 34-3, Read FRU Data Command ... 477
Table 34-4, Write FRU Data Command .. 478
Table 35-1, Sensor Device Commands .. 480
Table 35-2, Get Device SDR Info Command .. 481
Table 35-3, Get Device SDR Command ... 483
Table 35-4, Reserve Device SDR Repository .. 483
Table 35-5, Get Sensor Reading Factors Command .. 484
Table 35-6, Set Sensor Hysteresis ... 485
Table 35-7, Get Sensor Hysteresis ... 485
Table 35-8, Set Sensor Thresholds .. 485
Table 35-9, Get Sensor Thresholds ... 486
Table 35-10, Set Sensor Event Enable ... 487
Table 35-11, Get Sensor Event Enable .. 489
Table 35-12, Re-arm Sensor Events .. 491
Table 35-13, Get Sensor Event Status Response Overview .. 493
Table 35-14, Get Sensor Event Status Command .. 494
Table 35-15, Get Sensor Reading Command .. 497
Table 35-16, Set Sensor Type Command .. 498
Table 35-17, Get Sensor Type ... 498
Table 35-18, Set Sensor Reading and Event Status Command ... 500
Table 35b-1, Command Forwarding Commands ... 504
Table 35b-2 Get Forwarded Commands Command .. 505
Table 35b-3, Set Forwarded Commands Command .. 506
Table 35b-4, Enable Forwarded Commands Command .. 506
Table 35b-5, Forwarded Command Command ... 509
Table 38-1, FRU Device Locator Field Usage .. 521
Table 39-1, System and Device-Relative Entity Instance Values .. 522
Table 42-1, Event/Reading Type Code Ranges ... 533
Table 42-2, Generic Event/Reading Type Codes .. 533
Table 42-3, Sensor Type Codes ... 535
Table 43-1, Full Sensor Record - SDR Type 01h .. 551
Table 43-2, Compact Sensor Record - SDR Type 02h .. 558
Table 43-3, Event-Only Sensor Record - SDR Type 03h .. 564
Table 43-4, Entity Association Record - SDR Type 08h ... 567
Table 43-5, Device-relative Entity Association Record - SDR Type 09h ... 568
Table 43-6, Generic Device Locator Record - SDR Type 10h .. 570

Intelligent Platform Management Interface Specification

26

Table 43-7, FRU Device Locator Record - SDR Type 11h ... 571
Table 43-8, Management Controller Device Locator - SDR 12h .. 573
Table 43-9, Management Controller Confirmation Record - SDR Type 13h .. 575
Table 43-10, BMC Message Channel Info Record - SDR Type 14h ... 576
Table 43-11, OEM Record - SDR Type C0h ... 578
Table 43-12, IPMB/I2C Device Type Codes ... 579
Table 43-13, Entity ID Codes .. 580
Table 43-14, 6-bit ASCII definition .. 582
Table 43-15, Sensor Unit Type Codes ... 584
Table 44-1, Example discrete Processor sensor with Sensor-specific states & event generation 587
Table 44-2, Example discrete Processor sensor with Generic states & event generation .. 588
Table C1-1, SM BIOS IPMI Device Information Record ... 594
Table C1-2, Interface Type field values .. 595
Table C1-3, Byte-aligned I/O Mapped Register Address examples .. 596
Table C1-4, 32-bit aligned I/O Mapped Register Address examples .. 596
Table C2-1, PCI Class Codes for IPMI ... 598
Table C3-1, Service Processor Management Interface Description Table Format .. 600
Table C3-2, IPMI Device Object Control Methods ... 603
Table F-1, TAP Flow Summary .. 614
Table G-1, Command Number Assignments and Privilege Levels ... 619
Table H-1, Sub-function Number Assignments... 624

 Intelligent Platform Management Interface Specification

 27

Intelligent Platform Management Interface Specification

28

1. Introduction
This document presents the base specifications for the Intelligent Platform Management Interface (IPMI)

architecture. The IPMI specifications define standardized, abstracted interfaces to the platform management

subsystem. IPMI includes the definition of interfaces for extending platform management between board within the

main chassis, and between multiple chassis.

The term “platform management” is used to refer to the monitoring and control functions that are built in to the

platform hardware and primarily used for the purpose of monitoring the health of the system hardware. This

typically includes monitoring elements such as system temperatures, voltages, fans, power supplies, bus errors,

system physical security, etc. It includes automatic and manually driven recovery capabilities such as local or

remote system resets and power on/off operations. It includes the logging of abnormal or ‘out-of-range’ conditions

for later examination and alerting where the platform issues the alert without aid of run-time software. Lastly it

includes inventory information that can help identify a failed hardware unit.

This document is the main specification for IPMI. It defines the overall architecture, common commands, event

formats, data records, and capabilities used across IPMI-based systems and peripheral chassis. This includes the

specifications for IPMI management via LAN, serial/modem, PCI Management bus, and the local interface to the

platform management. In addition to this document, there is a set of separate supporting specifications:

 The Intelligent Platform Management Bus (IPMB) is an I2C*-based bus that provides a standardized

interconnection between different boards within a chassis. The IPMB can also serve as a standardized interface

for auxiliary or ‘emergency’ management add-in cards.

 IPMB v1.0 Address Allocation documents the different ranges and assignments of addresses on the IPMB.

 The Intelligent Chassis Management Bus (ICMB) provides a standardized interface for platform management

information and control between chassis. The ICMB is designed so it can be implemented with a device that

connects to the IPMB. This allows the ICMB to be implemented as an add-on to systems that have an existing

IPMB. See [ICMB] for more information.

 The Platform Event Trap Format specification defines the format of SNMP traps used for alerts.

 The Platform Management FRU Information Storage Definition defines the format of Field Replaceable Unit

information (information such as serial numbers and part numbers for various replaceable boards and other

components) accessible in an IPMI-based system.

The implementation of certain aspects of IPMI may require access to other specifications and documents that are not

part Refer to the Reference Documents section below, for these and other supporting documents.

1.1 Audience

This document is written for engineers and system integrators involved in the design of and interface to platform

management hardware, and System Management Software (SMS) developers. Familiarity with microcontrollers,

software programming, and PC and Intel server architecture is assumed. For basic and/or supplemental

information, refer to the appropriate reference documents.

1.2 Reference Documents

The following documents are companion and supporting specifications for IPMI and associated interfaces:

[ACPI 1.0] Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999.

©1999, Copyright © 1996, 1997, 1998, 1999 Intel Corporation, Microsoft Corporation, Toshiba

Corp. http://www.teleport.com/~acpi/

http://www.teleport.com/~acpi/

 Intelligent Platform Management Interface Specification

 29

 [ACPI 2.0] Advanced Configuration and Power Interface Specification, Revision 2.0c, August 25, 2003. ©1996,

1997, 1998, 1999, 2000, 2001, 2002, 2003 Compaq Computer Corporation, Intel Corporation,

Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation. http://www.acpi.info

[AES] Advanced Encryption Standard, FIPS 197, November 2001.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[ADDR] IPMB v1.0 Address Allocation, ©2001 Intel Corporation, Hewlett-Packard Company, NEC

Corporation, and Dell Computer Corporation. This document specifies the allocation of I2C

addresses on the IPMB. http://developer.intel.com/design/servers/ipmi

[ASF] Alert Standard Format v1.0 Specification, ©2001, Distributed Management Task Force.

http://www.dmtf.org

[ASF 2.0] Alert Standard Format (ASF) Specification Version 2.0, 23 April 2003, ©2000-2003, Distributed

Management Task Force, Inc. http://www.dmtf.org

[BR1] Entity Authentication and Key Distribution, Bellare and Rogaway, 1993.

[CBCP] Proposal for Callback Control Protocol (CBCP), draft-ietf-pppext-callback-cp-02.txt, N. Gidwani,

Microsoft, July 19, 1994. As of this writing, the specification is available via the Microsoft

Corporation web site: http://www.microsoft.com

[FIPS-180-2] NIST, FIPS PUB 180-2: Secure Hash Standard, August 2002.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FRU] Platform Management FRU Information Storage Definition v1.0, ©1999 Intel Corporation, Hewlett-

Packard Company, NEC Corporation, and Dell Computer Corporation. Provides the field definitions

and format of Field Replaceable Unit (FRU) information.

http://developer.intel.com/design/servers/ipmi

[I2C] The I2C Bus And How To Use It, ©1995, Philips Semiconductors. This document provides the

timing and electrical specifications for I2C busses.

[ICMB] Intelligent Chassis Management Bus Bridge Specification v1.0, rev. 1.3, © 2002 Intel Corporation.

Provides the electrical, transport protocol, and specific command specifications for the ICMB and

information on the creation of management controllers that connect to the ICMB.

http://developer.intel.com/design/servers/ipmi

[IPMB] Intelligent Platform Management Bus Communications Protocol Specification v1.0, ©1998 Intel

Corporation, Hewlett-Packard Company, NEC Corporation, and Dell Computer Corporation. This

document provides the electrical, transport protocol, and specific command specifications for the

Intelligent Platform Management Bus.

[MODES] Recommendation for Block Cipher Modes of Operation: Methods and Techniques, NIST Special

Publication 800-38A, December 2001.

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[MSFT EMS] Building Hardware and Firmware to Complement Microsoft Windows Headless Operation, Version

1.00, July 16, 2002. http://www.microsoft.com/whdc/hwdev/platform/server/headless/

IPMB. http://developer.intel.com/design/servers/ipmi

[MSVT] Windows Platform Design Notes, Building Hardware and Firmware to Complement Microsoft

Windows Headless Operation, ©2001, Microsoft Corporation. http://www.microsoft.com

http://www.acpi.info/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://developer.intel.com/design/servers/ipmi
http://www.dmtf.org/
http://www.dmtf.org/
http://www.microsoft.com/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://developer.intel.com/design/servers/ipmi
http://developer.intel.com/design/servers/ipmi
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://www.microsoft.com/whdc/hwdev/platform/server/headless/
http://developer.intel.com/design/servers/ipmi

Intelligent Platform Management Interface Specification

30

[PET] IPMI Platform Event Trap Format Specification v1.0, ©1998, Intel Corporation, Hewlett-Packard

Company, NEC Corporation, and Dell Computer Corporation. This document specifies a common

format for SNMP Traps for platform events.

[RFC826] An Ethernet Address Resolution Protocol -- or -- Converting Network Protocol Addresses to 48-bit

Ethernet Address for Transmission on Ethernet Hardware, David C. Plummer, November 1982

[RFC1319] RFC 1319, The MD2 Message-Digest Algorithm, B. Kaliski, RSA Laboratories, April 1992.

[RFC1321] RFC 1321, The MD5 Message-Digest Algorithm, R. Rivest, MIT Laboratory for Computer Science

and RSA Data Security, Inc. April, 1992.

[RFC1332] RFC 1332, The PPP Internet Protocol Control Protocol (IPCP), G. McGreggor, Merit, May 1992.

[RFC1334] RFC 1334, PPP Authentication Protocols, B. Lloyd, L&A, W. Simpson, Daydreamer, October

1992. Document includes specification for PAP (Password Authentication Protocol).

[RFC1661] RFC 1661, STD 51, The Point-to-Point Protocol (PPP), Simpson, W., Editor, Daydreamer, July

1994.

[RFC1662] RFC 1662, STD 51, PPP in HDLC-like Framing, Simpson, W., Editor, Daydreamer, July 1994.

[RFC1994] RFC 1994, PPP Challenge Handshake Authentication Protocol (CHAP), Simpson, W., Editor,

Daydreamer August 1994.

[RFC2104] RFC 2104, HMAC: Keyed-Hashing for Message Authentication, H. Krawczyk, IBM, M. Bellare,

UCSD, R. Canetti, IBM, February 1997.

http://www.ietf.org/rfc/rfc2104.txt

[RFC2153] RFC 2153, PPP Vendor Extensions, Simpson, W., Daydreamer, May 1997.

[RFC2404] RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH, C. Madson, Cisco Systems Inc., R.

Glenn, NIST, November 1998.

http://www.ietf.org/rfc/rfc2404.txt

[RFC2433] RFC 2433, Microsoft PPP CHAP Extensions, G. Zorn / S. Cobb, Microsoft Corporation, October

1998

[RFC2460] RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, S. Deering, Cisco; R. Hinden, Nokia;

December 1998

[RFC2464] IPv6 Packets over Ethernet, M. Crawford, Fermilab; December 1998

[RFC2759] RFC 2759, Microsoft PPP CHAP Extensions, Version 2, G. Zorn, Microsoft Corporation, January

2000

[RFC3315] Dynamic Host Configuration Protocol for IPv6 (DHCPv6), R. Droms, Ed.,Cisco; J. Bound,

Hewlett Packard; B. Volz, Ericsson; T. Lemon, Nominum; C. Perkins, Nokia Research Center; M.

Carney; Sun Microsystems; July 2003

[RFC4122] RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, P Leach, Microsoft; M.

Mealling, Refactored Networks, LL; and R. Salz, DataPower Technology, Inc.; July 2005

[RFC4291] IPv6 Addressing Architecture, R. Hinden, Nokia; S. Deering, Cisco Systems; February 2006

[RFC4294] IPv6 Node Requirements, J. Loughney, Ed., Nokia; April 2006

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2404.txt

 Intelligent Platform Management Interface Specification

 31

[RFC4634] US Secure Hash Algorithms (SHA and HMAC-SHA), D. Eastlake 3rd, Motorola Labs , T. Hansen,

AT&T Labs, July 2006

[RFC4861] Neighbor Discovery for IPv6, T. Narten, IBM; E. Nordmark, Sun Microsystems; W. Simpson,

Daydreamer; December 1998

 [RFC4862] IPv6 Stateless Address Autoconfiguration, S. Thomson, Cisco; T. Narten, IBM; T. Jinmei, Toshiba;

September 2007

[RFC4868] Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec, S. Kelly, Aruba

Networks, S. Frankel, NIST, May 2007

[SHA-1] NIST, FIPS PUB 180-2: Secure Hash Standard, August 2002.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[SMBIOS] System Management BIOS (SMBIOS) Reference Specification, Version 2.4, July 21, 2004.

Copyright © "2000, 2002, 2004" Distributed Management Task Force, Inc. (DMTF). All rights

reserved.

[SMBUS] System Management Bus (SMBus) Specification, Version 2.0, ©2000, Duracell Inc., Fujitsu Personal

Systems Inc., Intel Corporation, Linear Technology Corporation, Maxim Integrated Products,

Mitsubishi Electric Corporation, Moltech Power Systems, PowerSmart Inc., Toshiba Battery Co.,

Ltd., Unitrode Corporation, USAR Systems.

[TAP] Telocator Access Protocol version 1.8, February 04, 1997. ©1997, Personal Communications

Industry Association. http://www.pcia.com (As of this writing, the document is found under

‘Wireless Resource Center | Protocols’, or: http://www.pcia.com/wireres/protocol.htm.) This

document specifies a protocol for sending an alphanumeric page by connecting to a paging service

via a serial modem.

[TIA-602] TIA/EIA Standard: Data Transmission Systems and Equipment - Serial Asynchronous Automatic

Dialing and Control, TIA/EIA 602, June 1992. © 1992, Telecommunications Industry Association.

Also available from the Electronic Industries Association. This document specifies the dialing

protocol commonly used in asynchronous serial modems.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.pcia.com/
http://www.pcia.com/wireres/protocol/tapv1p8/index.htm

Intelligent Platform Management Interface Specification

32

1.3 Conventions and Terminology

If not explicitly indicated, bits in figures are numbered with the most significant bit on the left and the least

significant bit on the right.

This document uses the following terms and abbreviations:

Table 1-1, Glossary
Term Definition

Asserted Active-high (positive true) signals are asserted when in the high electrical state (near power
potential). Active-low (negative true) signals are asserted when in the low electrical state
(near ground potential).

BMC Baseboard Management Controller

Bridge The circuitry that connects one computer bus to another, allowing an agent on one to access
the other.

Byte An 8-bit quantity.

CMOS In terms of this specification, this describes the PC-AT compatible region of battery-backed
128 bytes of memory, which normally resides on the baseboard.

Deasserted A signal is deasserted when in the inactive state. Active-low signal names have “_L”
appended to the end of the signal mnemonic. Active-high signal names have no “_L” suffix.
To reduce confusion when referring to active-high and active-low signals, the terms one/zero,
high/low, and true/false are not used when describing signal states.

Diagnostic
Interrupt

A non-maskable interrupt or signal for generating diagnostic traces and ‘core dumps’ from the
operating system. Typically NMI on IA-32 systems, and an INIT on Itanium™-based systems.

Dword Double word is a 32-bit (4 byte) quantity.

EEPROM Electrically Erasable Programmable Read Only Memory.

EvM Notation for ‘Event Message’. See text for definitions of ‘Event Message’.

FPC Front Panel Controller.

FRB Fault Resilient Booting. A term used to describe system features and algorithms that improve
the likelihood of the detection of, and recovery from, processor failures in a multiprocessor
system.

FRU Field Replaceable Unit. A module or component which will typically be replaced in its entirety
as part of a field service repair operation.

Hard Reset A hardware reset event that initializes components and invalidates caches for a system or
subsystem. In the context of this specification, the term Hard Reset is generally used to refer
to System Hard Resets, where System Hard Resets are Hard Resets of the computer system
that do not reset the BMC, Satellite Controllers, or other elements of the platform
management subsystem. Unless explicitly stated, Hard Resets or System Hard Resets do not
refer to resets of the BMC or other elements of the platform management subsystem.

I2C Inter-Integrated Circuit bus. A multi-master, 2-wire, serial bus used as the basis for the
Intelligent Platform Management Bus.

ICMB Intelligent Chassis Management Bus. A serial, differential bus designed for IPMI messaging
between host and peripheral chassis. Refer to [ICMB] for more information.

IERR Internal Error. A signal from the Intel Architecture processors indicating an internal error
condition.

IPM Intelligent Platform Management.

IPMB Intelligent Platform Management Bus. Name for the architecture, protocol, and
implementation of a special bus that interconnects the baseboard and chassis electronics
and provides a communications media for system platform management information. The bus
is built on I2C and provides a communications path between ‘management controllers’ such
as the BMC, FPC, HSC, PBC, and PSC.

ISA Industry Standard Architecture. Name for the basic ‘PC-AT’ functionality of an Intel
Architecture computer system.

KB 1024 bytes

LUN Logical Unit Number. In the context of the Intelligent Platform Management Bus protocol, this
is a sub-address that allows messages to be routed to different ‘logical units’ that reside
behind the same I2C slave address.

 Intelligent Platform Management Interface Specification

 33

NMI Non-maskable Interrupt. The highest priority interrupt in the system, after SMI. This interrupt
has traditionally been used to notify the operating system fatal system hardware error
conditions, such as parity errors and unrecoverable bus errors. It is also used as a Diagnostic
Interrupt for generating diagnostic traces and ‘core dumps’ from the operating system.

MD2 RSA Data Security, Inc. MD2 Message-Digest Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data.

MD5 RSA Data Security, Inc. MD5 Message-Digest Algorithm. An algorithm for forming a 128-bit
digital signature for a set of input data. Improved over earlier algorithms such as MD2.

Payload For this specification, the term ‘payload’ refers to the information bearing fields of a message.
This is separate from those fields and elements that are used to transport the message from
one point to another, such as address fields, framing bits, checksums, etc. In some
instances, a given field may be both a payload field and a transport field.

PEF Platform Event Filtering. The name of the collection of IPMI interfaces in the IPMI v1.5
specification that define how an IPMI Event can be compared against ‘filter table’ entries that,
when matched, trigger a selectable action such as a system reset, power off, alert, etc.

PERR Parity Error. A signal on the PCI bus that indicates a parity error on the bus.

PET Platform Event Trap. A specific format of SNMP Trap used for system management alerting.
Used for IPMI Alerting as well as alerts using the ASF specification. The trap format is
defined in the PET specification. See [PET] and [ASF] for more information.

POST Power On Self Test.

Re-arm Re-arm, in the context of this document, refers to resetting internal device state that tracks
that an event has occurred such that the device will re-check the event condition and re-
generate the event if the event condition exists.

SDR Sensor Data Record. A data record that provides platform management sensor type,
locations, event generation, and access information.

SEL System Event Log. A non-volatile storage area and associated interfaces for storing system
platform event information for later retrieval.

SERR System Error. A signal on the PCI bus that indicates a ‘fatal’ error on the bus.

SMI System Management Interrupt.

SMIC Server Management Interface Chip. Name for one type of system interface to an IPMI
Baseboard Management Controller.

SMM System Management Mode. A special mode of Intel IA-32 processors, entered via an SMI.
SMI is the highest priority non-maskable interrupt. The handler code for this interrupt is
typically located in a physical memory space that is only accessible while in SMM. This
memory region is typically loaded with SMI Handler code by the BIOS during POST.

SMS System Management Software. Designed to run under the OS.

Soft Reset A reset event in the system which forces CPUs to execute from the boot address, but does
not change the state of any caches or peripheral devices.

Word A 16-bit quantity.

1.4 Background - Architectural Goals

A number of goals/principles influence the design and implementation of a platform management subsystem that

works across multiple platforms. The abstracted, modular, extensible interfaces specified in this document seek to

satisfy those goals. The following review is provided to give a framework to assist in the evaluation options in the

implementation of this specification.

Provide Layered Management Value

– Provide management value at each level of integration, and have the net value increase as each level is

added. I.e. progressing from processor, through chip set, BIOS, baseboard, baseboard with

management circuitry, with onboard networking, with intelligent controllers, with managed chassis,

system management software, with Remote Management Cards, etc.

– Maintain modularity so that one level does not carry undue cost burden for another. Levels should

retain value if separated. Avoid burdening baseboard with cost for chassis-specific management

Intelligent Platform Management Interface Specification

34

functions. Avoid building in functions that unduly impede OEMs in providing their own chassis

management features.

– Drive intelligence to appropriate level. Don’t put complexity in at a level if the next higher level can

handle it. I.e. don’t do something with a microcontroller if the system’s host processor can do it more

flexibly and economically.

Plan for Evolution and Re-use
– Architect so existing implementations can be cleanly extended with new functionality, without

requiring existing functionality to be re-implemented or redesigned.

– Architect for product families. Avoid ‘local optimizations’ that benefit one product at the cost of future

projects.

– Knowledge and understanding of the architecture is also a valuable commodity. “Re-inventing the

wheel” often means retraining the wheel user. Design to preserve the knowledge base of developers,

testers, salespersons, and customers by maintaining consistency in architecture and implementation - in

hardware implementation, firmware, software, protocols, and interfaces.

– Design for the economic incorporation of changes in the population and implementation of baseboard

and remote sensors. Architect to minimize the impact to hardware and software when sensor

population or sensor hardware interfaces change.

– Design to maximize ‘self configurability’ in system management software. I.e. ‘Plug ‘N Play’. Provide

platform resident discovery mechanisms, such as standardized tables, discovery mechanisms, etc. to

reduce or eliminate the need to ‘customize’ system software for different platforms.

Provide Scalability
– Architecture should scale from entry through enterprise and data center class server systems.

Architecture should be adaptable from single board and single chassis, through multi-board and multi-

chassis systems.

– Apply ‘Layered Management Value’ concept. Low-end solutions should be a proper functional subset

of higher end solutions. Entry solutions should not carry undue burden for higher class systems.

Support OEM Extensibility:
– Provide clean points for OEM extension and integration.

– Provide OEM support in protocol and command specifications. Reserve command numbers, sensor

numbers, etc. for OEM extension.

1.5 New for IPMI v1.5

IPMI v1.5 is an extension of the v1.0 specification. IPMI v1.5 also includes learnings, feedback, and features

gathered from industry review and experiences deploying IPMI v1.0 enabled systems.

The following goals guided the creation of the IPMI v1.5 specification:

 Help enable “Always Available Manageability” by enabling new access media: LAN, Serial/Modem, and

PCI Management Bus.

 Extend “Autonomous Manageability” by defining new automatic alerting and recovery mechanisms.

 Synch-up with and support emergent and existing standards such as PPP, the DMTF Pre-OS Working

Group ‘Alert Standard Forum’ specification, SMBus 2.0, Compact PCI / AdvancedTCA, and the PCI

Management Bus.

 Retain as much backward compatibility with IPMI v1.0 as feasible

 Intelligent Platform Management Interface Specification

 35

The following presents a brief summary of some of the more significant additions and enhancements in the IPMI

v1.5 specification:

Serial/Modem Messaging and Alerting

 The IPMI v1.5 specification defines how IPMI messaging can be accomplished via a direct serial or

external modem connection to the BMC (Baseboard Management Controller). It also includes the

specifications for generating alerts, numeric pages, and alphanumeric pages on events.

Serial Port Sharing

 This is a capability that works in conjunction with serial/modem messaging and alerting and allows the

baseboard serial connector to be shared between use by the BMC and use by the system. This enables

coordination between system features such as console redirection and allows the serial connection to

be used for run-time applications while still allowing it to be remotely accessed for ‘emergency’

management.

Boot Options

 IPMI v1.5 includes a boot options ‘mailbox’ that can be used to direct the operation of BIOS and the

booting process following a system power up or reset operation.

LAN Messaging and Alerting

 The specification defines how IPMI messaging can be accomplished via a LAN connection to the

BMC. It also includes the specifications for generating PET format SNMP traps on events.

Extended BMC Messaging ‘Channel Model’

 IPMI v1.0 introduced a limited capability to use a ‘Channel Number’ capability that was primarily

used for routing messages to the IPMB. IPMI v1.5 expands on the use of channel numbers as a general

mechanism for routing messages between different media and organizing the access

Additional Sensor and Event Types

 Several new sensor types have been added to IPMI v1.5, including a Slot/Connector sensor for

monitoring hot-plug slot status, an ACPI System Power State sensor to support out-of-band monitoring

of the system power state, and an enhanced Watchdog sensor that supports events generated by the

standardized watchdog timer function.

Platform Event Filtering (PEF)

 Platform Event Filtering (PEF) provides a mechanism for configuring the BMC to taking selected

actions on event messages that it receives or has internally generated. These actions include operations

such as system power-off, system reset, as well as triggering the generation of an alert.

Alert Policies

 Alert policies provide a configurable mechanism for configuring and controlling the delivery of an

alert to multiple destinations. This enables the creation of ‘call down lists’ where one alert destination

is tried first and then another.

Intelligent Platform Management Interface Specification

36

1.6 New for IPMI v2.0

IPMI v1.5 is an extension of the v1.5 specification. IPMI v2.0 adds new capabilities and incorporates learnings,

feedback, and features gathered from industry review and experiences deploying IPMI v1.5 enabled systems. The

following summarizes the most significant new features for IPMI v2.0:

Enhanced Authentication

 Extensions to the protocols for IPMI over IP, collectively referred to as “RMCP+”, support new

algorithms that provide more robust key exchange process for establishing sessions and authenticating

users. These steps more closely align with those used for the DMTF ASF 2.0 specification (see

[ASF2.0]), making it simpler to create applications that can connect to both ASF and IPMI-based

system.

VLAN Support

 Configuration options have been added to support IEEE 802.1q VLAN (virtual LAN) headers for IPMI

over IP sessions on IEEE 802.3 Ethernet. VLAN works with VLAN-aware routers and switches to

allow a physical network to be partitioned into ‘virtual’ networks where a group of devices on different

physical LAN segments which can communicate with each other as if they were all on the same

physical LAN segment. This can be used to isolate classes of network membership at the Ethernet

Packet level rather than at the IP level, as might be done with a router. This can be used to set up a

‘management VLAN’ where only devices that are members of that VLAN will receive packets related

to management, and, conversely, will be isolated from the need to process network traffic for other

VLANs.

Serial Over LAN (SOL)

 Serial Over LAN provides a mechanism that enables the serial controller of a managed system to be

redirected over an IPMI session over IP. This enables remote console applications to provide access to

text-based interfaces for BIOS, utilities, operating systems, and applications while simultaneously

providing access to IPMI platform management functions. SOL is implemented as a payload type

under the new payload capability in RMCP+.

Payloads

 RMCP+ adds the ability to enable IPMI over IP sessions to other types of traffic in addition to IPMI

messages. This includes both standard payload types defined in the IPMI specification (such as SOL),

and OEM ‘value-added’ payload types.

Encryption Support

 IPMI messages and other payloads carried over RMCP+ can be encrypted. This enables confidential

remote configuration of parameters such as user passwords and transfer of sensitive payload data over

SOL.

Extended User Login Options

 New options support “Role Only” logins for simple environments where it is desirable to just enable

logins according to a given privilege level, without the need to assign or configure usernames. Support

for “two-key” logins enables a BMC to be configured for a very robust environment, where both a

user-specific and BMC-specific key are required to connect to a given BMC.

Firmware Firewall

 Firmware Firewall is the name for a collection of commands that enable a BMC implementation to

restrict the ability to execute certain commands or functions from a given interface. This can be used to

protect against operations that errant or malicious software may use to affect the managed system or

other systems. For example, this enables a BMC to block the ability for local software to send a

Chassis Control command to reset another blade in a modular server implementation where BMCs on

 Intelligent Platform Management Interface Specification

 37

individual blades share a common management bus across the blade backplane. Firmware Firewall

includes a set of commands that enable software to discover which commands and functions are

present and enabled on a given management controller. These commands can be used by themselves to

provide a more efficient way for software and conformance tests to discover which features are

available.

SMBus System Interface (SSIF)

The SMBus System Interface (SSIF) is a new, low pin-count, option for the hardware interface that

provides local access to the BMC via a connection to the system’s SMBus host controller. SSIF helps

support lower-cost BMC implementations by enabling an interface that can be used on low-cost

microcontrollers in low pin-count packages.

Intelligent Platform Management Interface Specification

38

1.7 IPMI Overview

This section presents an overview of IPMI and its main elements and characteristics.

1.7.1 Intelligent Platform Management

The term Intelligent Platform Management refers to autonomous monitoring and recovery features implemented

directly in platform management hardware and firmware. The key characteristic of Intelligent Platform

Management is that inventory, monitoring, logging, and recovery control functions are available independent of

the main processors, BIOS, and operating system. Platform management functions can also be made available

when the system is in a powered down state.

Intelligent Platform Management capabilities are a key component in providing enterprise-class management

for high-availability systems. Platform status information can be obtained and recovery actions initiated under

situations where system management software and normal ‘in-band’ management mechanisms are unavailable.

The independent monitoring, logging, and access functions available through IPMI provide a level of

manageability built-in to the platform hardware. This can support systems where there is no system

management software available for the particular operating system, or the end-user elects not to load or enable

the system management software.

1.7.2 IPMI Relationship to other Management Standards

IPMI is best used in conjunction with system management software running under the operating system. This

provides an enhanced level of manageability by providing in-band access to the IPMI management information

and integrating IPMI with the additional management functions provided by management applications and the

OS. System management software and the OS can provide a more sophisticated control, error handling and

alerting, than can be directly provided by the platform management subsystem.

IPMI is a hardware level interface specification that is ‘management software neutral’ providing monitoring and

control functions that can be exposed through standard management software interfaces such as DMI, WMI,

CIM, SNMP, etc. As a hardware level interface, it sits at the bottom of a typical management software stack, as

illustrated in Figure 1-1, below.

Figure 1-1, IPMI and the Management Software Stack

H
A

R
D

W
A

R
E

S
O

F
T

W
A

R
E

IPMI I/F

‘In-band’

Remote

Access

Service Provider

SP Interface

Instrumentation Code

Baseboard Mgmt.

Controller

Management

Applications

IPMI H/W I/F

M
a
n
a
g
e
m

e
n

t
S

/W

S
ta

n
d
a
rd

s
IP

M
I

STANDARD Remote I/F

(e.g. RPC, SNMP)

STANDARD S/W I/F

(e.g. DMI-MI, CIM)

STANDARD S/W I/F

(e.g. DMI-CI, WMI)

IPMI I/F Code

 Intelligent Platform Management Interface Specification

 39

1.7.3 Management Controllers and the IPMB

Figure 1-2, IPMI Block Diagram, shows the main elements of an IPMI implementation. At the heart of the

IPMI architecture is a microcontroller called the Baseboard Management Controller, or BMC. The BMC

provides the intelligence behind Intelligent Platform Management. The BMC manages the interface between

system management software and the platform management hardware, provides autonomous monitoring, event

logging, and recovery control, and serves as the gateway between system management software and the IPMB

and ICMB.

IPMI supports the extension of platform management by connecting additional management controllers to the

system using the IPMB. The IPMB is an I2C-based serial bus that is routed between major system modules. It is

used for communication to and between management controllers. This provides a standardized way of

integrating chassis features with the baseboard. Because the additional management controllers are typically

distributed on other boards within the system, away from the ‘central’ BMC, they are sometimes referred to as

satellite controllers.

Figure 1-2, IPMI Block Diagram

MOTHERBOARD

PROCESSOR

BOARDMEMORY BOARD

 SYSTEM EVENT LOG (SEL)

 SENSOR DATA RECORD (SDR)

REPOSITORY

 BASEBOARD FIELD-REPLACEABLE

UNIT (FRU) INFO

FRU

SEEPROM

System Bus

e.g. Voltages, Temperatures,

Fans, Power & Reset control, etc.

Non-volatile Storage

Private Management Busses

LAN

Motherboard

Serial

Controller

Serial

Port

Sharing

LAN

Connector

Network

(LAN)

Controller

Serial

Connector

Modem

side-band

interface

to NIC,

e.g.

SMBus

IPMB

CHASSIS BOARD

CHASSIS

MANAGEMENT

(SATELLITE

CONTROLLER)

e.g. Fans,

Temperatures, Power

Supplies

ICMB (Intelligent Chassis Management Bus)

RS-485

Transceivers

ICMB

BRIDGE

(optional)

Serial

Controller

System Interface

BASEBOARD

MANAGEMENT

CONTROLLER

(BMC)

PCI Management

Bus

Serial

Controller

FRU

SEEPROM

FRU

SEEPROM

Sensors & Control Circuitry

Temperature

Sensor

Chassis

Sensors

Aux. IPMB

Connector

Remote

Management Card

REDUNDANT POWER

BOARD

FRU

SEEPROM

Aux. IPMB

Connector

IPMI

MESSAGES

By standardizing the interconnect, a baseboard can be readily integrated into a variety of chassis that have

different management features. IPMI’s support for multiple management controllers also means that the

architecture is scalable. A complex, multi-board set in an enterprise-class server can use multiple management

controllers for monitoring the different subsystems such as redundant power supplies, hot-swap RAID drive

slots, expansion I/O, etc., while an entry-level system can have all management functions integrated into the

BMC.

IPMI also includes ‘low-level’ I2C access commands that can be used to access ‘non-intelligent’ I2C devices

(devices that don’t handle IPMI commands) on the IPMB or Private Busses accessed via a management

Intelligent Platform Management Interface Specification

40

controller. The IPMB can also support SMBus slave devices, with the restriction that the SMB Alert signal is

not supported on IPMB, and a controller that implements the IPMB protocol cannot serve as the target for an

SMBus Modified Write Word protocol transfer from an SMBus slave. Refer to the IPMB and ICMB

Specifications (see Reference Documents) for additional information on the IPMB and ICMB.

1.7.4 IPMI Messaging

IPMI uses message-based interfaces for the different interfaces to the platform management subsystem such as

IPMB, serial/modem, LAN, ICMB, PCI Management Bus, and the system software-side “System Interface” to

the BMC.

All IPMI messages share the same fields in the message ‘payload’ - regardless of the interface (transport) that

they’re transferred over. This is represented with the double-ended arrows in Figure 1-2, IPMI Block Diagram,

The same core of IPMI messages is available over every IPMI-specified interface, they’re just ‘wrapped’

differently according to the needs of the particular transport. This enables a piece of management software that

works on one interface to be converted to use a different interface mainly by changing the underlying ‘driver’

for the particular transport. This also enables knowledge re-use: A developer that understands the operation of

IPMI commands over one interface can readily apply that knowledge to a different IPMI interface.

IPMI messaging uses a request/response protocol. IPMI request messages are commonly referred to as

commands. The use of a request/response protocol facilitates the transfer of IPMI messages over different

transports. It also facilitates multi-master operation on busses like the IPMB and ICMB, allowing messages to

be interleaved and multiple management controllers to directly intercommunicate on the bus.

IPMI commands are grouped into functional command sets, using a field called the Network Function Code.

There are command sets for sensor and event related commands, chassis commands, etc. This functional

grouping makes it easier to organize and manage the assignment and allocation of command values.

All IPMI request messages have a Network Function, command, and optional data fields. All IPMI response

messages carry Network Function, command, optional data, and a completion code field. As inferred earlier, the

differences between the different interfaces has to do with the framing and protocols used to transfer this

payload. For example, the IPMB protocol adds fields for I2C and controller addressing, and data integrity

checking and handling, whereas the LAN interface adds formatting for sending IPMI messages as LAN packets.

1.7.5 Sensor Model

Access to monitored information, such as temperatures and voltages, fan status, etc., is provided via the IPMI

Sensor Model. Instead of providing direct access to the monitoring hardware IPMI provides access by

abstracted sensor commands, such as the Get Sensor Reading command, implemented via a management

controller. This approach isolates software from changes in the platform management hardware implementation.

Sensors are classified according to the type of readings they provide and/or the type of events they generate. A

sensor can return either an analog or discrete reading. Sensor events can be discrete or threshold-based.

The different event types, sensor types, and monitored entities are represented using numeric codes defined in

the IPMI specification. IPMI avoids reliance on strings for management information. Using numeric codes

facilitates internationalization, automated handling by higher level software, and reduces management

controller code and data space requirements.

1.7.6 System Event Log and Event Messages

The same approach is applied to the generation and control of platform events. The BMC provides a

centralized, non-volatile System Event Log, or SEL. Having the SEL and logging functions managed by the

BMC helps ensure that ‘post-mortem’ logging information is available should a failure occur that disables the

systems processor(s).

 Intelligent Platform Management Interface Specification

 41

A set of IPMI commands allows the SEL to be read and cleared, and for events to be added to the SEL. The

common request message (command) used for adding events to the SEL is referred to as an Event Message.

Event Messages can be sent to the BMC via the IPMB. This provides the mechanism for satellite controllers to

detect events and get them logged into the SEL. The controller that generates an event message to another

controller via IPMB is referred to as an IPMB Event Generator. The controller that receives event messages is

called the IPMB Event Receiver.

A generic Event Receiver is a controller that accepts a Platform Event Message command over whatever media

is connected to it, plus internally generated Event Messages. The BMC is typically the only generic Event

Receiver in the system.

Management Controllers that generate Event Messages must know the sensor and event type so it can place that

information in the Event Message. This ensures that Event Messages carry important information that can be

interpreted without requiring a-priori knowledge of the sensor, or access to the Sensor Data Record for the

sensor.

This is often done by ‘hardcoding’ this relationship into the controller’s firmware. However, this approach

binds the Sensor Type and Event Type assignment to the generation of event messages. IPMI also includes

commands that allow the sensor and event type information to be read from the Sensor Data Record and written

into the controller during initialization. This makes it possible to create generic management controllers that do

not have to have hard-coded sensor types. For example, a vendor could create a device that provides a number

of analog, threshold-based sensors that get assigned as voltage, temperature, or other sensor types according to

the type information the system integrator placed in the SDRs for the sensors. An analog input could be

assigned as a “+5V” sensor on one system, and a “-12V” sensor on another just by changing the SDRs.

1.7.7 Sensor Data Records & Capabilities Commands

IPMI’s extensibility and scalability mean that each platform implementation can have a different population of

management controllers and sensors, and different event generation capabilities. The design of IPMI allows

system management software to retrieve information from the platform and automatically configure itself to the

platform’s capabilities. This greatly reduces or eliminates the need for platform-specific configuration of the

platform management instrumentation software - enabling the possibility of “Plug and Play” platform-

independent instrumentation software.

Information that describes the platform management capabilities is provided via two mechanisms: capabilities

commands and Sensor Data Records (SDRs). Capabilities commands are commands within the IPMI command

sets that return fields that provide information on other commands and functions the controller can handle.

Sensor Data Records are data records that contain information about the type and number of sensors in the

platform, sensor threshold support, event generation capabilities, and information on what types of readings the

sensor provides.

The primary purpose of Sensor Data Records is to describe the sensor configuration of the platform

management subsystem to system software. Sensor Data Records describe sensors; they do not instantiate

sensors. For example, adding a new Sensor Data Record does not cause management controller firmware to

automatically ‘grow’ or instantiate a new sensor. But they are used to describe sensors that already exist, and

can also be used to tell software to only pay attention to a subset of the available sensors.

Sensor data records have a limited capability to configure pre-existing sensors. There is information that an

Initialization Agent in the BMC to enable or disable sensors and initialize thresholds. This is described more in

the following section.

Sensor Data Records also include records describing the number and type of devices that are connected to the

system’s IPMB, records that describe the location and type of FRU Devices (devices that contain field

replaceable unit information).

Intelligent Platform Management Interface Specification

42

1.7.8 Initialization Agent

SDRs can also hold default threshold values and event generation settings for sensors and management

controllers. During system resets, the BMC performs an initialization agent function and writes these settings to

those sensors that have ‘initialization required’ field set in their SDR. This eliminates the need for satellite

controllers to retain their own non-volatile storage and command interfaces for default settings, and also

provides a mechanism to retrigger any events that may have been transmitted before the BMC was ready to

accept them. The initialization agent can also be used to assign the Sensor Type to a generic sensor. See Section

33.6, Sensor Initialization Agent, for details on the initialization agent process.

1.7.9 Sensor Data Record Repository

Sensor Data Records are kept in a single, centralized non-volatile storage area that is managed by the BMC.

This storage is called the Sensor Data Record Repository (SDR Repository). Implementing the SDR Repository

via the BMC provides a mechanism that allows SDRs to be retrieved via ‘out-of-band’ interfaces, such as the

ICMB, a Remote Management Card, or other device connected to the IPMB. Like most Intelligent Platform

Management features, this allows SDR information to be obtained independent of the main processors, BIOS,

system management software, and the OS.

1.7.10 Private Management Busses

A Private Management Bus (also referred to as Private Bus) is an I2C bus that is accessed via a management

controller by using IPMI commands for low-level I2C access. Multiple private busses can be implemented

behind a single management controller. IPMI supports using private busses as a mechanism for accessing

24C02-compatible SEEPROMs (Serial Electrically Erasable Programmable ROMs) that hold FRU information.

Private busses may also be used to provide low-level access interface for other I2C or SMBus devices, though

the IPMI specification does not cover the way such devices would be used. Each management controller can

provide up to eight private busses.

1.7.11 FRU Information

The IPMI specifications include support for storing and accessing multiple sets of non-volatile Field

Replaceable Unit (FRU) information for different modules in the system. An enterprise-class system will

typically have FRU information for each major system board (e.g. processor board, memory board, I/O board,

etc.). The FRU data includes information such as serial number, part number, model, and asset tag.

IPMI FRU information can be made accessible via the IPMB and management controllers. The information can

be retrieved at any time, independent of the main processor, BIOS, system software, or OS. This allows FRU

information to be retrieved via ‘out-of-band’ interfaces, such as the ICMB, a Remote Management Card, or

other device connected to the IPMB. FRU information can even be available when the system is powered down.

These capabilities allow FRU information to be obtained under failure conditions when FRU access

mechanisms that rely on the main processor become unavailable. This facilitates the creation of automated

remote inventory and service applications.

IPMI does not seek to replace other FRU or inventory data mechanisms, such as those provided by SM BIOS,

and PCI Vital Product Data. Rather, IPMI FRU information is typically used to complement that information or

to provide information access out-of-band or under ‘system down’ conditions.

1.7.12 FRU Devices

IPMI provides FRU information in two ways: via a management controller, or via FRU SEEPROMs. FRU

information that is managed by a management controller is accessed using IPMI commands. This isolates

software from direct access to the non-volatile storage device, allowing the hardware implementer to utilize

whatever type of non-volatile storage they want.

 Intelligent Platform Management Interface Specification

 43

In order to more economically support providing FRU information on multiple platform modules, IPMI also

allows simple 24C02-compatible SEEPROM (Serial Electrically Erasable Programmable ROM) chips to be

used for storing FRU information. (‘24C02’-type devices are non-volatile storage devices that have a built-in

I2C-compatible interface).

FRU SEEPROMs provide a mechanism for implementing FRU information without requiring a management

controller on the field replaceable unit. FRU SEEPROMs can be accessed via a Private Management Bus

connected to a management controller, or if necessary, can be placed directly on the IPMB or PCI Management

Bus. While supported, it is generally recommended that devices with I2C/SMBus interfaces that lack data

integrity checks (e.g. checksums), such 24C02-type SEEPROMs, are not placed on ‘public’ busses such as

IPMB and PCI-SMBus. This is because without data integrity checks it is possible that a misbehaved third-party

add-in device could cause a bus ‘glitch’ that would result in an undetected error when reading or writing the

SEEPROM. (Note: depending on the type of device, I2C addressing places a limit on the number of devices that

can be placed directly on the IPMB. Refer to the IPMB I2C Address Allocation specification for more

information.)

1.7.13 Entity Association Records

Entity Association Records are a special type of SDR that provides a definition of the relationships among

platform entities. For example, an Entity Association can be set up that groups a set of individual power

supplies into a redundant power unit. A ‘redundancy lost’ event on the power unit can then be correlated with

the individual power supply failure. Without the Entity Association information, the ‘redundancy lost’ and

‘power supply failed’ events would be disjoint events that could only be correlated based on a-priori knowledge

of the system.

1.7.14 Linkage between Events and FRU Information

Included in the SDRs is information that indicates which system entity a sensor is monitoring (e.g. a memory

board) and also provide a link to the FRU information for the entity. SDRs use a set of codes that specify which

controller holds the sensor, the sensor type (e.g. temperature), the particular instance of the sensor (e.g. sensor

#2), the sensor’s event and reading type (e.g. discrete or threshold-based), the set of events it can generate, and

associated bit fields that indicate which specific events a sensor can produce.

The same codes and bit fields directly map to the information that is passed in event messages and logged in the

SEL. Thus, a SEL entry can indicate the controller, sensor, sensor type, and event type associated with the

event. This information provides a useful level of information by itself - but when combined with SDR

information, the event can be correlated to the entity and FRU associated with the event. Correlating an event to

the FRU can help guide a service person to the problem area, or even be used to identify the replacement parts

they should bring to a site.

1.7.15 Differentiation and Feature Extensibility

Platform management features continue to evolve. While IPMI seeks to provide a standardized interface to

cover the majority of platform management needs, explicit provisions have been made throughout IPMI to

support OEM differentiation and new features. Special ranges of code values and commands have been reserved

to allow OEM sensors, events, and value-added functions to be implemented within the IPMI framework.

1.7.16 System Interfaces

IPMI defines three standardized system interfaces that system software uses for transferring IPMI messages to

the BMC. In order to support a variety of microcontrollers, IPMI offers a choice of system interfaces. Using

these interfaces is key to enabling cross-platform software. The system interfaces are similar enough so that a

single driver can be created that supports all IPMI system interfaces.

Intelligent Platform Management Interface Specification

44

The system interface connects to a system bus that can be driven by the main processor(s). The present IPMI

system interfaces can be I/O or memory mapped. Any system bus that allows the main processor(s) to access

the specified I/O or memory locations, and meet the timing specifications, can be used. Thus, an IPMI system

interface could be hooked to the X-bus, PCI, LPC, or a proprietary bus off the baseboard chip set.

The IPMI system interfaces are:

Keyboard
Controller
Style (KCS)

The bit definitions, and operation of the registers follows that used in the Intel

8742 Universal Peripheral Interface microcontroller. The term ‘Keyboard

Controller Style’ reflects the fact that the 8742 interface was used as the legacy

keyboard controller interface in PC architecture computer systems. This

interface is available built-in to several commercially available

microcontrollers. Data is transferred across the KCS interface using a per-byte

handshake.

System
Management
Interface
Chip
(SMIC)

The SMIC interface provides an alternative when the implementer wishes to

use a microcontroller for the BMC that does not have the built-in hardware for

a KCS interface. This interface is a three I/O port interface that can be

implemented using a simple ASIC, FPGA, or discrete logic devices. It may

also be built-in to a custom-designed management controller. Like the KCS

interface, a per-byte handshake is also used for transferring data across the

SMIC interface.

Block
Transfer
(BT)

This interface provides a higher performance system interface option. Unlike

the KCS and SMIC interfaces, a per-block handshake is used for transferring

data across the interface. The BT interface also provides an alternative to using

a controller with a built-in KCS interface. The BT interface has three I/O-

mapped ports. A typical implementation includes hardware buffers for holding

upstream and downstream message blocks. The BT interface can be

implemented using an ASIC or FPGA, or may be built-in to a custom-designed

management controller.

SMBus
System
Interface
(SSIF)

The SMBus System Interface (SSIF) is a low pin-count option that specifies

accessing a BMC that is connected to the system’s SMBus host controller.

SSIF helps support lower-cost BMC implementations by enabling an interface

that can be used on low-cost microcontrollers in low pin-count packages. Note

that the SSIF will typically have a much lower bandwidth to the BMC than the

other systems interfaces, owing to the 100 kbps maximum data rate presently

specified for SMBus.

1.7.17 Other Messaging Interfaces

In addition to the System Interface and IPMB, IPMI messaging can be carried over other interfaces, such as

LAN, serial/modem, ICMB, and PCI management bus. IPMI includes a communication infrastructure that

supports transferring messages between these interfaces as well as to the BMC.

1.7.18 Serial/Modem Interface

The Serial/Modem Interface specifications define how IPMI messages can be sent to and form the BMC via a

direct serial or external modem connection. The specification supports three connection modes that define the

protocol for delivering IPMI messages via serial/modem:

 Basic Mode: The IPMI messages are encapsulated with minimal additional framing and escaping for

transport over a serial/modem connection. Basic Mode provides the highest performance but requires an

‘IPMI-aware’ serial application.

 Intelligent Platform Management Interface Specification

 45

 PPP Mode: The IPMI messages are encapsulated in the same RMCP format as used for LAN messages,

but are delivered via a PPP connection. PPP mode allows remote applications to take advantage of built-in

PPP support in the OS for things such as dialing and authentication, and provides the highest commonality

with LAN-based software, but at the cost of lower throughput.

 Terminal Mode: Terminal Mode defines how IPMI messages can be transferred using printable

characters. It also includes a limited number of English ASCII text commands for doing such things as

getting a high level system status and causing a system reset or power state change. Terminal mode is lower

performance than Basic Mode and more limited in capabilities than both Basic Mode and PPP Mode, but

offers a mechanism for those who are transitioning to IPMI and more sophisticated interfaces from a

legacy, character-based environment

1.7.19 LAN Interface

The LAN interface specifications define how IPMI messages can be sent to and from the BMC encapsulated in

RMCP (Remote Management Control Protocol) packets datagrams. This capability is also referred to as “IPMI

over LAN”. IPMI also defines the associated LAN-specific configuration interfaces for setting things such as IP

addresses other options, as well as commands for discovering IPMI-based systems.

The Distributed Management Task Force (DMTF) specifies the RMCP format. This same packet format is used

for non-IPMI messaging via the DMTF’s Alert Standard Forum “ASF” specification. Using the RMCP packet

format enables more commonality between management applications that operate in an environment that

includes both IPMI-based and ASF-based systems. More information on IPMI and ASF is provided below.

IPMI v2.0 defines an extended packet format and capabilities that are collectively referred to as “RMCP+”.

RMCP+ is actually defined under the IPMI-specific portion of an RMCP packet. RMCP+ utilizes authentication

algorithms that are more closely aligned with the mechanisms used for the ASF 2.0 specification. In addition,

RMCP+ adds data confidentiality (encryption) and a ‘payloads’ capability.

1.7.19a Payloads

“Payloads” are a capability specified for RMCP+ that enable an IPMI session to carry types of traffic that are

in addition to IPMI Messages. Payloads can be ‘standard’ (defined in the IPMI specifications) or ‘OEM’

(specified by an OEM or other organization). Standard payload types include IPMI Messages, messages for

session setup under RMCP+, and the payload for the “Serial Over LAN” capability introduced in IPMI v2.0.

A BMC implementation can allow a payload to be activated (launched) on the same IPMI session that a

remote user connected to the BMC over, or the BMC can require that the remote console establish a separate

session for the payload. This enables an implementation to off-load the payload processing to another device,

if desired.

1.7.20 Serial Over LAN (SOL)

Serial Over LAN (SOL) is the name for the redirection of baseboard serial controller traffic over an IPMI

session. This can be used to enable asynchronous serial-based OS and pre-OS communication over a connection

to the BMC. SOL is specified in Section 15, Serial Over LAN. SOL provides can be used to provide a user at a

remote console a means of interacting with serial text-based interfaces such as operating system command-line

interfaces, serial redirected BIOS interfaces, and serial text-based applications over and IPMI LAN session. A

single remote console application can use SOL to simultaneously provide LAN access to IPMI platform

management and serial text redirection under a unified user interface. SOL is implemented as a payload type

under the IPMI v2.0 “RMCP+” protocol. Access privileges for SOL are managed under the same user

configuration interfaces that are used for IPMI management. This simplifies the creation of configuration

software, remote management applications, and cross-platform configuration utilities.

Intelligent Platform Management Interface Specification

46

1.7.21 IPMI and ASF

IPMI and ASF are complementary specifications that can provide platform management in a ‘pre-boot’ or ‘OS

absent’ environment. IPMI uses a management microcontroller as the main element of the management system,

whereas ASF presently focuses on having an ‘alert sending device’ - typically the network controller - polling

devices on the motherboard and autonomously generating alerts. As of this writing, ASF’s scope primarily

covers the way an alert sending device polls sensor devices and sends alerts, and the specification of ‘LAN’

commands for discovering RMCP-based systems and performing emergency reset and power off actions.

This includes the supporting specification of SMBus interfaces to ‘ASF Sensor Devices’ that can be polled by

the alert sending device, the specification of the RMCP packet format, and the specification of SMBus-based

commands that can be used to send a ‘push’ alert via an alert sending device.

While somewhat of an oversimplification, ASF may be considered to be scoped for ‘desktop/mobile’ class

systems, and IPMI for ‘servers’ where the additional IPMI capabilities such as event logging, multiple users,

remote authentication, multiple transports, management extension busses, sensor access, etc., are valued.

However there are no restrictions in either specification as to the class of system that the specification can be

used. I.e. you can use IPMI for desktop and mobile systems and ASF for servers if the level of manageability

fits your requirements.

IPMI and ASF share a number of formats, data structures, and enumerations. It is expected that this will

continue to grow.

 Shared management packet format: IPMI uses ASF ‘RMCP’ packet format for delivering IPMI messages

over LAN and PPP and ASF messages for LAN discovery. The RMCP format includes a message class

explicitly for IPMI use.

 Common LAN Alert Format: Both generate LAN Alerts using the IPMI PET (Platform Event Trap)

Specification for SNMP Traps

 Common Flags for boot control: IPMI uses a superset of the boot flags defined in ASF.

 Common enumerations for sensor types and event types: ASF uses the IPMI enumerations for sensor and

event types. These values are used in Alerts and ASF Sensor Device Status.

 Common BIOS progress codes: IPMI uses ASF BIOS Error and Progress codes.

 Hardware: IPMI management controllers and ASF alert sending devices can both use ASF Sensor Devices.

In an IPMI application these can be place on private management busses and polled by the BMC, they can

also be used on the PCI management bus. In an ASF application, the devices would typically always be on

the PCI management bus or main SMBus and polled by the Network Controller(s).

1.7.22 LAN Alerting

IPMI supports LAN Alerting in the form of SNMP Traps that follow the Platform Event Trap (PET) format.

(Refer to [PET] for more information.) SNMP Traps are typically sent as unreliable datagrams. However, IPMI

includes a PET Acknowledge and retry options that allows an IPMI-aware remote application to provide a

positive acknowledge that the trap was received.

1.7.23 Serial/Modem Alerting and Paging

The IPMI specification supports several options for alerting over a serial/modem connection:

 Dial Page: Sending a numeric page by using an external modem to generate ‘touch tones’.

 TAP Page: The BMC connects to a TAP 1.8 paging service and delivers an alphanumeric page.

 PPP Alert: The BMC connects to a remote LAN via PPP and delivers a PET trap to a specified IP address.

 Intelligent Platform Management Interface Specification

 47

1.7.24 Platform Event Filtering (PEF)

Platform Event Filtering (PEF) provides a mechanism for configuring the BMC to take selected actions on

event messages that it receives or has internally generated. These actions include operations such as system

power-off, system reset, as well as triggering the generation of an alert.

The BMC maintains an event filter table that is used to select which events trigger an action and which actions

to perform. Each time the BMC receives an event message (either externally or internally generated) it

compares the event data against the entries in the event filter table. The BMC scans all entries in the table and

collects a set of actions to be performed as determined by the entries that were matched.

1.7.25 Call Down Lists and Alert Policies

The IPMI specification allows an implementation to support configurable alert policies that determine how an

alert will be processed. These can be used to create a ‘call down list’ of different destinations that an alert gets

sent to. Alert policies can have destinations of different types and on different channels. For example, a policy

could be defined to first try to send an alert to LAN address ‘A’, and if that fails send it to LAN address ‘B’, and

then send a Dial Page via the modem, and if that fails, a TAP page.

IPMI allows the alert destinations to be configured in any order. I.e. you can pick whether an alert goes out via

serial/modem first, or via LAN first. The main limitation comes from the number of policy entries that a given

implementation supports.

1.7.26 Channel Model, Authentication, Sessions, and Users

IPMI v1.5 incorporates a common communication infrastructure referred to as the ‘Channel Model’. This is an

extension of the channels that were used as part of messaging in IPMI v1.0.

Channels provide the mechanism for directing the routing of IPMI messages between different media

connections to the BMC. A channel number identifies a particular connection. For example, 0 is the channel

number for the primary IPMB. Up to nine total channels can be supported (the System Interface and primary

IPMB, plus seven additional channels with a media type assigned by the implementer.) Channels can thus be

used to support multiple IPMB, LAN, Serial, etc., connections to BMC.

Channels can be session-based or session-less. A session is used for two purposes: As a framework for user

authentication, and to support multiple IPMI Messaging streams on a single channel. Session-based channels

thus have at least one user ‘login’ and support user and message authentication. Session-less channels do not

have users or authentication. LAN and serial/modem channels are examples of session-based, while the System

Interface and IPMB are examples of session-less channels.

In order to do IPMI messaging via a session, a session must first be activated. The act of activating a session is

one of authenticating a particular user. This is accomplished using a ‘challenge/response’ mechanism, where a

challenge is requested using a Get Session Challenge command, and the signed challenge returned in an

Activate Session command.

The specification supports different algorithms for the signature - these are referred to as Authentication Types.

Authentication Types include ‘none’, ‘straight password’, the MD2 and MD5 message-digest algorithms, etc.

For consistency, session-based channels always use the Get Session Challenge and Activate Session commands

even if Authentication Type is ‘none’. (In this case, dummy values are used for the signatures.)

A session has a Session ID that is used for tracking the state of a session. The Session ID mechanism allows

multiple sessions to be able to be simultaneously supported on a channel.

The message signature, Session ID, and other session related information is separate from the actual IPMI

message content. Thus, a packet carrying an authenticated IPMI message can be thought of as being comprised

of a ‘Session Packet’ that includes the session-specific fields and carries an IPMI message as its payload.

Intelligent Platform Management Interface Specification

48

The concept of user is essentially a way to identify a collection of privilege and authentication information.

User configuration is done on a per channel basis. This means that a given user could have a different password

and set of privileges for accessing the BMC via a LAN channel than via a serial channel.

Privilege Levels determine which IPMI commands a given user can execute over a given channel.

Privilege Limits set the maximum privilege level that a user can operate at. A user is configured with a given

maximum privilege limit for each channel. In addition there is a Channel Privilege Limit that sets the maximum

limit for all users on a given channel. The Channel Privilege Limit takes precedence over the privilege

configured for the user. Thus, a user can operate at a privilege level that is no higher than the lower of the User

Privilege Limit and the Channel Privilege Limit.

1.7.27 Standardized Watchdog Timer

Watchdog Timer capabilities have been commonly deployed in Enterprise-class servers. IPMI provides a

standardized interface for a system Watchdog Timer. This timer can be used for BIOS, OS, and OEM

applications. The timer can be configured to automatically generate selected actions when it expires, including

power off, power cycle, reset, and interrupt. The timer function can also automatically log the expiration event.

Setting ‘0’ for the timeout interval allows the timeout action to be initiated immediately. This provides a means

for devices on the IPMB, such as Remote Management Cards, to use the Watchdog Timer to initiate emergency

reset and other recovery actions dependent on the capability of the timer.

1.7.28 Standardized POH Counter

This is an optional counter to return a counter value proportional to the system operating (S0) power-on hours.

1.7.29 Firmware Firewall

“Firmware Firewall” is the name for a capability that is primarily provided to enable a BMC implementation to

block certain configuration, messaging, and write operations from being done from the System Interface. This is

done primarily to provide a way prevent local software from unintentionally or maliciously setting values or

performing actions that could affect multiple nodes in a modular “blade” chassis, but can be used in BMC

implementations in ‘standalone’ systems as well. Firmware Firewall provides mechanisms that enable the BMC to

block IPMI commands and functions from being accessed from a given interface, and a set of “command

discovery” commands that let software discovery and configure which commands and functions are available.

1.7.30 Command and Function Discovery

The ‘command discovery’ commands that support Firmware Firewall can be implemented separately as a way of

enabling software to more efficiently discover command support, and as a way to assist automated ‘conformance

testing’ of IPMI implementations. Without the command discovery commands, IPMI utilizes several mechanisms

that software can use to determine what commands and functions are supported on a given management

controller. Some commands are simply mandatory, other commands and IPMI functions are discoverable via the

Sensor Data Records, ‘capabilities’ commands, or bit fields in responses. Remaining functions are discovered by a

‘test for support’ approach - where software trys issuing the command to see if it is implemented or not. Support

for some functions is also implied by whether or not other commands are present because they’re part of a set. For

example, if a “Set Configuration Parameters” command is supported, then it can be inferred that the

corresponding “Get Configuration Parameters” will also be supported. The command discovery commands,

however, enable a BMC to optionally provide a ‘centralized’ way of reporting command and function support,

rather than the ‘distributed’ and ‘test based’ mechanism that is the default.

 Intelligent Platform Management Interface Specification

 49

1.7.31 IPMI Hardware Components

IPMI provides very few specifications for the actual hardware components used to implement the platform

management hardware. IPMI seeks to ‘standardize the interface, not the implementation’. IPMI was designed so

that it can be implemented with ‘off-the-shelf’ components. Thus, IPMI does not require specific

microcontrollers to be used for management controllers, nor special ASICs or proprietary logic devices. As long

as the interface, timing and (in the case of IPMB and ICMB) electrical specifications are met, the choice of

components is up to the implementer. It is mandatory to implement a system interface that is compatible with

one of the three specified system interfaces.

1.7.32 Configuration Interfaces

IPMI provides standardized interfaces and commands for configuring the platform management subsystem.

This enables cross-platform software to Sensor Data Records are an example of the interface for configuring

sensor population and behavior on a system. There are also commands for configuring capabilities such as LAN

and serial/modem remote protocols, user passwords and privilege levels, Platform Event Filtering, alert

destinations, and others.

Unless otherwise specified, changes to parameters are required to take effect for the next use. For example,

parameters that affect user access or session operation must take effect for the next time a remote console

attempts to connect to the system. In some implementations, changes to configuration parameters may take

effect immediately. Thus, a remote application should be careful when setting parameters that could cause the

application to become disconnected from the BMC.

For the purpose of conformance checking, up to 5 seconds will be allowed between the time a parameter is

changed to when it must have taken effect.

It is recognized that there are race conditions where a session may already be in the process of being established

before the change can be propagated. It is recommended that a BMC implementation takes steps to ensure that

parameters are used consistently. This specification does not define a specific mechanism, but here are some

possible approaches. An implementation could terminate a session in progress if the user’s parameters change

while the session is being established. Alternatively, an implementation could ‘snap shot’ the user’s

configuration at the time the session is being established and only allow a session to be established if the given

user’s configuration has been unmodified in the last 5 seconds.

1.8 IPMI and BIOS

The level of interaction between BIOS and IPMI is greatly dependent on the implementation and number of

optional capabilities that are to be supported. It is possible to have an IPMI implementation that does not require

any BIOS support, other than that required to meet any applicable ACPI or Plug ‘N Play requirements for

reporting the I/O and/or interrupt resources used by the IPMI system interface.

In some implementations, BIOS may be responsible for the initialization or startup of certain functions in the

management controllers, such as setting the initial timestamp time in the SEL and/or SDR devices. BIOS may also

perform tests of the platform management hardware and management controllers during POST.

It is recommended that BIOS include provisions for checking and reporting on the basic health of BMC by

executing the Get Self Test Results command and checking the result.

It’s expected that most implementations will provide BIOS features that take advantage of IPMI. For example, it

is expected that many implementations will use IPMI to log POST errors, or to log ‘system boot’ events so that

events can be tracked relative to the last boot time. Another expectation is that many systems utilize the IPMI

Watchdog Timer function with BIOS.

With IPMI v1.5, the BIOS can share in additional capabilities. For example, IPMI v1.5 defines a new LAN-based

interface. The BIOS can help keep the BMC updated with the LAN IP Address assignment. IPMI v1.5 also

includes a serial/modem interface with support for a capability called ‘serial port sharing’ in which the serial

Intelligent Platform Management Interface Specification

50

controller can be shared between the BMC and BIOS-based serial console redirection. There is also a set of ‘boot

flags’ that BIOS can read to direct its operation following a system management initiated reset, power cycle, or

power up.

1.9 System Management Software (SMS)

The Management Controllers, Sensors, SEL information, SDR information, etc., are of limited value without

System Management Software to interpret, handle, and present the information. Platform management is only a

subset of systems management. System Management Software takes platform management information and links

it into other aspects of systems management, such as software management and distribution, alerting, remote

console access, etc.

With respect to the platform management architecture and this specification, System Management Software:

 Polls the System Event Log for new Event information, acting on it as appropriate. This may include

taking actions such as sending alerts on the network, presenting a local ‘pop-up’ message, shutting

down an application, consolidating the information with other ‘system log’ data, etc. System Critical

Events are primarily communicated to system management software using the System Event Log as a

'mailbox' between the originator of the Event Message and the system management software.

 Manages the System Event Log. The SEL may contain ‘critical’ event information that should not be

lost. Therefore, the SEL device will not automatically clear the SEL if it gets full. This operation is

based on the assumption that it is the first events that are most indicative of the root cause of a

problem, and that later events may be ‘side-effects’ which, if the SEL were implemented as a ‘FIFO’

could cause the ‘root cause’ events to get lost. Instead, System Management Software has the

responsibility for determining when SEL entries should be cleared. System Management Software can

migrate the SEL contents to disk, to the system’s event log, or even to remote storage as desired.

 Reads and interprets the SDR Repository information. System Management Software uses this

information to determine the sensor population and capabilities. The Sensor Data information can also

be presented to provide a description of the system’s manageability features.

 ‘Polls’ sensors. System Management Software takes the SDR information and uses it to access the

sensors, either in a polled or ‘on demand’ basis, to monitor and present the system’s current health and

status. Note that whenever possible, System Management Software should rely on event generation for

detecting error conditions, and avoid the overhead associated with polling. ‘Normal’ health status does

not generally need to be polled, but would be delivered ‘on demand’.

 Potential Event Message Source. System Management Software can also send Event Messages to get

events added to the System Event Log. This allows SMS to record information that may be required

for ‘post-mortem analysis’ should it become necessary for System Management Software to shut-

down, power-cycle, reset, or otherwise ‘off line’ the system as a response to a system event. The SEL

should be reserved for ‘critical’ hardware-related errors. The majority OS and software errors should

not be written to the SEL. Candidate errors for the SEL are errors that block normal ‘in-band’

management mechanisms.

1.10 SMI Handler

Not all platform management events come through management controllers or from system software. Some events

come from baseboard interrupts. This may include platform events such as correctable and uncorrectable ECC

errors, critical NMIs (Non-maskable Interrupts) such as PCI PERR (parity error), PCI SERR (system error), bus

timeout interrupts, etc. In some implementations, the platform management hardware maps these ‘critical

interrupts’ to the system SMI (System Management Interrupt) signal. The SMI Handler runs, and, as part of

handling these critical interrupts, generates an Event Message to cause the event to get logged in the SEL. The

SMI Handler can also take autonomous, ‘emergency’ action, such as powering off or resetting the system, or

propagating an NMI to the operating system.

 Intelligent Platform Management Interface Specification

 51

The SMI Handler is typically a routine that is loaded and initialized into a protected area of memory by the BIOS.

SMI is the highest priority non-maskable interrupt in the system. When asserted, it switches the processors into

‘System Management Mode’ (SMM). Upon entry into SMM, the processor state is saved and a memory

configuration is entered where the SMI Handler has full access to system memory and I/O space. This allows the

SMI Handler to implement its management functions in an OS-independent manner. The key aspect to this being

that the SMI Handler code will run even if the OS is ‘hung’. This makes it ideal for implementing certain critical

and emergency management functions.

The explicit interface and functionality between an SMI Handler and the BMC is implementation dependent and

is not covered by this specification. The implementation of system-specific communication interfaces can be

aided using the OEM bits and flags in the BMC-system interface commands.

Intelligent Platform Management Interface Specification

52

1.11 Overview of Changes from IPMI v1.0

This section assumes familiarity with the IPMI v1.0 specification. If you’re new to IPMI, you can skip ahead to

the next section. This is not intended to be a complete “to the bit” list of all the changes, but is provided as a guide

for understanding what’s involved in moving to support IPMI v1.5.

 Most commands that have version numbers had their version numbers rev'd to 51h for IPMI 1.5

 The Get Device ID command was extended a couple of optional firmware revision bytes, per NEC request.

Just display them as hex-ASCII.

 The IPMI sensor commands are the same as in v1.0, though a small amount of typo corrections and additional

clarifications have been made in those sections.

 The IPMI watchdog commands are backward compatible with IPMI v1.0. A previously reserved bit has been

defined as a new ‘don’t stop’ bit that allows the watchdog timer to be reconfigured without stopping it.

 The IPMI v1.0 event commands are the same. A couple of new event commands, Set/Get Last Processed

Event have been added to allow someone using the new IPMI v1.5 PEF capability to set or determine whether

or not PEF has pending events to process.

 Sensor Event/Reading Type codes - The POST Error sensor is now called "System Firmware Progress" and

includes new offsets for POST errors and progress the follow the DMTF ASF specification. There's also a

new 'Management Subsystem Health' sensor type, 28h. Please check the Sensor Event/Reading Type code

table for any other changes.

 The SEL Event Record format is the same except that four previously reserved bits now hold a channel

number, and the SEL Record version "EvMRev" field goes from 3h to 4h. It’s possible that two events would

be identical except for the channel number field. Software that handles or displays events should interpret the

channel number field in order to differentiate between events coming from different channels.

 The SDRs are the same with the exception of the version number and a field changes to accommodate a

necessary fourth bit for the channel number. This change affected SDRs 01h, 02h, 10h, 11h and 12h. The

addition of a channel number in the Type 12h SDR caused the two bytes following to get pushed down.

 The Entity Instance value in the Entity Association Record has been split into two ranges: one for 'system

relative' IDs and another for 'device relative’ IDs. Most implementations will be able to use their existing

Entity Instance assignments since the lower range of values are for the 'system relative' Entity Instance

values, which map to the IPMI v1.0 definition of the Entity Instance value.

 SDR Type 14h is being deprecated. IPMI 1.5 systems and software should not use SDR Type 14h. Software

should use the new Get Channel Info command instead.

 The SEL Event Record format is the same except that four previously reserved bits now hold a channel

number, and the SEL Record version "EvMRev" field changes from 3h to 4h.

 The IPMB message format remains the same.

 The Send Message command is backward compatible with v1.0 with respect to using it to access the IPMB.

I.e. you don't need to make any changes to access the IPMB.

 The Master Write/Read I2C has had the “I2C” dropped from the name. It is now the Master Write/Read

command. This command is backward compatible with IPMI v1.0. Reserved bits 7:4 in byte one have

become a Channel ID, but 0h is when accessing the IPMB or private management busses as in IPMI v1.0. A

non-zero channel value would only be used for accessing additional IPMBs or a PCI Management Bus.

 The read/write FRU commands are the same.

 Intelligent Platform Management Interface Specification

 53

Intelligent Platform Management Interface Specification

54

2. Logical Management Device Types
The Intelligent Platform Management architecture is comprised of a number of ‘logical’ management devices. These

are implemented by and within the ‘physical’ system elements such as the management controllers, I2C bus, system

ASICs, etc.

Each ‘logical device’ type represents the definition of a particular set of mandatory and optional commands. For the

purposes of this specification, the logical management devices are:

IPM Device Intelligent Platform Management device. This represents the ‘basic’ intelligent

device that responds to the platform sensor and event interface messages. All

Intelligent Platform Management devices on the IPMB are expected to respond to

the mandatory ‘IPM Device’ commands. These are also referred to as the ‘global’

commands. Management Controllers that communicate via compatible messages

to the system are also considered IPM devices.

Sensor Device The Sensor Device is a device that provides the command interface to one or more

sensors. Sensor Devices provide a set of commands for discovering, configuring

and accessing sensors.

SDR Repository Device The SDR Device is the logical management device that provides the interface to

the Sensor Data Records (SDR) for the system. The SDR Device provides a set of

commands for storing and retrieving Sensor Data Records.

SEL Device The SEL Device is the logical management device that provides the interface to

the System Event Log for the system. The SEL Device provides a set of

commands for managing the System Event Log.

FRU Inventory Device The FRU Inventory Device provides the interface to a particular module’s FRU

Inventory (serial number, part number, asset tag, etc.) information. There will

typically be one set of FRU Inventory information for each major module in the

system. There can be just as many FRU Inventory Devices providing access to that

information. The Primary FRU Inventory Device for a given management

controller is defined as the device that contains the information about the FRU that

holds the management controller itself.

Event Receiver Device The Event Receiver Device accepts and acknowledges Event Request Messages.

The normal action for the Event Receiver Device is to then pass the Event

Message to the SEL Device for logging. An IPMB Event Receiver refers to an

Event Receiver that accepts Event Messages from the IPMB.

Event Generator Device The Event Generator Device represents the functionality that is used to deliver

Event Messages to the Event Receiver Device. The Event Generator Device

includes commands to allow configuration of Event Message delivery. The term

IPMB Event Generator refers to the capability to generate an Event Message on

the IPMB. The BMC is typically an IPMB Event Receiver, but not an IPMB Event

Generator.

Application Device A physical instantiation of an Intelligent Platform Management device will most

likely have some ‘device specific’ functionality that it implements that falls

outside the ‘standard’ sensor and event functions. This functionality is referred to

as the devices ‘Application’ functionality. Commands that address this

functionality are viewed as being handled by an ‘Application’ logical device.

PEF Device This logical device represents the functions associated with comparing an event

message against a set of selectable ‘event filters’ and generating a selectable action

on a match.

 Intelligent Platform Management Interface Specification

 55

Alert Processing Device This logical devices represents the functions associated with queuing up and

processing alerts, and alert policies that determine which destinations an alert will

be sent to.

Chassis Device This chassis control device represents functions associated with recovery control

actions such as power on/off, power cycle, reset, diagnostic interrupt, chassis

identification indicator, and system boot.

Message Handler This logical device represents the functions associated with configuration and

operation of message authentication and routing, both internal to the BMC and

among the different interfaces to the BMC.

The Intelligent Platform Management Bus can be considered as defining other ‘logical’ devices as well, such as the

‘Bridge Device’ for the Intelligent Chassis Management Bus (ICMB). Refer to the Intelligent Platform Management

Bus Protocol Specification for more information.

Intelligent Platform Management Interface Specification

56

Figure 2-1, Intelligent Platform Management Logical Devices

EVENT GENERATOR

EVENT RECEIVER

SENSOR DEVICE

SENSOR DEVICE

SDR REPOSITORY

DEVICE

IPM DEVICE

ALERT PROCESSING

DEVICE

IPMB MESSAGE

INTERFACE

APPLICATION DEVICE

IPMB MESSAGE

INTERFACE

SY STEM MESSAGE

INTERFACE

MESSAGE

HANDLER

SEL DEVICE

MESSAGE

HANDLER

INITIALIZATION

AGENT

SY STEM MESSAGE

INTERFACE

MESSAGE HANDLER

BIOS

SMI HANDLER

SY STEM

MANAGEMENT S/W

OS

EVENT GENERATOR

SENSOR DEVICE

IPM DEVICE

APPLICATION DEVICE

IPMB MESSAGE

INTERFACE

MESSAGE

HANDLER

INTELLIGENT PLATFORM MANAGEMENT BUS (IPMB)

NON-INTELLIGENT

I2C SENSOR

FRU INVENTORY

EEPROM

SENSORS

SENSORS

BASEBOARD MANAGEMENT

CONTROLLER

BRIDGE

DEVICE

ICMB

INTERFACE

SENSORS

SYSTEM SOFTWARE

NON-INTELLIGENT DEVICES on IPMB

ICMB

SYSTEM - BMC INTERFACE

IPM DEVICE

FRU INVENTORY

DEVICE

Add-in Card

Privately

Managed

Non-Volati le

Storage

INTELLIGENT PLATFORM

MANAGEMENT CONTROLLER 'A'

INTELLIGENT PLATFORM

MANAGEMENT CONTROLLER 'B'

PCI MGMT. BUS

INTERFACE

NIC I/F (e.g.

SMBus)

SERIAL

INTERFACE

Serial Port Sharing

Logic

LAN

Control ler

LAN

Baseboard

Serial Control ler

Serial

PCI Mgmt Bus

APPLICATION DEVICE

PEF DEVICE

 Intelligent Platform Management Interface Specification

 57

Intelligent Platform Management Interface Specification

58

3. Baseboard Management Controller (BMC)
The management architecture can be implemented by centralizing the most common functions into a ‘central’

management controller in the system. This controller is often called the Baseboard Management Controller, or

BMC. In some system implementations, the BMC may be the only management controller. The BMC typically

provides the following platform management functions:

System Interface The BMC provides the System Interface to the IPMI-based platform management

subsystem. The System Interface is the interface through which system software

sends and receives messages to and from the BMC.

Message Handler The BMC provides functions for routing messages between the different interfaces,

including the System Interface, IPMB, serial/modem, LAN, etc. The Message

Handler may also be thought of as where shared messaging functions for configuring

channel characteristics and user privileges reside.

SEL Interface The BMC provides the interface to the System Event Log (SEL). The BMC allows

the SEL to be accessed both from the system side, but also from the Intelligent

Platform Management Bus and other external interfaces to the BMC.

Event Generator The BMC itself will typically be responsible for monitoring and managing the system

board. For example, monitoring baseboard temperatures and voltages. As such, the

BMC will also be an Event Generator internally, sending the Event Messages that it

generates internally to its Event Receiver functionality. Note the BMC is not

typically and IPMB Event Generator. That is, it does not typically issue Event

Messages onto the IPMB.

SDR Repository Interface The BMC will also provide the interface to the SDR (Sensor Data Record)

Repository. As with the System Event Log, the BMC allows the records in the SDR

Repository to be accessed either via the Intelligent Platform Management Bus or via

the system interface.

IPMB Interface A BMC will typically support an IPMB connection. The IPMB enables the BMC to

accept IPMI request messages from other management controllers in the system. The

IPMB provides a simple integration point for connecting the ‘chassis’ management

features to the baseboard management. The IPMB can also provide a connection that

enables add-in cards to get access to the platform management subsystem.

A BMC that includes IPMB Interface support also provides the capability for system

software to send and receive messages to and from the IPMB using the BMC as a

kind of communication controller.

IPMB Event Receiver When an IPMB is implemented, the BMC serves as the primary IPMB Event

Receiver for the system. Event Messages can be sent to the BMC from the system or

from other controllers the IPMB.

Private Bus Controller FRU SEEPROMs may be provided on Private Management Busses behind the BMC.

The BMC can server as a communication controller that provides access to Private

Management Busses and provide access to FRU SEEPROMs and other non-

intelligent devices via the Master Write-Read command.

FRU Information
Interface

The BMC provides access to FRU information for the base system board. The FRU

information for the board holding the BMC is obtained by sending FRU Commands

to the BMC’s LUN 00b.

OEM Commands A BMC implementation can include special support for OEM-unique features and

functions. One way of accomplishing this is by implementing OEM commands

through the IPMI messaging interfaces.

 Intelligent Platform Management Interface Specification

 59

Watchdog Timer IPMI defines common command interfaces for configuring and accessing a watchdog

timer function in the BMC. This timer can be used as an aid in monitoring the health

of BIOS and system software. The watchdog timer can be used by different types of

software such as BIOS, pre-boot, OS, and system management software. Once started

the timer must be periodically reloaded by software in order to keep it from expiring.

If software ceases to run, the timer will expire and generate a timeout action.

The IPMI definition allows different actions to be selected to occur on a watchdog

timeout. This includes reset, power off, power cycle, etc. and a ‘pre-timeout

interrupt’ option that, if provided, can be used to generate a system interrupt shortly

before the timeout. The definition includes ‘timer use’ fields that keep track of what

type of software (BIOS, OS, System Management Software, etc.) started the timer.

The timeout action and ‘timer use’ information can be automatically logged to the

SEL when the timeout occurs. This provides a record of when the timeout occurred,

what software was using the timer, and what action was taken.

In addition, a BMC may implement additional functions for messaging and alerting, including:

Serial/Modem Interface The BMC can provide a serial/modem interface that allows it to receive IPMI

messages over a serial connection to the BMC.

Serial Port Sharing Serial Port Sharing is a separate capability that works in conjunction with the

serial/modem interface. Serial Port Sharing provides a mechanism where the BMC

can control logic that allows a single serial connector to be shared between a serial

controller on the baseboard and a serial controller for the BMC.

LAN Interface From the IPMI point-of-view, the interface to the network controller is dedicated to

the BMC. That is, there are no special commands for coordinating the sharing of the

network controller between system software access and BMC access, as there are

with Serial Port Sharing. If the network controller is shared between system software

and the BMC, this is generally accomplished via special hardware in the network

controller that enable BMC traffic and system traffic to be interleaved.

PCI Management Bus
Interface

The BMC can implement a PCI Management Bus Interface that enables the BMC to

accept IPMI request messages from add-in cards that plug into a PCI slot. The PCI

management bus and IPMB can serve complementary roles. The IPMB providing a

mechanism for integrating management functions between baseboard and chassis

board functions, while the PCI Management Bus connection can be used to support

add-in cards. This division allows the inter-board management communications to be

kept separate from add-in card communications.

Platform Event Filtering
(PEF)

Platform Event Filtering is an ability for the BMC to perform a configurable action

based on an event, by matching the event against a set of ‘event filters’. The actions

that a BMC can elect to implement include power off, reset, power cycle, generate

diagnostic interrupt, and send an alert.

Alert Processing IPMI v1.5 supports the ability for a BMC to deliver alerts such as SNMP Traps in the

Platform Event Trap (PET) format, over media such as LAN and PPP, plus the ability

to perform numeric and/or alphanumeric paging via a serial/modem connection. Alert

processing includes the ability to support sending alerts to multiple destinations, and

to cluster destinations into sets called ‘Alert Policies’. Enabling alert policies with

PEF makes it possible to configure the system so critical events are delivered to

destinations in a ‘high priority’ alert policy, while non-critical events would go to

destinations in a ‘low priority’ alert policy.

Intelligent Platform Management Interface Specification

60

3.1 Required BMC Functions

The following table summarizes the major required and optional functions for an IPMI-conformant BMC.

Table 3-1, Required BMC Functions

Function M/O Description

IPM Device M The BMC must implement the mandatory IPM Device commands. If an IPMB
is provided, the mandatory commands must be accessible from the IPMB
unless otherwise noted.

System Interface M The implementation must provide BMC access via one of the specified IPMI
system interfaces.

SDR Repository M The BMC must provide a SDR Repository to hold Sensor, Device Locator,
and Entity Association records for all sensors in the platform management
subsystem. This does not need to include SDRs for sensors that only
generate events. If the SDR Repository is writable, it is recommended that at
least 20% additional space is provided for add-in platform management
extensions.

The SDR Repository must be accessible via the system interface. If an IPMB
is provided, the SDR Repository must be readable via that interface as well.
SDR update via the IPMB interface is optional.

SDR Repository access when the system is powered up or in ACPI ‘S1’ sleep
is mandatory, but access when the system is powered-down or in a >S1
sleep state is optional.

IPMB Interface O The IPMB is highly recommended, but optional. The BMC must provide the
system interface to the IPMB. If an IPMB is implemented, at least one of the
specified IPMB connectors must be provided. Refer to the IPMB Protocol
specification for connector definition. In addition the BMC must implement a
message channel that allows messages to be sent from the IPMB to the
system interface, and vice-versa, and any other mandatory IPMB support
functions and commands.

Watchdog Timer M The BMC must provide the standardized Watchdog Timer interface, with
support for system reset action. Certain functions within the Watchdog Timer
are optional. Refer to the sections on the Watchdog Timer for information.

Event Receiver M The BMC must implement an Event Receiver function and accept Event
Messages via the system interface. If an IPMB is provided, the Event
Receiver function must also accept Event Messages from the IPMB. Event
Receiver operation while the system is powered up or in ACPI ‘S1’ sleep is
mandatory, but operation when the system is powered down or in a >S1
sleep state is optional.

SEL Interface M The BMC must provide a System Event Log interface. The event log must
hold at least 16 entries. SEL access must be provided via the system
interface. The SEL must be fully accessible via all mandatory SEL commands
through all supported interfaces to the BMC whenever the system is powered
up or in ACPI 'S1' sleep state. SEL read access is always mandatory
whenever the BMC is accessible, and through any interface that is
operational, regardless of system power state. .

FRU Inventory M

(v1.5+)

The BMC must provide a logical Primary FRU inventory device, accessible
via the Write- and Read FRU Data commands. The FRU Inventory Device
Info command must also be supported. It is highly recommended that all
other management controllers also provide a Primary FRU inventory device.
(This was optional in IPMI v1.0.)

Initialization Agent M The initialization agent function is one where the BMC initializes event
generation and sensors both internally and on other management controllers
according to initialization settings stored in the SDR for the sensor.

Sensors O The BMC can provide sensors. A typical server BMC would provide sensors
for baseboard temperature, voltage, and chassis intrusion monitoring.

 Intelligent Platform Management Interface Specification

 61

Function M/O Description

Internal Event
Generation

M The BMC must generate internal events for the Watchdog Timer. It is highly
recommended that sensors generate events to eliminate the need for system
management software to poll sensors, and to provide “post-mortem” failure
information in the SEL. Internal event generation for sensors is optional, but
highly recommended - particularly for ‘environmental’ (e.g. temperature and
voltage) sensors.

External Event
Generation

O The BMC could be designed to accept the Set Event Receiver command to

allow it to be set as an IPMB Event Generator and send its event messages
to another management controller. This would primarily be used for
development and test purposes.

PCI Management Bus
Interface

O The BMC supports a connection to a PCI Management bus through which the
BMC can send and receive IPMI Messages. System software can also
access the PCI Management Bus by sending commands to the BMC via the
System Interface.

LAN Messaging O Ability for the BMC to send and receive IPMI Messaging over LAN

LAN Alerting O Ability to send an Alert over the LAN

Serial Messaging O Serial messaging is the capability of performing IPMI Messaging over an
asynchronous serial connection to the BMC. If Serial Messaging is supported,
the following sub-functions apply:

Basic Mode M Basic Mode is a type of message framing used for IPMI messaging over a
serial connection. Basic Mode support is required if Serial Messaging is
supported.

PPP Mode O PPP Mode is support for using PPP protocols and framing for IPMI
messaging over a serial connection.

Terminal Mode O Terminal Mode is a mechanism for IPMI messaging over serial using
printable ASCII characters. Terminal mode also supports a limited number of
text commands to support legacy ‘text based’ environments.

Direct Connect Mode M Direct Connect Mode is support for IPMI messaging over a serial connection
without going through a modem. Direct connect mode is mandatory as part of
Serial Messaging.

Modem Connect Mode O Modem Connect Mode is support for IPMI messaging over a serial
connection through a TIA-602-compatible modem, or via modem circuitry that
can work with the IPMI commands defined for modem communication.

Bridging Support O/M The ability to transfer IPMI request and response messages between two
interfaces connected to the BMC.

The following support is required if the corresponding interfaces are
supported:

 serial/modem  IPMB

 serial/modem  System Interface

 LAN  IPMB

 LAN  System Interface

Recommended:

 serial/modem  PCI Management Bus

 LAN  PCI Management Bus

Optional:

all other combinations, e.g. serial/modem  LAN

Dial Page O Ability to perform a numeric page by dialing. Typically accomplished using an
external modem.

PPP Alerting O Ability for the BMC to connect to a system

Platform Event Filtering and Serial Messaging with PPP Mode are required if
PPP Alerting is implemented.

Intelligent Platform Management Interface Specification

62

Function M/O Description

Callback O Callback represents the ability for the BMC to be directed to dial up a
selected or pre-configured destination to establish an IPMI Messaging
session. Callback requires Serial Messaging with Modem Connect Mode.

Basic Mode Callback M Required if Callback is supported. BMC uses Basic Mode for IPMI messaging
after connecting to specified destination.

PPP Mode Callback O BMC uses PPP Mode for IPMI messaging after connecting to specified
destination.

CBCP Callback O BMC supports Microsoft CBCP (Callback Control Protocol) for callback. PPP
Mode and PPP Mode Callback support are required if CBCP Callback is
implemented.

Platform Event Filtering
(PEF) and Alert Policies

O/M Ability for BMC to perform a selectable action on an event. This capability is
mandatory if paging or alerting is supported. Certain actions within PEF are
optional. Refer to the sections on PEF for information. The Alert action and
Alert Policies are mandatory if serial/modem or LAN alerting is supported.

 Intelligent Platform Management Interface Specification

 63

Intelligent Platform Management Interface Specification

64

4. Satellite Controller Required Functions
All satellite management controllers are required to implement the mandatory IPM Device commands. All other

functions are optional. If a function is implemented, such as Event Generation or Sensors, then the mandatory

commands for that function must be implemented.

It is highly recommended that satellite controllers that provide sensors also provide event generation for those

sensors. This will eliminate the need for system management software to poll to detect event conditions. It is also

highly recommended that all satellite management controllers provide a Primary FRU Inventory device.

 Intelligent Platform Management Interface Specification

 65

Intelligent Platform Management Interface Specification

66

5. Message Interface Description
The heart of this specification is the definition of the messages and data formats used for implementing sensors,

event messages, Event Generators and Event Receivers, the SDR Repository, and the System Event Log in the

platform management architecture. These messages are designed for delivery via a messaging interface with a

particular set of characteristics. This section presents the general specification of that interface, and of the messages

themselves.

The Message Interface is defined as a ‘request/response’ interface. That is, a request message is used to initiate an

action or set data, and a response message is returned to the Requester . In this document, Request Messages are

often referred to as ‘commands’ or ‘requests’, and Response Messages as ‘responses’.

All messages in this specification share the same common elements as the payload to the ‘command interpreter’ in

the logical device that receives the message. The messaging interfaces differ in the framing, physical addressing, and

data integrity mechanisms that are used to deliver this payload.

The following are the common components of messages specified in this document:

Network Function (NetFn) A field that identifies the functional class of the message. The Network

Function clusters IPMI commands into different sets. See Section 5.1,

Network Function Codes, for more information.

Request/Response identifier A field that unambiguously differentiates Request Messages from

Response Messages. In the IPMB Protocol, this identifier is ‘merged’ with

the Network Function code such that ‘Even’ network function codes

identify Request Messages, and ‘Odd’ network function codes identify

Response Messages.

Requester’s ID Information that identifies the source of the Request. This information

must be sufficient to allow the Response to be returned to the correct

Requester. For example, for the IPMB the Requester’s ID consists of the

Slave Address and LUN of the Requester device. For a multiple stream

system interface the Requester’s ID is the ‘stream id’ for the stream

through which the request was issued.

Responder’s ID A field that identifies the Responder to the Request. In Request Messages

this field is used to address the Request to the desired Responder, in

Response Messages this field is used to assist the Requester in matching

up a response with a given request.

Command The messages specified in this document contain a one-byte command

field. Commands are unique within a given Network Function. Command

values can range from 00h through FDh. Code FEh is reserved for future

extension of the specification, and code FFh is reserved for message

interface level error reporting on potential future interfaces.

Data The Data field carries the additional parameters for a request or a response,

if any.

5.1 Network Function Codes

The network layer in the connection header consists of a six-bit field identifying the function to be accessed. The

remaining two bits are the LUN field. The LUN field provides further sub-addressing within the node.

The network function is used to cluster commands into functional command sets. In a parsing hierarchy, the LUN

field may be thought of as the selector for a particular Network Function handler in the node, and the Network

Function may be considered the selector for a particular command set handler within the node.

 Intelligent Platform Management Interface Specification

 67

The following table defines the supported network functions. With the exception of the Application and Firmware

Transfer network functions, the commands and responses for a given network function are not node specific. The

format and function for standard command sets is specified later in this specification.

Table 5-1, Network Function Codes

Value(s) Name Meaning Description

00, 01 Chassis Chassis
Device
Requests and
Responses

00h identifies the message as a command/request and 01h as a
response, relating to the common chassis control and status functions.

02*, 03* Bridge Bridge
Requests and
Responses

02h (request) or 03h (response) identifies the message as containing
data for bridging to the next bus. This data is typically another
message, which may also be a bridging message. This function is
present only on bridge nodes.

04, 05 Sensor
/Event

Sensor and
Event
Requests and
Responses

This functionality can be present on any node. 04h identifies the
message as a command/request and 05h as a response, relating to
the configuration and transmission of Event Messages and system
Sensors.

06, 07 App Application
Requests and
Responses

06h identifies the message as an application command/request and
07h a response. The exact format of application messages is
implementation-specific for a particular device, with the exception of
App messages that are defined by the IPMI specifications.

Note that it is possible that new versions of this specification will
identify new App commands. To avoid possible conflicts with future
versions of this specification, it is highly recommended that the
OEM/Group network functions be used for providing ‘value added’
functions rather than the App network function code.

08, 09 Firmware Firmware
Transfer
Requests and
Responses

The format of firmware transfer requests and responses matches the
format of Application messages. The type and content of firmware
transfer messages is defined by the particular device.

0A, 0B Storage Non-volatile
storage
Requests and
Responses

This functionality can be present on any node that provides non-
volatile storage and retrieval services.

0C, 0D Transport Media-specific
configuration
& control

Requests (0Ch) and responses (0Dh) for IPMI-specified messages
that are media-specific configuration and operation, such as
configuration of serial and LAN interfaces.

0Eh-2Bh Reserved - reserved (30 Network Functions [15 pairs])

Intelligent Platform Management Interface Specification

68

2Ch, 2Dh Group
Extension

Non-IPMI
group
Requests and
Responses

The first data byte position in requests and responses under this
network function identifies the defining body that specifies command
functionality. Software assumes that the command and completion
code field positions will hold command and completion code values.

The following values are used to identify the defining body:

00h** PICMG - PCI Industrial Computer Manufacturer’s Group.

(www.picmg.com)

01h DMTF Pre-OS Working Group ASF Specification

(www.dmtf.org)

02h Server System Infrastructure (SSI) Forum

(www.ssiforum.org)

03h VITA Standards Organization (VSO)
(www.vita.com)

DCh DCMI Specifications

(www.intel.com/go/dcmi)
all other Reserved

When this network function is used, the ID for the defining body
occupies the first data byte in a request, and the second data byte
(following the completion code) in a response.

2Eh, 2Fh OEM/Group OEM/Non-
IPMI group
Requests and
Response

The first three data bytes of requests and responses under this
network function explicitly identify the OEM or non-IPMI group that
specifies the command functionality. While the OEM or non-IPMI group
defines the functional semantics for the cmd and remaining data fields,
the cmd field is required to hold the same value in requests and
responses for a given operation in order to be supported under the
IPMI message handling and transport mechanisms.

When this network function is used, the IANA Enterprise Number for
the defining body occupies the first three data bytes in a request, and
the first three data bytes following the completion code position in a
response.

30h-3Fh Controller-
specific
OEM/Group

- Vendor specific (16 Network Functions [8 pairs]). The Manufacturer ID
associated with the controller implementing the command identifies the
vendor or group that specifies the command functionality. While the
vendor defines the functional semantics for the cmd and data fields,
the cmd field is required to hold the same value in requests and
responses for a given operation in order for the messages to be
supported under the IPMI message handling and transport
mechanisms.

* Network Functions that are only utilized in systems that incorporate Bridge nodes.
** This organization value was named ‘Compact PCI’ in revision 1.0 of this document.

5.2 Completion Codes

All Response Messages specified in this document include a completion code as the first byte in the data field of

the response. A management controller that gets a request to an invalid (unimplemented) LUN must return an

error completion code using that LUN as the responder’s LUN (RsLUN) in the response. The completion code

indicates whether the associate Request Message completed successfully and normally, and if not, provides a

value indicating the completion condition.

Completion Codes work at the ‘command’ level. They are responses to the interpretation of the command after it

has been received and validated through the messaging interface. Errors at the ‘network’ (messaging interface)

level are handled with a different error reporting mechanism. For example the SMIC System Interface includes

http://www.picmg.com/
http://www.dmtf.org/
http://www.ssiforum.org/
http://www.intel.com/go/dcmi

 Intelligent Platform Management Interface Specification

 69

status codes that are separate from the IPMI message data and used to report changes in communication phase or

errors in the interface.

Completion Code values are split into ‘generic’, ‘device-specific’ (which covers OEM) and ‘command-specific’

ranges. All commands can return Generic Completion Codes. Commands that complete successfully shall return

the 00h, ‘Command Completed Normally’, Completion Code. Commands that produce error conditions, or return

Intelligent Platform Management Interface Specification

70

a response that varies from what was specified by the Request parameters for the command, shall return a non-

zero Completion Code, as specified in the following table.

Table 5-2, Completion Codes
Code Definition

 GENERIC COMPLETION CODES 00h, C0h-FFh

00h Command Completed Normally.

C0h Node Busy. Command could not be processed because command processing
resources are temporarily unavailable.

C1h Invalid Command. Used to indicate an unrecognized or unsupported command.

C2h Command invalid for given LUN.

C3h Timeout while processing command. Response unavailable.

C4h Out of space. Command could not be completed because of a lack of storage
space required to execute the given command operation.

C5h Reservation Canceled or Invalid Reservation ID.

C6h Request data truncated.

C7h Request data length invalid.

C8h Request data field length limit exceeded.

C9h Parameter out of range. One or more parameters in the data field of the
Request are out of range. This is different from ‘Invalid data field’ (CCh) code in
that it indicates that the erroneous field(s) has a contiguous range of possible
values.

CAh Cannot return number of requested data bytes.

CBh Requested Sensor, data, or record not present.

CCh Invalid data field in Request

CDh Command illegal for specified sensor or record type.

CEh Command response could not be provided.

CFh Cannot execute duplicated request. This completion code is for devices which
cannot return the response that was returned for the original instance of the
request. Such devices should provide separate commands that allow the
completion status of the original request to be determined. An Event Receiver
does not use this completion code, but returns the 00h completion code in the
response to (valid) duplicated requests.

D0h Command response could not be provided. SDR Repository in update mode.

D1h Command response could not be provided. Device in firmware update mode.

D2h Command response could not be provided. BMC initialization or initialization
agent in progress.

D3h Destination unavailable. Cannot deliver request to selected destination. E.g. this
code can be returned if a request message is targeted to SMS, but receive
message queue reception is disabled for the particular channel.

D4h Cannot execute command due to insufficient privilege level or other security-
based restriction (e.g. disabled for ‘firmware firewall’).

D5h Cannot execute command. Command, or request parameter(s), not supported
in present state.

D6h Cannot execute command. Parameter is illegal because command sub-function
has been disabled or is unavailable (e.g. disabled for ‘firmware firewall’).

FFh Unspecified error.

 DEVICE-SPECIFIC (OEM) CODES 01h-7Eh

01h-7Eh Device specific (OEM) completion codes. This range is used for command-
specific codes that are also specific for a particular device and version. A-priori
knowledge of the device command set is required for interpretation of these
codes.

 COMMAND-SPECIFIC CODES 80h-BEh

80h-BEh Standard command-specific codes. This range is reserved for command-
specific completion codes for commands specified in this document.

all other reserved

 Intelligent Platform Management Interface Specification

 71

5.3 Completion Code Requirements

Completion Codes are provided as an aid in system debugging and error handling. All devices meeting the

command specifications of this document shall implement the 00h, ‘Command Completed Normally’ for the

commands specified in this document.

It is mandatory that devices that produce error conditions, or return a response that varies from what was specified

by the Request parameters for the command, return a non-zero Completion Code from the preceding table.

In some cases, it is required that a particular completion code be returned for a specified condition. This typically

occurs with command-specific completion codes. These cases are documented in the sections describing the

particular command or function.

Otherwise, if a device implementation produces a completion condition that matches a Generic or Command-

specific completion code for the command, the device shall either return that specific value, or the ‘unspecified

error’ Completion Code, FFh. It is highly desirable that device implementations return an explicit completion

code, rather than ‘unspecified error’, whenever feasible.

In the case that multiple ‘non-zero’ completion conditions occur simultaneously, the implementation should return

whichever completion code the implementer deems to best indicate the condition that the Requester should correct

or handle first.

New for IPMI 1.5 Controllers and software that handle IPMI commands: The value C1h (Invalid Command)

must be returned for unsupported commands, except when the controller or software is in a mode where general

command handling is unavailable. For example, if the controller is in a firmware update mode, it is legal to return

D1h (Command response could not be provided, device in firmware update mode) instead of C1h.

New for IPMI v2.0 Controllers and software that handle IPMI commands: The D4h completion code has been

extended to indicate that an insufficient privilege level or command restriction due to Firmware Firewall was the

reason a command could not be accessed. Similarly, a D6h completion code has been added to indicate that a

particular sub-function could not accessed due to Firmware Firewall.

5.3.1 Response Field Truncation on non-zero Generic Completion Codes

The responder may, as an implementation option, truncate data bytes following a non-zero completion code

field and any IPMI-specified addressing extension bytes, such as the Group Extension code for NetFn 2Ch/2Dh

or the IANA for NetFn 2Eh/2Fh. Typically, a responder will truncate all fields following a non-zero completion

code and addressing extension bytes. If additional fields are returned, however, they should be assumed to have

device-specific content unless otherwise specified.

5.3.2 Summary of Completion Code Use

The following is a summary list of the completion code rules and guidelines.

 A 00h Completion Code must be returned with a normal response to a standard command.

 It is recommended that a 00h Completion Code also be returned for the normal responses to OEM

commands.

 A non-zero Completion Code must be returned for an error or atypical response to a standard command.

 It is recommended that a non-zero Completion Code be returned for an error or atypical response to an

OEM command.

Intelligent Platform Management Interface Specification

72

 The value C1h (Invalid Command) must be returned for unsupported commands, except when in a mode

where general command handling is unavailable.

 If the specification calls out that a particular completion code must be returned for a given condition, that

code must be returned.

 Otherwise, it is recommended that an implementation return the closest generic completion code for an

error condition. If an implementation is resource constrained or the error classification is ambiguous, the

FFh (unspecified error) completion code can be returned.

 Device-specific (OEM) completion codes should only be returned when a suitable generic completion code

is unavailable. Generic software will treat device-specific completion codes as if they were FFh

(unspecified error) completion codes.

 Except for mandatory completion codes, software must not depend on a particular non-zero completion

code to be returned for a given error condition, since it is possible that an FFh or device-specific code could

be returned instead.

 It is illegal to return a generic or command-specific completion code for a condition that doesn’t exist,

unless it is being used as part of emulating a device or interface. For example, an implementation might

enable the Master Write-Read command to be used to access a Private Management Bus interface that is

not physically an I2C bus. The implementation is allowed to return completion codes related to I2C bus

status as part of the emulation.

5.4 Sensor Owner Identification

The definition for the Request/Response identifier, Requester’s ID, and Responder’s ID are specific to the

particular messaging interface that is used. However, the Sensor Data Record and SEL information must contain

information to identify the ‘owner’ of the sensor. For management controllers, a Slave Address and LUN identify

the owner of a sensor on the IPMB. For system software, a Software ID identifies the owner of a sensor. These

fields are used in Event Messages, where events from management controllers or the IPMB are identified by an

eight-bit field where the upper 7-bits are the Slave Address or System Software ID. The least significant bit is a 0

if the value represents a Slave Address and a 1 if the value represents a System Software ID.

The Sensor Number is not part of the Sensor Owner ID, but is a separate field used to identify a particular sensor

associated with the Sensor Owner. The combination of Sensor Owner ID and Sensor Number uniquely identify a

sensor in the system.

Table 5-3, Sensor Owner ID and Sensor Number Field Definitions
IPMB Sensor Owner ID System Sensor Owner ID

7:1 Slave Address (7-bits)

0 0b (ID is a slave address)

7:1 System Software ID (7-bits)

0 1b (ID is a Software ID)

See Table 5-4, System Software IDs,
below.

LUN (2-bits) Sensor Number (8 bits, FFh = reserved)

Sensor Number (8-bits, FFh = reserved)

5.5 Software IDs (SWIDs)

The following table presents a list of the Sensor Owner IDs for ‘system software’ sensor owners or IPMI message

generators. These values are used when system software issues Event Messages via the system interface, and

when remote console software sends messages to the BMC. For example, if BIOS detects a processor failure, it

can generate an Event Message to get the failure event logged. When it formats the Event Message, the BIOS

‘System Owner ID’ is included in the Event Message. Later, System Management Software can access the System

Event Log and tell that the Event Message was generated by BIOS.

 Intelligent Platform Management Interface Specification

 73

For IPMB Messages, the Sensor Owner ID is assumed to be the same as the device that originated the message.

Therefore, the Slave Address and LUN of the Event Generator are used. For system-side sensors, it is assumed

that the class of software that generates the sensor commands is the ‘owner’ of the sensor.

Table 5-4, System Software IDs
System Software Type IDs (7-bit) bit 01 Resultant 8-bit value1

BIOS 00h-0Fh 1b 01h, 03h, 05h, …1Fh

SMI Handler 10h-1Fh 1b 21h, 23h, 25h, … 3Fh

System Management Software 20h-2Fh 1b 41h, 43h, 45h, … 5Fh

OEM 30h-3Fh 1b 61h, 63h, 65h, … 7Fh

Remote Console software 1-7 40h-46h 1b 81h, 83h, 87h, … 8Dh

Terminal Mode Remote Console software 47h 1b 8Fh

reserved remaining 1b -

1. The System Software ID is often used in an 8-bit field where the least-significant
bit is a 1b to indicate that the field holds a Software ID rather than a slave
address. One example of this occurs in the first byte of the Generator ID field in
an event message. The last column in the above table illustrates how the 7-bit
Software ID appears in such a 1-byte field.

5.6 Isolation from Message Content

The SEL, SDR, and Event commands are designed so that the ‘devices’ that implement those command sets are

generally isolated from the content of the SEL Entry, Sensor Data Record, and Event Message contents. That is,

the Event Receiver device receives and routes Event Messages, but does not interpret them. Similarly, the SEL

and SDR devices retrieve and store log entries and Sensor Data Records, respectively, without interpreting their

contents.

Intelligent Platform Management Interface Specification

74

6. IPMI Messaging Interfaces
This section introduces the common characteristics of the messaging interfaces to the BMC and between the BMC

and system software. As mentioned earlier, there are three System Interface implementations specified for the BMC:

SMIC, KCS, and BT. The BMC can also be communicated with through additional interfaces such as the IPMB,

ICMB, LAN, and Serial/Modem interfaces. Information specific to the operation and usage of a particular interface

is given in later sections.

6.1 Terminology

The ICMB, LAN, and Serial/Modem interfaces are typically used to communicate with management software on

another system. The remote software that is used to communicate with the BMC is referred to as the remote console.

Although the word ‘console’ is used, the remote software may or may not provide a user interface or require user

interaction.

Local software running on the managed system and using the System Interface to the BMC will generally be

referred to as system management software or SMS. Unless otherwise indicated, the direction of communications is

given with respect to the BMC. E.g. transmitted, outbound, or outgoing messages are issued from the BMC.

Received, inbound, or incoming messages are accepted by the BMC. Other terminology used for IPMI Messaging

will be introduced as it is used in the following sections.

6.2 Channel Model

IPMI uses a ‘channel model’ for directing communication between different interfaces in the BMC. Channels serve

as the means for identifying the medium for a messaging interface, and for configuring user information and

passwords, message authentication, access modes and privilege limits associated with that interface.

Each channel has its own set of configuration parameters for user information and channel privilege limits. This

allows different sets of user names and passwords and different levels and types of authentication to be used on

different channels. IPMI Messaging and Alerting can also be independently enabled or disabled for an entire channel

on a per channel basis.

Channels share commands related to authentication, access, and configuration. These commands are independent

from the type of communication medium. This reduces the amount of medium-specific information that software

needs to deal with, and simplifies task such as bridging IPMI messages between different media.

6.3 Channel Numbers

Each interface has a channel number that is used when configuring the channel and for routing messages between

channels. Only the channel number assignments for the primary IPMB and the System Interface are fixed, the

assignment of other channel numbers can vary on a per-platform basis. Software uses a Get Channel Info command

 Intelligent Platform Management Interface Specification

 75

to determine what types of channels are available and what channel number assignments are used on a given

platform. The following table describes the assignment and use of the channel numbers:

Table 6-1, Channel Number Assignments
Channel

Number

Type/Protocol

Description

0 Primary IPMB Channel 0 is assigned for communication with the primary IPMB.
IPMB protocols are used for IPMI messages. Refer to [IPMB] for
more information.

1-Bh Implementation-
specific

Channels 1-7 can be assigned to different types types of
communication media and protocols for IPMI messages (e.g. IPMB,
LAN, ICMB, etc.), based on the system implementation. For IPMI
1.5, ‘Channel Protocol Type’ and ‘Channel Medium Type’ numbers
identify the channel’s protocol and medium, respectively. Software
can use the Get Channel Info command to retrieve this information.

Ch-Dh - Reserved

Eh Present I/F The value Eh is used as a way to identify the current channel that
the command is being received from. For example, if software
wants to know what channel number it’s presently communicating
over, it can find out by issuing a Get Channel Info command for
channel E.

Fh System Interface Channel ‘F’ is assigned for routing messages to the system
interface.

6.4 Channel Protocol Type

The protocol used for transferring IPMI messages on a given channel is identified using a channel protocol type

number. In earlier versions of the specification, this also implied the particular medium for the channel. The

Channel Medium Type number is now used to explicitly indicate the class of the media. Both these values are

used in the Get Channel Info command.

Sensor Data Record 14h - BMC Message Channel Info is superceded by the Get Channel Info command. New

implementations should use the Get Channel Info command instead.

Table 6-2, Channel Protocol Type Numbers
Channel

Protocol

(5-bits)

Name

Description

00h n/a reserved

01h IPMB-1.0 Used for IPMB, serial/modem Basic Mode, and LAN

02h ICMB-1.0 ICMB v1.0 - See Section 8, ICMB Interface.

03h reserved reserved

04h IPMI-SMBus IPMI on PCI-SMBus / SMBus 1.x - 2.x [1]

Request = [rsSA, Netfn(even)/rsLUN, 00h, rqSA, rqSeq/rqLUN, CMD[2], <data>,
PEC]

Response = [rqSA or rqSWID, NetFn(odd)/rqLUN, 00h, rsSA or rsSWID,
rqSeq/rsLUN, CMD, completion code, <data>, PEC]

05h KCS KCS System Interface Format - See Section 0,

Keyboard Controller Style (KCS) Interface

06h SMIC SMIC System Interface Format - See Section 10, SMIC Interface

07h BT-10 BT System Interface Format, IPMI v1.0 - See Section 0,

Block Transfer (BT) Interface

08h BT-15 BT System Interface Format, IPMI v1.5 - See Section 0,

Block Transfer (BT) Interface

Intelligent Platform Management Interface Specification

76

09h TMode Terminal Mode - See Section 14.7, Terminal Mode

1Ch-1Fh n/a OEM Protocol 1 through 4, respectively

all other reserved

1. Note that the IPMI format is intentionally illegal with respect to the SMBus specification protocols in order to provide a way
for a management controller to unambiguously differentiate IPMI messages from SMBus transactions. This enables a
management controller to support both SMBus and IPMI protocols without concern that they would overlap. The PEC
(packet error code) is an 8-bit CRC calculated per the SMBus 2.0 specification. This format makes it simple to use the
same hardware or firmware routines for data integrity checking of both IPMI and SMBus messages.)

2. Note that certain network functions, such as OEM/Group, require additional standard fields within the <data> portion of a
message.

6.5 Channel Medium Type

The Channel Medium Type number is a seven-bit value that identifies the general class of medium that is being

used for the channel.

Table 6-3, Channel Medium Type Numbers
Channel

Type

Description

0 reserved

1 IPMB (I2C)

2 ICMB v1.0

3 ICMB v0.9

4 802.3 LAN

5 Asynch. Serial/Modem (RS-232)

6 Other LAN

7 PCI SMBus

8 SMBus v1.0/1.1

9 SMBus v2.0

Ah reserved for USB 1.x

Bh reserved for USB 2.x

Ch System Interface (KCS, SMIC, or BT)

60h-7Fh OEM

all other reserved

6.6 Channel Access Modes

Session-based channels can be configured to provide IPMI Messaging access only when the system is in certain

states. This allows the system user to configure various levels of security and remotely accessible features. The

access modes are summarized in the Table 6-4, Channel Access Modes. Commands allow the power-up default

(non-volatile) Access Mode for a channel to be configured, and allow the Access Mode setting to be changed

 Intelligent Platform Management Interface Specification

 77

dynamically. Channel Access Modes are configured using the Set Channel Access command. The Set Channel

Access command is also used to enable or disable Alerting for the entire channel.

Support for any given access mode is implementation specific. It is expected that most implementations will

support Disabled and Always Available, and that serial/modem channels will also support the Shared access

mode.

Table 6-4, Channel Access Modes
Pre-boot
Only

The channel is only available out-of-band while the machine is powered-off and during POST until the
boot process is initiated. This option is primarily used with Serial Port Sharing where it may be desirable
to ensure that the BMC does not take control of the serial port during OS run-time. The BMC will not
claim the port once the port has been switched over to the system using the ‘force mux’ option in the Set
Serial/Modem Mux command, unless the system becomes powered down or is reset.

As a consequence, run-time software must rely on mechanisms such as the IPMI Watchdog Timer to
power down or reset the system in order to enable communication to the BMC under failure conditions.

There is a Modem Ring Time parameter in the serial/modem channels that configures the amount of time
that the BMC waits for RING before directing the modem to connect. This parameter can be used to
enable the BIOS to ‘answer the phone’ instead of the BMC. See Table 14-2, Serial Port Sharing Access
Characteristics for more information.

LAN Channels do not typically allow setting Pre-boot Access Mode. If it is provided, BIOS should disable
the channel at the end of POST (start of boot) by using the Set Channel Access command to set the
channel to ‘disabled’ using the volatile setting.

The Pre-boot Only setting does not affect serial/modem alerting. If alerting is enabled and software does
not handle the event, the BMC will take control of the port/channel for the time it takes to deliver the alert.
Alerting can be enabled or disabled for an entire channel via the Set Channel Access command.

Always
Available

The channel is dedicated to communication with the BMC and is available during all system states
(powered-down, powered-up, pre-boot, sleep, run-time, etc.) For IPMI LAN channels, this means that
RMCP packets are handled by the BMC.

For serial/modem channels on systems that support serial port sharing, the port can still be switched
over to the system, however the BMC will always ‘answer the phone’ and respond to escape sequences
and packets that activate the port. The BIOS will typically disable software access to the serial port when
it sees the BMC configured for Always Available mode. This is done to prevent any possible confusion
between auto-answer applications running on the OS and the BMC’s answering of the phone.

Shared The channel can be shared between system software and the BMC.

Shared Mode is typically only used when there is a need to switch the communication resource between
system software and the BMC because the system and BMC cannot readily interleave their traffic on the
medium, as is the case with Serial Port Sharing.

For IPMI LAN Channels, Shared Mode means that the implementation allows system software to receive
and respond to RMCP packets. However, this does not prevent the BMC from handling IPMI RMCP
packets and RMCP Ping/Pong. If software wanted exclusive access to RMCP Packets, it would need to
temporarily disable IPMI messaging by setting the volatile setting of the access mode to ‘disabled’. Note
that if system software failed, a system reset (e.g. watchdog reset) or power down would be required to
restore LAN communication with the BMC.

For serial/modem channels that support Serial Port Sharing, the system BIOS will typically leave the
baseboard serial port available for software use when it sees this mode set. This allows system software
to use the port and any external modem for ‘outgoing’ traffic, while the BMC can still ‘answer the phone’
for incoming calls. Thus, in shared mode, the mux will be set to ‘system’ whenever the BMC is not in the
process of answering a call or handling or establishing an IPMI messaging session.

There is a Modem Ring Time parameter in the serial/modem channels that configures the amount of time
that the BMC waits for RING before directing the modem to connect. This parameter can be used to
enable ‘auto answer’ OS applications, while providing a way to connect to the BMC if a failure prevents
the run-time application from answering the phone.

If the Modem Ring Time is set to a non-zero wait time, the BMC will leave the mux set to the system until
the Modem Ring Time expires, at which time the BMC can answer the phone. If the Modem Ring Time is
set to a zero wait time, the BMC will take the mux and attempt to answer the phone as soon as it detects
an incoming call. See Table 14-2, Serial Port Sharing Access Characteristics for more information.

Intelligent Platform Management Interface Specification

78

Disabled The channel is disabled from being used to communicate with the BMC. The Disabled setting does not
affect alerting. Alerting is separately enabled or disabled via a separate field in the Set Channel Access
command.

6.7 Logical Channels

From the IPMI Messaging point-of-view, a party that bridges a message from one channel to another only is

mainly concerned that it gets the correct response from the BMC. Often, it doesn’t matter to remote console or

system software whether the target channel and devices are physically implemented or not. For example, a BMC

could implement a logical IPMB where the BMC would respond to messaging commands as if there was a

physical IPMB with other management controllers on it. An implementation might elect to do this for several

reasons. One reason would be that the board vendor wanted to use an alternative bus for interconnecting the

management functions within their board set. Another possibility is that a logical IPMB could provide a way to

organize add-on functions to the BMC, such as embedding a logical ICMB Bridge controller.

6.8 Channel Privilege Levels

Channel privilege limits determine the maximum privilege that a user can have on a given channel. One channel

can be configured to allow users to have up to Administrator level privilege, while another channel may be

restricted to allow no higher than User level. The privilege level limits take precedence over the privilege level

capabilities assigned per user.

Channels can be configured to operate with a particular maximum Privilege Level. Privilege levels tell the BMC

which commands are allowed to be executed via the channel. Table 6-5, Channel Privilege Levels, lists the

currently defined privilege levels. The Set Channel Access command is used to set the maximum privilege level

limit for a channel. The Set Session Privilege Level Command is used to request the ability to perform operations

at a particular privilege level. The Set Session Privilege Level command can only be used to set privilege levels

that are less than or equal to the privilege level limit for the entire channel, regardless of the privilege level of the

user.

Table 6-5, Channel Privilege Levels
Callback This may be considered the lowest privilege level. Only commands necessary to support initiating a Callback are

allowed.

Appendix G - Command Assignments, provides a list of the commands that are executable when operating at
Callback Level.

User Only ‘benign’ commands are allowed. These are primarily commands that read data structures and retrieve
status. Commands that can be used to alter BMC configuration, write data to the BMC or other management
controllers, or perform system actions such as resets, power on/off, and watchdog activation are disallowed.

Appendix G - Command Assignments, provides a list of the commands that require operating at User level or
higher.

Operator All BMC commands are allowed, except for configuration commands that can change the behavior of the out-of-
band interfaces. For example, Operator privilege does not allow the capability to disable individual channels, or
change user access privileges.

Appendix G - Command Assignments, provides a list of the commands that require operating at Operator level or
higher.

Administrator All BMC commands are allowed, including configuration commands. An Adminstrator can even execute
configuration commands that would disable the channel that the Administrator is communicating over.

Appendix G - Command Assignments, provides a list of the commands that require operating at Administrator
level.

6.9 Users & Password Support

The term user is used in this specification to refer to a collection of data that identifies a password (key) for

establishing an authenticated session, and the privileges associated with that password. For configuration

purposes, the sets of user information are organized and accessed according to a numeric User ID. When

activating a session, user information is looked up using a text username.

 Intelligent Platform Management Interface Specification

 79

User access can be enabled on a per channel basis. Thus, different channels can have different sets of users

enabled.

If desired, a username on one channel can be associated with a different password than the same username on a

different channel. When a session is activated, the BMC will scan the usernames sequentially starting with

User ID 1 and will look for the first user that has a matching username and has access enabled for the given

channel. Thus, having different passwords for a given username requires configuring multiple user entries - one

for each different password that is to be used for a particular set of channels.

The specification allows a number of different implementations for supporting users on a channel. The following

lists the minimum requirements:

 All authenticated channels are required to support at least one user (User ID 1).

 Usernames may be fixed or configurable, or a combination of both, at the choice of the implementation.

 If an implementation supports only one user with a fixed user name, then the fixed user name must be null

(all zeros).

 Support for configuring user passwords for all User IDs is required.

 Support for setting per-user privilege limits is optional. If the Set User Access command is not supported, the

privilege limits for the channel are used for all users.

6.9.1 ‘Anonymous Login’ Convention

The IPMI convention for enabling an ‘anonymous’ login is to configure the entry for User ID 1 with a null

username (all zero’s) and a null password (all zero’s). Applications may then present this to the user as an

anonymous login and configuration option, knowing what username and password to use if the BMC allows

‘anonymous’ logins. The reason for doing this via User ID 1 is to simplify the task of enabling the BMC to

report whether anonymous login is enabled or not.

6.9.2 Anonymous Login Status

The Get Channel Authentication Capabilities command includes a ‘Anonymous Login Status’ field. This field

indicates to a remote console application whether User ID 1 is presently configured with a null username and

null password. In addition, a bit is provided that indicates whether there are also non-null usernames enabled for

the channel, or whether User ID 1 holds a null username, but a non-null password.

Together, these bits can be used to guide a remote application in presenting connection options to a user. For

example, if a system only has Anonymous Login enabled, the application could immediately connect without

prompting the user, or use that information to enable an ‘anonymous login’ button in the user interface. If a

system has a null username but non-null password, the application could put up just a password dialog box.

Lastly, if the system indicates it has non-null usernames with non-null passwords, the application may put up a

dialog box prompting for both a user name and password.

6.10 System Interface Messaging

The following sections describe how messaging works across the system interface to the BMC. Later sections go

into detail on message formats and register interfaces for the different physical implementation options for the

system interface.

6.10.1 BMC Channels and Receive Message Queue

Messaging between system software and the other management busses, such as the IPMB, is accomplished

using channels and a Receive Message Queue. A channel is a path through the BMC that allows messages to be

Intelligent Platform Management Interface Specification

80

sent between the system interface and a given bus or message transport. The Receive Message Queue is used to

hold message data for system software until system software can collect it. All channels share the Receive

Message Queue for transferring messages to system management software. The Receive Message Queue data

contains channel, session, and IPMI addressing information that allows system software to identify the source

of the message, and to format a message back to the source if necessary.

System management software is responsible for emptying the Receive Message Queue whenever it has data in

it. Messages are rejected if the Receive Message Queue gets full. It is recommended that the Receive Message

Queue have at least two ‘slots’ for each channel. The Receive Message Queue is a logical concept. An

implementation may choose to implement it as an actual queue, or could implement separate internal buffers for

each channel. It is recommended that the implementation attempt to leave a slot open for each channel that does

not presently have a message in the queue. This helps prevent ‘lock out’ by having the queue fill with just

messages from one interface.

The BMC itself can, if necessary, use the Receive Message Queue and Messaging Channels to send

asynchronous messages to system management software. The recommended mechanism for accomplishing this

is to define a unique channel with a protocol type of ‘System’. To send an asynchronous message to system

software, the BMC would place a message from that channel directly into the Receive Message Queue in

‘System’ format. System software would be able to respond back to the BMC using a Send Message command

for that channel.

6.10.2 Event Message Buffer

[Optional] - The Event Message Buffer holds Event Request Messages that have been internally generated by

the BMC, and Event Messages that have been received by the BMC from the IPMB or other channel. The Event

Message Buffer does not hold event messages that have been generated from system software.

The Event Message Buffer holds all 16-bytes of the Event Message as it would be stored in the System Event

Log (see Table 26-1, SEL Event Records). For IPMI v1.5, the Event Message Buffer does not get overwritten if

a new event comes in before system software can empty the buffer. The BMC does clear the buffer when the

BMC is first powered up and whenever the system becomes powered up or is hard reset. A BMC

implementation can support generating a system interrupt when the Event Message Buffer gets filled.

Some implementations will elect to generate an SMI to allow the creation of an SMI Handler that takes

additional actions on Event Messages. If Event Message Buffer interrupts do not generate SMI, or are not

enabled (or not implemented), SMS can use this as a mechanism for examining Event Messages as they are

received. System software must check the status of SMI use before assuming that the Event Message resource is

available. This can be accomplished by using the Get Channel Info command to determine if the interrupt

assignment for the Event Message Buffer is set to SMI.

Note: SMM Messaging and the implementation of SMIs is OPTIONAL. Since SMI operation and functions

are proprietary and not described nor required in this specification, support via the IPMI interfaces is

being deprecated. New implementations should avoid using the IPMI support for SMI.

6.11 System Interface Discovery and Multiple Interfaces

A BMC device may make available multiple system interfaces, but only one management controller is allowed to

be the ‘active’ BMC that provides BMC functionality for the system (in the case of a ‘partitioned’ system, there

can only one active BMC per partition). Only the system interface(s) for the active BMC are allowed to respond

to the Get Device ID command. If other BMC devices are present, but not being used, they must not respond to

the Get Device ID command.

When system interfaces are available, the driver can select the type interface it wishes to use.

 Intelligent Platform Management Interface Specification

 81

Drivers should not switch system interfaces during system operation or else unexpected results could occur. The

Get Device ID command is required to execute correctly across multiple interfaces to a BMC, but other

commands are not. Once the driver has chosen to use a given interface, all commands beyond Get Device ID

should be delivered to that interface. If it is desired to change the choice of system interfaces, a warm or cold reset

of the platform should be done to ensure that the system can re-initialize BMC operation.

It is recommended that run-time drivers support the IPMI System Interfaces in the following order:

 A driver should preferentially use the BMC on PCI, via the OS’s native support, if available. (A “Plug and

Play” OS will typically locate and load the appropriate driver for devices it finds on PCI.) Appendix C2 -

Locating IPMI System Interfaces on PCI, summarizes the PCI Class codes for IPMI System Interfaces.

 If the desired interface is not available on PCI, or the system is in a state where OS support for PCI is

unavailable the next step should be to look for the system interface as a static resource described in ACPI

using the control methods described in Appendix C3, Locating IPMI System Interfaces with ACPI.

 If the operating environment does not include a mechanism to support executing ACPI control methods,

then look for the system interface at the location described by the SPMI (Service Processor Management

Interface) Table(s) through the ACPI Description Table mechanisms. (The SPMI Table approach supports

BMCs that offer more than one system interface. Therefore, there can be more than one instance of the

SPMI Table.) The SPMI Table is described in Appendix C2 - Locating IPMI System Interfaces on PCI.

 If the SPMI Table is not present, the driver should look for the SMBIOS Type 38 table (See Appendix C1 -

Locating IPMI System Interfaces via SM BIOS Tables) and use the interface described there. Unlike the

SPMI Table, there is only one instance of the Type 38 record allowed, so the driver will not need to look

for additional interfaces.

 Lastly, the driver should look for the IPMI System Interface at the fixed, default I/O addresses specified for

the SMIC, KCS, and BT interfaces. Refer to the individual sections on those interfaces for the addresses.

6.12 IPMI Sessions

Authenticated IPMI communication to the BMC is accomplished by establishing a session. Once established, a

session is identified by a Session ID. The Session ID may be thought of as a handle that identifies a connection

between a given remote user and the BMC, using either the LAN or Serial/Modem connection.

The specification supports having multiple active sessions established with the BMC. It is recommended that a

BMC implementation support at least four simultaneous sessions. This number is shared between the LAN and

Serial/Modem interfaces.

The specification also allows a given endpoint (identified by an IP address) on the LAN to open more than one

session to a BMC. The capability is allowed to allow a single system to serve as a proxy to provide BMC LAN

sessions for other systems. It is not intended for one system to use this provision to open multiple sessions to the

BMC for that system’s sole use.

An IPMI messaging connection to the BMC fits one of three classifications, session-less, single-session, or multi-

session.

6.12.1 Session-less Connections

A session-less connection is unauthenticated. There is no ‘user login’ required for performing IPMI messaging.

The System Interface and IPMB are examples of session-less connections.

A special case of a session-less connection can occur over an interface that supports session-based messaging.

Session-based connections have certain commands that are accepted and responded to “outside of a session”.

When that occurs, the channel is effectively operating in a session-less manner for those commands. Commands

that are handled outside of a session have fixed values for session-specific fields in the message. For example,

when the “Get Channel Authentication Capabilities” is sent over a LAN channel outside of a session, it is sent

Intelligent Platform Management Interface Specification

82

with the Session ID set to NULL and authentication type set to NONE in the IPMI session header of the

message. Note that commands that are accepted “outside of a session” can also be accepted within the context

of a session, in which case they must have valid Session IDs, etc., in the session header in order to be accepted.

6.12.2 Single-session Connections

A single-session connection has a user authentication phase that precedes IPMI messaging. This is

accomplished using the Get Session Challenge and Activate Session commands. A single-session connection is

intended for a physically secure link. Therefore, individual packets are not signed. The serial/modem Basic

Mode is an example of a single-session connection.

6.12.3 Multi-session Connections

A multi-session connection has user authentication and supports multiple interleaved sessions (multiple users).

The multi-session connection is specified to support communication on a shared medium, such as LAN, where

there may be a mix of IPMI and non-IPMI traffic. In order to support multiple sessions, and protect against

attempts to circumvent authentication (such as replay attacks), multi-session packets have a session header in

addition to the IPMI message. The session header carries information to identify the particular session, as well

as other fields such as session sequence numbers and authentication type fields. The LAN and PPP Mode

connections are examples of multi-session IPMI messaging connections.

6.12.4 Per-Message and User Level Authentication Disables

Typically, each packet in a multi-session connection is authenticated (with the exception of the packets for

certain ‘pre-session’ commands such as Get Channel Authentication Capabilities, and Get Session Challenge.)

In some cases however, the connection medium is considered to be trusted even though multiple user sessions

are allowed. Once a session has been activated, the computational overhead of authenticating each packet may

not be necessary.

Thus, there are two options to enable performance improvements in environments where the link is considered

to be secure. The options are to disable ‘Per-Message Authentication’, and to disable ‘User Level

Authentication’. If Per-Message Authentication is disabled, the only packets that are required to be

authenticated are the ones for the Activate Session request and response. Once the session is activated, the

remaining packets will be accepted with the Authentication Type set to NONE. Since the Authentication Code

(signature) is not provided in the packet when the Authentication Type is NONE, this enables a performance

improvement in two ways: fewer bytes are transmitted, and the authentication algorithm doesn’t need to be run.

In many cases, there is little concern about whether User Level commands are authenticated, since the User

privilege allows status to be retrieved, but cannot be used to cause actions such as platform resets, or change

platform configuration. Thus, an option is provided to disable authentication just for User Level commands. If

User Level Authentication is disabled, then User Level messages will be accepted that have the Authentication

Type set to NONE.

The BMC will always verify any authenticated packets (Authentication Type not NONE) that it receives,

regardless of whether Per-Message Authentication and/or User Level Authentication is disabled. Authenticated

packets will be silently discarded if the signature (AuthCode) is invalid, or the Authentication Type does not

match the authentication type that was negotiated when the session was activated. This is necessary to allow

remote console software to deliver authenticated messages to the Receive Message Queue via the Send Message

command.

Both the Per-Message Authentication and User Level Authentication disable options are configured via the Set

Channel Access command.

 Intelligent Platform Management Interface Specification

 83

6.12.5 Link Authentication

Sometimes connections offer authentication protocols that are applied as part of establishing the communication

link to the BMC. For example, PPP supports authentication protocols such as PAP and CHAP that are part of

link establishment.

Link Authentication is a global characteristic associated with the connection mode for the channel. Link

Authentication is enabled/disabled via the serial/modem configuration parameters. When Link Authentication

is enabled, it is necessary to identify one or more users that will serve as the source of the username (peer ID)

and password information for the link. This is accomplished by setting an ‘Enable User for Link

Authentication’ bit in the Set Channel Access command.

For physically secure connections, these ‘Link Authentication’ protocols may be all that’s considered needed to

authenticate the user. Thus, the BMC supports enabling Link Authentication for PPP using common PPP

authentication algorithms. If Link Authentication is enabled, the Per-Message Authentication Disable, and User

Level Authentication Disable options may be used to improve performance.

6.12.6 Summary of Connection Characteristics

The following table summarizes the key characteristics that differentiate session-less, single-session, and multi-

session connections:

Table 6-6, Session-less , Single-session and Multi-session Characteristics

M
u

lt
i-

S
e

s
s

io
n

S
in

g
le

-

S
e

s
s

io
n

S
e

s
s

io
n

-l
e

s
s

S
e

s
s

io
n

H
e
a

d
e

r

A
u

th
e

n
ti

c
a

te
d

A
c
c

e
s

s

P
e

r
M

e
s
s

a
g

e

A
u

th
e

n
ti

c
a

ti
o

n

D
is

a
b

le

U
s
e

r
L

e
v

e
l

A
u

th
e

n
ti

c
a

ti
o

n

D
is

a
b

le

L
in

k

A
u

th
e

n
ti

c
a

ti
o

n

LAN X X X X X

Serial/Modem:

PPP Mode X X X X X X

Basic Mode X X

Terminal Mode X X[1]

IPMB X

ICMB X

PCI Management Bus X

1. Terminal mode only supports ‘straight password’ authentication

Intelligent Platform Management Interface Specification

84

6.12.7 IPMI v1.5 Session Activation and IPMI Challenge-Response

This section provides an overview of how sessions are activated in IPMI v1.5. (IPMI v2.0 adds using RMCP+

Authenticated Key-Exchange Protocol (RAKP), as the session establishment mechanism. See 13.3, RMCP+,

and 13.15, IPMI v2.0/RMCP+ Session Activation).

A session must be activated before general IPMI messaging can occur. For IPMI v1.5, the basic mechanism for

accomplishing this is via a set of IPMI commands that are used to perform an “IPMI Challenge-Response”. This

process involves three IPMI commands: Get Channel Authentication Capabilities, Get Session Challenge, and

Activate Session. Of these three commands, the Get Channel Authentication Capabilities and Get Session

Challenge command must be executable before the session is set up. Therefore, these commands can be thought

of as always being ‘unauthenticated’. The Activate Session command is the first, and in some cases only,

authenticated command for a session. Refer to Sections 13.3, RMCP+, and 13.14, IPMI v1.5 LAN Session

Activation for more information on session establishment for LAN channels.

Figure 6-1, Session Activation

Activate Session, Rq

Get Session

Challenge, Rq

Get Session

Challenge, Rs

Activate Session, Rs

Remote Console Managed System

Get Channel

Authentication

Capabilities, Rq
Get Channel

Authentication

Capabilities, Rs

6

1

2

3

4

5

Referring to Figure 6-1, Session Activation, the following presents the general steps for activating a session:

1. The Remote Console issues a Get Channel Authentication Capabilities request to the BMC.

2. The BMC returns a Get Channel Authentication Capabilities response that contains which

authentication types (authentication algorithms) it supports.

3. The Remote Console sends a Get Session Challenge request to the BMC. The command selects which

of the BMC-supported authentication types the Remote Console would like to use, and a username that

selects which set of user information should be used for the session. This is the only place where the

username is used during the process.

4. The BMC looks up the user information associated with the username. If the user is found and allowed

access via the given channel, the BMC returns a Get Session Challenge response that includes a

randomly generated Challenge String and a temporary Session ID. The BMC keeps track of the

username associated with the Session ID so that it can use the Session ID to look up the user’s

information in the next step. In some algorithms, the BMC will store challenge string, or a seed that

was used to generate the challenge, for later lookup as well.

 Intelligent Platform Management Interface Specification

 85

5. The Remote Console then issues an Activate Session request. The request contains the temporary

Session ID plus the authentication information based on the type of authentication that was selected.

For example, a LAN packet would typically include a signature using an authentication algorithm run

on elements such as the challenge string, user password/key, IPMI message fields, Session ID, etc.

while a serial/modem connection may only pass a simple clear-text password in the activate session

data. The authentication format for different authentication types is specified in the description of the

Activate Session command. For multi-session connections, the starting Outbound session sequence that

the BMC is to use when sending packets to the remote console is also passed in the request. (Session

sequence numbers are explained in the next section.)

6. The BMC uses the temporary Session ID to look up the information for the user that was identified in

the Get Session Challenge request. The BMC looks up the user’s password/key data, and potentially

other data such as a stored copy of the earlier challenge string, and uses it to verify that the packet

signature or password is correct. If so, the BMC issues an Activate Session response that provides the

Session ID to use for the remainder of the session. For multi-session connections, the Activate Session

response is itself authenticated (signed). The BMC will also deliver the starting Inbound session

sequence that the Remote Console is to use when sending packets to the BMC.

From this point, whether individual packets for the session are authenticated or not is based on settings such as the

Per User Authentication and User Level Authentication parameters. Refer back to 6.12.4, Per-Message and User

Level Authentication Disables.

6.12.8 IPMI v1.5 Session Sequence Numbers

The session sequence number is a 32-bit, unsigned, value. The session sequence number is not used for

matching IPMI requests and responses. The IPMI Sequence (Seq) field or similar field in the particular payload

is used for that purpose. The sender of the packet increments the session sequence number for every packet that

gets transmitted even if the payload of the content is a ‘retry’. Session Sequence Numbers are generated and

tracked on a per-session basis. I.e. there are separate sets of sequence numbers and sequence number handling

for each session.

Sequence numbers only apply to packets that are transmitted within the context of an IPMI session. Certain

IPMI commands and protocol messages are accepted ‘outside of a session’. When sent outside a session, the

sequence number fields for these packets are always set to 0000_0000h.

6.12.9 IPMI v1.5 Session Sequence Number Handling

For IPMI v1.5 sessions, there are two Session Sequence Numbers: the Inbound Session Sequence Number and

the Outbound Session Sequence Numbers. The inbound and outbound directions are defined with respect to the

BMC. Inbound messages are from the remote console to the BMC, while outbound messages are from the BMC

to the remote console.

Inbound messages use the inbound session sequence number, while outbound messages use the outbound

session sequence number. The inbound and outbound sequence numbers are updated and tracked independently,

and are unique to each session. Since the number of incoming packets and outgoing packets will typically vary,

the inbound and outbound sequence numbers will not stay in lock step with one another.

The BMC and the remote console independently select the starting session sequence number for the messages

they receive. Typically, this is done using a random number in order to further reduce the likelihood of a

playback attack. The remote console sets the starting values for the outbound session sequence number when it

sends the first Activate Session command for an authenticated session. The remote console must increment the

inbound session sequence number by one (1) for each subsequent message it sends to the BMC. The Activate

Session response is the first authenticated outbound (BMC to remote console) message. This response message

uses the initial outbound session sequence number value that the remote console delivered in the prior Activate

Session command request. The BMC must increment the outbound session sequence number by one (1) for

each subsequent outbound message from the BMC.

Intelligent Platform Management Interface Specification

86

6.12.10 IPMI v1.5 Inbound Session Sequence Number Tracking and Handling

At a minimum, the BMC is required to track that the inbound sequence number is increasing, and to silently

discard the packet if the sequence number is eight counts or more from than the last value received. (An

implementation is allowed to contain a proprietary configuration option that enables a larger sequence number

difference, as long as the standard of +eight can be restored.)

An implementation can elect to terminate the session if it receives a number of sequence numbers that are more

than eight counts from the last value received.

Valid packets (packets with good data integrity checks and signature) to a given session that have the same

inbound sequence number as an earlier packet are considered to be duplicate packets and are silently discarded

(even if the message content is different).

6.12.11 IPMI v1.5 Out-of-order Packet Handling

In order to avoid closing a session because a packet was received out-of-order, the BMC must implement one of

two options:

Option 1: Advancing eight-count (or greater) window. Recommended. Track which packets have been

received that have sequence numbers up to eight counts less than the highest last received sequence

number, tracking which of the prior eight sequence numbers have been received. Also accept packet with

sequence numbers that are up to eight counts greater than the last received sequence number, and set that

number as the new value for the highest sequence number received. This option is illustrated in Appendix A

- Previous Sequence Number Tracking

Option 2: Drop any packets with sequence numbers that are lower than the last valid value received. While

simpler than option 1, this option is not recommended except for resource-constrained implementations due

to the fact that any out-of-order packets will require the remote console to timeout and retransmit.

Sequence number wrap-around must be taken into account for both options. When a sequence number advances

from FFFF_FFFFh to 0000_0000h, the value FFFF_FFFFh represents the lesser sequence number.

6.12.12 IPMI v1.5 Outbound Session Sequence Number Tracking and Handling

The remote console is required to handle outbound session sequence number tracking in the same manner as the

BMC handles the inbound session sequence number, except that Option 2 (above) should not be used as a

means of handling out-of-order packets.

6.12.13 IPMI v2.0 RMCP+ Session Sequence Number Handling

For IPMI v2.0 RMCP+ sessions, there are two sets of Session Sequence Numbers for a given session. One set

of inbound and outbound sequence numbers is used for authenticated (signed) packets, and the other set is used

for unauthenticated packets. The inbound and outbound sequence numbers for authenticated packets are

updated and tracked independently from the inbound and outbound sequence numbers for unauthenticated

packets.

IPMI v2.0 RMCP+ Session Sequence Numbers are used for rejecting packets that may have been duplicated by

the network or intentionally replayed.

The individual Session Sequence Numbers is are initialized to zero whenever a session is created and

incremented by one at the start of outbound processing for a given packet (i.e. the first transmitted packet has a

‘1’ as the sequence number, not 0). Session Sequence numbers are incremented for every packet that is

transmitted by a given sender, regardless of whether the payload for the packet is a ‘retry’ or not.

When dropping packets because of sequence number, any packet with an illegal, duplicate, or out-of-range

sequence can be dropped without having to verify the packet integrity data (AuthCode) signature first. When

 Intelligent Platform Management Interface Specification

 87

accepting packets, the BMC must apply any packet integrity and authentication code checks before accepting

the packet’s sequence number.

6.12.14 IPMI v2.0 RMCP+ Sliding Window

IPMI v2.0 RMCP+ uses a ‘sliding window’ for tracking sequence numbers for received packets. This sliding

window is used for rejecting packets that have sequence numbers that are significantly out-of-range with respect

to the sequence number for the most recently accepted packet while allowing a number of out-of-order packets

to be accepted.

In order for a packet to be accepted by the BMC, its sequence number must fall within a 32-count sliding

window, where packets will be accepted if they are within plus 15 or minus 16 counts of the highest sequence

number that was previously accepted, and they are not duplicates of any previously received sequence numbers.

6.12.15 Session Inactivity Timeouts

A session is automatically closed if no new, valid, message has been received for the session within the

specified interval since the last message. The session must be re-authenticated to be restored. A remote console

can optionally use the Activate Session command to keep a session open during periods of inactivity.

Note that only an active session will keep the Session Inactivity Timeout from expiring. IPMI message activity

that occurs outside of an active session has no effect. This is to prevent someone from keeping a phone

connection indefinitely while trying to guess different passwords to activate a session.

The BMC only monitors for inactivity while the connection is switched over to the BMC. Note that closing a

session is not always the same as hanging up a modem connection. Serial/modem sessions are also

automatically closed when the connection is switched over to the system, but the phone connection remains

active. The BMC only terminates the phone connection if a session is closed due to an inactivity timeout while

the serial connection is routed to the BMC.

The timeout and tolerance values are specified for the management controller (BMC) that will timeout and close

the session. System software should take this tolerance into account, plus any additional delays due to media

transmission times, etc.

An implementation can provide an option to allow the timeout to be configurable via a parameter in the

configuration parameters for the given channel type.

Table 6-7, Default Session Inactivity Timeout Intervals
Session Type Default

Expiration

Interval

Tolerance Notes

LAN 60 seconds +/- 3 seconds

Direct Connect Mode Serial 60 seconds +/- 3 seconds

Modem Mode Serial 60 seconds +/- 3 seconds The Inactivity Timeout Interval starts
whenever a connection is established with,
or switched to, the BMC. The Phone
connection gets terminated if inactivity
timeout occurs while serial connection is
routed to BMC.

6.12a Avoiding ‘Slot Stealing’

It is highly recommended that an implementation provide a mechanism for protecting against someone

accidentally or maliciously 'claiming' all the session slots and subsequently locking out access to the BMC. For

example, this could occur by an errant program repeatedly issuing Get Session Challenge commands without

successfully activating a session - causing all available resources for tracking pending sessions to be used up.

Intelligent Platform Management Interface Specification

88

One possible solution is to use an LRU algorithm that drops the Session ID for the oldest Session ID that has a

pending 'Activate Session'. That way, the only way to ‘permanently’ use up slots is by activating and

maintaining sessions for all session slots. A minor refinement may be to provide a few seconds of delay on

returning the response to the Get Session Challenge in order to give opportunity for a well-behaved application

to get a Challenge and return an Activate Session command before the errant software re-issued another Get

Session Challenge. (This is only an improvement for errant applications that wait for the response to the Get

Session Challenge before issuing the request again.)

6.12.16 Additional Session Specifications and Characteristics

 At least four simultaneous sessions should be supported on a given channel.

 By default, sessions are automatically closed if no valid activity is detected within the Session Inactivity

Timeout Interval, or if the connection or link is terminated. Valid activity is defined as the receipt of a valid

IPMI message for that session while the connection is routed to the BMC.

 At least four pending bridged requests should be supported for each bridged interface that requires the BMC

to track pending responses. See 6.13, BMC Message Bridging for more information.

 The typical BMC is expected to allow only a small number of simultaneous open sessions (on the order of

four to eight). Thus, remote console applications should avoid activating multiple sessions whenever

possible, in order to allow other remote consoles to also get access.

 The Activate Session command will return a completion code indicating whether the request was rejected

because BMC is presently busy with other open sessions.

 The specification allows multiple sessions to be activated from a single IP address. The primary reason for

allowing multiple sessions is to allow a system to serve as a proxy agent that provides BMC access for

remote consoles that connect to it instead of directly to the BMC.

 Multiple sessions are not intended to be used to support access by multiple applications behind an IP

address. If multiple applications require access to the BMC on a given system, a single driver or ‘middle-

ware’ should coordinate that access and use a single session, if possible. The IPMI Software ID and the

IPMI sequence number are two fields that a shared driver can used to identify and route messages to and

from a given application.

 There is a 1:1 relationship between a user name and a session. I.e. different usernames cannot share the

same session. However, multiple sessions can be activated using the same username.

 All sessions start off at User Level privilege. It is necessary to issue a Set Session Privilege to raise the

operating privilege level before commands that required higher privilege can be executed. The maximum

operating privilege for a session is determined by Privilege Limits that are set both for the user and for the

overall channel. The more restrictive setting of the User Privilege Limit and the Channel Privilege Limit sets

the maximum operating privilege available for a session.

 An Operator can optionally use the Get Channel Info and Get Session Info commands to retrieve the address

of parties with open sessions and their present privilege level. This is to allow a remote console to

coordinate with another remote console that already has an active session. This can be used to allow

software to coordinate access to the system. For example, if management software running at Console “A”

wished to remotely reset a given system, it could first see whether another console had an active session

with the system to be reset. It could then use information from the Get Channel Info and Get Session Info

commands to send a message directly to the other console, notifying it of the pending reset.

 An Administrator can force sessions on any channel to be terminated.

 Intelligent Platform Management Interface Specification

 89

6.13 BMC Message Bridging

BMC Message Bridging provides a mechanism for routing IPMI Messages between different media. Bridging is

only specified for delivering messages between different channels; i.e. it is not specified for delivering messages

between two sessions on the same channel.

In IPMI 1.0, bridging was primarily specified just for providing access between SMS (System Interface) and the

IPMB. With IPMI 1.5, these mechanisms have been extended to support delivering IPMI messages between

active connections / sessions on any IPMI Messaging media connected to the BMC.

There are three mechanisms for bridging messages between different media connected to the BMC, depending on

what the target of the message is:

 BMC LUN 10b is used for delivering messages to the System Interface. The BMC automatically routes any

messages it receives via LUN 10b to the Receive Message Queue.

 Send Message command from System Interface is used for delivering messages to other channels, such as

the IPMB. The messages appear on the channel as if they’ve come from BMC LUN 10b. Thus, if the message

is a request message, the response will go to BMC LUN 10b and the BMC will automatically place the

response into the Receive Message Queue for retrieval. System software is responsible for matching the

response up with the original request, thus the ‘No Tracking’ setting in the Send Message command is used.

 Send Message command with response tracking. This format of Send Message command is used with

response tracking for bridging request messages to all other channels except when the System Interface is the

source or destination of the message.

The following sections provide additional information on the operation and use of these bridging mechanisms.

6.13.1 BMC LUN 10b Routing

Because messages to SMS are always routed to the Receive Message Queue, the Send Message command is not

typically used to send messages to SMS. Instead, messages to SMS are delivered via the BMC SMS LUN, 10b.

The BMC automatically reformats and places any messages that are addressed to LUN 10b into the Receive

Message Queue for SMS to retrieve using the Get Message command.

Thus, sending a request to SMS just requires formatting the command so that it is addressed to BMC LUN 10b.

SMS can retrieve the request from the Receive Message Queue, extract the originator’s address and channel

info, and then use the Send Message command to deliver a response.

The BMC does not track requests and responses for messages to system software because the Receive Message

Queue provides the channel and session information necessary to format the Send Message command to deliver

the response. Similarly, system software is capable of tracking the channel and session information it used when

generating a request. Thus, the ‘No Tracking’ option is used for Send Message commands from system

software.

The responder then delivers its response message to BMC LUN 10b and the response gets routed to the Receive

Message Queue. Conversely, if a channel wants to deliver a message to SMS, it sends the request message to

BMC LUN 10b, and later SMS uses a Send Message command to return the response from BMC LUN 10b.

6.13.2 Send Message Command From System Interface

The operation of the Send Message command when issued via the System Interface is different than when the

Send Message command is issued from other interfaces. This is because the IPMI System Interfaces were

specified as always returning an immediate command response. In order to avoid tying up the System Interface

waiting for a bridged response, a response to the Send Message command is returned as soon as the request is

Intelligent Platform Management Interface Specification

90

bridged to the target channel. This response only indicates that the Send Message command was executed. It is

not the response to the bridged request.

Later, the response to the bridged request is received by the BMC and routed into the Receive Message Queue

and it is retrieved using a Get Message command. For example, here are the typical steps involved in delivering

a request from the System Interface to a device on the IPMB, and receiving a corresponding response:

1. System software formats a Send Message request that encapsulates information for the request to be

placed on IPMB. The requester’s LUN in the data is set to 10b so when the response comes back, the

BMC will place it in the Receive Message Queue. The encapsulated request is also given a sequence

number by the system software. System software will use this number later, along with other fields, to

match up the Receive Message Queue data with the original request.

2. System software delivers the Send Message request to the BMC via the System Interface.

3. The BMC returns an ‘OK’ response to the Send Message command, indicating that it has received the

request and delivered it to the IPMB.

4. Sometime later, the target IPMB device delivers a response to the request. The response is sent back to

the same requester’s LUN that was used in the request, 10b. The BMC routes message data received

on 10b to the receive message queue, and also tags it with information such as the channel number that

the message was received from.

5. System software detects that there is data in the Receive Message Queue. This is either done by polling

for messages by periodically checking the SMS_ATN bit, or for interrupt driven implementations,

getting an interrupt when SMS_ATN becomes set. Software then uses the Get Message Flags

command to discern whether the SMS_ATN condition was from getting data into the Receive Message

Queue or some other event.

6. System software then issues a Get Message request. The response returns a message from the queue. If

the data is for a response, software then checks the message fields, such as sequence number, channel

number, CMD, etc., to see if the response matches up with an earlier request. In this example, software

would be looking for a response to the request it had bridged onto IPMB. If the Receive Message

Queue holds a request for system software, it processes it accordingly.

7. If software has not received a response by the timeout intervals specified for IPMB, it can retry the

request. Also note that IPMB sequence numbers generally expire after 5 Seconds. This number comes

from the sequence number expiration interval on IPMB. Software can generally discard requests that

are more than 5 seconds old and re-use their sequence numbers.

If the target channel uses sessions, the Send Message command data will require a Session Handle value to

select which session on the channel the message will be sent to. Software can use the Get Channel Info and Get

Session Info commands to determine what channels are present and to obtain the Session Handle for a given

session.

6.13.3 Send Message Command with Response Tracking

The Send Message command is used primarily to direct the BMC to act as a proxy that translates a message

from one IPMI messaging protocol to another. The BMC formats the data for the target channel type and

protocol and delivers it to the selected medium.

Media such as the IPMB do not include channel number and session information as part of their addressing

information. As a result, request messages from another channel must be delivered as if they originated from the

BMC itself.

If the bridged message is a request, it is necessary for the BMC to hold onto certain data, such as originating

channel and session information, so that when the response message comes back it can reformat the response

and forward it back to the originator of the request. The primary way the BMC accomplishes this is by

assigning a unique sequence number to each request that it generates, and saving a set of information in a

 Intelligent Platform Management Interface Specification

 91

‘Pending Bridged Response’ table that is later used to reformat and route a response back to the originator of

the request.

The sequence number returned in the response is then used to look up who generated the original response, plus

the saved formatting and addressing information. The BMC then reformats and delivers the response to the

original requester and deletes the request from its list of ‘pending responses’. The Send Message command

includes a parameter that directs the BMC to save translation information for and track outstanding request

messages for the purpose of routing the response back to the originator of the Send Message command.

Note that, with the exception of messages to SMS, when the Send Message command is used to deliver a

message to a given medium the message appears to have been originated by the BMC. This means that a

controller on the IPMB can’t generically distinguish a bridged request from SMS from a bridged request from

LAN.

Table 6-8, Message Bridging Mechanism by Source and Destination

Message Type and direction

Delivery

Mechanism

BMC tracks
pending

responses

Request or Response from System Interface to any other channel Send Message no

Request or Response to System Interface from any other channel BMC LUN 10b no

Request from any channel except System Interface to IPMB Send Message yes

Response from IPMB to any channel except System Interface BMC LUN 00b yes

Request from any channel (except System Interface) to PCI
Management Bus

Send Message yes

Request from PCI Management bus to any channel except System
Interface

BMC LUN 00b yes

Request from Serial to LAN Send Message yes

Response LAN to Serial BMC LUN 00b yes

Request from LAN to Serial Send Message yes

Response from Serial to LAN BMC LUN 00b yes

6.13.4 Bridged Request Example

The example illustrates a Send Message command from LAN being used to deliver a request to IPMB.

Bridged requests to the IPMB can come from several different channels: LAN, serial/modem, and the ICMB.

The BMC uses the sequence number that it places on the bridged request to identify which channel and to

which address on that channel the response is to go back to. It is therefore important for the BMC to ensure that

unique sequence numbers are used for pending requests from the different channels. It is also important that

sequence numbers are unique for successive requests to a given responder. One way to manage sequence

numbers to the IPMB is to track sequence numbers on a per responder basis. This can be kept in a table of

‘Pending Bridged Response’ info.

In order to get the response back to the LAN, the IPMB response must return the same sequence number that

was passed in the request. (This is a basic rule of IPMI Messaging, so there’s nothing special about that

requirement.) The management controller uses the sequence number to look up the channel type specific

addressing, sequence number, and security information that it stored when the request was forwarded. For

example, if the channel type is ‘LAN’ then the response message must be formatted up in an RMCP/UDP

packet with the IP address of the requester, the sequence number passed in the original request, the appropriate

security ‘key’ information, etc.

When a request message is bridged to another channel by encapsulating it in a Send Message command (from a

source channel other than the system interface), the BMC immediately returns a response to the Send Message

command itself. Meanwhile, the request is extracted from the Send Message command and forwarded to the

specified target channel.

Intelligent Platform Management Interface Specification

92

The Send Message command must be configured to direct the BMC to keep track of data in the request so when

the response comes back from the target device it can be forwarded by the BMC back to the channel that

delivered the original Send Message command to the BMC. When the response comes back from the target, the

BMC uses the tracking information to format the response for the given channel. To the party that initiated the

Send Message command, the response will appear as if the encapsulated request was directly executed by the

BMC. I.e. it will look like an asynchronously generated response message.

For example, suppose a Get Device ID command has been encapsulated in a Send Message command directed

to the IPMB from a LAN channel. The BMC will immediately send a response to the Send Message command

back on LAN. The BMC will extract the encapsulated Get Device ID message content and format it as a Get

Device ID request for IPMB. The target device on IPMB responds with a Get Device ID response message in

IPMB format. The BMC takes the tracking information that was stored when the Send Message command was

issued, and uses it to create a Get Device ID response in LAN format. The Responder’s address information in

that response can either be that of the BMC, or the address of the device on IPMB that the request was targeted

to, at the choice of the BMC implementation. Parties that initiate this type of bridged request using the Send

Message command should accept responses from the BMC that use either address.

The following figure and steps present an example high-level design for handling a bridged request. Note that

the example shows information that is generated and stored, but it does not show any particular code module

that would perform that operation. That is, the choice of which functions are centralized, which are in a ‘LAN’

module, and which are in an ‘IPMB’ module (or whether you even have such modularity) is left to the

implementer.

Figure 6-2, LAN to IPMB Bridged Request Example

Chk2

A

RqSeq/

RqLUN

LUN=

17h*/ 00b*

Responder's

Address

(RsA) [BMC]

NetFn/

RsLUN

CMD =

Send

Message

Sensor

Number

RqSeq/

RqLUN

Seq #

Allocator

Ch1

Seq #s

Ch 0

(IPMB)

Seq #s

Channel

= 0

(IPMB)

Chk1

A

Requester's

Address

(RqA)

NetFn/RsLUN

e.g. S/E, 00b

Responder's

Address (RsA)

e.g. 24h

Session

ID

(0047h)

CMD =

Get Sensor

Reading

Destination

Channel

RqSeq#

0017h

Source

Channel

Number

Ch 1

Session

ID

Handle

3 AAh

Requester's

Address /

SWID

Destination

Channel

Number

Ch 0 24h

Destination

Channel

Responder's

Address

500

Seq #

Expiration

Chk2

B

Responder's

Slave Addr.

(RsSA)

=24h

NetFn/

RsLUN

=S/E,

00b

Sensor

Number
Chk1*

CMD =

Get Sensor

Reading

Chk2*

Source

IP / MAC

Address

0047h

2

3

4

...

Src IP

& MAC

Addr

3

1

4

5

Requester's

Slave Addr

(RqSA)

=20h*

(BMC)

2

LAN REQUEST

Requester's

Address

(RqA)

Chk1

B

RqSeq/

RqLUN

(RqA)

Source

Channel

RqA

RqSeq/

RqLUN

Source

Channel

RqSeq/

RqLUN

IPMB REQUEST

Get

Sensor

Reading

Source

Channel

CMD

Destination

Channel

RsLUN

00b

Encapsulated data for IPMB Request

* BMC Synthesized Fields

Internally Stored Info for tracking

and formatting response back to

requester

1. When the BMC receives the Send Message command with the ‘Bridged Request’ parameter bit set, it checks

for an available entry in a Pending Bridged Response table and copies parameters from the request to be

bridged. When the response comes back, these parameters will be used to validate that the response matches

the earlier request and to reformat the response for the originating channel. The bold outlined boxes

 Intelligent Platform Management Interface Specification

 93

represent parameters and data in the Send Message command that will ultimately be copied to the resulting

request on the target channel (the IPMB in this example).

2. Any channel session information necessary to get the response back to the original requester will also need

to be recorded. In this example, the BMC maintains a separate table of session information for the LAN

channel. An offset into that table is used as a ‘handle’ for identifying the session information associated with

the request. This handle is used in the Pending Bridged Response table in lieu of copying all the session

information. Note that with such an implementation, it is important to remember details such as invalidating

and freeing any bridge table entry associated with that session if the session should get closed while

responses are pending.

3. In this example, the BMC has a separate ‘Sequence Number Allocator’ routine that ensures that sequence

numbers used in bridged requests are kept unique for a given channel. This is done so when the response

comes back, the sequence number can be used to look up the corresponding request info entries from the

Pending Bridged Response table.

4. Responses have a five second ‘sequence number expiration’ interval. If a response is not received by the

expiration interval, the corresponding entry in the Pending Bridged Response entry is deleted and the

sequence number associated with the request can be reused. The Seq # Expiration column in this example

represents a possible implementation where the Seq # Expiration value is decremented nominally once every

10 ms. The entry is considered to be free when the number hits 0. Thus, in this example the Seq # Expiration

field could be used both for tracking sequence number expiration as well as a mechanism for marking

whether a table entry is available or not.

5. The BMC takes the indicated values and uses them to construct the bridged request. The request is a

combination of field values copied from the original Send Message command and values generated by the

BMC. The BMC generated values are shown with a bold underlined typeface with an asterisk.

6.14 Message Size & Private Bus Transaction Size Requirements

The following table summarizes the message size and transaction size requirements for the various interfaces to

the BMC and IPMI Management controllers. The IPMI message sizes include any IPMI-level addressing and data

integrity information required for the interface. For example, the IPMB Message lengths include the requester and

responder addressing information, sequence number, and checksums. The message sizes do not include counts for

additional encapsulation, data escaping, or framing used to transport the IPMI message on the given media.

The IPMB standard overall message length for ‘non-bridging’ messages is specified as 32 bytes, maximum,

including slave address. This sets the upper limit for typical IPMI messages. With the exception of messages used

for bridging messages to other busses or interfaces (e.g. Master Write-Read and Send Message) IPMI messages

should be designed to fit within this 32-byte maximum. In order to support bridging, the Master Write-Read and

Send Message commands are allowed to exceed the 32-byte maximum transaction on IPMB.

Refer to

Intelligent Platform Management Interface Specification

94

Appendix D - Determining Message Size Requirements for information on how these values were derived.

Table 6-9, IPMI Message and IPMB / Private Bus Transaction Size Requirements
Interface Requirement Description

KCS/SMIC Input Required: 40 bytes IPMI Message, minimum

KCS/SMIC Output Required: 38 bytes IPMI Message, minimum

BT Input Required: 42 bytes IPMI Message, minimum, (including BT Interface ‘length’

byte). The BT interface has length and Seq fields in addition to the
fields used by the KCS and SMIC interfaces. This adds two bytes to
the message size support requirements.

BT Output Required: 40 bytes IPMI Message, minimum, (including BT Interface ‘length’

byte)

IPMB Input Required: 32 bytes IPMI Message, minimum (including slave address)

 Recommended: 36 bytes bus transaction, minimum (including slave address), to

support an OEM option to allow the BMC to be the target of an SMBus
2.0 Block-Write with PEC.

IPMB Output Required: 36 bytes bus transaction, minimum (including slave address) to allow

the BMC to be able to issue access slave devices that use the SMBus
2.0 Block-Write with PEC protocol. Note that the IPMB standard
message length is shorter than the SMBus 2.0 message.

 The IPMB standard message length is specified as 32 bytes,
maximum, including slave address.

SMBus 2.0 Input Required: 36 bytes bus transaction, minimum (including slave address) to allow

the BMC to be target of an SMBus 2.0 Block-Write with PEC protocol
transaction.

SMBus 2.0 Output Required: 36 bytes (including slave address) to allow the BMC to generate an

SMBus 2.0 Block-Write with PEC transaction.

Private Bus Input Recommended: 34 bytes bus transaction, minimum, if the Private Bus is implemented

as a physical I2C or SMBus. The 34 bytes supports accessing slave
devices that use the SMBus 2.0 Block-Read protocol. (The count
excludes any slave address, since for this type of transaction the slave
address is output by the management controller, rather than being an
input to the management controller.)

Private Bus Output Required: 23 bytes This is only required when a controller indicates that it has a

Private Bus that includes FRU SEEPROMs that are accessible via the
Master Write-Read command must support a Master Write-Read
command equivalent to the largest Master Write-Read command that
could be delivered as a 32-byte IPMB message.

 Otherwise, the Private Bus is only required to support the transaction
size required for the private or OEM devices that are used in the
particular implementation.

 An implementation will typically implement a private bus using an
actual I2C or SMBus connection. However, the private bus
implementation could be ‘virtual’ - where the management controller
responds to the Master Write-Read command as if a physical private
bus were present. For a physical private bus implementation, a 32-
byte Master Write-Read command in IPMB format results in one byte

of slave address and 22 bytes of write data going to the private bus.

 Recommended: 36 bytes bus transaction, minimum (including slave address). A

private bus that truly implements a physical I2C or SMBus interface
should support system management software access to slave devices
that use the SMBus 2.0 Block Write protocol. This means supporting a
Master Write-Read command over the system interface that can be

used to perform a full, 36-byte SMBus 2.0 Block-Write protocol
transaction.

 Intelligent Platform Management Interface Specification

 95

LAN/PPP Input Required: 45 bytes IPMI Message content, minimum. IPMI LAN and PPP

interfaces must accept an RMCP Packet containing an IPMI Message
that would allow the remote console to submit a Master Write-Read
message to perform an SMBus 2.0 Block-Write protocol transaction.
Since the LAN interface uses a message format that follows the IPMB
message format, there are additional bytes for source and destination
addressing, sequence number, and checksums.

LAN/PPP Output Required: 42 bytes IPMI Message content, minimum. IPMI LAN and PPP

interface must support delivering an RMCP Packet containing an IPMI
Message that would allow the BMC to return the response to a Master
Write-Read message that returns data from an SMBus 2.0 Block-Read
protocol transaction.

Intelligent Platform Management Interface Specification

96

7. IPMB Interface

7.1 IPMB Access via Master Write-Read command

When an IPMB is implemented in the system, the BMC serves as a controller to give system software access to

the IPMB. The IPMB allows non-intelligent devices as well as management controllers on the bus. To support this

operation, the BMC provides the Master Write-Read command via its interface with system software. The Master

Write-Read command provides low-level access to non-intelligent devices on the IPMB, such as FRU

SEEPROMs.

The Master Write-Read command provides a subset of the possible I2C and SMBus operations that covers most

I2C/SMBus-compatible devices.

In addition to supporting non-intelligent devices on the IPMB, the Master Write-Read command also provides

access to non-intelligent devices on Private Busses behind management controllers. The main purpose of this is to

support FRU SEEPROMs on Private Busses.

7.2 BMC IPMB LUNs

A BMC supports several LUNs (Logical Units) to which messages can be sent via the IPMB interface. These

LUNs are used to identify different sub-addresses within the BMC that messages can be sent to.

Table 7-1, BMC IPMB LUNs
LUN Short Description Long Description

00b BMC commands and Event
Request Messages

Event Request Messages received on this LUN are routed to the Event
Receiver function in the BMC, and automatically logged if SEL logging
is enabled .

01b OEM LUN 1 OEM - reserved for BMC implementer / system integrator definition.

10b SMS Message LUN
(Intended for messages to
System Management
Software)

Messages received on this LUN are routed to the Receive Message
Queue and retrieved using a Read Message command. The
SMS_Avail flag is set whenever the Receive Message Queue has valid
contents.

11b OEM LUN 2 OEM - reserved for BMC implementer / system integrator definition.

7.3 Sending Messages to IPMB from System Software

System Management Software (SMS) can use the BMC for sending and receiving IPMB messages. Both IPMB

request and response messages can be sent and received using this mechanism. Therefore, not only can system

software send requests to the IPMB and receive responses from the IPMB, it is also possible for system software

to receive requests from the IPMB to send back IPMB responses.

System software sends messages to the IPMB through the system interface using the BMC as an IPMB controller.

This is accomplished by using the Send Message command to write the message to the IPMB (channel 0). The

BMC does not place any restrictions on the type or content of the IPMB message being sent. System management

software can send any IPMB request or response message it desires provided that the message meets the

maximum length requirements of the Send Message command.

System Management Software is responsible for providing all fields for the IPMB message, including Requester

and Responder Slave addresses and checksums. The following figures show an example using the Send Message

command to send a Set Event Receiver command to an IPMB device at slave address 52h, LUN 00b, via the

system interface (see Table 29-2, Set Event Receiver). The example command sets the Event Receiver address to

20h = BMC.

 Intelligent Platform Management Interface Specification

 97

The heavy bordered fields show the bytes for the IPMB message carried in the Send Message command. The

requester’s LUN field (rqLUN) is set to 10b (BMC SMS LUN). This directs the responder to send the response to

the Set Event Receiver command to the BMC’s Receive Message Queue.

Figure 7-1, IPMB Request sent using Send Message Command
NetFn

(06h = App request)

LUN

(00b)

Command

(Send Message)

Channel

(00h)

Slave address for write

(52h = rsSA)

NetFn/rsLUN

(04h / 00b = Sensor/Event, LUN 00b)

check 1

(9Eh)

rqSA

(20h = BMC)

rqSeq/rqLUN

(000001b / 10b, 10b = SMS LUN)

Cmd

(00h = Set Event Receiver)

event receiver slave address

(20h = BMC)

event receiver LUN

(00h)

check 2

(BAh)

Figure 7-2, Send Message Command Response
NetFn

(07h = App response)

LUN

(00b)

Command

(Send Message)

Completion Code

(00h)

Note that the response is for the Send Message command, not for the Set Event Receiver command. The response

to the Set Event Receiver command will be returned later in the Receive Message Queue. System software uses

the Get Message command to read messages from the Receive Message Queue. System software keeps track of

any outstanding responses and matches responses up with corresponding requests as they come in. System

software must also keep track of the protocol assigned to the particular channel in order to interpret the response

to the Get Message command.

7.4 Sending IPMB Messages to System Software

It is possible for devices on the IPMB to autonomously send messages to system management software via the

BMC. IPMB messages that are addressed to the SMS LUN (10b) in the BMC are placed into the Receive

Message Queue. The contents can then be retrieved using the Get Message command. System management can

then interpret the message and use the Send Message command to return a response.

The BMC does not place any restrictions on the type of content of the IPMB message being received, as long as it

is properly formatted, is addressed to the SMS LUN, and meets the maximum length requirements of the Get

Message command.

The BMC sets the corresponding ‘ATN’ flag in the system interface when a message is received into the Receive

Message Queue. System software must poll for the ‘ATN’ flag, or receive an interrupt to determine that when a

message is available.

Event Messages can also be made directly available to system software via the optional Event Message Buffer and

retrieved using the Read Event Message Buffer command.

In the example shown in the preceding section, a Set Event Receiver command was sent out on the IPMB using

the Send Message command. In the IPMB command, the requester’s slave address (rqSA) was set to 20h (BMC),

and the requester’s LUN (rqLUN) set to 10b (SMS LUN). This means that the response will be sent to the SMS

Message Buffer in the BMC.

Intelligent Platform Management Interface Specification

98

The IPMB response to a Set Event Receiver command consists of just a Completion Code byte in the data portion

of the IPMB message. Assuming a Completion Code of 00h = OK, the Receive Message Queue will eventually

wind up a response message with the following contents:

Figure 7-3, Response for Set Event Receiver in Receive Message Queue
NetFn

(05h = Sensor/Event Response)

rqLUN

(10b = SMS LUN)

Check 1

(CAh)

rsSA

(52h)

rqSeq/rsLUN

(000001b / 00b)

Cmd

(00h = Set Event Receiver)

Completion Code

(00h = OK)

Check 2

(AAh)

Note that this is the entire IPMB response message, with the leading slave address stripped off (the leading slave

address does not need to be stored, since its known to be the BMC slave address = 20h).

The response to the Get Message command would then look like the following. The heavy border fields show the

data portion of the response that came from the Receive Message Queue.

Figure 7-4, Get Message Command Response
NetFn

(07h = App response)

LUN

(00b)

Command

(Get Message)

Completion

Code (00h)

Channel

Number (00h)

NetFn

(05h = Sensor/Event Response)

rqLUN

(10b = SMS LUN)

Check 1

(CAh)

rsSA

(52h)

rqSeq/rsLUN

(000001b / 00b)

Cmd

(00h = Set Event Receiver)

Completion Code

(00h = OK)

Check 2

(AAh)

7.5 Testing for Event Message Buffer Support

System software must test for Event Message Buffer support. If software issues a Get BMC Global Enables

command, and finds the buffer enabled, it can assume the controller supports the buffer. Otherwise, it must test by

attempting to enable the Event Message buffer.

If the BMC does not support the desired buffer, it shall return an Invalid Data Field (CCh) error completion code

when an attempt is made to enable the respective buffer using the Set BMC Global Enables command. An error

completion code shall also be returned if an attempt is made to enable Event Message Buffer interrupts when that

option is not supported.

 Intelligent Platform Management Interface Specification

 99

Intelligent Platform Management Interface Specification

100

8. ICMB Interface
The ICMB Specification (see [ICMB]) describes the interfaces for implementing access via an ICMB Bridge

Controller. ICMB was specified so that an ICMB Bridge controller could be added to an existing IPMI

Implementation that contained an IPMB.

In some implementations, the BMC can serve as the ICMB Bridge Controller. There are two ways to implement the

interface for such a controller:

a. Implement a virtual ICMB Bridge Controller within the BMC.

b. (IPMI v1.5 only) Implement the ICMB Bridge commands directly as BMC commands, but use IPMI v1.5

channels and the Send Message command to replace the ICMB Bridge Request command.

8.1 Virtual ICMB Bridge Device

In this implementation, the ICMB Bridge Device functionality appears to system software as if there was a

separate ICMB Bridge Controller on a physical IPMB. Instead, the BMC implements the ICMB Bridge Device

functions internally on a ‘virtual IPMB’. This option can provide backward-compatibility with software that was

designed to work with a non-integrated ICMB Bridge Device.

The BMC reports that the Chassis Bridge Device is not part of the BMC by returning an address in the Get

Chassis Capabilities that is different than the BMC address (20h). This indicates to software that it needs to

access the Bridge Device function by using Send Message commands to deliver messages to the Bridge Device

via the primary IPMB. The BMC then monitors the Send Message command for messages directed to the Bridge

Device address. When the BMC sees Send Message commands to the Bridge Device address, it handles them

internally instead of routing them out to a physical IPMB. Responses from the virtual Bridge Device are placed

into the Receive Message Queue as if they were received from the IPMB.

It is optional for the BMC to provide ICMB access from the IPMB for this implementation. If such support is

desired, there are two implementation options. The first option is for the BMC to respond to two slave addresses

(the BMC address and the Bridge Device address). The second option is for the BMC to report the BMC address

as the Bridge Device address whenever the Get Chassis Capabilities command is received from IPMB, and

implement the bridge commands directly when accessed via the IPMB.

8.2 ICMB Bridge Commands in BMC using Channels

In this implementation, the BMC directly responds to the commands for the Chassis Bridge Device. The BMC

reports its own address in the Get Chassis Capabilities command. This tells software that it does not need to use

the Send Message command to encapsulate messages in order to access the Chassis Bridge function itself. This

also tells software that is must use the Send Message command instead of the Bridge Request command.

8.2.1 ICMB Bridging from System Interface to Remote IPMB using Channels

The behavior with the Send Message command is somewhat different than the operation of the Bridge Request

command implemented by a separated bridge controller on the IPMB. When the Bridge Request command was

used to access the ICMB, the response to that command would hold the response from the ICMB.

From the System Interface, bridging with the Send Message command is a multi-step operation: First you issue

the Send Message command with the data to be sent to the ICMB. You then get a response to the Send Message

command indicating that the data was successfully bridged onto the ICMB. This response does not contain the

response data from the ICMB. Later (assuming that a request was bridged) the device on ICMB will respond

and the response data will appear in the Receive Message Queue (if the System Interface was the source of the

original Send Message command). The software can then use a Get Message command to retrieve the response

message data.

 Intelligent Platform Management Interface Specification

 101

The following tables show the KCS formats of the Send Message command request and response for bridging a

request to a device on a remote IPMB and the later corresponding Receive Message Queue contents for the

response from the remote device.

Table 8-1, System Interface Request For Delivering Remote IPMB Request via ICMB
NetFn/RsLUN App (even=Rq) / BMC LUN = 00b

CMD Send Message

Data 1 Channel Number = ICMB, track request = 1b

Data 2 rqSeq = sequence number selected by system
software / 00b

Data 3:4 rmtBrXA

Data 5 Bridge Request CMD

Data 6 rsSA for remote IPMB device

Data 7 netFn / rsLUN for remote IPMB device

Data 8 CMD for remote IPMB device

Data 9:N Data for remote IPMB device

Checksum Checksum for Send Message Command

Table 8-2, Send Message Response
NetFn/RsLUN App (odd=Rs) / BMC LUN = 00b

CMD Send Message

Data 1 Completion Code for Send Message command

Checksum Checksum for Send Message Command

Table 8-2a, Get Message Response Data for Remote IPMB Request Delivered via ICMB
NetFn/RsLUN App (odd=Rs) / BMC LUN = 00b

CMD Get Message

Data 1 Completion Code for Get Message command

Data 2 Channel Number = ICMB

Data 3 rqSeq = Sequence number from original request

/ 00b

Data 4 rmtBr Completion Code

Data 5 remote IPMB completion code

Data 6:N remote IPMB data

Checksum Checksum for Send Message Command

8.2.2 ICMB Bridging from Local IPMB to Remote IPMB using Channels

From the IPMB, bridging with the Send Message command operates in a manner similar to the way it operates

over the system interface. The main difference being that the device that originated the request later receives an

asynchronous response message that appears as if the BMC is responding directly to the remote IPMB

command.

Note that the same rqSeq is used both in the response to the Send Message command and in the asynchronous

response from the BMC.

Bridging with this approach introduces a five-byte overhead on the request, and a 0-byte overhead on the

response.

Intelligent Platform Management Interface Specification

102

Table 8-3, IPMB Request For Delivering Remote IPMB Request via ICMB
RsSA 20h (BMC)

NetFn/RsLUN App (even=Rq) / 00b (BMC LUN)

RqSA Address of local IPMB device issuing the request

RqSeq/RqLUN Sequence number selected by IPMB device
issuing the request

/ LUN of IPMB device issuing the request

CMD Send Message

Data 1 Channel Number = ICMB, track request = 1b

Data 2:3 rmtBrXA

Data 4 Bridge Request CMD (Tells BMC to deliver this
to ICMB a message to be bridged to a remote
IPMB)

Data 5 rsSA for remote IPMB device

Data 6 netFn / rsLUN for remote IPMB device

Data 7 Remote CMD (CMD for remote IPMB device)

Data 8:N Remote Data (data for remote IPMB device)

Checksum Checksum for Send Message Command

Table 8-4, Send Message Response
RqSA Address of local IPMB device that issued the

original request

NetFn/RqLUN App (odd-Rs) / LUN of device that issued the
original request

RsSA 20h (BMC)

RqSeq /
RsLUN

Sequence number from original request

/ 00b (BMC LUN)

NetFn/RsLUN App (odd=Rs) / BMC LUN = 00b

CMD Send Message

Data 1 Completion Code for Send Message

command

Checksum Checksum for Send Message Command

Table 8-5, IPMB Response For Remote IPMB Request Delivered via ICMB
RqSA Address of local IPMB device that issued the

original request

NetFn/RqLUN App (odd-Rs) / LUN of device that issued the
original request

RsSA 20h (BMC)

RqSeq /
RsLUN

Sequence number from original Send Message
request

/ 00b (BMC LUN)

NetFn/RsLUN App (odd=Rs) / BMC LUN = 00b

CMD Remote CMD

Data 1 Remote CMD Completion code

Data 4:N Remote CMD data

Checksum Checksum for Send Message Command

 Intelligent Platform Management Interface Specification

 103

Intelligent Platform Management Interface Specification

104

9. Keyboard Controller Style (KCS) Interface
This section describes the Keyboard Controller Style (KCS) Interface. The KCS interface is one of the supported

BMC to SMS interfaces. The KCS interface is specified solely for SMS messages. SMM messages between the

BMC and an SMI Handler will typically require a separate interface, though the KCS interface is designed so that

system software can detect if a transaction was interrupted. Any BMC-to-SMI Handler communication via the KCS

interface is implementation specific and is not covered by this specification.

The KCS Interface is designed to support polled operation. Implementations can optionally provide an interrupt

driven from the OBF flag, but this must not prevent driver software from the using the interface in a polled manner.

This allows software to default to polled operation. It also allows software to use the KCS interface in a polled mode

until it determines the type of interrupt support. Methods for assigning and enabling such an interrupt are outside the

scope of this specification.

9.1 KCS Interface/BMC LUNs

LUN 00b is typically used for all messages to the BMC through the KCS Interface. LUN 10b is reserved for

Receive Message Queue use and should not be used for sending commands to the BMC. Note that messages

encapsulated in a Send Message command can use any LUN in the encapsulated portion.

9.2 KCS Interface-BMC Request Message Format

Request Messages are sent to the BMC from system software using a write transfer through the KCS Interface.

The message bytes are organized according to the following format specification:

Figure 9-1, KCS Interface/BMC Request Message Format
Byte 1 Byte 2 Byte 3:N

NetFn/LUN Cmd Data

Where:

LUN Logical Unit Number. This is a sub-address that allows messages to be routed to different

‘logical units’ that reside behind the same physical interface. The LUN field occupies the least

significant two bits of the first message byte.

NetFn Network Function code. This provides the first level of functional routing for messages received

by the BMC via the KCS Interface. The NetFn field occupies the most significant six bits of the

first message byte. Even NetFn values are used for requests to the BMC, and odd NetFn values

are returned in responses from the BMC.

Cmd Command code. This message byte specifies the operation that is to be executed under the

specified Network Function.

Data Zero or more bytes of data, as required by the given command. The general convention is to

pass data LS-byte first, but check the individual command specifications to be sure.

 Intelligent Platform Management Interface Specification

 105

9.3 BMC-KCS Interface Response Message Format

Response Messages are read transfers from the BMC to system software via the KCS Interface. Note that the

BMC only returns responses via the KCS Interface when Data needs to be returned. The message bytes are

organized according to the following format specification:

Figure 9-2, KCS Interface/BMC Response Message Format
Byte 1 Byte 2 Byte 3 Byte 4:N

NetFn/LUN Cmd Completion Code Data

Where:

LUN Logical Unit Number. This is a return of the LUN that was passed in the Request

Message.

NetFn Network Function. This is a return of the NetFn code that was passed in the Request

Message. Except that an odd NetFn value is returned.

Cmd Command. This is a return of the Cmd code that was passed in the Request Message.

Completion Code The Completion Code indicates whether the request completed successfully or not.

Data Zero or more bytes of data. The BMC always returns a response to acknowledge the

request, regardless of whether data is returned or not.

9.4 Logging Events from System Software via KCS Interface

The KCS Interface can be used for sending Event Messages from system software to the BMC Event Receiver.

The following figures show the format for KCS Interface Event Request and corresponding Event Response

messages. Note that only Event Request Messages to the BMC via the KCS Interface have a Software ID field.

This is so the Software ID can be saved in the logged event.

Figure 9-3, KCS Interface Event Request Message Format
NetFn

(04h = Sensor/Event Request)

LUN

(00b)

Command

(02h = Platform Event)

Software ID (Gen ID)

7-bits

1

EvMRev Sensor Type Sensor # Event Dir Event Type Event Data 1 Event Data 2 Event Data 3

 Shading designates fields that are not stored in the event record.

Figure 9-4, KCS Interface Event Response Message Format
NetFn

(05h = Sensor/Event Response)

00 Command

(02h = Platform Event)

Completion Code

9.5 KCS Interface Registers

The KCS Interface defines a set of I/O mapped communication registers. The bit definitions, and operation of

these registers follows that used in the Intel 8742 Universal Peripheral Interface microcontroller. The term

‘Keyboard Controller Style’ reflects the fact that the 8742 interface is used as the system keyboard controller

interface in PC architecture computer systems.

The specification of the KCS Interface registers is given solely with respect to the ‘system software side’ view of

the interface in system I/O space. The functional behavior of the management controller to support the KCS

Interface registers is specified, but the physical implementation of the interface and the organization of the

Intelligent Platform Management Interface Specification

106

interface from the management controller side is implementation dependent and is beyond the scope of this

specification.

On the system side, the registers are mapped to system I/O space and consists of four byte-wide registers.

 Status Register - provides flags and status bits for use in various defined operations.

 Command Register - provides port into which ‘Write Control Codes’ may be written.

 Data_In - provides a port into which data bytes and ‘Read Control Codes’ may be written.

 Data_Out - provides a port from which data bytes may be read.

The default system base address for an I/O mapped KCS SMS Interface is CA2h. Refer to Appendix C1 -

Locating IPMI System Interfaces via SM BIOS Tables for information on using SM BIOS tables for describing

optional interrupt usage, memory mapped registers, 32-bit and 16-byte aligned registers, and alternative KCS

interface addresses. Software can assume the KCS interface registers are I/O mapped and byte aligned at the

default address unless other information is provided.

Figure 9-5, KCS Interface Registers

 7 6 5 4 3 2 1 0 I/O address

Status (ro) S1 S0 OEM
2

OEM
1

C/D# SMS_ATN IBF OBF base+1

Command (wo) base+1

Data_Out (ro) base+0

Data_In (wo) base+0

Reserved bits must be written as ‘0’ and ignored during reads. Software should not assume that

reserved bits return a constant value.

9.6 KCS Interface Control Codes

Control codes are used for ‘framing’ message data transferred across the KCS Interface. Control Codes are used

to:

 Identify the first and last bytes of a packet.

 Identify when an error/abort has occurred.

 Request additional data bytes.

9.7 Status Register

System software always initiates a transfer. If the BMC has a message for SMS, it can request attention by setting

the SMS_ATN bit in the status register. System software then detects the flag and initiates the transfer.

Other bits in the status register are used to arbitrate access to the command and data registers between the BMC

and system software and to indicate the “state” (write, read, error, or idle) of the current transaction. The

following tables summarize the functions of the Status Register bits.

 Intelligent Platform Management Interface Specification

 107

Table 9-1, KCS Interface Status Register Bits
Bit Name Description R/W[1]

7 S1 State bit 1. Bits 7 & 6 are used to indicate the current state of the KCS Interface.
Host Software should examine these bits to verify that it’s in sync with the BMC.
See below for more detail.

R/O

6 S0 State bit 0. See bit 7. R/O

5 OEM2 OEM - reserved for BMC implementer / system integrator definition. R/O

4 OEM1 OEM - reserved for BMC implementer / system integrator definition. R/O

3 C/D# Specifies whether the last write was to the Command register or the Data_In
register (1=command, 0=data). Set by hardware to indicate whether last write
from the system software side was to Command or Data_In register.

R/O

2 SMS_ATN Set to 1 when the BMC has one or more messages in the Receive Message
Queue, or when a watchdog timer pre-timeout, or event message buffer full
condition exists[2]. OEMs may also elect to set this flag is one of the OEM 1, 2,
or 3 flags from the Get Message Flags command becomes set.

This bit is related to indicating when the BMC is the source of a system
interrupt. Refer to sections 9.12, KCS Communication and Non-communication
Interrupts, 9.13, Physical Interrupt Line Sharing, and 9.14, Additional
Specifications for the KCS interface for additional information on the use and
requirements for the SMS_ATN bit.

R/O

1 IBF Automatically set to 1 when either the associated Command or Data_In register
has been written by system-side software.

R/O

0 OBF Set to 1 when the associated Data_Out register has been written by the BMC. R/O

1. R/W direction is with respect to the system side of the interface. Reads move data from the BMC to system software,
writes move data from system software to the BMC.

2. The event message buffer full condition contributes to SMS_ATN only if the event buffer full condition is intended to
be handled by system management software. Otherwise, the event message buffer full condition should not
contribute to SMS_ATN. For interrupt driven interfaces, the condition is required to contribute to SMS_ATN if the
event message buffer full condition generates the same interrupt as the KCS Communications interrupt.

Bits 7:6 are state bits that provide information that is used to ensure that the BMC and system software remain in

sync with one another. Following are the possible states and their meaning:

Table 9-2, KCS Interface State Bits
S1

(bit 7)

S0

(bit 6)

Definition

0 0 IDLE_STATE. Interface is idle. System software should not be expecting nor sending any data.

0 1 READ_STATE. BMC is transferring a packet to system software. System software should be in the
“Read Message” state.

1 0 WRITE_STATE. BMC is receiving a packet from system software. System software should be
writing a command to the BMC.

1 1 ERROR_STATE. BMC has detected a protocol violation at the interface level, or the transfer has
been aborted. System software can either use the “Get_Status’ control code to request the nature
of the error, or it can just retry the command.

Note: Whenever the BMC is reset (from power-on or a hard reset), the State Bits are initialized to “11 - Error State”. Doing so
allows SMS to detect that the BMC has been reset and that any message in process has been terminated by the BMC.

9.7.1 SMS_ATN Flag Usage

The SMS_ATN flag is used to indicate that the BMC requires attention from system software. This could either

be because a message was received into the Receive Message Queue and ready for delivery to system software,

the Event Message Buffer is full (if the Event Message Buffer is configured to generate an interrupt to system

management software), a watchdog pre-timeout occurred, or because of an OEM event. Flags in the BMC

identify which conditions are causing the SMS_ATN flag to be set. All conditions must be cleared (i.e. all

messages must be flushed) in order for the SMS_ATN bit to be cleared.

Intelligent Platform Management Interface Specification

108

The SMS_ATN bit is also used when the KCS interface is interrupt driven, or when OEM events or watchdog

pre-timeouts generate a system interrupt. Refer to sections 9.12, KCS Communication and Non-communication

Interrupts, 9.13, Physical Interrupt Line Sharing, and 9.14, Additional Specifications for the KCS interface for

additional information on the use and requirements for the SMS_ATN bit.

9.8 Command Register

The Command register must only be written from the system side when the IBF flag is clear. Only

WRITE_START, WRITE_END, or GET_STATUS/ABORT Control Codes are written to the command register.

9.9 Data Registers

Packets to and from the BMC are passed through the data registers. These bytes contain all the fields of a

message, such as the Network Function code, Command Byte, and any additional data required for the Request or

Response message.

The Data_In register must only be written from the system side when the IBF flag is clear. The OBF flag must be

set (1) before the Data_Out register can be read (see status register).

9.10 KCS Control Codes

The following table details the usage of ‘Control Codes’ by the KCS interface.

Table 9-3, KCS Interface Control Codes
Code Name Description Target

register
Output Data
Register

60h GET_STATUS /
ABORT

Request Interface Status / Abort Current
operation

Command Status Code

61h WRITE_START Write the First byte

of an Write Transfer

Command N/A.

62h WRITE_END Write the Last byte

of an Write Transfer

Command N/A

63h-67h reserved reserved

68h READ Request the next data byte Data_In Next byte

69h-
6Fh

reserved reserved

Table 9-4, KCS Interface Status Codes
Code Description

00h No Error

01h Aborted By Command (Transfer in progress was aborted by SMS issuing the Abort/Status
control code)

02h Illegal Control Code

06h Length Error (e.g.overrun)

C0h-FEh OEM Error (Error must not fit into one of above categories.)

FFH Unspecified Error

all other Reserved

9.11 Performing KCS Interface Message Transfers

System Management Software that uses the KCS Interface will typically be running under a multi-tasking

operating system. This means transfers with the BMC may be interrupted by higher priority tasks or delayed by

other System Management Software processing. The SMS channel handshake is optimized to allow the BMC to

 Intelligent Platform Management Interface Specification

 109

continue to perform tasks between data byte transfers with System Management Software. The BMC does not

time out data byte transfers on the SMS interface.

Request and Response Messages are paired together as a Write Transfer to the BMC to send the request followed

by a Read Transfer from the BMC to get the response.

The process, as seen from the system perspective is depicted in Figure 9-6, KCS Interface SMS to BMC Write

Transfer Flow Chart, and Figure 9-7, KCS Interface BMC to SMS Read Transfer Flow Chart, below.

During the write transfer each write of a Control Code to the command register and each write of a data byte to

Data_In will cause IBF to become set, triggering the BMC to read in the corresponding Control Code or data byte.

If the KCS interface uses an interrupt, the BMC will write a dummy value of 00h to the output data register after it

has updated the status register and read the input buffer. This generates an ‘OBF’ interrupt. The points at which

this would occur are shown as “OBF” in Figure 9-6, KCS Interface SMS to BMC Write Transfer Flow Chart,

below.

During the read phase, each write of a READ Control Code to Data_In will cause IBF to become set, causing the

BMC to read in the Control Code and write a data byte to Data_Out in response. If the KCS interface uses an

interrupt, the write of the data byte to Data_Out will also generate an interrupt. The point at which this would

occur during the READ_STATE is shown as “OBF” in Figure 9-7, KCS Interface BMC to SMS Read Transfer

Flow Chart, below.

Note that software does not need to use the Get Status/Abort transaction to return the interface to the

IDLE_STATE or handle an error condition. The interface should return to IDLE_STATE on successful

completion of any full command/response transaction with the BMC. Thus, since the interface will allow a

command transfer to be started or restarted at any time when the input buffer is empty, software could elect to

simply retry the command upon detecting an error condition, or issue a ‘known good’ command in order to clear

ERROR_STATE.

9.12 KCS Communication and Non-communication Interrupts

The following lists some general requirements and clarifications to support both KCS communication and KCS

non-communication interrupts on the same interrupt line using the OBF signal. A KCS communications interrupt

is defined as an OBF-generated interrupt that occurs during the process of sending a request message to the BMC

and receiving the corresponding response. This occurs from the start of the write (request) phase of the message

(issuing WRITE_START to the command register) through to the normal conclusion of the corresponding read

(response) phase of the message. (The conclusion of the communications interval is normally identified by the

interface going to IDLE_STATE). KCS communications interrupts are also encountered during the course of

processing a GET_STATUS/ABORT control code.

A KCS non-communication interrupt is defined as an OBF-generated interrupt that occurs when the BMC is not

in the process of transferring message data or getting error status. This will typically be an interrupt that occurs

while the interface is in the IDLE_STATE.

There are several options in the BMC that can be enabled to cause KCS non-communication interrupts as

described in the Set BMC Global Enables command, and Get Message Flags commands. These are the watchdog

timer pre-timeout interrupt, event message buffer interrupt, receive message queue interrupt, and the OEM

interrupts. Software can detect which of the standard interrupts are supported by attempting to enable them using

the Set BMC Global Enables command and checking for an error completion code.

9.13 Physical Interrupt Line Sharing

A typical interrupt-driven implementation will assert a physical interrupt line when OBF is asserted. In order to

allow a single interrupt line to serve for both communication and non-communication interrupts, the physical

interrupt line must be automatically deasserted by the BMC whenever a communication phase begins, even if

there is a pending non-communications interrupt to be serviced. This is necessary so the interrupt line can be used

Intelligent Platform Management Interface Specification

110

for signaling communication interrupts . Once the communication operations have completed (return to idle

phase) the controller must re-assert the interrupt line if the non-communications interrupt is still pending.

9.14 Additional Specifications for the KCS interface

This section lists additional specifications for the KCS interface.

 The BMC must generate an OBF whenever it changes the status to ERROR_STATE. This will ensure that any

transition to ERROR_STATE will cause the interrupt handler to run and catch the state.

 The BMC generates an OBF upon changing the status to IDLE_STATE. An IPMI 1.5 implementation is

allowed to share this interrupt with a pending KCS non-communication interrupt, or it elect to always generate a

separate OBF interrupt for non-communications interrupts.

 A BMC implementation that elects to always generate a separate non-communications interrupt must wait for

the OBF interrupt that signals entering the IDLE_STATE to be cleared before it asserts an OBF interrupt for the

non-communications interrupt.

 IPMI v1.5 systems are allowed to generate a single OBF that covers both the last communications interrupt

(when the BMC status goes to IDLE_STATE) and a pending non-communications interrupt. I.e. it is not

required to generate a separate OBF interrupt for the non-communications interrupt if a non-communications

interrupt was pending at the time the BMC status goes to IDLE_STATE. In order to support this, an IPMI v1.5

KCS interface implementation must set SMS_ATN for all standard (IPMI defined) non-communication interrupt

sources.

 For IPMI v1.5, the BMC must set the SMS_ATN flag if any of the standard message flags become set. This

includes Receive Message Available, Event Message Buffer Full (if the Event Message Buffer Full condition is

intended to be handled by System Management Software), and Watchdog Timer pre-timeout flags, as listed in

the Get Message Flags command. This is independent of whether the corresponding interrupt is enabled or not.

 The BMC must change the status to ERROR_STATE on any condition where it aborts a command transfer in

progress. For example, if the BMC had an OEM command that allowed the KCS interface to be asynchronously

reset via IPMB, the KCS interface status should be put into the ERROR_STATE and OBF set, not

IDLE_STATE, in order for software to be notified of the change. However, the BMC does not change the status

to the ERROR_STATE, but to the IDLE_STATE, when the BMC executes the Get Status/Abort control code

from SMS I/F, even if the Get Status/Abort control code is used to abort a transfer.

 A cross-platform driver must be able to function without handling any of the OEM bits. Therefore, enabling

SMS_ATN on OEM interrupts/states must not be enabled by default, but must be explicitly enabled either by

the Set BMC Global Enables command or by an OEM-defined command.

 The SMS_ATN bit will remain set until all standard interrupt sources in the BMC have been cleared by the

Clear Message Flags command, or by a corresponding command. For example, the Read Message command

can automatically clear the Receive Message Queue interrupt if the command empties the queue.

 A KCS interface implementation that allows its interrupt to be shared with other hardware must set SMS_ATN

whenever it generates a KCS interrupt. A system will typically report whether it allows an interrupt to be shared

or not via resource usage configuration reporting structures such as those in ACPI.

 OEM non-communications interrupts should be disabled by default. They must be returned to the disabled state

whenever the controller or the system is powered up or reset. This is necessary to allow a generic driver to be

used with the controller. A driver or system software must be explicitly required to enable vendor-specific non-

communications interrupt sources in order for them to be used. OEM non-communications interrupt sources

must not contribute to SMS_ATN when they are disabled.

 The OEM 0, 1, and 2 flags that are returned by the Get Message Flags command may also cause the SMS_ATN

flag to be set. A platform or system software must not enable these interrupts/flags unless there is a

corresponding driver that can handle them. Otherwise, a generic cross-platform driver could get into a situation

where it would never be able to clear SMS_ATN.

 Intelligent Platform Management Interface Specification

 111

 It is recommended that any OEM generated non-communications interrupts cause at least one of the OEM flags

in the Get Message Flags to become set. This will enable improving system efficiency by allowing a cross-

platform driver to pass the value of the Get Message Flags to an OEM extension, saving the OEM extension

software from having to issue an additional command to determine whether it has an anything to process.

 It is recommended that an OEM that uses the OEM flags sets the SMS_ATN flag if one or more of the OEM

flags (OEM 0, OEM 1, or OEM 2) becomes set, especially if those flags can be the source of a KCS non-

communications interrupt. The driver can use SMS_ATN as the clue to execute the Get Message Flags

command and pass the data along to an OEM extension routine.

 OEM non-communications interrupts may elect to either share the IDLE_STATE OBF interrupt with the non-

communications interrupt OBF, or generate a separate non-communications OBF interrupt. If the OEM non-

communications interrupt implementation shares the IDLE_STATE OBF interrupt, the OEM non-

communications interrupt must also set SMS_ATN.

9.15 KCS Flow Diagrams
The following flow diagrams have been updated from corresponding diagrams in the original IPMI v1.0, rev. 1.1

specification. This information applies to the following flow diagrams:

 All system software wait loops should include error timeouts. For simplicity, such timeouts are not shown

explicitly in the flow diagrams. A five-second timeout or greater is recommended.

 The phase values represent state information that could be kept across different activations of an interrupt

handler, and corresponding entry points. Based on the 'phase' the interrupt handler would branch to the

corresponding point when an OBF interrupt occurred. The information may also be useful for error reporting

and handling for both polled- and interrupt-driven drivers. Note that other state may need to be kept as well. For

example, during the 'wr_data’ phase, the handler may also need to preserve a byte counter in order to track

when the last byte of the write was to be sent.

 The symbol of a circle with an arrow and the text ‘OBF’ inside the circle represents the points where the BMC

would write a dummy data byte to the output buffer in order to create an OBF interrupt. The label above the

circle indicates where an interrupt handler would branch to when the OBF interrupt occurs under in the

corresponding phase. An interrupt handler would exit upon completing the step that occurs before where the

OBF interrupt symbol points.

Intelligent Platform Management Interface Specification

112

Figure 9-6, KCS Interface SMS to BMC Write Transfer Flow Chart

wait for IBF=0

clear OBF

WR_START to CMD

phase=wr_start

wait for IBF=0

WRITE_STATE?

Clear OBF

phase=wr_data

Yes

data byte to DATA

wait for IBF=0

WRITE_STATE?

Yes

No Error Exit

Clear OBF

Last write byte?

No

WR_END to CMD

phase=wr_end_cmd

wait for IBF=0

Yes

Clear OBF

data byte to DATA

phase=read

WRITE

OBF

OBF

OBF

Yes

BMC sets status to

WRITE_STATE

immediately after receiving

any control code in the

command register unless

it needs to force an

ERROR_STATE. The

status is set before

reading the control code

from the input buffer.

In the unlikely event that

an asynchronous interrupt

occurs after clearing OBF

the interrupt handler may

spin waiting for IBF=0.
WRITE_STATE? No Error Exit

The BMC sets state

to READ_STATE

before reading data

byte from data

register. This ensures

state change to

READ_STATE

occurs while IBF=1.

wr_start

wr_data

wr_end_cmd

READ

No Error_Exit

BMC updates state after

receiving data byte in

DATA_IN, but before

reading the byte out of

the input buffer. I.e. it

changes state while

IBF=1

 Intelligent Platform Management Interface Specification

 113

Figure 9-7, KCS Interface BMC to SMS Read Transfer Flow Chart

w rite READ byte to DATA_IN

READ

OBF

READ_STATE?

w ait for OBF=1

w ait for IBF=0

This OBF is normally caused by the BMC returning a data byte for the read

operation. After the last data byte, the BMC sets the state to IDLE_STATE

w hile IBF=1 and then reads the input buff er to check the c ontrol code =

REA D. The s tatus w ill be set to ERROR_STATE if the control code is not

READ. The BMC then w rites a dummy data byte to the output buf fer to

generate an interrupt so the driver can see the status change.

Note that s of tw are mus t tr ac k that it has rec eiv ed an inter rupt f r om

'IDLE_STATE' w hile it is s till in the 'r ead' phase in order to dif ferentiate it

f rom a non-communic ation inter rupt. If the BMC needs to set the status to

ERROR_STATE it w ill do so before w riting a dummy 00h byte to the output

buf f er . (The BMC alw ays p lac es a dummy by te in the output buff er

w henever it sets the status to ERROR_STATE.)

Yes

Read data byte f rom DATA_OUT

read

IDLE_STATE?

phase = idle

Error ExitNo No

Yes

Exit

w ait for OBF=1

Read dummy data byte from

DATA_OUT

The BMC must w ait for sof tw are to read

the output buf fer before w riting OBF to

generate a non-communications interrupt.

That is, if there are any pending interrupts

w hile in IDLE_STATE, but OBF is already

set, it must hold of f the interrupt until it

sees OBF go clear. Sof tw are must be

careful, since missing any read of the

output buffer w ill ef fectively disable

interrupt generation. It may be a prudent

safeguard for a driver to poll for OBF

occassionallyw hen w aiting for an interrupt

f rom the IDLE state.

Note that for IPMI v1.5, the last OBF

interrupt is allow ed to be shared w ith a

pending non-communications interrupt.

See text.

Intelligent Platform Management Interface Specification

114

The following figure shows a flow diagram for aborting KCS transactions in progress and/or retrieving KCS error

status.

Figure 9-8, Aborting KCS Transactions in-progress and/or Retrieving KCS Error Status

wait for IBF=0

Yes

Error Exit

OBF

READ_STATE?

Write READ dummy byte to DATA_IN

phase = error3

Comm Failure

wait for IBF=0

GET_STATUS/ABORT to CMD

phase = error1

00h to DATA_IN

phase = error2

clear OBF

OBF

wait for IBF=0

RETRY LIMIT?

No

Yes

BMC writes dummy byte.

Required for interrupt

driven systems. Optional

if BMC supports polled

access only.

OBF

BMC sets status to

READ_STATE and writes

the error status byte to

the DATA_OUT register.

IDLE_STATE?

Yes

phase = idle

Exit

No

Yes

increment retry count

No

wait for IBF=0
error3

error2

error1

wait for OBF=1

Read error status code byte from

DATA_OUT

BMC sets status to

'WRITE_STATE' (BMC

always sets status to

WRITE_STATE upon

getting a control code in

the command register).

The BMC then generates

OBF interrupt to signal

that it has read the byte

from the command

register.

This dummy byte

interrupts the BMC and

tells it that the software

has handled the OBF

interrupt and is ready for

the next state.

This write interrupts the

BMC and tells it that the

software has retrieved

the error status byte

wait for OBF=1

clear OBF

Note that this last interrupt

occurs when the BMC is in

IDLE_STATE. The driver

must track that this interrupt

is expected, otherwise it

might interpret it as a non-

communications interrupt.

 Intelligent Platform Management Interface Specification

 115

9.16 Write Processing Summary

The following summarizes the main steps write transfer from system software to the BMC:

 Issue a ‘WRITE_START’ control code to the Command register to start the transaction.

 Write data bytes (NetFn, Command, Data) to Data_In.

 Issue an ‘WRITE_END’ control code then the last data byte to conclude the write transaction.

9.17 Read Processing Summary

The following summarizes the main steps for a read transfer from the BMC to system software:

 Read Data_Out when OBF set

 Issue READ command to request additional bytes

 If READ_STATE (after IBF = 0), repeat previous two steps.

9.18 Error Processing Summary

The following summarizes the main steps by which system software processes KCS Interface errors:

 Issue a ‘GET_STATUS/ABORT’ control code to the Command register. Wait for IBF=0. State should be

WRITE_STATE.

 If OBF=1, Clear OBF by reading Data_Out register.

 Write 00h to data register, wait for IBF=0. State should now be READ_STATE.

 Wait for OBF=1. Read status from Data_Out

 Conclude by writing READ to data register, wait for IBF=0. State should be IDLE.

Intelligent Platform Management Interface Specification

116

9.19 Interrupting Messages in Progress

If, during a message transfer, the system software wants to abort a message it can do so by the following methods:

1. Place another “WRITE_START” command into the Command Register (a WRITE_START Control Code

is always legal). The BMC then sets the state flags to “WRITE_STATE” and sets its internal flags to

indicate that the stream has been aborted.

2. Send a “GET_STATUS/ABORT” request. This is actually the same as #1 above but is explicitly stated to

indicate that this command will cause the current packet to be aborted. This command allows a stream to be

terminated and the state to be returned to IDLE without requiring a complete BMC request and response

transfer.

9.20 KCS Driver Design Recommendations

 A generic, cross-platform driver that supports the interrupt-driven KCS interface is not required to handle

interrupts other than the interrupt signal used for IPMI message communication with the BMC. The message

interrupt may be shared with other BMC interrupt sources, such as the watchdog timer pre-timeout interrupt, the

event message buffer full interrupt, and OEM interrupts.

 A cross-platform driver should use the Get BMC Global Enables and Set BMC Global Enables commands in a

‘read-modify-write’ manner to avoid modifying the settings of any OEM interrupts or flags.

 It is recommended that cross-platform driver software provide a ‘hook’ that allows OEM extension software to

do additional processing of KCS non-communication interrupts. It is highly recommended that the driver

execute the Get Message Flags command whenever SMS_ATN remains set after normal processing and

provide the results to the OEM extension software.

 The driver cannot know the whether the pre-existing state of any OEM interrupts or flags is correct. Therefore,

a driver that supports OEM extensions should allow for an OEM initialization routine that can configure the

OEM flags/interrupts before KCS OBF-generated interrupts are enabled.

 It is recommended that cross-platform drivers or software make provision for BMC implementations that may

miss generating interrupts on a command error condition by having a timeout that will activate the driver or

software in case an expected interrupt is not received.

 A driver should be designed to allow for the possibility that an earlier BMC implementation does not set the

SMS_ATN flag except when there is data in the Receive Message Queue. If the driver cannot determine

whether SMS_ATN is supported for all enabled standard flags or not, it should issue a Get Message Flags

command whenever it gets a KCS non-communication interrupt.

 A driver or system software can test for whether the Watchdog Timer pre-timeout and/or Event Message Buffer

Full flags will cause SMS_ATN to become set. This is accomplished by disabling the associated interrupts (if

enabled) and then causing a corresponding action that sets the flag. This is straightforward by using the

watchdog timer commands in conjunction with the Set BMC Global Enables and Get Message Flags

commands.

For example, to test for the Event Message Buffer Full flag setting SMS_ATN, first check to see if the Event

Message Buffer feature is implemented by attempting to enable the event message buffer using the Set and Get

BMC Global Enables command. If the feature is not implemented, an error completion code will be returned.

Next, disable event logging and use the watchdog timer to generate an SMS/OS ‘no action’ timeout event, then

see if the SMS_ATN becomes set. If so, use the Get Message Flags command to verify that the Event Message

Buffer Full flag is the only one set (in case an asynchronous message came in to the Receive Message Queue

during the test.) The pre-timeout interrupt can be testing in a similar manner.

 It is possible (though not recommended) for a BMC implementation to include proprietary non-

communication interrupt sources that do not set SMS_ATN. These sources must not be enabled by default. It

is recommended that a generic cross-platform driver have provisions for OEM extensions that get called

 Intelligent Platform Management Interface Specification

 117

whenever a non-communication interrupt occurs. It is recommended that the extension interface provides the

last reading of the KCS flags so that an OEM extension can see the state of SMS_ATN.

 Software should be aware that IPMI v1.0 implementations were not required to set SMS_ATN for all non-

communication interrupts. If a BMC implementation does not set SMS_ATN for all non-communication

interrupts, it must generate a separate OBF interrupt for non-communication interrupts. A controller that does

not set SMS_ATN for all non-communication interrupts is not allowed to use the same OBF interrupt to

signal the both completion of communications and a non-communications interrupt.

 Regardless of whether the IDLE_STATE OBF interrupt is shared with a pending non-communications

interrupt, software drivers must examine SMS_ATN after clearing OBF. If SMS_ATN is asserted the driver

must process the non-communications interrupt sources.

Intelligent Platform Management Interface Specification

118

10. SMIC Interface
This section provides the specifications of the SMIC (Server Management Interface Chip) interface. The SMIC

interface is one of the physical interfaces specified for transferring IPMI messages between the system management

software and the system’s primary management controller (BMC).

The interface can be readily implemented using an external ASIC or standard programmable logic to provide a byte

I/O-mapped messaging interface to standard microcontrollers.

The SMIC Interface is designed to support polled operation. Implementations can optionally provide an interrupt

driven from the BUSY bit, but this must not prevent driver software from using the interface in a polled manner.

This allows software to default to polled operation. It also allows software to use the KCS interface in a polled mode

until it determines the type of interrupt support. Methods for assigning and enabling such an interrupt are outside the

scope of this specification.

The specification of the SMIC interface registers is given solely with respect to the ‘system software side’ view of

the interface in system I/O space.

The functional behavior of the management controller to support the SMIC registers is specified, but the physical

implementation of the interface and the organization of the interface from the management controller side is

implementation dependent and is beyond the scope of this specification.

10.1 SMS Transfer Streams

The SMIC interface is designed to be interruptible to allow the one physical interface to be shared by two types of

system software: SMM (System Management Mode) software that runs from within an SMI Handler, and SMS

(System Management Software) that runs under the OS.

If an SMS transaction is interrupted, system management software will need to restart the Request/Response

transaction it had in progress.

To support this sharing, the interface provides mechanisms that allow system management software to detect that

its use of the interface has been interrupted. The protocol for messaging between SMM and the BMC over the

SMIC interface is implementation specific and not covered by this specification.

10.2 SMIC Communication Register Overview

The SMIC registers are mapped into system I/O space. This shared register space consists of three byte-wide

registers:

 Flags Register - provides flags for use in various defined operations

 Control/Status Register - accepts control codes and returns status codes

 Data Register - provides a port for transactions that exchange message data

Message contents are passed through the data register. This includes the fields of a message, such as the Network

Function code, Command Byte, and any additional data required for the Request or Response message.

The control register is loaded with control code values that are used for framing the message data (indicating

message start, middle, and end) and for indicating message data transfer direction.

Status codes are returned through the control/status register. A control code is required to initiate for each data

byte transferred through the data register.

The Flags register contains bits that indicate whether the controller has a message for system software, generated

an SMI, or is ready for a transfer operation. The Flags register also contains a special BUSY bit, that is used by

system software to initiate and handshake data byte transfers through the interface.

 Intelligent Platform Management Interface Specification

 119

The SMIC interface is used as a polled interface. System software is always the “Master” for transfers between

system software and the BMC. The BMC can signal that data is available via bits in the flags register, but data

bytes will not be moved to or from the data register until the transaction is initiated by system software.

10.3 SMIC/BMC Message Interface Registers

The following figure illustrates the SMIC/BMC Interface Registers and register bits. These registers are located at

three consecutive 8-bit port addresses in I/O space.

The data, control/status, and flags registers appear at an I/O addresses 0CA9h, 0CAAh, and 0CABh,

respectively.

Reserved bits should be written as ‘0’ and ignored during reads. Software should not assume that a reserved bit

will return a constant value.

Figure 10-1, SMIC/BMC Interface Registers
 7 6 5 4 3 2 1 0 I/O address

flags

RX
DATA

READY
(ro)

TX
DATA

READY
(ro)

rsvd

SMI

(ro)

EVT
ATN

(ro)

SMS
ATN

(ro)

rsvd

BUSY

(r/w)

base+2

control/status (r/w) base+1

data (r/w) base+0

10.3.1 Flags Register

System software always initiates the SMIC transfers, regardless of direction. The management controller uses

the SMS_ATN bit in the Flags register to indicate to system software that is has a message to be read. This bit

will be set whenever data is present in the Receive Message Queue.

Other bits in the Flags register are used to arbitrate access to the control/status and data registers between the

BMC and system software. Bits 7::2 are read-only from the system bus and write-only from the BMC; these bits

are used by the BMC as communication and status flags. Bit 0, the BUSY bit, is used as a semaphore for

coordinating access to the control/status and data registers between the system bus and the BMC. The following

table summarizes the functions of Flags Register bits.

Intelligent Platform Management Interface Specification

120

Table 10-1, SMIC Flags Register Bits
Bit Name Description

7 RX_DATA_RDY Indicates that the BMC has data that can be delivered in response to a
‘READ’ control code. RX_DATA_RDY must be ‘1’ before a control code that
causes a data byte to be transferred (read) from the BMC into the data
register can be issued. RX_DATA_RDY shall also be set to ‘1’ whenever a
‘READY’ status code is returned. RX_DATA_RDY should be ignored when
issuing control codes that do not cause a data byte to be read from the BMC.

6 TX_DATA_RDY Indicates that the BMC is ready to accept a ‘WRITE’ control code and data.
TX_DATA_RDY must be ‘1’ before a control code that causes data to be
transferred (written) to the BMC from the data register can be issued.
TX_DATA_RDY can be ignored when issuing control codes that do not
cause a data byte to be written to the BMC.

5 Reserved

4 SMI Indicates that the BMC has asserted the SMI signal and has internal ‘SMI
event’ flags that are set.

3 EVT_ATN Indicates that an Event Message has been received by the BMC and is ready
to be read from the Event Message Buffer in the BMC. If SMIs are used, this
flag may also set when an OEM message for the SMI Handler is available.

2 SMS_ATN Indicates that the BMC has messages that are ready to be read from the
Receive Message Queue in the BMC. An implementation can use the 0-to-1
transition of this bit to provide an interrupt. Clearing the Receive Message
Queue clears this bit and clears ‘Receive Message Queue not empty’ as an
interrupt source.

1 Reserved

0 BUSY Provides the arbitration mechanism for SMIC mailbox register access. This
bit is only set (1) from the system side and only cleared (0) by the BMC. The
system side sets the BUSY bit whenever it wishes to send a control code
(and data, if appropriate) to the BMC. The BMC acknowledges that it has
accepted and acted on the control code (and performed the data byte
transfer) by clearing the BUSY bit. An implementation can use the 1-to-0
transition of BUSY to provide an interrupt.

10.3.2 Control/Status Register

The Control/Status register is the destination for control codes written from the system bus, and Status codes

returned by the BMC.

SMS transfers have a specific numeric range for control codes and status codes. This provides a ‘stream ID’ that

allows the BMC to tell whether SMS or some other message stream issued a control code. This also allows

system software to detect interruption by examining which the range of values for the most recent status code.

The control and status codes used for SMS transactions are defined in the control code and status code tables in

the sections following Section 10.9, SMIC Control and Status Code Ranges.

10.3a Control and Status Codes

Message transfer control and framing codes (control codes) are transferred via the Control/Status register

while message content, such as command and data bytes, is transferred the Data register. control codes are

unique to each transfer stream and defined transaction and for each phase (beginning, intermediate, and end)

of a message.

Status Codes confirm the message phasing, identify the active stream, and provide error status.

When a message is transferred between system software and the BMC, each byte of the message that is

passed through the data register is accompanied by a control code written to the Control/Status register. The

BMC acknowledges reception of the control code and data byte by writing a corresponding Status Code to

 Intelligent Platform Management Interface Specification

 121

the Control/Status register before clearing the BUSY bit. Note that Status Codes are returned for each

transaction, regardless of whether a data byte is transferred or not.

10.3.3 Data Register

The message bytes for all requests (commands) and responses between system software and the BMC pass

through the Data register. The data register must only be written or read from the system side when the BUSY

bit is clear.

Messages to the BMC contain the same types of message body fields as messages on the IPMB. This includes

Network Function, Command byte, and Data fields.

10.4 Performing a single SMIC/BMC Transaction

The following steps describe how system software issues a control code to the BMC and transfers a data byte

through the SMIC interface.

1. System software polls the BUSY bit of the Flags register until it reads back as cleared (0) by the BMC.

When the BUSY bit is 0, the BMC is ready to accept a new control code. System software is not

allowed to access the Control/status or Data Registers when the BUSY bit is high.

2. System software writes the control code to the Control/Status register. See Section 10.9, SMIC Control

and Status Code Ranges and following, for control and status code specifications.

If the transfer is a ‘Write’ transfer, and the control code is for ‘WR_NEXT’ or ‘WR_END’ operation,

system software waits for the TX_DATA_RDY bit to be set become set. This indicates that the BMC

is ready for the next write data byte. If the transfer is a ‘Read’ transfer, wait for the RX_DATA_RDY

bit to be set. (The exception to this is the ‘GET_STATUS’ control code, which though it causes a data

byte to be returned (the error code) does not require RX_DATA_RDY to be high first.

3. If the transfer is a ‘Write’ transfer, system software loads the data to be written to the BMC into the

Data register.

4. System software then initiates the operation by setting the BUSY bit. Setting the BUSY bit causes the

BMC to read the SMIC control code register and act on the control code. If the transfer is a Write

transfer, the BMC reads the data from the data register at this time. If the transfer is a Read transfer,

the BMC writes the data to the data register. The controller then returns a status code in the

control/status register. data or an error code in the data register (as appropriate), and clears the BUSY

bit.

5. System software waits for the BUSY bit to clear, indicating the completion of the control code

operation.

6. System software reads the Control/Status register for the completion status of the transaction. If the

operation was successful, the status code will reflect the next step in the transaction, or the successful

completion of the transaction. If the operation was not successful, the status code will be set to

‘READY’ and the data register will hold an error code.

10.5 Performing a SMIC/BMC Message Transfer

Multiple transactions are required to transfer a message between system software and the BMC. In this case, a

message transfer refers to the sequence of steps required to transfer a series of data bytes to or from the BMC.

One control code transaction is required for each message data byte transferred via the SMIC interface.

A message transfer can be restarted at any time. Issuing an SMS_WR_START control code immediately aborts

any message transfer in progress and begins a new write transfer. Issuing WRITE_START control codes does not

require the RX_DATA_RDY or TX_DATA_RDY flags to be set.

Intelligent Platform Management Interface Specification

122

The control code/status code sequences for the SMS-to-BMC transactions follows a “Transfer Start, Transfer

Middle, Transfer End” pattern:

 Issue a ‘Start’ control code to start the transaction. Signifying ‘Transfer Start’

 Issue ‘Next’ control codes to transfer the body of the data bytes. Signifying ‘Transfer Middle’. These

are either ‘Write_Next’ or ‘Read_Next’ control codes, dependent on the transfer direction.

 Issue an ‘End’ control code to conclude the transaction and return the stream to the ‘Ready’ status.

This signifies ‘Transfer End’

The following summarizes these steps:

1. If the transfer is a write transfer (system software to BMC), load the data register with the appropriate

data and issue the ‘Write Start’ control code for the stream. There is no need to check

TX_DATA_RDY.

If the transfer is a read transfer (a data byte transfer from the BMC to system software) wait for the

RX_DATA_RDY flag to become set, then issue the ‘Read Start’ control code for the stream.

2. After each transaction, check the status code to see if the operation was successful. For write transfers,

the status code will generally be a ‘Write Next’, indicating that the interface is ready to accept more

data. For read transfers, the status code will typically be either a ‘Read Next’, indicating that there is

more data to be read, or a ‘Read End’ indicating that the last byte of data was transferred. If the

operation was aborted or an error occurred the transaction will need to be restarted from the beginning.

3. Continue the transfer based on the status code. For read transfers, wait for the RX_DATA_RDY flag

and perform read operations until a ‘Read End’ status code is encountered (or an abort). For write

transfers, wait for the TX_DATA_RDY flag and perform write operations until you conclude the

transfer with a ‘Write End’ control code.

4. Issue any additional control codes to return the transfer stream to the ‘Ready’ condition (indicated by

the ‘Ready’ status code). For read transfers from the SMM/SMS streams, this requires issuing a ‘Read

End’.

10.6 Interrupting Streams in Progress

Any software that interrupts a transfer in progress and switches to another stream is responsible saving and

restoring the status and data register values for the transaction that was in effect at the time of the interrupt. The

interrupting routine must first wait for the BUSY bit to clear and then save the control/status and data register

contents. Before exiting, the interrupting routine must wait for the BUSY bit to clear following its last transaction,

then restore the control/status and data register values. The interrupting routine can then perform its transfer(s).

After the interrupting routine concludes its last transaction, it must wait for BUSY to clear and restore the original

control/status and data register contents before returning from the interrupt.

The following summarizes the steps for an interrupting routine, e.g. an SMI Handler:

1. Poll the BUSY bit until cleared by the BMC.

2. Save the contents of the Control/Status and Data registers.

3. Perform the desired message transfers.

4. Wait for the BUSY bit to clear, then restore the Control/Status and Data register values that were saved

in step 2, and return to the interrupted routine. If the interrupted routine has additional bytes to transfer,

the succeeding control code will be ‘out-of-phase’ with the state expected by the BMC. The BMC will

then return a ‘READY’ status code with an ‘Aborted’ return value. This indicates to the interrupted

routine that it needs to restart the transaction. If the interrupt happened to occur between transfers, or

 Intelligent Platform Management Interface Specification

 123

on the last transfer of a transaction, the Control/Status and Data registers will have the correct values

and the interrupted routine will be able to start a new transaction.

10.7 Stream Switching

A stream switch occurs when the BMC receives a WR_START control code with a ‘stream ID’ that is different

than the stream ID for the previous control code. This is the mechanism that SMS uses to restart an interrupted

transaction. If a control code, other than WR_START is issued, and the stream does not match the stream ID for

the previous control code, the BMC shall return a ‘READY’ status code with an ‘Aborted’ return value.

10.8 DATA_RDY Flag Handling

The BMC shall set the TX_DATA_RDY whenever it is ready to accept a ‘WR_START’, ‘WR_NEXT’, or

‘WR_END’ control code that transfers a data byte from the SMIC data register. Note that system software does

not need to check for TX_DATA_RDY in order to issue a WR_START.

The BMC shall set the RX_DATA_RDY flag whenever it has a data byte that is ready to be requested with a

‘Read Start’, ‘Read Next’, or ‘Read End’ control code, or when it is prepared to return a ‘Ready’ status code.

The BMC shall set the RX_DATA_RDY flag whenever it returns a ‘Ready’ status code to the

stream. This includes when a stream is interrupted or when other errors occur during a transfer.

This is to ensure that a routine that may be spinning on the RX_DATA_RDY bit will proceed and

attempt its next transaction.

The BMC shall only deassert (0) the RX_DATA_RDY or TX_DATA_RDY flags while BUSY is asserted (1).

The BMC can assert the RX_DATA_RDY or TX_DATA_RDY flags any time that the associated conditions

become true.

Intelligent Platform Management Interface Specification

124

10.9 SMIC Control and Status Code Ranges

Specific Control Code ranges are used to identify transactions using the SMS transfer stream. This allows the

BMC to tell when the SMS stream is in use. Status Codes are returned by the BMC in the SMIC Control/Status

register to reflect the completion status of a previously issued control code. Like the control codes, the Status

Codes occupy a specific range for SMS transactions. Another set of control and status code ranges is reserved for

OEM / SMI Handler.

The presently defined ranges are:

 40h-5Fh SMS (System Management Software) Transfer Stream Control Codes

 C0h-DFh SMS (System Management Software) Transfer Stream Status Codes

 60h-7Fh Available SMM (System Management Mode) / OEM Transfer Stream Control Codes

 E0h-FFh Available SMM (System Management Mode) / OEM Transfer Stream Status Codes

All unspecified codes are reserved.

 Intelligent Platform Management Interface Specification

 125

10.10 SMIC SMS Stream Control Codes

Table 10-2, SMS Transfer Stream control codes
Code Name Description

 SMS STREAM CONTROL CODES

40h CC_SMS_GET_STATUS Get status related to the SMS (system mgt. software) transfer stream. An
‘SC_SMS_RDY’ status code will be returned as the completion status for this
control code, along with the last error code for the stream in the data register.

41h CC_SMS_WR_START Write the first message byte of an SMS write transfer. This is also used to
switch to the SMS stream. The SMIC data register must be loaded with the
data byte to be written to the BMC. The non-error completion status for this
control code will be an ‘SC_SMS_WR_START’ status code. The data register
contents will remain unaltered if no error occurred.

42h CC_SMS_WR_NEXT Write a ‘middle’ message byte in an SMS write transfer. The SMIC data
register must be loaded with the data byte to be written to the BMC. The user
must wait for the TX_DATA_RDY=1 before issuing the control code. The non-
error completion status for this control code will be an ‘SC_SMS_WR_NEXT’
status code. The data register contents will also remain unaltered if no error
occurred.

43h CC_SMS_WR_END Indicates the last message byte for an SMS write transfer. The SMIC data
register must be loaded with the last data byte to be written to the BMC for the
current message. The user must wait for TX_DATA_RDY=1 before issuing
this control code. The non-error completion status for this control code will be
an ‘SC_SMS_WR_END’ status code with an error code of ‘00’ in the data
register, indicating ‘OK’.

44h CC_SMS_RD_START Get the first byte of a read transfer from the BMC. The user must wait for
RX_DATA_RDY = 1 before issuing the control code. The non-error completion
status for this control code will be an ‘SC_SMS_RD_START’ status code in
the status register and the data byte in the data register.

45h CC_SMS_RD_NEXT Get a ‘middle’ message byte for an SMS read transfer. The user must wait for
RX_DATA_RDY = 1 before issuing the control code. The non-error completion
status for this control code will be an ‘SC_SMS_RD_NEXT’ status code in the
status register if there is more data to read or an ‘SC_SMS_RD_END’ status
code if the last byte was transferred, and the data byte in the data register.

46h CC_SMS_RD_END Used to tell the BMC that the last byte of an SMS read transfer has been read
from the data register. It is not necessary to check the RX_DATA_RDY flag
before performing this operation. The non-error completion status for this
control code will be an ‘SC_SMS_RDY’ status code with an error code of ‘00’
in the data register, indicating ‘OK’.

47h-5Fh reserved reserved

Intelligent Platform Management Interface Specification

126

10.11 SMIC SMS Stream Status Codes

Table 10-3, SMS Transfer Stream Status Codes
Code Name Description

 SMS STREAM STATUS CODES

C0h SC_SMS_RDY BMC is ready for next SMS transfer. An error code is returned in the data register:

00 = NO ERROR

01 = UNSPECIFIED ERROR / ABORTED

02 = ILLEGAL or unexpected control code

03 = NO RESPONSE - response timeout. This will occur if the BMC cannot supply
a command response.

04 = ILLEGAL command. The request message is not recognized as being a legal
BMC request.

05 = BUFFER FULL. Attempt to write too many bytes to the BMC.

C1h SC_SMS_WR_START This status code indicates that the BMC has accepted first byte of a write transfer
and is ready for the next transaction.

C2h SC_SMS_WR_NEXT The BMC has accepted next data byte of the write transfer, and is ready for the
next transaction.

C3h SC_SMS_WR_END The BMC has accepted the byte as being the last byte of the write transfer and is
ready for next SMS transfer. An error code is returned in the data register:

00 = NO ERROR

01 = ABORTED

02 = ILLEGAL or unexpected control code

03 = NO RESPONSE - response timeout. This will occur if the BMC cannot supply
a command response.

04 = ILLEGAL command. The request message is not recognized as being a legal
BMC request.

05 = BUFFER FULL. Last byte could not be accepted.

C4h SC_SMS_RD_START BMC has accepted the start of an SMS stream read transfer. The first data byte of
the read transfer is returned in the data register.

C5h SC_SMS_RD_NEXT The BMC acknowledges a CC_SMS_RD_NEXT control code and is indicating that
there is more data to be read. The requested data byte is in the data register.

C6h SC_SMS_RD_END The BMC acknowledges a CC_SMS_RD_NEXT control code and is indicating that
there is no more data to be read. The last data byte is in the data register.

C7h-

DFh

reserved reserved

 Intelligent Platform Management Interface Specification

 127

10.12 SMIC Messaging

The SMIC message interface is essentially a ‘single master’ interface, where the ‘Master’ is the system software

on the system side of the interface. System software can only write Request Messages to the BMC, and can only

receive Response Messages from the BMC.

This does not mean that the system software cannot receive downstream ‘requests’ from the IPMB, or even the

BMC. Downstream requests can be ‘wrapped’ in a BMC Response Message. For example, a downstream request

could be placed in the Receive Message Queue where the data is retrieved using the Get Message command. The

Response Message would contain the downstream request data - which could then be extracted from the Response

Message by system software.

Since the SMIC interface is a ‘point-to-point’ connection, a ‘Requester’s ID’ is not required in a Request Message

to identify which physical interface to return a message response to. Only SMIC Event Request messages include

a Requester ID in the form of the Software ID field.

10.13 SMIC/BMC LUNs

LUN 00b is typically used for all messages to the BMC through the SMIC interface. LUNs 01b is reserved for

Receive Message Queue use and should not be used for sending other commands to the BMC. Note that messages

encapsulated in a Send Message command can use any LUN in the encapsulated portion.

10.14 SMIC-BMC Request Message Format

Request Messages are sent to the BMC from system software using a write transfer through the SMIC. The

message bytes are organized according to the following format specification:

Figure 10-2, SMIC/BMC Request Message Format
Byte 1 Byte 2 Byte 3:N

NetFn/LUN Cmd Data

Where:

LUN Logical Unit Number. This is a sub-address that allows messages to be routed to different

‘logical units’ that reside behind the same physical interface. The LUN field occupies the least

significant two bits of the first message byte.

NetFn Network Function code. This provides the first level of functional routing for messages received

by the BMC via the SMIC interface. The NetFn field occupies the most significant six bits of

the first message byte.

Cmd Command code. This message byte specifies the operation that is to be executed under the

specified Network Function.

Data Zero or more bytes of data, as required by the given command. The general convention is to

pass data LS-byte first, but check the individual command specifications to be sure.

Intelligent Platform Management Interface Specification

128

10.15 BMC-SMIC Response Message Format

Response Messages are read transfers from the BMC to system software via the SMIC. Note that the BMC only

returns responses via the SMIC interface when Data needs to be returned. The message bytes are organized

according to the following format specification:

Figure 10-3, SMIC/BMC Response Message Format
Byte 1 Byte 2 Byte 3 Byte 4:N

NetFn/LUN Cmd Completion Code Data

Where:

LUN Logical Unit Number. This is a return of the LUN that was passed in the Request

Message.

NetFn Network Function. This is a return of the NetFn code that was passed in the Request

Message.

Cmd Command. This is a return of the Cmd code that was passed in the Request Message.

Completion Code The Completion Code indicates whether the request completed successfully or not.

Data Zero or more bytes of data. The BMC always returns a response to acknowledge the

request, regardless of whether data is returned or not.

10.16 Logging Events from System Software via SMIC

The SMIC interface can be used for sending Event Messages from system software to the BMC Event Receiver.

The following figures show the format for SMIC Event Request and corresponding Event Response messages.

Note that only Event Request Messages to the BMC via the SMIC interface have a Software ID field. This is so

the Software ID can be saved in the logged event.

Figure 10-4, SMIC Event Request Message Format
NetFn

(04h = Sensor/Event Request)

LUN

(00b)

Command

(02h = Platform Event)

Software ID (Gen ID), 7-bits

(20h-2Fh = system sw)

1

EvMRev Sensor Type Sensor # Event Dir Event Type Event Data 1 Event Data 2 Event Data 3

 Shading designates fields that are not stored in the event record.

Figure 10-5, SMIC Event Response Message Format
NetFn

(05h = Sensor/Event Response)

00 Command

(02h = Platform Event)

Completion Code

 Intelligent Platform Management Interface Specification

 129

Intelligent Platform Management Interface Specification

130

11. Block Transfer (BT) Interface
This section describes the Block Transfer (BT) Interface. The BT interface is one of the supported BMC to SMS

system interfaces. The BT interface is specified for SMS or OEM Defined messages. Messaging between the BMC

and an SMI Handler is not specified for this interface.

The BT Interface is so named because an entire block of message data is buffered before the management controller

is notified of available data. This is different from the SMIC and KCS interfaces, which are byte-transfer oriented. A

BT Interface Capabilities command provides supplementary information about extended buffer sizes and other

elements of the interface.

The host side of the BT Interface is designed for interrupt or polled operation. Implementations can elect to provide

a system interrupt from the assertion of the B2H_ATN or SMS_ATN (BMC-to-Host attention or System

Management Software attention) states. Note that implementing an interrupt must not preclude driver software from

the using the interface in a polled manner.

The BT Interface is designed for efficient interrupt operation via assertion of H2B_ATN by the host.

Provision for operation in a polled mode is optional.

Methods for assigning, enabling, and determining the system interrupt are outside the scope of this specification.

The BT interface provides support for implementations that allow the submission and asynchronous completion of

commands.

11.1 BT Interface-BMC Request Message Format

Request Messages are sent to the BMC from system software using a write transfer through the BT Interface. The

message bytes are organized according to the following format specification:

Figure 11-1, BT Interface/BMC Request Message Format
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N

Length NetFn/LUN Seq Cmd Data

Where:

Length This is not actually part of the message, but part of the framing for the BT Interface. This value

is the 1-based count of message bytes following the length byte. The minimum length byte

value for a command to the BMC would be 3 to cover the NetFn/LUN, Seq, and Cmd bytes.

LUN Logical Unit Number. This is a sub-address that allows messages to be routed to different

‘logical units’ that reside behind the same physical interface. The LUN field occupies the least

significant two bits of the first message byte.

NetFn Network Function code. This provides the first level of functional routing for messages received

by the BMC via the BT Interface. The NetFn field occupies the most significant six bits of the

first message byte.

Seq Used for matching responses up with requests. The BT interface can support interleaved ‘multi-

threaded’ communications. There can be multiple simultaneous outstanding requests from SMS

with responses returned asynchronously (and in any order). The Requester (SMS) sets the value

for this field. The Responder returns the value in the corresponding response. The Seq field is

used in combination with the NetFn and Command fields to form a unique value. I.e. the same

Seq value could be used in multiple outstanding requests, as long as the combinations of Seq

value, NetFn, and Command were unique among the requests.

Cmd Command code. This message byte specifies the operation that is to be executed under the

specified Network Function.

 Intelligent Platform Management Interface Specification

 131

Data Zero or more bytes of data, as required by the given command. The general convention is to

pass data LS-byte first, but check the individual command specifications to be sure.

11.2 BMC-BT Interface Response Message Format

Response Messages are read transfers from the BMC to system software via the BT Interface. Note that with a

few exceptions (e.g., Cold Reset command) the BMC always returns response to a request delivered via the BT

interface in order to deliver the completion code, regardless of whether the response has data in the Data field.

The message bytes are organized according to the following format specification:

Figure 11-2, BT Interface/BMC Response Message Format
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N Byte 6:N

Length NetFn/LUN Seq Cmd Completion Code Data

Where:

Length This is not actually part of the message, but part of the framing for the BT Interface.

This value is the 1-based count of message bytes following the length byte. The

minimum length byte value for a response from the BMC would be 4 to cover the

NetFn/LUN, Seq, Cmd, and Completion Code bytes.

LUN Logical Unit Number. This is a return of the LUN that was passed in the Request

Message.

NetFn Network Function. This is a return of the NetFn code that was passed in the Request

Message.

Seq Used for matching responses up with requests. The BT interface can support

interleaved ‘multi-threaded’ communications. There can be multiple simultaneous

outstanding requests from SMS with responses returned asynchronously (and in any

order). The Requester (SMS) sets the value for this field. The Responder returns the

value in the corresponding response. The Seq field is used in combination with the

NetFn and Command fields to form a unique value. I.e. the same Seq value could be

used in multiple outstanding requests, as long as the combinations of Seq value,

NetFn, and Command were unique among the requests.

Cmd Command. This is a return of the Cmd code that was passed in the Request Message.

Completion Code The Completion Code indicates whether the request completed successfully or not.

Data Zero or more bytes of data. The BMC always returns a response to acknowledge the

request, regardless of whether data is returned or not.

11.3 Using the Seq Field

System Management Software is expected to use the Seq field in the following manner. SMS maintains a list of

the outstanding requests it has sent. This list holds the Seq, NetFn, and Command values that were used to send

the request. There should be one entry in the list for each possible simultaneous outstanding request. When SMS

generates a Seq value for a new request, it must ensure that the combination of Seq, Command, and NetFn values

do not match any entries already in the outstanding request list.

When a response is received from the BMC, SMS looks for a match between the Seq value, Command, and NetFn

values in the response and an entry in the outstanding request list. If there is a match, the response is processed

normally and the outstanding request list entry freed for a new request. If the response does not match, the

response can be ignored or passed on to error tracking procedures.

Intelligent Platform Management Interface Specification

132

11.4 Response Expiration Handling

It is possible that conditions could occur where a response will not return for a given request. The Seq number

associated with the request must be freed so it can be reused. To support this, SMS should implement a response

expiration interval.

The BMC must return a response within the specified response time seconds (per the Get BT Interface

Capabilities command). If the response is not received in this time the corresponding entry in the SMS

outstanding response list can be cleared. If retries are not recommended at the interface, a missing response

constitutes an immediate error condition. If the interface recommends retries (per the Get BT Interface

Capabilities command) SMS should retry the request up to the specified count. If the response is still not

provided, an error has occurred.

The typical BT Interface is expected to be fundamentally reliable without retries. The retry

specification is to support possible commands within the controller that may occasionally exceed

the Request-to-Response specification. An application can elect to implement retry counts that

exceed the recommendation.

The BMC must not return a given response once the corresponding Request-to-Response interval has passed. The

BMC can ensure this by maintaining its own internal list of outstanding requests through the interface. The BMC

could age and expire the entries in the list by expiring the entries at an interval that is somewhat shorter than the

specified Request-to-Response interval. The BMC can define its own internal Seq value or tracking number for

this purpose, or it could use the Seq, NetFn, and Command values in the same manner as SMS.

11.5 Logging Events from System Software via BT Interface

The BT Interface can be used for sending Event Messages from system software to the BMC Event Receiver. The

following figures show the format for BT Interface Event Request and corresponding Event Response messages.

Note that only Event Request Messages to the BMC via the BT Interface have a Software ID field. This is so the

Software ID can be saved in the logged event.

Figure 11-3, BT Interface Event Request Message Format
Length NetFn

(04h = Sensor/Event Request)

LUN

(00b)

Seq Command

(02h = Platform Event)

Software ID (Gen ID)

7-bits

1

EvMRev Sensor Type Sensor # Event Dir Event Type Event Data 1 Event Data 2 Event Data 3

 Shading designates fields that are not stored in the event record.

Figure 11-4, BT Interface Event Response Message Format
Length NetFn

(05h = Sensor/Event Response)

00 Seq Command

(02h = Platform Event)

Completion Code

11.6 Host to BMC Interface
The Host interface to the baseboard management controller (BMC) requires a block of 3 contiguous I/O locations on

the system board. (A reference implementation fixes this at locations E4h:E6h. The interface circuitry will decode

the lower 2 address lines, SA[1..0]). A general-purpose chip select will be used to generate the select line for the

interface, which is to reside in system I/O space. The I/O address offsets are defined as follows:

Table 11-1, BT Interface Registers
Offset Read Write

0 BT_CTRL - control register

1 BMC2HOST buffer HOST2BMC buffer

2 BT_INTMASK - interrupt mask register

 Intelligent Platform Management Interface Specification

 133

The two buffers must meet the specified maximum message size requirements for all protocols supported on the

messaging channels implemented on the BMC. Implementations can choose to provide more depth optionally. The

GET_BT_INTERFACE_CAPABILITIES command is used to query for the actual implementation buffer depth.

The messaging protocol involves the host writing the command stream to the BT buffer, followed by setting a

“attention” bit in the BT control register. This automatically generates an interrupt to the baseboard management

controller (BMC). The BMC then reads command packet from the BT buffer, and clears the attention bit. After

processing the command, the BMC then writes the response data to the host-bound buffer. Finally, the BMC sets an

outbound attention bit and generates an interrupt to the host (the host may optionally poll the attention bits, and may

enable/disable the interrupts via a MASK register). Refer to Section 11.7 for a walk-through of the sequence of

operations used for transfers on the BT interface.

There is no explicit requirement or recommendation for the hardware used to implement the interface. A discrete,

custom, programmable array, or other implementation may be used at the discretion of the designer. As an example,

some implementations have used a Xilinx* XC4003E Field Programmable Gate Array (FPGA) to implement the

interface circuit because it provides on-chip user RAM that can be effectively used to implement the interface’s

buffers. This implementation was able to provide 64-byte buffers.

11.6.1 BT Host Interface Registers
The Host BT interface provides an independent set of registers and interrupts to allow the Host driver to

communicate with the baseboard management controller without conflicting with the O/S ACPI driver.

11.6.2 BT BMC to Host Buffer (BMC2HOST)
From the host side, this is a read-only buffer, which contains a command response stream from the embedded

controller. The buffer must be a minimum of 64-bytes deep. This shares offset 1 of the I/O space with the

HOST2BMC buffer. Hence I/O read cycles from the host CPU remove data from this buffer, whereas write cycles

from the BMC load data into this buffer.

11.6.3 BT Host to BMC Buffer (HOST2BMC)
From the host side, this is a write-only buffer to which the host writes a command stream to the baseboard

management controller. The buffer must be a minimum of 64-bytes deep. This shares offset 1 of the I/O space with

the BMC2HOST buffer. Hence an I/O write cycles from the host CPU load data into this buffer, whereas read

cycles from the BMC remove data from this buffer.

11.6.4 BT Control Register (BT_CTRL)
The host and the BMC use this register for various control functions defined below.

Figure 11-5, BT_CTRL Register format
7 6 5 4 3 2 1 0

B_BUSY H_BUSY OEM0 EVT_ATN B2H_ATN H2B_ATN CLR_RD_PTR CLR_WR_PTR

Table 11-2, BT_CTRL Register Bit Definitions

Intelligent Platform Management Interface Specification

134

BIT R/W*

By

Host

R/W*

By

BMC

NAME FUNCTION

0 W W CLR_WR_PTR Clear Write Pointer. The host writes a 1 to clear the write pointer to
the BT HOST2BMC buffer; this bit is always read back as 0.
Writing a 0 has no effect. Similarly, the BMC writes a 1 to clear the
write pointer to the BT BMC2HOST buffer; this bit is always read
back as 0. Writing a 0 has no effect. Clearing the pointer is defined
as moving it to point to the start of the next valid buffer (typically
the top of a single FIFO buffer).

1 W W CLR_RD_PTR Clear Read Pointer. The host writes a 1 to clear the read pointer
to the BT BMC2HOST buffer; this bit is always read back as 0.
Writing a 0 has no effect. Similarly, the BMC writes a 1 to clear the
read pointer to the BT HOST2BMC buffer; this bit is always read
back as 0. Writing a 0 has no effect. Clearing the pointer is
defined as moving it to point to the start of the next valid buffer
(typically the top of a single FIFO buffer).

2 R/S

Write 1 to
set bit;

0 no effect

R/C

Write 1 to
clear bit;

0 no effect

H2B_ATN

Reset State=0

Host to BMC Attention. When the host writes a 1 to this bit, an
interrupt is generated to the baseboard management controller.
The host should set this bit when it has completed writing a
message stream to the HOST2BMC buffer. The baseboard
management controller clears this bit after it has set the B_BUSY
bit. The host may poll the H2B_ATN bit to determine that the
baseboard management controller has acknowledged the
command. The capability to operate in a polled mode by the BMC
is optional.

3 R/C

Write 1 to
clear bit;

0 no effect

R/S

Write 1 to
set bit;

0 no effect

B2H_ATN

Reset State=0

BMC to Host Attention. The BMC sets this bit when it has
completed writing a message response stream to the BMC2HOST
buffer. The host may poll the B2H_ATN bit to determine that the
baseboard management controller has finished writing a message
response stream to the BMC2HOST buffer. After setting H_BUSY,
the host should clear this bit to acknowledge receipt of the
message response. This bit can be enabled to generate an
interrupt to the host by setting the B2HI_EN bit in the INTMASK
register.

4 R/C

Write 1 to
clear bit:

0 no effect

R/S

Write 1 to
set bit;

0 no effect

SMS_ATN

Reset State=0

SMS Attention. The BMC sets this bit when it has detected and
queued an SMS message that must be reported to the host. This
allows the host to distinguish between command responses and
SMS messages from the baseboard management controller. This
bit can be enabled to generate an interrupt to the host by a host
set of the B2HI_EN bit in the INTMASK register. The host clears
this bit by writing a 1 to it.

5 R/S

Write 1 to
set bit;

0 no effect

R/C

Write 1 to
clear bit:

0 no effect

OEM0

Reset State=0

Reserved for definition by platform. Generic IPMI software must
write this bit as 0, and ignore the value on read. The OEM0 bit
should be able to generate an interrupt to the BMC when written by
the host but is not required (polled mode is acceptable). Typical
usage is a “heartbeat” mechanism from/to the host; the host sets
OEM0 to interrupt the BMC and then polls this bit to be cleared
(BMC is alive and responded to the interrupt). The BMC FW
completes the acknowledge cycle by clearing OEM0 upon receipt
of the interrupt (host is alive).

6 R/S/C
Write 1 to

toggle

R H_BUSY

Reset State=0

Host Busy. This bit is set/cleared by the Host to indicate that it is
busy processing response/event data from the BMC or cannot
accept response/event data at this time. It is set to 1 if the host
writes a 1 when H_BUSY=0, cleared if the host writes a 1 when
H_BUSY=1; there is no effect if the host writes a 0 to this bit
(toggle implementation). The BMC will need to verify that this bit is
cleared before sending a response or event message.

 Intelligent Platform Management Interface Specification

 135

BIT R/W*

By

Host

R/W*

By

BMC

NAME FUNCTION

7 R R/S/C
Write 1

to toggle

B_BUSY

Reset State=1

Baseboard Management Controller Busy. This bit is set/cleared
by the BMC to indicate that it is busy processing command/request
data from the Host or cannot accept command/request data at this
time. It is set to 1 if the BMC writes 1 when B_BUSY=0, cleared if
the BMC writes 1 when B_BUSY=1; there is no effect if the BMC
writes 0 to this bit (toggle implementation). . The initial state of
this bit should be set to 1 so that the BMC side driver can initialize
and prepare to accept Host traffic before the Host attempts to use
it the first time.

* R=read; W=write; S=set; C=clear

Intelligent Platform Management Interface Specification

136

11.6.5 BT Interrupt Mask Register (INTMASK)
This register is used by the host to control which interrupts can be generated by the baseboard management

controller.

Figure 11-6, BT_INTMASK Register format
7 6 5 4 3 2 1 0

BMC_HWRST rsvd rsvd OEM3 OEM2 OEM1 B2H_IRQ B2H_IRQ_EN

Table 11-3, BT_INTMASK Register Bit Definitions
BIT R/W NAME FUNCTION

0 R/W B2H_IRQ_EN BMC to HOST Interrupt Enable. The interrupt is generated by the BMC-BT
interface if B2H_IRQ_EN is set (1) and either the B2H_ATN or EVT_ATN bits are
set by the BMC.

1 R/W B2H_IRQ BMC to HOST Interrupt Active. This bit reflects the state of the interrupt line to the
host, and therefore can only become set (1) if by B2H_IRQ_EN is set and the
interrupt condition has occurred.

On a read: 0 = interrupt to host not active; 1 = interrupt to host active

On a write: 0 = no effect; 1 = clear interrupt (this is the source of the INT, and is
immediately cleared by the O/S driver). This only clears the interrupt for the
system interface. Other interrupts may require clearing flags internal to the BMC.
If bit is 0, then a rising edge on B2H_ATN or EVT_ATN sets this to 1. If already 1,
then no affect.

2 R/W OEM1 Reserved for definition by platform manufacturer for BIOS/SMI Handler use.
Generic IPMI software must write this bit as 0, and ignore the value on read.

3 R/W OEM2 Reserved for definition by platform manufacturer for BIOS/SMI Handler use.
Generic IPMI software must write this bit as 0, and ignore the value on read.

4 R/W OEM3 Reserved for definition by platform manufacturer for BIOS/SMI Handler use.
Generic IPMI software must write this bit as 0, and ignore the value on read.

5 R/W Reserved Reserved for future definition by IPMI. Write as 0, ignore value on read.

6 R/W Reserved Reserved for future definition by IPMI. Write as 0, ignore value on read.

7 R/W BMC_HWRST Host to Baseboard Management Controller Reset. (OPTIONAL)

Always read back as zero. Writing a 1 to this bit will cause a hardware reset of the
BMC. This is non-sticky; writing zero has no effect. This bit, if provided, is
intended for to be used for error recovery by the host if loss of communication with
the BMC occurs.

 Intelligent Platform Management Interface Specification

 137

11.7 Communication Protocol

In the context of the BT Interface, the term Write Transfer refers to the Host writing data to the BMC, while Read

Transfer refers to the Host reading data from the BMC.

If the interface implementation supports multithreaded operation, the interface driver should always be looking for

the B2H_ATN or EVT_ATN condition. In an interrupt driven implementation, this means the interrupt handler

should always check for responses or asynchronous requests. In a polled implementation, the driver should

periodically poll the state of these bits.

Table 11-4, BT Interface Write Transfer
Operation Host BMC H2B_

ATN

B2H_

ATN

B_BUSY H_BUSY

Start Enable host interface (Clear
B_BUSY)

0 0 1 0

“Command”

(Write
Transfer)

Wait for B_BUSY clear (BMC
ready to accept a request) &
H2B_ATN clear (signifying
acknowledge of previous
command)

Wait for H2B_ATN

(indicating data has been
loaded into HOST2BMC
buffer)

0 0 0 0

 Write 1 to CLR_WR_ PTR bit in
BT_CNTRL (reset pointer to start
of buffer)

“ 0 0 0 0

 Write bytes 1 to n of command
(request) to HOST2BMC buffer

“ 0 0 0 0

 Set H2B_ATN attention (tell BMC
that write data is available)

“ 1 0 0 0

 Set B_BUSY (indicating
BMC is preparing to transfer
data from the HOST2BMC
buffer)

1 0 1 0

 Clear H2B_ATN (the ACK) 0 0 1 0

 Read HOST2BMC buffer 0 0 1 0

 Clear B_BUSY (indicating
BMC is done transferring
data)

0 0 0 0

 Process command 0 0 0 0

Intelligent Platform Management Interface Specification

138

Table 11-5, BT Interface Read Transfer
Operation Host BMC H2B_

ATN

B2H_

ATN

B_ BUSY H_BUSY

“Response”

(Read
Transfer)

Wait for B2H_ATN attention to be set
(or wait for interrupt from BMC),
signaling BMC has data available for
Host.

Waits for H_BUSY to
be cleared

0 0 0 0

 “ Write bytes 1 to n of
response to
BMC2HOST buffer

0 0 0 0

 “ Set B2H_ATN
(indicating BMC has
put data in BMC2HOST
buffer)

0 1 0 0

 Set H_BUSY (indicating Host is in
process of reading data from the
interface)

Wait for B2H_ATN
clear (ACK of BMC
response message)

0 1 0 1

 Clear B2H_ATN “ 0 0 0 1

 Write 1 to CLR_RD_PTR bit in
BT_CTRL

“ 0 0 0 1

 Read bytes 1 to n of response phase
from BMC2HOST buffer

“ 0 0 0 1

 Clear H_BUSY (indicating Host has
completed reading data from the
buffer)

“ 0 0 0 0

Idle “ 0 0 0 0

11.8 Host and BMC Busy States

The host and BMC can set H_BUSY and B_BUSY, respectively, as necessary to indicate they are not able to accept

response/event or command data from the BMC or host, respectively for any reason. This allows for asynchronous

housekeeping functions that might take an extended period of time (seconds or minutes) to be accomplished in a

controlled manner and minimize the chance of getting out of synchronization - which might occur if the host or

BMC "timed out" and assumed the other side was hung or not responding.

11.9 Host Command Power-On/Reset States
The BMC sets B_BUSY to 1 whenever it is initializing from a cold reset and following BMC power up. The

interface will initialize with H_BUSY, H2B_ATN, and B2H_ATN set to 0 (reset state = 0).

 Intelligent Platform Management Interface Specification

 139

Intelligent Platform Management Interface Specification

140

12. SMBus System Interface (SSIF)
The SMBus System Interface (SSIF) defines a SMBus-based system interface to the BMC. Unlike the other system

interface definitions (e.g. KCS), SSIF does not specify a set of registers that is I/O or memory mapped into the host

processor’s space. SSIF assumes the existence of a SMBus host controller in the system. The host-side register

interface for SMBus host controllers is not standardized. Therefore, in order for system software to utilize this

interface, a host controller-specific driver for the given operating system is required.

SSIF encapsulates IPMI messages and transfers them between the host controller and BMC using the SMBus “Write

Block” and “Read Block” protocols. With SSIF, the BMC is always accessed as a slave device on SMBus. The host

controller masters the to write data to the BMC. When the BMC has data for the host, it asserts the SMBAlert to the

host controller to signal that data is available. Software then directs the host controller to master the bus and perform

a SMBus Read Block transaction to ‘pull’ the data from the BMC.

Thus, the SMBus System Interface requires that that host controller support the SMBus “SMBAlert” signal. This

signal is used as an interrupt to the host controller that indicates that the BMC has data available that is ready to be

retrieved. SSIF also allows the BMC to be polled for data.

A standard SMBus transaction is limited to transferring 32 data bytes. Some IPMI messages can take more than 32

bytes. Therefore, the SSIF definition includes optional support for using more than one SMBus transaction to move

data to and from the BMC in order to support IPMI messages that are longer than 32 bytes.

The SSIF can optionally use the SMBus PEC (Packet Error Check) for data integrity. This is an 8-bit CRC on the

SMBus transaction data. It is highly recommended that PEC be used in implementations where there may be

electrical noise or where there may be other masters on the bus besides the SMBus host controller. PEC should be

considered mandatory in any implementation where there could be devices that are “hot-plugged” or removed from

the bus during SMBus transactions with the BMC.

The SSIF uses two types of transactions for read and write operations, “single-part” and “multi-part”. Single part

transactions are used when the entire IPMI message content can fit within the 32-byte maximum data portion of and

SMBus Write- or Read-Block protocol transfer. Multi-part transactions are used when more than 32-bytes of IPMI

message data need to be transferred across the system interface.

12.1 Single Threaded Interface
Like the KCS interface, the SSIF Interface is only specified as a ‘Single Threaded Interface’ for standard IPMI

commands. That is, the BMC implementation is not expected to process more than one IPMI request at a time.

While an implementation is allowed to have a degree of ‘command queuing’, for standard IPMI messages the SSIF

lacks a ‘Seq’ field that software can use to match up particular instances of requests with responses.

It is possible that a driver or software that issues a request (writes to the BMC) before the response for a previous

command has been returned could get the response for the earlier command before getting the response to the

present request, or possibly will only get one of the expected responses. Therefore, generic management software or

drivers for SSIF should take care to avoid issuing new requests before prior requests have been completed, and

software should always check fields in the response (e.g. NetFn/LUN and Command) to verify a given response

matches up with a request.

12.2 Single-part Write
The Single-part write is a SMBus transaction that can transfer IPMI messages up to 32 bytes in length. The

following table shows the format of this transaction. The values in parentheses indicate the number of bits for the

particular field when the given field is not 8-bits. Only the address and data portions of the SMBus transactions are

shown. SMBus START and STOP conditions and ACK/NACK bits are left out for simplification. The length field

provides the count of data bytes of IPMI message content, up to 32 bytes. [PEC] indicates the optional presence of

an SMBus PEC (packet error code) byte. This byte is NOT included in the byte count provided in the length field.

 Intelligent Platform Management Interface Specification

 141

Table 12-1, BMC Single-part Write
Slave Address

(7)

R/W=0

(1)

SMBus CMD

= 02h

Length NetFn

(6)

LUN

(2)

IPMI CMD IPMI Data

(0 or more
bytes)

[PEC]

12.3 Multi-part Write
A multi-part write is used when more than 32-bytes of IPMI message data need to be written to the BMC. This

requires two or more SMBus Write-Block transactions, consisting of either a “Start” transaction followed by an

“End” transaction, or a Start transaction, followed by one or more “Middle” transactions, and then an End

transaction.

The first part of the IPMI message is written using the Start transaction. Since Multi-part writes are for the purpose

of transferring IPMI message data that, the Start transaction must always move 32-bytes of data; therefore the value

of the length byte for the Start transaction is always 20h.

The combination of a Start transaction followed by an End transaction can transfer up to 63 bytes of IPMI message.

The Middle transaction is available when there is a need to transfer an IPMI message of greater than 63 bytes. As of

this writing, there are no standard IPMI messages to the BMC that are longer than 63 bytes. Therefore, the ‘middle’

transaction is defined solely as needed by any OEM/group network functions (network function codes 2Ch:3Fh) in

the particular BMC implementation.

There is no specified limit to the number of ‘middle’ transactions that can occur in a transfer. As many ‘middle’

transactions as needed can be used to move the desired amount of data. Note, however, that since the interface is

‘single threaded’ normal IPMI messaging will be unavailable until such transfers have completed. Note, however,

that the maximum message size returned by the Get SSIF Interface Capabilities command is 255 bytes.

It is required that all multi-part write transfers end with an “End” transaction. Middle transactions must move 32-

bytes of data, therefore the value of the length byte for Middle transactions is always 20h.

The End transaction is used for the last portion of message data that is written to the BMC. It indicates to the BMC

that the message data transfer has completed and the BMC can process the message. The number of message data

bytes in the End transaction can range from 1 to 32 bytes.

Note that the SMBus specification does not allow the length (byte count) in the Write-Block protocol to be zero.

Therefore, it is illegal to have the last Middle transaction in the sequence carry 32-bytes and have a length of ‘0’ in

the End transaction. Software that uses the Middle transaction should take care to correctly handle the cases where

the number of IPMI message bytes is an exact multiple of 32.

12.3.1 Error conditions for Multi-part Writes
It is possible that out-of-order operations may occur in the course of restarting systems or loading and unloading

software. For example, the BMC could have just received a Middle transaction when a system restart cause the next

operation to be a Start transaction.

Intelligent Platform Management Interface Specification

142

 The BMC shall discard any multi-part write data it has received if a Start transaction is received prior to

receiving a complete End transaction.

 If the BMC receives an incorrect length (not = 20h) in a Start or Middle transaction, it shall discard any

received data that is received until the next Start transaction is received.

Table 12-2, BMC Multi-part Write Start
Slave Address

(7)

R/W=0

(1)

SMBus CMD

= 06h

Length
=20h

NetFn

(6)

LUN

(2)

IPMI CMD IPMI Data [PEC]

Table 12-3, BMC Multi-part Write Middle
Slave Address

(7)

R/W=0

(1)

SMBus CMD

= 07h

Length

=20h

IPMI
Data

[PEC]

Table 12-4, BMC Multi-part Write End
Slave Address

(7)

R/W=0

(1)

SMBus CMD

= 07h

Length IPMI Data [PEC]

12.4 Single-part Read Transaction
The following table illustrates the format of a SMBus Read Block protocol for a Single-part Read transaction for

SSIF. This transaction is primarily used for retrieving IPMI response data from the BMC.

Table 12-5, BMC Single-part Read
Slave Address

(7)

R/W = 0

(1)

SMBus CMD

= 03h

Slave Address

(7)

R/W=1

(1)

Length NetFn

(6)

LUN

(2)

IPMI CMD Completion

Code*

IPMI Data [PEC]

* = present in standard IPMI response messages

12.5 Multi-part Read Transactions
The following table illustrates the format of a SMBus Read Block protocols for Multi-part Read transactions for

SSIF. There are four different transactions that can be used: Multi-part Read Start, Multi-part Read Middle, Multi-

part Read Retry, and Multi-part Read End.

The Read Start and Read End transactions are used together when 33 to 61 bytes of IPMI message data must be read

from the BMC. The Read Start transfers the first 30 bytes of IPMI message data, the Read End transfers the

remaining 3 to 31 bytes. (The Read Start uses a special pattern of 00h,01h as the first two SMBus data bytes in the

Read Block. Since the Read Block can carry a maximum of 32 read data bytes, the Read Start carries 30 bytes of

IPMI message data. The Read End transaction includes a 1-byte constant “FFh” as the first SMBus data byte in the

Read Block. Therefore, the Read Middle transaction can carry up to 31 bytes of IPMI message data.)

If more than 61 bytes must be read, one or more Read Middle transactions are also used.

The Read Middle includes a 1-byte Block Number field as the first byte of SMBus data in the Read Block. Thus,

each Read Middle transaction can carry up to 31 bytes of IPMI message data.

 Intelligent Platform Management Interface Specification

 143

The Multi-part Read Retry is used to retry ‘middle’ blocks of data in a multi-part read transaction that uses Read

Middle transactions. This is described in more detail below.

The following tables illustrate the SMBus protocol formats for the multi-part read transactions. All multi-part read

transactions follow the SMBus Read Block protocol, with the exception of the Multi-part Read Retry transaction

which uses the Write Block protocol.

Table 12-6, BMC Multi-part Read Start
Slave Address

(7)

R/W = 0

(1)

SMBus CMD

= 03h

Slave Address

(7)

1

Length 00h 01h

NetFn

(6)

LUN

(2)

IPMI CMD Completion

Code*

IPMI Data [PEC]

Table 12-7, BMC Multi-part Read Middle
Slave Address

(7)

R/W = 0

(1)

SMBus CMD

= 09h

Slave Address

(7)

1

Length Block
number

IPMI Data [PEC]

Where: block number is a number that is incremented, starting with 0, for each new block of message data returned

using the Middle transaction. Block Number FFh is reserved for the Read End transaction.

The multi-part read retry transaction is a Write-Block transaction that tells the BMC to return the given middle

Block Number on the next multi-part read Middle transaction. This SMBus CMD is only required when multi-part

read Middle transactions are implemented.

Table 12-8, BMC Multi-part Read Retry
Slave Address

(7)

R/W = 0

(1)

SMBus CMD

= 0Ah

Length

=1

Block

number

IPMI Data [PEC]

The multi-part read End transaction is a Read-Block transaction that concludes a multi-part read operation.

Table 12-9, BMC Multi-part Read End
Slave Address

(7)

R/W = 0

(1)

SMBus CMD

= 09h

Slave Address

(7)

1

Length FFh

IPMI Data [PEC]

12.6 Retention of Output Data
A BMC that implements PEC must retain previous output message data until the occurrence of a valid Write Start

transaction, at which time the output message data is cleared. This behavior is needed to better support PEC. If the

BMC automatically discarded data as it was read out, there might be no way to recover the message data if the PEC

indicated the data was corrupted. However, with this provision, system software can retry the read transaction that

had the error.

The BMC will return the retained data if the Single- and Multi-part Read Start transactions are retried prior to the

next valid write Start transaction. To re-read a given block of Middle data in a multi-part read, the block number

must first be written to the BMC using the Multi-part Read Retry transaction. The next Multi-part Read Middle

transaction will then return that block number, and any subsequent Multi-part Read Middle transactions will

increment the block number and return following blocks.

Intelligent Platform Management Interface Specification

144

12.7 SMBAlert Signal Handling
The SMBAlert signal is automatically cleared by the BMC the first time a Single-part Read Start or multi-part Read

Start is used to read a given set of data. SMBAlert will not be asserted by the BMC again until a new instance of

data or status is available.

A BMC is allowed to implement OEM functions that can assert SMBAlert. However, since such functions could

interfere with the operation of a generic driver for the system interface, they must require being enabled by an OS-

resident driver or software that is explicitly aware of those features. Furthermore, non-SSIF features that assert

SMBAlert from the BMC must automatically become disabled prior to OS-load if the system is restarted (warm or

cold reset).

A BMC that supports SMBAlert being disabled will start up with SMBAlert disabled by default. A driver will need

to explicitly enable SMBAlert. The BMC will return SMBAlert to the disabled state on system power-up and resets.

12.7.1 Enabling/disabling SSIF SMBAlert
The “Enable Receive Message Queue Full Interrupt” bit in the Set Global Enables command is used to

enable/disable SMBAlert. Note that an implementation is allowed to have SMBAlert always enabled, however it is

highly recommended that enable/disable control be implemented.

12.8 Polling for output data
If SMBAlert is disabled, software can poll for output data by issuing Read Start transactions until data is returned. If

there is no data available, the BMC will NACK the read portion of the SMBus transfer.

12.9 SMBus NACKs and Error Recovery
The BMC can NACK the SMBus host controller if it is not ready to accept a new transaction. This could occur if

write transactions follow too closely together, for example. (See Section 12.17,SSIF Timing) Typically, this will be

exhibited by the BMC NACK’ing its slave address. In some cases the BMC may NACK a SMBus data byte that is

being written to it. This can occur if software attempts to write more data bytes to the BMC than it can handle (for

example, in a multi-part write), or if some internal state change caused the BMC to need to reset its internal

operation.

If the BMC NACKs a single part transaction, software can simply retry it. If a ‘middle’ or ‘end’ transaction is

NACK’d, software should not retry the particular but should restart the multi-part read or write from the beginning

Start transaction for the transfer.

12.10 PEC Handling
[SMBus] allows a slave that receives a PEC to check the PEC and NACK the byte that carried the PEC value if the

PEC is incorrect. Accomplishing this may require special hardware in order to generate the NACK without

significant SMBus clock stretching. In order to avoid this requirement, a BMC implementation is allowed to always

ACK the PEC. A BMC that receives an invalid PEC shall drop the data for the write transaction and any further

transactions (read or write) until the next valid read or write Start transaction is received.

A BMC that implements PEC will automatically start using PEC in read transactions after it receives any SSIF

single-part write or multi-part write Start transaction that includes a valid PEC. The BMC shall cease using PEC in

read transactions after it receives any SSIF single-part write or multi-part write Start transaction that does not

include a PEC byte. (A BMC detects PEC by noting that it has received one more byte in the SMBus Write-Block

transaction than was indicated by the length byte. If this occurs, it assumes that the additional byte was the PEC byte

and then checks it for validity.)

 Intelligent Platform Management Interface Specification

 145

12.11 SMBus Timeout and Hang Handling
[SMBUS] provides an option for devices to drop off the bus and go back to waiting for the SMBus START

condition if the SMBus clock is held low for greater than 25 milliseconds. There is no requirement for BMCs to

implement this option.

Per [SMBUS] the BMC must synch up to a SMBus START or STOP condition, regardless of which SMBus clock

the condition occurs on. In order for a master to place a START or STOP condition on the bus, there must be no

other party driving the SMBus data line low during the SMBus clock. It is possible on SMBus that a missed clock or

incorrectly terminated transfer could leave a slave device that is being read in the state where it is outputting a ‘0’

data bit on the bus, waiting for the master to continue to clock the bus for the next bit(s). In this condition, the bus is

in a state where START and STOP conditions cannot be generated by the master because the slave is holding the

data line low.

The BMC must allow the bus master to resynch the bus by allowing the master to clock the BMC until the master

can issue a START or STOP condition. This means a that a BMC should ‘drop off the bus’ and let its data and clock

lines go high (un-driven) if it gets clocked for returning more data than it has available.

12.12 Discovering SSIF
The recommended SMBus slave address for the SSIF to the BMC is address 20h (0010_000x binary). The SSIF

Interface can be located at alternative addresses depending on the implementation. Note the slave address of the

SSIF is not the same thing as the slave address of the BMC that is used for IPMB and IPMI Message use. For

example, the slave address of the BMC on IPMB, and the slave address used with the Get Message command is

required to be 20h regardless of the address used for the BMC on the SSIF Interface. An Intel architecture

compatible system implementation that supports SMBIOS must include an SMBIOS “Type 38” record to support

system management software discovery of the existence and slave address of the SSIF (see Appendix C1 - Locating

IPMI System Interfaces via SM BIOS Tables).

In addition, systems that support ACPI should also provide an SPMI table for the interface (see

Intelligent Platform Management Interface Specification

146

Appendix C3 - Locating IPMI System Interfaces with ACPI).

12.13 SSIF Support Requirements for IPMI v1.5-only BMCs
The SSIF can be used with BMCs that implement just IPMI v1.5 commands. If the BMC uses SSIF and reports

itself as an IPMI v1.5 BMC, then only the single-part write and single-part read transactions are required to be

supported.

Note that since single-part transactions only support IPMI messages up to 32 bytes, it limits the ability to transfer

full-sized IPMI messages between the System Interface and other channels, such as IPMB. This is because

transferring a message to another channel requires the message to be encapsulated in the data portion of a Send

Message, Master Write-Read, or Get Message command. For example, the size of the response message for

retrieving a full-size (32-byte) IPMB message using the Get Message command is 36 bytes. The largest IPMB

message that could be obtained using Get Message with a single-part read would thus be limited be 28 bytes rather

than 32. This can potentially cause problems with accessing satellite controllers on IPMB.

It is highly recommended that multi-part writes and reads are implemented if SSIF is retro-fitted to an IPMI v1.5

implementation, as described for IPMI v2.0 implementations, below.

12.14 SSIF Support Requirements for IPMI v2.0 & Later BMCs
If a BMC reports itself as conformant with IPMI v2.0 (or later), then the BMC must support multi-part writes and

reads for IPMI messages if the BMC supports messaging between system software and other channels (e.g.

implements serial or LAN channels, IPMB or PCI SMBus, etc.). This is because such messaging requires the ability

to transfer IPMI message that are >32 bytes in order to fully support messages to another channel.

The IPMB and PCI SMBus channels also need to support the Master Write-Read command as an alternative

mechanism for delivering IPMI messages to their respective busses, and, in addition, it is recommended that PCI

SMBus supports using the Master Write-Read command for performing full-size SMBus protocol operations.

The following items are required of SSIF implementations on IPMI v2.0 or later BMCs:

 If the BMC implements any channels other than the system interface, it must implement multi-part writes

and reads to enable accepting a 40 byte IPMI input message size, minimum, and support a 38 byte IPMI

output message size, minimum. See Table 6-9, IPMI Message and IPMB / Private Bus Transaction Size

Requirements and refer to Appendix D, Message Size Requirements for more information.

 In addition, if the PCI SMBus is supported, the SSIF must support using the Master Write-Read command

to execute all SMBus protocols (with and without PEC) on the target bus, including full-size SMBus Write-

Block, Read-Block, and Block Write-Read Process Call.

12.15 Summary of SMBus Commands Values for SSIF
The following table summarizes the allocation of SMBus commands for SSIF. Note that there are command values

that are reserved for future definition by the IPMI specifications.

 Intelligent Platform Management Interface Specification

 147

Table 12-10, Summary of SMBus Commands for SSIF

Operation
SMBus
CMD Protocol

BMC Single-part Write 02h Write Block

BMC Multi-part Write

Start - first part 06h Write Block

Middle part(s) if any 07h Write Block

End - last part 08h Write Block

BMC Single-part Read 03h Read Block

BMC Multi-part Read

Start - first part 03h Read Block, first two data bytes after length = [0x01,0x00]

Middle part(s) if any 09h Read Block, first data byte after length = 0x00

End - last part 09h Read Block, first data byte after length = 0x01

Retry 0Ah Write Block, first data byte after length = block number

Reserved 0Bh-17h Reserved. (Reserved CMD values apply to any SMBus
protocol that uses a CMD byte.)

 OEM

00h,01h Available for OEM use

All other

12.16 SSIF IPMI Commands
The following sections list the IPMI commands used with the SSIF. See Table 22-1, IPMI Messaging Support

Commands for Optional/Mandatory usage of this command with SSIF.

Table 12-11, SSIF Commands

Command

Section

Defined

Get System Interface Capabilities 22.9

12.17 SSIF Timing
The following table lists the recommended timing specifications on SMBus for a BMC implementing the SSIF. Note

that this timing can be dependent on the performance of the SMBus host controller used in the system.

Specifications are given for a SMBus operating at 100 kbps.

Table 12-12, SSIF Timing Specifications
Internal Timing Specifications min max

Overall Message Duration T1 - 20 ms

Time-out waiting for bus free T2 60 ms -

Time-out waiting for a response, internal T3 60 ms[1] T6max[1]

Time between Event Message Requests T4 5 ms -

Request-to-Response time T5 - T6max-
T1max-
3ms[1]

This interval is measured from the end of the
request transmission through the end of response
transmission. (SMBus STOP to SMBus STOP)

Number of Request retries C1 5[2] - recommended

Time between Request retries T6 60 ms 250 ms

Number of Event Message Request retries C2 3 10

Overall Message Byte Duration T7 per SMBus
spec

3 ms recommended

SM Bus Clock Low hold T8 per SMBus
spec

3 ms recommended

The BMC should avoid stretching the clock more
than 3ms at a time. The BMC must tolerate the
clock being stretched up to the maximum value
specified by the SMBus specification.

Intelligent Platform Management Interface Specification

148

Notes:

1. Unless otherwise specified, this timing applies to the mandatory and optional commands specified in the Intelligent Platform
Management Interface Specification. For controller-specific Application and Firmware commands, the Responder should
attempt to meet this specification. In cases that it cannot, the interface specification for the Responder must clearly specify the
‘Request to Response’ time that was implemented. Because timing can vary according to command and controller,
communication routines should be designed to support response timeouts and retry counts accordingly.

2. This is a recommended value only. The protocol does not require that non-Event Message requests be retried. The
implementation of retries and the number used is based on the application’s requirements for message delivery.

 Intelligent Platform Management Interface Specification

 149

Intelligent Platform Management Interface Specification

150

13. IPMI LAN Interface
This section describes the mechanisms specific to transferring IPMI messages between the BMC and a remote

management system (remote console) over an Ethernet LAN connection using UDP under IPv4 or IPv6. The UDP

datagrams are formatted to contain IPMI request and response messages, plus additional messages for discovery and

authentication.d

While an IPMI LAN interface can be accomplished using a LAN Controller that is dedicated to the BMC, it will

usually be accomplished using LAN Controller that can be shared for both BMC and system use.

There are two implementations that are likely to be used to deploy an IPMI LAN Interface using a shared LAN

controller. The first implementation is using an embedded LAN controller, as shown in Figure 13-1, and the second

is using a LAN controller on an add-in card, as shown in Figure 13-2.

Both examples show a LAN Controller that has the capability to detect UDP datagrams sent to a ‘management port’.

Any datagrams received on that port are forwarded to a ‘side-band’ interface that allows them to be delivered to, or

retrieved by, the BMC. As Figure 13-1 shows, these incoming ‘platform management’ datagrams may also be

delivered to system software in parallel with being delivered to the BMC.

The BMC can use this same interface to inject datagrams onto the LAN. These datagrams are interleaved with the

network packets that are generated by system software.

The LAN Controller can be designed in such a way that the interface for the ‘management port’ is powered by

standby power and remains operative even when the system is powered down. This provides a mechanism that

allows IPMI LAN messaging to occur independent from system software and the system’s power state. A LAN

controller dedicated to the BMC can also be used.

Figure 13-1, Embedded LAN Controller Implementation

Managed System

IPMBLANRemote

Management

System 's ide band'

connection.

PCI System Bus

BMC
LAN

Controller

Satellite

Controller

SEL,

SDR,

FRU

E.g. SMBus

or I2C

All incoming

packets

Outgoing packets

from system

software

UDP datagrams to

'Mgmt. Port' Datagrams

gen'd by

BMC

Figure 13-2 shows an implementation where the LAN Controller is implemented as a PCI add-in card connected

to the BMC via a PCI Management Bus connection. This approach avoids the need to have the LAN Controller

built-into the system, allowing the LAN Controller portion of the IPMI LAN Interface to be added or updated at a

later time.

 Intelligent Platform Management Interface Specification

 151

Figure 13-2, PCI Management Bus Implementation

IPMB

LAN

Controller A

LAN

Controller B
Add-in Card

PCI

SMBus

PCI

BMC

System Bus

13.1 RMCP

The Distributed Management Task Force (DMTF) has defined a ‘Remote Management Control Protocol’ (RMCP)

for supporting pre-OS and OS-absent management. RMCP is a simple request-response protocol that can be

delivered using UDP datagrams. IPMI-over-LAN uses version 1 of the RMCP protocol and packet format.

RMCP includes a field that indicates the class of messages that can be embedded in an RMCP message packet,

including a class for IPMI messages. Other message classes are ‘ASF’ and ‘OEM’.

IPMI v1.5 LAN messages are encapsulated in RMCP packets using the IPMI message class. An IPMI LAN

implementation can also use ASF-class ‘Ping’ and ‘Pong’ messages to support the discovery of IPMI managed

systems on the network.

13.1.1 ASF Messages in RMCP

The term ‘ASF’ is commonly used in RMCP. ASF originally stood for ‘Alerting Standard Forum’. This is the

original name of a group that has moved into the DMTF as the Pre-OS Working Group. The group is

standardizing a set of messages under RMCP that are oriented towards non-intelligent management hardware

supporting basic LAN Alerting and recovery control (e.g. system reset) capabilities via the LAN.

RMCP uses ‘ASF’ to denote the fields and values that support these messages.

Intelligent Platform Management Interface Specification

152

13.1.2 RMCP Port Numbers

RMCP uses two well-known ports under UDP. The following table describes these ports and summarizes their

use.

Table 13-1, RMCP Port Numbers
Port # Name Description

623

(26Fh)

Aux Bus Shunt

(Primary RMCP
Port)

Hereon referred to as the Primary RMCP Port - This port and the
required RMCP messages must be provided to be conformant with the
RMCP specifications.

There is a mandatory set of messages that are required to be supported
on this port. These messages are always sent ‘in the clear’ so that
system software can discover systems that have RMCP support.

664

(298h)

Secure Aux Bus

(Secondary
RMCP Port)

Hereon referred to as the Secondary RMCP Port or Secure Port. This
port is only used when it is necessary to encrypt packets using an
algorithm or specification that prevents also sending unencrypted
packets from being transferred via the same port. Since discovery
requires sending ‘in the clear’ RMCP Ping/Pong packets, the secondary
port is used to transfer encrypted transfers while the primary port
continues to support unencrypted packets.

An implementation that utilizes this port must still support the Primary
RMCP Port and the required messages on that port in order to be
conformant with the RMCP specifications.

Note that the common IPMI messaging protocols and authentication
mechanisms in this specification do not use encrypted packets at the
RMCP level (encrypted packets in IPMI are defined under the IPMI
message class), therefore IPMI messaging does not need to use the
secondary port.

 Intelligent Platform Management Interface Specification

 153

13.1.3 RMCP Message Format

There are two types of RMCP messages: Data or ‘Normal’ RMCP messages, and RMCP Acknowledge

Messages. Data messages and ACK messages are differentiated by the ACK/normal bit of the Class of Message

field.

Table 13-2, RMCP Message Format

Field

size in
bytes

Description

RMCP Header

Version 1 06h = RMCP Version 1.0

Reserved 1 00h

Sequence Number 1 varies, see text

Class of Message 1 This field identifies the format of the messages that follow this header.
All messages of class ASF (6) conform to the formats defined in this
specification and can be extended via an OEM IANA.

Bit 7 RMCP ACK

 0 - Normal RMCP message

 1 - RMCP ACK message

Bit 6:5 Reserved

Bit 4:0 Message Class

 0-5 = Reserved

 6 = ASF

 7 = IPMI

 8 = OEM defined

 all other = Reserved

RMCP Data

Data Variable data based class of message

The following table presents how the ACK/Normal Bit and the Message Class combine to identify the type of

message under RMCP and which specification defines the format of the associated message data.

Table 13-3, Message Type Determination Under RMCP
ACK/Normal

bit

Message
Class

Message Type

Message Data

ACK ASF RMCP ACK No Data. Message just contains RMCP Header with the
Sequence Number set to the sequence number from the
last message that was received.

ACK all other undefined not allowed

normal ASF ASF Messages Per ASF Specification

normal OEM OEM Message
under RMCP

bytes 0:3 = OEM IANA

 bytes 4:N = OEM Message Data (defined by manufacturer
or organization identified by the OEM IANA field value)

normal IPMI IPMI Messages Per this specification

13.2 Required ASF/RMCP Messages for IPMI-over-LAN

The following class=ASF messages under RMCP must be supported in a system implementing the IPMI LAN

interfaces over TCP/IP-UDP. This is just a specification of the minimum ASF message support required for

IPMI LAN implementations. IPMI LAN messaging can coexist with additional ASF messaging on a system.

Therefore, a system can support additional ASF messages and functions without being non-conformant with the

IPMI LAN specifications.

Intelligent Platform Management Interface Specification

154

There is no IPMI requirement for the BMC to respond to RMCP Messages of class=ASF other than the RMCP

Ping message. However, additional message support may be required if the system is also to be conformant

with the ASF specification. Refer to [ASF].

Table 13-4, ASF/RMCP Messages for IPMI-over-LAN
Message Description

RMCP ACK RECOMMENDED for channels that are enabled
for IPMI over LAN using IPv4 addressing,

OPTIONAL when IPv6 addressing is used.

Per the ASF specifications the RMCP ACK
message should be returned whenever a ‘normal’
RMCP message with an RMCP sequence number
of 0-254 is received. This is recommended, but not
required for a system to be conformant with the
IPMI LAN specification. (Note, however, that a
system that does not return the ACK is not fully
conformant with the RMCP specification). See
sections 13.2.1, RMCP ACK Messages, and
13.2.2, RMCP ACK Handling for more information.

ASF Presence Ping message REQUIRED for channels that are enabled for IPMI
over LAN using IPv4 addressing,

OPTIONAL when IPv6 addressing is used.

This message returns information about the
interfaces supported via RMCP. It is used both to
discover managed systems that support RMCP
and to determine whether the system supports
IPMI LAN messaging and/or additional ASF
commands.

This message must be supported on the Primary
RMCP port.

ASF Presence Pong Message (Ping response) REQUIRED for channels that are enabled for IPMI
over LAN using IPv4 addressing,

OPTIONAL when IPv6 addressing is used.

This message must be returned from the managed
system in response to the Presence Ping message
on the Primary RMCP port.

13.2.1 RMCP ACK Messages

Table 12-5, RMCP ACK Message Fields, shows the RMCP header and data values for the RMCP ACK

message. This message is used to acknowledge receipt of a ‘normal’ RMCP messages that were transmitted

with a 0-254 RMCP sequence number. RMCP ACK messages are not generated if the RMCP sequence number

is 255 (FFh). The RMCP ACK message does not indicate that an action has been completed, only that a specific

RMCP packet has been received.

The RMCP ACK operation is defined as being symmetric. That is, any party that receives a normal RMCP

message with a 0-254 RMCP sequence number is supposed to respond with an RMCP ACK message. Thus,

RMCP ACK messages can be generated by remote consoles and managed systems.

Table 13-5, RMCP ACK Message Fields
Field Value

Version Copied from received message.

Reserved Copied from received message.

Sequence Number Copied from received message.

Class of Message [7] - Set to 1 to indicate ‘ACK’ packet

[6:0] - Copied from received message.

RMCP Data none

 Intelligent Platform Management Interface Specification

 155

13.2.2 RMCP ACK Handling

RMCP ACK messages are not required for IPMI messaging, since IPMI already has its own messaging retry

policies. In addition, some Network Controllers usable for IPMI messaging do not automatically generate

RMCP ACK messages. In these implementations, the BMC would have to generate the RMCP ACK, resulting

in additional, unnecessary traffic from the BMC. Therefore, RMCP ACK messages should not be used for IPMI

messaging. This leads to the following requirements and recommendations:

 RMCP messages with class=IPMI must have their RMCP sequence number set to 255 (FFh) to indicate

that RMCP ACK messages are not to be generated by the message receiver.

 Console software should also set the RMCP sequence number to 255 (FFh) for non-IPMI messages,

whenever possible. Some systems may not respond with an RMCP ACK for non-IPMI messages even if

one was requested using a 0-254 RMCP sequence number. Console software should be prepared for this

occurrence. The software can discover which systems support RMCP ACK by checking to see whether

RMCP ACKs are generated as the result of sending RMCP Presence Ping messages. If RMCP ACKs are

not received, the software should proceed without requiring RMCP ACK messages.

 Regardless of whether RMCP ACK messages are received from a system, console software should still

send RMCP ACKs whenever it receives an RMCP message with a 0-254 RMCP sequence number.

13.2.3 RMCP/ASF Presence Ping Message

This message returns information about the interfaces supported via RMCP. It is used both to discover managed

systems that support RMCP and to determine whether the system supports IPMI LAN messaging and/or

additional ASF commands. The following table illustrates the specific fields to be used for Presence Ping

Message to a system implementing IPMI LAN messaging.

Table 13-6, RMCP Packet Fields for ASF Presence Ping Message (Ping Request)

Field

size in
bytes

Value

UDP Header Source Port 2 per UDP

 Destination Port 2 26Fh

 UDP Length 2 per UDP

 UDP Checksum 2 per UDP

RMCP Header Version 1 06h = RMCP Version 1.0

 Reserved 1 00h

 RMCP Sequence Number 1 0-254 if RMCP ACK desired. 255 for no
RMCP ACK. See sections 13.2.1, RMCP
ACK Messages, and 13.2.2, RMCP ACK
Handling for more information.[1]

 Class of Message 1 06h for ASF

ASF Message IANA Enterprise Number 4 4542 (ASF IANA)

 Message Type 1 80h = Presence Ping

 Message Tag 1 0-FEh, generated by remote console.

This is an RMCP version of a sequence
number. Values 0-254 (0-FEh) are used
for RMCP request/response messages.
255 indicates the message is unidirectional
and not part of a request/response pair.

 Reserved 1 00h

 Data Length 1 00h

1. Some systems may not generate RMCP ACKs even if requested. Software should be designed to
handle this occurrence.

Intelligent Platform Management Interface Specification

156

13.2.4 RMCP/ASF Pong Message (Ping Response)

This message must be returned from the managed system in response to the Presence Ping message.

Table 13-7, RMCP Packet Fields for ASF Presence Pong Message (Ping Response)

Field

size in
bytes

Value

UDP Header Source Port 2 26Fh

 Destination Port 2 from Ping request

 UDP Length 2 per UDP

 UDP Checksum 2 per UDP

RMCP Header Version 1 6 = RMCP Version 1.0

 Reserved 1 00h

 RMCP Sequence Number 1 FFh for IPMI[2]

 Class of Message 1 06h = ASF

ASF Message IANA Enterprise Number 4 4542 = ASF IANA

 Message Type 1 40h = Presence Pong

 Message Tag 1 from Ping request

 Reserved 1 00h

 Data Length 1 16 (10h)

 IANA Enterprise Number 4 If no OEM-specific capabilities exist, this
field contains the ASF IANA (4542) and
the OEM-defined field is set to all zeroes
(00000000h). Otherwise, this field
contains the OEM’s IANA Enterprise
Number and the OEM-defined field
contains the OEM-specific capabilities.

 OEM-defined 4 Not used for IPMI.

This field can contain OEM-defined values;
the definition of these values is left to the
manufacturer identified by the preceding
IANA Enterprise number.

 Supported Entities 1 81h for IPMI

[7] 1b = IPMI Supported

[6:4] Reserved

[3:0] 0001b = ASF Version 1.0

 Supported Interactions 1 [7] Set to 1b if RMCP security
extensions are supported[1]

[6] Reserved for future definition by
ASF specification. Set to 0b.

[5] Set to 1b if DMTF DASH is
supported

[4:0] Reserved for future definition by
ASF specification, set to 00000b

 Reserved 6 Reserved for future definition by ASF
specification, set to 00 00 00 00 00 00h

1. IPMI v1.5 and IPMI v2.0/RMCP+ do not use RMCP security extensions specified in [ASF 2.0], thus
this bit will typically be 0bs. It’s possible a BMC implementation could also support ASF 2.0
messages, in which case this bit could be set to indicate those extensions are supported for ASF
messages that would utilize them.

13.3 RMCP+

RMCP+ is the name used in this specification for an enhanced protocol for transferring IPMI messages and other

types of payloads to an IPMI-based BMC over IP. RMCP+ uses RMCP overall packet format, but defines

 Intelligent Platform Management Interface Specification

 157

extensions to the fields defined under the IPMI Message Class data that is carried within the RMCP Packet. These

extensions support enhanced authentication, encryption, discovery, and the ability to carry additional types of

traffic (“payloads”) in addition to IPMImessages over an IPMI session, whereas v1.5 was only specified for

carrying IPMI messages. Since RMCP+ is specified under the IPMI message class in RMCP, RMCP+ packets are

conformant with the RMCP specification at the RMCP packet level.

RMCP+ includes:

 Support for multiple payload types over an IPMI session. These include both ‘standard’ payloads (such

as the payload for the “Serial Over LAN” capability defined in this specification) and ‘OEM’ payloads.

Payload support enables types of traffic other than IPMI messages to be simultaneously carried over an

IPMI session. The specification also allows a separate session to be established for carrying payloads.

 Enhanced user authentication algorithms. RMCP+ includes more robust session set-up and key handling

algorithms than those for IPMI over LAN in IPMI v1.5.

 Encryption support. IPMI messages and other payloads can be encrypted under an IPMI session. This

enables confidentiality for remote operations such as setting user passwords and for SOL.

 Better alignment with the ASF 2.0. RMCP+ follows many of the packet format and authentication

elements defined for RMCP (Remote Management Control Protocol) as specified in the Distributed

Management Task Force “ASF 2.0” specification. (See [ASF 2.0] in the Reference Documents section.) The

session establishment messages and packet formats vary slightly from their ASF 2.0 counterparts, but are

close enough to make it straightforward to create remote management applications that can support both

ASF 2.0 and IPMI v2.0 -based remote management connections.

 Supports Encrypted/Unencrypted and Authenticated/Unauthenticated Traffic on Single Connection.

Encryption and Authentication are handled as the “IPMI Message Class” level. This means Authenticated

and Encrypted sessions can be established on any UDP port, including port 26Fh. (This is different from

ASF 2.0 which requires using a different port for authenticated traffic than the port used for unauthenticated

messages.) IPMI allows a BMC to be configured so that authentication and encryption are only utilized

when the payload or privilege level of operation requires it. This eliminates the need to have all traffic

authenticated or encrypted on a connection, when only a small portion of the traffic may require that level of

security. This can provide a a significant performance benefit when using inexpensive microcontrollers for

BMCs.

13.4 BMC Support Requirements for v1.5 and v2.0/RMCP+ Protocols

An IPMI v2.0 conformant BMC (a BMC that reports v2.0 as the IPMI version in the Get Device ID command)

that supports RMCP+ for IPMI messaging and standard payloads is required to simultaneously support IPMI v1.5

Packet formats. For a given BMC, Users must be equally configurable for IPMI v2.0 or v1.5 IPMI Messaging

access.

IPMI v2.0-specific capabilities related to payloads (e.g. Serial Over LAN) are only available over IPMI

v2.0/RMCP+ sessions. Otherwise, unless specified, new IPMI v2.0 commands and command extensions are also

available under IPMI v1.5 sessions, provided the user has appropriate privilege.

13.4.1 Session-less Command Support

IPMI supports certain commands that can be delivered to the BMC without having to first establish a session.

For backward compatibility and interoperability, the BMC shall always accept IPMI v1.5 formatted packets for

messages that are accepted outside of a session. I.e. session-less commands that are common to both IPMI v1.5

and IPMI v2.0/RMCP+ must be accepted in either format. For commands that are only used with IPMI

v2.0/RMCP+, a BMC may elect to only accept those commands in IPMI v2.0/RMCP+ packets. Within a

session, a BMC only accepts packets that are formatted for the type of session (v2.0 or v1.5) that was activated.

Intelligent Platform Management Interface Specification

158

13.5 IPMI Messages Encapsulation Under RMCP

For LAN transfers, IPMI messages are a special class of data encapsulated in an IPMI Session packet. The IPMI

Session packets are encapsulated in RMCP packets, which are encapsulated in UDP datagrams. This is illustrated

in the following figure. The same type of encapsulation is used for IPMI serial/modem messages via PPP, except

the Ethernet Framing is replaced with a packet that uses PPP Framing and IP protocol type.

Figure 13-3, IPMI LAN Packet Layering

Ethernet Framing

MAC Address

IP/UDP

IP Address, RMCP Port #

RMCP message

Class=IPMI

RMCP Sequence# = FFh

IPMI v1.5 or IPMI v2.0+

Session Wrapper

IPMI Message

NetFn

LUN

Seq#

CMD

Data

13.5.1 RMCP/ASF and IPMI Byte Order

Please take note of the following:

Multi-byte fields in RMCP/ASF fields are specified as being transmitted in ‘Network Byte Order’ - meaning
most-significant byte first.
RMCP and ASF-specified fields are therefore transferred most-significant byte first.

The IPMI convention is to transfer multi-byte numeric fields least-significant Byte first. Therefore, unless
otherwise specified:

Data in the IPMI Session Header and IPMI Message fields are transmitted least-significant byte first.

 Intelligent Platform Management Interface Specification

 159

13.6 IPMI over LAN Packet using IPv4

The following table shows the format and fields for IPMI messages encapsulated in an RMCP packet that is

itself encapsulated within an IPv4 UDP packet delivered over Ethernet.

The table includes a set of columns under the label “Format”. The first column shows the format used for IPMI

over LAN as originally defined in the IPMI v1.5 specification, the second column shows the format for

authenticated packets delivered using RMCP per [ASF 2.0]. This column is shown for reference only. The third

column shows the format of packets for RMCP+.

Table 13-8, RMCP/RMCP+ Packet Format for IPMI via Ethernet using IPv4

Field

Format

RMCP /

IPMI 1.5
 26Fh

ASF

RMCP

298h

RMCP /

IPMI 2.0

“RMCP+”

26Fh Value

 Destination Address 6 Dest. MAC Address for
802.3

 Source Address 6 Source MAC Address for
802.3

802.1q[10] TPI 2 Tag Protocol Identifier

=8100h

 VLAN TAG - user priority 3-bits 3-bits User Priority[11]

default = 000b, configurable

 VLAN TAG - CFI 1-bit 1-bit Canonical Format Indicator
= 0b

 VLAN TAG - VLAN ID 12-bits 12-bits 0’s = no VLAN

 Frame Type 2 0800h

IP Header Version 4-bits 4h for IPv4

 Header Length
(length of IP header in units of 4-
bytes)

4-bits 5h

 Precedence 3-bits 000b[4]

 Service Type (Type of Service) 4-bits 1000b[4]

(minimize delay)

 reserved 1-bit 0b

 Total Length 2

 Identification[5] 2 note[5]

 Flags 3-bits 010b[6]
(don’t fragment)

 Fragment Offset 13-bits 0_0000_0000_0000b[7]

 Time-to-Live 1 40h[3]

 Protocol 1 11h

 Header Checksum 2

 Source IP Address 4

 Destination IP Address 4 (28 bytes)

UDP Header Source Port 2

 Destination Port 2 26Fh, 298h

 UDP Length 2

 UDP Checksum 2 (36 bytes) Some payloads
may not use the UDP
checksum, in which case
this field gets set to 0’s. The
receiver must accept the
packet and ignore the
checksum field in this case.

RSP Header Session ID 4

Intelligent Platform Management Interface Specification

160

 Session Sequence # 4

RMCP Header Version 1 1 1 06h (ASF 2.0)

 Reserved 1 1 1

 RMCP Seq # 1 1 1 FFh for IPMI[2]

 Class of Message 1 1 1 07h for IPMI

IPMI Session
Header

 Auth Type / Format

1 1 [7:4] - reserved

[3:0] - Authentication Type /
Format

0h = none

1h = MD2

2h = MD5

3h = reserved

4h = straight password /
key

5h = OEM proprietary

6h = Format = RMCP+
(IPMI v2.0 only)

all other = reserved

 Payload Type 1 Payload Type

[7] - 0b = payload is
unencrypted

 1b = payload is
encrypted

[6] - 0b = payload is
unauthenticated (no
AuthCode field)

1b = payload is
authenticated
(AuthCode field is
present)

[5:0] = payload type. See
Table 13-16, Payload
Type Numbers.

 OEM IANA 4 This field is only present
when Payload Type = 02h
(OEM Explicit)

byte 1:3 - OEM IANA

byte 4 - reserved

 OEM Payload ID 2 This field is only present
when Payload Type = 02h
(OEM Explicit). The
definition and values of this
field are specified by the
company or body identified
by the OEM IANA field.

 IPMI v2.0 RMCP+ Session
ID

 4 note[8] Session ID is
0000_0000h for messages
that are sent ‘outside’ of a
session.

 Session Sequence
Number

4 4 note[8] For IPMI v2.0
“RMCP+” there are
separate sequence
numbers tracked for
authenticated and
unauthenticated packets.
0000_0000h is used for
packets that are sent
‘outside’ of a session.

 IPMI v1.5 Session ID 4 note[8] Session ID is
0000_0000h for messages
that are sent ‘outside’ of a
session.

 Msg. Auth. Code Code
(AuthCode)

16

 Intelligent Platform Management Interface Specification

 161

 (not present when
Authentication Type set to
‘none’.)

 IPMI Msg/Payload
length

1 2 2 Payload length in bytes.

1-based.

IPMI Payload Confidentiality Header var For encrypted payloads,
based on encryption type
for given payload. The
confidentiality header is not
encrypted.

 Payload Data var var var For IPMI v2.0: IPMI, SOL,
KVM, etc. per Payload
Type field.

 Confidentiality Trailer var For encrypted payloads,
based on encryption type
for given payload. The
confidentiality trailer is
typically encrypted along
with the Payload Data.

IPMI Session
Trailer[9] /

RSP Trailer

 Integrity PAD var var Added as needed to cause
the number of bytes in the
data range covered by the
AuthCode (Integrity Data)
field to be a multiple of 4
bytes (DWORD). If present,
each Integrity Pad byte is
set to FFh.

 Pad Length 1 1 indicates how many pad
bytes were added so that
the amount of non-pad data
can be determined.

 Next Header 1 1 Reserved in IPMI v2.0. Set
to 07h for RMCP+ packets
defined in this specification.

 AuthCode (Integrity Data) var var For IPMI v1.5 this field is as
specified by Auth Type.

For IPMI v2.0 (RMCP+) if
this field is present, then it
is calculated according to
the Integrity Algorithm that
was negotiated during the
session open process. See
Table 13-18, Integrity
Algorithm Numbers.

This field is absent when
the packet is
unauthenticated.

 Legacy PAD[1] 1 legacy PAD not needed for
IPMI v2.0

MAC level CRC 4

1. Some LAN adapter chips may have a problem where packets of overall lengths 56, 84, 112, 128, or 156 are not
handled correctly. The PAD byte is added as necessary to avoid these overall lengths. Remote console software
must use the PAD byte when formatting packets to any 10/100 Ethernet device that accepts RMCP packets.

2. RMCP Messages with class=IPMI should be sent with an RMCP Sequence Number of FFh to indicate that an RMCP
ACK message should not be generated by the message receiver.

3. Default value for packets transmitted from the BMC. Can be overridden via a configuration parameter setting.

4. Value used for packets transmitted from the BMC. The BMC ignores the value of this parameter (except for
checksum calculations) on received packets.

5. BMC should increment this field each time it sends a new packet.

6. Default value for packets transmitted from the BMC. Bit offset 1 (fragment bit) can be overridden via a configuration
parameter setting.

Intelligent Platform Management Interface Specification

162

7. Default value for packets transmitted from the BMC. The BMC is not required to support receiving fragmented
packets. Packets with a non-zero fragment offset and/or a flags field bit 2 = 1b (“more fragments” may be silently
discarded.)

8. The Session ID and Session Sequence Number must be non-zero for commands executed during an active session.
All 0’s (0000_0000h) for the Session ID and/or Session Sequence Number (null Session ID, null Session Sequence
Number) are special values only used for messages and commands that can be executed prior to establishing a
session, e.g. Get System GUID, Get Channel Authentication Capabilities, Get Session Challenge, and RAKP
messages. When the Session ID is 0000_0000h, the Sequence Number field is ignored, however the Session
Sequence Number should still be set to 0000_0000h. In addition, for IPMI v2.0 RMCP+ packets, unless otherwise
indicated bits 7:6 in the payload type field must also indicate that the packet is both unauthenticated and
unencrypted. Note that the IPMI v1.5 Activate Session uses a null (all 0’s) Session Sequence Number before a
session is activated, but does not use a null Session ID. Instead, it uses the Temporary Session ID given by the
BMC in the response to the Get Session Challenge command.

9. For IPMI v2.0 RMCP+ packets, the IPMI Session Trailer is absent whenever the Session ID is 0000_0000h, or
whenever bit 6 in the payload type field indicates the packet is unauthenticated

10. Four bytes only present for IEEE 802.1q “VLAN” formatted packets

11. The use and interpretation of this number is defined in ISO/IEC 15802-3.

13.6a IPMI over LAN Packet Using IPv6

The following table presents the packet format that is used for IPMI messages and payloads that are transferred

over an IEEE 802.3 Ethernet connection using IPv6.

Table 13-8a, RMCP/RMCP+ Packet Format for IPMI via Ethernet using IPv6

Field Field Size in bytes (-bits) Value / Notes

 Destination Address 6 Dest. MAC Address for
802.3

 Source Address 6 Source MAC Address for
802.3

802.1q[2] TPI 2 Tag Protocol Identifier

=8100h

 VLAN TAG - user priority 3-bits User Priority[1]

default = 000b, configurable

 VLAN TAG - CFI 1-bit Canonical Format Indicator
= 0b

 VLAN TAG - VLAN ID 12-bits 0’s = no VLAN

 Frame Type 2 0800h

IP Header[5] Version 4-bits 6h for IPv6

 Traffic Class 8-bits 0h (default, configurable)

 Flow Label 20-bits 00000h (default for
outgoing packets,
configurable. Ignored on
incoming packets.)

 Payload Length 16-bits

 Next Header 8-bits 0x11 = UDP

 Hop Limit 8-bits 40h (default, configurable)

 Source IP Address 16

 Destination IP Address 16

UDP Header Source Port 2

 Destination Port 2

 UDP Length 2

 UDP Checksum 2 Mandatory for IPv6.
Calculated per [RFC2460]

RMCP Header

 Intelligent Platform Management Interface Specification

 163

IPMI Session
Header

Same as for IPv4 “RMCP+”. Refer to the specification for RMCP / IPMI 2.0
“RMCP+” in Table 13-8, RMCP/RMCP+ Packet Format for IPMI via Ethernet.

IPMI Payload

IPMI Session

Trailer[1] /

RSP Trailer

MAC level CRC 4

1. For IPMI v2.0 RMCP+ packets, the IPMI Session Trailer is absent whenever the Session ID is 0000_0000h, or whenever bit 6
in the payload type field indicates the packet is unauthenticated.

2. These four bytes (TPI through VLAN TAG - VLAN IDn field) are only present for IEEE 802.1q “VLAN” formatted packets.

3. IP Header per [RFC2460]

13.7 VLAN Support

VLAN support is optional, but recommended, for BMC access via IPMI 1.5 packet and IPMI v2.0 packet formats.

A BMC that supports VLAN on a channel is required to support it for both packet formats. A BMC is not required

to support VLAN equally across all LAN channels. This is allowed because some LAN connections may not have

hardware that supports VLAN with a LAN connection to the BMC.

When a VLAN ID is configured into the LAN parameters, the BMC will only accept packets with that VLAN tag.

This includes all RMCP and RMCP+ packets as well as DHCP and ARP packets. Conversely, all BMC-generated

packets will include the given VLAN tag.

13.8 IPMI LAN Message Format

The encapsulated IPMI Messages are based on the same format as specified for the IPMB. This is done for

consistency and simplification of bridging operations. There is one significant difference. For IPMB messages, the

requester and responder addresses are always 7-bit I2C slave addresses. For IPMI LAN messages, the addresses

can be either slave addresses or software IDs. The least significant bit of the responder’s address and requester’s

address field indicates which type of address is being used, as described below.

There is no linkage between inbound and outbound messages and whether the message is a request or a response

message. Inbound messages can be either request or response messages and outbound messages can be request or

response messages.

The following table presents the formats for request and response messages:

Figure 13-4, IPMI LAN Message Formats

rsAddr.

(SA or sw ID)

rqSeq / rsLUN cmd

rqAddr.

(SA or sw ID)

Request
rsAddr.

(SA or sw ID)

net Fn

(even) / rsLUN

checksum

Response
rqAddr.

(SA or sw ID)

net Fn

(odd) / rqLUN

rqSeq / rqLUN cmd request data bytes

(0 or more)

checksum

checksum

completion

code

response data

bytes (0 or more)

checksum

Intelligent Platform Management Interface Specification

164

Where:
checksum 2's complement checksum of preceding bytes in the connection header or between the

previous checksum. 8-bit checksum algorithm: Initialize checksum to 0. For each byte,

checksum = (checksum + byte) modulo 256. Then checksum = - checksum. When the

checksum and the bytes are added together, modulo 256, the result should be 0.

cmd Command Byte

completion code Completion code returned in the response to indicated success/failure status of the request.

data As required by the particular request or response for the command

LUN The lower 2-bits of the netFn byte identify the logical unit number, which provides further

sub-addressing within the target node.

netFn Network Function code

rq Abbreviation for ‘Requester’.

rqLUN Requester’s LUN.

rqAddr Requester's Address. 1 byte. LS bit is 0 for Slave Addresses and 1 for Software IDs. Upper

7-bits hold Slave Address or Software ID, respectively. This byte is always 20h when the

BMC is the requester.

rqSeq Sequence number, generated by the requester.

rs Abbreviation for ‘Responder’.

rsLUN Responder’s LUN

rsAddr Responder's Slave Address. 1 byte. LS bit is 0 for Slave Addresses and 1 for Software IDs.

Upper 7-bits hold Slave Address or Software ID, respectively. This byte is always 20h

when the BMC is the responder.

Seq Sequence number. This field is used to verify that a response is for a particular instance of

a request. Refer to [IPMB] for additional information on use and operation of the Seq field.

13.9 LAN Alerting

LAN Alerts are accomplished by generating a UDP Datagram that contains an SNMP Trap formatted per the

IPMI Platform Event Trap (PET) Format specification. This same format is used for PPP alerts generated over the

serial/modem interface when operating in PPP/UDP mode. Information for the PET trap comes from the Event

Message that generated the alert and from the LAN configuration parameters for PET.

13.10 IPMI LAN Configuration

This section provides background information on certain configuration options that are available for LAN

channels and how they’re used.

13.10.1 IP and MAC Address Configuration

The BMC in the managed system needs the system’s IP Address and MAC Address in order to be able to

respond to UDP/IP packets or generate LAN alerts.

A BMC implementation is not required to be able to run DHCP or other protocols to keep it’s IP address

assignment up-to-date. In such implementations, it is the responsibility of system software to keep this address

information current in case it might change (as could be the case if the lease expired on an IP address, perhaps

because the system was unplugged for a long time).

It is recommended that system software periodically check the BMC’s address assignment to see if it is current,

and to update it if it’s not. It is also recommended that the BIOS run DHCP and initialize the BMC IP address

on startup if the BMC implementation does not include built-in DHCP support.

 Intelligent Platform Management Interface Specification

 165

13.10.2 ‘Teamed’ and Fail-over LAN Channels

It is possible that an implementation may have multiple network controllers connected to the BMC. In such a

configuration, it may be desirable to support a configuration where multiple network controllers share the same

IP address. This ‘teamed’ configuration provides a bandwidth improvement by allowing messages to that IP

address to be sent and received by multiple NICs. Similar arrangements can be used to offer ‘fail-over’

capability where one NIC will be activated if another fails.

Teaming and fail-over require special system software and driver support that is outside the scope of this

specification. However, it should be noted that IPMI Sessions could be implemented in a manner that can

facilitate such applications. One useful approach is to design the implementation such that Session IDs are

unique across all channels. That way, if two LAN channels were configured with the same IP address, the BMC

could accept session traffic that was split across the two channels. Since user information is channel-specific, it

would also be necessary for the user data and other configuration options to be identically configured. An

alternative implementation may provide a proprietary option where the two LAN connections are combined into

a single logical channel when teaming is in effect.

Note: The maximum operating privilege level and authentication will be determined by the user privilege

and channel privilege limit settings. Since these can vary on a per channel basis, it is possible that unless

the channels are configured identically a different maximum operating privilege level will be seen based

on which channel a message is received on.

13.11 ARP Handling and Gratuitous ARP

For Ethernet, the Address Resolution Protocol (ARP) [RFC826] allows a host to find the physical address (MAC

address) of a target host on the same network, given only the target's Internet address. Systems and routers cache

IP Address-to-MAC Address information so they do not need to perform ARP requests every time they

communicate with another system. This cache is commonly referred to as an ARP Cache.

ARP Requests are broadcast. The request contains the IP Address for which an ARP Response containing the

MAC address is desired. The sender's IP Address-to-MAC Address mapping is also in every ARP request

broadcast. This allows receivers to update their own caches with the sender’s information before responding to the

ARP request.

A Gratuitous ARP is an ARP Response where the responder sends out the internet-to-physical mapping of its own

IP Address. Since the sender’s internet-to-physical address mapping is part the request, receivers use that

information to update their own caches with the sender’s address mapping.

It is common for systems to do a Gratuitous ARP on startup to inform other machines of its address (possibly a

new address). This gives the other systems a chance to update their ARP cache entries immediately. A Gratuitous

ARP at startup can also be used as a way to check whether another system is already using the system’s IP

address.

For this version of the specification, Gratuitous ARP capability is only described for Ethernet LAN channels.

13.11.1 OS-Absent problems with ARP

Some BMC LAN implementations may only have the ability to only receive UDP packets that are addressed to

the RMCP ports. Since Ethernet ARP packets are not UDP packets, Ethernet ARP request packets would not get

routed to the BMC. Thus, when the system is in a powered down state, the system may not accept ARP Requests,

or the request may not be able to be seen by the BMC, and the ARP Request will not get responded to. This means

that a remote application that relies on ARP to get the MAC address will not be able to connect to the managed

system once the system has powered down or is in a sleep state and the remote application’s or intermediate

router’s ARP cache entries expire.

Intelligent Platform Management Interface Specification

166

13.11.2 Resolving ARP issues

The following are possible approaches to eliminating or reducing issues that can occur if the BMC LAN

implementation cannot receive or respond to ARP Requests while the system is powered down or sleeping. It is

also possible for this to happen if the run-time software does not use the network. This could happen while in a

failed state or if the system has booted to ‘DOS’ or a local diagnostic partition.

 Increase ARP Cache expiration intervals in routers and applications.

 Implement Proxy ARP on the subnet - implement Proxy ARP software (software that responds to ARP

Requests on behalf of the managed systems) on one or more systems on the subnet. At least one of the

Proxy ARP systems must remain powered up.

 Have the application maintain the ARP table - This only works if the remote console application is on the

same subnet as the managed system. Some network stacks include an arp utility program that allows ARP

entries to be manually entered into the ARP table (cache) for that system. An application could use this

mechanism to maintain the ARP table with a ‘fixed’ IP-to-MAC address association for the system.

 Use a router with Proxy ARP capability - Some routers can be configured to provide a Proxy ARP

capability

 Wake-On-LAN - If the managed system supports Wake-On-LAN it may be used to wake the system in

order to allow system software to respond to a later ARP Request.

 Use a Network Controller with built-in ARP Response capability. As out-of-band management using

RMCP becomes more popular, network controller vendors may offer controllers with the ability to directly

respond to ARP Requests when the system is powered down or sleeping.

 Provide Gratuitous ARPs from the BMC. If the BMC LAN connection allows the BMC to send ARP

Requests, then the BMC could periodically issue Gratuitous ARPs. Many routers and network stacks will

accept this Gratuitous ARP in place of an actual ARP response packet.

The best solution is to have an implementation where the BMC or Network Controller directly responds to ARP

Requests during times that the OS does not. If this is not possible, having the BMC issue Gratuitous ARPs can

often work well as a substitute. Because BMC-generated Gratuitous ARPs and ARP Responses may be

common, this specification includes commands that can be used for configuring and controlling those

capabilities if they exist in the implementation.

13.11.3 BMC-generated ARPs

A BMC LAN implementation may support BMC-generated Gratuitous ARPs or BMC-generated ARP

responses. If either of these options are supported, the BMC shall also support the BMC-generated ARP Control

LAN configuration parameter.

The term “BMC-generated” in this case means that the Gratuitous ARP or ARP Response generation is under

direct control of the BMC. The actual logic for sending the ARP packet may be in another device. For example,

a Network Controller chip may have the ability to be enabled by the BMC through a private interface.

It is possible that run-time software will want to take over the responsibilities for ARP handling during run-

time. A BMC implementation that supports BMC-generated ARPs should also support the Suspend BMC ARPs

command. This command allows system management software to suspend BMC-generated ARPs while the

Watchdog Timer is running. Refer 23.3, Suspend BMC ARPs Command for more information.

13.12 Retaining IP Addresses in a DHCP Environment

DHCP (Dynamic Host Configuration Protocol) is an UDP-based protocol that is primarily used to allow

systems to obtain an IP Address from a DHCP Server on the network. This address assignment is ‘leased’ and

 Intelligent Platform Management Interface Specification

 167

will expire if the assignment is not refreshed by the time the lease expires. The BMC LAN implementation may

not be able to run DHCP. This could be because the BMC LAN implementation may only have the ability to

send and receive via the RMCP port addresses, preventing it from running standard DCHP.

If the BMC itself cannot run DHCP, the BMC must rely on the IP Address assignment that is configured into

the LAN Configuration Parameters. Typically, system software be able to keep the address assignment while

the system is running. This can either occur as a consequence of having sufficient IP traffic activity occur to

keep the lease, or if the system may be idle for long periods of time, a software agent could be written that

periodically refreshes the assignment.

A more serious issue can occur while the system is powered down or sleeping. If the system is powered down

or is sleeping for a sufficiently long time, the IP Address could be lost due to expiration of the DHCP lease.

When the system starts up again, the BMC will need to get a new IP address assignment into its configuration

parameters.

13.12.1 Resolving DHCP issues

The following are possible approaches to eliminating or reducing issues that can occur if the BMC LAN

implementation cannot perform DHCP while the system is powered down or is sleeping:

 If possible, configure Static IP addresses for your managed server systems. DHCP Servers can typically be

configured to deliver fixed IP addresses for a given MAC address.

 If you have to use leased IP addresses, configure long lease intervals for the addresses.

 Have a system management software agent that checks the IP Address assignment and updates the BMC if

the assignment changes.

 Have the BIOS perform DHCP and update the BMC when the system powers up or resets. This helps

safeguard against changes to the IP address that may have occurred when the system was powered down or

sleeping. It also helps ensure that the BMC as an IP Address assignment if booting to an alternate OS or

service partition, and provides a mechanism for getting an IP address for BMC LAN even before the system

has an OS loaded.

 Enable Wake-On-LAN capabilities. This capability can be used to allow a remote console to occasionally

wake the system to ensure that the IP Address assignment is retained or updated.

In general, a system in a DHCP environment will typically be used frequently enough to never lose its address

assignment. If run-time software and BIOS can keep the BMC up-to-date with IP address assignment changes,

the need to refresh assignments while the system is powered-down or sleeping may not be an issue in many

environments.

13.12a IPMI over LAN and LAN Alerting using IPv6

IPv6 Addressing for RMCP+ (IPMI over LAN) and LAN Alerting is an optional feature for IPMI v2.0. The

specification supports both static and dynamic address assignment for the BMC and static configuration and

dynamic address discovery for routers. The abbreviation “SLAAC” is used when referring to IPv6 StateLess

Address Auto Configuration.

If supported per this specification, the implementation shall meet the requirements described in the following

sections. Additionally:

 Supporting IPv6 for LAN Alerting assumes the implementation supports for IPv6 Addressing for RMCP+

(IPMI over LAN).

Intelligent Platform Management Interface Specification

168

 The LAN Configuration Parameters for IPv6 Addressing and LAN Alerting using IPv6 Addressing should

not be implemented unless IPv6 Addressing is supported per this specification.

 IPv6 Addressing is only specified for RMCP+ and IPMI v2.0.

 An implementation is not required to support simultaneous IPv4 and IPv6 sessions. A LAN Configuration

Parameter reports the implementation’s capabilities for supporting IPv4 and IPv6.

13.12b Indicating Support for IPv6

The “IPv6/IPv4 Support” LAN Configuration Parameter indicates whether IPv6 Addressing is supported for BMC

and LAN Alerting. This parameter shall be supported if IPv6 Addressing is supported per this specification.

Otherwise, the parameter should not be supported.

13.12c IPv6 BMC Address Configuration Requirements

If IPv6 addressing is supported, the IPMI LAN Configuration Parameters can be used to configure static and/or

dynamic address assignment for the BMC if IPv6 addressing is supported.

An implementation has a number of options regarding the IPv6 address configurability it supports. Unlike the

IPv4 configuration parameters, the IPv6 parameters allow a BMC implementation to respond to more than one IP

Address. The following table summarizes the requirements for the Static Address Max and Dynamic Address

Max values based on the implementation’s support for static and/or dynamic addresses.

The “IPv6 Status” configuration parameter indicates whether only static, only dynamic, or both static and

dynamic address configuration is supported, as well as how many possible addresses may be usable for

establishing an IPMI LAN session.

Table 13-8b, IPv6 Address Configuration Requirements Based on Implementation

Implementation supports:

Static Host (BMC)
Address

Configuration
requirement

Dynamic Host (BMC)
Address

Configuration
requirement

Static only 1 minimum none

Static and Dynamic 1 minimum 1 minimum

Dynamic only none 1 minimum

13.12d IPv6 Router Address Configuration Requirements

For RMCP+ sessions, the BMC typically just sends packets to the remote IPv6 IP Address and MAC Address that

was used to establish the session and there’s no need for IPv6 to MAC Address resolution.

When the BMC needs to initiate a transmission, as is the case when sending an alert, it needs to resolve the alert

destination’s IP Address the MAC address of the ‘on link’ destination, or the MAC address of the appropriate

router if the destination is ‘off-link’.

The BMC always uses Neighbor Discovery [RFC4861] and the Solicited Node Multicast Address to resolve ‘on-

link’ IPv6 Addresses into their respective MAC addresses.

If a static router configuration is not used, the BMC also uses Neighbor Discovery Router Solicitation and Router

Advertisement messages to obtain the router’s MAC address and link prefix information.

 Intelligent Platform Management Interface Specification

 169

Table 13-8c, IPv6 Router Configuration Requirements Based on Implementation

Implementation supports: Static Router
Address

Configuration
requirement

Dynamic Router
Address

Configuration
requirement

Static only 2 minimum none

Static and Dynamic 2 minimum 2 minimum

Dynamic only none 2 minimum

13.12e IPv6 Router Configuration Capability and Reporting

If IPv6 addressing is supported, IPv6 router addresses can be specified statically, or can be obtained dynamically

through SLAAC or DHCPv6. The LAN Configuration Parameters include parameters that are used to configure

static or dynamic router addressing. The parameters also include a optional parameters that can be used to report

addressing information that has been received when dynamic router addressing is used.

13.12f Static Router Address Configuration

The “IPv6 Router Address Configuration Control” LAN onfiguration parameter is used to select whether static

router addresses are used for the BMC.

If static router configuration is used, the BMC does not use Neighbor Discovery to discover the router and to

obtain the router’s MAC Address, but instead uses the IPv6 Static Gateway MAC Address parameter alone as the

router’s MAC Address for routing off-link IP Addresses. The BMC also does not use Neighbor Discover to obtain

the prefix information for on-link addresses. Instead, the IPv6 Prefix Length parameter is used to determine how

many bits of the most-significant IPv6 IP Address bits are to be considered the ‘prefix’ bits that identify the

subnet and which remaining bits are the node-specific part of the address. Thus, when static router configuration

is used, the BMC does not need to send any multicast messages to on-link routers.

13.12g Dynamic Router Addressing Requirements

When routers are dynamically discovered, either as part of supporting Neighbor Discovery / SLAAC or because

dynamic router addressing was selected via the “IPv6 Router Address Configuration Control” parameter, the

BMC shall store dynamic address information for at least two routers, and support at least two prefixes from each

router.

The behavior is unspecified if a router gives the BMC more prefixes than it can store. The choice of which ones to

keep and which to discard is implementation-specific. The BMC may consider factors such as the prefixes match

the prefixes for existing alert destinations or are prefixes for reaching other off-link services, such as DHCP

servers.

The behavior is unspecified if the BMC receives advertisements from more routers than it can track. It is

implementation-specific whether BMC updates with new information or keeps existing router addresses and

associated prefixes/lease info. The BMC may consider factors such as whether a given advertisement includes

information that matches prefixes for existing Alert Destinations.

13.12h Neighbor Solicitation Message Handling Requirements

If IPv6 Addressing is enabled, the BMC shall always respond to any Neighbor Solicitation messages that contain

a conflicting address with a corresponding Neighbor Advertisement message indicating the address is already in

use.

Intelligent Platform Management Interface Specification

170

When a static address is used as an IPv6 Address Source, the BMC may choose to use the Neighbor Solicitation

message to check whether this address is already in use by another device. If a conflict is detected, the BMC

should not attempt to use the address, but just report the conflict using the “IPv6 Static Address Status” parameter.

13.12i IPv6 and DHCPv6 Timing Configuration

The LAN Configuration Parameters include the option of configuring standard timing parameters for DHCPv6

and/or Neighbor Discovery / SLAAC. Refer to Sections 23.2a, DHCPv6 Timing Parameters, and 23.2b, Neighbor

Discovery / SLAAC Timing Parameters, for more info.

13.12j Alert Processing for IPv6

Retries and/or positive acknowledge are configured via the Destination Type parameter (same as for IPv4 Alert

Destinations).

When processing the IPv6 address for an Alert Destination, the BMC shall first check the upper bits of the

destination address for a match with the prefix of the IPv6 address presently assigned to the BMC. If there’s a

match, the BMC shall send the alert using link-local addressing.

Next, if the Alert Destination address is off-link and static router addresses are enabled, the BMC shall check the

address against the static router and prefix parameters and send the alert to the router that has the longest

matching prefix.

Otherwise, if dynamic router addressing is enabled, the BMC shall send the alert to the router address with the

longest, unexpired, matching prefix that the BMC has received.

The behavior is implementation-specific if there is no matching prefix. The BMC is allowed to simply drop the

alert or it may try to first take actions such as sending out additional Router Solicitation requests in an attempt to

discover a router that supports a matching prefix for the Alert Destination.

The BMC may use Neighbor Unreachability Detection to verify communication with the destination address prior

to sending the alert. The BMC sends a neighbor solicitation and waits for a solicited neighbor advertisement and if

a corresponding solicited neighbor advertisement is received, the neighbor is considered reachable.

13.13 Discovering Support For IPMI over IP Connections

There are two mechanisms for discovering whether a given system (IP Address) supports IPMI v1.5 and/or IPMI

v2.0 connections. The first is the ‘RMCP Ping discovery’ mechanism where the BMC returns whether IPMI is

supported via the supported entities field of the Ping response (a.k.a. the ‘Pong’ message). The BMC can

optionally return values in the Ping response indicating what level of IPMI connection(s) (IPMI v1.5 and/or IPMI

v2.0) it supports.

The second mechanism is an ‘IPMI command discovery’ mechanism where the remote console discovers that the

system supports IPMI by issuing a Get Channel Authentication Capabilities command to determine support for

IPMI v1.5/IPMI v2.0 connections. BMCs that support IPMI v2.0/RMCP+ must support the Get Channel

Authentication Capabilities command in both the IPMI v1.5 and IPMI v2.0 packet formats. It is recommended

that a remote console use the IPMI v1.5 formats until it has confirmed IPMI v2.0 support.

When the remote console decides to connect to the discovered system, it can use the Get Channel Authentication

Capabilities and (for IPMI v2.0/RMCP+) the Get Channel Cipher Suites commands to determine which

authentication, integrity, and confidentiality algorithms can be used for establishing the connection.

 Intelligent Platform Management Interface Specification

 171

13.14 IPMI v1.5 LAN Session Activation

The LAN Channel is an authenticated multi-session connection. Messages delivered to the BMC via LAN are

optionally authenticated using the session authentication mechanisms and challenge/response protocol described

in section 6.12.7, IPMI v1.5 Session Activation and IPMI Challenge-Response. Also refer to sections 6.9, Users &

Password Support, and 6.12.3, Multi-session Connections.

In addition, a LAN implementation supports discovery via the RMCP Ping/Pong mechanism as a step that

typically precedes the session activation phase.

The following presents an overview of the steps that are used by a remote console to establish a IPMI Session via

IPMI LAN. These are also illustrated in Figure 13-5, IPMI v1.5 LAN Session Startup, below.

1. The remote console discovers the system by issuing an RMCP Presence Ping message. The response called

the Presence Pong message, returns a bit indicating whether the platform supports IPMI, and whether the

platform uses just the Primary RMCP Port (26Fh) or both the Primary RMCP Port and the Secondary/Secure

RMCP Port (298h).

2. If the system supports IPMI, the remote console starts the process of establishing a session by sending a Get

Channel Authentication Capabilities command packet with Authentication Type = none (“in clear”). The

response packet will contain information regarding which type of challenge/response authentication is

available to be utilized.

3. The console then requests a session challenge by issuing a Get Session Challenge request, also with

Authentication Type = none. The request contains information indicating what type of authentication type the

console wants to use. This must be one of the supported types returned by the Get Channel Authentication

Capabilities command. The response packet will contain a challenge string and a Session ID.

4. The console then activates the session by issuing an Activate Session request. The Activate Session packet is

typically authenticated. For message-digest algorithms, the packet includes a signature (AuthCode) that is a

hash of the challenge, the Session ID, the password, and the message data, using one of the supported

algorithms from the Get Channel Authentication Capabilities command. The console also sets the initial

value for the Outbound sequence number that it wants the BMC to use for packets it sends to the console.

5. The BMC returns a response confirming that the Session has been successfully activated. It also returns the

Session ID to be used for the remainder of the session, and the initial Inbound session sequence number that it

wants the remote console to use for subsequent messages it sends to the BMC for that session. The Activate

Session response is also authenticated (signed) in the same manner as the request was. This allows the remote

console to validate that it has a correct Session ID. Note that IPMI does not support switching authentication

algorithms ‘mid stream’. The algorithm used with the Activate Session command is the algorithm that will be

used for subsequent authenticated messages for the session. The exception to this is that the ‘none’

authentication type is allowed if options such as ‘Per-Message Authentication’ and/or ‘User Authentication’

are disabled.

Intelligent Platform Management Interface Specification

172

Figure 13-5, IPMI v1.5 LAN Session Startup

RMCP "Pong"

(Ping response)

RMCP Ping

Remote Console Managed System

SessionID=0, Sess. seq# = 0,

Auth. type =None, AuthCode =

not present [username, Auth Type

= MD2]

SessionID=temp, Sess. seq# = 0,

Auth. type =None, AuthCode =

MD2(), [SessionID, Inbound Sess.

seq#=nn]

Activate Session, Rq
(Console delivers signed request using

temporary session ID, console also selects

the outbound sequence number it want the

BMC to use)

Get Session Challenge, Rq
(Console requests a challenge for given

user and using MD2 authentication type)

Get Session Challenge, Rs
(BMC returns challenge string and

temporary session ID)

Activate Session, Rs
(BMC returns a signed packet with the session ID

to be used for the active session. BMC also returns

the inbound sequence number it wants the console

to use for messages to the BMC)

Set Privilege Level, Rq
(from this point, all packets in the session

use the assigned Session ID and session

sequence numbers starting from the

inbound and outbound sequence numbers

that were exchanged using the Activate

Session command) Set Privilege Level, Rs

SessionID=0, Sess. seq# = 0,

Auth. type =None, AuthCode =

not present, [Challenge, temp

session ID]

SessionID=temp, Sess. seq# = 0,

Auth. type =MD2, AuthCode =

MD2(), [challenge, Outbound

Seq=mm]

SessionID, Sess. seq# = nn,

Auth. type =MD2, AuthCode =

MD2(), [desired priv. level]

SessionID, Sess. seq# = mm,

Auth. type =MD2, AuthCode =

MD2(), [completion code]

D
is

c
o
v
e

ry
A

c
ti
v
a
ti
o
n

A
c
ti
v
e

Get Channel Authentication

Capabilities, Rq
(Console requests information on what

authentication algorithms must be used to

connect at a given maximum privilege level,

e.g. Operator)
Get Channel Authentication

Capabilities, Rs
(BMC returns which authentication algorithms can

be used for connecting at requested maximum

privilege level [e.g. MD2 & MD5])

SessionID=0, Sess. seq# = 0,

Auth. type =None, AuthCode =

not present [Requested maximum

privilege level = Operator]

SessionID=0, Sess. seq# = 0,

Auth. type =None, AuthCode =

not present [Auth Type(s) = MD2,

MD5]

13.15 IPMI v2.0/RMCP+ Session Activation

This section describes the process that is used for authenticating the user’s credentials and establishing an IPMI

session using RMCP+. The messages for RMCP+ are specified under the IPMI Message class (07h) for RMCP.

The payload type field in the RMCP+ packet format is used to identify the messages that are used for activating a

session under RMCP+. The following messages are used to activate a session using RMCP+:

 Intelligent Platform Management Interface Specification

 173

Get Channel Authentication Capabilities request / response

This message exchange provides a way for a remote console to discover what IPMI version is supported.

I.e. whether or not the BMC supports the IPMI v2.0 / RMCP+ packet format. It also provides information

that the remote console can use to determine whether anonymous, “one-key”, or “two-key” logins are used.

This information can guide a remote console in how it presents queries to users for username and password

information. This is a ‘session-less’ command that the BMC accepts in both IPMI v1.5 and v2.0/RMCP+

packet formats.

RMCP+ Open Session Request, RMCP+ Open Session Response
The RMCP+ Open Session request and response messages are used to enable a remote console to discover

what Cipher Suite(s) can be used for establishing a session at a requested maximum privilege level. These

messages are also used for transferring the sessions IDs that the remote console and BMC wish to for the

session once it’s been activated, and to track each party during the exchange of messages used for

establishing the session.

RAKP Message 1, RAKP Message 2

These messages are used to exchange random number and identification information between the BMC and

the remote console that are, in effect, mutual challenges for a challenge/response. (Unlike IPMI v1.5, the

v2.0/RMCP+ challenge/response is symmetric. I.e. the remote console and BMC both issues challenges,

and both need to provide valid responses for the session to be activated.)

The remote console request (RAKP Message 1) passes a random number and username/privilege

information that the BMC will later use to ‘sign’ a response message based on key information associated

with the user and the Authentication Algorithm negotiated in the Open Session Request/Response

exchange. The BMC responds with RAKP Message 2 and passes a random number and GUID (globally

unique ID) for the managed system that the remote console uses according the Authentication Algorithm to

sign a response back to the BMC.

RAKP Message 3, RAKP Message 4

The session activation process is completed by the remote console and BMC exchanging messages that are

signed according to the Authentication Algorithm that was negotiated, and the parameters that were passed

in the earlier messages. RAKP Message 3 is the signed message from the remote console to the BMC.

After receiving RAKP Message 3, the BMC returns RAKP Message 4 - a signed message from BMC to

the remote console.

The RMCP+ and RAKP Messages are specified in detail later in this section.

13.16 RMCP+ Session Termination

The following actions can terminate a session:

 The Close Session command

 Session Inactivity Timeout (See Per IPMI v1.5 section 6.11.13, Session Inactivity Timeouts)

Terminating a session causes any payloads that were activated under that session to be automatically deactivated.

Terminating one session will not cause other sessions to terminate. If multiple sessions are opened by a remote

console they will need to be terminated individually.

13.17 RMCP+ Open Session Request

The remote console sends this RMCP+ message to the managed system to open a protected session. The client

responds with an RMCP+ Open Session Response message. Following the Remote Console Session ID field, this

message contains one or more Authentication Payload proposals, one or more Integrity Payload proposals, and

Intelligent Platform Management Interface Specification

174

one or more Confidentiality Payload proposals. If the RMCP+ Open Session Request is accepted, the BMC has

found a Cipher Suite that matches up with the one or more combinations of the algorithm proposals.

The following table defines the RMCP+ packet fields for this message.

Table 13-9, RMCP+ Open Session Request
 byte data field

IPMI Session Header Payload Type = RMCP+ Open Session Request

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - Selected by remote console. Used by remote console to help match
responses up with requests. In this case, the corresponding Open Session Response
that is returned by the BMC. The BMC can use this value to help differentiate retried
messages from new messages from the remote console.

 2 Requested Maximum Privilege Level (Role)

[7:4] - Reserved for future definition by this specification, set to 0h

[3:0] - Requested Maximum Privilege Level (Role).

 0h = Highest level matching proposed algorithms.
BMC will pick the Cipher Suite returned in the RMCP+ Open Session
Response by checking the algorithms proposed in the RMCP+ Open
Session Request against the Cipher Suites available for each privilege
level, starting with the “OEM Proprietary level” and progressing to lower
privilege levels until a match is found. The resultant match results in an
‘effective’ maximum privilege level for the session. The resultant level is
returned in the RMCP+ Open Session Response.

 1h = CALLBACK level

 2h = USER level

 3h = OPERATOR level

 4h = ADMINISTRATOR level

 5h = OEM Proprietary level

 3:4 reserved - write as 00_00h

 5:8 Remote Console Session ID. Selected by the remote console to identify packets that
are received for the given session by the remote console

 9:16 Authentication Payload. Identifies the authentication type that the managed system
wants to use for the session.

byte 1 - Payload Type

00h = authentication algorithm

byte 2:3 - reserved = 0000h

byte 4 - Payload Length in bytes (1-based). The total length in bytes of the payload
including the header (= 08h for this specification).

00h = Null field (“wildcard”). BMC picks algorithm based on Requested Maximum
Privilege Level and that matches with the proposed Integrity and Confidentiality
payloads. If the Requested Maximum Privilege Level is ‘unspecified’ the BMC
picks algorithm based on the Integrity and Confidentiality algorithm proposals
starting from the highest privilege level until a match is found.

byte 5 - Authentication Algorithm

[7:6] - reserved

[5:0] - Authentication Algorithm (See Table 13-17, Authentication Algorithm
Numbers)

byte 6:8 - reserved

 17:24 Integrity Payload. Identifies the integrity type that the managed system wants to use for
the session.

byte 1 - Payload Type

01h = integrity algorithm

byte 2:3 - reserved = 0000h

byte 4 - Payload Length in bytes (1-based). The total length in bytes of the payload
including the header (= 08h for this specification).

00h = Null field (“wildcard”). BMC picks algorithm based on Requested Maximum
Privilege Level and that matches with the proposed Authentication and
Confidentiality payloads. If the Requested Maximum Privilege Level is
‘unspecified’ the BMC picks algorithm based on the Authentication and

 Intelligent Platform Management Interface Specification

 175

Confidentiality algorithm proposals starting from the highest privilege level until
a match is found.

byte 5 - Integrity Algorithm

[7:6] - reserved

[5:0] - Integrity Algorithm (See Table 13-18, Integrity Algorithm Numbers)

byte 6:8 - reserved

 25:32 Confidentiality Payload. Defined confidentiality algorithms are:

byte 1 - Payload Type

02h = confidentiality algorithm

byte 2:3 - reserved = 0000h

byte 4 - Payload Length in bytes (1-based). The total length in bytes of the payload
including the header (= 08h for this specification).

00h = Null field (“wildcard”). BMC picks algorithm based on Requested Maximum
Privilege Level and that matches with the proposed Authentication and Integrity
payloads. If the Requested Maximum Privilege Level is ‘unspecified’ the BMC
picks algorithm based on the Authentication and Integrity algorithm proposals
starting from the highest privilege level until a match is found.

byte 5 - Confidentiality Algorithm

[7:6] - reserved

[5:0] - Confidentiality Algorithm (See Table 13-19, Confidentiality Algorithm
Numbers)

byte 6:8 - reserved

13.18 RMCP+ Open Session Response

A managed system sends this RMCP+ message to the management console in response to an RMCP+ Open

Session Request message. Following the Status Code, Mgmt Console and Managed System Session ID fields, this

message contains a single Authentication payload, a single Integrity payload, and a single Confidentiality payload.

These payloads represent the proposals that the managed system selected from the list offered by the management

console.

The following table defines the RMCP+ packet fields for this message.

Table 13-10, RMCP+ Open Session Response
 byte data field

IPMI Session
Header

 Payload Type = RMCP+ Open Session Response

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - The BMC returns the Message Tag value that was passed by the remote
console in the Open Session Request message.

 2 RMCP+ Status Code - Identifies the status of the previous message. If the previous message
generated an error, then only the Status Code, Reserved, and Remote Console Session ID
fields are returned. See Table 13-15, RMCP+ and RAKP Message Status Codes. The
session establishment in progress is discarded at the BMC, and the remote console will need
to start over with a new Open Session Request message. (Since the BMC has not yet
delivered a Managed System Session ID to the remote console, it shouldn’t be carrying any
state information from the prior Open Session Request, but if it has, that state should be
discarded.)

 3 Maximum Privilege Level (Role) - Indicates the Maximum Privilege Level allowed for the
session based on the security algorithms that were proposed in the RMCP+ Open Session
Request.

[7:4] - Reserved for future definition by this specification, set to 0h

[3:0] - Requested Maximum Privilege Level (Role).

 0h = unspecified (returned with error completion code).

 1h = CALLBACK level

 2h = USER level

 3h = OPERATOR level

 4h = ADMINISTRATOR level

 5h = OEM Proprietary level

 4 reserved - write as 00h

Intelligent Platform Management Interface Specification

176

 5:8 Remote Console Session ID The Remote Console Session ID specified by RMCP+ Open
Session Request message associated with this response.

 9:12 Managed System Session ID The Session ID selected by the Managed System for this new
session. A null Session ID (All 0’s) is not valid in this context.

 13:20 Authentication Payload This payload defines the authentication algorithm proposal selected
by the Managed System to be used for this session (see Table 13-9, RMCP+ Open Session
Request for the definition of this payload). A single algorithm will be returned. The ‘Null field’
is not allowed.

 21:28 Integrity Payload This payload defines the integrity algorithm proposal selected by the
Managed System to be used for this session (see Table 13-9, RMCP+ Open Session
Request for the definition of this payload). A single algorithm will be returned. The ‘Null field’
is not allowed.

 29:36 Confidentiality Payload This payload defines the confidentiality algorithm proposal selected by
the Managed System to be used for this session (see Table 13-9, RMCP+ Open Session
Request for the definition of this payload). A single algorithm will be returned. The ‘Null field’
is not allowed.

13.19 RAKP Messages

RAKP Messages are transferred in the payload portion of an IPMI over LAN packet with a Format field set to

“RMCP+”. The Payload Type field indicates which RAKP message is held in the IPMI Payload portion of the

packet.

13.20 RAKP Message 1

A remote console sends this RAKP message to the managed system to begin the session authentication process.

The remote console selects a Remote Console Random Number, a Maximum Requested Privilege Level (Role),

and an optional User Name and sends them to the managed system along with the Managed System Session ID

specified by the client on the previous RMCP+ Open Session Response.

Upon receiving RAKP Message 1, the managed system verifies that the message contains an active Managed

System Session ID and that a session can be created using the given user information and security algorithm

proposal. The managed system responds with an RAKP Message 2.

 Intelligent Platform Management Interface Specification

 177

The format of the IPMI Session Header, Payload, and Session Trailer for the RAKP Message 1 is shown in the

following table.

Table 13-11, RAKP Message 1
 byte data field

IPMI Session
Header

 Payload Type = RAKP Message 1

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - Selected by remote console. Used by remote console to help match
responses up with requests. In this case, the corresponding RAKP Message 2 that is returned
by the BMC. The BMC can use this value to help differentiate retried messages from new
messages from the remote console.

 2:4 reserved - write as 00_00_00h

 5:8 Managed System Session ID

The Managed System’s Session ID for this session, returned by the Managed System on the
previous RMCP+ Open Session Response message.

 9:24 Remote Console Random Number

Random number selected by the Remote Console

 25 Requested Maximum Privilege Level (Role)

[7:5] - Reserved for future definition by this specification, set to 000b

[4] - 0b = Username/Privilege lookup. Both the Requested Privilege Level and User
Name are used to look up password/key. The BMC will search the user entries
starting with USER ID 1 and use the first entry that matches the specified user
name and has a Maximum Privilege Level that matches the Requested
Privilege Level. This can be used in combination with ‘null’ user names to
enable a “role only” login with a password that is just associated with the
requested privilege level.

 1b = Name-only lookup. User Name alone is used to look up password/key. Privilege
Level field acts as a ‘Maximum Requested Privilege Level’ as in IPMI v1.5. The
rules for privilege level handling are summarized as follows:

 If the Requested Privilege Level is greater than the privilege limit for the
channel/user, the user will be allowed to connect but will be restricted to the
channel/user privilege limit that was configured for the user.

 If the Requested Privilege Level is less than the channel/user privilege limit,
the user will be allowed to connect and Request Privilege Level will become
the effective privilege limit for the user. I.e. the user will not be able to raise
their privilege level higher than the Requested Privilege Level.

[3:0] - Requested Maximum Privilege Level

 0h = reserved

 1h = CALLBACK level

 2h = USER level

 3h = OPERATOR level

 4h = ADMINISTRATOR level

 5h = OEM Proprietary level

 26:27 reserved - write as 00_00h

 28 User Name Length

00h No name present

01h-10h Name length

11h-FFh Reserved for future definition by this specification

 (29:44) User Name ASCII character Name that the user at the Remote Console wishes to assume for
this session. No NULL characters (00h) are allowed in the name. Sixteen-bytes, max.

Intelligent Platform Management Interface Specification

178

13.21 RAKP Message 2

The managed system sends this RAKP message to a remote console in response to the receipt of an RAKP

Message 1. Once RAKP Message 1 has been validated the managed system selects a Managed System Random

Number and computes a Key Exchange Authentication Code over the values specified by the RAKP algorithm.

The managed system sends those values along with the Managed System Globally Unique ID (GUID) and the

Remote Console Session ID (sent by the console on the previous RMCP+ Open Session Request) to the remote

console.

Upon receiving RAKP Message 2, the remote console verifies that the Remote Console Session ID is active and

that the Managed System GUID matches the managed system that the remote console has associated with the

session. The remote console then validates the Key Exchange Authentication Code and responds with an RAKP

Message 3.

The format of an RAKP Message 2 message’s Data section is as follows:

Table 13-12, RAKP Message 2
 byte data field

IPMI Session Header Payload Type = RAKP Message 2

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - The BMC returns the Message Tag value that was passed by the
remote console in RAKP Message 1.

 2 RMCP+ Status Code - Identifies the status of the previous message. If the previous
message generated an error, then only the Completion Code, Reserved, and
Remote Console Session ID fields are returned. If the Remote Console Session ID
field is indeterminate (as would be the case if the Managed System Session ID in
RAKP Message 1 were invalid) then the Remote Console Session ID field will be
set to all zeros.

On error, the remote console can attempt to correct the error and send a new RAKP
Message 1. Note that the remote console must change the Message Tag value to
ensure the BMC sees the message as a new message and not as a retry.

See Table 13-15, RMCP+ and RAKP Message Status Codes for the status codes
defined for this message.

 3:4 Reserved - write as 00_00h.

 5:8 Remote Console Session ID - The Remote Console Session ID specified by the
RMCP+ Open Session Request message associated with this response.

 9:24 Managed System Random Number - Random number selected by the managed
system.

 25:40 Managed System GUID - The Globally Unique ID (GUID) of the Managed System.
This value is typically specified by the client system’s SMBIOS implementation. See
22.14, Get System GUID Command, for additional information.

 41:N Key Exchange Authentication Code

An integrity check value over the relevant items specified by the RAKP algorithm for
RAKP Message 2. The size of this field depends on the specific Authentication
Algorithm (e.g. for RAKP-HMAC-SHA1 the Authentication Algorithm would be
HMAC using SHA1 to generate a 20-byte authentication code) that was identified in
the RMCP+ Open Session Response. This field may be 0-bytes (absent) for some
algorithms (e.g. RAKP-none).

 Intelligent Platform Management Interface Specification

 179

13.22 RAKP Message 3

A remote console sends this RAKP message to a managed system in response to the receipt of an RAKP Message

2. Once it validates RAKP Message 2, the remote console creates a Session Integrity Key using the values

specified by the RAKP algorithm. The remote console then computes an Integrity Check Value over the values

specified by the RAKP algorithm, and sends that along with the Managed System Session ID (sent by the

managed system on the previous RMCP+ Open Session Response message) to the managed system.

After receiving RAKP Message 3, the managed system verifies that the Managed System Session ID is active and

then validates the Integrity Check Value. If the Integrity Check Value is valid, the managed system creates a

Session Integrity Key using the values specified by the RAKP algorithm. With the shared Session Integrity Key in

place, integrity protected messages can now be exchanged between the remote console and the managed system.

The format of an RAKP Message 3 message’s Data section is as follows:

Table 13-13, RAKP Message 3
 byte data field

IPMI Session Header Payload Type = RAKP Message 3

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - Selected by remote console. Used by remote console to help match
responses up with requests. In this case, the corresponding RAKP Message 4 that is
returned by the BMC. The BMC can use this value to help differentiate retried
messages from new messages from the remote console.

 2 RMCP+ Status Code Identifies the status of the previous message. If the previous
message generated an error, then only the Completion Code, Reserved, and
Managed System Session ID fields are returned.

If the BMC receives an error from the remote console, it will immediately terminate the
RAKP exchange in progress, and will not respond with an RAKP Message 4, even if
the remaining parameters and Key Exchange Authentication code (below) are valid.
(Terminating the RAKP exchange in progress means that the BMC will require the
remote console to restart the RAKP authentication process starting with RAKP
Message 1.)

See Table 13-15, RMCP+ and RAKP Message Status Codes for the status codes
defined for this message.

 3:4 Reserved - write as 00_00h.

 5:8 Managed System Session ID
The Managed System’s Session ID for this session, returned by the managed system
on the previous RMCP+ Open Session Response message.

 9:N Key Exchange Authentication Code

An integrity check value over the relevant items specified by the RAKP authentication
algorithm identified in RAKP Message 1 . The size of this field depends on the
specific Authentication Algorithm. This field may be 0 bytes (absent) for some
algorithms (e.g. RAKP-none). Note that if the authentication algorithm for the given
Requested Maximum Privilege Level/Role specifies (e.g. RAKP-none) specifies ‘no
Authentication Code’ then this field must be absent to be considered a match for the
algorithm.

Intelligent Platform Management Interface Specification

180

13.23 RAKP Message 4

A managed client sends this RAKP message to a management console in response to the receipt of an RAKP

Message 3. Once RAKP Message 3 has been validated, the managed client computes an Integrity Check Value

over the values specified by the RAKP algorithm. The managed client then sends the Mgmt Console Session ID

and the Integrity Check Value to the management console.

Upon receiving RAKP Message 4, the management console verifies that the Mgmt Console Session ID is active

and then validates the Integrity Check Value.

The format of an RAKP Message 4 message’s Data section is as follows:

Table 13-14, RAKP Message 4
 byte data field

IPMI Session Header Payload Type = RAKP Message 4

Session ID = 00_00_00_00h

Session Sequence Number = 00_00_00_00h

IPMI Payload 1 Message Tag - The BMC returns the Message Tag value that was passed by the
remote console in RAKP Message 3.

 2 RMCP+ Status Code - Identifies the status of the previous message. If the
previous message generated an error, then only the Status Code,
Reserved, and Management Console Session ID fields are returned. See
2.1.3.6.1 for the status codes defined for this message.

 3:4 Reserved - Reserved for future definition by this specification set to
000000h.

 5:8 Mgmt Console Session ID The Mgmt Console Session ID specified by the
RMCP+ Open Session Request (83h) message associated with this
response.

 9:N Integrity Check Value An integrity check value over the relevant items
specified by the RAKP authentication algorithm that was identified in RAKP
Message 1. The size of this field depends on the specific authentication
algorithm. (For example, the RAKP-HMAC-SHA1 specifies that an HMAC-
SHA1-96 algorithm be used for calculating this field. See Section 13.28,
Authentication, Integrity, and Confidentiality Algorithm Numbers for info on
the algorithm to be used for this field.) This field may be 0 bytes (absent) for
some authentication algorithms (e.g. RAKP-none)

 Intelligent Platform Management Interface Specification

 181

13.24 RMCP+ and RAKP Message Status Codes

The table below lists the status codes for specific RMCP+ and RAKP messages.

Table 13-15, RMCP+ and RAKP Message Status Codes
Status
Code

Description Message

RMCP+

Open

Session

Response

RAKP

Msg 2

RAKP

Msg 3

RAKP

Msg 4

00h No errors X X X X

01h Insufficient resources to create a
session

X X X X

02h Invalid Session ID X X X X

03h Invalid payload type X

04h Invalid authentication algorithm X

05h Invalid integrity algorithm X

06h No matching authentication payload X

07h No matching integrity payload X

08h Inactive Session ID X X X

09h Invalid role X X

0Ah Unauthorized role or privilege level
requested

 X

0Bh Insufficient resources to create a
session at the requested role

 X

0Ch Invalid name length X

0Dh Unauthorized name X

0Eh Unauthorized GUID. (GUID that BMC
submitted in RAKP Message 2 was not
accepted by remote console)

 X

0Fh Invalid integrity check value X X

10h Invalid confidentiality algorithm X

11h No Cipher Suite match with proposed
security algorithms

X

12h Illegal or unrecognized parameter X X X X

13h-FFh Reserved for future definition by this
specification

13.25 Differences between v1.5 and v2.0/RMCP+ Sessions

The following presents an overview of some notable differences as well as similarities between IPMI v1.5 and

RMCP+ user setup and session activation mechanisms:

 IPMI v1.5 had a hook that would allow packets under a session to have different authentication

signatures than the type of signature that was negotiated to open the session. This hook was to include

a ‘Authentication Type’ field that specified the type of authentication on a per-packet basis. This

capability was not used in the specification. Thus, to simplify things a packet can only have two types

of authentication: the type of authentication selected in the “Open Session” command or “none” - thus

the ‘Authentication Type’ field is deleted and instead the presence or absence of the “Integrity Data”

field is used to indicate whether a given packet in the session is authenticated or not.

 IPMI v1.5 uses a single challenge-response mechanism for user authentication (the BMC issues a

challenge, and the remote console must issue a response). IPMI v2.0/RMCP+ uses a symmetric

challenge where both the BMC and Remote Console issue challenges, and both the BMC and Remote

Console must return correct responses for the session to be activated.

Intelligent Platform Management Interface Specification

182

 ASF 2.0 authentication defined ‘Roles’ such as User and Administrator, where a key (password) was

associated with each role. IPMI v1.5 authentication associated a key with each User Name where a

‘privilege level’ (such as User or Administrator) was configured for each user name. These two

approaches are both available in IPMI v2.0/RMCP+. The BMC can be configured with ‘null’ user

names, whereby key lookup is done based on ‘privilege level only’, or with non-null user names,

where the key lookup for the session is determined according to the user name.

 IPMI v1.5 uses a single, common Session ID that identifies the session to the BMC and remote

console. IPMI v2.0/RMCP+ allows the BMC and remote console to both pick Session IDs that identify

their incoming traffic for the session.

 IPMI v1.5 uses a single key (the user key/password) that is used both for authentication and in integrity

(AuthCode) calculations. IPMI v2.0/RMCP+ can be configured to use a single key (“one-key”) login

where the user key is used both for authentication and to generate a Session Integrity Key that is used

in integrity (AuthCode) calculations, or a “two-key” login where the user key is used for

authentication, and a separate “BMC key”, KG, is used to create the Session Integrity Key that is used

in integrity (AuthCode) calculations.

13.26 IPMI v2.0 RMCP+ Payload Types

The Payload Type field in the IPMI v2.0/RMCP+ packet carries a Payload Type Number that identifies what type

of payload field is being carried in that particular packet.

The Payload Type Numbers (also referred to as payload types) are classified into three main categories: Standard

Payload Types - used to identify payloads that are specified by the IPMI specifications, Session Setup Payload

Types - used to identify payloads that are for session setup messages specified by the IPMI specifications, and

OEM Payload Types that are used to identify payloads that are specified by a given OEM.

The following table lists the assignment and ranges of the Payload Type Numbers. The complete identification of

an OEM Payload is given by the combination of a three-byte IANA ID for the OEM, a reserved byte, plus a two-

byte OEM Payload ID that is assigned and defined by the given OEM. These can either be carried explicitly in

each packet (adding six bytes of overhead) or an application can elect to use an OEM Payload Type Handle. The

OEM Payload Type Handle in the Payload Type provides a value that represents a particular OEM IANA and

OEM Payload ID on a system. The Get Channel Payload Support command is used discover what OEM Payloads

(if any) are used on the managed system, and to associate the OEM Payload Type number with the OEM IANA

ID and Payload ID.

OEM Payload Handle assignments can vary from system to system. For example, “OEM0” on one system may

not correspond to the same type of OEM Payload as “OEM0” on another system. Software that uses OEM ayload

Handles must not assume that a given OEM Payload Handle number will correspond to a particular OEM IANA

and Payload ID combination across multiple systems. Software must use the Get Channel Payload Support

command to discover the relationship.

Associated with each payload type is a format version number that provides information on the backward

compatibility with different versions of the payload type. See Section 24.9, Get Channel Payload Version

Command, for more information.

13.27 Payloads and Payload Type Numbers

Payload Type Numbers are used in the “payload type” field of an IPMI v2.0/RMCP+ packet to identify what’s

being carried in the data portion of the packet. This data can be categorized into the following types of content:

Standard payload types that specify commands and data content for messages and protocols defined in this

specification. Session Setup payload types that are used for messages for session startup and remote access

authentication algoritihms defined in this specification, and OEM Payload Type Handles that are used to identify

OEM-specified data that is carried in an IPMI v2.0/RMCP+ packet.

 Intelligent Platform Management Interface Specification

 183

The Get Channel Payload Support command returns which standard payload type numbers and OEM payload

type handles are available on a given channel of a BMC.

13.27.1 IPMI Message Payloads and IPMI Commands

IPMI Message Payloads are always accepted over any IPMI session, because they are used for IPMI commands

that are used for managing sessions. Thus, the IPMI payload type does not need to be explicitly enabled, and

cannot be disabled via the Activate and Deactivate Payload commands, respectively.

However, while the IPMI Message payload type is accepted, specific IPMI commands may not be accepted. For

example, the Set User Access command determines whether a given user can execute IPMI commands that are

not specific to managing a session or to specific to a particular payload type. For example, if IPMI Messaging is

disabled for a user, but the user is enabled for activating the SOL payload type, then IPMI commands associated

with SOL and session management, such as Get SOL Configuration Parameters and Close Session are

available, but generic IPMI commands such as Get SEL Time are unavailable on the SOL Payload session.

The following commands remain available for payloads if IPMI Messaging Payload type, or IPMI Messaging,

is disabled for the channel:

Deactivate Payload, Suspend/Resume Payload Encryption (as defined for given payload), Get Payload

Activation Status, Get Channel Payload Version Command, Get Channel OEM Payload Info (if

implemented), Set Session Privilege Level, and Close Session.

In addition, the IPMI commands that are available before a session is established, and commands that are

required to activate a session, such as Get System GUID, and Activate Session, also remain available. These

commands are identified with the notation “p” in Table G-1, Command Number Assignments and Privilege

Levels. Note some of these commands are not supported for IPMI v1.5/RMCP connections, in which case they

will be unavailable.

13.27.2 OEM Payload Type Handles

OEM Payload Type Handles are a specific numeric range of values that can be carried in the payload type field

of an IPMI v2.0/RMCP+ packet. These values do not explicitly specify a type of OEM payload, but instead are

“handles” that are used to identify and access an OEM payload type on a given implementation or instance of a

BMC. OEM Payload Types are actually specified by the combination of an OEM IANA and an OEM-specified

Payload ID number. The OEM Payload Type Handle can be used in the Get Channel OEM Payload Info

command can be used to look up the OEM IANA and OEM Payload ID associated with a particular payload

type number.

Intelligent Platform Management Interface Specification

184

13.27.3 Payload Type Numbers

The following table defines the payload type numbers and ranges for OEM Payload Type Handles.

Table 13-16, Payload Type Numbers

number[1] type
major format

version
minor format

version

 Standard Payload Types

0h IPMI Message 1h 0h

1h SOL (serial over LAN) 1h 0h

2h OEM Explicit

(When this payload type appears in the network
header, it indicates that the packet includes explicit
OEM IANA and OEM Payload ID fields that identify
the payload type, instead of using an OEM Payload
Type Handle to identify the type of payload
contained in the packet. When used, this option
adds 6 bytes to the overhead of the packet.)

OEM specified
according to OEM
IANA and OEM
Payload ID.

OEM specified
according to OEM
IANA and OEM
Payload ID.

 Session Setup Payload Types

10h RMCP+ Open Session Request 1h 0h

11h RMCP+ Open Session Response 1h 0h

12h RAKP Message 1 1h 0h

13h RAKP Message 2 1h 0h

14h RAKP Message 3 1h 0h

15h RAKP Message 4 1h 0h

 OEM Payload Type Handles

20h-27h Handle values for OEM payloads OEM0 through
OEM7, respectively.

OEM specified
according to OEM
IANA and OEM
Payload ID.

OEM specified
according to OEM
IANA and OEM
Payload ID.

all other reserved

1. The payload type number is a 6-bits (00h-3Fh).

13.28 Authentication, Integrity, and Confidentiality Algorithm
Numbers

The Authentication Algorithm Number specifies the type of authentication “handshake” process that is used and

identifies any particular variations of hashing or signature algorithm that is used as part of the process.

Table 13-17, Authentication Algorithm Numbers

number* type
Mandatory /

Optional1

00h RAKP-none M

01h RAKP-HMAC-SHA1 M

02h RAKP-HMAC-MD5 O

03h RAKP-HMAC-SHA256 O

C0h-FFh OEM O

all other reserved -

* The number range is limited to six (6) bits (00h-3Fh)

1 Mandatory/Optional is with respect to BMC support. It is recommended that remote consoles support all specified algorithms in

order to support maximum number of BMC implementations.

 Intelligent Platform Management Interface Specification

 185

13.28.1 RAKP-HMAC-SHA1 Authentication Algorithm

RAKP-HMAC-SHA1 specifies the use of RAKP messages for the key exchange portion of establishing the

session, and that HMAC-SHA1 (per [RFC2104]) is used to create 20-byte Key Exchange Authentication Code

fields in RAKP Message 2 and RAKP Message 3. HMAC-SHA1-96 (per [RFC2404]) is used for generating a

12-byte Integrity Check Value field for RAKP Message 4.

13.28.1b RAKP-HMAC-SHA256 Authentication Algorithm

RAKP-HMAC-SHA256 specifies the use of RAKP messages for the key exchange portion of establishing the

session, and that HMAC-SHA256 (per [FIPS 180-2] and [RFC4634] and is used to create a 32-byte Key

Exchange Authentication Code fields in RAKP Message 2 and RAKP Message 3. HMAC-SHA256-128 (per

[RFC4868]) is used for generating a 16-byte Integrity Check Value field for RAKP Message 4.

13.28.2 RAKP-none Authentication Algorithm

RAKP-none uses the same steps and messages as RAKP-HMAC-SHA1, but the Key Exchange Authentication

Code field in RAKP Message 2 and RAKP Message 3 and the Integrity Check Value field in RAKP Message 4

are absent since they are not used. RAKP-none does not provide password authentication or RAKP packet level

data integrity checking. The RAKP steps establish Session IDs and privilege level using only the given

username/role. A BMC implementation can be configured with a null username that has a null (all 0’s)

password. A BMC configured this way, and using the RAKP-none Authentication Algorithm, provides a way to

enable access the BMC without requiring a username and password.

13.28.3 RAKP-HMAC-MD5 Authentication Algorithm

This authentication algorithm operates the same way as RAKP-HMAC-SHA1 except that HMAC with MD5

(per [RFC2104] is used for RAKP authentication operations in place of SHA-1. Thus, the Key Exchange

Authentication Code fields in RAKP Message 2 and RAKP Message 3 and the Integrity Check Value field in

RAKP Message 4 are all 16-byte fields (128-bit MD5). Since MD5 requires fewer computational steps than

SHA-1, this option can be used to offer a quicker session activation, particularly on management controllers that

have limited computational resources.

When the SIK and additional keying material (K1, K2, etc.) are generated (per sections 13.31, RMCP+

Authenticated Key-Exchange Protocol (RAKP), and 13.32, Generating Additional Keying Material) the MD5

algorithm is used in the HMAC algorithm, resulting in 16-byte (128-bit) keys.

13.28.4 Integrity Algorithms

The Integrity Algorithm Number specifies the algorithm used to generate the contents for the AuthCode

“signature” field that accompanies authenticated IPMI v2.0/RMCP+ messages once the session has been

established.

Unless otherwise specified, the integrity algorithm is applied to the packet data starting with the

AuthType/Format field up to and including the field that immediately precedes the AuthCode field itself.

When using the integrity algorithms with the Get AuthCode command, the integrity algorithm is applied to the

data passed in the Get AuthCode command, using key information selected by the given User ID and Channel

number. If an SIK needs to be calculated, it is calculated using the user key (password) information as descibed

for ‘one-key’ logins.

none. If the Integrity Algorithm is none the AuthCode value is not calculated and the AuthCode field in the

message is not present (zero bytes).

HMAC-SHA1-96, HMAC-SHA256-128, and HMAC-MD5-128 take the Session Integrity Key and use it to

generate K1. K1 is then used as the key for use in HMAC to produce the AuthCode field. For “two-key”

Intelligent Platform Management Interface Specification

186

logins, 160-bit key KG is used in the creation of SIK. For “one-key” logins, the user’s key (password) is

used in place of KG. To maintain a comparable level of authentication, it is recommended that a full 160-bit

user key be used when “one-key” logins are enabled for IPMI v2.0/RMCP+.

When the HMAC-SHA1-96 Integrity Algorithm is used the resulting AuthCode field is 12 bytes (96 bits).

When the HMAC-SHA256-128 and HMAC-MD5-128 Integrity Algorithms are used the resulting AuthCode

field is 16-bytes (128 bits).

MD5-128 uses a straight MD5 signature with the user’s key information appended at the beginning and the end

of the packet data to calculate the AuthCode field as:

AuthCode = MD5(password + AuthType/Format + … + Next_Header + password)

The MD5-128 Integrity Algorithm does not use K1 or HMAC. This results in significantly fewer

computation steps than the HMAC- algorithms, potentially providing significantly improved throughput

performance on certain management controllers. However, this algorithm also delivers less protection

against password and replay attacks than the HMAC based options and thus should only be used when

operating in a trusted environment where data integrity checking is desired but other attacks are not a

concern.

When the MD5-128 Integrity Algorithm is used the resulting AuthCode field is 16 bytes (128 bits).

Table 13-18, Integrity Algorithm Numbers

number* type
Mandatory /

Optional1

00h none M

01h HMAC-SHA1-96 M

02h HMAC-MD5-128 O

03h MD5-128 O

04h HMAC-SHA256-128 O

C0h-FFh OEM O

all other reserved -

* The number range is limited to six (6) bits (00h-3Fh)

13.28.5 Confidentiality (Encryption) Algorithms

The Confidentiality Algorithm Number specifies the encryption/decryption algorithm field that is used for

encrypted payload data under the session. The ‘encrypted’ bit in the payload type field being set identifies

packets with payloads that include data that is encrypted per this specification. When payload data is encrypted,

there may be additional “Confidentiality Header” and/or “Confidentiality Trailer” fields that are included within

the payload. The size and definition of those fields is specific to the particular confidentiality algorithm.

Table 13-19, Confidentiality Algorithm Numbers

number* type
Mandatory /

Optional1

00h none M

01h AES-CBC-128

(See Section 13.29, AES-CBC-128 Encrypted Payload Format, for more information)

M

02h xRC4-128

(See Section 13.30, xRC4 Encrypted Payload Format, for more information)

O

03h xRC4-40

(See Section 13.30, xRC4 Encrypted Payload Format, for more information)

O

30-3Fh OEM O

all other reserved -

* The number range is limited to six (6) bits (00h-3Fh)

 Intelligent Platform Management Interface Specification

 187

13.29 AES-CBC-128 Encrypted Payload Format

The following table summarizes the contents of the IPMI Payload when AES-CBC encryption is used.

Table 13-20, AES-CBC Encrypted Payload Fields
Field Size Sub field Description

Confidentiality

Header

16 Initialization Vector For the AES algorithm in CBC mode, this field must be
a 16-byte random value generated uniquely for each
message (packet).

Payload Data variable Payload Data

Confidentiality

Trailer

variable Confidentiality Pad Added to the Data field to be encrypted (including the
Confidentiality Pad Length field) so that they have a
length that is a multiple of the block size of algorithm
being used. For the AES algorithm, the block size is 16
bytes.

1 Confidentiality Pad Length Defines the number of Confidentiality Pad bytes present
in the message. For the AES algorithm, this number will
range from 0 to 15 bytes. This field is mandatory. If no
Confidentiality Pad bytes are required, the
Confidentiality Pad Length field is set to 00h. If present,
the value of the first byte of Confidentiality Pad shall be

one (01h) and all subsequent bytes shall have a
monotonically increasing value (e.g., 02h, 03h, 04h,
etc). The receiver, as an additional check for proper
decryption, shall check the value of each byte of
Confidentiality Pad. Some messages may not require

padding if the messages already provide the necessary
alignment.

13.29.1 Generating the Initialization Vector

The initialization vector (IV) should be unpredictable. In particular, for any given plaintext, it must not be

possible to predict what the next IV will be from the last IV. For AES-CBC-128, the IV is recommended to be a

16-byte random number generated by a high quality random number generation process. See Section 13.34,

Random Number Generation.

13.29.2 Encryption with AES

AES-128 uses a 128-bit Cipher Key. The Cipher Key is the first 128-bits of key “K2”, K2 is generated from the

Session Integrity Key (SIK) that was created during session activation. See Section 13.22, RAKP Message 3 and

Section 13.32, Generating Additional Keying Material.

Once the Cipher Key has been generated it is used to encrypt the payload data. The payload data is padded to

make it an integral numbers of blocks in length (a block is 16 bytes for AES). The payload is then encrypted

one block at a time from the lowest data offset to the highest using Cipher_Key as specified in [AES].

13.29.3 CBC (Cipher Block Chaining)

When CBC is used, before a block of payload data is encrypted it is first exclusive-ORed with the previous

ciphertext block (or in the case of the first block, with the initialization vector). For AES, this means that the

each 16-byte block of plaintext payload data is exclusive-ORed with the previous 16-bytes of encrypted data

before being encrypted. See [MODES] for information on CBC.

For AEC-CBC-128 encrypted payloads under IPMI v2.0 RMCP+, CBC does not span between packets, it only

applies to blocks within a packet. Instead, each individual packet is encrypted using a different initialization

vector. Thus, packets can be decrypted even if an intermediate block is lost.

Intelligent Platform Management Interface Specification

188

13.30 xRC4 Encrypted Payload Format

The following applies to both xRC4-128 and xRC4-40 encryption. The difference between the two has to do with

the size of the key value used to initialize the algorithm. xRC4-128 uses a 128-bit key, and xRC4-40 uses a 40-bit

key. The generation of the initialization key is described in the last paragraphs of this section.

Table 13-21, xRC4-Encrypted Payload Fields
Field Size Sub field Description

Confidentiality

Header (not
encrypted)

4 Data offset This value advances ‘N’ counts for every N-bytes of new
payload data that is encrypted. The value for the first packet of
payload data is 0000_0000h. If the first packet contains 12
bytes of payload data, the data offset for the second packet
will be 12 (0Ch). If the second packet contained 8 bytes of
payload data, the offset for the third packet will be 20 (14h),
and so on. The xRC4 algorithm operates in a manner similar
to a large pseudo-random number generator. Therefore,
decryption can handle missed packets by advancing the state
machine by the number of steps to the offset for the data and
decrypt from that point.

16 Initialization Vector The Initialization Vector is a 128-bit random number that is
used in conjunction key information for the session to initialize
the state machine for xRC4. The Initialization Vector is only
passed when the xRC4 state machine is initialized or is
reinitialized (data offset = 0000_0000h). This field is absent
when the data offset is non-zero.

Payload Data variable Payload Data Payload data. Encrypted per xRC4 algorithm.

Confidentiality

Trailer

0 none xRC4 does not add use a confidentiality trailer.

13.30.1 Generating the xRC4 Initialization Vector

The initialization vector (IV) should be unpredictable. In particular, for any given plaintext, it must not be

possible to predict what the next IV will be from the last IV. For xRC4, the IV is recommended to be a 16-byte

random number generated by a high quality random number generation process. See Section 13.34, Random

Number Generation.

13.30.2 Initializing the xRC4 State Machines

There are two xRC4 State Machines that are maintained by the BMC for each xRC4 encrypted payload stream.

One is used for BMC-to-Remote Console encryption, and the other for Remote Console-to-BMC decryption.

These shall be referred to as the BMC Encryption and BMC Decryption state machines, respectively.

The BMC is responsible for creating the Initialization Vector used for initializing the BMC Encryption state

machine. The remote console is responsible for generating the Initialization Vector for the BMC Decryption

state machine. The BMC initializes the BMC Encryption state machine for the first encrypted packet it

generates for the payload, and re-initializes if the remote console requests it via the Suspend/Resume Payload

Encryption command.

The BMC initializes the BMC Decryption State machine whenever it receives an encrypted packet that has a

value of 0000_0000h for the data offset. These packets will contain and Initialization Vector that was generated

by the remote console.

The state machines for both the BMC and remote console are initialized using the same algorithm. This

algorithm creates a key using a combination of the Initialization Vector and the first 128-bits of key “K2” to

initialize the state table for xRC4. (K2 is generated from the Session Integrity Key (SIK) that was created

 Intelligent Platform Management Interface Specification

 189

during session activation. See Section 13.22, RAKP Message 3, and Section 13.32, Generating Additional

Keying Material) This key is then fed into the xRC4 algorithm to initialize a 256-byte state table.

The xRC4 key (KRC) is generated using the combination of K2 and the Initialization Vector as:

KRC = MD5(K2, IV)

Where:

MD5 = MD5 algorithm applied to the concatenation of K2 and IV.

K2 = 128-bit key generated from Session Integrity Key as described in Section 13.22, RAKP

Message 3, and Section 13.32, Generating Additional Keying Material.

IV = Initialization Vector. A 128-bit random number

For xRC4 using a 128-bit key, all bits of KRC are used for initialization. For xRC4 using a 40-bit key, only the

most significant forty bits of KRC are used.

13.31 RMCP+ Authenticated Key-Exchange Protocol (RAKP)

RMCP+ can support a number of different authentication and key exchange protocols during its Creation (session

activation) phase. For this specification, the mandatory-to-implement authentication and key exchange protocol is

the RMCP+ Authenticated Key-Exchange Protocol (RAKP). RAKP (defined below) was developed based on the

Authenticated Key Exchange Protocol (AKEP) defined by Bellare and Rogaway in [BR1].

RAKP uses pre-shared symmetric keys to mutually authenticate a remote console to a given managed system and

to generate pair-wise unique symmetric keying material that can be used with a number of integrity and

confidentiality algorithms to provide protection for RMCP messages. The use of RAKP with the different

authentication and integrity algorithms available for IPMI v2.0/RMCP+ is described in 13.28, Authentication,

Integrity, and Confidentiality Algorithm Numbers. For example, the RAKP-HMAC-SHA1 authentication

algorithm uses the HMAC-SHA1 integrity algorithm defined in [RFC2104] in the RAKP authentication process,

and the HMAC-SHA1-96 integrity algorithm defined in [RFC2404] for data integrity.

RAKP also supports the concept of remote console user “roles” and optionally “usernames” (e.g. operator “x” or

administrator “y”), which are established by RAKP when a session is created.

Examples of behavior that can be controlled include the roles that the managed system can use to establish

sessions (e.g. operator-only sessions) and the roles and names (optional) allowed to execute each RMCP message

the managed system might receive during a given session.

Before a given managed system’s RMCP implementation can become operational, it must be configured with

various RMCP-related parameters. This includes installing user passwords (keys) and usernames, setting up

access rights for the individual users, and configuring which Cipher Suites are used for authenticated and/or

encrypted transfers with the managed system.

The managed system can be configured with keys for each username, or ‘null’ usernames can be used, in which

case the key is associated solely with a given privilege level (role). The different user keys are specified using the

notation K[UID], where UID represents the User ID number that is used in the user-specific configuration

commands in IPMI.

The user keys are ‘shared secrets’ between the BMC and the remote console(s). RAKP/RMCP+ does not include

a secure, confidential mechanism for installing and distributing user keys between BMCs and remote consoles.

The installation and distribution of user keys can typically be accomplished with a software utility that uses OS-

provided mechanisms for the secure transfer of keys. If authentication and encryption are available, an ‘Admin’

Intelligent Platform Management Interface Specification

190

level user can use IPMI commands such as Set User Password for remotely updating and configuring user key

and privilege information over an authenticated and confidential session to the BMC.

An additional key, KG, is used for key generation operations. KG functions essentially as a key for the overall

BMC, and is thus also referred to as the “BMC Key”. A user needs to know both KG and a user password (key

K[UID]) to establish a session, unless the channel is configured with a ‘null’ KG, in which case the user key

(K[UID]) is used in place of KG in the algorithms. The scope of these keys (whether they are shared by multiple

managed systems and the remote console or are pair-wise unique for each managed system and the remote

console) is a local policy issue that is determined by the equipment owner at the time of installation. Setting keys

is described further in Section 13.33, Setting User Passwords and Keys.

Once this and other necessary RMCP-related data is installed in the managed system and the managed system is

initialized, the remote console can initiate sessions with the managed system. Following the exchange of RMCP

Presence Ping/Pong and RMCP+ Open Session Request/Response messages (exchanging Session IDs and

selecting RAKP for use), the remote console starts the RAKP protocol. First, the remote console selects a random

number, RM, a requested role, RoleM, a user name length, ULengthM, a user name (optional - denoted by < >

below), UNameM, and the managed system’s Session ID, SIDC, and sends them to the managed system as

Message 1.

Message 1: Remote Console -► Managed System

SIDC, RM, RoleM, ULengthM, < UNameM >

After receiving Message 1, the managed system verifies that the value SIDC is active and that a session can be

created using RoleM, ULengthM, and (optional), UNameM for the given selections for security algorithms.

If the request is valid, the managed system then selects a random number, RC, and sends to the remote console as

Message 2 the values SIDM, RC, and GUIDC as well as the HMAC per [RFC2104] of the values (SIDM, SIDC,

RM, RC, GUIDC, RoleM, ULengthM, < UNameM >) generated using key K[UID] associated with the given

username, UNameM, and role, RoleM.

Message 2: Managed System -► Remote Console

SIDM, RC, GUIDC,

HMACK[UID] (SIDM, SIDC, RM, RC, GUIDC, RoleM, ULengthM, < UNameM >)

Where:

Parameter bytes Name

SIDM 4 Remote_Console_Session_ID

SIDC 4 Managed_System_Session_ID

RM 16 Remote Console Random_Number

RC 16 Managed System Random Number

GUIDC 16 Managed_System_GUID

RoleM 1 Requested Privilege Level (Role) (this is the entire byte
holding the Requested Privilege Level field)

ULengthM 1 User Name Length byte (number of bytes of UNameM = 0

for ‘null’ username)

UNameM var User Name bytes (absent for ‘null’ username)

Where HMACK[UID] (SIDM, SIDC, RM, RC, GUIDC, RoleM, ULengthM, < UNameM >) represents the value for

the Key Exchange Authentication Code field in RAKP Message 2. (The HMACK[UID] notation indicates use of

the HMAC algorithm per [RFC2104] with the hashing function (e.g. SHA-1, MD5) that is specified for the

selected authentication algorithm (See 13.28, Authentication, Integrity, and Confidentiality Algorithm Numbers)

over the concatenation of the indicated fields where K[UID] is the user-specific key that is associated with the

 Intelligent Platform Management Interface Specification

 191

given usernname and role. Note that some authentication algorithms may substitute a different algorithm than

HMAC for generating the Key Exchange Authentication Code.)

After receiving RAKP Message 2, the remote console verifies that the value SIDM is active and that GUIDC

matches the managed system that the remote console is expecting to communicate with. The remote console then

validates the Key Exchange Authentication Code from the message. If the code is valid, the remote console

creates the Session Integrity Key (SIK) by generating an HMAC per [RFC2104] of the concatenation of RM, RC,

RoleM, ULengthM, and (optional) UNameM using 160-bit key KG (note - no truncation).

The hashing algorithm used for this HMAC, and the ones following, is specified by the particular authentication

algorithm being used. (Note that K[UID] is used in place of Kg if ‘one-key’ logins are being used. See 13.28.4,

Integrity Algorithms)

SIK = HMACKG (RM | RC | RoleM | ULengthM | < UNameM >)

Then the remote console sends to the managed system as Message 3 the value SIDC and (for the RAKP-HMAC-

SHA1 algorithm) the HMAC per [RFC2104] of the values (RC, SIDM, RoleM, ULengthM, < UNameM >)

generated using key K[UID] selected by the username, UNameM, and role RoleM.

Message 3: Remote Console -► Managed System

SIDC, HMACK[UID] (RC, SIDM, RoleM, ULengthM, < UNameM >)

Where HMACK[UID](RC, SIDM, RoleM, ULengthM, < UNameM>) represents the value for the Key Exchange

Authentication Code for RAKP Message 3. After receiving Message 3, the managed system verifies that the value

SIDC is active and then validates the message authentication code. If the HMAC is valid, the managed system

creates the SIK by generating an HMAC per [RFC2104] of the concatenation of RM, RC, RoleM, ULengthM, and

(optional) UNameM using 160-bit key KG (note - no truncation, and that K[UID] is used in place of Kg if ‘one-

key’ logins are being used. See 13.28.4, Integrity Algorithms).

SIK = HMACKG (RM | RC | RoleM | ULengthM | < UNameM >)

The managed system then sends to the management console as Message 4 the values SIDM, and (for the RAKP-

HMAC-SHA1 algorithm) the HMAC per [RFC2404] of the values (RM, SIDC, GUIDC) generated using key

SIK.

Message 4: Managed System -► Mgmt Console

SIDM, HMACSIK (RM, SIDC, GUIDC)

Where HMACK[UID](RC, SIDM, RoleM, ULengthM, < UNameM>) represents the value in the Integrity Check

Value field for RAKP Message 4. After receiving Message 4, the management console verifies that the value

SIDM is active and then validates the Integrity Check Value. If the value is valid, the management console has

verification that mutual authentication with the managed system was successful and that the same pair-wise

unique SIK was successfully generated on both ends of the connection. The management console then transitions

into the Message Transfer session state (the session is now active and, if authentication or

authentication/encryption have been enabled, the transfer of authenticated and authenticated/encrypted payloads

can commence).

The same RAKP steps are followed for session activation even if the Cipher Suite indicates that there are no

integrity or encryption algorithms required for the session.

Intelligent Platform Management Interface Specification

192

13.32 Generating Additional Keying Material

Because this specification supports both integrity and confidentiality services for a session, RSP needs more

keying material than can be provided by the session integrity key, SIK, alone. As a result, all keying material for

the RSP integrity and confidentiality algorithms will be generated by processing a pre-defined set of constants

using HMAC per [RFC2104], keyed by SIK.

K1 = HMACSIK (const 1)

K2 = HMACSIK (const 2)

K3 = HMACSIK (const 3)

These constants are constructed using a hexadecimal octet value repeated up to the HMAC block size in length

starting with the constant 01h. This mechanism can be used to derive up to 255 HMAC-block-length pieces of

keying material from a single SIK. For the mandatory-to-implement integrity and confidentiality algorithms

defined in this specification, processing the first two (2) constants will generate the require amount of keying

material.

Const 1 = 0x01010101010101010101 01010101010101010101

Const 2 = 0x02020202020202020202 02020202020202020202

Const 3 = 0x03030303030303030303 03030303030303030303

.

.

Const 255 = 0xFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFF

13.33 Setting User Passwords and Keys

User passwords (keys) are set using the Set User Password command. KG is set using the Set Channel Security

Keys command. The Set Channel Security Keys command allows a different KG to be used on each channel. To

enable the option of a ‘single key’ login on a given channel, the convention is to configure KG to a reserved value

of all 0’s. The BMC will then use the value KUID in place of KG. Software that allows a user to login to a BMC by

entering a username, password, and BMC Key should send values of all 0’s to the BMC when the user does not

provide explicit values for those fields. The Get Channel Authentication Capabilities command can help a remote

console application tailor any data entry queries for username and password information to what is in use on a

given BMC.

13.34 Random Number Generation

Algorithms for authentication (data integrity) and confidentiality (for Initialization Vectors) depend on "quality"

random numbers for their security. Quality in this context means that the numbers must be random in a

cryptographic sense (i.e., they must be genuinely unpredictable). To ensure that a baseline-level of quality

random numbers are provided for remote consoles and managed systems, this specification recommends the

following algorithm be used for random number generation for use in authentication and data integrity algorithms

if no other higher-quality source of random numbers is available (e.g., a hardware random number generator).

13.34.1 Random Number Key

Each BMC is configured with a 160-bit key, KR, which is unique for each managed system. The Set Channel

Security Keys command can be used for setting this key. Note that to avoid the possibility of run-time software

changing this key, the BMC includes an option for the key to be locked so that run-time software cannot change

the key.

 Intelligent Platform Management Interface Specification

 193

13.34.2 Random Number Generator Counters

The managed system maintains two (2) 32 bit counters, CP and CQ. CP is used to count the number of device

power cycles and its value is saved in non-volatile storage. CQ is used to count the number of random number

generation requests per power cycle and is volatile. Whenever a new KR is installed in non-volatile storage, the

counters are reset to zero (0). Once initialized, CP is incremented by one (1) after each power cycle and its new

value is again saved in non-volatile storage. CQ is reset to zero (0) on each power cycle (i.e., its value is not

saved across power cycles).

13.34.3 Random Number Generator Operation

The managed system creates a random number by generating an HMAC per [RFC2104] of the concatenation of

CP and CQ using key KR using the SHA1 hash function. The output of this generator is a 160-bit pseudo-

random number. Uses that require fewer bits can draw the required number of bits from the 160-bit value. Since

the value is random, it shouldn’t matter which bits are used. Most implementations will simply take either the

most-significant ‘N’ bits or least-significant, whichever is most convenient.

Random Number = HMACKR (CP | CQ)

CQ is incremented by one (1) after each random number generation request. After each power cycle, the value

of CQ is reset to zero (0) (i.e., its value is not saved across power cycles). If during a given power cycle, CQ

rolls-over to zero, the managed system must increment CP by one (1) and save its new value back into non-

volatile storage.

Intelligent Platform Management Interface Specification

194

14. IPMI Serial/Modem Interface
This section describes the mechanisms specific to transferring IPMI messages between the BMC and a remote

management system (remote console) over modem or direct serial connection. It also describes the mechanism that

support the Serial Port Sharing capability.

14.1 Serial/Modem Capabilities

The following is a review of the capabilities that can be provided via an IPMI serial/modem connection:

IPMI messaging Transmission of IPMI messages between a remote console and the BMC in one of three

configurable modes: Basic Mode, PPP Mode, and Terminal Mode.

Dial Paging Ability to generate a numeric page by sending a dial string to a modem.

TAP Paging Ability to automatically generate a configurable alphanumeric page by automatically

connecting to a TAP v1.8 -based paging service.

Dial-out PET
Alerting

Ability to automatically dial up a remote PPP-to-LAN gateway, connect, and place a Platform

Event Trap onto the remote LAN. Also known as PPP Alerting.

Callback Ability for a remote console to trigger the BMC to call the remote console back and establish a

system management session. There are two types of Call-back: “IPMI” callback, which is

initiated via an IPMI command to the BMC, and callback using Microsoft’s CBCP (callback

control protocol). CBCP is an option that is only available in PPP Mode.

PPP UDP Proxy Option to allow the BMC to function as a low-performance communication bridge to allow

software to sending and receiving UDP data via a pre-established BMC PPP connection. If the

call-back option is supported, local management software or BIOS can trigger the BMC to dial

up the remote console.

Serial Port
Sharing

Ability to share a serial connector between the BMC’s serial controller and a system serial

controller by using circuitry to allow it to be switched between the two.

14.2 Connection Modes

The specification for the serial/modem interface supports IPMI Messaging in three possible connection modes.

Support for Basic Mode is mandatory if serial/modem support is provided. A given implementation can

implement any number or combination of the other connection mode options.

Basic Mode This mode uses a simple clear text password to activate a session. IPMI messages are

encoded and delimited using a simple framing scheme based on ‘escaped’ characters.

Basic Mode is the most efficient standard operating mode for enabling a remote console

application to communicate with the BMC using IPMI messages.

PPP/UDP Mode This mode uses the same session and authentication operation as IPMI over LAN. It uses

PPP as the protocol for establishing a point-to-point communications link over which

IPMI messages are sent encapsulated in UDP datagrams. This mode incurs significant

overhead in message size and handshake complexity beyond that required for Basic

Mode IPMI messaging, but has the advantage of using a widely supported standard.

Terminal Mode This mode is intended primarily for direct serial connection operation. The mode is

designed so that a simple terminal or terminal emulator can be used to generate requests

and get responses from the BMC. The IPMI messages are entered using printable ASCII

characters. While a user can enable a ‘line edit mode’ and directly enter the codes for an

IPMI message, the main purpose of this mode is to facilitate the development of scripts

that work with available terminal emulation programs.

 Intelligent Platform Management Interface Specification

 195

Terminal Mode also supports a small number of ASCII Text Commands that can be used

for operations such as getting a high-level hardware health status for the system, and

doing system reset and power on/off operations.

14.2.1 PPP/UDP Proxy Operation

The BMC can support a mode that allows local system software (e.g. BIOS) to send and receive UDP

datagrams via the BMC connection to the remote console. This operation is supported using two special

message buffers associated with the channel: the PPP UDP Proxy Transmit Buffer and the PPP UDP Proxy

Receive Buffer.

When PPP/UDP Proxy Operation is supported (and enabled) the BMC will check the destination port address

used in incoming UDP datagrams. After removing any data escaping and checking the FCS, the BMC will

check the destination port address in the UDP packet. If the packet is not addressed to either the primary or

secondary RMCP Port addresses, the BMC will place the contents the packet into the PPP UDP Proxy Receive

Buffer (assuming the packet fits, and the buffer is already empty). Otherwise, the packet will be silently

discarded.

When sending messages to the remote console, local software loads the PPP UDP Proxy Transmit Buffer with

the contents for the UDP message and then directs the BMC to deliver that message as a UDP datagram from

the given serial/modem channel. The BMC fills in remaining data for the UDP and IP Header according to data

passed in the Send PPP UDP Proxy Packet command and from the LAN Configuration parameters and then

transmits the packet.

PPP/UDP Proxy Operation is only specified for execution via the BMC system interface. This capability is

OPTIONAL for serial/modem channels that support PPP mode.

14.2.2 Asynchronous Communication Parameters

The asynchronous communication parameters consist of elements such as bit rate, type of handshake, parity,

and other settings related to the configuration of the BMC’s serial controller. These setting are configured via

the serial/modem configuration parameters.

The number of different sets of parameters for a given channel depends on which messaging and alerting

features are implemented:

 There is one set for use by IPMI Messaging (Basic Mode, PPP Mode, or Terminal Mode) for the entire

channel.

 There is one set of asynchronous communication parameters for each Alert or Callback Destination

supported by a channel, used according to the Alert Type (Dial Page, TAP Page, PPP Alert, Callback).

14.2.3 Serial Port Sharing

Serial Port Sharing is an option where the BMCs serial controller and a baseboard serial controller can share the

same serial connector. Figure 14-1, Serial Port Sharing Logical Diagram, presents a logical example of how

Intelligent Platform Management Interface Specification

196

this could be accomplished using a multiplexer to switch serial connector signals between the BMC and the

baseboard serial controller.

Figure 14-1 is referred to as a logical diagram because this specification does not require a particular physical

implementation as long as the commands function as described in this specification.

Figure 14-1, Serial Port Sharing Logical Diagram

R
x
D

T
x
D

R
I

D
C

D

Serial

Connector

Mux

MODEM

Serial Port Connector

(Typically 'COM2')

Serial Port Transceivers

BMC

U
A

R
T

Baseboard Serial

Controller

Non-volatile Storage

System Event Log

(SEL)

Sensor Data Record

(SDR) Repository

FRU Inventory info
System Interface

RxD

TxD

RI

DCD

System Bus (e.g. X-bus, LPC)

Pow er Status

Reset Control

Chassis Intrusion

Pow er Control

Platform Status and Control

System Bus

(e.g. PCI)

 Intelligent Platform Management Interface Specification

 197

14.2.4 Serial Port Switching

The following can cause a switch of the serial port:

Table 14-1, Serial Port Switching Triggers
From - To Cause disable[1] Notes

BMC to Baseboard IPMI Set Serial/Modem Mux command. yes

 Microsoft VT100 ‘Exit Exit UPS, ASIC or
Service Processor’ Escape sequence. (see
ref: [MSVT]). Per [MSVT] the BMC should
immediately acknowledge the switch to
baseboard by returning <ESC>*

yes <ESC>Q

Baseboard to BMC IPMI Set Serial/Modem Mux command. no

 Microsoft VT100 ‘Invoke ASIC/Service
Processor’ Escape sequence (see ref:
[MSVT])

yes <ESC>(

Pattern is also used for
Connection Mode Auto-detect
capability. See 14.2.9,
Connection Mode Auto-detect.

 Detection of basic mode Get Channel
Authentication Capabilities request

yes Requires Basic Mode to be
enabled. Pattern is also used for
Connection Mode Auto-detect
capability. See 14.2.9,
Connection Mode Auto-detect.

 Detection of leading bytes in a PPP IPv4-
UDP Packet addressed to BMC’s IP
address and RMCP primary or secondary
port, ending at the RMCP message class
field.

PPP Protocol = Internet Protocol (e.g.
0021h)

Packet = IPv4 UDP Datagram

IP Address = BMC IP Address

Port = Primary or Secondary
RMCP port, as set in the
serial/modem configuration
parameters

Initial packet data = RMCP v1.0 header
with message class field =
IPMI

yes Requires PPP mode to be
enabled. Pattern is also used for
Connection Mode Auto-detect
capability. See 14.2.9,
Connection Mode Auto-detect.

 RI Signal yes In Modem Connect mode only.
See 14.2.11, Modem Activation
for more information.

 DCD Signal yes Used to cause a mux switch to
BMC when in Direct Connect
mode.

1. This indicates whether a configuration option to disable switching on this action exists. Note that switching may also be
disabled as part of the operation of some access modes, such as ‘Pre-boot Only’.

14.2.5 Access Modes

BMC channels used for serial/modem access can be configured for several Access Modes using the Set Channel

Access command. The command determines which states of system operation (e.g. pre-boot) the channel can be

used for BMC communication. Refer to section 6.6, Channel Access Modes for more information.

14.2.6 Console Redirection with Serial Port Sharing

A common use for Serial Port Sharing is as a mechanism to allow the serial connection to be shared between the

BMC and with BIOS Console Redirection. Serial Port sharing includes commands to help facilitate this

application. This section presents an overview of those commands and how they might be used. This is just a

starting point. The actual specification of the BMC with BIOS console redirection is outside the scope of this

specification.

Intelligent Platform Management Interface Specification

198

14.2a Detecting Who Answered The Phone

Since console redirection is normally used with a remote console, we’ll start from when the remote console

first connects to the system. Depending on the configuration, either the system or the BMC may be the party

that ‘answers the call’. Whether the BMC connects or not is determined by the access mode settings set via

the Set Channel Access command, plus activation settings in the serial/modem configuration parameters.

There is also a configuration parameter that allows the BMC to wait for a ‘ring interval’ before answering a

call in order to give system software an opportunity to connect first.

Thus, when a remote console connects to a given system, it should first try to determine whether it connected

with the BMC or with console redirection. This avoids the possibility that the remote console will send IPMI

message data down only to have it be mis-interpreted as console-redirection keystrokes.

For Basic Mode and Terminal Mode, the BMC can be configured to periodically issue a Serial/Modem

Connection Active message whenever it has the port and right after the port is switched to the BMC. The

remote console can wait for this message as a confirmation that the BMC has the port before attempting to

send any messages to the BMC. If that message is not received, it can assume that the system answered the

phone instead of the BMC.

If PPP is used, PPP communication software on the remote console will typically initiate the PPP negotiation

without waiting for the managed system. Because of this, there is less need to send a Serial/Modem

Connection Active message first, since by the time the message is generated the remote console has already

sent in characters. Similarly, because there are separate port addresses that would be used for RMCP traffic to

the BMC, there’s no strong need for the Serial/Modem Connection Active message to be periodically sent.

Thus, the BMC does not send Serial/Modem Connection Active messages in PPP Mode except when the

serial connection is being switched to or from the BMC.

When the serial connection is switched over to the BMC, the Serial/Modem Connection Active message will

be delivered to the Primary RMCP port address and IP address of the remote peer that was negotiated during

IPCP. If the BMC did not negotiate IPCP, the Serial/Modem Connection Active message will not be sent.

When the serial connection is being switched over to the system, the Serial/Modem Connection Active

message will be delivered to the Primary RMCP port address and IP address of the remote peer that was

negotiated with IPCP, and to each active session on that PPP channel. If the BMC did not negotiate IPCP,

then the Serial/Modem Connection Active message will only be sent to the active sessions.

If remote console software wishes to detect the presence of a BMC, it can do so by sending a Get Channel

Authentication Capabilities message after IPCP has been negotiated. [Note that if console redirection uses

‘ASCII’ then the remote console may have to assume that console redirection is occurring if it cannot

establish a PPP Link. (Generally, ASCII text console redirection and PPP communication with the BMC

don’t share well together)]

If the system includes PPP Link authentication, the remote console could distinguish between whether the

system or the BMC established the link based on the peer name that is used in the link negotiation.

14.2b Connecting to the BMC

The remote console can cause the connection to be switched back to the BMC by the mechanisms listed in

Table 14-1, Serial Port Switching Triggers. Whether switching is allowed is based on what the Access Mode

setting is for the channel. For example, if the channel is set to ‘pre-boot only’ - then the remote console will

not be able to remotely switch the mux over to the BMC if the system is presently in run-time operation.

14.2c Connecting to the Console Redirection

The Set Serial/Modem Mux command provides the mechanism for a remote console to direct the BMC to

switch the serial connection over to the system serial controller. The <ESC>Q sequence can also be enabled

for this purpose.

 Intelligent Platform Management Interface Specification

 199

14.2d Directing the Connection After Power Up / Reset

The remote console can send commands to the BMC to initiate a system power up or reset operation. After

that operation, the remote console may want to see console redirection, or it may want to stay connected to

the BMC. The Set Serial/Modem Mux command can be used to direct whether the remote console stays

connected to the BMC or not. The Set Serial/Modem Mux command includes an option to allow a mux switch

to be requested or to be forced. A mux switch that is requested may be denied (blocked). A BIOS using

console redirection would typically request that the mux be switch over to the system during POST, so that

the remote console could block that request if necessary. Thus, if the remote console wants to keep the

connection, it simply issues a Set Serial/Modem Mux command to block requests to switch the mux to the

system before sending the power up or reset command.

14.2e Interaction with Microsoft ‘Headless’ Operation

Microsoft has specified an interface [MSVT] for text-based console redirection to support pre-boot

operations with the operating system. This specification includes escape sequences for activating and

deactivating the connection to a ‘service processor’, as well as an escape sequence for hard resetting the

system. See [MSVT] for more information.

IPMI v1.5 includes optional serial/modem configuration parameters for supporting [MSVT] in a system that

implements serial port sharing along with [MSVT]. These parameters provide a common way for the

[MSVT] activate/deactivate and reset sequences to be enabled or disabled in the system. Supporting these

options in IPMI does not imply that a given implementation is conformant with the [MSVT] specification.

Refer to [MSVT] for the full system requirements.

Note that the present [MSVT] specification calls out for a timeout on the escape sequence filtering. If an

<ESC> is received, subsequent characters in the sequence must be received within 20 seconds.

14.2f Pre-boot Only Mode

The definition of Pre-boot Only access mode is that the BMC serial connection becomes disabled when the

system starts to boot in order to guarantee that system software has full use of the serial connection without

concern that incoming calls would be able to connect to the BMC. In order to provide emergency

management coverage, someone using pre-boot only mode would typically also configure the watchdog timer

and PEF so that a system power down or reset would occur on critical system failures, thus allowing a remote

console to connect to the BMC.

The remote console has the ability to use the Set Serial/Modem Mux command to block mux switch requests,

but allow mux switch ‘forces’. This is typically used with the Pre-boot Only access mode. At the start of

POST BIOS requests the mux. If a remote console is connected, it can block that request in order to continue

to communicate with the BMC during POST, if desired, or the remote console can let BIOS take the mux in

order to see BIOS console redirection.

At the conclusion of POST and start of boot, BIOS will typically force the mux away from the BMC and to

the system. Once the mux has been forced away from the BMC in Pre-boot Only mode, the BMC is not

allowed to take the port back until the next time the system is powered down or is reset.

Note that Alerting is not affected by Pre-boot Only mode. Alerting, if enabled, will ‘take over the port’ and

cause an alert to be sent even if the system was using the port at the time. BIOS can use the Get Channel

Access command to determine that the BMC is configured to operate in Pre-boot Only mode for the serial

connection.

14.2g Always Available Mode

In Always Available Mode the serial connection is considered to be dedicated to the BMC. In order to avoid

confusion with run-time software, BIOS will typically hide or disable the serial port when the OS load

Intelligent Platform Management Interface Specification

200

process starts. BIOS can know when to do this by reading the access mode setting from the BMC using the

Get Channel Access command.

14.2h Shared Mode

In Shared Mode the BMC is allowed to ‘answer the phone’ but run-time software is also able to use the serial

connection when it’s not being used by the BMC. BIOS can use the Get Channel Access command to see

when the BMC is configured for Shared mode. In this case, it can leave the serial port enabled for run-time

software access. The serial/modem configuration parameters include a ‘ring interval’ parameter that can be

used to enable the BMC to only answer the phone if system software doesn’t. This is accomplished by simply

setting a ring interval for the BMC that is longer than the time it takes system software to answer.

14.2.7 Serial Port Sharing Access Characteristics

The following table lists the mux control and modem-answering characteristics according to the type of Access

Mode and state of Serial Port Sharing. Corresponding mux switching steps that would typically be used in BIOS

for supporting console redirection also listed.

In general, if a remote console application wishes to keep communication with the BMC after a power-up or

reset, it should issue a Set Serial Modem/Mux command to block mux requests before issuing a Chassis Control

command to cause the system to power-up or reset. However, it should not block mux ‘force’ operations

because this could interfere with run-time access of the serial connection.

Table 14-2, Serial Port Sharing Access Characteristics
Serial Port

Sharing

Access

Mode Characteristics

disabled disabled Same behavior for both Modem and Direct Connect Mode

 If system power is On, Mux always set to system. When power is off Mux setting is
unspecified.

 Set Serial/Modem Mux command is rejected. (See response data for the Set
Serial/Modem Mux command).

 Escape sequence / pattern triggered switching is not available.

 Alerting Unavailable.

 BMC Power-on Default = mux set to system when system power is On. When power is
off, mux setting is unspecified.

BIOS Action at POST start: none required

BIOS Action at POST end: none required

disabled any
except

‘disabled’

Same behavior for both Modem and Direct Connect Mode

 Mux always set to BMC.

 Set Serial/Modem Mux command is rejected. (See response data for the Set
Serial/Modem Mux command).

 Escape sequence / pattern triggered switching is not available.

 Alerting available.

 BMC Power-on Default = mux set to BMC.
BIOS Action at POST start: none required.

BIOS Action at POST end: Recommend hiding/disabling baseboard serial controller.

enabled disabled Same behavior for both Modem and Direct Connect Mode

 Mux always set to system (except during alerting).

 Escape sequence / pattern triggered switching is disabled.

 Set Serial/Modem Mux command available.

 Alerting available.

 BMC Power-on Default = mux set to system.

BIOS Action at POST start: none required.

BIOS Action at POST end: none required.

 Intelligent Platform Management Interface Specification

 201

enabled pre-boot BMC pays attention to Modem Ring Time parameter until mux is forced to system using
Set Serial/Modem Mux command. Afterwards, BMC will not automatically take over mux

for IPMI messaging (will not answer the phone) until next power down or system reset
(unless commanded).

 Escape sequence / pattern triggered switching is available.

 Set Serial/Modem Mux command available.

 Alerting available. BMC will terminate call and automatically take the mux in order to
send an alert, unless an IPMI Messaging Session is already in progress on the channel
- in which case alert will be “deferred” until channel becomes available for dial-out.

 BMC Power-on Default = If system power is off, or if Modem Ring Time >00h and
<3Fh the power-on default mux setting is unspecified until RI or DCD is detected
(see below), otherwise set to BMC.

For Modem Mode, the BMC automatically takes over the connection upon power down,
after system resets, and on detecting Ring based on Modem Ring Time parameter,
except if a session is active - in which case the BMC will keep the connection (until the
mux is forced to system using the Set Serial/Modem Mux command).

If Modem Ring Time parameter is >00h and <3Fh, If system power is on and the
Ring Time countdown is running, the mux will be set to system to allow the system
to answer the modem call. BMC will take over mux if Ring Time expires while Ring
is being detected via the RI signal. If system power is on, the mux will be returned to
system when loss of connection (loss of DCD) is detected, or if the BMC takes the
mux but is unable to establish a connection.

If Ring Time = 00h, BMC will take mux during power down and after system resets
as necessary to be able to answer the call via the modem. BMC will also take the
mux and connect with the modem when a Ring is detected via the RI signal. Mux
will be claimed by the BMC whenever loss of DCD connection is detected. To the
BMC, this is essentially the same ‘phone answer’ and power down/reset behavior as
in ‘Always Available’ mode.

For Direct Connect Mode the BMC automatically takes the connection upon power down,
after system resets, and whenever loss of DCD is detected (if DCD-based switching is
enabled) except if a session is active - in which case the BMC will keep the connection
(until the mux is forced to system using the Set Serial/Modem Mux command).

BIOS Action at POST start: Request mux to system if BIOS console redirection enabled.

BIOS Action at POST end: Force to system. Keep baseboard serial controller enabled.

enabled always
available

 Escape sequence / pattern triggered switching is available.

 Set Serial/Modem Mux command available.

 Alerting available. BMC will terminate call and automatically take the mux in order to
send an alert, unless an IPMI Messaging Session is already in progress on the channel
in which case alert will be “deferred” until channel becomes available for dial-out.

 BMC Power-on Default = Mux set to BMC.

For Modem Mode, the BMC automatically takes over mux on power down, system resets,
when loss of DCD is detected, and upon detecting initial activity of RI. The BMC also
initializes the modem whenever DCD loss is detected. The BMC ignores the Modem
Ring Time parameter.

For Direct Connect Mode, the BMC automatically takes the mux upon power down, after
system resets, and whenever DCD is absent (if DCD-based switching is enabled).

BIOS Action at POST start: Request mux to system if BIOS console redirection enabled.

BIOS Action at POST end: Force mux to BMC. Recommend BIOS hides/disables
baseboard serial controller.

Intelligent Platform Management Interface Specification

202

enabled shared  Escape sequence / pattern triggered switching is available.

 Set Serial/Modem Mux command available.

 Alerting available. BMC will terminate call and take mux in order to send an alert,
unless an IPMI Messaging Session is already in progress on the channel - in
which case alert will be “deferred” until channel becomes available for dial-out.

 BMC Power-on Default = If system power is off, or if Modem Ring Time >00h and
<3Fh the power-on default mux setting is unspecified until RI or DCD is detected
(see below), otherwise set to BMC.

For Modem Mode, the BMC controls mux upon power down, after system resets, and on
detecting Ring based on Modem Ring Time parameter, except if a session is active - in
which case the BMC will keep the connection:

If Modem Ring Time parameter is >00h, <3Fh. If system power is on and the Ring
Time countdown is running, the mux will be set to system to allow the system to
answer the modem call. BMC will take over mux if Ring Time expires while Ring is
being detected via the RI signal. If system power is on, the mux will be returned to
system when loss of connection (loss of DCD) is detected, or if the BMC takes the
mux but is unable to establish a connection.

If Ring Time = 00h, BMC will take mux during power down and after system resets
as necessary to be able to answer the call via the modem. BMC will also take the
mux and connect with the modem when a Ring is detected via the RI signal. Mux
will be claimed by the BMC whenever loss of DCD connection is detected. To the
BMC, this is essentially the same ‘phone answer’ and power down/reset behavior as
in ‘Always Available’ mode.

For Direct Connect Mode, the BMC takes the mux upon power down and after system
resets, except if a session is active - in which case the BMC will keep the connection.
Once power is up, the BMC will leave the mux in the state last commanded by software
or an escape sequence and will not automatically take the mux unless DCD loss is
detected (if DCD-based switching is enabled), or an alert needs to be sent.

BIOS Action at POST start: Request mux to system if BIOS console redirection enabled.

BIOS Action at POST end: None. BIOS leaves mux setting alone. Note that the Boot
Options contain flags that remote software can use to request BIOS to place the mux
into a given setting at POST end.

14.2.8 Serial Port Sharing Hardware Implementation Notes

There are a number of characteristics that should be considered when designing hardware that aids in the

implementation of serial/modem remote access and Serial Port Sharing

 The BMC needs the ability to monitor the DCD and RI signals from the serial connector in order to

detect incoming modem calls.

 The physical implementation is required to ensure that the baseboard serial controller does not receive

characters when the serial connector is switched to the BMC. The lines in to the baseboard serial

controller should also be placed in an appropriate ‘idle’ level.

 In order to prevent signal transitions from causing interrupts to the baseboard communication routines, it

is recommended that the remaining serial input signals to the baseboard serial controller also be switched

and placed into an appropriate ‘idle’ level when the BMC is using the connector.

 The physical implementation is required to handle additional serial signal lines, such as RTS and DTR,

in order to ensure that those signals remain in the active state to keep the modem connection active when

switching between the baseboard and the BMC. If the BMC does not have control over those signal

levels, it may be necessary to accomplish this using additional baseboard circuitry.

 The implementation is required to ensure that the serial connection does not see glitches or signal drops

on the RTS, CTS, DSR, DTR, DCD, and RI lines due to switching between the baseboard and BMC

serial controllers.

 Intelligent Platform Management Interface Specification

 203

 It is up to the implementation to determine how it handles any ‘Wake On Ring’ options for the serial

connector.

 The BMC may have other RS-232 lines under its control (DTR, RTS, CTS, and DSR). Hardware

handshake via RTS and CTS is an implementation option. A BMC implementation may also optionally

use DTR as an additional hang-up mechanism.

 The serial/modem feature is more valuable if the BMC can be communicated with when the system is in

a powered-down or sleep state. This may require the port transceivers to be powered via Standby Power.

14.2.9 Connection Mode Auto-detect

Connection Mode Auto-detect refers the capability for the BMC to automatically detect and enter a particular

Connection Mode (Basic mode, PPP mode, or Terminal mode) based on detecting an appropriate data pattern in

the serial traffic from the remote console. Implementing Connection Mode Auto-detect is optional.

The configuration of this capability is handled via the Connection Mode parameter in the serial/modem

configuration parameters. The parameters allow this capability to be disabled, and the BMC set to use just one

connection mode for direct IPMI messaging to the BMC.

The following is the description and specification of the operation of Connection Mode Auto-detect.

 The BMC will auto-detect whenever an IPMI messaging session is not active. When a session is not active,

the BMC constantly snoops for the different data patterns that will tell the BMC what connection mode to

use, but also will cause the serial connection to be switched over to the BMC. The pattern matching routine

must check for all supported mode patterns in parallel. For example, suppose the BMC supports auto-detect

for all three connection modes. Even if it detects what looks like the start of the PPP Mode pattern, the

pattern detection routine must continue to look for Basic Mode and Terminal Mode patterns in parallel until

the PPP mode pattern is confirmed.

 For modem mode, the BMC detects that a connection has been established by detecting DCD or by

receiving a ‘CONNECT’ string from the modem, depending on the implementation. For direct connect

mode, the BMC uses DCD if DCD is enabled, otherwise it assumes that a connection exists any time the

mux is switched to the BMC.

 If Basic Mode is enabled, and the mux is set to the BMC, the BMC will assume that Basic Mode is the

desired connection type. The BMC will send out a Serial/Modem Connection Active “Ping” messages (if

enabled) after the connection is established. A remote console that wishes to use Basic Mode should wait

for the Ping before sending any packets to the BMC. This will avoid the possibility of the packet from

being interpreted as keystroke input if the remote console happens to connect to text-based console

redirection instead of the BMC.

 If the mux is already switched to the BMC, the BMC can detect a PPP Link Negotiation request and use

that to set the connection mode to PPP Mode.

 The process is more complicated if system software performed the negotiation and the BMC is ‘snooping’

to see if it should be activated and enter PPP mode. The BMC needs to snoop for both compressed and

uncompressed versions of the address and protocol fields. Note that PPP already specifies that a receiver

must accept uncompressed headers even if compressed headers were negotiated, so this support should

already be part of the BMC’s PPP routines. The BMC also needs to snoop according to the escaping that

the system software negotiated. This is more problematic. The BMC needs to know what the system

negotiated for its transmit ACCM (Asynchronous Control Character Mask) in order to know what control

characters to ignore in the data stream. The following are options for handling this situation:

a. Pre-configure the BMC to match the escape negotiation that software will use. The serial/modem

configuration parameters contain a ‘Snoop ACCM’ parameter that the BMC can be directed to use.

The Snoop ACCM indicates which control characters the BMC should ignore when snooping in PPP

mode.

Intelligent Platform Management Interface Specification

204

b. Have the BMC snoop the Link Negotiation process. The BMC monitors the transmit ACCM that the

system is using.

The following table lists the patterns that the BMC will look for when auto-detecting the connection mode. The

patterns will also trigger a switch of the serial connector to the BMC if Serial Port Sharing is enabled.

Table 14-3, Auto-Connection Mode Patterns
Connection Mode Pattern

Basic Mode BMC looks for a complete Get Channel Authentication Capabilities
command in basic mode format. The BMC should also respond to
this command. Once a basic session is established the BMC will
stay in basic mode until the session is terminated.

PPP Mode If the mux is already connected to the BMC, the BMC will enter
PPP mode if it detects the start of a PPP LCP packet after the
connection is established. The BMC shall check the PPP packet
bytes up to and including the LCP Packet Code field. An
implementation can elect to ignore the Identifier and Data field
values, but the Length and FCS (Frame check sequence) must be
correct.

If the mux is connected to the system, the BMC will switch and
attempt to use PPP mode if it detects a PPP packet with the
following characteristics:

Protocol = IPCP

Packet = IPv4 UDP Datagram

IP Address = BMC IP Address

Port = Primary or Secondary RMCP port, as set in
the serial/modem configuration parameters

Initial packet data = RMCP v1.0 header with message class
field = IPMI

An implementation can elect to either switch immediately on
detecting this pattern without additional data integrity checks, or
wait until it has verified the checksums and FCS on the packet.

The BMC is not required to respond to the IPMI message that was
encapsulated in the packet.

Terminal Mode Terminal Mode can be enabled to be entered on receiving an
“<ESC>(“ sequence (if enabled). The BMC will respond with
[TMODE OK] and will operate in terminal mode until the connection
is terminated or the data pattern for Basic Mode or PPP Mode
IPMI-RMCP packet is detected.

 Intelligent Platform Management Interface Specification

 205

14.2.10 Modem-specific Options

The serial/modem configuration parameters (set using the Set Serial/Modem Configuration command) support

various modem configuration strings. These strings are set into non-volatile storage managed by the BMC. The

BMC uses the strings to configure the modem for out-of-band access use.

Due to the limited length of these strings, it may not be possible to configure all necessary modem parameters.

Rather than relying solely on these strings, it is recommended that the user pre-configure the modem for out-of-

band operation and save those settings in the modem as the default. The Modem Strings can then be used just to

hold strings that trigger the modem to restore its defaults.

The BMC automatically sends an <Enter> character (carriage return = 0Dh) after sending the Modem

Initialization and Hang Up Line strings. <Enter> is not sent after the Escape Sequence string.

Table 14-4, Modem String Summary

String Name

Default String

Minimum.
String

Length

String Usage

Modem Init String Implementation
dependent. The string

ATE1Q0V1X4&D0S0=0
is a good starting point.

64 bytes,
including

termination
character

Transmitted every time the
serial/modem connection becomes
activated. The BMC automatically
sends an <Enter> character after this
string.

Modem Hang Up
Sequence

(unused if DTR
hang-up is available

and selected)

ATH 8 characters,
plus

termination
character

Sent to modem whenever the BMC
wants to terminate the session (i.e.
password retry count is exceeded, etc).
The BMC automatically sends an
<Enter> character after this string.
NOTE: If the DTR hang-up option is
selected, this field will not be used.

Modem Escape
Sequence

(Unused if DTR
hang-up is
available)

+++ 4 characters,
plus

termination
character

Informs modem that next stream of
bytes should be interpreted as
command bytes and not sent to the
remote software. The escape sequence
must be sent prior to sending any other
command if the modem is currently
connected with another modem. Note:
This may cause the modem to hang up
unless it has been configured
otherwise.

Escape sequence is preceded by a 2
second pause in transmission from the
BMC, and is follow by a 2 second pause
in transmission.

This sequence precedes the Modem
Initialization string, except after a RI or
connection after DCD loss.

14.2.11 Modem Activation
The BMC will monitor RI and claim the serial connection (switch the mux to the BMC) according to the Modem

Ring Time parameter in the serial/modem configuration parameters2 and Section 14.2.7, Serial Port Sharing Access

Characteristics. After getting the connection, if DCD is already asserted, the BMC will monitor the incoming data

2 A ring duration is used instead of a ring count in order to simplify handling the variations in RI that occur between different national

telephone systems and modems.

Intelligent Platform Management Interface Specification

206

stream for the start of an IPMI session. If DCD is not already asserted, the implementation can use one of the

following mechanisms:

1. The BMC will initialize the modem with the initialization string from the serial/modem configuration

parameters. The initialization string must be configured to set the modem to answer the phone. The BMC

then waits for DCD to become active.

2. The BMC initializes the modem by sending the initialization string. The BMC then listens for a “RING”

result code from the modem and sends out an “ATA” to answer the phone.

Of these two methods, method #2 is the preferred implementation since it does require leaving the modem in an

auto-answer state.

14.3 Serial/Modem Connection Active (Ping) Message

If terminal-based console redirection is used, it is important for a remote console application to know whether the

system or the BMC is connected to the serial connector before it sends any messages. Otherwise, if the serial port

was already connected to the system, an incoming IPMI message could be interpreted by the system as redirected

key strokes.

Therefore, there is a configuration option for Basic Mode and Terminal Mode that can direct the BMC to send out

a Serial/Modem Connection Active request message once every two seconds whenever the serial connection is

switched to the BMC, with the first message starting immediately after the connection has been switched.

This message is also referred to as the “Serial/Modem Ping”. The message is used both to get the attention of the

remote software and to allow the remote software to determine whether it is connected to the BMC or not. The

Serial/Modem Connection Active message is primarily required when system console redirection is using a

terminal-based format for input from the remote console, where incoming IPMI message characters could be

misinterpreted as redirected input. For example, if console redirection was operating using a ‘VT100’ terminal

emulation, the characters in an incoming IPMI message might be interpreted as a command or terminal control

escape sequence.

If PPP is used, PPP communication software on the remote console will typically initiate the PPP negotiation

without waiting for the managed system. Because of this, there is less need to send a Serial/Modem Connection

Active message first, since by the time the message is generated the remote console has already sent in characters

in an attempt to do link negotiation for PPP. Similarly, because there are separate port addresses that would be

used for RMCP traffic to the BMC in PPP mode, there’s no strong need for the Serial/Modem Connection Active

message to be periodically sent. Thus, the BMC does not send Serial/Modem Connection Active messages in PPP

Mode except when the serial connection is being switched to or from the BMC.

When the serial connection is switched over to the BMC, the Serial/Modem Connection Active message will be

delivered to the Primary RMCP port address and IP address of the remote peer that was negotiated during IPCP. If

the BMC did not establish the PPP Link, the Serial/Modem Connection Active message will not be sent.

When the serial connection is being switched over to the system, the Serial/Modem Connection Active message

will be delivered to the Primary RMCP port address and IP address of the remote peer that was negotiated with

IPCP, and to each active session on that PPP channel. If the BMC did not establish the PPP Link, then the

Serial/Modem Connection Active message will only be sent to the active sessions.

Note: If the BMC configured for any mode other than Direct Connect Mode, the Serial/Modem

Connection Active message will not be sent out unless DCD is asserted. Sending Serial/Modem

Connection Active messages while the modem is on-hook has been shown to prevent some modems

from answering. This also implies that the modem should not be configured to hold DCD asserted.

 Intelligent Platform Management Interface Specification

 207

14.3.1 Serial/Modem Connection Active Message Parameters

The Serial/Modem Connection Active message includes a parameter that indicates that a mux switch from BMC to

the system serial controller is about to occur. This is provided to give a remote application some notification that

the system is switching the port back over to the baseboard serial port. The Serial/Modem Connection Active

Message with the ‘switching to system’ parameter will be sent out before the mux is switched and before the

response is returned for the Set Serial/Modem Mux command.

14.3.2 Mux Switch Coordination

It is possible that the remote application committed an IPMI message for delivery to the BMC at the time that the

switchover to the system occurred. If the mux switch occurred immediately, this means that the message might be

delivered to the system instead of the BMC. To protect against this occurrence, the BMC can be configured to

look for the remote console to acknowledge the Serial/Modem Connection Active message before the mux switch

occurs.

There is a configuration option that directs the BMC to retry sending the Serial/Modem Connection Active

message up to three times with 20 ms between retries if it does not get an acknowledge from the remote

console. The BMC will then switch the mux if it has not received an acknowledge-message from the remote

console within three seconds of sending the last retry.

The remote console acknowledges the switch by sending a Serial/Modem Connection Active request message of

its own back to the BMC. The reason for this approach is so the BMC will return a response to the message,

allowing the remote console to receive positive confirmation of the acknowledge message or to retry the message

if the response is not received.

Note that the remote console should not send messages if it has not received a Serial/Modem Connection Active

message or other message from the BMC in the last two seconds. The three second delay provides margin to help

ensure that the console will not transmit with a Serial/Modem Connection Active message right when BMC times

out and the mux switch occurs.

14.3.3 Receive During Ping

The serial/modem interface operates in a ‘full duplex’ mode. Thus, the BMC must continue to receive message

characters while it is transmitting a Serial/Modem Connection Active 'Ping' message, or any other IPMI

message.

For Basic Mode operation, the BMC must continue to handshake each message that it receives. This means that

the BMC may insert an 'ACK' character in the middle of a Ping message transmission.

14.3.4 Application Handling of the Serial/Modem Connection Active Message

A robust Remote Console Application should be prepared to handle serial/modem remote access connection

becoming deactivated or activated at any time.

A cessation of Serial/Modem Connection Active messages indicates that the serial/modem remote access

connection is no longer active, while the occurrence of Serial/Modem Connection Active messages indicates

that the connection is active. Thus, if a Remote Console Application should always monitor the

presence/absence of Serial/Modem Connection Active messages, whether the serial/modem connection is active

or not.

If the application is connected to the BMC, and does not receive an Serial/Modem Connection Active message

within 2 seconds of its last transaction with the BMC should assume that the serial/modem connection has

become deactivated.

Intelligent Platform Management Interface Specification

208

Conversely, if the application is communicating with the system (e.g. console redirection) and an Serial/Modem

Connection Active message is received, the application should recognize that the serial/modem connection has

become reactivated.

14.4 Basic Mode

Basic Mode eliminates much of the overhead associated with PPP/UDP mode. Instead of encapsulating IPMI

messages within an RMCP message in a UDP datagram in a PPP frame, the IPMI messages are simply encoded

and framed for serial transmission. The price of this efficiency is that the remote console application cannot take

advantage of built-in support for PPP and UDP in the operating system, but will need to implement IPMI

communications routines on top of the OS’s generic support for asynchronous serial communications.

Since Session IDs are not part of the basic IPMI message, only a single IPMI session is supported in Basic Mode.

The BMC can use whatever Session ID value it wants for the Get Session Challenge and Activate Session

commands.

14.4.1 Basic Mode Packet Framing

Framing is done with special characters to delimit the start and end of a Basic Mode packet, and to indicate the

sequence for an escaped data byte (see following section). Framing and data byte escaping are applied after the

message fields have been formatted. These special characters are specified in the following table.

Table 14-5, Basic Mode Special Characters
Description Value

Start Character A0h

Stop Character A5h

Packet Handshake Character A6h

Data Escape Character AAh

Basic Mode messages can be thought of as IPMB messages with the I2C start and stop condition framing

replaced with start and stop characters, and with the addition of data byte escaping to ensure that the framing

characters are not encountered within the body of the packet. The Packet Handshake character is a special value

that is used for implementing a level of software flow control with the remote application accessing the BMC.

See Section 14.4.5, Packet Handshake.

14.4.2 Data Byte Escaping

The Start, Stop, and Escape characters are disallowed within the body of the message. This is done to ensure

that the start and end of a message is unambiguously delimited. If a byte matching one of the special characters

is encountered in the data to be transmitted, it is encoded into a corresponding two-character sequence for

transmission. This encoding is summarized in the following table.

Table 14-6, BASIC MODE Data Byte Escape Encoding
Data Byte Encoded Sequence

A0h AAh (ESC), B0h

A5h AAh (ESC), B5h

AAh AAh (ESC), BAh

A6h AAh (ESC), B6h

1Bh <ESC> AAh (ESC), 3Bh

The first character of the sequence is always the Escape character. Only the special Basic Mode characters plus

the ASCII Escape <ESC> character, 1Bh, are escaped. (The ASCII Escape <ESC> character, 1Bh, is escaped to

enable the BMC to snoop for certain escape sequences in the data stream, such as the <ESC>(and <ESC>Q

patterns.) All other byte values in the message are transmitted without escaping.

 Intelligent Platform Management Interface Specification

 209

When the packet is received, the process is reversed. If the two-byte ‘escaped’ sequence is detected in the

packet, it is converted to the corresponding data byte value. The BMC shall reject any messages that have

illegal character combinations or exceed message buffer length limits. The BMC may not send an error

response for these conditions.

14.4.3 Message Fields

The message fields follow those used for the IPMB, as specified in the Intelligent Platform Management Bus

Communications Protocol v1.0 Specification, with the exception of the Requester’s (rq) Slave Address and

Responder’s (rs) Slave Address fields, which have slightly different definitions. Note, framing and data byte

escaping are applied after the message fields have been formatted. The general message format is illustrated in

the following figure:

Figure 14-2, Basic Mode Message Fields

rsAddr

(SA or SWID)

rqSeq / rsLUN cmd

rqAddr

(SA or SWID)

Request

rsAddr

(SA or SWID)

net Fn

(even) / rsLUN

checksum

Response

rqAddr

(SA or SWID)

net Fn

(odd) / rqLUN

rqSeq / rqLUN cmd data bytes

(0 or more)

checksum

checksum

completion

code

response data

bytes (0 or more)

checksum

Where:

checksum 2's complement checksum of preceding bytes in the connection header or between the

previous checksum. 8-bit checksum algorithm: Initialize checksum to 0. For each byte,

checksum = (checksum + byte) modulo 256. Then checksum = - checksum. When the

checksum and the bytes are added together, modulo 256, the result should be 0.

cmd Command Byte

completion code Completion code returned in the response to indicated success/failure status of the request.

data As required by the particular request or response for the command

LUN The lower 2-bits of the netFn byte identify the logical unit number, which provides further

sub-addressing within the target node.

netFn Network Function code

rq Abbreviation for ‘Requester’.

rqLUN Requester’s LUN.

rqAddr Requester's Address. 1 byte. LS bit is 0 for Slave Addresses and 1 for Software IDs. Upper

7-bits hold Slave Address or Software ID, respectively. This byte is 20h when the BMC is

the requester.

rqSeq Sequence number, generated by the requester.

rs Abbreviation for ‘Responder’.

rsLUN Responder’s LUN

rsAddr Responder's Slave Address. 1 byte. LS bit is 0 for Slave Addresses and 1 for Software IDs.

Upper 7-bits hold Slave Address or Software ID, respectively. This byte is 20h when the

BMC is the responder.

Intelligent Platform Management Interface Specification

210

Seq Sequence number. This field is used to verify that a response is for a particular instance of

a request. Refer to [IPMB] for additional information on use of the Seq field.

14.4.4 Message Retries

Basic Mode Messaging utilizes the same retry mechanisms used for the IPMB, as specification in the Intelligent

Platform Management Bus Communications Protocol v1.0 Specification. The remote application timeout should

be based on the IPMB timeout specifications, with additional time added for delay due to the phone system. A

remote application can determine this additional delay for a given connection based on the time it takes to

receive the Handshake character.

14.4.5 Packet Handshake

The handshake character is used to signal that the BMC has freed space in its input buffers for a new, incoming

IPMI Message. The BMC typically returns a Handshake character within one millisecond of being able to

accept a new message, unless the controller has already initiated a message transmission, or an operation such

as firmware update has been initiated.

An implementation can either send the handshake character in the middle of the transmission or elect to wait to

transmit the handshake character until the transmission in-progress has completed. If the implementation waits

for the transmission to complete, the handshake character will typically be sent within one millisecond after the

message transmission completed.

If the implementation elects to send the Handshake character in the middle of an outgoing message

transmission, it must not insert the Handshake character immediately following a Data Escape character. The

reason for this is to allow the remote console application some flexibility in whether it processes the Handshake

character before or after removing data escaping.

 Intelligent Platform Management Interface Specification

 211

14.5 PPP/UDP Mode

This mode of operation uses PPP [RFC1661] (point-to-point protocol) messaging for transmitting IP packets on

an asynchronous link per [RFC1662] The following sections provide overview material on PPP operation in and

explicit requirements for an IPMI implementation. The overview material is to provide context and a starting

point for understanding the implementation.

The material does not supercede the PPP specifications. Designers are required to refer to the PPP RFC

reference documents for information on implementing PPP, especially regarding the states involved in opening

and terminating a PPP link.

All values are delivered most-significant byte first unless otherwise specified.

PPP/UDP mode transfers IPMI Messages encapsulated in RMCP Packets. This enables RMCP ASF Messages

as well as IPMI Messages to be delivered to the BMC. The RMCP Packets are carried within UDP datagrams

using the same format as the IPMI LAN messages. The resultant UDP datagrams are transferred within PPP

frames. Specifications on this message formatting are provided in the follow sections.

14.5.1 PPP/UDP Mode Sessions

The BMC is only required to support one session on the PPP/UDP interface. A BMC implementation may elect

to support multiple sessions.

14.5.2 PPP Frame Format

PPP/UDP mode framing follows [RFC1662]. [RFC1662] specifies an ‘HDLC-like’ format for PPP frames using

on an asynchronous serial communication media. The following figure presents an overview of this format.

Figure 14-3, PPP Frame Format
Flag

(7Eh)

Address

(FFh)

Control

(03h)

Protocol

1 or 2

bytes

Information

Padding FCS

2 or 4 bytes

Flag

(7Eh)

Inter-frame Fill or next Address

14.5.3 PPP Frame Implementation Requirements

Since the flag (7Eh) indicates both the start and end of a packet, it’s possible that another flag could

immediately follow a flag. However, the protocol also allows the ‘end’ flag to serve as both the end of one

packet and the beginning of the next. The BMC must be able to handle both occurrences.

In order to reduce differences between implementations, it is recommended that the BMC must explicitly

transmit a flag on both ends of the packet3.

Support for the 16-bit (2-byte) FCS (frame check sequence) is mandatory.

3 Per [RFC1662], only one Flag is required between frames, but if a two flag sequence is received, it is viewed as if an empty frame

were received between two frames where the empty frame is silently discarded. Since the flag character delimits both the start
and end of the frame, this requirement eliminates the need for the BMC to track that it had already sent a flag on the end of the
previous frame and thus can skip sending a flag to start the current frame.

Intelligent Platform Management Interface Specification

212

14.5.4 Link Control Protocol (LCP) packets

The following table presents a summary of the LCP Fields used in PPP. This is provided for reference only.

Table 14-7, LCP Code Fields
Code LCP Packet Type

1 Configure-Request

2 Configure-Ack

3 Configure-Nak

4 Configure-Reject

5 Terminate-Request

6 Terminate-Ack

7 Code-Reject

8 Protocol-Reject

9 Echo-Request

10 Echo-Reply

11 Discard-Request

14.5.5 Configuration Requests

The first step in opening a PPP link is to establish the connection through the exchange of Configure packets.

The PPP Configure-Request message is used to request changes to the link defaults. A Configure-Request is

responded to with a Configure-Ack, Configure-Nak, or Configure-Reject packet. A link is considered

established once the negotiation of link options has completed. If a Configure packet is received later, the link

will be returned to the link establishment phase.

Table 14-8, Overview of PPP Configure-Ack, -Nak, & -Reject Packet Use
LCP Packet

Configure-Ack All options are recognized and accepted. The Options field is a copy of the Options field from the
corresponding Configure-Request. Receipt of a Configure-Ack from both ends of the link signals that the link is
opened and other (non-LCP) protocols may be accepted.

Configure-Nak All options are recognized, but one or more are not acceptable. The Options field returns a list of the
unacceptable options in the same order that the options were given in the Configure-Request. An
implementation may append other options to prompt the peer to include those options in its next Configure-
Request packet.

Configure-Reject Some of the configuration options are not recognizable, or are not acceptable for negotiation.

… …

The format of the Configure-Request, -Ack, -Nak, and -Reject packets follow the same format, as illustrated in

Figure 13-4, Configure-Request, -Ack, -Nak, -Reject Packet Format.

Figure 14-4, Configure-Request, -Ack, -Nak, -Reject Packet Format
Code Identifier

(Seq)

Length

O
p
ti
o

n
s

Type1 Len1 Data1

Type2 Len2 Data2

   

TypeN LenN DataN

The Code field identifies whether the Link Control Packet is a Configure-Request, -Ack, -Nak, or -Reject

packet, per Table 14-7, LCP Code Fields.

The Identifier field is similar to the IPMI ‘Seq’ field. The value must be changed for new requests, and the

value in the request must be returned in the corresponding Configure-Ack, Configure-Nak, or Configure-Reject

response.

 Intelligent Platform Management Interface Specification

 213

The Options field holds a list of 0 or more link configuration parameters to be changed, and the corresponding

values for those parameters. The Options field should only be filled with requests for non-default values.

Options are not required to be in any given order in a Configure-Request. But the Configure-Ack, -Nak, and -

Reject packets do need to return the options in the same order they were given in the corresponding Configure

Request.

All Configuration Options that a sender wishes to negotiate are negotiated simultaneously.

Table 14-9, PPP Link Configuration Option Support Requirements
ID Type Len Data BMC Support Requirement

1 Maximum Receive Unit

4 bytes 1:2 - 2-byte value indicating
request

Request: Recommended.

It is recommended that the BMC request that
packets smaller than 1500 bytes be used. The

requested value must be  XX bytes. IPMI only
requires XX bytes, but OEM value-added
features may require a larger maximum packet
size.

Response: Optional.

The BMC can respond to a request that larger
or smaller packets be used. If implemented, the
BMC must reject/nak any request to use a value
smaller than XX bytes. The implementation can
elect to accept >1500 bytes, at the discretion of
the implementer.

Note that per PPP an implementation must
accept at least 1500 bytes. See Section 14.5.6,
Maximum Receive Unit Handling for more
information.

2 Asynch Control
Character Map

 Request and Response: Optional

3 Authentication Protocol 4 bytes 1:2 - protocol ID

C023 = PAP

C223 = CHAP [RFC1994]
(Algorithm:

#5 = CHAP w/MD5 [RFC1994]

#128 = MS-CHAP v1

#129 = MS-CHAP v2

bytes 3:N - data according to
protocol ID

Request and Response: based on firmware
support for PAP, CHAP, and MS-CHAP

4 Quality Protocol 4 bytes 1:2 - protocol ID

 C025 = Link Quality Report

bytes 3:N - data according to
protocol ID

Request and Response: Optional

5 Magic Number 6 bytes 1:4 - magic number Request:Optional.

Response: Recommended.

It is recommended that the BMC indicate
support for Magic Number.

7 Protocol Field

Compression (PFC)

2 none Request and Response: Recommended.

It is highly recommended that the BMC support
being configured to accept compressed protocol
fields, and request that it can use compressed
Protocol Fields when it transmits.

8 Address & Control Field

Compression

2 none Request and Response: Recommended.

It is highly recommended that the BMC support
being configured to receive compressed
Address and Control Fields, and for the BMC to
request that it can use compressed Address
and Control Fields when it transmits.

1. PPP requires that implementations must be able to receive a full 1500-byte information field in case link
synchronization is lost. If an MRU value is not specified, it is assumed to be 1500 bytes.

Intelligent Platform Management Interface Specification

214

14.5.6 Maximum Receive Unit Handling

For full PPP compatibility, the BMC must accept up to 1500 bytes in the information field. The storage

requirements could be even greater if the implementation elects to buffer the frame first and process escaped

characters after getting the entire frame, instead of handling escaped characters as they’re received.

Ideally, the BMC would have internal storage to hold this full amount of data, but this may not be economical in

some implementations. If the BMC cannot directly buffer a 1500-byte MRU frame, the BMC must still continue

to accept bytes until the end of the frame, and must not lose track of framing, terminate the link, or issue any

error response just because of the overall frame length.

It is possible, though unlikely, that a UDP packet could contain an RMCP message that meets the BMC buffer

size requirements, but is padded with additional bytes that cause the PPP Frame to exceed the BMC’s buffer.

An implementation can handle this possibility by continuing to calculate the FCS on characters received after

the buffer has become full, before discarding those characters. Once the frame was completed, the BMC could

check the leading contents of the buffer to see if a complete, valid message was contained in the initial bytes.

Note that there is a UDP Checksum that would also need to be tracked. However, the BMC could opt to ignore

the UDP Checksum field. Barring formatting errors, the data-integrity-checking role of the UDP Checksum

should be covered by the PPP FCS. The UDP Length field should also be able to be ignored for IPMI-RMCP

messages, since the number of bytes preceding the IPMI Message Length field is constant, and the IPMI

Message Length will indicate the number of valid bytes remaining in the message.

It is recommended that, for PPP frames containing RMCP/UDP packets, the implementation accept PPP frames

greater than its buffer size, track and verify the Frame Check Sequence, and attempt to validate and interpret the

leading, buffered data.

14.5.7 Protocol Field Compression Handling

The least significant bit of a protocol field indicates that the last byte of the protocol has been sent. Therefore, if

the ls-bit of the first protocol byte position is a ‘1’, the implementation can simply assume that the protocol field

has been compressed to one byte.

Accepting a configuration request for Protocol Field Compression indicates that the implementation supports

receiving compressed protocol field values. This does not obligate the transmitter to send them. Thus, the

receiver must be able to receive frames that use both compressed and non-compressed formats.

It is recommended that the BMC request that it can use Protocol Field Compression for the frames it sends. If

this configuration option is accepted, the BMC itself should use it. Note there may be some cases where the

BMC may need to transmit without using compressed fields, even though it has negotiated for compressed

fields to be accepted. This is allowable in PPP and is also allowable in a BMC implementation.

14.5.8 Address & Control Field Compression Handling

Per the PPP specification, when Address & Control Field compression is used the Address and Control fields

are simply omitted. On reception, the Address and Control fields are decompressed by examining the first two

bytes. If they contain the values 0xff and 0x03, they are assumed to be the Address and Control fields. If not, it

is assumed that the fields were compressed and were not transmitted.

This works because the first byte of a two byte Protocol field will never be 0xff (since it is not even), and the

Protocol field value 0x00ff is not allowed (reserved) to avoid ambiguity when Protocol-Field-Compression is

enabled and the first Information field byte is 0x03.

LCP Packets are not allowed to be sent with compressed Address and Control fields.

Accepting a configuration request for Address and Control Field Compression indicates that the implementation

accepts frames using Address and Control Field Compression. This does not obligate the transmitter to send

them. Thus, the receiver must be able to receive frames the use both compressed and non-compressed formats.

 Intelligent Platform Management Interface Specification

 215

It is recommended that the BMC request that it can use Address and Control Field Compression for the frames

it sends. If this configuration option is accepted, the BMC itself should use it. Note there may be some cases

where the BMC may need to transmit without using compressed fields, even though it has negotiated for

compressed fields to be accepted. This is allowable in PPP and is also allowable in a BMC implementation.

14.5.9 IPMI/RMCP Message Format in PPP Frame

IPMI Messages are carried in RMCP Packets in UDP using the same format as the IPMI LAN messages. This

enables RMCP ASF Messages as well as IPMI Messages to be delivered to the BMC. RMCP support adds only

four bytes overhead to an IPMI Session message in UDP.

Figure 14-5, IPMI Message in PPP Frame Format
 Field Size Value

PPP Frame Flag 1 7Eh

 Address 1 or 0[1] FFh[1]

 Control 1 or 0[1] 03h[1]

 Protocol 1 or 2[2] 0021 = IPv4

IP Header Version and Header Length 1

 Service Type 1

 Total Length 2

 Identification 2

 Flags & Fragment Offset 2

 Time to Live 1

 Protocol 1 11h

 Header Checksum 2

 Source IP Address 4

 Destination IP Address 4

UDP Header Source Port 2

 Destination Port 2 26Fh

 UDP Length 2

 UDP Checksum 2

RMCP Header Version 1

 Reserved 1

 RMCP Sequence Number 1 FFh for IPMI[3]

 Class of Message 1 07h for IPMI

IPMI Session Authentication Type 1

 Session Sequence # 4 note[5]

 Session ID 4 note[5]

 Message Authentication Code
 (AuthCode) Not present when
Authentication Type = none.

16

 IPMI Message Length 1

IPMI Message Per Section 13.8, IPMI LAN
Message Format

varies

PPP Frame FCS 2

 Flag 1[4]

1. Dependent on whether Address & Control Field Compression is used
2. Dependent on whether Protocol Field Compression is used
3. RMCP Messages with class=IPMI should be sent with an RMCP Sequence Number of FFh to indicate that an

RMCP ACK message should not be generated by the message receiver.
4. Per [RFC1662] “Each frame begins and ends with a Flag sequence… Only one Flag Sequence is required

between two frames. Two consecutive Flag sequences constitute an empty frame, which is silently discarded
an not counted as an FCS error.” The implementation should take care to track that a single flag character may
indicate both the end of the present packet, and the start of the next.

5. The Session ID and Session Sequence Number must be non-zero for commands executed during an active
session. All 0’s for the Session ID and/or Session Sequence Number (null Session ID, null Session Sequence
Number) are special values only used for commands that can be executed prior to establishing a session, e.g.
Get System GUID, Get Channel Authentication Capabilities, and Get Session Challenge. The Activate Session
command uses a null Session Sequence Number before a session is activated, but does not use a null Session

Intelligent Platform Management Interface Specification

216

ID. Instead, it must use the Temporary Session ID given by the BMC in the response to the Get Session
Challenge command.

14.5.10 Example of IPMI Frame with Field Compression

A PPP frame for IPMI in UDP/RMCP that uses both Protocol and Address-and-Control Field compression will

have the following format. Note that per PPP, uncompressed frames must also be accepted at any time. Buffer

sizes must take this into account.

Figure 14-6, IP Frame with Field Compression
Flag

(7Eh)

Protocol

(21h = IPv4)

UDP/RMCP/IPMI Packet data

FCS

2 bytes

Flag

(7Eh)

14.5.11 Frame Data Encoding

In order for the Flag and Control-Escape bytes to be utilized, they must not appear directly in the data stream.

The encoding of utilizes an escaping mechanism where bytes in packet are replaced with a two-character

sequence in order to prevent them from being mis-interpreted as being flag or Control-Escape bytes. The

escaping mechanism can also be used to prevent bytes from being interpreted as ASCII control characters.

Only bytes between flag bytes are escaped. The flag byte themselves are never escaped.

14.5.12 Escaping Algorithm

To ‘escape’ a character, N, the BMC simply emits a 7Dh character, followed by N exclusive-OR’d with 20h. To

convert the escaped-pair back to the original data byte, the 7Dh is thrown away and the second character

exclusive-OR’d with 20h.

14.5.13 Escaped Character Handling

By default, the following characters are escaped:

Table 14-10, Default Escaped Characters
Character value Escaped as:

Control Escape 7Dh 7Dh, 7Dh

Flag 7Eh 7Dh, 5Eh

ASCII Control Characters 00h-20h 7Dh, (value XOR 20h)

The BMC must ignore non-escaped versions of the above characters as part of the frame data, unless there has

been a negotiation that allows some of the characters to be sent without escaping. (See Section 14.5.14, Asynch

Control Character Maps (ACCM), below) The control-escape character and flag characters still need to be

interpreted, of course.

The reason that non-escaped characters are dropped is that an intervening communication device may have

inserted the characters.

Only non-escaped characters are eligible to be dropped on receipt as spurious characters in the frame data. The

BMC must accept all escaped characters received within flag delimiters as part of the frame data.

14.5.14 Asynch Control Character Maps (ACCM)

PPP includes an option that allows the negotiation of which characters require escaping and which can be

optionally escaped. This is accomplished by negotiating ACCMs (Asynch Control Character Maps) between

both ends of the link. ACCM negotiation can potentially improve data throughput by reducing the number of

characters that require escaping.

 Intelligent Platform Management Interface Specification

 217

The BMC is not required to support ACCM negotiation. If ACCM negotiation is not supported, the BMC must

handle character escaping and escaped characters as described in Section 14.5.13, Escaped Character Handling.

ACCMs are negotiated using a 32-bit parameter where each bit corresponds to a character from 00h to 1Fh,

with the least-significant bit corresponding to 00h. When sent in a configure-request, the ACCM indicates

which values that the originator of the request must receive in escaped format, and which can optionally be sent

without escaping. This ACCM is referred to as the ‘receiving ACCM’.

The ‘sending ACCM’ is the set of characters that will be sent with escaping, barring any additional

configuration due to a configure-request. By default, the sending ACCM is FFFFFFFFh - indicating the set of

default escaped characters listed in Table 14-10, Default Escaped Characters. The sending ACCM can only

change as the result of receiving a configure-request indicating that fewer characters need to be escaped. Note

that a transmitter can send escaped codes for values >1Fh (in addition to the required escaping of the flag and

control-escape values). These cannot be configured via negotiation, however.

The receiver of the configuration-request can respond with a configure-ack for the option, or it can responds

with a configure-nak and return the union of the requested ACCM with the ACCM that it will be using for

transmission. For example, suppose the remote console was hard-coded to always escape character 0Dh for

some reason. If the BMC submitted an ACCM indicating that it required only characters 03h and 04h to be

escaped, the remote console could respond with a configure-nak that it would always escape 03h, 04h, and 0Dh.

This would tell the BMC that it should also ignore 0Dh characters in the data.

The receiving ACCM is assumed to be FFFFFFFFh by default. That is, a transmitter must escape values 00h-

1Fh (plus flag and control-escape values encountered in the frame data) unless it receives a configure-request

indicating that certain values do not need to be escaped. This also means that the receiver can expect to receive

00h-1Fh in escaped format until it has successfully configured an alternative.

14.5.15 IP Network Protocol Negotiation (IPCP)

Once the PPP link has been established, it is necessary to send NCP (network control packets) to choose and

configure one or more network layer protocols.

[RFC1332] describes IP Control Protocol (IPCP). IPCP is a network control protocol used to choose transfer of

IPv4 packets via PPP. The BMC must both accept IPCP configuration requests and generate IPCP configuration

requests.

 BMC shall Configure-Ack an IPCP Configure-Request that contains 0 (zero) configuration options.

 BMC shall issue a Configure-Request for IPCP option 3 (IP Address) to request that the IP Address

specified by the PPP IP Address parameter (see Table 25-4, Serial/Modem Configuration Parameters) be

used as the BMC’s IP Address.

 If IP Address Assignment is enabled in the serial/modem configuration parameters, the BMC shall

accept an address assignment that is returned via a corresponding Configure-Nak from the remote

console.

 If IP Address Assignment is not enabled (Fixed IP Address), the BMC shall not accept a different

address assignment returned via a corresponding Configure-Nak from the remote console. If the BMC

PPP IP Address is not accepted, the BMC shall issue a new Configure-Request with the same PPP IP

Address value (but a new identifier value). This will be repeated until the PPP IP Address parameter is

accepted, or at least three Configure-Requests for setting the PPP IP Address parameter have been

issued.

 The BMC shall silently discard later IP Protocol (0021h) UDP packets that are addressed to the Primary or

Secondary RMCP ports, but do not match the negotiated PPP IP Address.

 BMC shall accept IPCP option 3 (IP Address) in an IPCP Configure-Request, unless that message matches

the BMC’s PPP IP Address.

Intelligent Platform Management Interface Specification

218

 BMC shall Configure-Nak IPCP option 3 if IP Address Assignment is disabled, and return the PPP IP

Address value from the serial/modem configuration parameters in the Configure-Nak.

 BMC shall Configure-Reject IPCP option 1, IP Addresses. This option has been deprecated in IPCP.

 BMC shall Terminate-ACK a Terminate-Request for IPCP.

 The BMC shall not transmit IPv4 protocol (0021h) packets after an IPCP Terminate-Request has been

received, until IPCP is renegotiated.

 The BMC shall silently discard any IPv4 protocol packets received after an IPCP Terminate-Request has

been received, until IPCP is renegotiated (the BMC receives its first IPCP Configure-Request).

 BMC may accept other IPCP options to support OEM features. For example, Option 2 is Van Jacobsen

compression for TCP/IP. Remote stacks must be prepared for the potential that a BMC implementation

might request network protocols and/or configuration options beyond those specified in this document.

 BMC shall not enable OEM framing extensions alongside PPP mode. It is possible that an OEM may want

to include proprietary serial framing formats or special handshake or escape sequences that are not

specified in this document, but that work as a proprietary extension to PPP mode. The BMC will not be

considered to be conformant for PPP mode if these extensions are active. It is acceptable for the BMC to

have an OEM-specific option to enable/disable OEM extensions. In this case, conformance will only be

assessed when such OEM extensions are disabled. Remote stacks and remote console applications designed

for IPMI may break when OEM extensions are enabled.

 The BMC shall Request the remote console IP Address by issuing a configure-request for Option 3 with an

IP Address value of 00.00.00.00 [This provides a mechanism for the BMC to obtain the remote console

connection’s IP Address in order to enable the BMC to asynchronously send UDP datagrams to the remote

console.]

 The BMC shall accept IPv4 Protocol Packets (0021h) once it has received and responded to an IPCP

Configure-Request from the remote console.

14.5.16 CHAP Operation in PPP Mode

An implementation can support CHAP as a mechanism for authenticating the serial/modem connection at the

link level. This option is separate from the whether or not RMCP/IPMI Message packets are authenticated once

the link has been established. Serial/modem configuration options to select and support either standard CHAP

[RFC1994], MS-CHAP v1 [RFC2433], or MS-CHAP v2 [RFC2759] are provided.

There are two classes of configuration options for CHAP:

 IPMI Messaging: There is a single set of options that configures what type of CHAP, if any, is used for

serial/modem IPMI messaging with the BMC in PPP Mode. These are referred to as PPP Link options in

the serial/modem configuration parameters. See Table 25-4, Serial/Modem Configuration Parameters.

 Callback and Dial-out Alerting. Another class of PPP options relates to user names and accounts for

connecting with a remote system via a PPP-to-LAN connection. The specification supports multiple sets of

these options. The option sets are grouped under a PPP Account Selector number in the configuration

parameters. The PPP Account Selector provides the link that associates a set of PPP account parameters

with a particular serial/modem Alert or Callback destination.

The Set/Get User Name, Set/Get User Access, and Set/Get Channel Access commands are used to configure the

password and username associated with CHAP link-level authentication for IPMI messaging in PPP mode. Note

that the same User Names and passwords that are used for link authentication can either be the same as those

used for IPMI Messaging, or they can be different. There is a bit setting associated with the Set User Access

command that determines whether the information associated with a given User ID is to be used for PPP Link

Authentication (e.g. CHAP), or IPMI Messaging Authentication, or both.

 Intelligent Platform Management Interface Specification

 219

PPP Account 1 is used to hold information for both IPMI Messaging via PPP and for callback, such as the IP

Address that the BMC will attempt to negotiate for itself.

14.6 Serial/Modem Callback

Callback provides a serial/modem channel mechanism that enables a remote console to direct the BMC to call a

pre-configured destination and attempt to establish an IPMI Messaging connection. Callback provides both a

security enhancement and a way to ‘reverse’ phone charges associated with managing a system.

Callback is primarily for use under the Modem connection mode. It can, however, be used with Direct Connect

mode for testing and development purposes. For example, PPP destination parameters could be tested locally

without requiring going through a modem. It’s potentially possible to locally verify parameters or do testing by

looping back from one system serial port to another using a ‘null modem’ cable.

Once the callback connection has been established, the BMC waits for the remote application to activate a session

with the BMC by issuing a Get Session Challenge command, etc.

If the Serial/Modem Connection Active (Ping) message is enabled, the BMC will announce its presence by

periodically sending the Ping once the connection has been established. The call will be automatically terminated

if the remote system does not activate a session with the BMC within the Session Inactivity Timeout interval for

the channel (See Section 6.12.15, Session Inactivity Timeouts).

IPMI Messaging and Callback use the same mode setting (basic mode, PPP mode, or terminal mode). I.e. you

can’t request callback using one messaging mode, and have the BMC connect using a different messaging mode.

The Callback function is implemented at the IPMI Message level. PPP Callback (I.e. PPP LCP option 0D) is not

used. For callback, the PPP Account Set settings parameters are only used if IPMI Messaging for the channel is

set to PPP Mode.

In order to initiate a callback, the remote console first connects to the BMC using a pre-configured User ID and

then issues the Callback command. The User ID can be restricted to ‘Callback level’ privilege so that the only

operation that can be performed is to initiate a callback using the Callback command. A User ID can also be

restricted to only be accessible while a callback connection is active. Together, this provides the option to allow

one User ID and password to initiate the callback, while making it necessary to have a callback connection active

in order to perform any higher-privilege level connections to the BMC.

The Set User Access command is used to configure, on a per channel basis, whether a given user is enabled, what

the user’s limits are, and whether user access is restricted to only being available during a callback connection.

The Callback, Operator, and Administrator privilege levels can be used to initiate a Callback, but the User Level

cannot. This is consistent with the definition of User privilege.

14.6.1 Callback Control Protocol (CBCP) Support

An implementation that supports PPP can elect to support the Microsoft Callback Control Protocol (CBCP).

CBCP is a Microsoft Corporation specification for supporting callback from a Microsoft RAS (Remote Access

Services) PPP connection. Other devices such as serial-to-LAN gateways may also support CBCP. See [CBCP]

for specification information.

With respect to the BMC, CBCP provides a protocol by which a remote console can request the BMC to initiate

a callback to the remote console.

CBCP is negotiated during the initial LCP phase. Once CBCP has been negotiated, per [CBCP] the BMC

initiates the callback process by issuing a request that tells the remote console what callback number options are

available from the implementation.

A BMC implementation can support one or any combination of the callback number options listed in the

following table. An implementation may elect to implement CBCP callback numbers such that different users

can have different callback numbers, or where callback numbers are shared across users.

Intelligent Platform Management Interface Specification

220

Table 14-11, CBCP Callback Number Options
Option Description

No Callback The remote console requests not to be called back at all.

Callback to caller-specified
number

The BMC indicates that it allows the remote console to specify which number
is to be called back.

Callback to a pre-specified
number

The BMC calls back a pre-configured phone number.

If a PPP Link authentication protocol such as CHAP is used, the BMC uses
the user id string from the authentication negotiation to look up which phone
number to use for the given user. Otherwise, a global number associated with
the serial/modem configuration parameters for the channel will be used.

Callback to one from a list
of numbers

The BMC offers up a list of possible phone numbers that the callback can be
directed to. The remote console picks one and returns it to the BMC. If the
number matches one from the list, the BMC calls that number.

If a PPP Link authentication protocol such as CHAP is used, the BMC uses
the user id string from the authentication negotiation to look up which set of
phone numbers to offer to the given user. Otherwise, a global set of numbers
associated with the serial/modem configuration parameters for the channel will
be used.

14.6a CBCP Address Type and Dial String Characters

CBCP includes an Address Type field that indicates the format used for callback addresses. Address Type = 1

indicates PSTN/ISDN. No other Address Type values are specified, therefore this field is, by default, a fixed

field for IPMI implementations.

Per [CBCP] callback strings are null terminated ASCII strings formed from the following set of characters:

0-9, *, #, T, P, W, @, comma, space, dash, and parentheses.

This specification applies to using NT RAS as the dialer. For IPMI 1.5, however, the BMC is the dialer. Thus,

additional characters specified in section 14.11.1, Alert Strings for Dial Paging can also be used in the Dial

String for CBCP callback.

IPMI 1.5 implementations do not check for illegal characters in dial strings. It is the responsibility of

configuration software to ensure that correct characters are entered.

14.7 Terminal Mode

Terminal Mode is an operating mode of a serial/modem channel used for the following purposes:

 It provides a printable text-based mechanism for delivering IPMI between a terminal or remote console and

the BMC. The text-based approach makes it simpler to develop script-based tools for generating and handling

IPMI messages.

 It provides a small number of ASCII-text based commands to enable a small number of basic recovery and

status functions to be executed when only a dumb terminal is available in lieu of real system management

software.

14.7.1 Terminal Mode Versus Basic Mode Differences

Terminal Mode is primarily intended for local use rather than remote use via a modem. The following are the

main differences between terminal mode and basic mode operation:

 Intelligent Platform Management Interface Specification

 221

 If password protection is desired, only ‘plain text’ passwords can be used. Password characters are

restricted to be from the printable set of ASCII characters as defined in Appendix E - Terminal Mode

Grammar.

 Passwords can be entered two ways in Terminal Mode: either via the Get Session Challenge / Activate

Session command, or via an ASCII Text command.

 Terminal Mode does not utilize checksums on IPMI messages or ASCII Text commands. If a modem

connection is used, the modem should be configured for error correction, or Basic Mode should be used

instead.

 Terminal Mode remote console is limited to a single, fixed, single Software ID (SWID). See Table 5-4,

System Software IDs. The fixed SWID is used where a requester’s SWID would have been extracted from

the IPMI Message. For example, if Terminal Mode IPMI Messaging is used to generate a Platform Event

Request message (Event Message) the SEL Record would contain the fixed SWID identifying the Terminal

Mode remote console.

 The Terminal Mode remote console is limited to a single LUN (00b). This LUN is implicit in the message

format. When Terminal Mode request or response messages are bridged to other media, the value 00b is

used as requester’s or responders LUN, respectively.

 Terminal Mode messages delivered to SMS via BMC LUN 10b always go to SMS Software ID 20h (41h)

LUN 00b, unless the Send Message command is used to put the message in the receive message queue.

 Callback is not supported for Terminal Mode. You can trigger a callback from Terminal Mode, but the

party that is called must support either Basic Mode or PPP Mode.

14.7.2 Terminal Mode Message Format

Terminal mode messages are of the general format:

[<message data>]<newline>

The left-bracket and right-bracket+<newline> characters serve as START and STOP delimiters for the message.

Note that the right-bracket and <newline> characters together form the sequence that indicates the end of the

message. <newline> characters may appear within the message as a result of input line editing and multi-line

output message data.

14.7.3 IPMI Message Data

IPMI Messages are sent and received in Terminal Mode <message data> as a series of case-insensitive hex-

ASCII pairs, where each is optionally separated from the preceding pair by a single <space> character. The

following is an example of an IPMI Request message in Terminal Mode:

[18 00 22]<newline>

The Terminal Mode Request Message field definitions follow those used for the Basic Mode except that there is

no Slave address / Software ID field or LUN information for the requester. The software ID and LUN for the

remote console are fixed and implied by the command. The SWID for messages to the remote console is always

40h, and the LUN is 00b.

Instead, there is a ‘bridge’ field that is used to identify whether the message should be routed to the BMC’s

bridged message tracking functionality or not.

Intelligent Platform Management Interface Specification

222

Figure 14-7, Terminal Mode Request to BMC
Byte 1 Byte 2 Byte 3 Byte 4:N

NetFn (even) / rsLUN=00b (BMC) rqSeq / Bridge=00b (BMC) cmd data

The following figure shows the corresponding format of a response message from the BMC.

Figure 14-8, Terminal Mode Response from BMC
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N

NetFn (odd) / rsLUN=00b (BMC) rqSeq/Bridge=00b (BMC) Cmd Completion Code Data

 Intelligent Platform Management Interface Specification

 223

14.7.4 Terminal Mode IPMI Message Bridging

The terminal mode message includes a ‘bridge’ field that is used to determine whether the message is going to

or coming from the BMC’s command functionality, or to/from the BMC’s ‘bridge’ tracking functionality.

The message is interpreted based on the value of the bridge field, whether the message is a request or response,

and the message direction per the following table.

Note that messages to and from the system interface are transferred using the BMC SMS LUN,

10b, with the bridge field set to 00b.

Support for Terminal Mode IPMI Message Bridging is optional.

Table 14-12, Terminal Mode Message Bridge Field

Bridge

Field

Request/

Response

Message
 Direction

(to BMC)

LUN

Message Interpretation

00b Request In 00b,
01b,
11b

Remote Console request to BMC functionality

Message is a request from the remote console to the BMC

00b Response Out 00b,
01b,
11b

Response to Remote Console from BMC functionality

Message is a response to an earlier request from the remote console to the BMC

00b Request In 10b Remote Console request to SMS

Message is a request from the remote console to SMS via the Receive Message
Queue

00b Response Out 10b SMS Response to Remote Console

Message is a response to an earlier request from SMS

00b Request Out 00b,
01b,
11b

Asynchronous Request to Remote Console from BMC

00b Response In 00b,
01b,
11b

Remote Console Response to earlier Asynchronous Request from BMC

00b Request Out 10b Asynchronous Request from SMS to Remote Console

00b Response In 10b Remote Console Response to earlier Asynchronous Request from SMS

01b Request In any ILLEGAL COMBINATION

The remote console bridges requests to other media by encapsulating the
message content in a Send Message command to the BMC functionality.

01b Response Out any Response to earlier Bridged Request from Remote Console

Message is the asynchronous response from an earlier bridged request that was
encapsulated in a Send Message command issued to the BMC by the remote
console.

01b Request Out any Asynchronous, bridged request to remote console from other media

Message is a bridged request to the remote console from another media, e.g. the
system interface. BMC assigns the sequence number as part of bridging.

01b Response In any Remote Console response to earlier asynchronous request from another
media Message is a response from the remote console to an earlier bridged
request from another media. BMC uses the sequence number in the response to
determine how to route the response to the original requester.

14.7.5 Sending Messages to SMS

Terminal Mode uses BMC LUN 10b to send messages to SMS (system interface) via the Receive Message

Queue in the BMC. The following shows the format of a request message delivered to SMS, and the

corresponding response.

Intelligent Platform Management Interface Specification

224

Figure 14-9, Terminal Mode Request to SMS
Byte 1 Byte 2 Byte 3 Byte 4:N

NetFn (even) /

rsLUN=10b (BMC to SMS)

rqSeq =XX /

Bridge=00b (BMC)

cmd data

Figure 14-10, Terminal Mode Response from SMS
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N

NetFn (odd) /

rsLUN=10b (BMC to SMS)

rqSeq =XX /

Bridge=00b (BMC)

cmd completion

code

data

14.7.6 Sending Messages to Other Media

The Send Message command is used to deliver a message to a different media, e.g. IPMB. The following figure

illustrates the data contents that would be used in a Send Message command to deliver a Terminal Mode request

to another (non-system interface) channel:

This data would be carried in a Send Message command of the following format:

Figure 14-11, Send Message Command for Bridged Request
NetFn (even) / BMC_LUN rqSeq / bridge=00b cmd = Send Message

channel # session handle rsSWID

netFn (even)/rsLUN chk1 rqSWID=81h
(terminal mode console)

rqSeq/rqLUN=00b cmd

<data> chk2

The BMC will return a Send Message response matching the Send Message request. This will normally be

returned immediately after the request.4

Figure 14-12, Response to Send Message Command for Bridged Request
NetFn (odd) / BMC_LUN rqSeq / bridge=00b cmd = Send Message completion code

= 00h (OK)

Later, the bridged response will be returned. The following figure shows the contents of a corresponding

bridged response to the Remote Console:

Figure 14-13, Bridged Response to Remote Console
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N

netFn (odd) / rsLUN rqSeq / bridge=01b Cmd Completion Code Data

Note that much of the targets addressing information (rqSWID, rqLUN) is absent from the response. The

remote console must use the original request’s sequence number (rqSeq), netFn/rsLUN, and command values to

match bridged response up with the earlier bridged request. These fields are highlighted with bold in the

preceding Send Message and Bridged Response figures.

4 Note that because IPMI messaging allows for other messages to appear between requests and responses, it is possible that one

or more asynchronous messages could appear between the Send Message request and response. Console software should be
prepared to handle such occurrences.

 Intelligent Platform Management Interface Specification

 225

14.7.7 Terminal Mode Packet Handshake

There is a configuration option that allows the BMC to output a character sequence that indicates when its input

buffer is ready to accept another IPMI Message via Terminal Mode. This option is typically used with

automated applications that send and receive IPMI Messages using Terminal Mode. The BMC outputs the

following character sequence whenever there is space for a new input message from Terminal Mode, and the

‘handshake’ option is enabled:

[SYS]<newline>

If a message transmission from the BMC is already in progress, the handshake sequence will be held-off until

the present message transmission has completed. The BMC will typically output the handshake sequence within

1ms of the buffer space becoming available and the present message transmission (if any) completing.

14.7.8 Terminal Mode ASCII Text Commands

A small number of ASCII-text commands can be delivered while in terminal mode. The following table lists

these commands. Commands are CASE SENSITIVE. Appendix E - Terminal Mode Grammar, lists the rules for

the format of terminal mode input and output for both IPMI messages and text commands. Refer to Table

13-13, Terminal Mode Examples for some examples of Terminal Mode text command and IPMI messages.

Table 14-13, Terminal Mode Text Commands
Command Text Description

SYS PWD -U USERNAME
<password>

Used to activate a terminal mode session. USERNAME corresponds to the ASCII text
for the username. <password> represents a printable password (up to 16 characters).
If <password> is not provided, then a Null password (all binary 0’s) is submitted.
Passwords are case sensitive.

Either the SYS PWD command (or Activate Session IPMI message) must be
successfully executed before any command or IPMI messages will be accepted. Note
that a modem connection may be automatically dropped if multiple bad passwords are
entered.

SYS PWD -N <password> -N represents a Null username. <password> represents a printable password (up to 16
characters). If <password> is not provided, then a Null password (all binary 0’s) is
submitted. Passwords are case sensitive.

Either the SYS PWD command (or Activate Session IPMI message) must be
successfully executed before any command or IPMI messages will be accepted. Note
that a modem connection may be automatically dropped if multiple bad passwords are
entered.

SYS PWD -X -X immediately ‘logs out’ any presently active session. Entering an invalid password
with -U or -N will also have the same effect.

SYS TMODE Used as a ‘no-op’ confirm that Terminal Mode is active. BMC returns an OK response
followed by “TMODE”.

SYS SET BOOT XX YY
ZZ AA BB

Sets the boot flags to direct a boot to the specified device following the next IPMI
command or action initiated reset or power-on. XX…BB are five hex-ASCII bytes for the
boot flags parameter in the Boot Options Parameters. See Table 28-14, Boot Option
Parameters.

Upon receiving this command, the BMC will also set the ‘valid bit’ in the boot options,
and will set all the Boot Initiator Acknowledge data bits to 1b.

SYS SET BOOTOPT NN
XX…NN

This is essentially a text version of the IPMI “Set System Boot Options” command,

allows any of the boot option parameters to be set, not just the boot flags. XX…NN
represents the hex-ascii for the data bytes that are passed in the Set System Boot
Options request.

SYS GET BOOTOPT XX
YY ZZ

This is essentially a text version of the IPMI “Get System Boot Options” command,
allows any of the boot option parameters to be set. XX YY ZZ represents the hex-ascii
for the data bytes that are passed in the Get System Boot Options request. The BMC

Intelligent Platform Management Interface Specification

226

returns the data from the command in hex-ascii format, with a maximum of four hex-
ascii pairs per line.

SYS SET TCFG Returns the Terminal Mode Configuration bytes where XX and YY represent hex-ascii
encodings for the volatile version of data bytes 1 and 2 as specified in the Terminal
Mode Configuration parameter (#29) listed in Table 25-4, Serial/Modem Configuration
Parameters, and AA BB represent hex-ascii encoding of the non-volatile version.

V:XX YY<output termination sequence>

N:AA BB<output termination sequence>

SYS SET TCFG -V XX YY This command sets the volatile Terminal Mode Configuration. XX and YY represent
hex-ascii encodings for data bytes 1 and 2 as specified in the Terminal Mode
Configuration parameter (#29) listed in Table 25-4, Serial/Modem Configuration
Parameters. The BMC returns the same output as for SYS SET TCFG, above.

SYS SET TCFG -N XX YY This command sets the non-volatile Terminal Mode Configuration. XX and YY represent
hex-ascii encodings for data bytes 1 and 2 as specified in the Terminal Mode
Configuration parameter (#29) listed in Table 25-4, Serial/Modem Configuration
Parameters. The BMC returns the same output as for SYS SET TCFG, above.

SYS RESET Directs the BMC to perform an immediate system hard reset.

SYS POWER OFF Directs the BMC to perform an immediate system power off.

SYS POWER ON Causes the BMC to initiate an immediate system power on

SYS HEALTH QUERY Causes the BMC to return a high level version of the system health status in ‘terse’
format. The BMC returns a string with the following format if command is accepted.

PWR:zzz H:xx T:xx V:xx PS:xx C:xx D:xx S:xx O:xx

Where:

 PWR is system POWER state

H is overall Health

T is Temperature

V is Voltage

PS is Power Supply subsystem

F is cooling subsystem (Fans)

D is Hard Drive / RAID Subsystem

S is physical Security

O is Other (OEM)

zzz is: “ON”, “OFF” (soft-off or mechanical off), “SLP” (sleep - used when can’t
distinguish sleep level), “S4”, “S3”, “S2”, “S1”, “??” (unknown)

and xx is: ok, nc, cr, nr, uf, or ?? where:

“ok” = OK (monitored parameters within normal operating ranges)

“nc” = non-critical (‘warning’: hardware outside normal operating range)

“cr” = critical (‘fatal’ :hardware exceeding specified ratings)

“nr” = non-recoverable (‘potential damage’: system hardware in jeopardy or
damaged)

 “uf” = unspecified fault (fault detected, but severity unspecified)

 “??” = status not available/unknown (typically because system power is OFF)

SYS HEALTH QUERY -V Causes the BMC to return a high level version of the system health status in multi-line
‘verbose’ format. The BMC returns a string of the following format:

SYS Health:xx<output termination sequence>

Power: “ON”, “OFF” (soft-off or mechanical off), “SLEEP” (sleep - used when can’t
distinguish sleep level), “S4”, “S3”, “S2”, “S1”, “Unknown”

Temperature:xx<output termination sequence>

Voltage:xx<output termination sequence>

PowerSystem:xx<output termination sequence>

Cooling:xx<output termination sequence>

Drives:xx<output termination sequence>

Security:xx<output termination sequence>

 Intelligent Platform Management Interface Specification

 227

Other:xx<output termination sequence>

Where xx is:

“OK” (monitored parameters within normal operating ranges)

“Non-critical” (‘warning’: hardware outside normal operating range)

“Critical” (‘fatal’ :hardware exceeding specified ratings)

“Non-recoverable” (‘potential damage’: system hardware in jeopardy or damaged)

“Unspecified fault” (fault detected, but severity unspecified)

“Unknown” (status not available/unknown (typically because system
power is OFF)

SYS IDENTIFY Causes the BMC to signal the system’s location (e.g. with a blinking led or beep). This
is intended to locate the system amongst a rack of systems. The BMC will signal the
system’s location for 15 seconds and then stop signaling. This is a text version of the
optional Chassis Identify command.

SYS IDENTIFY -ON <XX> Causes the BMC to signal the system’s location (e.g. with a blinking led or beep) for a
specific amount of time. XX is an optional hex-ASCII byte representing the number of
seconds the BMC is to cause the system to identify itself. If XX is not supplied, the
BMC will signal the system’s location for 15 seconds and then stop signaling. This is a
text version of the optional Chassis Identify command.

SYS IDENTIFY -OFF Causes the BMC to stop signaling the system’s location. This has no effect if the
system is not currently identifying itself. This is a text version of the optional Chassis
Identify command.

SYS XXXXXX yy..zz OEM Text Commands (optional, vendor-specific). All OEM text commands are prefixed
with SYS followed by XXXXXX where XXXXXX is the OEM ID expressed as a six-digit
hex-ASCII number. For example, the IANA OEM IDs for Intel, HP, Dell, and NEC are
000157h (343), 00000B (11), 0002A2h (674), and 000077 (119), respectively. yy..zz
represents OEM-specific text.

It is recommended that OEM Text Command implementations use the same OK and
ERROR completion returns be used for OEM Commands as for the IPMI-specified text
commands.

Intelligent Platform Management Interface Specification

228

14.7.9 Terminal Mode Text Command and IPMI Message Examples

The following table presents some examples of terminal mode commands and IPMI messages.

Table 14-14, Terminal Mode Examples
Console input: [SYS TMODE]<crlf> TMODE is a ‘no-op’ command used to confirm the

BMC is operating in terminal mode.

BMC responds: [OK TMODE]<crlf>

Console input: [SYS PWD -U Fred letME1n]<crlf> User submits password for username Fred.

BMC responds: [OK]<crlf>

Console input: [SYS PWD -N]<crlf> User attempts to activate session with anonymous
login (null username, null password)

BMC responds: [ERR CC] BMC returns error, e.g. ‘invalid data field’.

Console input: [SYS RESET]<crlf> User resets system.

BMC responds: [OK]<crlf> and resets system.

Console input: [sys blah]<crlf> User enters an invalid command.

BMC responds: [ERR C1]<crlf>

Console input: [sys health query -V]<crlf> Verbose system health query.

BMC responds: [OK<crlf>

Health:Critical<crlf>

 Temperature:OK<crlf >

 Voltages:OK<crlf>

Drive Subsystems:OK<crlf>

 Power System:OK<crlf>

 Cooling:Critical<crlf>

 Security:OK<crlf>

 Other:OK]<crlf>

Console input: [18 xx 22]<crlf> IPMI Reset Watchdog Timer request message to

BMC. xx represents the console selected sequence
number and LUN field for the request.

BMC responds: [1C xx 22 00]<crlf> Reset Watchdog Timer response message from
BMC. The same sequence number and LUN passed
in the request is returned in the response.

Console input: [SYS 000157 My Command]<crlf> Submit an OEM text command

BMC responds: [OK 000157 My Response]<crlf> Get an OEM text response

14.8 Terminal Mode Line Editing

Since direct human input is likely to be used with Terminal Mode, it is useful to support a limited amount of

editing to reduce the effort required to recover from the inevitable typo’s that occur during text entry. Line editing

is an operating mode of Terminal Mode. Line editing should be enabled when direct human entry is used, and

disabled when automated entry is used.

 Line editing is enabled or disabled via an option in the serial/modem configuration parameters.

 Enabling line editing disables input time-outs.

 When line editing is enabled, echo should also be enabled.

 When line editing is enabled, the Serial/Modem Connection Active (Ping) message should be disabled.

Otherwise, unrequested Ping messages will appear in the data stream.

 The <backspace> or <delete> key can be used to delete the last character entered.

 Intelligent Platform Management Interface Specification

 229

 The <ESC> character can be used to delete the entire message. An <ESC> (1Bh) character received by the

BMC immediately flushes any pending input message data. If line editing is enabled, and the <ESC> is

followed by an input newline, the BMC responds by putting out an output newline sequence (typically <cr-

lf>). Otherwise, the BMC just silently flushes the data and goes back to looking for a START character.

 Any illegal characters received after the START character will silently flush the message in progress. The

difference between this and <ESC> is that

 Long IPMI message lines can be split across multiple lines by using a line continuation <backslash> character

following immediately by the input newline sequence.

 Line continuation character support is optional for the text commands, because they’re considered to be short

enough to fit one line.

 Line continuation character support for OEM messages is an implementation option.

14.9 Terminal Mode Input Restrictions

The following restrictions and characteristics apply to terminal mode:

 Up to 80 printable characters are required to be supported for one line. The BMC can stop accepting new

characters and stop echoing input when the 80 character limit is reached (with the exception of the <ESC>,

<backspace>/<delete>, illegal character, and input <newline> characters, which will still be handled).

 The interface must support the maximum IPMI input message length that is supported on the given BMC. Per

Section 6.14, Message Size & Private Bus Transaction Size Requirements, this will typically be 40 bytes.

Since each message byte can require three input characters (two hex-ASCII digits, plus a <space> character)

a 40-byte IPMI message could require 120 characters, plus the starting and ending brackets, or 122

characters, total, for the message.

14.10 Page Blackout Interval

The Page Blackout interval determines the minimum number of minutes between successive pages. The purpose

for this parameter is to provide a mechanism to prevent someone from getting back-to-back pages if a flurry of

events occurs. The interval applies to Dial Pages and TAP Pages. It does not apply to Dial-out PET Alerting.

The Page Blackout Interval does not turn off Platform Event Filtering or associated actions. Platform Event

filtering continues while a page or blackout interval is in progress. The BMC will accumulate the set of pending

actions that occur during the page and blackout interval. If an event triggers a power-down action, the page will be

aborted, the power-down will occur, and the page restarted after the power down. If a reset or power-cycle action

is triggered, that action will be held off until the paging process and blackout interval have concluded.

The Page Blackout Interval setting is kept in the serial/modem configuration parameters managed by the BMC.

14.11 Dial Paging

Dial Paging is accomplished by the BMC using the dialing capabilities of an external modem to connect to a

paging service and enter a page using telephone numeric keypad numbers. Once a connection is established, the

BMC delivers the specified Alert String from the PEF Configuration Parameters to the modem. The paging string

directs the modem to deliver a fixed number to the paging service. The paging string is often used to deliver the

phone number of the system that is generating the alert. An administrator receiving the string can then call the

system with a management application and use IPMI messaging to retrieve system status, SEL entries, and other

information about the alert.

Intelligent Platform Management Interface Specification

230

14.11.1 Alert Strings for Dial Paging

Modern modems deploying the modem ‘AT’ command set [TIA-602] contain character options associated with

the dial command that utilize built-in call detection features of the modem. Thus, the call progress detection

requirements on the BMC are greatly simplified. Though the majority of modems will support all of the

following options, some are not mandatory in [TIA-602]. The modem’s documentation should be consulted to

verify support for character options prior to configuring non-volatile dial strings. The Alert Immediate

command can be used to test dial strings before committing them to non-volatile storage.

The following character options can be used in the Alert String for a Dial Page. These options follow the

modem dial command (default =‘ATD’) issued by the BMC:

P Dial using Pulse. Dialing digits after the ‘P’ will be sent using pulse dialing
R Reverse Frequencies. Forces modem to dial out at the answer frequency
S=n Dial pre-stored phone number, n
T Dial using Tone. Dialing digits after the ‘T’ will be sent using touch tones
W Wait for dial tone
@ Wait for quiet (answer)
, Pause (2 seconds)
; Return to command mode after dialing
! Flash the switch hook

14.11.2 Dialing Digits

Per [TIA-602] the dialing digits consist of the ASCII characters 0..9, *, #, A, B, C, and D.

14.11.3 <Enter> Character (control-M)

The BMC recognizes the “control-M” character (0Dh) as an <ENTER> character. When the BMC encounters

this character it transfers it to the modem and then delays 1 second before sending any remaining characters in

the page string. Note that the BMC automatically issues an <ENTER> character after sending out the Dial

String when performing a Dial Page.

14.11.4 Long Pause Character (control-L)

The BMC also recognizes the “control-L” character (0Ch) as the trigger for generating a 10-second ‘long pause’

sequence. When the BMC encounters this character, it doesn’t send it to the modem but instead delays 10

seconds before sending any remaining characters in the page string.

14.11.5 Empty (delimiter) Character (FFh)

The BMC recognizes FFh in the page string as a ‘delimiter’ character used by BIOS. The character is provided

as a potential aid to for interfaces, such as BIOS setup, that may split the page string into multiple fields for

presentation to the user. The BMC ignores the character and does not transfer it to the modem.

14.11.6 ‘Null’ Terminator Character (00h)

The BMC recognizes this character as a terminator for the Dial String. This terminator is used whenever the

Dial String data consists of fewer characters than the maximum length for the Dial String. Note that the BMC

automatically issues an <ENTER> character after sending out the Dial String when performing a Dial Page.

 Intelligent Platform Management Interface Specification

 231

14.12 TAP Paging

TAP (Telocator Access Protocol) is a popular protocol for sending an alphanumeric page by connecting to a

paging service using a serial modem. IPMI supports TAP as an option for delivering a short alert page to a remote

paging service. This capability is referred to as TAP Paging. TAP Paging is triggered from the IPMI Platform

Event Filtering capability. It can also be triggered ‘manually’ via the Serial/Modem Connection Active (Ping)

command.

The protocol is described in the [TAP]. Per [TAP], there are two types of remote page entry: automated and

manual. The TAP implementation for IPMI operates using the management controller as an automated entry

device.

A TAP Paging transaction consists of one or more blocks. A block can contain up to 250 characters of

information. Each block contains one or more short message strings that form a message sequence. Message data

can span blocks. The short message strings are also referred to as ‘Fields’ in the TAP specification. Since only a

small number of characters are delivered in an IPMI TAP Page, only a single block will be transmitted.

There are typically two fields within the first block. The first field, Field #1, is called the Pager ID field. Some

paging services refer to this as the PIN (Pager ID Number). This field is used to identify the target pager. The

second field, Field #2, is the alphanumeric paging message. TAP only directly supports delivery of 7-bit ASCII

characters. There is an associated protocol for transmitting 8-bit characters via TAP, but that protocol is not

supported in this specification.

TAP includes provision for an optional alphanumeric six-character password for the paging service. The password

is also set via the serial/modem configuration parameters.

Intelligent Platform Management Interface Specification

232

Appendix F - TAP Flow Summary, presents an additional overview and implementation notes for TAP paging via

a BMC.

14.12.1 TAP Escaping (data transparency)

TAP allows ASCII control characters (00h to 20h) to be sent in the alphanumeric paging transaction as two-

character sequences. TAP requires that the characters be escaped per the following table. The BMC

automatically performs escaping when transmitting TAP messages.

Table 14-15, TAP Escaping
Character value Escaped as: Escaping mandatory?

<EOT> 04h 1Ah, 44h yes

<STX> 02h 1Ah, 42h yes

<ETX> 03h 1Ah, 43h yes

<LF> 0Ah 1Ah, 4Ah yes

<CR> 0Dh 1Ah, 4Dh yes

<ETB> 17h 1Ah, 57h yes

<SUB> 1Ah 1Ah, 5Ah yes

<ESC> 1Bh 1Ah, 5Bh yes

Other Control Characters - 1Ah, (value + 40h)

e.g. 20h  1Ah, 60h

optional

[TAP] states that “any [optional] control character may be made transparent at the implementor’s discretion”.

The IPMI serial/modem configuration options for TAP paging include a control-character map similar to that

used in PPP so that the user can configure which control characters get escaped for delivery to a particular TAP

service.

14.12.2 TAP Checksum

TAP messages include their own checksum format. The checksum is transmitted using three printable ASCII

characters. Refer to [TAP] for the checksum algorithm.

14.12.3 TAP Response Codes

Per [TAP], each handshake message that is returned from the paging service is specified to start with a 3-

character response code. The values for these codes are specified in [TAP]. The implementation can optionally

return a set of the last TAP Response Codes using the Get TAP Response Codes Command as an aid to TAP

connection setup and debugging.

14.12.4 TAP Page Success Criteria

The management controller can use the TAP response codes to determine whether a page was successfully sent

or not. One of the following response codes, received after the management controller sends an ‘End-of-

Transaction’ <ETX> sequence, are used a positive indication of a successful page. Optionally, the page can be

considered successful if an <ACK> is received following the end-of-transaction. The serial/modem

configuration parameters include a setting that selects which of these confirmation mechanisms is used.

Table 14-16, TAP Success Codes
code TAP Definition

211 Page(s) Sent Successfully

213 Message accepted - held for deferred delivery.

 Intelligent Platform Management Interface Specification

 233

14.13 PPP Alerting

PPP Alerts are accomplished by the BMC connecting to a remote LAN via a PPP account and then delivering a

UDP Datagram that contains an SNMP Trap formatted per the IPMI Platform Event Trap (PET) Format

specification. Information for the PET trap comes from the Event Message that generated the alert and from the

serial/modem configuration parameters for PET.

Intelligent Platform Management Interface Specification

234

15. Serial Over LAN
Serial over LAN (SOL) is the specification of packet formats and protocols for transmitting serial data over LAN

using IPMI over LAN packets. The typical goal of this capability is to redirect the traffic to/from a local

asynchronous serial controller interface. This enables communication over LAN with local software that only

understands how to communicate through a local serial controller. This can be used for implementing a virtual

remote serial terminal for enabling the user or remote software interaction with serial-based interfaces for operating

systems (e.g. “command-line” interfaces and Linux console) and management services (e.g. Microsoft’s serial-based

Emergency Management Services (EMS)).

15.1 System Serial Controller Requirements

The IPMI specifications do not set any mandatory requirement on the system-side interface for the serial

controller used with Serial over LAN. A “16550” serial controller register set interface is expected to be the most

common implementation. (Note that other specifications, such as EMS, may also have requirements for using a

16550 or 16450 register set). It is required that the system serial controller makes the functions of the RS-232

serial hardware handshake signals (RTS, CTS, DCD/DSR, DTR) available to the BMC. These do not need to be

physical external signals as long as the BMC has the ability to perform the same flow control and set the same

serial controller status that would be set as if the serial controller were connected to an external terminal via RS-

232.

15.2 SOL and Serial Port Sharing
Serial-over-LAN has been designed to be able to work alongside the Serial Port Sharing capability of IPMI. This
supports an implementation where traffic to/from the serial controller interface on the baseboard can be routed either
to the BMC, SOL, or to the system’s serial port connector. To accomplish this, the specifications define commands to
control the routing of the serial stream using the serial multiplexer logic, also referred to as the ‘mux’. Table 15-1, Mux
Settings describes the basic connections that support Serial-over-LAN. When Serial Port Sharing is used with SOL,

the mux has three settings:

Table 15-1, Mux Settings
Setting Description

System The mux connects the serial connector on the chassis to the system serial controller. The RxD line is
routed so the BMC can snoop incoming serial traffic for escape sequences and character patterns.

BMC The mux connects the serial connector on the chassis to the BMC. The mux circuitry also places the
hardware handshake lines to the baseboard serial controller into a steady state.

SOL The mux is set to connect the baseboard serial controller directly to the BMC.

Note that there is no requirement that SOL is used with serial port sharing. SOL can be implemented with a dedicated
serial controller interface where the interface only provides traffic for SOL connections. Serial Port Sharing can be
implemented on a separate port if desired, or not at all.

The IPMI specifications do not specify the hardware design and implementation of SOL or Serial Port Sharing. Figure
15-1, SOL with Serial Port Sharing, presents an example block diagram for the purposes of illustrating the concept of
SOL when used with Serial Port Sharing.

The example figure shows the signal routing when the mux is set to ‘SOL’. The bold lines represent the flow of data.
The interconnections and blocks shown are to illustrate the functional relationships between the system management
elements, and do not map directly to the exact circuit implementation of the architecture.

When the mux is set to ‘SOL’, the serial connection at the back of the box is isolated from both the baseboard serial
controller and the BMC and the serial connector cannot be used for communicating with the BMC or the system.
However, when SOL is not in use, the BMC can allow the serial connector to be used for functions such as the
communicating with the BMC via IPMI over Serial, or as a regular serial port.

 Intelligent Platform Management Interface Specification

 235

Refer to Section 15.12, SOL Interaction with Windows.NET Escape Sequences, and Section 15.13, SOL Payload
Activated with Serial Port Sharing for additional information on the interaction between SOL and Serial Port Sharing.

Figure 15-1, SOL with Serial Port Sharing

R
x
D

T
x
D

C
o

n
tr

o
l

MODEM

RxD

TxD

Control

System Bus

System Bus

(e.g. ISA or PCI)

BMC

RxD
TxD

BMC

TxD

control

sw itching

control

sw itching

RxD

Serial Port Transceivers

Serial Port Connector

(E.g. 'COM2')

SMBus

LAN

Network Interface Chip

(LAN Controller)

Packet

Routing
Baseboard

Management

Controller

(BMC)

System Interface

U
A

R
T

System Bus

LAN Traffic

 to/from BMC

LAN Traffic

 to/from System

Baseboard Serial Controller

15.3 SOL Operation Overview

SOL operation is conceptually straightforward. A remote management application can establish an IPMI-over-

LAN session with the BMC. Once the session is established, the remote console can request that the SOL be

activated. If SOL is used with Serial Port Sharing, this causes the BMC to set the mux to ‘SOL’.

From this point, any outgoing characters from the baseboard serial controller are assembled into packets by the

BMC and sent to the remote console over the LAN. Conversely, in-bound LAN packets carrying characters for

the system serial controller have their character data extracted by the BMC and delivered to the baseboard serial

controller.

Intelligent Platform Management Interface Specification

236

The SOL character data is carried as SOL Messages that are carried in UDP datagrams. The packet format is that

for IPMI v2.0 RMCP+ with the Payload Type set to “SOL”. The SOL Payload includes fields that are used for

supporting acknowledge and retries of SOL messages, and for supporting functions such as flushing buffers or

temporarily suspending serial traffic using flow control.

15.4 SOL Security

Authentication and encryption for SOL are handled at the RMCP+ level.

15.5 SOL Sequence Numbers

At the session level, SOL Payloads share the session sequence numbers for authenticated and unauthenticated

packets with other packets under the IPMI session. At the payload level, SOL packets include their own message

sequence numbers that are used for tracking missing and retried SOL messages.

15.6 Flow Control

Flow Control is used to help ensure that serial data is not lost because of differences in the throughput between the

serial controller interface and the network interface. When SOL is used with a physical serial controller, flow

control on the serial controller side is accomplished by the BMC controlling and monitoring the hardware

handshake signal lines (RTS, CTS, DCD/DSR, DTR) on the serial controller.

Some implementations may have the serial controller function integrated into the BMC or another device. Such

implementations may not have physical hardware flow control lines, but there must be internal control capabilities

that accomplish the same thing.

Flow control on the network side is handled by use of acknowledges (ACKs) and negative-acknowledges

(NACKs) that indicate whether the BMC is ready to accept more data or not.

15.7 Bit Rate Handling

Some implementations of SOL will connect pins for a serial interface on the BMC to the pins for the serial

interface of a serial controller for the system. For standard microcontroller serial interfaces, the BMC would need

to know the bit rate setting of the motherboard serial controller in order for the BMC’s serial controller to be in

synch. Thus, there is a non-volatile configuration setting for setting the bit rate for SOL in the BMC.

Other implementations may incorporate an embedded serial controller in the BMC or may have hardware

mechanisms that allow the BMC to get the bit rate setting directly from the system serial controller. In this case,

the non-volatile configuration bit rate setting is not used.

15.8 Volatile and Non-volatile SOL Configuration Parameters

SOL configuration parameters may be volatile, non-volatile, or have both volatile and non-volatile settings.

Unless otherwise specified, the volatile settings are copied from the non-volatile settings when the BMC first

initializes. Subsequently, the non-volatile settings are restored whenever the payload is first activated.

Unless otherwise specified, changes to volatile parameters take effect immediately (within normal command

processing time, typically ~30 milliseconds) and for the duration that the payload is activated. For example,

changing the bit rate of SOL using the non-volatile setting will cause the BMC to immediately change its bit rate

setting.

It is desirable that some volatile settings, such as bit rate, take effect before communication proceeds on the

channel. To help support this, the Activate Payload command includes an auxiliary parameter that enables the

 Intelligent Platform Management Interface Specification

 237

remote console to direct the BMC to leave CTS and DCD/DSR deasserted after the payload has been activated.

Assuming the baseboard serial controller is paying attention to hardware handshake, this enables the remote

console to hold off character transmission from the baseboard until it has changed volatile settings.

15.9 SOL Payload Data Format

Table 15-2, SOL Payload Data Format, specifies the fields that make up the SOL Payload in an RMCP+ packet.

Table 15-2, SOL Payload Data Format
Field Size Description

Packet Sequence
Number

1 Sequence Number for this packet.

Sequence numbers must be non-zero. Multiple outstanding sequence numbers are
not supported in this version of the specification. Retried packets use the same
sequence number as the first packet.

[7:4]

Reserved

[3:0]

Packet sequence number. 0h = ACK-Only packet.

Packet ACK
/NACK Sequence
Number

1 Sequence Number for packet being ACK’d or NACK’d.

[7:4]

Reserved. Write as 0h.
(Future spec may use this to specify a range of packets being acknowledged)

[3:0]: Packet sequence number being ACK’d/NACK’d.

0h: Informational packet. No request packet being ACK’d or NACK’d.

Accepted
Character count

1 Accepted Character Count 1-based.

This field indicates the number of characters accepted from the packet, if any.

00h = Packet received but no data bytes accepted.

For BMC-to-Console:

In order to improve throughput, the BMC is allowed to append additional characters
to a packet when it resends it. To support this, the remote console must accept
retried packets (packets with the same packet sequence number) and check to see
if the packet contains additional data. If the packet does contain addition data, the
remote console should accept the data and acknowledge the packet using the
packet sequence number and return the count of the number of characters that it
had received.

The console must either accept all packet data sent to it or NACK the entire packet.
It is not allowed to accept partial packet data.

For Console-to-BMC:

The BMC is allowed to accept partial packet data by NACK’ing the packet and
returning a character offset that is less than the data length sent by the remote
console. The remote console would then send the next packet starting with the first
byte of data that the BMC rejected. Retried packets from the remote console are
unchanged from the original packet. The remote console is not allowed to append
additional data to retried packets. This eliminates the need for the BMC to check
the content of packets with duplicate packet sequence numbers.

Operation / Status 1 BMC to Remote Console: Remote Console to BMC:

 Operations are executed before
character data is transferred.

[7] reserved

[6]

Note: Operations are executed before
character data is transferred.

[7] reserved

[6] ACK/NACK

Intelligent Platform Management Interface Specification

238

Field Size Description

1b: Packet is being NACK’d. The
BMC is unable to accept all
character data from packet.
Note: Operation field is still
accepted even if packet is
NACK’d.

0b: ACK. BMC ready to accept next
packet of character data.

[5][1]

A NACK packet with this status will
be automatically sent one time after
this bit changes state. (Whenever
the system enters or leaves a power
state where character transfers to
the system serial controller are
possible)

A NACK packet with “Character
transfer is unavailable” status will
also be sent for each character
transfer request from the remote
console when the system is in a
powered-down or sleep state.

1b: Character transfer is
unavailable because system is
in a powered-down or sleep
state.

0b: SOL character transfer is
available.

[4][2]

A NACK packet with this status will
be automatically sent one sent
once, just before the BMC
deactivates SOL because of a front
panel power-button or a reset.

1b: SOL is deactivated/deactivating.
[Remote console can use this to
tell if SOL was deactivated by
some other party, or by local
pushbutton reset or power
on/off].

0b: SOL is active.

[3] Transmit Overrun

1b: characters were dropped
between transmitting this packet
and the previous packet,
because the system did not pay
attention to hardware flow
control.

0b: no characters were lost between
this packet and the preceding
packet.

[2] Break

1b: A break condition from the
system has been detected. The
BMC will generate this only on

1b: NACK. Packet is being NACK’d by
the remote console.

0b: ACK. Packet is being ACK’d by
the remote console.

[5] Ring/WOR

Assert RI (may not be supported on all
implementations) - Goal is to allow this
to be used for generating a WOR.

[4] Break

1b: Generate BREAK (300 ms,
nominal)

[3] CTS

1b: Deassert CTS (clear to send) to
the baseboard serial controller.
(This is the default state when
SOL is deactivated.)

0b: If test mode = inactive, Let BMC
control CTS. If test mode = active,
assert CTS.

[2] DCD/DSR

for test mode = inactive:

1b: Deassert DCD/DSR to baseboard
serial controller

0b: Assert DCD/DSR to baseboard
serial controller.

for test mode = active:

1b: Deassert DCD to baseboard serial
controller

0b: Assert DCD to baseboard serial
controller.

[1] Flush Inbound

for test mode = inactive:

1b: Drop (flush) data from remote
console to BMC [not including
data carried in this packet, if any]

for test mode = active:

1b: Deassert DSR to baseboard serial
controller

0b: Assert DSR to baseboard serial
controller.

[0] Flush Outbound

for test mode = inactive:

1b: Flush Outbound Character Data
(flush data from BMC to remote
console)

for test mode = active:

reserved. Write as 0b.

 Intelligent Platform Management Interface Specification

 239

Field Size Description

one packet at the start of the
break.

0b: no break detected

[1:0] For test mode = inactive:

 Reserved

 For test mode = active:

[1] - 1b = RTS asserted

[0] - 1b = DTR asserted

A packet with this status will be
automatically sent whenever RTS or
DTR changes state. Note that this
packet may not contain character
data. If no character data is available,
this will be a NACK packet.
Otherwise, the ACK/NACK state
follows the definition for bit [6], above.

Character Data varies Data length, in bytes, is equal to the IPMI Message/SOL Message Length field in
the Session Header, minus the bytes for the Packet Sequence Number, through
and including the Operation Field.

1. If the system is powered down or in certain sleep states, the baseboard serial controller will not be available for transferring
characters. When the BMC receives data from the remote console, and the system is powered down or sleeping, the BMC can
use this bit to return status to indicate to the remote console why the characters it received may not be able to be transferred to
the system. Note that this is an ‘advisory’ bit. The BMC will still attempt to put characters into the system serial controller in
case that the serial controller is configured to wake the system under this condition. It is mandatory that the BMC returns this
bit when the system is powered down (S4/S5). The BMC may not be able to differentiate other system sleep states, in which
case the bit should be returned as 0b (transfers available). If the SOL payload is launched over a separate or dedicated
session, the device managing that session may not be able to tell when the system is powered down. In this case, the
‘character transfer is unavailable’ function of this bit is optional, but recommended.

2. The BMC issues this status when the payload is deactivated for due to the following conditions: a. The payload is deactivated
because of a manual power down or reset. (An implementation is recommended to have a local manual “pushbutton” reset or
power-off to deactivate an SOL payload. This is provided as a way of terminating remote control connections for local
servicing.) b. The SOL payload is deactivated via the Deactivate Payload or Close Session commands. These command may
have been issued from another session. (System software operating through the system interface, and users with Admin
privilege have the ability to issue the Deactivate Payload and Close Session commands to other sessions). If the SOL payload
is launched over a separate or dedicated session, the device managing that session may not be able to tell whether the system
is being locally powered on/off or reset. In this case, the ‘SOL de-activating’ function of this bit on local power and reset
transitions is optional, but recommended.

15.10 Activating SOL using RMCP+ Authentication

To use SOL a remote console or remote application must first establish an IPMI Session with the BMC. This is

accomplished by sending the specified IPMI and RMCP+ RMCP+/RAKP messages to the BMC with the

appropriate user name, role, and password/key information. If the remote console plans to use encryption with

SOL, the console must also negotiate an encryption algorithm at the time that the IPMI session is established.

Once the IPMI session has been established, the Get Channel Payload Support command can be used to retrieve

the present availability of SOL and the version of SOL.

If SOL is not already active on another session, the next step is to issue the Activate Payload command. The

command will return information about what serial input and output data buffer sizes are available on the BMC as

well as the UDP port number over which SOL packets can be transferred.

The port that was used for establishing the IPMI session may not be the same port number that SOL is available

over. Some implementations transfer SOL payloads available over a separate UDP port in order to provide better

performance. If the Activate Payload command returns a port number that is different than the port number that

was used to establish the IPMI session, the remote console must establish a separate IPMI Session to the specified

Intelligent Platform Management Interface Specification

240

port number using the same IP Address, username and password/key information that was used to establish the

IPMI session.

Note that if a second session has already been established on that port number for a different payload type, the

existing session can also be used for SOL payloads, provided that the session was established at a privilege level

that matches the privilege level and authentication required for SOL. Otherwise, the remote console will need to

close that session and re-establish it at the necessary privilege level.

15.11 SOL Packet Acknowledge and Retries

A packet acknowledge is of one of two types:

 An ACK, indicating that the packet has been received and all its data has been accepted

 A NACK, indicating that the packet was received but some or all of the data could not be accepted

To improve efficiency, the packet acknowledgment information can be carried in a packet that also carries the

SOL character data. Conversely, a packet can be an ACK-only packet that carries ACK or NACK information,

but no data. Packets with a 0h Packet Sequence Number are not acknowledged. Therefore, ACK-only packets ,

which are specified to have a 0h Packet Sequence Number, are not acknowledged.

Except for ACK-only packets from the BMC, the remote console must acknowledge each SOL packet that it

receives. If the BMC does not receive an ACK packet within a timeout interval, the BMC will resend (retry) the

packet. The number of retries and the amount of time between retries are configurable through the SOL

Configuration Parameters. Once the number of retries has been met the BMC will drop the packet and the data

will be lost. Similarly, the BMC will acknowledge all packets it receives from the remote console that have a

non-0h Packet Sequence Number. I.e. the BMC acknowledges all packets except ACK-only packets from the

remote console.

If the remote console wants to temporarily stop the BMC from accepting characters from the system, it should use

the “CTS Pause” bit in the control/status byte. Whether this stops the system from transmitting is dependent on

whether the system software pays attention to the CTS (hardware handshake) status or not. If the system continues

to send characters to the BMC, the BMC will attempt to transmit them to the remote console.

It is possible that additional characters could be received from the system serial controller while the BMC was

waiting for a retry timeout. In order to improve throughput, the BMC is allowed the option of appending

additional characters to a packet whenever it resends it. To support this, the remote console must accept retried

packets (packets with the same packet sequence number) and check to see if the packet contains additional data. If

the packet does contain addition data, the remote console should accept the data and acknowledge the packet

using the packet sequence number and character offset value that it had received.

Table 15-3, Remote Console to BMC SOL Packet Handling
Packet fields from remote console: Function / BMC Action

ACK/
NACK

ACK’d/NACK’d
 Seq#

Accepted
Character Count

ACK Seq # from BMC data
packet

Non-zero

matches character
count from BMC

“Completion ACK”

BMC processing for specified packet is done.

A packet from the remote console with an ACK and an
Accepted Character Count for the full amount of data
for the packet indicates that the remote console has
successfully accepted the packet.

ACK Seq # from BMC data
packet

Non-zero

less than character
count from BMC

“Partial ACK”

BMC immediately retransmits specified packet

It is possible that the remote console may have missed
a BMC retry where the BMC had appended more data
to the packet (retry intervals should be configured to
avoid this scenario). If the BMC receives an ACK for

 Intelligent Platform Management Interface Specification

 241

less than the last amount of transmitted data, the BMC
will cease appending data to the packet and will
retransmit the packet until it receives an ACK from the
remote console with an Accepted Character Count for
the full amount of packet data.

NACK Seq # from BMC data
packet

0 “Suspend NACK”

BMC stops sending specified packet.

The remote console would use the Suspend NACK if it
were temporarily out of buffer space for characters
already queued up in the BMC and did not want those
characters to get dropped. The BMC stops sending /
retrying specified packet and waits until it gets either a
“Partial ACK”, “Completion ACK”, “Resume ACK” or a
Flush Outbound operation from the remote console.
The BMC will deassert CTS when it gets near running
out of buffer space for characters from the system. If
characters continue to come in (CTS is ignored by the
system) a transmit overrun condition can occur.

ACK Seq # from BMC data
packet

0 “Resume ACK”

BMC immediately retransmits specified packet.
Cancels a “Suspend NACK”.

A packet from the remote console with an ACK and an
Accepted Character Count of zero (0) bytes will cause
the BMC to immediately retransmit the packet with the
corresponding sequence number to the remote
console. This can be used as a way to get the BMC to
restart transmission after a Suspend NACK from the
remote console.

ACK 0h 0 “Control-only Packet”

BMC performs operation specified in the control/status
field.

For FLUSH operation:

A packet from the remote console with a “Flush
Outbound” operation will cause the BMC to cease any
retries in progress and the BMC will start accumulating
character data anew. The remote console can use this
as a recovery mechanism if it gets ‘lost’ in the
sequence from the BMC.

See packet format table for info on other functions.

15.12 SOL Interaction with Windows.NET Escape Sequences

The Microsoft .NET Emergency Management Services specification (See [MSFT EMS]) defines certain character

sequences for performing the following operations:

System Hard Reset <ESC>R<ESC>r<ESC>R
Invoke Service Processor (i.e. switch to BMC) <ESC>(
Exit Service Processor (with optional prompt) Q
Exit Service Processor (without confirmation prompt) <ESC>Q

The specification also requires that a switch to the Service Processor is acknowledged by sending an <ESC>*

sequence to the remote console:

Acknowledge Switch to Service Processor <ESC>*

Typically, the input escape sequences would be received by the BMC over the serial/modem connection. In this

case, the sequences for Invoking and Exiting the service processor would control the serial/modem mux setting

associated with serial port sharing. However, there are separate streams for SOL and BMC traffic, so unlike serial

Intelligent Platform Management Interface Specification

242

port sharing there is no need for a mux to switch between console traffic to the system serial controller and traffic

to the BMC.

Therefore, since you can always send commands to the BMC as IPMI Messages, the BMC itself does not snoop

for or handle Windows .NET Escape sequences in the SOL character data. However, a remote console application

can emulate support for the Windows .NET headless sequences by filtering for the Windows .NET escape

sequences prior to placing the data in an SOL packet. If the Windows .NET escape sequences are detected, the

remote console can then take the appropriate actions. For example, if the Reset escape sequence is detected, the

remote console would send the IPMI command for a system reset.

15.13 SOL Payload Activated with Serial Port Sharing

The following lists the behavior of certain IPMI commands while SOL is activated. This applies only when the

SOL is being used in conjunction with Serial Port Sharing.

 The Set Channel Access command is accepted for the serial channel, but while SOL is activated the

Channel Access Mode is forced to ‘disabled’. Attempting to change the access mode while SOL is

activated will result in a D5h completion code. The access mode shall be saved when SOL is activated, and

restored when SOL is deactivated.

 The Set Serial/Modem Configuration Parameters and Get Serial/Modem Configuration Parameters

commands are accepted for the serial/modem channel and have no special behavior while SOL is activated.

 The UDP proxy commands, Set PPP UDP Proxy Transmit Data, Get PPP UDP Proxy Transmit Data,

Send PPP UDP Proxy Packet, Get PPP UDP Proxy Receive Data, will receive a D5h error completion

code while SOL is activated.

 The Callback command will receive a D5h error completion code when the command is targeted to the

serial/modem channel being used for SOL and SOL is activated. The Set User Callback Options and Get

User Callback Options commands will be accepted.

 The Send Message Command will receive a D5h error completion code when the command is targeted to

the serial/modem channel being used for SOL and SOL is activated.

 The Alert Immediate Command will receive a D5h error completion code when the command is targeted to

the serial/modem channel being used for SOL and SOL is activated.

 While SOL is activated, the Set Serial/Modem Mux command will respond to the requested operations as

follows:

Table 15-4, Set Serial/Modem Mux Command Operation while SOL Active
Operation Response

0h = get present mux setting/status only Accepted. BMC returns that mux is set to ‘System’

1h = request switch of mux to system Accepted

2h = request switch of mux to BMC Rejected (see response data for command)

3h = force switch of mux to system Allowed

4h = force switch of mux to BMC BMC returns D5h completion code

5h = block requests to switch mux to system BMC returns D5h completion code

6h = allow requests to switch mux to system Accepted

7h = block requests to switch mux to BMC BMC returns D5h completion code

8h = allow requests to switch mux to BMC Accepted

 Intelligent Platform Management Interface Specification

 243

Intelligent Platform Management Interface Specification

244

16. Event Messages
Event Messages are special messages that are sent by management controllers when they detect significant or

critical system management events. This includes messages for events such as ‘temperature threshold exceeded’,

‘voltage threshold exceeded’, ‘power fault’, etc. The Event Message generator (the device generating an Event

Message) notifies the system of the event by sending an “Event Request Message” to the Event Receiver Device.

When the Event Receiver gets a valid Event Message, it sends a response message to the generator of the Event

Message. It then typically transfers the message to the System Event Log. The Event Receiver does not interpret the

Event Messages it receives. Thus, new Event Message types can be added into the system without impacting the

Event Receiver implementation.

In some systems, the Event Receiver will need to interrupt the system to notify it that there is an Event Message to

be logged. It is desirable for the implementation to have verified and buffered Event Messages in their entirety

before issuing such an interrupt. This way, the interrupt handler will not need to wait for the Event Message

transmission to complete first.

16.1 Critical Events and System Event Log Restrictions

The platform’s System Event Log is typically of limited size (~3 to ~8 KB, depending on implementation).

Therefore, it is important to refrain from filling the System Event Log with non-critical ‘clutter’.

The System Event Log is primarily intended for capturing Critical Events. These include events that require

immediate logging to guarantee that they’re available for ‘post-mortem’ analysis, and events that may require

quick system responses, such as system power off, or shutdown.

Critical events include out-of-range temperature and voltage events, hardware failures such as power supply or

fan failures, interrupts and signals that affect system operation such as NMIs and PCI PERR (parity error) and

SERR (system error). Critical Events also include events that impact system data integrity, such as the

uncorrectable ECC errors, or system security, such as ‘chassis intrusion’.

In addition to events that indicate ‘failure’ conditions, events that indicate impending failures are also considered

to be critical events. This includes events for reaching ‘warning levels’ for things such as system temperature or

error counts. The assertion of ‘Predictive Fault’ information is also considered critical, particularly if the

monitored device does not have a direct ‘failure’ indication.

Non-critical events, such as the return to an ‘OK’ state from a ‘Warning’ state should not be sent as critical

events. Non-critical system information is normally obtained by System Management Software polling sensors

and management controllers for their status.

 Intelligent Platform Management Interface Specification

 245

Table 16-1, Event Message Reception

NV Storage

Event Receiver SEL Mgr.

PEF

N
V

 S
to

ra
g

e
 I

/F

SEL

Data

IPMB InterfaceSystem Interface PCI Mgmt. Bus

Event Msg. Buf fer

B
IO

S
 E

v
e

n
ts

S
M

S
 E

v
e

n
ts

IP
M

B
 E

v
e

n
ts

P
C

I
M

g
m

t.
 B

u
s

e
v
e
n
ts

BMC Internal

Events

External Event

Messages

The preceding figure presents a conceptual illustration of the manner in which Event Messages can be handled by a

Baseboard Management Controller device that uses an external non-volatile storage device to hold the System Event

Log.

The figure shows a BMC with a shared system messaging interface where Event Messages can be delivered from

either BIOS, SMS (system management software / OS), or an SMI Handler, and an IPMB interface and through

which it can receive Event Messages from the Intelligent Platform Management bus. The BMC can also generate

‘internal’ Event Messages.

When the BMC receives a message via the system or IPMB interfaces, a ‘Message Handler’ function recognizes the

message as being for the ‘Event’ functionality in the BMC and passes the message information on to the ‘Event

Receiver’ function. The Event Receiver function then takes the message content and issues a request to a ‘SEL

Mgr.’ function that formats the message as an SEL Entry and calls the FLASH Interface to have the data stored.

The Event Receiver function is also responsible for driving the response message back through the messaging

system. This way, message acknowledgment or error reporting can be provided.

16.2 Event Receiver Handling of Event Messages

This section presents some implementation advice for the Event Receiver device. Please refer to the Intelligent

Platform Management Bus Communications Protocol Specification for additional information on Event Message

handling.

Since retries of Event Messages are part of the IPMB protocol, there is the potential for the Critical Event Handler

to receive more than one Event Messages for the same event. The Seq field allows repeated Event Messages to be

discriminated from new Event Messages. Event Messages from a Event Generator that match an earlier Event

Message can be ignored.

The option to disable SEL Logging only affects events that are received from the IPMB and PCI Management

Bus interfaces. Devices on the IPMB and PCI Management Bus are more likely to generate events ‘automatically’

while the other interfaces are primarily driven by either local or remote software which is assumed to have more

control as to whether it generates events or not.

Intelligent Platform Management Interface Specification

246

It is recommended that Event Receiver keep a table or queue of the Event Messages it has received. Any new

event message from the same source and of the same type, but with a different sequence number, would replace

the previous entry.

There are many ways to implement such a table or queue. Any implementation should provide enough tracking

support to handle previously received Event Messages for all the ‘known’ Event Generators in the basic system.

For example, a system that has four management controllers on the IPMB that can generate Event Messages

should track the previously received Event Messages from those devices.

It is desired that the Event Receiver can track at least six additional Event Generators to cover additional Event

Generators that are added into the system. (One common add-on would be an emergency management. Other

possible ‘add-on’ event generators would be other systems and peripheral boxes in a “managed cluster”

arrangement).

The Event Receiver implementation should account for the possibility that there can be more different Event

Generators than there are slots in the table. This can be managed by implementing the table with an ‘LRU’

deletion algorithm, where the oldest tracked Event Messages are deleted if a new Event Message comes in and the

table or queue is full. It can be assumed that there will rarely be more than two event messages that would be in

the state where they are to be re-transmitted because of a lost acknowledge.

With this type of design, the most anomalous behavior would be the multiple recording of the same event. This

would only be seen under artificially generated ‘stress’ testing and would only be able to occur if there were more

event message sources than table slots.

It is also recommended that the Event Receiver implement the ‘Seq Timeout’ as specified in the IPMB

Communications Protocol specification.

16.3 IPMB Seq Field use in Event Messages

This section presents a review of the IPMB Seq field and the manner in which it is used when Event Messages are

delivered via the IPMB.

The Event Receiver uses the Seq field to reject retried (duplicate) Event Request Messages that it may receive.

The Event Generator will re-send an Event Request Message if it does not receive the Event Response Message. It

is possible that the response could get corrupted, causing the Event Generator to re-send the original request even

though the Event Receiver had already successfully received it. This is one way that an Event Receiver could get

more than one Event Request Message for the same event. When the Event Generator re-sends the Event Request

Message, it does so with the same Seq value that it used for the original try. The Event Generator will increment

the Seq value the next time it has a new Event Request Message to send.

When Event Messages are delivered via the IPMB, the IPMB message’s Seq field is used to allow Event Receiver

to discriminate whether the Event Message is for a new occurrence of a given event, or is a re-transmission of a

previous Event Message for that event. The IPMB Seq field should not be confused with being a sequence number

for tracking multi-message transfers, as might be its use in other serial protocols.

If the Event Receiver receives an Event Message where the Cmd, NetFn, LUN, and Seq fields match the previous

event message from the same Requester, it can assume that the latter message is a re-transmission and return a

‘normal completion’ (00h) as a response to valid, duplicated requests. The Event Receiver does not log duplicate

events.

If the Event Receiver does not return a response, the Event Generator retries up to its retry limit count and then

concludes that the Event Request failed. Event Generator devices on the IPMB do not send new Event Messages

until they’ve finished sending the previous Event Message (including retries). This eliminates the need for the

Event Receiver to maintain status for multiple Seq numbers from a single Event Generator.

The data fields for the Event Request Message are not included in the comparison. This is because the Event

Request Message may return a data field that reflects a ‘present state’ or data value that could vary with each

retry.

 Intelligent Platform Management Interface Specification

 247

Refer to the Intelligent Platform Management Bus v1.0 Communications Protocol Specification for more

information on the Seq field.

16.4 Event Status, Event Conditions, and Present State

A sensor tracks present state and Event Conditions. An Event Condition is that set of comparisons applied to the

present state and previous state that produces a given Event Status.

A management controller typically polls for Event Conditions. When it sees a condition become active, it updates

the Event Status for the sensor. The process of updating the present state Event Status is referred to as Scanning or

Sensor Scanning.

The Event Status is those bits that are reported in the Get Sensor Event Status command. As long as scanning is

enabled, the Event Status bits will be updated according to changes in Event Status. This is independent of

whether Event Messages are generated on a given event. That is, turning off Event Message Generation for a

particular state does not turn off scanning or updates of the Event Status.

The Get Sensor Reading command returns State Bits reflecting the present state of the sensor. If the sensor is an

‘auto- re-arm’ sensor, these bits can also represent the Event Status if hysteresis is factored in. Thus, the Get

Sensor Events command is optional for auto- re-arm sensors. An application uses the masks in the SDR to

determine which bits reflect both current state and event status, and which bits reflect current state only.

The condition that causes an Event Message to be sent is referred to as the 'Event Trigger'. The classification of a

sensor indicates whether the corresponding event was discrete, or threshold-based. The sensor classification is

part of the Event/Reading Type Code (see section 42.1, Event/Reading Type Codes).

A reading/state unavailable (formerly “initial update in progress”) bit is provided with the Get Sensor Reading

and Get Sensor Event Status commands to indicate to software that it must ignore the reading and/or state

information because the BMC cannot obtain a valid reading and/or state information. This can occur in situations

where the sensor is monitoring an entity that may or may not be present, such as with hot-swap devices. For

example, if a sensor monitors the temperature of a hot-swap power supply, the reading/state unavailable bit can be

used to indicate that no valid temperature reading is available because the power supply is not installed. The bit

can also indicate when a reading or state is unavailable because a sensor is re-arming (see Section 16.6, Re-

arming, below.

16.5 System Software use of Sensor Scanning bits & Entity Info

System software must ignore any sensor that has the sensor scanning bit disabled - if system software didn’t

disable the sensor. This provides an alternate mechanism to allow the management controller to automatically

adjust the sensor population without requiring a corresponding change of the sensor data records. For example,

suppose the management controller has a way of automatically knowing that a particular temperature sensor will

be absent in a given system configuration if a given processor is also absent. The management controller could

elect to automatically disable scanning for that temperature sensor. System management software would ignore

that sensor even if it was reported in the SDRs.

Note that this is an alternate mechanism that may be useful in some circumstances. The primary mechanism is to

use the Entity ID information in the SDRs, and combine that information with presence detection for the entity.

If there is a presence detection sensor for a given entity, then system management software should ignore all other

sensors associated with that entity. Some sensors have intrinsic support for this. For example, a sensor-specific

Processor sensor has a ‘Processor Presence’ bit. If that bit is implemented, and the processor is absent, any other

sensors and non-presence related bits associated with that processor can be ignored. If the sensor type doesn’t

have an intrinsic presence capability, you can implement an ‘Entity Presence’ sensor. This sensor solely reports

whether a given Entity is present or not.

Intelligent Platform Management Interface Specification

248

16.6 Re-arming

Re-arm refers to resetting internal device state that tracks that an event has occurred on the sensor. After a sensor

is re-armed the device will re-check the event condition and re-generate the event if the event condition exists.

If the event condition already exists at the time that the re-arm is initiated, then it is possible that the event will be

regenerated immediately following the conclusion of the re-arm. The delay from the re-arming of a sensor to the

regeneration of the event is device implementation dependent. A reading/state unavailable (formerly “initial

update in progress”) bit is provided with the Get Sensor Reading and Get Sensor Event Status commands to help

software avoid getting incorrect event status due to a re-arm.

16.6.1 ‘Global’ Re-arm

A device that receives a Set Event Receiver command shall ‘re-arm’ event generation for all its internal sensors.

 Intelligent Platform Management Interface Specification

 249

Intelligent Platform Management Interface Specification

250

17. ‘Platform Event Filtering (PEF)
Platform Event Filtering (PEF) provides a regular mechanism for configuring the BMC to take selected actions on

event messages that it receives or has internally generated. These actions include operations such as system power-

off, system reset, as well as triggering the generation of an Alert.

The BMC maintains an event filter table that is used to select which events trigger a page (or other action) and

which actions to perform. Each time the BMC receives an event message (either externally or internally generated)

it compares the event data against the entries in the event filter table. The BMC scans all entries in the table and

collects a set of actions to be performed as determined by the entries that were matched.

Event filtering is independent of Event Logging. That is, Event Logging and Event Filtering (and associated actions)

are enabled/disabled independent of one another.

17.1 Alert Policies

When an Alert is triggered via PEF the alerting process is directed by an Alert Policy. An alert policy is a

collection of one or more alert destinations. An alert policy can support a mix of different alert destination types

and channels. For example, one policy could include LAN, dial page, and TAP alerts to different locations. The

destinations in a policy are processed in sequence. Whether a given destination will be used or not can be

configured to be dependent on whether the alert to the previous destination was successful or not.

Alert Policy data is stored in an Alert Policy Table that is part of the PEF configuration parameters. An

implementation can support multiple policies. A policy number identifies different policies in the table. The alert

policy number is used in the Event Filter Entry to select what alert policy is used when a match occurs. This

mechanism allows different alert policies to be associated with different classes of events. For example, one

policy to be used for ‘high priority’ events and a different policy for ‘low priority’ events.

Some alerts, such as alphanumeric pages, can be associated with Alert Strings. The combination of Event Filter

Entry and alert destination are used to select a given Alert String from a set of strings kept in the PEF

configuration parameters. This enables different strings to be sent based on what event filter was matched and

where the alert is being sent.

17.2 Deferred Alerts

When an alert policy is initiated, it’s possible that the communication path to the destination could already be

busy processing an earlier alert. To handle this situation, the implementation internally queues up information that

tracks alert policies and destinations to be processed. Alerts that have been postponed are referred to as Deferred

Alerts.

A BMC that supports alerting is required to support deferred alert policies for at least eight events.

17.3 PEF Postpone Timer

Event logging takes precedence over PEF actions. That is, BMC logging of the event is completed prior to

initiating any PEF actions. PEF can occur immediately after the event is logged, or it may be postponed by the

PEF Postpone Timer. The PEF Postpone Timer is a separate timer that allows system software time to process

events instead of PEF. PEF will occur if system software does not handle the event before the PEF Postpone

Timer expires.

 Intelligent Platform Management Interface Specification

 251

17.4 PEF Startup Delay

Platform Event Filtering is active whenever the BMC is in a state to receive events, either internally or externally

generated. This includes events received over the system interface. Platform Event Filtering is not available when

the BMC is in manufacturing test, modal SDR update, or firmware update modes.

PEF triggered actions may be postponed during certain intervals of BMC operation. The PEF Startup Delay

causes Platform Event Filtering triggered power-down, reset, and power-cycle actions to be postponed when the

system is either powered up or is reset locally via a pushbutton or other local ‘front-panel’ user interface. OEM

actions may or may not be postponed, at the choice of the OEM implementation. Alerts are not postponed by the

PEF Startup Delay. There is a separate, optional, PEF configuration parameter that can control whether Alerts are

delayed on system startup. An implementation may allow the time delay for the PEF Startup Delay to be

configured via the Set PEF Configuration Parameters command.

It is recommended that the act of entering BIOS setup automatically disables Platform Event Filtering, and that

exiting BIOS setup automatically restores the prior PEF enabled/disabled state (provided that the user does not

explicitly change the PEF configuration while in setup).

The combination of the delay and BIOS setup gives the user the opportunity to enter setup and disable PEF. These

provisions are to allow recovery in case an incorrectly configured filter/action prevents the system from running

by powering it off, power cycling, or resetting it whenever the BMC initializes. Disabling PEF must immediately

cancel any pending PEF actions and deferred alerts.

17.4.1 Last Processed Event Tracking

A non-volatile ‘Last Software Processed Event’ storage location holds the Record ID for the last SEL Record

that system software has processed. System software writes to that location to identify which records it has

processed. A corresponding ‘Last BMC Processed Event’ value holds the Record ID for the last event in the

SEL that the BMC processed. These values can be set and retrieved by software using the Set Last Processed

Event ID and Get Last Processed Event ID commands, respectively.

If PEF is disabled, the Last BMC-processed Event holds the Record ID for the last event that was received.

Clearing the SEL automatically clears the Last Software Processed Event and Last BMC Processed Event

values.

If PEF is enabled and the BMC loses power or is reset before the PEF Postpone Timer expires, the BMC will

automatically perform PEF against any existing, unprocessed events in the SEL once the BMC has restarted and

reinitialized.

Once enabled, the PEF Postpone timer starts running as soon as an unprocessed event is detected in the SEL. If

the SEL already contains unprocessed events, the timer will start immediately.

The timer does not automatically reset on events received while the timer is running, but is reset by system

software after it sets the Last Software Processed Event value.

17.5 Event Processing When The SEL Is Full

If the SEL is full, new events will still be put into the Event Message Buffer (if the optional Event Message

Buffer is implemented). The Event Message Buffer for IPMI v1.5 is not overwritten if new events come in.

Therefore, if the Event Message Buffer is full, further events will not go into the event message buffer until its

cleared.

If PEF is implemented, events will also be accepted into a ‘hidden’ internal queue or buffer so they can be

processed by PEF. That buffer is only required to hold a single event. Thus, if that internal buffer gets full,

event messages will be rejected until a new space opens up.

Intelligent Platform Management Interface Specification

252

If neither an Event Message Buffer nor PEF are implemented, events will be rejected by the BMC once the SEL

gets full.

An implementation is allowed to provide a proprietary ‘SEL Aging’ option that automatically clears out SEL

entries if they’re more than a certain age old. If this is done, the algorithm must set the SEL ‘most recent erase

timestamp’ to reflect the time entries were deleted. It must also be possible to configure the system to operate

with the aging algorithm turned off.

17.6 PEF Actions

BMC will scan entire list, collecting a set of actions. Actions will then be executed in priority order. An alert

action can occur in combination with any other action (in priority order). The power down, power cycle, and

reset actions are mutually exclusive. If a combination of power down, power cycle, and/or reset actions results,

only the highest priority action will be taken.

Table 17-1, PEF Action Priorities
Action Priority Additional Information

power down 1 (optional)

power cycle 2 (optional) Will not be executed if a power down
action was also selected.

reset 3 (optional) Will not be executed if a power down or
power cycle action was also selected.

Diagnostic
Interrupt

4 (optional) The diagnostic interrupt will not occur if a
higher priority action is also selected to occur.

ICMB Group
Control

5 (optional) Performs ICMB group control operation
according to settings from the Group Control Table
parameter in the PEF Configuration Parameters.

Send Alert 6 (mandatory if alerting is supported) Send alerts in
order based on the selected Alert Policy.

Alert actions will be deferred until after the power
down has completed.

There is an additional prioritization within alerts
being sent: based on the Alert Policy Table entries
for the alert. This is described further in Section
17.11, Alert Policy Table.

OEM OEM (optional) Priority determined by OEM.

17.7 Event Filter Table

The Event Filter Table consists of a set of rows or ‘entries’ that define each filter. The following table specifies

the fields that comprise a row in the Event Filter Table. These entries include a series of masks that the BMC

applies to the event data. The fields are designed such that a combination of absolute and ‘wildcarded’

comparisons can be used for matching fields in the event record. Thus, either a single event or multiple events can

match up with a single Event Filter Table entry.

A PEF implementation is recommended to provide at least 16 entries in the event filter table. A subset of these

entries should be pre-configured for common system failure events, such as over-temperature, power system

failure, fan failure events, etc. Remaining entries can be made available for ‘OEM’ or System Management

Software configured events. Note that individual entries can be tagged as being reserved for system use - so this

ratio of pre-configured entries to run-time configurable entries can be reallocated if necessary.

A match occurs when there are event filter table matches (exact or wild-carded) for all compared fields in the

event message.

There are two things that can kick off PEF: the arrival of a new event or BMC startup with pending events.

 Intelligent Platform Management Interface Specification

 253

Table 17-2, Event Filter Table Entry
Byte Field Description

1 Filter Configuration [7] - 1b = enable filter

 0b = disable filter

[6:5] - 11b = reserved

 10b = manufacturer pre-configured filter. The filter entry has been
configured by the system integrator and should not be
altered by software. Software is allowed to enable or
disable the filter, however.

 01b = reserved

 00b = software configurable filter. The filter entry is available for
configuration by system management software.

[4:0] - reserved

2 Event Filter Action All actions are optional for an implementation, with the exception of Alert
which is mandatory if alerting is supported for one or more channels.
The BMC will return 0b for unsupported actions. Software can test for
which actions are supported by writing 1’s to the specified fields and
reading back the result. (Note that reserved bits must be written with
0’s)

[7] - reserved

[6] - 1b = group control operation (see [ICMB])

 0b = no group control operation (see [ICMB])

[5] - 1b = Diagnostic Interrupt (NMI)

 0b = no Diagnostic Interrupt

[4] - 1b = OEM action

 0b = no OEM

[3] - 1b = power cycle

 0b = no power cycle

[2] - 1b = reset

 0b = no reset

[1] - 1b = power off

 0b = no power off

[0] - 1b = Alert

 0b = no Alert

3 Alert Policy Number Used to select an alerting policy set from the Alert Policy Table. The Alert
Policy Table holds different policies that configure the order in which
different alert destinations and alerting media are tried.

[7] - reserved

[6:4] - group control selector (1-based). Selects entry from group control
table. (see [ICMB)

[3:0] - policy number. Value is ‘don’t care’ if Alert is not selected in the
Event Filter Action.

4 Event Severity This field can be used to fill in the Event Severity field in a PET alert. The
severity values are based on the ‘DMI’ severity values used for the
generic sensor event/reading type code. In the case that more than one
event filter match occurs for a given Alert Policy Number, the numerically
highest severity value will be used.

00h = unspecified

01h = Monitor 00 0001

02h = Information 00 0010

04h = OK (return to OK condition) 00 0100

08h = Non-critical condition 00 1000 a.k.a. ‘warning’

10h = Critical condition 01 0000

20h = Non-recoverable condition 10 0000

5 Generator ID Byte 1 Slave Address or Software ID from Event Message.

FFh = match any

Intelligent Platform Management Interface Specification

254

6 Generator ID Byte 2 Channel Number / LUN to match. FFh = match any see section 0,

SEL Record Formats.

7 Sensor Type Type of sensor. FFh = match any

8 Sensor # FFh = match any

9 Event Trigger (Event/Reading
Type)

FFh = match any

10,

11

Event Data 1 Event Offset Mask This bit field is used to match different values of the least significant
nibble of the Event Data 1 field. This enables a filter to provide a match

on multiple event offset values.

Bit positions 15 through 0 correspond to the offset values Fh - 0h,
respectively. A 1 in a given bit position will cause a match if the value in
bits 3:0 of the Event Data 1 hold the corresponding value for the bit
position. Multiple mask bits can be set to 1, enabling a match to multiple
values. A match must be made with this field in order to have a match for
the filter.

data 1

7:0 - mask bit positions 7 to 0, respectively.

data 2

15:8 - mask bit positions 15 to 8, respectively.

12 Event Data 1 AND Mask This value is applied to the entire Event Data 1 byte. The field is Used to
indicate ‘wildcarded’ or ‘compared’ bits. This field must be used in
conjunction with Compare 2. To match any Event Data field value, just set
the corresponding AND Mask, Compare 1, and Compare 2 fields to 00h.
(See Section 17.8, Event Data 1 Event Offset Mask for more information).
Note that the Event Data 1 AND mask, Compare 1 mask, and Compare 2
masks will typically be set to wild-card the least significant of Event Data 1
in order to allow the Event Data 1 Event Mask field to determine matches
to the event offset.

Bits 7:0 all have the following definition:

0 = Wildcard bit. (drops this bit position in the Event Data byte out of
the comparison process) Corresponding bit position must be a 1 in
Compare 1, and a 0 in Compare 2.
(Note - setting a 0 in this bit, a 1 and Compare 1 and a 1 in
Compare 2 guarantees that you’ll never have a match.)

1 = use bit for further ‘exact’ or ‘non-exact’ comparisons based on
Compare 1 and Compare 2 values.

13 Event Data 1 Compare 1 Used to indicate whether each bit position’s comparison is an exact
comparison or not. (See Section 17.8, Event Data 1 Event Offset Mask for
more information). Here, ‘test value’ refers to the Event Data value after
the AND Mask has been applied.

Bits 7:0 all have the following definition:

1 = match bit in test value exactly to correspond bit position in
Compare 2

0 = contributes to match if corresponding bit in test value matches
corresponding bit in Compare 2.

14 Event Data 1 Compare 2 (See Section 17.8, Event Data 1 Event Offset Mask for more information).
Here, ‘test value’ refers to the Event Data value after the AND Mask has
been applied.

Bits 7:0 all have the following definition:

1 = match a ‘1’ in corresponding bit position in test value.

0 = match a ‘0’ in corresponding bit position in test value.

15 Event Data 2 AND Mask

16 Event Data 2 Compare 1

17 Event Data 2 Compare 2

18 Event Data 3 AND Mask

19 Event Data 3 Compare 1

20 Event Data 3 Compare 2

 Intelligent Platform Management Interface Specification

 255

17.8 Event Data 1 Event Offset Mask

The Event Data 1 Event Offset Mask field in the Event Filter is used to match multiple bits in the Event Offset

field of the Event Data 1 byte of an event. The least significant nibble of event data 1 typically holds an event

offset value. This offset selects among different possible events for a sensor. For example, a ‘button’ sensor

supports a set of sensor-specific event offsets: 0 for Power Button pressed, 1 for Sleep Button pressed, and 2 for

Reset Button pressed. When an event is generated, it could have a 0, 1, or 2 in the event offset field depending on

what button press occurred.

The Event Offset Mask makes it simple to have a filter match a subset of the possible event offset values. Each bit

in the mask corresponds to a different offset values starting with bit 0 in the mask corresponding to offset 0. For

example, if it is desired to have a filter match offsets 0 and 2, but not 1, the mask would be configured to

000_0000_0000_0101b.

17.9 Using the Mask and Compare Fields

The AND Mask and the Compare 1 and Compare 2 fields are used in combination to allow wildcarding, ‘one or

more bit(s)’, and exact comparisons to be made between bits in the corresponding event data byte. One way to

understanding the bits is to look at the way they’re used in combination. First the AND Mask is applied to the test

value. The result, referred to below as the test value, is then bit-wise matched based on the values in the Compare

1 and Compare 2 fields, as summarized in the following table.

Table 17-3, Comparison-type Selection according to Compare Field bits
Compare

1
Compare

2
comparison description

1 1 exact compare
to 1

This bit in the test value must be = 1 for a match.

If it’s 0, there is no match. All ‘exact’ comparison bits must match
the corresponding bits in the test value for a match.

1 0 exact compare
to 0

This bit in the test value must be = 0 for a match.

If it’s 1, there is no match. All ‘exact’ comparison bits must match
the corresponding bits in the test value for a match.

0 1 ‘non exact’

compare to 1

If this bit in the test value is 1, it contributes to a match. There will
be a match if any one of the bit positions that has a ‘0’ in
Compare 1 field has a bit in the test value that matches the
polarity given in the corresponding bit position in the Compare 2
field. - unless there are exact comparisons that don’t match.

0 0 ‘non exact’

compare to 0

If this bit in the test value is 0, it contributes to a match. There will
be a match if any one of the bit positions that has a ‘0’ in
Compare 1 field has a bit in the test value that matches the
polarity given in the corresponding bit position in the Compare 2
field. - unless there are exact comparisons that don’t match.

17.10 Mask and Compare Field Examples

The following examples show how the fields are used. See

Intelligent Platform Management Interface Specification

256

Appendix B - Example PEF Mask Compare Algorithm for example matching algorithm.
Example 1: Match (bit 2 = 1) AND (bit 1 = 1), and ignore all other bits.

AND Mask: 0000 0110 Force all bits except bits 2 and 1 to 0. (Forcing to 0 and comparing exactly to 0 makes
the other bits ‘don’t care’)

Compare 1: 1111 1111 Compare all bits exactly.

Compare 2: 0000 0110 Compare for bits 2 and 1 both = 1, and remaining bits = 0.

Example 2: Match (bit 2 = 1) OR (bit 1=1), and ignore all other bits.

AND Mask: 0000 0110 Force all bits except bits 2 and 1 to 0.

Compare 1: 1111 1001 Compare for at least one of bit 2 or bit 1being polarity specified in the corresponding bit
position in Compare 2. Compare remaining bits exactly.

Compare 2: 0000 0110 Compare for bit 2 or bit 1 = 1, and remaining bits = 0 exactly.

Example 3: Match (bit 2 = 1) AND (bit 1 = 0)

AND Mask: 0000 0110 Force all bits except bits 2 and 1 to 0

Compare 1: 1111 1111 Compare all bits (after AND) exactly

Compare 2: 0000 0100 Compare for bit 2 = 1 and bit 1 = 0, and remaining bits = 0 exactly.

Example 4: Match bit 2 = 1 OR bit 1 = 0

AND Mask: 0000 0110 Force all bits except bits 2 and 1 to 0.

Compare 1: 1111 1001 Compare all bits except bits 2 and 1 exactly.

Compare 2: 0000 0100 Compare for bit 2 = 1 OR bit 1 = 0, and remaining bits = 0 exactly.

Example 5: Match most significant nibble = 1010 exactly, and any bit in LSN = 1.

AND Mask: 1111 1111 Look at all bits

Compare 1: 1111 0000 Compare all bits in MSN exactly.

Compare 2: 1010 1111 Compare MSN = 1010 exactly, and for a 1 in one or more positions in LSN

Example 6: match MSN = 1010 exactly, and any bit in LSN = 0.

AND Mask: 1111 1111 Look at all bits

Compare 1: 1111 0000 Compare all bits in MSN exactly.

Compare 2: 1010 0000 Compare MSN = 1010 exactly, and for a 0 in one or more positions in LSN

17.11 Alert Policy Table

Platform Event Filtering supports alerting as one of the selectable actions that can occur when an event matches

an event filter table entry. The alerting media and the different alert destinations that are tried are determined by

the settings in the Alert Policy Table.

The Alert Policy Table definition enables implementations to offer multiple policy sets. For example, one policy

could be configured to generate LAN Alerts and Pages and be associated with critical and non-recoverable events,

while another may generate only LAN Alerts and be associated with non-critical events. It would even be possible

to configure a ‘Chassis Security’ event to notify one party, while an ‘Over-temperature’ event could be delivered

to a different destination.

The table entry also contains a parameter that can be used to select whether the alert is delivered to all enabled

destinations, or that different destinations are tried until the alert is successfully delivered. Altering the policy

table entries can change the whether certain destinations are processed or not.

A policy number is used to group multiple table entries into a policy set. The collection of entries determines

which different media and alert types can be tried when an alert action occurs. When a Platform Event Filter table

entry is configured to perform an alert action on an event, an alert policy number is also configured for the action.

The BMC takes this policy number and uses it to look up the entries for the corresponding policy set in the Alert

Policy Table.

The policy number also determines the priority of alert policies. Only one starting Alert policy will be used for a

given event. If an event matches more than one alert policy, the policy with the lowest number will be used.

Implementations that support alerting are required to provide at least one table entry. It is recommended that an

implementation supports at least one policy table entry for each different channel over which an alert can be

delivered.

 Intelligent Platform Management Interface Specification

 257

Table 17-4, Alert Policy Table Entry
Byte Field Description

 DATA BYTES

1 Policy Number /
Policy

This value identifies the entries belonging to a particular policy set. When an Alert Action is
taken, the BMC will scan the Alert Policy Table and will attempt to generate alerts based on the
entries that form the policy set.

[7:4] - policy number. 1 based. 0000b = reserved.

[3] - 0b = this entry is disabled. Skip to next entry in policy, if any.

 1b = this entry is enabled.

[2:0] - policy
 0h = always send alert to this destination.

 1h = if alert to previous destination was successful, do not send alert to this destination.
Proceed to next entry in this policy set.

 2h = if alert to previous destination was successful, do not send alert to this destination.
Do not process any more entries in this policy set.

 3h = if alert to previous destination was successful, do not send alert to this destination.
Proceed to next entry in this policy set that is to a different channel.

 4h = if alert to previous destination was successful, do not send alert to this destination.
Proceed to next entry in this policy set that is to a different destination type.

2 Channel / Destination Channel that the alert is to be sent over. Channel determines which set of destination
addresses or phone numbers is used. Destination addresses and/or phone numbers are set
via the LAN and/or serial/modem configuration parameter commands. The Alert Type (e.g.
PET, TAP, Dial Page, etc.) is specified in the configuration parameters associated with the
specified destination.

[7:4] = Channel Number.

[3:0] = Destination selector.

3 Alert String Key This field holds information that is used to look up the Alert String to send for this Alert Policy
entry.

00h = no alert string.

[7] - Event-specific Alert String

 1b = Alert String look-up is event specific. The following Alert String Set / Selector sub-
field is interpreted as an Alert String Set Number that is used in conjunction with
the Event Filter Number to lookup the Alert String from the PEF Configuration
Parameters.

 0b = Alert String is not event specific. The following Alert String Set / Selector sub-field
is interpreted as an Alert String Selector that provides a direct pointer to the
desired Alert String from the PEF Configuration Parameters.

[6:0] - Alert String Set / Selector. This value identifies one or more Alert Strings in the Alert

String table. When used as an Alert String Set Number, it is used in conjunction with the
Event Filter Number to uniquely identify an Alert String. When used as an Alert String
Selector it directly selects an Alert String from the PEF Configuration Parameters.

The Alert String Key and lookup mechanism allows the Alert String to be ‘Event Specific’ -
meaning the string selection is determined by both the Event Policy Entry and Event Filter, or,
the string can be selected by the Event Policy alone. An Alert String can be pointed to by
multiple policy entries.

The Alert Policy Entry identifies a particular channel and destination for an alert. This in turn,
identifies the alert type. Thus, the binding of an Alert Policy Entry and an Alert String effectively
provides a mechanism for allowing different Alert Strings to be selected based on the alert
destination, or the type of alert destination. For example, a single Alert String could be shared
among all Alert Policy Entries for ‘Dial Page’ destinations, while event-specific Alert Strings
could be used for alerts to LAN destinations.

17.12 Alert Testing

BMC includes an ability to test alert configurations. This is accomplished through the Alert Immediate command.

This command allows a particular alert destination to be selected and an alert sent to it. Typically, software will

use the volatile settings in the configuration parameters for the channel to hold alert destination information until

the setting is verified by the user, at which time it can be moved into one of the non-volatile positions.

Intelligent Platform Management Interface Specification

258

17.13 Alert Processing

The BMC starts from the beginning of the Alert Policy Table, scanning for entries that match the event. The BMC

will scan all entries in the Event Filter table and initiate the highest priority Alert Policy for which there was a

match. If multiple filters match and have the same alert policy priority, the first matched event filter will be used.

(Since an Alert String can be associated with an event filter, it may be important to order the event filter table

such that the more ‘granular’ filters occupy the earlier entries, and the more generic filters occupy the later

entries.)

BMC implementations are allowed to have multiple alerts simultaneously in progress on the same channel or

across multiple channels.

If an alert was successfully delivered, the BMC will either stop processing the policy, or will continue to process

alert policy table entries - based on whether the destination was configured to stop alert processing on success or

not. Each entry in the alert policy is processed in order until all entries have been processed (meaning the alert

was either sent, failed, or the alert was skipped).

17.13.1 Alert Processing after Power Loss

It is possible that more events will come in while an alert is being processed. Each time a SEL Record is

completely processed for alerts, the BMC saves a copy of the Last BMC Processed Record ID to NV storage.

(“Completely processed” means that there are no incompletely processed alert policies for the event). That way,

if AC power is lost the BMC can tell whether there are events that may not have been processed for alerting by

comparing the Last BMC Processed Record ID with the Record ID of the last SEL Entry.

It’s possible that alerts were sent to some destinations, but not all, when power was lost. When power comes

back up, the BMC will start processing the entire record and as a result some alerts may get re-sent.

17.13.2 Processing non-Alert Actions after Power Loss

After the BMC powers up, and before restoring the system power state, it uses PEF to check pending events for

matches that would have yielded a ‘power off’ action. If there is a match, it sets the previous power Restore

State to Off and leaves the system powered off. The BMC skips processing reset or power cycle actions that

were pending when AC was lost.

In order to know how many events to process, the BMC should copy the Record ID or timestamp of the last

SEL Entry and only process records up to that point as events that were pending when AC was lost. That way, if

a new event comes in, it will be handled as a new event rather than as an event that was pending when AC was

lost.

17.13.3 Alert Processing when IPMI Messaging is in Progress

All automatically generated alerts are deferred if IPMI Messaging is in progress on the channel. The remote

console software can direct the BMC to skip processing deferred events by setting the Last BMC Processed

Record ID value for all filters to the Record ID of the last SEL Record.

17.13.4 Sending Multiple Alerts On One Call

To avoid unnecessary phone calls, it is desirable to have multiple alerts be delivered to a given PPP Account

before hanging up, rather than hanging-up after each event. The serial/modem configuration parameters and the

Alert Policy entries can be configured to support this. To have this accomplished, the configuration must fit the

following rules.

 The Connection Hold Time parameter for the PPP Accounts should be set to a value that covers the time

that you’d like the call to be maintained waiting for the next event to occur. Since a new alert will restart

 Intelligent Platform Management Interface Specification

 259

the connection time time-out, the value should be set to the time required to maintain the connection

between alerts.

 All event policies should be configured to have alerts to each channel delivered in priority order starting

with the highest priority destination first.

17.13.5 Serial/Modem Alert Processing

Alerts on the same given serial/modem channel processed according to priority. Alerts to PPP Accounts are

processed with higher priority than Dial Page or TAP Page alerts. PPP Accounts are prioritized according to the

account selection, with the lowest account selector corresponding to the highest priority with the lowest account

selector as summarized in the following table:

Table 17-5, Serial/Modem Alert Destination Priorities

Destination Type

Priority

(0 = highest)

Comments

PPP Account #1 1 All destinations behind a given PPP Account are at equal
priority. Destinations behind an account are handled in
the order that they occur in the Alert Policy Table entry
associated with the account.

PPP Account #2 2

PPP Account #N N

Dial Page and TAP Page N+1 All Dial Page and TAP Pages are at equal priority. They
are handled in the order that they occur in the Alert Policy
Table entry.

The following specifies how serial/modem alerts from the same channel are handled:

 The BMC will not prematurely terminate a PPP Alert, Dial Page, or TAP Page in progress to a given

destination, with the exception that an implementation is allowed to in order to handle a power off, power

cycle, or system reset transition. In this case, the alert should be resumed once the transition has completed.

 The BMC checks the event filters for matches to the event. If there is more than one alert policy selected by

the match, the BMC will only execute the highest priority (lowest numbered) alert policy.

 The BMC must keep track of how far it has processed the alert policy associated with the event. It does this

in case it needs to prematurely terminate a call because of a power off, power cycle, or system reset

operation.

 The BMC processes each alert policy through to completion. Completion of processing means that all alerts

were either sent or deferred.

 If there is no presently active connection, a connection will be made for the first alert destination in the

alert policy sent and the alert sent.

 The PPP Account Connection Hold Time parameter determines how long a PPP call will be held open

waiting for another alert. The PPP connection will only close when the time expires, or if an alert to a

higher priority PPP Account occurs.

 The call to a PPP Account will be dropped without waiting for the Connection Hold Time to expire if alerts

fail to all destinations for a given policy.

 The Connection Hold Time time-out must be restarted whenever a new alert is sent to the account.

 If a PPP account connection is already active and the alert is to a destination behind that PPP account, the

BMC will wait for any alerts in progress to that account to complete and then send the present alert.

 If the alert is to a destination that is behind a higher priority PPP account, the present connection will be

terminated as soon as the present alert to that account has completed, regardless of the connection hold

time. The BMC will then dial the higher priority account and sent the alert.

Intelligent Platform Management Interface Specification

260

 If a PPP account connection is already open it will be used unless the alert is to a lower-priority destination

type, in which case the alert will be deferred until connection hold time for the present connection expires.

 If a Dial Page or TAP Page is already active, the BMC will wait for the alert in progress to complete and

then send the present alert, regardless of whether the present alert is of higher priority. (Completion of an

alert in progress for an unacknowledged alert means that the alert has been sent. For an acknowledged alert,

completion means the alert has been sent and the acknowledge received or all retries and timeouts have

concluded and the alert is considered to have failed.)

 The Page Blackout Interval is essentially a ‘throttle’ that prevents pages from being sent ‘back-to-back’.

See 14.10, Page Blackout Interval.

17.14 PEF and Alert Handling Example

The following figure presents a snapshot of event and alert processing using PEF. It also helps illustrate the

relationship between entries in the serial/modem configuration parameters.

1. The present event being processed is identified as event with Record ID = “N+2”

2. The BMC scans all filter table entries for matches to the present event. When done, it finds three entries with

Alert actions that have been matched: event filters X, P, and T.

3. The BMC handles matched filters in priority order based on the action associated with the filter. The Power

Off action is higher priority than Alert actions, so filter X is acted on immediately and the power OFF action

performed.

4. There are two matched filters left, both with Alert actions. Filter P is acted on because it has the lower policy

number. The BMC ‘queues’ information for the alert policy and the event filter so it can be processed later.

5. The event triggers Alert Policy #3. The BMC sends the alert to LAN destination #1, and then sends the alert

to serial/modem destination #1. The figure shows that serial/modem destination #1 is a PPP Alert

destination, therefore the BMC looks up the corresponding PPP Account information from the serial/modem

configuration parameters. The PPP account is account #1. This is the highest priority account. If the account

is not already active, the BMC will terminate any lower priority call in progress and then call the account #1

and send the alert.

6. The completion of the alert policy for event N+2 may cause the Last BMC Processed Record ID to be set to

N+2 - but it also may not. Whether the Last BMC Processed Record ID is advanced is based on whether all

deferred alerts have been processed. Due to prioritization, it’s possible that in some cases the alert policy

triggered for event N+2 could complete while an alert policy associated with an earlier event ‘N’ could still

have destinations to be processed.

 Intelligent Platform Management Interface Specification

 261

Figure 17-1, Alert Processing Example

3

3

3

3

Event Filter Table

Alert Policy Table
2

PPP accounts table
serial/modem

destinations table

dial

strings

Filter P,

Action = Alert

Policy = 3

Ev ent Filter X,

Action = Pow er OFF

Policy = 0

Filter T

Action = Alert

Policy = 4

dial string Y

dial string X

dial string Z

dial string Q

Destination Ty pe = PPP Alert

Alert ACK timeout

IP Address Selector=1

TAP Serv ice / PPP Account Selector = 2

Destination Ty pe = PPP Alert

Alert ACK timeout

IP Address Selector=2

PPP Account Selector = 2

Destination Ty pe = PPP Alert

Alert ACK timeout

IP Address Selector=3

Destination Ty pe = Dial Page

Alert ACK timeout

Dial String Selector=4

1

2

3

4

1

3

4

2

Serv er Account Passw ord

Serv er User Name

Serv er Account Auth. Ty pe

Serv er IP Address

Serv er User Domain

Dial String Selector=3

Connection Hold Time

TAP Services
Destination Ty pe = TAP Page

Alert ACK timeout

Dial String Selector=5

TAP Serv ice Selector = 1

5

dial string Y5

dial string Y6

4

Present

Event = N+2

3

1

1

2

3

4

IP Addresses

PPP Account Selector = 2

IP Address A

IP Address B

IP Address C

IP Address D

Serial/Modem Configuration Parameters

to LAN Configuration

Parameters

n

m

q

Alert Strings

string X

string Y

string Z

P

P

T

E
ve

n
t F

ilt
e

r #

A
le

rt
 S

tr
in

g
 K

e
y

Destination2 = serial 2

Destination1 = serial 1

Destination3 = serial 4

Destination4 = serial 3

Destination1 = serial 2

Destination1 = LAN 1

P
o

lic
y

N
um

be
r

q

n

n

m

m

n

A
le

rt
 S

tr
in

g
 S

e
t

Alert Policy

info for f ilter

match 'queued'

17.15 Event Filter, Policy, Destination, and String Relationships

The following figure illustrates the relationship between the different structures and configuration parameters

related to platform event filtering and alerting. Note that the number of table entries and support for different alert

types is implementation dependent.

The figure shows the lookup process that occurs when an event matches an Event Filter Table entry. In this

example, the entry triggers an Alert that activates alert policy number 3. The policy table is scanned for the first

entry with a matching policy number. The first matching entry is for a LAN channel. First, a LAN PET trap to

xxx.212.123.67, then, if that fails a LAN PET trap to xxx.100.200.1 will be tried. If that fails, the next matching

policy entry will be tried.

The next policy is for a serial/modem channel. The first alert on this channel will be a Dial Out PET Alert (a.k.a.

PPP Alert). The second attempt will be a TAP Page. Note that a short ASCII Alert String “System FRED

Intrusion” is selected by the Alert Policy Entry for the TAP page. The third attempt will be a dial page. Since a

dial-page is restricted to submitting ‘key pad’ digits via the modem command set, we see that the final attempt is

used to deliver a numeric page with the number of the system in trouble, and a user-defined ‘911’ to indicate that

there’s a serious condition.

In order to simplify the figure, certain parameters associated with the Alert destinations have been left out. For

example, there are destination phone numbers and modem init strings associated with the paging destinations, and

MAC address and Gateway Address values associated with the LAN Alert destinations.

Intelligent Platform Management Interface Specification

262

Figure 17-2, Event Filter, Alert Policy, and Alert Destination, & String Relationships

3 2 5

1

2

N

...

Actions = Alert

Policy Set = 3

Actions = reset

Actions = xx

Event Filter Table

3

3

2

...

X

...

1

2

3

X

1

2

3

X

LAN Alert

Destination

Addresses

Serial/Modem

Destination

Addresses

xxx.100.200.1

xxx.100.210.12

xxx.212.123.67

xxx.xxx.xxx.xxx

9,1,800,555,1212

6968080

xxxxxxxxxx

Event

Match

Alert Type = PET Alert

Alert Type = PET Alert

Alert Type = PET Alert

Alert Type = YY

Alert Type = TAP

Alert Type = PPP Alert

Alert Type = XX

Destination Alert

Type

Destination Alert

Type

LAN Configuration Parameters

Serial/Modem Configuration Parameters

D
e
s
ti
n

a
ti
o

n

S
e

le
c
to

r

D
e
s
ti
n

a
ti
o

n

S
e

le
c
to

r

1

2

X

Alert Strings (from PEF

configuration parameters)

S
tr

in
g
 S

e
le

c
to

r

P
o
lic

y

N
u
m

b
e
r

Alert Policy Table

1

Channel

Policy Set 3

1

3

3

3

2

2

"System FRED Overtemperature"

",(503) 555-1212 911"

"System FRED Intrusion"

"xxxxxxxx"

E
v
e
n
t

F
ilt

e
r

#

A
le

rt
 S

tr
in

g
 S

e
t

N

0

X X

0

Alert String 3 is an example of an event-specific Alert String.

Note that bit 7 is set in the Alert String Key field from the Alert Policy Table.

The value '2' in the Event Filter field matches up with Event Filter Number 2, which

in this example is a filter that matches up to Chassis Intrusion events.

M

Assume Filter 2 matches

"Chassis Intrusion" events

Alert String 2 is an example of a non-

event-specific Alert String

destination = 3

destination = xx

destination = pp

alert string key = yy

alert string key = qq

alert string key = 0

Ch# = M

(LAN)

Ch # = N

(serial/modem)

Ch# = M (LAN)

Ch# = N

(serial/modem)

Ch# = N

(serial/modem)

Ch# = M

(LAN)

Ch # = N

(serial/modem)

Ch # = N

(serial/modem)

Ch# = N

(serial/modem)

destination = 1

alert string key = 0

destination = aa

alert string key = bb

destination = 2

alert string key = 0

destination = 1

destination = 3

alert string key = 85h

alert string key = 2

Ch# = N

(serial/modem)

Ch # = N

(serial/modem)

destination = aa

destination = cc

alert string key = bb

alert string key = dd

destination 1 = rr

alert string key 1 = ss

...

18002255288Alert Type = Dial Page

...

E
v
e
n
t

F
ilt

e
r

N
u
m

b
e
r

Entry Data

17.16 Populating a PET

The following table outlines the way PET fields are populated for an IPMI alert. See [PET] for more information.

The Community String portion of the PET can be obtained from the configuration parameters associated with

the channel from which the trap is issued. If the Community String parameter is not supported, the string ‘public’

should be sent.

The following table lists the population of the PET Specific Trap fields for an IPMI alert:

Table 17-6, PET Specific Trap Fields
PET Field IPMI Source

Event Sensor Type Sensor Type code from event message

Event Type Event/Reading Type code from event message

Event Offset [7] = Event Dir bit from event message

[3:0] = Event Offset for Event Data 1 byte of event message

 Intelligent Platform Management Interface Specification

 263

The following table lists the IPMI source and formatting for fields that go into the ‘variable bindings’ fields of a

PET.

Table 17-7 - PET Variable Bindings Field

PET Field

size/

type

IPMI Source

GUID 16
bytes

Recommended that BMC populate this with the System GUID. If a system GUID
is not available, a device GUID for the BMC may be substituted.

Sequence # /
Cookie

word BMC should increment the value in this field for each new PET issued, but leave
the value unchanged for PET retries.

Local Timestamp dword BMC should populate this field with the time value that would be used to log the
event in the SEL. Per PET, this needs to be converted to represent number of
seconds from 0:00 1/1/98.

0000 0000 = unspecified.

UTC Offset word Optional. UTC Offset in minutes (two’s complement, signed. -720 to +720,
0xFFFF=unspecified)

Trap Source
Type

byte Class of the device or software that originated the trap on the network. Use 20h
for PETs that are issued from the BMC.

Event Source
Type

byte Use 20h for events that are automatically generated by the BMC (e.g. by PEF)

It is recommended that 21h be used for IPMI-format PETs that are generated by
system software instead of automatically by the BMC.

Event Severity byte Severity (based on DMI Event Severity).

If PEF specifies an event severity for the event filter that triggered the Alert, that
severity should be used instead.
0x00 = unspecified

0x01 = Monitor 00_0001b

0x02 = Information 00_0010b

0x04 = OK (return to OK condition) 00_0100b

0x08 = Non-critical condition 00_1000b a.k.a. ‘warning’

0x10 = Critical condition 01_0000b

0x20 = Non-recoverable condition 10_0000b

Sensor Device byte In IPMI this holds an ID (I2C address or SWID) of the controller or software
entity that generated the event. This comes from the event message. I.e. if the
BMC received the event from controller C2h, this value would be set to C2h, not
to the BMC’s address.

Sensor Number byte Sensor number from the event message.

Entity byte Entity ID from IPMI v1.5specification. (Optional). An implementation can elect to
look up the Entity ID associated with the sensor and send that information in the
PET.

00h = unspecified

Entity Instance byte This field can hold is the Entity Instance value associated with the preceding
Entity field.

00h = unspecified

Event Data octet
string

(8)

Additional parametric data byte - formatted as specified by Event Type in
combination with Event Source. Interpreted as individual octet fields.

Event Data 1 - Populate this field with the Event Data 1 byte from the Event
Message

Event Data 2 - Populate this field with the Event Data 2 byte from the Event
Message

Event Data 3 - Populate this field with the Event Data 3 byte from the Event
Message

Event Data 4:8 - These bytes are not used with IPMI messages. They should be
set to 00h. Software should ignore their content.

Language Code byte Per IPMI v1.0 FRU Information Format. FFh = ‘unspecified’. This field can be
used in conjunction with the OEM fields, below, to indicate the language that
any strings are in. Note that language is different than character set. Character
sets are specified as ASCII or UNICODE, per type/length bytes.

Intelligent Platform Management Interface Specification

264

PET Field

size/

type

IPMI Source

Manufacturer ID dword Manufacturer ID using Private Enterprise IDs per IANA. This should reflect the
ID of the manufacturer of the System from which the alert it being issued.

System ID word Specified by manufacturer given by Manufacturer ID field, this number can be
used to identify the particular system/product model or type.

OEM Custom
Fields

octet
string
(max.
64)

One or more fields given in IPMI v1.0 FRU Information field format:

Type/length code byte followed by N data bytes for each field.

Fields end when type/length byte indicates ‘no more records’ (C1h). A C1h in
octet 47 indicates no OEM Custom Fields.

17.16.1 OEM Custom Fields and Text Alert Strings for IPMI v1.5 PET

An IPMI format PET (PET Event Source = 20h or 21h) provides additional specification on the use of the

Type/Length Byte in the OEM Custom Fields by defining additional special values as follows:

PET OEM Field Type/Length Byte special values

00h  reserved

40h  reserved

80h  typed field (‘PET multirecord’ field)

C0h  empty field

C1h  end of fields

With this encoding, a Type/Length value of 80h indicates the start of a ‘PET multirecord’ field where the field

format is as follows. This format enables the PET trap to carry an Alert String from PEF, while allowing OEM

data to coexist in the custom fields as well.

Table 17-8, IPMI PET Multirecord Field Format
byte Field Definition

1 Type/Length 80h (PET multirecord field)

2 Encoding/Length 7:6 Record Encoding

00b = binary / unspecified

01b = ASCII

10b = UNICODE

11b = reserved

5:0 Record Data Length in bytes (number of bytes in Record Data field)

3 Record Type 7:4 reserved

3:0 Record Type

0h = reserved

1h = Text Alert String

2h = OEM Data per OEM Identified by IANA in first three bytes of
Record Data

3h = OEM Data per OEM Identified by Manufacturer ID field

4:N Record Data Data per Record Type

17.17 PEF Performance Target

Excluding PEF Action Delays, a PEF action should nominally occur within two seconds of the corresponding

Event Message being received by the BMC. For events generated internal to the BMC, this should occur within

two seconds of the event being written to the SEL or delivered to the Event Message Buffer. Note that this does

not include delays for event detection and formatting the event record, nor the time to poll and accumulate the

 Intelligent Platform Management Interface Specification

 265

data that triggers the event. For example, it may take the BMC several seconds to detect a fan failure, that time is

not included in this performance target.

For alerts, this target also represents the time to initiate the processing of an alert policy. The actual time it takes

to complete an alert policy is widely variable, dependent on factors such as whether the alert is deferred, plus

elements such as telephone system and network response delays, thus a performance target is not specified for

alert completion at this time.

Intelligent Platform Management Interface Specification

266

18. Firmware Firewall & Command Discovery
IPMI v1.5 and earlier specifications allow almost any supported IPMI operation to be accomplished from the

system interface. This includes writing SDRs, configuring alerts, setting thresholds, sending messages to other

media, and other actions that could be used to ‘spoof’ a non-existent system failure. In a standalone system, this is

normally an acceptable risk since errant local software would typically only affect the system it was running on.

Some blade chassis implementations have a central management module (CMM) that aggregates and acts on

information from BMCs that reside on individul compute blades. In this environment, a malicious piece of

software could potentially spoof a hazardous voltage or thermal condition that causes the CMM to shutdown the

entire chassis. Or, if a shared management bus is used, software running on one blade could potentially send IPMI

messages that could shut down, reset, or reconfigure management on other blades.

However, it takes more than just blocking those types of commands or operations. The IPMI specifications

needed to provide a way to tell software that commands that would otherwise be mandatory have been intentionlly

made unavailable for protection purposes and are not unavailable because of an error.

Configuration of Firmware Firewall capabilities is supported by commands that allow software to enable/disable

individual commands and command sub-functions, and to discover which particular commands and command

sub-functions can be configured on a given implementation. These ‘command support discovery’ commands can

implemented without requiring the enable/disable commands of Firmware Firewall in order to provide a common

mechanism for discovering which IPMI commands and functions a given management controller supports.

Firmware Firewall capabilities can be extended to include interfaces (channels) other than the system interface,

such as the IPMB. This can be used to prevent add-in cards or other parties from performing certain IPMI

functions.

The Firmware Firewall capability does not affect the operation of user and channel privileges. That is, if a

command requires Admin privilege level to be executed, it will still require Admin privilege if enabled by

Firmware Firewall.

The Firmware Firewall and command discovery commands include the following:

1. Commands for the general discovery of supported commands and sub-functions on a given interface -

a.k.a. “command discovery commands”:

Command Section

Get NetFn Support 21.2

Get Command Support 21.3

Get Command Sub-function Support 21.4

2. Commands to discovery what commands and functions can be enabled/disabled - a.k.a. “configurable

command discovery” commands:

Command Section

Get Configurable Commands 21.5

Get Configurable Command Sub-functions 21.6

3. Commands that are used to enable/disable any configurable commands or sub-functions:

Command Section

Set Command Enables 21.7

Get Command Enables 0

Set Command Sub-function Enables 21.9

Get Command Sub-function Enables 21.10

 Intelligent Platform Management Interface Specification

 267

Intelligent Platform Management Interface Specification

268

19. Command Specification Information
This section provides specifications for elements that apply to all requests and responses presented later in this

document.

19.1 Specification of Completion Codes

Completion codes are specified in Section 5.2, Completion Codes. Additional command-specific completion

codes, if any are listed in the ‘completion code’ field description for the command. In some cases, use of certain

command-specific completion codes is mandatory. This will be listed alongside the description of the completion

code in the command table. If no command-specific completion codes are listed, the description will solely

indicate that the field is the ‘completion code’ field. Note that the generic completion code values can be used

with any command, regardless of whether additional command-specific completion codes are defined. Therefore

generic completion codes are not explicitly listed in the command tables. Refer to Section 5.2 for additional

requirements and guidelines.

19.2 Handling ‘Reserved’ Bits and Fields

Unless otherwise noted, Reserved bits and fields in commands (request messages) and responses shall be written

as ‘0’. Applications must ignore the state of reserved bits when they are read.

19.3 Logical Unit Numbers (LUNs) for Commands

Unless otherwise specified, commands that are listed as mandatory must be accessed via LUN 00b. An

implementation may elect to make any command available on any LUN or channel as long as it does not conflict

with other requirements in this specification.

19.4 Command Table Notation

The following section includes command tables that list the data that is included in a request or a response for

each command. The completion code for a response is included as the first byte of the response data field for each

command. The Network Function (NetFn) and command byte values for each command are specified in separate

tables.

The following notation is used in the command tables.

Request Data Identifies portion of the table that lists the fields that are included in the data portion of a

request message for the given command.

Response Data Identifies portion of the table that lists the fields that are included in the data portion of a

response message for the given command. Note that the completion code is always listed as the

first byte in the response data field.

- Empty Field. A dash (-) in the byte column indicates that there is no request data for the

command.

4 Single Byte Field. A single value in the byte column of a command table is used to identify a

single byte field. The value represents the offset to the field within the data portion of the

message. In some cases a single byte field with follow a variable length field (see following),

in which case the single byte offset will be represented with an alphabetic variable and number

representing the single byte field’s location relative to the end of the variable length field. E.g.

N+1.

 Intelligent Platform Management Interface Specification

 269

5:7 Multi-byte Field. Indicates a multi-byte field. The byte column indicates the byte offset(s) for

a given field. For a multi-byte field, the first value indicates the starting offset, the second

value (following the colon) indicates the offset for the last byte in the field. For example, 5:7

indicates a three-byte field spanning byte offsets 5, 6, and 7.

In some cases, multi-byte fields may be variable length, in which case an alphabetic variable

will be used to represent the ending offset, e.g. 5:N. Similarly, a field may following a variable

length field. In this case the starting value will be shown as an offset relative to the notation

used for the previous field, e.g. if the previous field were 5:N, the next field would be shown

starting at N+1.

 Lastly, a variable length field may follow a variable length field, in which case a relative

starting offset will be shown with an alphabetic value indicating a relative ending offset, e.g.

N+1:M.

(3) Optional Fields. When used in the byte column of the command tables, parentheses are used

to indicate optional data byte fields. These can be absent or present at the choice of the party

generating the request or response message. Devices receiving the message are required to

accept any legal combination of optional data byte fields.

 Unless otherwise indicated, if an optional byte field is present all prior specified byte fields

must also be present. Similarly, if an optional byte field is absent all following byte fields must

also be absent. For example, suppose a request accepts 4 data bytes. If data byte 3 was shown

in parentheses as ‘(3), it would indicate that byte 3 and following were optional. A legal

request could consist of just bytes [1 and 2], bytes [1, 2, and 3,] or bytes [1, 2, 3 and 4]. It is to

eliminate just byte 3, but include byte 4. I.e. a request with data bytes [1, 2, and 4], would be

illegal.

 Multi-byte fields that are shown as optional cannot be split. Either all bytes for the field are

present or absent. I.e. if a four byte multi-byte field is listed as optional, it is illegal to include

the first two bytes, but not the second two bytes.

Intelligent Platform Management Interface Specification

270

20. IPM Device “Global” Commands
This section presents the commands that are common to all Intelligent Platform Management (IPM) devices that

follow this specification’s message/command interface. This includes management controllers that connect to the

system via a compatible message interface, as well as ‘IPMB Devices’.

IPMI Management Controllers shall recognize and respond to these commands via LUN 0. Refer to Appendix G -

Command Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands. O/M = Optional/Mandatory.

Table 20-1, IPM Device ‘Global’ Commands
Command Section O/M

Get Device ID 20.1 M

Cold Reset 20.2 O[1]

Warm Reset 20.3 O

Get Self Test Results 20.4 M

Manufacturing Test On 20.5 O

Set ACPI Power State 20.6 O

Get ACPI Power State 20.7 O[3]

Get Device GUID 20.8 O

Broadcast Commands

Broadcast ‘Get Device ID’ 20.9 M[2]

[1] This command is not required to return a response in all implementations.
[2] Broadcast is over IPMB channels only. Request is formatted as an entire IPMB

application request message, from the RsSA field through the second checksum,
with the message prefixed with the broadcast slave address, 00h. Response
format is same as the regular ‘Get Device ID’ response.

[3] Mandatory if Set ACPI Power State command is implemented on given
management controller.

20.1 Get Device ID Command

This command is used to retrieve the Intelligent Device’s Hardware Revision, Firmware/Software Revision, and

Sensor and Event Interface Command specification revision information. The command also returns information

 Intelligent Platform Management Interface Specification

 271

regarding the additional ‘logical device’ functionality (beyond ‘Application’ and ‘IPM’ device functionality) that

is provided within the intelligent device, if any.

While broad dependence on OEM-specific functionality is discouraged, two fields in the response allow software

to identify controllers for the purpose of recognizing controller specific functionality. These are the Device ID and

the Product ID fields. A controller that just implements standard IPMI commands can set these fields to

‘unspecified’.

Table 20-2, Get Device ID Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Device ID. 00h = unspecified.

 3 Device Revision

[7] 1 = device provides Device SDRs

 0 = device does not provide Device SDRs

[6:4] reserved. Return as 0.

[3:0] Device Revision, binary encoded.

 4 Firmware Revision 1

[7] Device available: 0=normal operation, 1= device firmware, SDR
Repository update or self-initialization in progress. [Firmware / SDR
Repository updates can be differentiated by issuing a Get SDR
command and checking the completion code.]

[6:0] Major Firmware Revision, binary encoded.

 5 Firmware Revision 2: Minor Firmware Revision. BCD encoded.

 6 IPMI Version. Holds IPMI Command Specification Version. BCD encoded.
00h = reserved. Bits 7:4 hold the Least Significant digit of the revision, while
bits 3:0 hold the Most Significant bits. E.g. a value of 51h indicates revision
1.5 functionality. 02h for implementations that provide IPMI v2.0 capabilities
per this specification.

 7 Additional Device Support (formerly called IPM Device Support). Lists the
IPMI ‘logical device’ commands and functions that the controller supports that
are in addition to the mandatory IPM and Application commands.

[7] Chassis Device (device functions as chassis device per ICMB spec.)

[6] Bridge (device responds to Bridge NetFn commands)

[5] IPMB Event Generator (device generates event messages [platform
event request messages] onto the IPMB)

[4] IPMB Event Receiver (device accepts event messages [platform event
request messages] from the IPMB)

[3] FRU Inventory Device

[2] SEL Device

[1] SDR Repository Device

[0] Sensor Device

 8:10 Manufacturer ID, LS Byte first. The manufacturer ID is a 20-bit value that is
derived from the IANA ‘Private Enterprise’ ID (see below).

Most significant four bits = reserved (0000b).

000000h = unspecified. 0FFFFFh = reserved. This value is binary encoded.
E.g. the ID for the IPMI forum is 7154 decimal, which is 1BF2h, which would
be stored in this record as F2h, 1Bh, 00h for bytes 8 through 10, respectively.

 11:12 Product ID, LS Byte first. This field can be used to provide a number that
identifies a particular system, module, add-in card, or board set. The number
is specified according to the manufacturer given by Manufacturer ID (see
below).

0000h = unspecified. FFFFh = reserved.

 (13:16) Auxiliary Firmware Revision Information. This field is optional. If present, it
holds additional information about the firmware revision, such as boot block or
internal data structure version numbers. The meanings of the numbers are
specific to the vendor identified by Manufacturer ID (see below). When the
vendor-specific definition is not known, generic utilities should display each
byte as 2-digit hexadecimal numbers, with byte 13 displayed first as the most-
significant byte.

The following presents additional specifications and descriptions for the Device ID response fields:

Intelligent Platform Management Interface Specification

272

Device ID/Device Instance This number is specified by the manufacturer identified by the Manufacturer ID

field. The Device ID field allows controller-specific software to identify the

unique application command, OEM fields, and functionality that are provided by

the controller.

Controllers that have different application commands, or different definitions of

OEM fields, are expected to have different Device ID values. Controllers that

implement identical sets of applications commands can have the same Device

ID in a given system. Thus, a ‘standardized’ controller could be produced where

multiple instances of the controller are used in a system, and all have the same

Device ID value. [The controllers would still be differentiable by their address,

location, and associated information for the controllers in the Sensor Data

Records.]

The Device ID is typically used in combination with the Product ID field such

that the Device IDs for different controllers are unique under a given Product

ID. A controller can optionally use the Device ID as an ‘instance’ identifier if

more than one controller of that kind is used in the system. Though

implementing a Device GUID is the preferred method for uniquely identifying

controllers. (See section 20.8, Get Device GUID) This field is binary encoded.

Device Revision The least significant nibble of the Device Revision field is used to identify when

significant hardware changes have been made to the implementation of the

management controller that cannot be covered with a single firmware release.

That is, this field would be used to identify two builds off the same code

firmware base, but for different board fab levels. For example, device revision

"1" might be required for 'fab X and earlier' boards, while device revision "2"

would be for 'fab Y and later' boards. This field is binary encoded and unsigned.

Firmware Revision 1 Major Revision. 7-bits. This field holds the major revision of the firmware. This

field shall be incremented on major changes or extensions of the functionality of

the firmware - such as additions, deletions, or modifications of the command set.

This field is binary encoded and unsigned.

 The Device Available bit is used to indicate whether normal command set

operation is available from the device, or it is operating in a state where only a

subset of the normal commands are available. This will typically be because the

device is in a firmware update state. It may also indicate that full command

functionality is not available because the device is in its initialization phase or

an SDR update is in progress.

 Note that the revision information obtained when the Device Available bit is ‘1’

shall be indicative of the code version that is in effect. Thus, the version

information may vary with the Device Available bit state.

Firmware Revision 2 Minor Revision. This field holds the minor revision of the firmware. This field

will increment for minor changes such as bug fixes. This field is BCD encoded.

IPMI Version This field holds the version of the IPMI specification that the controller is

compatible with. This indicates conformance with this document, including

event message formats and mandatory command support. This field is BCD

encoded with bits 7:4 holding the Least Significant digit of the revision and bits

3:0 holding the Most Significant bits.

 The value shall be 02h for implementations that provide IPMI v2.0 capabilities

per this specification.

 Intelligent Platform Management Interface Specification

 273

Additional Device
Support

This field indicates the logical device support that the device provides in addition

to the IPM and Application logical devices.

Manufacturer ID This field uses the Internet Assigned Numbers Authority (http://www.iana.org/)

SMI Network Management Private Enterprise Codes a.k.a. “Enterprise

Numbers” for identifying the manufacturer responsible for the specification of

functionality of the vendor (OEM) -specific commands, codes, and interfaces

used in the controller.

For example, an event in the SEL could have OEM values in the event record.

An application that parses the SEL could extract the controller address from the

event record contents and use it to send the ‘Get Device ID’ command and

retrieve the Manufacturer ID. A manufacturer-specific application could then do

further interpretation based on a-priori knowledge of the OEM field, while a

generic cross-platform application would typically just use the ID to present the

manufacturer’s name alongside uninterpreted OEM event values.

The manufacturer that defines the functionality is not necessarily the

manufacturer that created the physical microcontroller. For example, Vendor A

may create the controller, but it gets loaded with Vendor B’s firmware. The

Manufacturer ID would be for Vendor B, since they’re the party that defined the

controller’s functionality.

The Manufacturer ID value from the Get Device ID command does not override

Manufacturer or OEM ID fields that are explicitly defined as part of a command

or record format.

If no vendor-specific functionality is defined, it is recommended that the field

can either be loaded with the Manufacturer ID of the party that is responsible for

the firmware for the controller, or the value FFFFh to indicate ‘unspecified’.

This field is binary encoded, and unsigned.

Product ID This value can be used in combination with the Manufacturer ID and Device ID

values to identify the product-specific element of the controller-specific

functionality. This number is specified by the manufacturer identified by the

Manufacturer ID field.

Typically, a controller-specific application would use the Product ID to identify

the type of board, module, or system that the controller is used in, instead of

using the data from the FRU information associated with the controller.

Auxiliary Firmware
Revision Information

This field is optional. If present, it holds additional information about the firmware

revision, such as boot block or internal data structure version numbers. The

meanings of the numbers are specific to the vendor identified by Manufacturer ID

(above). When the vendor-specific definition is not known, generic utilities should

display each byte as 2-digit hexadecimal numbers, with byte 13 displayed first as

the most-significant byte.

20.2 Cold Reset Command

This command directs the Responder to perform a ‘Cold Reset’ of itself. This causes default setting of interrupt

enables, event message generation, sensor scanning, threshold values, and other ‘power up default’ state to be

Intelligent Platform Management Interface Specification

274

restored. That is, the device reinitializes its event, communication, and sensor functions. If the device incorporates

a Self Test, the Self Test will also run at this time.

Table 20-3, Cold Reset Command
 byte data field

Request Data - -

Response Data 1 Completion Code

Note: The Cold Reset command is provided for platform development, test, and platform-
specific initialization and recovery actions. The system actions of the Cold Reset command
are platform specific. Issuing a Cold Reset command could have adverse effects on system
operation, particularly if issued during run-time. Therefore, the Cold Reset command should
not be used unless all the side-effects for the given platform are known.

It is recognized that there are conditions where a given controller may not be able to return
a response to a Cold Reset Request message. Therefore, though recommended, the
implementation is not required to return a response to the Cold Reset command.
Applications should not rely on receiving a response as verification of the completion of a
Cold Reset command.

20.3 Warm Reset Command

This command directs the Responder to perform a ‘Warm Reset’ of itself. Communications interfaces shall be

reset, but current configurations of interrupt enables, thresholds, etc. will be left alone. A warm reset does not

initiate the Self Test. The intent of the Warm Reset command is to provide a mechanism for cleaning up the

internal state of the device and its communication interfaces. A Warm Reset will reset communication state

information such as sequence number and retry tracking, but shall not reset interface configuration information

such as addresses, enables, etc. An application may try a Warm Reset if it determines a non-responsive

communication interface - but it must also be capable of handling the side effects.

Table 20-4, Warm Reset Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 Intelligent Platform Management Interface Specification

 275

20.4 Get Self Test Results Command

This command directs the device to return its Self Test results, if any. A device implementing a Self Test will

normally run that test on device power up as well as after Cold Reset commands. A device is allowed to update

this field during operation if it has tests that run while the device is operating. Devices that do not implement a

self test shall always return a 56h for this command.

While the Self Test only runs at particular times, the Get Self Test Results command can be issued any time the

device is in a ‘ready for commands’ state.

Table 20-5, Get Self Test Results Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 55h = No error. All Self Tests Passed.

56h = Self Test function not implemented in this controller.

57h = Corrupted or inaccessible data or devices

58h = Fatal hardware error (system should consider BMC
inoperative). This will indicate that the controller
hardware (including associated devices such as sensor
hardware or RAM) may need to be repaired or
replaced.

FFh = reserved.

all other: Device-specific ‘internal’ failure. Refer to the particular
device’s specification for definition.

 3 For byte 2 = 55h, 56h, FFh: 00h

For byte 2 = 58h, all other: Device-specific

For byte 2 = 57h: self-test error bitfield. Note: returning 57h does not
imply that all tests were run, just that a given test has failed. I.e. 1b
means ‘failed’, 0b means ‘unknown’.

[7] 1b = Cannot access SEL device

[6] 1b = Cannot access SDR Repository

[5] 1b = Cannot access BMC FRU device

[4] 1b = IPMB signal lines do not respond

[3] 1b = SDR Repository empty

[2] 1b = Internal Use Area of BMC FRU corrupted

[1] 1b = controller update ‘boot block’ firmware corrupted

[0] 1b = controller operational firmware corrupted

20.5 Manufacturing Test On Command

If the device supports a ‘manufacturing test mode’, this command is reserved to turn that mode on. The

specification of the functionality of this command is device dependent. A Cold Reset command shall, if accepted,

take the device out of ‘manufacturing test mode’ - as shall a physical reset of the device. Device-specific

commands to exit manufacturing test mode are also allowed.

Note that it may be possible to ‘lock out’ the command interface while in manufacturing test mode, in which case

the Cold Reset command or other mechanism for exiting manufacturing test mode may fail and a physical reset of

the device will be necessary to restore the device to normal operation.

The request parameters for this command are device specific. Typically, the parameters will be used for

transmitting a password or key that prevents manufacturing test mode from being entered unless the correct values

are provided.

Intelligent Platform Management Interface Specification

276

Table 20-6, Manufacturing Test On
 byte data field

Request Data 1:N device specific parameters. See text.

Response Data 1 Completion Code

20.6 Set ACPI Power State Command

This command is provided to allow system software to tell a controller the present ACPI power state of the

system. The Set ACPI Power State command can also be used as a mechanism for setting elements of the platform

management subsystem to a particular power state. This is an independent setting that may not necessarily match

the actual power state of the system. This command is used to enable the reporting of the power state, it does not

control or change the power state.

There is corresponding information in sensor data record for the controller that tells system software which

controllers require this notification. The BMC does not automatically inform controllers of changes in the system

power state.

Since system management software does not run when the system is in a sleep state, the impact of sleep state on

the platform management subsystem is mainly one of changes in the automatic handling of sensor scanning and

events. For example, the system may shut down fans when in a particular power state. If the fans were monitored,

shutting down the fans without notifying the platform management subsystem could cause a false failure event to

be generated. Here are two possible ways to handle this:

a. Have the management controller perform the fan shut down operation after receiving the Set ACPI

Power State command. In this case, the controller needs an SDR entry indicating that the controller needs

to receive notification via the Set ACPI Power State command.

b. Have the controller monitor the system power state by proprietary means, such as a signal line directly

from the power control hardware to the management controller. The management controller uses the

signal to directly control the fans without receiving an Set ACPI Power State command. Note that that

controller should still report the power state using the Set ACPI Power State command. This is to aid out-

of-band applications that may directly access the controller to get sensor information.

Out-of-band applications should be prepared to find sensors or controllers that may have become disabled because

of a sleep state. Ideally, all management controllers should remain enabled while the system is in a sleep state so

that the sleep state information can be retrieved. Information in the SDR can be used to determine whether a

controller gets disabled in a particular sleep state. A system will normally power up to a Legacy On state prior to

the initialization of ACPI, at which time the system power state is known to be ACPI S0/G0.

 Intelligent Platform Management Interface Specification

 277

Table 20-7, Set ACPI Power State Command
 byte data field

Request Data 1 ACPI System Power State to set

Power states are mutually exclusive. Only one state can be set at a
time.

[7] - 1b = set system power state

 0b = don’t change system power state

[6:0] - System Power State enumeration

00h set S0 / G0 working

01h set S1 hardware context maintained, typically equates
to processor/chip set clocks stopped

02h set S2 typically equates to stopped clocks with
processor/cache context lost

03h set S3 typically equates to “suspend-to-RAM”

04h set S4 typically equates to “suspend-to-disk”

05h set S5 / G2 soft off

06h set S4/S5 sent when message source cannot differentiate
between S4 and S5

07h set G3 mechanical off

08h sleeping sleeping - cannot differentiate between S1-S3.

09h G1 sleeping sleeping - cannot differentiate between S1-S4

0Ah set override S5 entered by override

20h set Legacy On Legacy On (indicates On for system that don’t
support ACPI or have ACPI capabilities
disabled)

21h set Legacy Off Legacy Soft-Off

2Ah set unknown system power state unknown

7Fh no change Use this value when communicating a change
the device power state without indicating a
change to the system power state.

 2 ACPI Device Power State to set

Power states are mutually exclusive. Only one state can be set at a
time.

[7] - 1 = set device power state

 0 = don't change device power state

[6:0] - Device Power State enumeration

00h set D0

01h set D1

02h set D2

03h set D3

2Ah set unknown

7Fh no change Use this value when communicating a change the
system power state without indicating a change to the device
power state.

Response Data 1 Completion Code

The BMC is allowed to return an error completion code if an attempt is
made to set states it knows the system doesn’t support.

Intelligent Platform Management Interface Specification

278

20.7 Get ACPI Power State Command

The command can also be used to retrieve the present power state information that has been set into the

controller. This is an independent setting from the system power state that may not necessarily match the actual

power state of the system. Unspecified bits and codes are reserved and shall be returned as 0.

Table 20-8, Get ACPI Power State Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 ACPI System Power State

[7] - reserved

[6:0] - System Power State enumeration

00h S0 / G0 working

01h S1 hardware context maintained, typically equates to
processor/chip set clocks stopped

02h S2 typically equates to stopped clocks with
processor/cache context lost

03h S3 typically equates to “suspend-to-RAM”

04h S4 typically equates to “suspend-to-disk”

05h S5 / G2 soft off

06h S4/S5 soft off, cannot differentiate between S4 and S5

07h G3 mechanical off

08h sleeping sleeping - cannot differentiate between S1-S3.

09h G1 sleeping sleeping - cannot differentiate between S1-S4

0Ah override S5 entered by override

20h Legacy On Legacy On (indicates On for system that don’t
support ACPI or have ACPI capabilities disabled)

21h Legacy Off Legacy Soft-Off

2Ah unknown power state has not been initialized, or device
lost track of power state.

 3 ACPI Device Power State

[7] reserved

[6:0] Device Power State enumeration

00h D0

01h D1

02h D2

03h D3

2Ah unknown - power state has not been initialized, or device lost
track of power state.

20.8 Get Device GUID Command

This command returns a GUID (Globally Unique ID), also referred to as a UUID (Universally Unique IDentifier),

for the management controller. The format of the ID follows the octet format specified in [RFC4122]. [RFC4122]

specifies four different versions of UUID formats and generation algorithms suitable for use for a Device GUID in

IPMI. These are version 1 (0001b) “time based”, and three ‘name-based’ versions: version 3 (0011b) “MD5

hash”, version 4 (0100b) “Pseudo-random”, and version 5 “SHA1 hash”. The version 1 format is recommended.

However, versions 3, 4, or 5 formats are also allowed. A Device GUID should never change over the lifetime of

the device.

 Intelligent Platform Management Interface Specification

 279

Table 20-9, Get Device GUID Command
Request Data - -

Response Data 1 Completion Code

 2:17 GUID bytes 1 through 16.

Note that the individual fields within the GUID are stored least-significant byte first, and in the order illustrated

in the following table. This is the reverse of convention described in [RFC4122] where GUID bytes are

transmitted in ‘network order’ (most-significant byte first) starting with the time low field.

The GUID itself is opaque for the IPMI specification. IPMI does not interpret or have any dependency on any

fields within the GUID. It only matters that it is a globally unique value.

If an SMBIOS UUID is present in the system, it is considered to be more important that the network byte order of

the IPMI System GUID matches the network byte order of the SMBIOS UUID, in order to make it simpler for

applications to correlate the ID between IPMI and SMBIOS.

Therefore, it is recommended that the IPMI System GUID network byte order matches that for SMBIOS

on the managed system.

That is, the values from SMBIOS and IPMI match byte-for-byte, where bytes from the lowest memory address to

highest memory address for SMBIOS match byte-for-byte with the bytes from the first IPMI byte (offset 2) to last

IPMI byte (offset 17), respectively, regardless of any sub-field ordering or how the value is generated.

Table 20-10, GUID Format
GUID byte Field MSbyte

1 node

2 node

3 node

4 node

5 node

6 node MSbyte

7 clock seq and reserved

8 clock seq and reserved MSbyte

9 time high and version

10 time high and version MSbyte

11 time mid

12 time mid MSbyte

13 time low

14 time low

15 time low

16 time low MSbyte

Intelligent Platform Management Interface Specification

280

20.9 Broadcast ‘Get Device ID’

This is a broadcast version of the ‘Get Device ID’ command that is provided for the ‘discovery’ of Intelligent

Devices on the IPMB. It is only specified for use on the IPMB. Discovery of management controllers on a PCI

Management Bus is handled via the SMBus 2.0 ‘ARP’ protocol. See [SMBUS] for more information.

The Broadcast ‘Get Device ID’ command is not bridged but can be delivered to the IPMB using Master Write-

Read commands.

To perform a ‘discovery’ the command is repeatedly broadcast with a different rsSA ‘slave address parameter’

field specified in the command. The device that has the matching physical slave address information shall respond

with the same data it would return from a ‘regular’ (non-broadcast) ‘Get Device ID’ command. Since an IPMB

response message carries the Responder’s Slave Address, the response to the broadcast provides a positive

confirmation that an Intelligent Device exists at the slave address given by the rsSA field in the request.

An application driving discovery then cycles through the possible range of IPMB Device slave addresses to find

the population of intelligent devices on the IPMB. Refer to [ADDR] for information on which slave address

ranges are allocated for different uses on IPMB.

Refer to the description of the Get Device ID command, above, for information on the fields returned by the

Broadcast Get Device ID command response. The IPMB message format for the Broadcast Get Device ID request

exactly matches that for the Get Device ID command, with the exception that the IPMB message is prefixed with

the 00h broadcast address. The following illustrates the format of the IPMB Broadcast Get Device ID request

message:

Figure 20-1, Broadcast Get Device ID Request Message
Broadcast

(00h)

rsSA netFn/rsLUN check1 rqSA rqSeq/rqLUN Cmd

(01h)

check2

Addresses 00h-0Fh and F0h-FFh are reserved for I2C functions and will not be used for IPM devices on the

IPMB. These addresses can therefore be skipped if using the Broadcast Get Device ID command to scan for IPM

devices. The remaining fields follow the regular IPMB definitions.

In order to speed the discovery process on the IPMB, a controller should drop off the bus as soon as it sees that

the rsSA in the command doesn’t match its rsSA.

 Intelligent Platform Management Interface Specification

 281

Intelligent Platform Management Interface Specification

282

21. Firmware Firewall & Command Discovery
Commands

The following sections provide the specifications for the commands that support the Firmware Firewall capability.

Table 21-1, Firmware Firewall Commands

Command

Section

Defined

O/M

Get NetFn Support 21.2 O[1,3]

Get Command Support 21.3 O[1,3]

Get Command Sub-function Support 21.4 O[1,3]

Get Configurable Commands 21.5 O[2]

Get Configurable Command Sub-functions 21.6 O[2]

Set Command Enables 21.7 O

Get Command Enables 0 O[2]

Set Command Sub-function Enables 21.9 O[2]

Get Command Sub-function Enables 21.10 O[2]

Get OEM NetFn IANA Support 21.11 O[1,3,4]

1. Mandatory on any channel/interface to the BMC on which a typically mandatory
command can be or is disabled for firmware firewall purposes.

2. Mandatory on any channel/interface to the BMC on which the Set Command
Enables command is implemented. The Set Command Enables, Get Command
Enables, Set Command Sub-function Enables, and Get Command Sub-function
Enables commands must be implemented as a set.

3. The Get NetFn Support, Get Command Support, and Get Command Sub-function
Support commands must be implemented as a set.

4. Mandatory if OEM network functions 2Ch-2Dh or 2Eh-2Fh are utilized on
management controller and firmware firewall is implemented.

21.1 Completion Codes with Firmware Firewall

When Firmware Firewall is used, the “D4h” completion code should be returned for any commands that are not

available because of a security-based restriction. Commands that would normally be available (mandatory

commands, or optional commands that are mandatory because they are required by another command or as part of

an optional feature) but are un-available because they have been disabled via the Set Command Enables command

should return D4h if an attempt is made to execute them. Similarly, a new completion code, “D6h”, can be used to

indicate that a normally available command sub-function cannot be configured due to a security-based restriction.

 Intelligent Platform Management Interface Specification

 283

21.2 Get NetFn Support Command

This command returns which NetFn and LUNs support commands on a given channel. Since command support

can vary by channel, the Channel Number parameter is part of the request.

Table 21-2, Get NetFn Support Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

IPMI Response Data 1 Completion Code

 2 LUN support

[7:6] - LUN 3 (11b) support

 00b = no commands supported on LUN 3 (11b)

 01b = commands follow base IPMI specification. Commands exist on
LUN, but no special restriction of command functions.
Comands follow standard Optional/Mandatory specifications.

 10b = commands exist on LUN, but some commands/operations may
be restricted by firewall configuration.

 11b = reserved

[5:4] - LUN 2 (10b) support

Note that a BMC uses LUN 10b for message bridging. The message
bridging capability is enabled/disabled by enabling/disabling the Send
Message command.

 00b = no commands supported on LUN 2 (10b)

 01b = commands follow base IPMI specification. Commands exist on
LUN, but no special restriction of command functions.
Comands follow standard Optional/Mandatory specifications.

 10b = commands exist on LUN, but some commands/operations may
be restricted by firewall configuration.

 11b = reserved

[3:2] - LUN 1 (01b) support

[1:0] - LUN 0 (00b) support

 3:18 There are 32 possible Network Function (NetFn) pairs. The following bytes
are treated as bitfields where each bit indicates the support for a given
Network Function pair. Thus, it takes 4 bytes to fully list support for NetFn
values under a given LUN. Since there are four possible LUNs for a
management controller, a total of 16 bytes will return the settings for all four
possible LUNs. 0b = NetFn pair is not used, 1b = NetFn pair is used

byte 1, bit 0 corresponds to NetFn pair 0h,1h for LUN 00b

byte 1, bit 7 corresponds to NetFn pair Eh,Fh for LUN 00b

byte 2, bit 0 corresponds to NetFn pair 10h,11h for LUN 00b

byte 2, bit 7 corresponds to NetFn pair 1Eh, 1Fh for LUN 00b

…

byte 16, bit 0 corresponds to NetFn pair 30h, 31h for LUN 11b

byte 16, bit 7 corresponds to NetFn pair 3Eh, 3Fh for LUN 11b

Intelligent Platform Management Interface Specification

284

21.3 Get Command Support Command

This command provides a way to get a list of which command values are available on a given channel for a given

Network Function and LUN. System software can iterate using this command to determine what commands are

supported on a given management controller. The command returns information for 128 command values at a

time. Thus, two iterations of the command are required to get all information for a given channel/NetFn/LUN

combination.

Table 21-3, Get Command Support Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - Operation

00b = return support mask for commands 00h through 7Fh.

01b = return support mask for commands 80h through FFh.

10b, 11b = reserved.

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 For Network Function = 2Ch:

 (4) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (4:6) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

 2:17 Support Mask

 These sixteen bytes form a 128-bit bitfield where each bit indicates
support for a particular command value under the given NetFn.

 For each bit in the bitfield:

 0b = indicates the command is available

 1b = indicates the command not available

 Depending on the value of the “Operation” parameter passed in the
request:

 byte 1, bit 0 corresponds to command 00h or command 80h

 byte 1, bit 7 corresponds to command 07h or command 87h

 …

 byte 16, bit 0 correspond to command 78h or command F8h

 byte 16, bit 7 corresponds to command 7Fh or command FFh

 Intelligent Platform Management Interface Specification

 285

21.4 Get Command Sub-function Support Command

This command is used to determine what sub-functions of a given command are presently available on the given

channel. The command can also be used to find out specifically which version of the specification was used to

define the command operation. The latest version of the specification that the command conforms to is what is

used. For example, a command that is conformant with both the IPMI v1.5 and v2.0 versions of the specification

shall be identified as and IPMI v2.0 command.

Table 21-4, Get Command Sub-function Support Command

Intelligent Platform Management Interface Specification

286

IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - reserved

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 4 [7:0] - CMD. Command number to return command sub-function information
for.

 For Network Function = 2Ch:

 5 Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 5:7 OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

 2 Specification Type / Errata

For IPMI Network Function not equal to 2Ch or 2Eh:

[7:4] - Specification Type

 0h = IPMI, 1h = IPMB, 2h = ICMB, all other = reserved

[3:0] - Errata Version

 This field returns the errata document version that was used in
defining the command’s operation. For IPMI specifications, this is the
revision number of the IPMI errata that goes with the specification
version and revision, below. The latest errata of the specification to
which the command is conformant should be used. Use 0h if there is
no errata document available at the time the command was defined.

For IPMI Network Function equal 2Ch or 2Eh:

[7:0] - OEM/Group/Defining Body specific. Specification Type/Errata info in
this byte specified by OEM/group or Defining Body that specified the
command.

 3 Specification Version

 This field returns the specification Version, in BCD format for which
the command was specified. Bits 7:4 hold the most significant digit of
the version, while bits 3:0 hold the least significant bits, e.g. a value of
20h indicates version 2.0. The latest version number for the
specification that the command is conformant to should be used.

 4 Specification Revision

 This field returns the specification Revision, in BCD format for which
the command was specified. Bits 7:4 hold the most significant digit of
the version, while bits 3:0 hold the least significant bits, e.g. a value of
10h indicates version 1.0. The latest revision number for the
specification that the command is conformant to should be used.

 (5:8) Support Mask 1 (ls-byte first)

 These thirty-two bits form a bitfield where each bit indicates support
for a particular sub-function for the given command. The bit offset
corresponds to the number of the sub-function.

1b indicates that a mandatory sub-function or option is unavailable.

0b indicates that a mandatory sub-function or option is available. 0b is
also used when a given offset is undefined. Thus, a command that
implements all functions (mandatory and optional) will return all 0’s for
the bitfield. See Table H-1, Sub-function Number Assignments.

[31] - bit for sub-function 31.

[30] - bit for sub-function 30.

…

[1] - bit for sub-function 1.

[0] - bit for sub-function 0.

 Intelligent Platform Management Interface Specification

 287

21.5 Get Configurable Commands Command

This command returns the IPMI commands that can be enabled/disabled via the Set Command Enables command

for a given channel/NetFn/LUN.

Table 21-5, Get Configurable Commands Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - Operation

00b = return support mask for commands 00h through 7Fh.

01b = return support mask for commands 80h through FFh.

10b, 11b = reserved.

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 For Network Function = 2Ch:

 (4) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (5:7) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

 2:17 Support Mask

 These sixteen bytes form a 128-bit bitfield where each bit indicates
enable/disable support for a particular command value under the given
NetFn.

 For each bit in the bitfield:

 0b = indicates the command value is not configurable

 1b = indicates the command can be enabled/disabled

 Depending on the value of the “Operation” parameter passed in the
request:

 byte 1, bit 0 corresponds to command 00h or command 80h

 byte 1, bit 7 corresponds to command 07h or command 87h

 …

 byte 16, bit 0 correspond to command 78h or command F8h

 byte 16, bit 7 corresponds to command 7Fh or command FFh

Intelligent Platform Management Interface Specification

288

21.6 Get Configurable Command Sub-functions Command

This command enables software to discover which command sub-functions can be enabled/disabled via the Set

Command Sub-function Enables command.

Table 21-6, Get Configurable Command Sub-functions Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - reserved

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 4 [7:0] - CMD. Command number to return command sub-function information
for.

 For Network Function = 2Ch:

 (5) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (6:8) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

 2:5 Support Mask (ls-byte first)

 These thirty-two bits form a bitfield where each bit indicates support for a
particular sub-function for the given command. The bit offset
corresponds to the number of the sub-function. See Table H-1, Sub-
function Number Assignments.

1b indicates that the sub-function can be enabled/disabled.

0b indicates that the sub-function is not configurable, or is unavailable. 0b is
also used for unspecified/reserved sub-function numbers.

[31] - bit for sub-function 31.

[30] - bit for sub-function 30.

…

[1] - bit for sub-function 1.

[0] - bit for sub-function 0.

 (6:9) These additional 32-bits, if present, form a bitfield where each bit indicates
support for a particular sub-function for the given command, starting
from sub-function 32. The bit offset corresponds to the number of the
sub-function. See Table H-1, Sub-function Number Assignments. These
bytes are not required to be returned unless the particular command has
sub-functions number definitions >31.

 Software should assume that an implementation may return these bytes
for any command, if the particular command does not have any sub-
function numbers >31 specified.

1b indicates that the sub-function can be enabled/disabled.

0b indicates that the sub-function is not configurable, or is unavailable. 0b is
also used for unspecified/reserved sub-function numbers.

[31] - bit for sub-function 63.

[30] - bit for sub-function 62.

…

[1] - bit for sub-function 33.

[0] - bit for sub-function 32.

 Intelligent Platform Management Interface Specification

 289

21.7 Set Command Enables Command

This command enables software to enable/disable commands for a given channel/netFn/LUN. The command sets

the enables/disables for a large group of commands simultaneously. Therefore, software must perform a read-

modify-write operation to change a single command setting or any subset of the group. This can be accomplished

by using the Get Command Enables command to get the present setting, then ‘OR-ing’ or ‘AND-ing’ in the

desired change, and using the Set Command Enables command to set the change into the management controller.

It is highly recommended that the implementation takes steps to prevent the Set Command Enables command

from being used to disable itself. The Set Command Enables command should always be an ‘un-configurable’

command on at least one channel into the BMC.

Intelligent Platform Management Interface Specification

290

Table 21-7, Set Command Enables Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - Operation. The enable/disable settings are non-volatile. The
management controller must reject all new settings (must not change
present settings) if there is any error in the command (non-zero
completion code returned).

00b = Set enable/disables for commands 00h through 7Fh.

01b = Set enables/disables for commands 80h through FFh.

10b, 11b = reserved.

[5:0] - NetFn. Network function code to set command support for. The
management controller will set the same values for odd or even NetFn
values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 4:19 Enable/Disable Mask

 These sixteen bytes form a 128-bit bitfield where each bit controls the
enable/disable of a particular command value under the given NetFn.

 For each bit in the bitfield:

 0b = disables the command

 1b = enables the command

 Note that if a bit position corresponds to a command that is not
configurable, the BMC will return an error if an attempt is made to
change the enabled/disabled state for that command. I.e. if the bit is
fixed at 0b, and error will be generated if an attempt is made to set it to
1b, and vice versa. Software can use the Get Configurable Commands
command and the Get Command Enables command together to
process the bits for this command to ensure setting the correct state.

 Depending on the value of the “Operation” parameter passed in the
request:

 byte 1, bit 0 corresponds to command 00h or command 80h

 byte 1, bit 7 corresponds to command 07h or command 87h

 …

 byte 16, bit 0 correspond to command 78h or command F8h

 byte 16, bit 7 corresponds to command 7Fh or command FFh

 For Network Function = 2Ch:

 (20) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (20:22) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

Generic, plus following command-specific codes:

80h = attempt to enable an unsupported or un-configurable command.

 Intelligent Platform Management Interface Specification

 291

21.8 Get Command Enables Command

This command enables software to determine which commands are enabled/disabled for a given

channel/netFn/LUN.

Table 21-8, Get Command Enables Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - Operation

00b = Get enable/disables for commands 00h through 7Fh.

01b = Get enables/disables for commands 80h through FFh.

10b, 11b = reserved.

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 For Network Function = 2Ch:

 (4) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (4:6) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

 2:17 Enable/Disable Mask

 These sixteen bytes form a 128-bit bitfield where each bit returns the
enable/disable of a particular command value under the given NetFn. If
a command is not supported at all, a 0b will be returned.

 For each bit in the bitfield:

 0b = command is disabled or not supported

 1b = command is enabled

 Software can use the Get Command Support command to determine
which are supported, and the Get Configurable Commands command to
determine which commands are configurable.

 Depending on the value of the “Operation” parameter passed in the
request:

 byte 1, bit 0 corresponds to command 00h or command 80h

 byte 1, bit 7 corresponds to command 07h or command 87h

 …

 byte 16, bit 0 correspond to command 78h or command F8h

 byte 16, bit 7 corresponds to command 7Fh or command FFh

Intelligent Platform Management Interface Specification

292

21.9 Set Configurable Command Sub-function Enables Command

This command is used for enabling/disabling configurable sub-functions for the given command.

Table 21-9, Set Configurable Command Sub-function Enables Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - reserved

[5:0] - NetFn. Network function code to set command support for. The
management controller will set the same values for odd or even NetFn
values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 4 [7:0] - CMD. Command number to set command sub-function enables for.

 For Network Function not equal to 2Ch or 2Eh:

 5:8 Sub-Function Enables (ls-byte first). The enable/disable settings are non-
volatile and take effect on successful completion of the command. The
management controller must reject all new settings (must not change
present settings) if there is any error in the command (non-zero
completion code returned).

 These thirty-two bits form a bitfield where each bit indicates support for a
particular sub-function for the given command. The bit offset
corresponds to the number of the sub-function.

1b enables the sub-function

0b disables the sub-function. 0b is also used for un-configurable/reserved
sub-function numbers. See Table H-1, Sub-function Number
Assignments.

[31] - bit for sub-function 31.

[30] - bit for sub-function 30.

…

[1] - bit for sub-function 1.

[0] - bit for sub-function 0.

 (9:12) These additional 32-bits, if present, form a bitfield where each bit indicates
support for a particular sub-function for the given command, starting
from sub-function 32. The bit offset corresponds to the number of the
sub-function.

 Software only needs to send these bytes in the request if it is setting the
configuration for sub-functions 32 or higher. Note Software should be
prepared that that earlier implementations (pre- errata 3) may return an
error completion code if these additional bytes are sent. In general,
software should avoid sending these additional bytes unless it knows
(e.g. via the Get Configurable Command Sub-Functions command) that
the given command supports sub-functions >31.

1b enables the sub-function

0b disables the sub-function. 0b is also used for un-configurable/reserved
sub-function numbers. See Table H-1, Sub-function Number
Assignments.

[31] - bit for sub-function 63.

[30] - bit for sub-function 62.

…

[1] - bit for sub-function 33.

[0] - bit for sub-function 32.

 Intelligent Platform Management Interface Specification

 293

 For Network Function = 2Ch:

 5 Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 6:9 Sub-Function Enables (see definition for bytes 5:8 for “Network Function not
equal to 2Ch or 2Eh” case, above.)

 (10:13) These additional 32-bits, if present, form a bitfield where each bit indicates
support for a particular sub-function for the given command, starting from sub-
function 32. The bit offset corresponds to the number of the sub-function. (see
definition for bytes 9:12 for “Network Function not equal to 2Ch or 2Eh” case,
above.)

 For Network Function = 2Eh:

 5:7 OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

 8:11 Sub-Function Enables (see definition for bytes 5:8 for “Network Function not
equal to 2Ch or 2Eh” case, above.)

 (12:15) These additional 32-bits, if present, form a bitfield where each bit indicates
support for a particular sub-function for the given command, starting from sub-
function 32. The bit offset corresponds to the number of the sub-function. (see
definition for bytes 9:12 for “Network Function not equal to 2Ch or 2Eh” case,
above.)

IPMI Response Data 1 Completion Code

Generic, plus following command-specific completion codes:

80h = attempt to enable an unsupported or un-configurable sub-function.

Intelligent Platform Management Interface Specification

294

21.10 Get Configurable Command Sub-function Enables Command

This command enables software to determine which sub-functions are enabled/disabled for a given command on

the specified channel/netFn/LUN.

Table 21-10, Get Configurable Command Sub-function Enables Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 [7:6] - reserved

[5:0] - NetFn. Network function code to look up command support for. The
management controller will return the same values for odd or even
NetFn values. I.e. the value for bit [0] is ignored.

 3 [7:2] - reserved

[1:0] - LUN

 4 [7:0] - CMD. Command number to set command sub-function enables for.

 For Network Function = 2Ch:

 (5) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (5:7) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

IPMI Response Data 1 Completion Code

Generic, plus following command-specific completion codes:

80h = attempt to enable an unsupported or un-configurable sub-function.

 2:5 Sub-Function Enables (ls-byte first)

 These thirty-two bits form a bitfield where each bit indicates support for a
particular sub-function for the given command. The bit offset
corresponds to the number of the sub-function. See Table H-1, Sub-
function Number Assignments.

1b sub-function is enabled

0b sub-function is disabled or is un-configurable/reserved.

[31] - bit for sub-function 31.

[30] - bit for sub-function 30.

…

[1] - bit for sub-function 1.

[0] - bit for sub-function 0.

 (6:9) These additional 32-bits, if present, form a bitfield where each bit indicates
support for a particular sub-function for the given command, starting
from sub-function 32. The bit offset corresponds to the number of the
sub-function. See Table H-1, Sub-function Number Assignments. These
bytes are not required to be returned unless the particular command has
sub-functions number definitions >31.

 Software should assume that an implementation may return these bytes
for any command, if the particular command does not have any sub-
function numbers >31 specified.

1b sub-function is enabled

0b sub-function is disabled or is un-configurable/reserved.

[31] - bit for sub-function 63.

[30] - bit for sub-function 62.

…

[1] - bit for sub-function 33.

[0] - bit for sub-function 32.

 Intelligent Platform Management Interface Specification

 295

21.11 Get OEM NetFn IANA Support Command

This command returns the IANA Enterprise Number that is used to identify the OEM or Group that has defined

functionality under Network Function codes 2Ch/2Dh, or 2Eh/2Fh. The command can be iterated if there is more

than one IANA associated with the given Network Function code.

Table 21-11, Get OEM NetFn IANA Support Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 Network Function (NetFn) code

[7:6] - reserved.

[5:0] - Network Function to get OEM IANA info for. Legal values are:

2Ch = “Group Extension” Network Function (codes 2Ch,2Dh)

2Eh = “OEM/Group” Network Function (codes 2Eh, 2Dh)

all other = reserved

 3 List Index

[7:6] - reserved

[5:0] - List Index. 0 gets first IANA. Increment until last IANA is returned

IPMI Response Data 1 Completion Code

 2 [7] - 1b = last IANA

[6:0] - reserved

 3 LUN support

[7:6] - LUN 3 (11b) support

 00b = no commands supported on LUN 3 (11b)

 01b = commands follow base IPMI specification. Commands exist on
LUN, but no special restriction of command functions.
Comands follow standard Optional/Mandatory specifications.

 10b = commands exist on LUN, but some commands/operations may
be restricted by firewall configuration.

 11b = reserved

[5:4] - LUN 2 (10b) support

Note that a BMC uses LUN 10b for message bridging. The message
bridging capability is enabled/disabled by enabling/disabling the Send
Message command.

 00b = no commands supported on LUN 2 (10b)

 01b = commands follow base IPMI specification. Commands exist on
LUN, but no special restriction of command functions.
Comands follow standard Optional/Mandatory specifications.

 10b = commands exist on LUN, but some commands/operations may
be restricted by firewall configuration.

 11b = reserved

[3:2] - LUN 1 (01b) support

[1:0] - LUN 0 (00b) support

 For Network Function = 2Ch:

 (4) Defining body code (See description for Network Function 2Ch/2Dh in Table
5-1, Network Function Codes)

 For Network Function = 2Eh:

 (4:6) OEM or group IANA supported for given Network Function code on returned
LUNs. LS byte first. (See description for Network Function 2Eh/2Fh in Table
5-1, Network Function Codes)

Intelligent Platform Management Interface Specification

296

22. IPMI Messaging Support Commands
This section defines the commands used to support the system messaging interfaces. This includes control bits for

using the BMC as an Event Receiver and SEL Device. SMM Messaging and Event Message Buffer support is

optional. Use of IPMI support for SMI’s and SMM Messaging is deprecated. Configuration interface support for

enabling/disabling SMM Messaging and corresponding SMI has been removed from the specification. If SMM

Messaging were implemented using the IPMI infrastructure, it would now be done as an OEM-proprietary

capability.

System software that is not explicitly aware of the particular platform’s use of SMI Messaging must assume that

the any SMI options have been pre-configured by the controller, system BIOS, or other software. Therefore, run-

time system software should not reconfigure SMI options, nor should it access the Event Message Buffer if it

finds that Event Message Buffer interrupt is mapped to SMI. The effects of SMS accessing the Event Message

Buffer when it is configured for SMI are unspecified. Refer to Appendix G - Command Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands.

Table 22-1, IPMI Messaging Support Commands

Command

Section

Defined

O/M

Set BMC Global Enables 22.1 M

Get BMC Global Enables 22.2 M

Clear Message Flags 22.3 M

Get Message Flags 22.4 M

Enable Message Channel Receive 22.5 O

Get Message 22.6 M[1]

Send Message 22.7 M[1]

Read Event Message Buffer 22.8 O

Get System Interface Capabilities 22.9 O[6]

Get BT Interface Capabilities 22.10 M[2]

Master Write-Read 22.11 M[3]

Get System GUID 22.14 O[5]

Set System Info 22.14a O

Get System Info 22.14b O[8]

Get Channel Authentication Capabilities 22.13 O[4]

Get Channel Cipher Suites 22.15 O[7]

Get Session Challenge 22.15.1 O[4]

Activate Session 22.17 O[4]

Set Session Privilege Level 22.18 O[4]

Close Session 22.19 O[4]

Get Session Info 22.20 O[4]

Get AuthCode 22.21 O

Set Channel Access 22.22 O[4]

Get Channel Access 22.23 O[4]

Get Channel Info 22.24 O[4]

Set Channel Security Keys 22.25 O[7]

Set User Access 22.26 O[4]

Get User Access 22.27 O[4]

Set User Name 22.28 O[5]

Get User Name 22.29 O[4]

Set User Password 22.30 O[4]

1. Optional if the System Interface is the only channel that’s implemented.
2. Mandatory only if BT (block transfer) System Interface is used.

 Intelligent Platform Management Interface Specification

 297

3. Mandatory for a BMC that includes IPMB or PCI SMBus channels, or for any
BMC or satellite controller that implements a private management bus for FRU
SEEPROM access.

4. Mandatory if session-based channels are supported
5. Highly recommended for session-based channels. It is also recommended that

the implementation support multiple of users with configurable usernames.
6. Mandatory for IPMI v2.0 or later implementations of SSIF, and for any SSIF

implementation if the BMC supports multi-part writes and reads. Recommended
but not mandatory for KCS implementations.

7. Mandatory if IPMI v2.0/RMCP+ session-based channels are implemented.
8. Mandatory if Set System Info command is implemented.

22.1 Set BMC Global Enables Command

This command is used to enable message reception into Message Buffers, and any interrupt associated with that

buffer getting full. The OEM0, OEM 1, and OEM 2 flags are available for definition by the OEM/System Integrator.

Generic system management software must not alter these bits.

Table 22-2, Set BMC Global Enables Command
 byte data field

Request Data 1 This field is set to xxxx_100xb on power-up and system resets. If the
implementation allows the receive message queue interrupt to be
enabled/disabled, the default for bit 0 should be 0b..

[7] OEM 2 Enable. Generic system mgmt. software must do a ‘read-modify-
write’ using the Get BMC Global Enables and Set BMC Global
Enables to avoid altering this bit.

[6] OEM 1 Enable. Generic system mgmt. software must do a ‘read-modify-
write’ using the Get BMC Global Enables and Set BMC Global
Enables to avoid altering this bit.

[5] OEM 0 Enable. Generic system mgmt. software must do a ‘read-modify-
write’ using the Get BMC Global Enables and Set BMC Global
Enables to avoid altering this bit.

[4] reserved

[3] 1b = Enable System Event Logging (enables/disables logging of events
to the SEL - with the exception of events received over the system
interface. Event reception and logging via the system interface is
always enabled.) SEL Logging is enabled by default whenever the
BMC is first powered up. It’s recommended that this default state
also be restored on system resets and power on.

[2] 1b = Enable Event Message Buffer. Error completion code returned if
written as ‘1’ and Event Message Buffer not supported.

[1] 1b = Enable Event Message Buffer Full Interrupt

[0] 1b = Enable Receive Message Queue Interrupt (this bit also controls
whether KCS communication interrupts are enabled or disabled. An
implementation is allowed to have this interrupt always enabled.)

 Note: If the Event Message Buffer Full or Receive Message Queue
interrupt are not supported, an implementation can elect to return a
CCh error completion code for the Set BMC Global Enables
command if an attempt is made to enable the interrupt (this is the
recommended implementation).

 Alternatively, the implementation can accept the command, but
must return 0b for the corresponding bit in the Get BMC Global
Enables.

Response Data 1 Completion Code.

22.2 Get BMC Global Enables Command

This command is used to retrieve the present setting of the Global Enables. The OEM0, OEM 1, and OEM 2 flags

are available for definition by the OEM/System Integrator. Generic system management software must ignore these

bits.

Intelligent Platform Management Interface Specification

298

Table 22-3, Get BMC Global Enables Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 [7] - 1b = OEM 2 Enabled.

[6] - 1b = OEM 1 Enabled.

[5] - 1b = OEM 0 Enabled.

[4] - reserved

[3] - 1b = System Event Logging Enabled

[2] - 1b = Event Message Buffer Enabled

[1] - 1b = Event Message Buffer Full Interrupt Enabled

[0] - 1b = Receive Message Queue Interrupt Enabled (this bit also indicates
whether KCS communication interrupt are enabled or disabled.)

Note: If the Receive Message Queue and/or Event Message Full
interrupts are not implemented the corresponding Interrupt Enabled
status bit should always be returned as 0b.

22.3 Clear Message Flags Command

This command is used to flush unread data from the Receive Message Queue or Event Message Buffer. This will

also clear the associated buffer full / message available flags. See Get Message Flags command.

Table 22-4, Clear Message Flags Command
 byte data field

Request Data 1 [7] - 1b = Clear OEM 2

[6] - 1b = Clear OEM 1

[5] - 1b = Clear OEM 0

[4] - reserved

[3] - 1b = Clear watchdog pre-timeout interrupt flag

[2] - reserved

[1] - 1b = Clear Event Message Buffer.

[0] - 1b = Clear Receive Message Queue.

Response Data 1 Completion Code.

 Implementations are not required to return an error completion code if an
attempt is made to clear the Event Message Buffer flag but the Event
Message Buffer is not supported.

22.4 Get Message Flags Command

This command is used to retrieve the present ‘message available’ states. The OEM0, OEM 1, and OEM 2 flags are

available for definition by the OEM/System Integrator. Generic system management software must ignore these bits.

 Intelligent Platform Management Interface Specification

 299

Table 22-5, Get Message Flags Command
 byte data field

Request Data 1 -

Response Data 1 Completion Code.

 2 Flags

[7] - 1b = OEM 2 data available.

[6] - 1b = OEM 1 data available.

[5] - 1b = OEM 0 data available.

[4] - reserved

[3] - 1b = Watchdog pre-timeout interrupt occurred

[2] - reserved

[1] - 1b = Event Message Buffer Full. (Return as 0 if Event Message Buffer is
not supported, or when the Event Message buffer is disabled.)

[0] - 1b = Receive Message Available. One or more messages ready for
reading from Receive Message Queue

22.5 Enable Message Channel Receive Command

This command is used to enable/disable message reception into the Receive Message Queue from a given

message channel. The command provides a mechanism to allow SMS to only receive messages from channels that

it intends to process, and provides a disable mechanism in case the receive message queue is being erroneously or

maliciously flooded with requests on a particular channel. It does not affect the ability for SMS to transmit on that

channel. Only the SMS Message channel is enabled by default. All other channels must be explicitly enabled by

BIOS or system software, as appropriate. It is recommended that a ‘Destination Unavailable’ completion code be

returned if a request message to SMS is rejected because reception has been disabled.

Table 22-6, Enable Message Channel Receive Command
 byte data field

Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number

 2 Channel State

[7:2] - reserved

[1:0] - 00b = disable channel

 01b = enable channel

 10b = get channel enable/disable state

 11b = reserved

Response Data 1 Completion Code

 2 Channel Number

[7:4] - reserved

[3:0] - channel number

 3 Channel State

[7:1] - reserved

[0] - 1b = channel enabled

 0b = channel disabled

22.6 Get Message Command

This command is used to get data from the Receive Message Queue. Refer to Table 6-8, IPMI Message and IPMB

/ Private Bus Transaction Size Requirements, for information that can be used to determine the sizes of messages

that need to be supported for a given Receive Message Queue implementation.

Intelligent Platform Management Interface Specification

300

Software is responsible for reading all messages from the message queue even if the message is not the expected

response to an earlier Send Message. System management software is responsible for matching responses up with

requests.

The Get Message command includes an “inferred privilege level” that is returned with the message. This can help

avoid the need for software to implement a separate privilege-level and authentication mechanism. This works as

follows: Suppose a user activates a session with a maximum privilege level of Administrator on a multi-session

channel, and that an MD5 authentication type was negotiated. Also suppose that User-level authentication is

disabled. A user that has User or higher privilege can place messages into the receive message queue by sending

them to LUN 10b, or by using the Send Message command. If the packet has Authentication Type = MD5, the

packet will be assigned an inferred privilege level based the on the present operating privilege level for the user

(set using the Set Session Privilege Level command). If, before sending the packet, the user had set their privilege

level to Operator, the packet would be assigned an inferred privilege level of Operator. (Note that this means an

authenticated (signed) packet can be assigned different inferred privilege levels based on the present operating

privilege set by the Set Session Privilege Level command.) If the message is received in a packet that has

Authentication Type = None, the packet will be assigned an inferred privilege level of ‘User’, since that is the

lowest privilege level for which that type of authentication is accepted.

Now suppose that the remote user had used the receive message queue as a way to send a message to system

management software that requests a soft shutdown of the operating system. The message would either have an

inferred privilege level of ‘Operator’ or ‘User’ depending on whether it was sent as an authenticated message or

not. System Management Software can then use that inferred privilege level as part of deciding whether to accept

and process the message or not. For single-session channels, the inferred privilege level is always set to the

 Intelligent Platform Management Interface Specification

 301

present operating privilege level. For session-less channels, the inferred privilege level is set to ‘None’, indicating

that there was no IPMI-specified authentication operating on the channel from which the message was received.

Table 22-7, Get Message Command
 byte data field

Request Data - -

Response Data 1 Completion Code

generic, plus following command specific completion code:

80h = data not available (queue / buffer empty)

Implementation of this completion code is Mandatory. The code eliminates
the need for system software to always check the Message Buffer Flags to
see if there data left in the Receive Message Queue. If a non-OK, non-80h
completion is encountered - software will need to check the Message Flags
to get the empty/non-empty status of the Receive Message Queue.

 2 Channel Number

[7:4] Inferred privilege level for message.

When the BMC receives a message for the receive message queue, it
assigns an ‘inferred privilege level’ to the message as follows:

If the message is received from a session-based channel, it will initially be
assigned a privilege level that matches the ‘maximum requested privilege
level’ that was negotiated via the Activate Session command.

If per-message authentication is enabled, but User-level authentication is
disabled, the BMC will assign a level of ‘User’ to any messages that are
received with an Authentication Type = none. (Note that per-message and
user-level authentication options only apply to multi-session channels)

The BMC will then lower the assigned privilege limit, if necessary, based on
the present session privilege limit that was set via the Set Session Privilege
Level command.

If the channel is session-less (e.g. IPMB), the BMC will return ‘None’ for the
privilege level.

 0h = None (unspecified)

 1h = Callback level

 2h = User level

 3h = Operator level

 4h = Administrator level

 5h = OEM Proprietary level

[3:0] channel number

 3:N Message Data. Max. Length & format dependent on protocol associated with
channel.

The following table indicates the contents of the Message Data field from the Get Message response according to

the Channel Type and Channel Protocol that was used to place the message in the Receive Message Queue.

Table 22-8, Get Message Data Fields

Originating Channel Type

Channel

Protocol

Message Data for received requests(RQ)

and responses (RS)

1 IPMB (I2C) IPMB[1] RQ: netFn/rsLUN, chk1, rqSA, rqSeq/rqLUN, cmd,
<data>, chk2

 RS: netFn/rqLUN, chk1, rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

2 ICMB v1.0 ICMB-1.0 See Section 8.2, ICMB Bridge Commands in BMC
using Channels

Intelligent Platform Management Interface Specification

302

3 ICMB v0.9 ICMB-0.9 See Section 8.2, ICMB Bridge Commands in BMC
using Channels

4 802.3 LAN IPMB RQ: Session Handle, rsSWID, netFn/rsLUN, chk1,
rqSWID or rqSA, rqSeq/rqLUN, cmd, <data>,
chk2

 RS: Session Handle, rqSWID, netFn/rsLUN, chk1,
rsSWID or rsSA, rqSeq/rsLUN, cmd, completion
code, <data>, chk2

5 Asynch. Serial/Modem

(RS-232)

IPMB (Basic
Mode, Terminal
Mode, and PPP

Mode)

RQ/RS: See row for Originating Channel Type = 802.3
LAN

Note: When LUN 10b is used to deliver a message to
SMS from a Terminal Mode remote console, the
BMC inserts fixed values for the SWIDs and LUNs
in the message. Messages from the remote
console are always returned as coming from
SWID 40h (81h) LUN 00b, and going to SMS
SWID 20h (41h) LUN 00b.

6 Other LAN IPMB See row for Originating Channel Type = 802.3 LAN

7 PCI SMBus IPMI-SMBus

RQ: rsSA, Netfn(even)/rsLUN, 00h, rqSA,
rqSeq/rqLUN, CMD, <data>, PEC

RS: rqSA or rqSWID, NetFn(odd)/rqLUN, 00h, rsSA or
rsSWID, rqSeq/rsLUN, CMD, completion code,
<data>, PEC

8 SMBus v1.0/1.1

9 SMBus v2.0

10 reserved for USB 1.x n/a n/a

11 reserved for USB 2.x n/a n/a

12 System Interface BT, KCS, SMIC RQ/RS: See row for Originating Channel Type = 802.3
LAN.

1. This message data matches the IPMB message format with the leading slave address omitted. The format includes
checksums. In order to verify those checksums, they must be calculated as if 20h (BMC slave address) was the value that
was used as the slave address when the checksums were calculated per [IPMB]. 20h shall always be used for the
checksum calculation for the receive message queue data whenever IPMB is listed as the originating bus and with IPMB as
the Channel Protocol.

22.7 Send Message Command

The Send Message command is used for bridging IPMI messages between channels, and between the system

management software (SMS) and a given channel. Refer to 6.13, BMC Message Bridging, for information on

how the Send Message command is used.

For IPMI v2.0 the Send Message command has been updated to include the ability to indicate whether a

message must be sent authenticated or with encryption (for target channels on which authentication and/or

encryption are supported and configured).

 Intelligent Platform Management Interface Specification

 303

Table 22-9, Send Message Command
 byte data field

Request Data 1 Channel Number

[7:6] 00b = No tracking. The BMC reformats the message for the selected channel but does not track
the originating channel, sequence number, or address information. This option is typically
used when software sends a message from the system interface to another media.
Software will typically use ‘no tracking’ when it delivers sends a message from the system
interface to another channel, such as IPMB. In this case, software will format the
encapsulated message so that when it appears on the other channel, it will appear to have
been directly originated by BMC LUN 10b. See 6.12.1, BMC LUN 10b Routing.

 01b = Track Request. The BMC records the originating channel, sequence number, and
addressing information for the requester, and then reformats the message for the protocol
of the destination channel. When a response is returned, the BMC looks up the requester’s
information and format the response message with the framing and destination address
information and reformats the response for delivery back to the requester. This option is
used for delivering IPMI Request messages from non-SMS (non-system interface)
channels. See 6.12.3, Send Message Command with Response Tracking.

 10b = Send Raw. (optional) This option is primarily provided for test purposes. It may also be
used for proprietary messaging purposes. The BMC simply delivers the encapsulated data
to the selected channel in place of the IPMI Message data. Note that if the channel uses
sessions, the first byte of the Message Data field must be a Session Handle. The BMC
should return a non-zero completion code if an attempt is made to use this option for a
given channel and the option is not supported. It is recommended that completion code
CCh be returned for this condition.

 11b = reserved

[5] 1b = Send message with encryption. BMC will return an error completion code if this encryption
is unavailable.

 0b = Encryption not required. The message will be sent unencrypted if that option is available
under the given session. Otherwise, the message will be sent encrypted.

[4] 1b = Send message with authentication. BMC will return an error completion code if this
authentication is unavailable.

 0b = Authentication not required. Note behavior is dependent on whether authentication is used
is depending on whether the target channel is running an IPMI v1.5 or IPMI v2.0/RMCP+
session, as follows:

 IPMI v1.5 sessions will default to sending the message with authentication if that option is
available for the session.

 IPMI v2.0/RMCP+ sessions will send the message unauthenticated if that option is
available under the session. Otherwise, the message will be sent with authentication.

[3:0] channel number to send message to.

 2:N Message Data. Format dependent on target channel type. See Table 22-10, Message Data for Send
Message Command

Response Data 1 Completion Code

generic, plus additional command-specific completion codes:

 80h = Invalid Session Handle. The session handle does not match up with any currently active
sessions for this channel.

If channel medium = IPMB, SMBus, or PCI Management Bus:

(This status is recommended for applications that need to access low-level I2C or SMBus devices.)

 81h = Lost Arbitration

 82h = Bus Error

 83h = NAK on Write

 (2:N) Response Data

This data will only be present when using the Send Message command to originate requests from
IPMB or PCI Management Bus to other channels such as LAN or serial/modem. It is not present in the
response to a Send Message command delivered via the System Interface.

Intelligent Platform Management Interface Specification

304

NOTE: The BMC does not parse messages that are encapsulated in a Send Message command. Therefore,
it does not know what privilege level should associated with an encapsulated message. Thus,
messages that are sent to a session using the Send Message command are always output using the
Authentication Type that was negotiated when the session was activated.

The following table summarizes the contents of the Message Data field when the Send Message command is used

to deliver an IPMI Message to different channel types. Note that in most cases the format of message information

the Message Data field follows that used for the IPMB, with two typical exceptions: When the message is

delivered to channels without physical slave devices, a software ID (SWID) field takes the place of the slave

address field. When the message is delivered to a channel that supports sessions, the first byte of the message data

holds a Session Handle.

Table 22-10, Message Data for Send Message Command

Target Channel Type

Target

Channel

Protocol

Message Data field contents for Send Message
command for sending requests(RQ) and responses
(RS)

1 IPMB (I2C) IPMB RQ: rsSA, netFn/rsLUN, chk1, rqSA, rqSeq/rqLUN,
cmd, <data>, chk2

 RS: rqSA, netFn/rqLUN, chk1, rsSA, rqSeq/rsLUN,
cmd, completion code, <data>, chk2

2 ICMB v1.0 ICMB-1.0 See Section 8.2, ICMB Bridge Commands in BMC
using Channels

3 ICMB v0.9 ICMB-0.9 See Section 8.2, ICMB Bridge Commands in BMC
using Channels

4 802.3 LAN IPMB+session
header

RQ: Session Handle[1], rsSWID, netFn/rsLUN, chk1,
rqSWID or rqSA, rqSeq/rqLUN, cmd, <data>,
chk2

 RS: Session Handle[1], rqSWID, netFn/rsLUN, chk1,
rsSWID or rsSA, rqSeq/rsLUN, cmd,
completion code, <data>, chk2

5 Asynch. Serial/Modem

(RS-232)

IPMB (Basic
Mode, Terminal
Mode, and PPP

Mode)

RQ/RS: See Target Channel Type = 802.3 LAN

Note: Terminal mode has a single, fixed SWID for
the remote console, software using Send
Message to deliver a message to a terminal
mode remote console should use their SWID or
slave address as the source of the request or
response, and the Terminal Mode SWID (40h)
as the destination.

6 Other LAN IPMB See Target Channel Type = 802.3 LAN

7 PCI SMBus IPMI-SMBus

See Target Channel Type = IPMB

8 SMBus v1.0/1.1

9 SMBus v2.0

10 reserved for USB 1.x n/a n/a

11 reserved for USB 2.x n/a n/a

12 System Interface RQ/RS: See Target Channel Type = IPMB
Note: BMC adds Session Handle info when it puts
the message into the Receive Message Queue.

1. Session Handle. Identifies the particular active session for this channel. The session handle identifies a particular active
session on the given channel. The BMC assigns a different value to each time a new session is activated. A typical
implementation will keep track of the last value that was assigned and increment it before assigning it to a new active
session when the Activate Session command has been accepted. Software must include this field for channels where the
Get Channel Info command indicates that the channel supports sessions.

 Intelligent Platform Management Interface Specification

 305

22.8 Read Event Message Buffer Command

This command is used to retrieve the contents of the Event Message Buffer. Reading the buffer automatically

clears the Event Message Buffer Full flag from the Get Message Flags command.

Table 22-11, Read Event Message Buffer Command
 byte data field

Request Data - -

Response Data 1 Completion Code.

generic, plus additional command-specific completion codes:

80h = data not available (queue / buffer empty)

 2:17 Message Data. 16 bytes of data in SEL Record format, per Table 32-1, SEL
Event Records. A dummy Record ID of FFFFh should be returned for events
placed in the Event Message Buffer while event logging is disabled or if the
SEL is full. System management software should ignore the record ID when
event logging is disabled.

22.9 Get System Interface Capabilities Command
This command can be used to determine whether the SSIF supports multi-part transactions, and what size of IPMI

messages can be transferred. The Get System Interface Capabilities command is mandatory for BMCs that

implement multi-part writes or reads. Thus, software can assume that if the Get System Interface Capabilities

command is not implemented, the interface only supports single-part writes and reads.

Intelligent Platform Management Interface Specification

306

Table 22-12, Get System Interface Capabilities Command
 byte data field

Request Data 1 System Interface Type
[7:4] - reserved
[3:0] - System Interface Type (For BT use the Get BT Interface Capabilities

command)
0h = SSIF
1h = KCS
2h = SMIC
all other = reserved

Response Data 1 Completion Code

 2 Reserved. Returned as 00h.

 For System Interface Type = SSIF:

 3 [7:6] - Transaction support
 00b = only single-part reads/writes supported.
 01b = multi-part reads/writes supported. Start and End

transactions only.
 10b = multi-part reads/writes supported. Start, Middle, and

End transactions supported.
 11b = reserved.
[5:4] - reserved.
[3] - PEC support.
 1b = implements PEC. BMC will start using PEC in read

transactions after it receives any SSIF write transaction
that includes a valid PEC. The BMC ceases using PEC
if it receives an SSIF write transaction that does not
include PEC.

 0b = does not support PEC. Note that a BMC implementation
may reject write transactions that include a PEC byte.

[2:0] - SSIF Version
 000b = version 1 (version defined in this specification).

 4 Input message size in bytes. (1 based.)
 Number of bytes of IPMI message data that the BMC can accept.

This number does not include slave address, SMBus length,
PEC, or SMBus CMD bytes, just the IPMI message data. A BMC
that just supports single-part writes would return 32 (20h) for this
value. A BMC that supports multi-part Start and End would return
a value from 33 to 64. A BMC that supports multi-part with Middle
transactions would return a value from 65 to 255.

 5 Output message size in bytes. (1 based.)
 Maximum number of bytes of IPMI message data that can be

read from the BMC. This number does not include slave address,
SMBus length, PEC, SMBus CMD bytes, special bytes (such as
the special bytes following the length byte in the multi-part read
middle and end transactions) just the IPMI message data. A BMC
that just supports single-part reads would return 20h (32) for this
value. A BMC that supports multi-part Start and End would return
a value from 33 to 62 (the reason this is 62 instead of 64 is that
there are two special bytes after the length byte.) A BMC that
supports multi-part with Middle transactions would return a value
from 63 to 255.

 For System Interface Type = KCS or SMIC

 3 [7:3] - reserved
[2:0] - System Interface Version
 000b = version 1 (conformant with KCS or SMIC interface as

defined in this specification).

 4 Input maximum message size in bytes. (1 based.)
Largest number of bytes that can be transferred in a KCS
FFh means 255 or more.

 Intelligent Platform Management Interface Specification

 307

22.10 Get BT Interface Capabilities Command

The BT interface includes a Get BT Interface Capabilities command that returns various characteristics of the

interface, including buffer sizes, and multithreaded communications capabilities.

Table 22-13, Get BT Interface Capabilities Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Number of outstanding requests supported (1 based. 0 illegal)

 3 Input (request) buffer message size in bytes. (1 based.)[1]

 4 Output (response) buffer message size in bytes. (1 based.)[1]

 5 BMC Request-to-Response time, in seconds, 1 based. 30 seconds,
maximum.

 6 Recommended retries (1 based). (see text for BT Interface)

1. For Bytes 3 and 4 (Input and Output Buffer size), the buffer message size is the
largest value allowed in first byte (length field) of any BT request or response
message. For a send, this means if Get BT Interface Capabilities returns 255 in byte
3 (input buffer size) the driver can actually write 256 bytes to the input buffer (adding
one for the length byte (byte 1) that is sent in with the request.)

Intelligent Platform Management Interface Specification

308

22.11 Master Write-Read Command

This command can be used for low-level I2C/SMBus write, read, or write-read accesses to the IPMB or private

busses behind a management controller. The command can also be used for providing low-level access to devices

that provide an SMBus slave interface.

Table 22-14, Master Write-Read Command

 byte data field

Request Data 1 bus ID:

[7:4] channel number (Ignored when bus type = 1b)

[3:1] bus ID, 0-based (always 000b for public bus [bus type = 0b])

[0] bus type:

 0b = public (e.g. IPMB or PCI Management Bus. The channel number
value is used to select the target bus.)

 1b = private bus (The bus ID value is used to select the target bus.)

 2 [7:1] - Slave Address

[0] - reserved. Write as 0.

 3 Read count. Number of bytes to read, 1 based. 0 = no bytes to read. The
maximum read count should be at least 34 bytes. This allows the command to
be used for an SMBus Block Read. This is required if the command provides
access to an SMBus or IPMB. Otherwise, if FRU SEEPROM devices are
accessible, at least 31 bytes must be supported. Note that an implementation
can support fewer bytes can be supported if none of the devices to be
accessed can handle the recommended minimum.

 4:N Data to write. This command should support at least 35 bytes of write data.
This allows the command to be used for an SMBus Block Write with PEC.

Otherwise, if FRU SEEPROM devices are accessible, at least 31 bytes must
be supported. Note that an implementation is allowed to support fewer bytes if
none of the devices to can handle the recommended minimum.

Response Data 1 Completion Code

A management controller shall return an error Completion Code if an attempt
is made to access an unsupported bus.

generic, plus following command specific codes:

 81h = Lost Arbitration

 82h = Bus Error

 83h = NAK on Write

 84h = Truncated Read

 (2:M) Bytes read from specified slave address. This field will be absent if the read
count is 0. The controller terminates the I2C transaction with a STOP condition
after reading the requested number of bytes.

22.12 Session Header Fields

Whether the session header fields are present in a packet is based on whether the channel is specified as

supporting multiple sessions or not. In addition, which session fields are present is based on the authentication

type. Single-session connections and session-less channels do not include session header fields.

Session header fields are present on all packets where the channel and connection mode is specified as

supporting multiple sessions, even if the particular implementation only supports one session. The following

tables for the Get System GUID, Get Channel Authentication Capabilities, Get Session Challenge, and Activate

Session commands explicitly show ‘session header’ fields in gray. This is done because those commands can be

executed prior to a session being activated, and therefore certain session header field values are handled

differently than they are after a session is established.

The grayed session header fields illustrate which session header fields are present and what their values are

required to be, but they do not serve to specify the order or organization of those fields in the packet for a

particular medium. Refer to the example packet format figures for (e.g. Table 13-8, RMCP/RMCP+ Packet

 Intelligent Platform Management Interface Specification

 309

Format for IPMI via Ethernet) for the specification of the organization and position of the session header bytes

for a particular medium.

The following applies to packets on connections that are specified with support for multiple sessions:

 Session header fields are present on all packets where the channel and connection mode is specified as

supporting multiple sessions, even if the particular implementation only supports one session.

 Note that the command tables do not show the session header fields except for the Get Channel

Authentication Capabilities, Get Session Challenge, and Activate Session commands. However, they are

still required for all commands on a multi-session connection.

 The Authentication Code field in the session header may or may not be present based on the Authentication

Type. The authentication code field is absent whenever the Authentication Type is NONE. Whether the

authentication code field is present or not when the Authentication Type = OEM is dependent on the OEM

identified in the Get Channel Authentication Capabilities command.

 If per-message authentication is turned off for the channel, only the Activate Session command would use a

non-NONE authentication type and include an AuthCode signature. All other commands under the session

are sent with Authentication Type = NONE.

 If per-message authentication is turned off and a packet is received that has a non-NONE authentication

type, it will be accepted (if the authentication type is supported), however the implementation is not

required to authenticate the packet. Note that an implementation may authenticate the packet, therefore the

Authentication Code must be correct.

 If User authentication is turned off for the channel, the behavior is the same as if per-message

authentication is turned off, except that only packets for commands that are enabled at User privilege level

are sent with Authentication Type = NONE. All other packets must be authenticated per the Authentication

Type used to activate the session.

22.13 Get Channel Authentication Capabilities Command

This command is sent in unauthenticated (clear) format. This command is used to retrieve capability information

about the channel that the message is delivered over, or for a particular channel. The command returns the

authentication algorithm support for the given privilege level. When activating a session, the privilege level

passed in this command will normally be the same Requested Maximum Privilege level that will be used for a

subsequent Activate Session command.

BMC implementations of IP-based channels must support the Get Channel Authentication Capabilities Command

using the IPMI v1.5 packet format. BMCs that support IPMI v2.0 RMCP+ must also support the command using

the IPMI v2.0/RMCP+ format.

The Get Channel Authentication Capabilities command can also be used as a no-op ‘Ping’ to keep a session from

timing out.

Intelligent Platform Management Interface Specification

310

Table 22-15, Get Channel Authentication Capabilities Command
Session Request Data authentication type = NONE / payload type = IPMI Message

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

IPMI Request Data 1 Channel Number

[7] - 1b = get IPMI v2.0+ extended data. If the given channel supports
authentication but does not support RMCP+ (e.g. a serial
channel), then the Response data should return with bit [5] of byte
4 = 0b, byte 5 should return 01h,

 0b = Backward compatible with IPMI v1.5. Response data only returns
bytes 1:9, bit [7] of byte 3 (Authentication Type Support) and bit
[5] of byte 4 returns as 0b, bit [5] of byte byte 5 returns 00h.

[6:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 Requested Maximum Privilege Level

[7:4] - reserved

[3:0] - requested privilege level

 0h = reserved

 1h = Callback level

 2h = User level

 3h = Operator level

 4h = Administrator level

 5h = OEM Proprietary level

Session Response Data authentication type = NONE / payload type = IPMI Message

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

IPMI Response Data 1 Completion Code

 2 Channel Number

 Channel number that the Authentication Capabilities is being returned
for. If the channel number in the request was set to Eh, this will return
the channel number for the channel that the request was received on.

 3 Authentication Type Support

Returns the setting of the Authentication Type Enable field from the
configuration parameters for the given channel that corresponds to the
Requested Maximum Privilege Level.

[7] - 1b = IPMI v2.0+ extended capabilities available. See Extended
Capabilities field, below.

 0b = IPMI v1.5 support only.

[6] - reserved

[5:0] - IPMI v1.5 Authentication type(s) enabled for given Requested Maximum
Privilege Level

All bits: 1b = supported

 0b = authentication type not available for use.

[5] - OEM proprietary (per OEM identified by the IANA OEM ID in
the RMCP Ping Response)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2

[0] - none

 Intelligent Platform Management Interface Specification

 311

 4 [7:6] - reserved

[5] - KG status (two-key login status). Applies to v2.0/RMCP+ RAKP
Authentication only. Otherwise, ignore as ‘reserved’.

 0b = KG is set to default (all 0’s). User key KUID will be used in place of
KG in RAKP. (Knowledge of KG not required for activating session.)

 1b = KG is set to non-zero value. (Knowledge of both KG and user
password (if not anonymous login) required for activating session.)

Following bits apply to IPMI v1.5 and v2.0:

[4] - Per-message Authentication status

 0b = Per-message Authentication is enabled. Packets to the BMC must
be authenticated per Authentication Type used to activate the
session, and User Level Authentication setting, following.

 1b = Per-message Authentication is disabled. Authentication Type ‘none’
accepted for packets to the BMC after the session has been
activated.

[3] - User Level Authentication status

 0b = User Level Authentication is enabled. User Level commands must
be authenticated per Authentication Type used to activate the
session.

 1b = User Level Authentication is disabled. Authentication Type ‘none’
accepted for User Level commands to the BMC.

[2:0] - Anonymous Login status

 This parameter returns values that tells the remote console whether
there are users on the system that have ‘null’ usernames. This can be
used to guide the way the remote console presents login options to the
user. (see IPMI v1.5 specification sections 6.9.1, ‘Anonymous Login’
Convention and 6.9.2, Anonymous Login)

[2] - 1b = Non-null usernames enabled. (One or more users are enabled
that have non-null usernames).

[1] - 1b = Null usernames enabled (One or more users that have a null
username, but non-null password, are presently enabled)

[0] - 1b = Anonymous Login enabled (A user that has a null username
and null password is presently enabled)

 5 For IPMI v1.5: - reserved

For IPMI v2.0+: - Extended Capabilities

[7:2] - reserved

[1] - 1b = channel supports IPMI v2.0 connections.

[0] - 1b = channel supports IPMI v1.5 connections.

 6:8 OEM ID

IANA Enterprise Number for OEM/Organization that specified the
particular OEM Authentication Type for RMCP. Least significant byte
first.

Return 00h, 00h, 00h if no OEM authentication type available.

 9 OEM auxiliary data.

 Additional OEM-specific information for the OEM Authentication Type for
RMCP.

 Return 00h if no OEM authentication type available.

22.14 Get System GUID Command

This command returns a GUID (Globally Unique ID), also referred to as a UUID (Universally Unique IDentifier),

for the management controller. The format of the ID GUID follows the octet format specified in [RFC

4122].[RFC4122]. [RFC4122] specifies four different versions of UUID formats and generation algorithms

suitable for use for a Device GUID in IPMI. These are versionVersions 1 (0001b) “time based”, and three ‘name-

based’ versions: version 3 (0011b) “MD5 hash”, version 4 (0100b) “Pseudo-random”, and version 5 “SHA1

hash”. The version 1 format is recommended. However, versions, 3, 4, or 5 formatsgeneration algorithms are also

allowed. A Device GUID should never change over the lifetime of the device.

Intelligent Platform Management Interface Specification

312

Table 22-16, Get Device GUID Command
Request Data - -

Response Data 1 Completion Code

 2:17 GUID bytes 1 through 16.

Note that IPMI has previously specified (prior to Errata E7) that the individual fields within the GUID are stored

least-significant byte first, and in the order illustrated in the following table.Table 20-10, GUID Format. This

isordering was the reverse of the convention described in [RFC4122] where GUID bytes are transmitted in

‘network order’ (most-significant byte first) starting with the time low field.).

However, the GUID itself is opaque for the IPMI specification. Remote consoles and management software

should not interpret or depend on any sub-fields within the GUID. The GUID should only be interpreted as a

globally unique 128-bit number.

22.14.1 Consistency with SMBIOS UUID

If an SMBIOS UUID is present in the system, it is considered to be most important that the network byte order of

the IPMI System GUID matches the network byte order of the SMBIOS UUID, in order to make it simpler for

applications to correlate the ID between IPMI and SMBIOS.

Therefore, it is recommended that the IPMI System GUID byte order copies the byte ordering that is used for

SMBIOS on the managed system. That is, the values match byte-for-byte, where bytes from the lowest memory

address to highest memory address for SMBIOS match byte-for-byte with the bytes from the first IPMI byte

(offset 2) to last IPMI byte (offset 17), respectively, regardless of any sub-field ordering or how the value is

generated. Following this order will make it simpler to correlate the IPMI System GUID with the SMBIOS UUID.

Table 22-17, Get System GUID Command
Session Request Data authentication type = NONE

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

Request Data - -

Session Response Data authentication type = NONE

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

Response Data 1 Completion Code

 2:17 GUID bytes 1 through 16. See Table 20-10, GUID Format.

 Intelligent Platform Management Interface Specification

 313

22.14a Set System Info Parameters Command

This command is used for setting system information parameters such as system name and BIOS/system firmware

revision information.

Table 22-16a, Set System Info Parameters Command
 byte data field

Request Data 1 Parameter selector

 2:N Configuration parameter data, per Table 22-16c, System Info Parameters

Response Data 1 Completion Code

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

22.14b Get System Info Parameters Command

This command is used for retrieving system information parameters from the Set System Info Parameters

command.

Table 22-16b, Get System Info Parameters Command
 byte data field

Request Data 1 [7] - 0b = get parameter

 1b = get parameter revision only.

[6:0] - reserved

 2 Parameter selector

 3 Set Selector. Selects a given set of parameters under a given Parameter
selector value. 00h if parameter doesn’t use a Set Selector.

 4 Block Selector (00h if parameter does not require a block number)

Response Data 1 Completion Code.

Generic codes, plus following command-specific completion code(s):

80h = parameter not supported.

 2 [7:0] - Parameter revision.

Format: MSN = present revision. LSN = oldest revision parameter is backward
compatible with. 11h for parameters in this specification.

 The following data bytes are not returned when the ‘get parameter revision
only’ bit is 1b.

 3:N Configuration parameter data, per Table 22-16c, System Info Parameters

If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

Table 22-16c, System Info Parameters
Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following parameters
are being updated, and when the updates are completed. The bit is primarily
provided to alert software that some other software or utility is in the process of
making changes to the data.

An implementation can also elect to provide a ‘rollback’ feature that uses this
information to decide whether to ‘roll back’ to the previous configuration information,
or to accept the configuration change.

If used, the roll back shall restore all parameters to their previous state. Otherwise,
the change shall take effect when the write occurs.

[7:2] - reserved

Intelligent Platform Management Interface Specification

314

[1:0] - 00b = set complete. If a system reset or transition to powered down state
occurs while ‘set in progress’ is active, the BMC will go to the ‘set
complete’ state. If rollback is implemented, going directly to ‘set
complete’ without first doing a ‘commit write’ will cause any pending
write data to be discarded.

 01b = set in progress. This flag indicates that some utility or other software
is presently doing writes to parameter data. It is a notification flag
only, it is not a resource lock. The BMC does not provide any interlock
mechanism that would prevent other software from writing parameter
data while ‘set in progress’ value is present on these bits.

 10b = commit write (optional). This is only used if a rollback is implemented.
The BMC will save the data that has been written since the last time
the ‘set in progress’ and then go to the ‘set in progress’ state. An error
completion code will be returned if this option is not supported.

 11b = reserved

System Firmware
version

1 System Firmware Version string in text.

System firmware that requires multiple strings to represent version information can
separate those strings using 00h as the delimiter for ASCII+LATIN1 and UTF-8
encoded string data, or 0000h for UNICODE encoded string data.

For IA32 and EMT64 utilizing non-EFI system firmware, it is recommended that four
blocks (64 bytes) of storage be provided. For EFI-based systems, 256 bytes is
recommended.

Note: System firmware may optionally include a routine that checks during POST to
see if this parameter is up-to-date with the present firmware version, and if not,
update it automatically. Other implementations may elect to automatically update
this parameter when system firmware updates occur.

data 1 - set selector = 16-byte data block number to access, 0 based. Two data

blocks (32-bytes) for string data required, at least three recommended.
Number of effective characters will be dependent on the encoding
selected in string data byte 1.

data 2:17 - 16-byte block for system firmware name string data

For the first block of string data (set selector = 0), the first two bytes indicate
the encoding of the string and its overall length as follows:

string data byte 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+Latin1

1h = UTF-8

2h = UNICODE

all other = reserved.

string data byte 2:

[7:0] - string length (in bytes, 1-based)

System name 2 System Name. A name for the overall system to be associated with the BMC. This
may or may not match other names that are used for the system.

data 1 - set selector = 16-byte data block number to access, 0 based. Two data

blocks (32-bytes) for string data required, at least three recommended.
Number of effective characters will be dependent on the encoding
selected in string data byte 1.

data 2:17 - 16-byte block for system name string data

For the first block of string data (set selector = 0), the first two string data
bytes indicate the encoding of the string and its overall length as follows. There
is no required value to be set or used for any bytes that are past the string
length.

string data byte 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+Latin1

1h = UTF-8 (ls-byte first)

2h = UNICODE (ls-byte first)

all other = reserved.

 Intelligent Platform Management Interface Specification

 315

string data byte 2:

[7:0] - string length (in bytes, 1-based)

Primary Operating
System Name
(non-volatile)

3 Primary Operating system name. The OS that the system boots to for this BMC
according to the default configuration of its system firmware.

(Note: in systems that may have multiple physical partitions, this reflects the OS for
the partition that the given BMC is in. For systems that have virtual machine
capability being utilized [where more than one virtual systems may be sharing a
physical BMC], it is recommended that this value hold the name of the virtual
machine monitor (VMM) software or VMM type)

data 1 - set selector = 16-byte data block number to access, 0 based. Two data

blocks (32-bytes) for string data required, at least three recommended.
Number of effective characters will be dependent on the encoding
selected in string data byte 1.

data 2:17 - 16-byte block for system name string data

For the first block of string data (set selector = 0), the first two bytes indicate
the encoding of the string and its overall length as follows. There is no required
value to be set or used for any bytes that are past the string length.

string data byte 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+Latin1

1h = UTF-8

2h = UNICODE

all other = reserved.

string data byte 2:

[7:0] - string length (in bytes, 1-based)

Operating System
Name
(volatile)

4 Present Operating system name. The name of the operating system that is presently
running and able to access this BMC’s system interface. The BMC automatically
clears this value by zeroing out the string length on system power cycles and resets.

(Note: in systems that may have multiple physical partitions, this reflects the OS for
the partition that the given BMC is in. For systems that have virtual machine

capability being utilized [where more than one virtual systems may be sharing
a physical BMC], it is recommended that this value hold the name of the virtual
machine monitor (VMM) software or VMM type)

data 1 - set selector = 16-byte data block number to access, 0 based. Two data
blocks (32-bytes) for string data required, at least three recommended.
Number of effective characters will be dependent on the encoding
selected in string data byte 1.

data 2:17 - 16-byte block for system name string data

For the first block of string data (set selector = 1), the first two bytes indicate the
encoding of the string and its overall length as follows:

string data byte 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+Latin1

1h = UTF-8

2h = UNICODE

all other = reserved.

string data byte 2:

[7:0] - string length (in bytes, 1-based)

Present OS Version
number

5 OS version string for the Present Operating system listed in parameter 4. Selector
based, same as OS name.

Volatile. The BMC automatically clears this value by zeroing out the string length on
system power cycles and resets.

BMC URL

(optional, if
implemented can be
r/w or read-only)

6 URL string of the general form (see [RFC3986])

http(s)://<ip>:<port> or http(s)://<DNSname>:<port>

non-volatile.

Default = NULL string

Intelligent Platform Management Interface Specification

316

Base OS/Hypervisor
URL For Manageability

(optional, if
implemented can be
r/w or read-only)

7 URL for Base OS/Hypervisor use to report a management URL string of the general
form (see [RFC3986]):

http(s)://<ip>:<port> or http(s)://<DNSname>:<port>

Volatile. The BMC automatically clears this value by zeroing out the string length on
system power cycles and resets.

OEM 192

…

255

This range is available for special OEM system information parameters.

1. Choice of system manufacturing defaults for non-volatile parameters is left to the system manufacturer unless otherwise
specified.

22.15 Get Channel Cipher Suites Command

This command can be executed prior to establishing a session with the BMC. The command is used to look up

what authentication, integrity, and confidentiality algorithms are supported. The algorithms are used in

combination as ‘Cipher Suites’. This command only applies to implementations that support IPMI v2.0/RMCP+

sessions.

The data is accessed 16-bytes at a time starting from List Index field value of 0 in the request and then repeating

the request incrementing the List Index field each time until fewer than 16-bytes of algorithm data (or no

algorithm data) is returned in the response, or the maximum List Index value has been reached.

A given Cipher Suite may only be available for establishing a session at a particular maximum privilege level or

lower. For example, a Cipher Suite that has a privilege level of ‘Admin’ can therefore be used for any privilege

level, while a privilege level of User can only be used for establish sessions with a Maximum Requested Privilege

Level of User or Callback.

Because the authentication algorithm specifies the steps for authenticating the user, it is a necessary part of

session establishment. Therefore an authentication algorithm number is required for all Cipher Suites. It is

possible that a given Cipher Suite may not specify use of an integrity or confidentiality algorithm. If the Cipher

Suite has integrity and/or confidentiality of 'none', then all the same steps for establishing a session are used (open

session request/response, RAKP messages) - but the integrity (AuthCode) and confidentiality fields will be absent

in packets for that are sent under the session.

 Intelligent Platform Management Interface Specification

 317

Table 22-18, Get Channel Cipher Suites Command
IPMI Request Data 1 Channel Number

[7:4] - reserved

[3:0] - channel number.

 0h-Bh, Fh = channel numbers

 Eh = retrieve information for channel this request was issued on.

 2 Payload Type.

[7:6] - reserved

[5:0] - Payload Type number

Typically 00h (IPMI).

The Payload Type number is used to look up the Security Algorithm support
when establishing a separate session for a given payload type.

 3 List Index.

[7] - 1b = list algorithms by Cipher Suite

 0b = list supported algorithms[1]

[6] - reserved

[5:0] - List index (00h-3Fh). 0h selects the first set of 16, 1h selects the next
set of 16, and so on.

 00h = Get first set of algorithm numbers. The BMC returns sixteen (16)
bytes at a time per index, starting from index 00h, until the list
data is exhausted, at which point it will 0 bytes or <16 bytes of list
data.

IPMI Response Data 1 Completion Code

 2 Channel Number

 Channel number that the Authentication Algorithms are being returned
for. If the channel number in the request was set to Eh, this will return
the channel number for the channel that the request was received on.

 (3:18) Cipher Suite Record data bytes, per Table 22-19, Cipher Suite Record
Format. Record data is ‘packed’; there are no pad bytes between records. It is
possible that record data will span across multiple List Index values.

The BMC returns sixteen (16) bytes at a time per index, starting from index
00h, until the list data is exhausted, at which point it will 0 bytes or <16 bytes
of list data.

1. When listing numbers for supported algorithms, the BMC returns a list of the algorithm
numbers for each algorithm that the BMC supports on a given channel. Each algorithm
is listed consecutively and only listed once. There is no requirement that the BMC
return the algorithm numbers in any specific order.

22.15.1 Cipher Suite Records

The data from the Get Channel Cipher Suites command is issued as Cipher Suite records. Tag bits are used to

delimit different fields in the record. Each record starts off with a “Start Of Record” byte. This byte can be 30h or

31h, indicating that the Start Of Record byte is followed either by an Cipher Suite ID, or by a OEM Cipher Suite

ID plus OEM IANA.

Following the header bytes are algorithm number bytes for the different algorithms that form the Cipher Suite.

Each byte is tagged with the type of algorithm the number is for. Cipher Suite records are required to list

algorithms in the order: Authentication Algorithm number first, Integrity Algorithm numbers next, and

Confidentiality Algorithm numbers last.

Intelligent Platform Management Interface Specification

318

If more than one algorithm of a given type is listed in the Cipher Suite Record, then any one of the algorithms can

be used in combination with the other types. For example, if a Cipher Suite response returns both MD5 and MD2

as Authentication and Integrity algorithms, and xRC4 for confidentiality, then the allowed combinations are

[MD2, MD2, xRC4], [MD2, MD5, xRC4], [MD5, MD2, xRC4], and [MD5, MD5, xRC4]. I.e. a remote console

can negotiate for those combinations when establishing a session.

Table 22-19, Cipher Suite Record Format
size Tag bits

[7:6]
Tag bits
[5:0]

2 or 5 - This field starts off with either a C0h or C1h "Start of Record" byte, depending on whether
the Cipher Suite is a standard Cipher Suite ID or an OEM Cipher Suite, respectively

Byte 1:

[7:0] = 1100_0000b. Start of Record, Standard Cipher Suite

Data following C0h (1100_0000b) start of record byte:

Byte 2 - Cipher Suite ID

This value is used a numeric way of identifying the Cipher Suite on the platform. It’s
used in commands and configuration parameters that enable and disable Cipher
Suites. See Table 22-20, Cipher Suite IDs.

[5:0] = 1100_0001b. Start or Record, OEM Cipher Suite

Data following C1h (1100_0001) start of record byte:

Byte 2 - OEM Cipher Suite ID

See Table 22-20, Cipher Suite IDs.

Byte 3:5 - OEM IANA

Least significant byte first. 3-byte IANA for the OEM or body that defined the Cipher
Suite.

1 00b [5:0] = Authentication Algorithm Number.

A Cipher Suite is only allowed to utilize one Authentication algorithm. See Table 13-17,
Authentication Algorithm Numbers

var 01b [5:0] = Integrity Algorithm Number(s). See Table 13-18, Integrity Algorithm Numbers

var 10b [5:0] = Confidentiality Algorithm Number(s). See Table 13-19, Confidentiality Algorithm
Numbers

22.15.2 Cipher Suite IDs

The following table provides the number ranges and assignments for Cipher Suite IDs. The Cipher Suite ID

values are used as a way to identify different Cipher Suites in configuration parameters and IPMI commands.

The OEM IDs do not correspond to a particular Cipher Suite, but are handles that can be used to identify the

Cipher Suite on a particular implementation of a BMC. I.e. the OEM Cipher Suite corresponding to “80h” can

be different from one BMC to the next. These handles can, however, be used in configuration parameters and

commands the same way as the IPMI-defined Cipher Suite IDs.

The Get Channel Cipher Suites command will return the algorithms used to form a given Cipher Suite (those

numbers can then be used by a remote console in the commands for establishing a session). For OEM defined

Cipher Suites, the Get Channel Cipher Suites command will also return the IANA for the OEM or body that

defined the Cipher Suite.

 Intelligent Platform Management Interface Specification

 319

Table 22-20, Cipher Suite IDs

ID characteristics Cipher Suite
Authentication

Algorithm
Integrity

Algorithm(s)
Confidentiality
Algorithm(s)

0 "no password" 00h, 00h, 00h RAKP-none None None

1 S 01h, 00h, 00h RAKP-HMAC-
SHA1

None None

2 S, A 01h, 01h, 00h HMAC-SHA1-96 None

3 S, A, E 01h, 01h, 01h AES-CBC-128

4 S, A, E 01h, 01h, 02h xRC4-128

5 S, A, E 01h, 01h, 03h xRC4-40

6 S 02h, 00h, 00h RAKP-HMAC-MD5

None None

7 S, A 02h, 02h, 00h HMAC-MD5-128 None

8 S, A, E 02h, 02h, 01h AES-CBC-128

9 S, A, E 02h, 02h, 02h xRC4-128

10 S, A, E 02h, 02h, 03h xRC4-40

11 S, A 02h, 03h, 00h MD5-128 None

12 S, A, E 02h, 03h, 01h AES-CBC-128

13 S, A, E 02h, 03h, 02h xRC4-128

14 S, A, E 02h, 03h, 03h xRC4-40

15 S 03h, 00h, 00h RAKP-HMAC-

SHA256

None None

16 S, A 03h, 04h, 00h HMAC-SHA256-
128

None

17 S, A, E 03h, 04h, 01h AES-CBC-128

18 S, A, E 03h, 04h, 02h xRC4-128

19 S, A, E 03h, 04h, 03h xRC4-40

80h-
BFh

OEM specified OEM specified OEM specified OEM specified OEM specified

C0h-
FFh

reserved - - - -

Key:
S = authenticated session setup (correct role, username and password/key required to establish session)
A = authenticated payload data supported.
E = authentication and encrypted payload data supported

22.16 Get Session Challenge Command

This command is sent in unauthenticated format. While a Session ID is returned from the response to the Get

Session Challenge command, the session must be activated using the Activate Session command before it can be

used for sending other authenticated commands. The Activate Session command provides the starting sequence

number for subsequent messages under the session.

When the management controller looks up user names the controller scans the names sequentially by user ID

starting from User ID 1. Disabled user names are skipped. The scan stops when the first matching user name that

is enabled for the channel is found.

Intelligent Platform Management Interface Specification

320

Table 22-21, Get Session Challenge Command
 byte data field

Session Request Data authentication type = NONE

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

IPMI Request Data 1 Authentication Type for Challenge

[7:4] - reserved

[3:0] - requested Authentication Type

 0h = none. No hashing or authentication done on session packets.
Authentication Code field is not present.

 1h = MD2

 2h = MD5

 3h = reserved

 4h = straight password / key

 5h = OEM proprietary

 all other = reserved

 2:17 User Name. Sixteen-bytes. All 0’s for null user name (User 1)

Session Response Data authentication type = NONE

 session seq# = null (0’s)

 Session ID = null (0’s)

 AuthCode = NOT PRESENT

IPMI Response Data 1 Completion Code

81h = invalid user name

82h = null user name (User 1) not enabled

 2:5 Temporary Session ID. LS byte first.

 This is a provision for a temporary Session ID that can be given out to
parties that have requested challenges, but have not yet activated a
session. It can be used as a mechanism to help protect against denial of
service attacks by grabbing all free Session IDs.

 6:21 Challenge string data

22.17 Activate Session Command

While a Session ID is returned from the response to the Get Session Challenge command, the session must be

activated using the Activate Session command before it can be used for sending other authenticated commands.

The initial Activate Session command is used by the remote console to set the starting sequence number for

subsequent messages under the session. When the Activate Session command is issued (for a given Session ID)

the outbound session sequence number is set by the remote console and can be any random value.

For a given temporary Session ID, the BMC must accept Activate Session commands with a null session sequence

number and silently discard all other commands targeted to that Session ID. This provision is to enable a remote

console to retry the Activate Session command in case the response was lost. The BMC will continue to accept the

Activate Session command with a null session sequence number until the first valid and appropriately

authenticated command with a non-null session sequence number is received. (The non-null sequence number

must also be within the range specified by the initial inbound sequence number). After which, all subsequent

commands for the session must have appropriately incremented, non-null sequence number values, including any

Activate Session commands that may be received during session operation.

The remote console can use an Activate Session command to change the outbound session sequence number

during session operation. The BMC may also elect to change its inbound session sequence number at that time, or

may continue with the inbound session sequence number sequence already in progress.

 Intelligent Platform Management Interface Specification

 321

Table 22-22, Activate Session Command
 byte data field

Session Request Data authentication type = from corresponding Get Session Challenge command.

 session seq# = null (0’s) when in ‘pre-session’ phase, non-null afterward. See
text.

 Session ID = Temporary Session ID value from corresponding Get Session
Challenge command, or present Session ID if session already active

 AuthCode = present unless authentication type = None. See 22.17.1,
AuthCode Algorithms for information on calculating this field for
authentication types that are not “None”.

IPMI Request Data 1 Authentication Type for session. The selected type will be used for session
activation and for all subsequent authenticated packets under the
session, unless ‘Per-message Authentication’ or ‘User Level
Authentication’ are disabled. (See 6.12.4, Per-Message and User Level
Authentication Disables, for more information.)

[7:4] - reserved

[3:0] - Authentication Type. This value must match with the Authentication
Type used in the Get Session Challenge request for the session. In
addition, for multi-session channels this value must also match the
authentication type used in the Session Header.

 0h = none. No hashing or authentication done on session packets.
Authentication Code field is not present.

 1h = MD2

 2h = MD5

 3h = reserved

 4h = straight password / key

 5h = OEM proprietary

 all other = reserved

 2 Maximum privilege level requested. Indicates the highest privilege level that
may be requested for this session. This privilege level must be less than
or equal to the privilege limit for the channel and the privilege limit for the
user in order for the Activate Session command to be successful
(completion code = 00h). Once the Activate Session command has been
successful, the requested privilege level becomes a ‘session limit’ that
cannot be raised beyond the requested level, even if the user and/or
channel privilege level limits would allow it. I.e. it takes precedence over
the channel and user privilege level limits.

[7:4] - reserved

[3:0] - Requested Maximum Privilege Level

 0h = reserved

 1h = Callback level

 2h = User level

 3h = Operator level

 4h = Administrator level

 5h = OEM Proprietary level

 all other = reserved

 3:18 For multi-session channels: (e.g. LAN channel):

 Challenge String data from corresponding Get Session Challenge
response.

For single-session channels that lack session header (e.g. serial/modem in
Basic Mode):

 Clear text password or AuthCode. See 22.17.1, AuthCode Algorithms.

 19:22 Initial Outbound Sequence Number = Starting sequence number that remote
console wants used for messages from the BMC. (LS byte first). Must be
non-null in order to establish a session. 0000_0000h = reserved.

 If the Activate Session command is executed after a session has been
established, the Outbound Sequence Number will be reset to the given
value. This will take effect for the corresponding Activate Session
response and subsequent commands under the session.

Intelligent Platform Management Interface Specification

322

Session Response Data Session ID = value from request

 authentication type = value passed in from request data

 session seq# = Initial outbound sequence number from corresponding
Activate Session request.

 AuthCode = present unless authentication type = None. See 22.17.1,
AuthCode Algorithms for information on calculating this field for
authentication types that are not “None”.

IPMI Response Data 1 Completion Code

00h = success

81h = No session slot available (BMC cannot accept any more sessions)

82h = No slot available for given user. (Limit of user sessions allowed under
that name has been reached)

83h = No slot available to support user due to maximum privilege capability.
(An implementation may only be able to support a certain number of
sessions based on what authentication resources are required. For
example, if User Level Authentication is disabled, an implementation
may be able to allow a larger number of users that are limited to User
Level privilege, than users that require higher privilege.)

84h = session sequence number out-of-range

85h = invalid Session ID in request

86h = requested maximum privilege level exceeds user and/or channel
privilege limit

 2 Authentication Type for remainder of session

 The primary use of this parameter is to report whether per-message
authentication will be used for IPMI message packets that follow the
Activate Session packet. Per-message authentication is a channel
configuration option that is set using the Get User Name command. If
per-message authentication is disabled, the Authentication Type will be
returned as ‘none’, and all subsequent packets for the session can either
use ‘none’ as the authentication type or use the Authentication Type that
was used in the request. Otherwise this value will be set to the
Authentication Type that was used in the request. Note that Activate
Session requests and responses are always required to be
authenticated per what is returned by the Get Session Challenge
command for the user.

[7:4] - reserved

[3:0] - Authentication Type

 0h = none. No hashing or authentication done on session packets.
Authentication Code field is not present.

 1h = MD2

 2h = MD5

 3h = reserved

 4h = straight password / key

 5h = OEM proprietary

 all other = reserved

 3:6 Session ID - use this for remainder of session. While atypical, the BMC is
allowed to change the Session ID from the one that passed in the
request.

 7:10 Initial inbound seq# = Sequence number that BMC wants remote console to
use for subsequent messages in the session. The BMC returns a non-
null value for multi-session connections and returns null (all 0’s) for
single-session connections.

 11 Maximum privilege level allowed for this session

[7:4] - reserved

[3:0] - Maximum Privilege Level allowed

 0h = reserved

 1h = Callback level

 2h = User level

 3h = Operator level

 4h = Administrator level

 5h = OEM Proprietary level

 all other = reserved

 Intelligent Platform Management Interface Specification

 323

22.17.1 AuthCode Algorithms

The following table lists the AuthCode calculation mechanism and field usage for the Activate Session

command, authenticated packets, and the Get AuthCode command.

 Refer to the [RFC1319] and [RFC1321] for information on the MD2 and MD5 algorithms, respectively.

 For the following table, ‘+’ indicates concatenation of data, and H() represents the application of the

message digest algorithm to that data.

 The data bytes are passed to the message-digest algorithm in the same order that they’re transmitted in the

message / packet.

 The password/key is 0 padded to 16-bytes for all specified authentication types.

Table 22-23, AuthCode Algorithms
Authentication

Type

Algorithm

 Single Session AuthCode carried in IPMI message data for Activate Session Command

straight

password

AuthCode = password

MD2 AuthCode = H(password + temporary Session ID + challenge string+ password)

MD5 AuthCode = H(password + temporary Session ID + challenge string+ password)

 Multi-Session AuthCode carried in session header for all ‘authenticated’ packets

straight

password

AuthCode=password

MD2 AuthCode = H(password + Session ID[1] + IPMI Message data + session_seq# +
password)

MD5 AuthCode = H(password + Session ID[1] + IPMI Message data + session_seq# +
password)

 Get AuthCode AuthCode carried in IPMI message data, per command description

straight
password

See description of Get AuthCode command.

MD2 AuthCode = H(password + Get AuthCode data + password)

MD5 AuthCode = H(password + Get AuthCode data + password)

1. This will be the Temporary Session ID when calculating the AuthCode for the initial Activate Session command.

22.18 Set Session Privilege Level Command

This command is sent in authenticated format. When a session is activated, the session is set to an initial privilege

level. A session that is activated at a maximum privilege level of Callback is set to an initial privilege level of

Callback and cannot be changed. All other sessions are initially set to USER level, regardless of the maximum

privilege level requested in the Activate Session command or RAKP Message 1. The remote console must ‘raise’

the privilege level of the session using this command in order to execute commands that require a greater-than-

User level of privilege.

This command cannot be used to set a privilege level higher than the lowest of the privilege level set for the user

(via the Set User Access command) and the privilege limit for the channel that was set via the Set Channel Access

command. Note that the specification allows a session to be used across multiple channels. The maximum

privilege limit and authentication are based on the user privilege and channel limits. Since these can vary on a per

channel basis, an implementation cannot simply assign a single privilege limit to a given session but must

authenticate incoming messages according to the specific settings for the channel and the user on a per-channel

basis.

Intelligent Platform Management Interface Specification

324

Table 22-24, Set Session Privilege Level Command
IPMI Request Data 1 Requested Privilege Level

[7:4] - reserved

[3:0] - Privilege Level

0h - no change, just return present privilege level

1h - reserved

2h - change to USER level

3h - change to OPERATOR level

4h - change to ADMINISTRATOR level

5h - change to OEM Proprietary level

all other = reserved

IPMI Response Data 1 Completion Code. Generic, plus following command specific:

80h = Requested level not available for this user

81h = Requested level exceeds Channel and/or User Privilege Limit

82h = Cannot disable User Level authentication

 2 New Privilege Level (or present level if ‘return present privilege level’ was
selected.)

22.19 Close Session Command

This command is used to immediately terminate a session in progress. It is typically used to close the session that

the user is communicating over, though it can be used to other terminate sessions in progress (provided that the

user is operating at the appropriate privilege level, or the command is executed over a local channel - e.g. the

system interface).

Table 22-24, Close Session Command
 byte data field

Request Data 1:4 Session ID. For IPMI v2.0/RMCP+ this is the Managed System Session ID
value that was generated by the BMC, not the ID from the remote
console. If Session ID = 0000_0000h then an implementation can
optionally enable this command to take an additional byte of parameter
data that allows a session handle to be used to close a session.

 (5) Session Handle. (only present if Session ID = 0000_0000h)

Response Data 1 Completion Code

87h = invalid Session ID in request

88h = invalid Session Handle in request

22.20 Get Session Info Command

This command is used to get information regarding which users presently have active sessions, and, when

available, addressing information for the party that has established the session. Note that a portion of the response

is dependent on the type of channel.

For IPMI v2.0, a previously reserved field has been defined to hold a value indicating whether a session operating

on a channel of Channel Type = 802.3 LAN is presently using IPMI v1.5 or v2.0/RMCP+ protocols.

 Intelligent Platform Management Interface Specification

 325

Table 22-25, Get Session Info Command
IPMI Request Data 1 Session Index:

 This value is used to select entries in a logical ‘sessions’ table
maintained by the management controller. Info for all active sessions
can be retrieved by incrementing the session index from 1 to N, where N
is the number of entries in the Active Sessions table.

00h = Return info for active session associated with session this command was
received over.

N = get info for Nth active session
FEh = Look up session info according to Session Handle passed in this request.
FFh = Look up session info according to Session ID passed in this request.

 Present if Session Index = FEh:

 2 Session Handle. 00h = reserved.

 Present if Session Index = FFh:

 2:5 Session ID. ID of session to look up session information for. For IPMI
v2.0/RMCP+ this is the Session ID value that was generated by the BMC, not
the ID from the remote console.

IPMI Response Data 1 Completion Code

 2 Session Handle presently assigned to active session. FFh = reserved. Return
00h if no active session associated with given session index.

 3 Number of possible active sessions. This value reflects the number of possible
entries (slots) in the sessions table.

[7:6] - reserved
[5:0] - session slot count. 1-based.

 4 Number of currently active sessions on all channels on this controller.
[7:6] - reserved
[5:0] - active session count. 1-based. 0 = no currently active sessions.

 The following parameters are returned only if there is an active session
corresponding to the given session index:

 5 User ID for selected active session
[7:6] - reserved.
[5:0] - User ID. 000000b = reserved.

 6 Operating Privilege Level
[7:4] - reserved
[3:0] - present privilege level that user is operating at.

 7 [7:4] - Session protocol auxiliary data
For Channel Type = 802.3 LAN:
0h = IPMI v1.5
1h = IPMI v2.0/RMCP+

Channel that session was activated over.
[3:0] - channel number

 The following bytes 8:18 are optionally returned if Channel Type = 802.3 LAN:

 8:11 IP Address of remote console (MS-byte first). Address that was received in the
Activate Session command that activated the session.

 12:17 MAC Address (MS-byte first). Address that was received in the Activate Session
command that activated the session.

 18:19 Port Number of remote console (LS-byte first). Port Number that was received
in UDP packet that held the Activate Session command that activated the
session (for IPMI v1.5 packets) or that was used for in the packet for
RAKP Message 3 (for IPMI v2.0 / RMCP+ packets).

 The following bytes 8:13 are returned if Channel Type = asynch. serial/modem:

 8 Session / Channel Activity Type:
0 = IPMI Messaging session active
1 = Callback Messaging session active
2 = Dial-out Alert active
3 = TAP Page active

 9 Destination Selector for active call-out session. 0 otherwise.
[7:4] - reserved
[3:0] - Destination selector. Destination 0 is always present as a volatile

destination that is used with the Alert Immediate command.

 10:13 If PPP connection:
IP address of remote console. (MS-byte first) 00h, 00h, 00h, 00h otherwise.

 The following additional bytes 14:15 are returned if Channel Type = asynch.
serial/modem and connection is PPP:

 14:15 Port Address of remote console (LS-byte first). Address that was received in the
Activate Session command that activated the session.

Intelligent Platform Management Interface Specification

326

22.21 Get AuthCode Command

This command is used to send a block of data to the BMC, whereupon the BMC will return a hash of the data

together concatenated with the internally stored password for the given channel and user. This command allows a

remote console to send an AuthCode and data block to system software on a remote platform, whereby the system

software can validate the AuthCode by comparing it with the AuthCode returned by the BMC. This enables the

BMC to serve as a validation agent for remote requests that come through local system software instead of

through a remote session directly with the BMC.

The application of this command is beyond this specification. However, the following is an outline of potential

use of this capability. Remote console software could request that system software perform a particular operation.

In response, local system software could deliver a challenge string to the remote console, which would be required

to hash it with the desired password and return the AuthCode to the local system software. The local system

software would then perform the requested operation only if it found that the AuthCode matched the one returned

by the BMC. The local software would typically implement mechanisms to bind the challenge string to the

requested operation to ensure that the challenge string and AuthCode combination only applied to a given instance

of the requested operation, and even from a particular remote console.

 Managed system delivers a random number token, S, to the Console. In this example, the Console uses S to

identify a particular request. The managed system tracks outstanding S values, and expires them either

because a valid message was received from a Console that used that token, or because the token was not

used within a specified interval.

 Console determines: X = data to be authenticated

 K1 = 16-byte ‘signature’ of X and a sequence number = hash(X, S, SW_Authentication_Type). Where

SW_Authentication_Type is any signature algorithm management software wishes to use for

providing a signature given X and S.

 K2 = 16-byte hash of K1 and the password = hash(K1, PWD, Authentication_Type). Where

Authentication_Type in this case is one of the supported Authentication Types for the given

BMC. Table 22-23, AuthCode Algorithms, specifies how the “Get AuthCode Data” (K1) and

password data (PWD) are concatenated for processing according to Authentication_Type. Note

that the hash algorithm for K1 does not need to be a BMC supported algorithm or match the

algorithm used for K2.

 Console sends X, S, and K2 to software agent on managed system.

 Software agent on the managed system calculates K1 from X and S that it received by locally calculating

K1=hash1(X, S, SW_Authentication_Type). The software also verifies that S is a valid outstanding token.

 Managed system passes K1 to BMC. BMC internally looks up password based on the user ID passed in the

Get Authcode Command and produces: K2BMC = hash(K1, PWD, Authentication_Type)

 Managed system accepts data if software agents finds that K2 = K2BMC.

 Intelligent Platform Management Interface Specification

 327

Table 22-26, Get AuthCode Command
 byte data field

IPMI Request Data 1 [7:6] - Authentication Type / Integrity Algorithm Number

 00b = IPMI v1.5 AuthCode Algorithms

 01b = IPMI v2.0/RMCP+ Algorithm Number

For [7:6] = 00b, IPMI v1.5 AuthCode Number:

[5:4] - reserved

[3:0] - hash type

 0h = reserved

 1h = MD2

 2h = MD5

 3h = reserved

 4h = Reserved (change from IPMI v1.5). This shall result in an error
completion code.

 5h = OEM proprietary

 all other = reserved

For [7:6] = 01b, IPMI v2.0/RMCP+ Integrity Algorithm Number

 [5:0] - Integrity Algorithm Number. See Table 13-18, Integrity Algorithm
Numbers. The User Password is used as the starting key for the
Integrity Algorithm, instead of session-dependent keys such as the
Session Integrity Key. The “none” Integrity Number (0) is illegal and shall
result in an error completion code.

 2 Channel Number

[7:4] - reserved

[3:0] - Channel number

 3 User ID. (software will typically have to use the Get User Name command to
look up the User ID from a username)

[7:6] - reserved

[5:0] - User ID

 4:19 data to hash (must be 16 bytes)

IPMI Response Data 1 Completion Code

 For IPMI v1.5 AuthCode Number:

 2:17 AuthCode = See 22.17.1, AuthCode Algorithms.

 For IPMI v2.0 Integrity Algorithm Number

 (2:21) Resultant hash, per selected Integrity algorithm. Up to 20 bytes. An
implementation can elect to return a variable length field based on the size of
the hash for the given integrity algorithm, or can return a fixed field where the
hash data is followed by 00h bytes as needed to pad the data to 20 bytes.

Intelligent Platform Management Interface Specification

328

22.22 Set Channel Access Command

This command is used to configure whether channels are enabled or disabled, whether alerting is enabled or

disabled for a channel, and to set which system modes channels are available under. This configuration is saved

in non-volatile storage associated with the BMC. The choice of factory default setting for the non-volatile

parameters is left to the implementer or system integrator.

The active (volatile) settings can be overwritten to allow run-time software to make temporary changes to the

access. The volatile settings are overwritten from the non-volatile settings whenever the system is reset or

transitions to a powered off state.

An implementation can elect to provide a subset of the possible Access Mode options. If a given Access Mode

is not supported, the command-specific completion code 83h, access mode not supported, must be returned.

 Intelligent Platform Management Interface Specification

 329

Table 22-27, Set Channel Access Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - Channel number

 2 [7:6] - 00b = don’t set or change Channel Access

 01b = set non-volatile Channel Access according to bits [5:0]

 10b = set volatile (active) setting of Channel Access according to bits
[5:0]

 11b = reserved

[5] - PEF Alerting Enable/Disable

This bit globally gates whether PEF alerts can be issued from the given
channel. Setting this to enable PEF alerting is a necessary part of
enabling alerts for the channel, but for alerts to be generated the PEF
and channel configuration must also be set to enable alerting. The
setting this bit to 'enable' does not alter the PEF configuration or the
alerting settings in the channel's configuration parameters. For
example, if PEF is not configured for generating an alert, enabling PEF
alerting with this bit will not change that configuration. Setting this bit to
'disable' will block PEF -generated alerts regardless of the PEF and
channel configuration parameters.

 0b = enable PEF Alerting

 1b = disable PEF Alerting on this channel (the Alert Immediate
command can still be used to generate alerts)

[4] - Per-message Authentication Enable/Disable

 This bit is ignored for channels (e.g. serial/modem) that do not support
Per-message Authentication.

 0b = enable Per-message Authentication

 1b = disable Per-message Authentication. [Authentication required to
activate any session on this channel, but authentication not used
on subsequent packets for the session.]

[3] - User Level Authentication Enable/Disable.

 Optional. Return a CCh ‘invalid data field’ error completion code if an
attempt is made to set this bit, but the option is not supported.

 0b = enable User Level Authentication. All User Level commands are
to be authenticated per the Authentication Type that was
negotiated when the session was activated.

 1b = disable User Level Authentication. Allow User Level commands to
be executed without being authenticated.

 If the option to disable User Level Command authentication is
accepted, the BMC will accept packets with Authentication Type
set to None if they contain user level commands.

 For outgoing packets, the BMC returns responses with the same
Authentication Type that was used for the request.

[2:0] - Access Mode for IPMI messaging (PEF Alerting is enabled/disabled
separately from IPMI messaging, see bit 5)

 000b = disabled

 channel disabled for IPMI messaging

 001b = pre-boot only
channel only available when system is in a powered down state or
in BIOS prior to start of boot.

 010b = always available

 channel always available for communication regardless of system
mode. BIOS typically dedicates the serial connection to the BMC.

 011b = shared

 same as always available, but BIOS typically leaves the serial port
available for software use.

Intelligent Platform Management Interface Specification

330

 3 Channel Privilege Level Limit. This value sets the maximum privilege level
that can be accepted on the specified channel.

[7:6] - 00b = don’t set or change channel Privilege Level Limit

 01b = set non-volatile Privilege Level Limit according to bits [3:0]

 10b = set volatile setting of Privilege Level Limit according to bits [3:0]
11b = reserved

[5:4] - reserved

[3:0] - Channel Privilege Level Limit

0h = reserved

1h = CALLBACK level

2h = USER level

3h = OPERATOR level

4h = ADMINISTRATOR level

5h = OEM Proprietary level

Response Data 1 Completion Code

generic, plus following command-specific completion codes:

 82h = set not supported on selected channel (e.g. channel is session-
less.)

 83h = access mode not supported

 Intelligent Platform Management Interface Specification

 331

22.23 Get Channel Access Command

This command is used to return whether a given channel is enabled or disabled, whether alerting is enabled or

disabled for the entire channel, and under what system modes the channel can be accessed.

Table 22-28, Get Channel Access Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - Channel number.

 2 [7:6] - 00b = reserved

 01b = get non-volatile Channel Access

 10b = get present volatile (active) setting of Channel Access

 11b = reserved

[5:0] - reserved

Response Data 1 Completion Code

generic, plus following command-specific completion codes:

 82h = Command not supported for selected channel (e.g. channel is
session-less.)

 2 [7:6] - reserved

[5] - 0b = Alerting enabled

 1b = Alerting disabled

[4] - Per-message Authentication Enable/Disable

 This bit is unspecified for channels (e.g. serial/modem) that do not
support Per-message Authentication.

 0b = per message authentication enabled

 1b = per message authentication disabled

[3] - User Level Authentication Enable

 0b = User Level Authentication enabled.

 1b = User Level Authentication disabled.

[2:0] - Access Mode

 0h = disabled

 channel disabled for communication

 1h = pre-boot only
channel only available when system is in a powered down state or
in BIOS prior to start of boot.

 2h = always available

 channel always available for communication regardless of system
mode. BIOS typically dedicates the serial connection to the BMC.

 3h = shared

 same as always available, but BIOS typically leaves the serial port
available for software use.

 3 Channel Privilege Level Limit. This value returns the maximum privilege level
that can be accepted on the specified channel.

[7:4] - reserved

[3:0] - Channel Privilege Level Limit

0h = reserved

1h = CALLBACK level

2h = USER level

3h = OPERATOR level

4h = ADMINISTRATOR level

5h = OEM Proprietary level

Intelligent Platform Management Interface Specification

332

22.24 Get Channel Info Command

This command returns media and protocol information about the given channel. The channel protocol may vary

with changes to the configuration parameters associated with the channel.

Table 22-29, Get Channel Info Command
IPMI Request Data 1 [7:4] - reserved

[3:0] - channel number. Use Eh to get information about the channel this
command is being executed from.

IPMI Response Data 1 Completion Code

 2 [7:4] - reserved

[3:0] - actual channel number. This value will typically match the channel
number passed in the request, unless the request is for channel E, in
which case the response returns the actual channel number.

 3 [7] - reserved

[6:0] - 7-bit Channel Medium type: per Table 6-3, Channel Medium Type
Numbers

 4 Channel Protocol Type:

 [7:5] - reserved

[4:0] - 5-bit Channel IPMI Messaging Protocol Type per Table 6-2, Channel
Protocol Type Numbers

 5 Session support

[7:6] - 00b = channel is session-less

 01b = channel is single-session

 10b = channel is multi-session

 11b = channel is session-based (return this value if a channel could
alternate between single- and multi-session operation, as can
occur with a serial/modem channel that supports connection
mode auto-detect)

Number of sessions that have been activated on given channel.

[5:0] - active session count. 1-based.

 00_0000b = no sessions have been activated on this channel.

 6:8 Vendor ID (IANA Enterprise Number) for OEM/Organization that specified the
Channel Protocol.

Least significant byte first.

Returns the IPMI IANA for IPMI-specification defined, non-OEM protocol type
numbers other than OEM.

The IPMI Enterprise Number is: 7154 (decimal).

This gives the values F2h, 1Bh, 00h for bytes 6 through 8, respectively. This
value is returned for all channel protocols specified in this document, including
PPP.

 9:10 Auxiliary Channel Info

For Channel = Fh (System Interface) :

byte 1: SMS Interrupt Type

00h-0Fh = IRQ 0 through 15, respectively

10h-13h = PCI A-D, respectively

14h = SMI

15h = SCI

20h-5Fh = system interrupt 0 through 63, respectively

60h = assigned by ACPI / Plug ‘n Play BIOS

FFh = no interrupt / unspecified

all other = reserved

byte 2: Event Message Buffer Interrupt Type

see values for byte 1

For OEM channel types:

byte 1:2 = OEM specified per OEM identified by Vendor ID field.

All other channel types:

byte 1:2 = reserved.

 Intelligent Platform Management Interface Specification

 333

22.25 Set Channel Security Keys Command

The Set Channel Security Keys command provides a standardized interface for initializing system unique keys that

are used for the pseudo-random number generator key (KR) and the key-generation key (KG) used for RMCP+.

Implementing the ability to set Kr is optional. The command is provided mainly to offer a common interface for

BMCs that are not pre-configured with a KR values, or which may need their KR values to be restored if they are

lost due to a data corruption or firmware update.

The command includes a mechanism that allows specified keys to be ‘locked’. Once locked, the key value cannot

be read back or rewritten via standard IPMI commands. It is possible, however, that a firmware update or re-

installation procedure may cause the keys to be cleared or unlocked. Software utilities responsible for BMC initial

installation and setup should check to see whether keys have been locked and if not, should initialize them

appropriately and lock them.

If this command is not supported, it indicates that the keys are either permanently pre-configured, or that they are

only configurable via an OEM/BMC-specific mechanism.

Table 22-30, Set Channel Security Keys Command
 byte data field

Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number (Note: this command only applies to channels that
support RMCP+, if the channel does not support RMCP+ the
command will return an error completion code.)

 2 Operation

[7:2] - reserved

[1:0] - Operation

00b = read key
BMC returns value of specified key, provided key has not yet been
locked. Some BMCs may allow the key to be re-written if it does
not match the expected value. Other BMCs may only allow one
‘set’ operation. If the key value has not yet been initialized, the
BMC will return 0’s for the key value. Utility software responsible
for BMC installation and initial setup can use this Operation to
also check to see whether keys have been initialized and locked.

01b = set key

 BMC writes given key value to non-volatile storage.

10b = lock key
BMC locks out modification or reading the key value. Once a key
has been locked, it is not cannot be rewritten or read via IPMI
specified commands.

11b = reserved

Intelligent Platform Management Interface Specification

334

 3 Key ID

[7:0] - key ID.

00h = RMCP+ “KR” key (20 bytes). The “KR” key is used as a unique value for
random number generation. Note: A BMC implementation is allowed to
share a single KR value across all channels. A utility can set KR and
lock it for one channel, and then verify it has been set and locked for
any other channels by using this command to read the key from other
channels and checking the ‘lock status’ field for each channel to see if
it matches and is locked.

01h = RMCP+ “KG” key (20 bytes). “KG” key acts as a value that is used for
key exchange for the overall channel. This key cannot be locked. This
is to ensure a password/key configuration utility can set its value. This
value is used in conjunction with the user key values (passwords) in
RAKP-HMAC-SHA1 and RAKP-HMAC-MD5 authentication. I.e. the
remote console needs to have a-priori knowledge of both this key value
and the user password setting, in order to establish a session. KG must
be individually settable on each channel that supports RMCP+.

all other = reserved

 (4:M) Key value. Value for specified key. Used for “set” Operation only. Otherwise,
this field is not used in the request. The BMC will ignore any bytes following
the ‘Key ID’ byte.

Response Data 1 Completion Code. Generic, plus following command-specific completion
codes:

80h = Cannot perform set / confirm. Key is locked (mandatory)

81h = insufficient key bytes

82h = too many key bytes

83h = key value does not meet criteria for specified type of key

84h = KR is not used. BMC uses a random number generation approach
that does not require a KR value.

 2 7:2 - reserved.

1:0 - lock status

 00b = key is not lockable.

 01b = key is locked.

 10b = key is unlocked.

 11b = reserved

 (3:N) Key value.

The BMC returns the specified key value when the Operation is set to “read
key”. Otherwise, the BMC returns no additional bytes past the completion
code.

22.26 Set User Access Command

This command is used to configure the privilege level and channel accessibility associated with a given user ID.

If this command is not supported, then a single ‘null user’ (User 1) per channel is assumed and the privilege

level and channel access are determined solely by the settings returned by the Get Channel Access Limits

command. If implemented, this command must support at least the null user (User 1). The number of additional

users supported is left to the implementer.

Note: The limits set using the Set Channel Access command take precedence over the Set User Access

command settings. That is, if a given channel is limited to User level then all users will be limited to User level

operation regardless of what their User Access levels were set to using the Set User Access command.

Note that changes made to the user access and privilege levels may not take affect until the next time the user

establishes a session.

 Intelligent Platform Management Interface Specification

 335

Table 22-31, Set User Access Command
 byte data field

Request Data 1 [7] - 0b = do not change any of the following bits in this byte

 1b = enable changing the following bits in this byte

[6] - User Restricted to Callback

 0b = User Privilege Limit is determined by the User Privilege Limit
parameter, below, for both callback and non-callback connections.

 1b = User Privilege Limit is determined by the User Privilege Limit
parameter for callback connections, but is restricted to Callback
level for non-callback connections. Thus, a user can only initiate a
Callback when they ‘call in’ to the BMC, but once the callback
connection has been made, the user could potentially establish a
session as an Operator.

[5] - User Link authentication enable/disable (used to enable whether this
user’s name and password information will be used for link
authentication, e.g. PPP CHAP) for the given channel. Link
authentication itself is a global setting for the channel and is
enabled/disabled via the serial/modem configuration parameters.

 0b = disable user for link authentication

 1b = enable user for link authentication

[4] - User IPMI Messaging enable/disable (used to enable/disable whether
this user’s name and password information will be used for IPMI
Messaging. In this case, “IPMI Messaging” refers to the ability to
execute generic IPMI commands that are not associated with a
particular payload type. For example, if IPMI Messaging is disabled for
a user, but that user is enabled for activating the SOL payload type,
then IPMI commands associated with SOL and session management,
such as Get SOL Configuration Parameters and Close Session are
available, but generic IPMI commands such as Get SEL Time are
unavailable.)

 0b = disable user for IPMI Messaging

 1b = enable user for IPMI Messaging

[3:0] - Channel Number

 2 User ID

[7:6] - reserved.

[5:0] - User ID. 000000b = reserved.

 3 User Limits

[7:4] - reserved

[3:0] - User Privilege Limit. (Determines the maximum privilege level that the
user is allowed to switch to on the specified channel.)

 0h = reserved

 1h = Callback

 2h = User

 3h = Operator

 4h = Administrator

 5h = OEM Proprietary

 Fh = NO ACCESS

 (4) User Session Limit. (Optional) Sets how many simultaneous sessions can be
activated with the username associated with this user. If not supported, the
username can be used to activate as many simultaneous sessions as the
implementation supports.

Return a CCh ‘invalid data field’ error completion code if an attempt is made to
set a non-zero value in this field, but the option is not supported.

[7:4] - reserved

[3:0] - User simultaneous session limit. 1-based. 0h = only limited by the
implementations overall support for simultaneous sessions.

Intelligent Platform Management Interface Specification

336

Response Data 1 Completion Code.

Note: an implementation will not return an error completion code if the user
access level is set higher than the privilege limit for a given channel. If it is
desired to bring attention to this condition, it is up to software to check the
channel privilege limits set using the Set Channel Access command and
provide notification of any mismatch.

22.27 Get User Access Command

This command is used to retrieve channel access information and enabled/disabled state for the given User ID.

The command also returns information about the number of supported users.

 Intelligent Platform Management Interface Specification

 337

Table 22-32, Get User Access Command
 byte data field

Request Data 1 [7:4] - reserved
[3:0] - Channel Number

 2 [7:6] - reserved
[5:0] - User ID. 000000b = reserved.

Response Data 1 Completion Code.
Note: an implementation will not return an error completion code if the user
access level is set higher than the privilege limit for a given channel. If it is
desired to bring attention to this condition, it is up to software to check the
channel privilege limits and provide notification of the mis-match.

 2 Maximum number of User IDs. 1-based. Count includes User 1. A value of 1
indicates only User 1 is supported.
[7:6] - reserved
[5:0] - maximum number of user IDs on this channel

 3 Count of currently enabled User IDs (1-based). A value of 0 indicates that all
users, including User 1, are disabled. This is equivalent to disabling access to
the channel.
[7:6] - User ID Enable status (for IPMI v2.0 errata 3 and later
implementations).

00b = User ID enable status unspecified. (For backward compatibility
with pre-errata 3 implementations. IPMI errata 3 and later
implementations should return the 01b and 10b responses.)

01b = User ID enabled via Set User Password command.
10b = User ID disabled via Set User Password command.
11b = reserved.

[5:0] - count of currently enabled user IDs on this channel (Indicates how
many User ID slots are presently in use.)

 4 Count of User IDs with fixed names, including User 1 (1-based). Fixed names
in addition to User 1 are required to be associated with sequential user IDs
starting from User ID 2.
[7:6] - reserved.
[5:0] - count of user IDs with fixed names on this channel

 5 Channel Access
[7] - reserved.
[6] - 0b = user access available during call-in or callback direct connection
 1b = user access available only during callback connection

For pre- IPMI v2.0 errata 3 implementations:
bits 5:4, following, are used for determining the ‘count of currently enabled
user IDs’ in byte 3. Either bit being set to 1b represents an ‘enabled user ID’.

For IPMI v2.0 errata 3 and later implementations:
The ‘count of enabled User IDs’ is based on the User IDs that are presently
enabled as reflected in byte 3, bits [7:6], User ID Enable status.

Note: Some pre- IPMI v2.0 errata 3 implementations may automatically clear
bits [5:4], and may also prevent them from being set, while the User ID is
disabled. IPMI v2.0 errata 3 and later implementations should not alter bits
[5:4] based on whether a User ID is enabled or not.

[5] - 0b = user disabled for link authentication
 1b = user enabled for link authentication
[4] - 0b = user disabled for IPMI Messaging
 1b = user enabled for IPMI Messaging

[3:0] - User Privilege Limit for given Channel
 0h = reserved
 1h = Callback
 2h = User
 3h = Operator
 4h = Administrator
 5h = OEM Proprietary
 Fh = NO ACCESS (Note: this value does not add to, or subtract from,

the number of enabled user IDs)

Intelligent Platform Management Interface Specification

338

22.28 Set User Name Command

This command allows user names to be assigned to a given User ID. The names are stored as a logical array

within non-volatile storage associated with the management controller. Names are stored and retrieved using the

User ID as the index into the logical array. There is no configurable name for User ID 1. User ID 1 is reserved

for the null user name, User 1.

The management controller does not prevent duplicate usernames from being enabled for the same channel. It is

the responsibility of configuration software to ensure that duplicate user names are not enabled simultaneously

for the same channel.

Having duplicate usernames will not cause functional problems with the BMC because the BMC will just use

the first username match that it finds. However, it could be confusing to the user if they have duplicate

usernames enabled for a given channel, since only the settings for the first encountered username would be used

by the BMC. See 6.9, Users & Password Support for more information.

Table 22-33, Set User Name Command
 byte data field

Request Data 1 User ID

[7:6] - reserved.

[5:0] - User ID. 000000b = reserved. (User ID 1 is permanently associated
with User 1, the null user name).

 2:17 User Name String in ASCII, 16 bytes, max. Strings with fewer than 16
characters are terminated with a null (00h) character and 00h padded to 16
bytes. When the string is read back using the Get User Name command,
those bytes shall be returned as 0’s.

Response Data 1 Completion Code.

22.29 Get User Name Command

This command is used to retrieve user name information that was set using the Set User Name command.

Configuration software can use this command to retrieve user names.

Table 22-34, Get User Name Command
 byte data field

Request Data 1 User ID

[7:6] - reserved.

[5:0] - User ID to return name for. 000000b = reserved.

Response Data 1 Completion Code.

 2:17 User Name String in ASCII, 16 bytes, max. Strings of fewer than 16
characters are returned with null (00h) characters filling in the remaining
bytes. BMC does not check to see whether string data is ‘printable’ or not.
Only character that BMC interprets is null (00h).

 Intelligent Platform Management Interface Specification

 339

22.30 Set User Password Command

This command is used to set and change user passwords and to enable and disable User IDs. If no password

protection is desired for a given user, the password must be stored as an ASCII null-string. The management

controller firmware will force the remaining fifteen bytes to 00h and store the password as sixteen bytes of 00h.

If this command is not supported, then the implication is that only User 1 with a fixed, null password is

supported.

The password is stored as a 16-byte or 20-byte (for IPMI v2.0/RMCP+) ‘octet string’. All values (0-255) are

allowed for every byte. The management controller does not check the format or interpret values that are passed

in with the Set User Password command.

Software is allowed to place additional restrictions on what passwords can be entered, in which case it is the

responsibility of configuration software and console software to stay in synch with that definition. For example,

remote console software could restrict passwords to the printable ASCII character set in order to simplify direct

keyboard entry. If this is done, any companion configuration utility should ensure that the user does not

configure the managed system with non-printable passwords. Otherwise, it would be possible for the

management controller to be configured with passwords that could not be entered via the remote console utility.

Intelligent Platform Management Interface Specification

340

Table 22-35, Set User Password Command
 byte data field

Request Data 1 User ID.

 For IPMI v2.0, the BMC shall support 20-byte passwords (keys) for all
supported user IDs that have configurable passwords. The BMC shall
maintain an internal tag that indicates whether the password was set as
a 16-byte or as a 20-byte password.

 A 16-byte password can be used in algorithms that call for a 20-byte
password. In this case, the 16-byte password is padded with 0’s to 20-
bytes.

 The ‘test password’ operation shall return the ‘test failed’ error
completion code if an attempt is made to test a password that was
stored as a 20-byte password as a 16-byte password (per ‘password
size’ bit 7), and vice versa.

 A password that has been stored as a 20-byte password cannot be used
for establishing an IPMI v1.5 session. If it is necessary to configure the
same password for both IPMI v2.0 and IPMI v1.5 access, it must be set
as a 16-byte password5. The password will be padded with 0’s as
necessary for IPMI v2.0 / RMCP+ use.

 The ‘test password’ operation can be used to determine whether a
password has been stored as 16-bytes or 20-bytes.

[7] - password size

 1b = set 20-byte user password/key.

 0b = set 16-byte user password/key (IPMI v1.5 backward compatible)

[6] - reserved.

[5:0] - User ID. 000000b = reserved. (User ID 1 is permanently associated
with User 1, the null user name).

 2 [7:2] - reserved

[1:0] - operation

00b = disable user

01b = enable user

10b = set password

11b = test password Compares the password data given in the request
with the presently stored password and returns an OK completion code if
there is a match. Otherwise, an error completion code is returned. (See the
Completion Code description in the response data.)

 For password size = 16 bytes:

 3:18 Password data. This is a required, fixed length field when used for the set-
and test password operations. If the password is entered as an ASCII string, it
must be null (00h) terminated and 00h padded if the string is shorter than 16
bytes. This field need not be present if the operation is ‘disable user’ or
‘enable user’. If this field is present for those operations, the BMC will ignore
the data.

 For password size = 20 bytes:

 3:22 20-byte Password data. This is a required, fixed length field when used for the
set- and test password operations. If the password is entered as an ASCII
string, it must be null (00h) terminated and 00h padded if the string is shorter
than 20 bytes. This field need not be present if the operation is ‘disable user’
or ‘enable user’. If this field is present for those operations, the BMC will
ignore the data.

Response Data 1 Completion Code. Generic, plus following command-specific completion
codes:

80h = (mandatory) password test failed. Password size correct, but
password data does not match stored value.

81h = (mandatory) password test failed. Wrong password size was used.

5 Note that the same username is allowed to be used with different passwords on different channels. The BMC scans

usernames until it finds the first one that is enabled for a particular channel. Thus, it is possible for a BMC implementation to
allow being configured to allow a 20-byte password on one channel, and a 16-byte password on another channel for the same
username. This requires multiple user entries.

 Intelligent Platform Management Interface Specification

 341

Intelligent Platform Management Interface Specification

342

23. IPMI LAN Commands
This section defines the configuration and control commands that are specific to LAN channels. None of the

commands in the following table are required unless a LAN channel is implemented. Refer to Appendix G -

Command Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands.

Table 23-1, IPMI LAN Commands

Command

Section

Defined

O/M

Set LAN Configuration Parameters 23.1 M[1]

Get LAN Configuration Parameters 23.2 M[1]

Suspend BMC ARPs 23.3 O[2]

Get IP/UDP/RMCP Statistics 23.4 O

1. Mandatory if LAN channel is supported.
2. Mandatory if BMC autonomously generates Gratuitous ARPs

23.1 Set LAN Configuration Parameters Command

This command is used for setting parameters such as the network addressing information required for IPMI LAN

operation.

Table 23-2, Set LAN Configuration Parameters Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3:N Configuration parameter data, per Table 23-4, LAN Configuration Parameters

Response Data 1 Completion Code

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

83h = attempt to read write-only parameter

 Intelligent Platform Management Interface Specification

 343

23.2 Get LAN Configuration Parameters Command

This command is used for retrieving the configuration parameters from the Set LAN Configuration command.

Table 23-3, Get LAN Configuration Parameters Command
 byte data field

Request Data 1 [7] - 0b = get parameter

 1b = get parameter revision only.

[6:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3 Set Selector. Selects a given set of parameters under a given Parameter
selector value. 00h if parameter doesn’t use a Set Selector.

 4 Block Selector (00h if parameter does not require a block number)

Response Data 1 Completion Code.

Generic codes, plus following command-specific completion code(s):

80h = parameter not supported.

 2 [7:0] - Parameter revision.

Format: MSN = present revision. LSN = oldest revision parameter is backward
compatible with. 11h for parameters in this specification.

 The following data bytes are not returned when the ‘get parameter revision
only’ bit is 1b.

 3:N Configuration parameter data, per Table 23-4, LAN Configuration Parameters

If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

Table 23-4, LAN Configuration Parameters
Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following parameters are being
updated, and when the updates are completed. The bit is primarily provided to alert software
than some other software or utility is in the process of making changes to the data.

An implementation can also elect to provide a ‘rollback’ feature that uses this information to
decide whether to ‘roll back’ to the previous configuration information, or to accept the
configuration change.

If used, the roll back shall restore all parameters to their previous state. Otherwise, the
change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete. If a system reset or transition to powered down state occurs
while ‘set in progress’ is active, the BMC will go to the ‘set complete’ state. If
rollback is implemented, going directly to ‘set complete’ without first doing a
‘commit write’ will cause any pending write data to be discarded.

 01b = set in progress. This flag indicates that some utility or other software is
presently doing writes to parameter data. It is a notification flag only, it is not a
resource lock. The BMC does not provide any interlock mechanism that would
prevent other software from writing parameter data while.

 10b = commit write (optional). This is only used if a rollback is implemented. The
BMC will save the data that has been written since the last time the ‘set in
progress’ and then go to the ‘set in progress’ state. An error completion code
will be returned if this option is not supported.

 11b = reserved

Intelligent Platform Management Interface Specification

344

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Authentication Type
Support (Read Only)

1 This ‘read only’ field returns which possible Authentication Types (algorithms) can be
enabled for the given channel. The following Authentication Type Enables parameter selects
which Authentication Types are available when activating a session for a particular
maximum privilege level.

[7:6] - reserved

[5:0] - Authentication type(s) enabled for this channel (bitfield):

All bits: 1b = supported

 0b = authentication type not available for use.

[5] - OEM proprietary (per OEM identified by the IANA OEM ID in the RMCP Ping
Response)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2

[0] - none

Authentication Type
Enables

2 This field is used to configure which Authentication Types are available for use when a
remote console activates an IPMI messaging connection to the BMC for a given requested
maximum privilege level. Once the session has been activated, the accepted authentication
type will be the only one used for authenticated packets, regardless of the present operating
privilege level, or the privilege level associated with the command.

Depending on configuration of per-message and user-level authentication disables,
unauthenticated packets (authentication type = none) may also be accepted. The BMC
makes no attempt to check or ensure that stricter authentication types are associated with
higher requested maximum privilege levels. E.g. it is possible to configure the BMC so
activating a session with a maximum privilege level of ‘User’ requires MD5 while ‘Admin’
requires ‘none’.

Note: An implementation that has fixed privilege and authentication type assignments, in
which case this parameter can be implemented as Read Only. It is recommended that an
implementation that implements a subset of the possible authentication types returns a CCh
error completion code if an attempt is made to select an unsupported authentication type.

byte 1: Authentication Types returned for maximum requested privilege = Callback level.

[7:6] - reserved

[5:0] - Authentication type(s) enabled for this channel (bitfield):

All bits: 1b = authentication type enabled for use at given privilege level

 0b = authentication type not available for use at given privilege level.

[5] - OEM proprietary (per OEM identified by the IANA OEM ID in the RMCP Ping
Response)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2

[0] - none

byte 2: Authentication Type(s) for maximum privilege = User level

(format follows byte 1)

byte 3: Authentication Type (s) for maximum privilege = Operator level

(format follows byte 1)

byte 4: Authentication Type (s) for maximum privilege = Administrator level

(format follows byte 1)

byte 5: Authentication Type (s) for maximum privilege = OEM level

(format follows byte 1)

IP Address 3 data 1:4 - IP Address

MS-byte first.

 Intelligent Platform Management Interface Specification

 345

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IP Address Source 4 data 1

[7:4] - reserved

[3:0] - address source

0h = unspecified

1h = static address (manually configured)

2h = address obtained by BMC running DHCP

3h = address loaded by BIOS or system software

4h = address obtained by BMC running other address assignment protocol

MAC Address

(can be Read Only)

5 data 1:6 - MAC Address for messages transmitted from BMC.

MS-byte first. An implementation can either allow this parameter to be settable, or it can be
implemented as Read Only.

Subnet Mask 6 data 1:4 - Subnet Mask. MS-byte first.

IPv4 Header
Parameters

7 data 1 - Time-to-live. 1-based. (Default = 40h)

Value for time-to-live parameter in IP Header for RMCP packets and PET Traps
transmitted from this channel.

data 2

[7:5] - Flags. Sets value of bit 1 in the Flags field in the IP Header for packets transmitted
by this channel. (Default = 010b “don’t fragment”)

[4:0] - reserved

data 3

[7:5] - Precedence (Default = 000b)

[4:1] - Type of Service (Default = 1000b, “minimize delay”)

[0] - reserved

Primary RMCP Port
Number (optional)

8 data 1:2 - Primary RMCP Port Number, LSByte first.

Default = 26Fh (RMCP ‘Aux Bus Shunt’ port)

Secondary RMCP Port

Number (optional)

9 data 1:2 - Secondary Port Number, LSByte first.

Default = 298h (RMCP ‘Secure Aux Bus’ port)

BMC-generated ARP
control
(optional[2])

10 data 1 - BMC-generated ARP control. Note: the individual capabilities for BMC-generated
ARP responses and BMC-generated Gratuitous ARPs are individually optional. The BMC
should return an error completion code if an attempt is made to enable an unsupported
capability.

[7:2] - reserved

[1] - 1b = enable BMC-generated ARP responses

 0b = disable BMC-generated ARP responses

[0] - 1b = enable BMC-generated Gratuitous ARPs

 0b = disable BMC-generated Gratuitous ARPs

Gratuitous ARP

interval (optional)

11 data 1 - Gratuitous ARP interval

Gratuitous ARP interval in 500 millisecond increments. 0-based.

Interval accuracy is +/- 10%.

If this configuration parameter is not implemented, gratuitous ARPs shall be issued at a
rate of once every 2 seconds.

Default Gateway
Address

12 data 1:4 - IP Address

MS-byte first. This is the address of the gateway (router) used when the BMC sends a
message or alert to a party on a different subnet than the one the BMC is on.

Default Gateway MAC
Address

13 data 1:6 - MAC Address. MS-byte first.

Backup Gateway
Address

14 data 1:4 - IP Address

MS-byte first. This is the address of an alternate gateway (router) that can be selected
when a sending a LAN Alert.

Backup Gateway MAC
Address

15 data 1:6 - MAC Address. MS-byte first.

Community String 16 data 1:18 - Community String

Default = ‘public’. Used to fill in the ‘Community String’ field in a PET Trap. This string may
optionally be used to hold a vendor-specific string that is used to provide the network name
identity of the system that generated the event. Printable ASCII string-. If a full 18 non-null
characters are provided, the last character does not need to be a null. 18 characters must
be written when setting this parameter, and 18 will be returned when this parameter is read.
The null character, and any following characters, will be ignored when the Community String
parameter is placed into the PET. The BMC will return whatever characters were written. I.e.
it will not set bytes following the null to any particular value.

Intelligent Platform Management Interface Specification

346

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Number of Destinations

(Read Only)

17 data 1 - Number of LAN Alert Destinations supported on this channel. (Read Only). At least
one set of non-volatile destination information is required if LAN alerting is supported.
Additional non-volatile destination parameters can optionally be provided for supporting an
alert ‘call down’ list policy. A maximum of fifteen (1h to Fh) non-volatile destinations are
supported in this specification. Destination 0 is always present as a volatile destination that
is used with the Alert Immediate command.

[7:4] - reserved.

[3:0] - Number LAN Destinations. A count of 0h indicates LAN Alerting is not supported.

Destination Type

(volatile / non-volatile -
see description)

18 Sets the type of LAN Alert associated with the given destination. This parameter is not
present if the Number of Destinations parameter is 0.

data 1 - Set Selector = Destination selector, 0 based.

[7:4] - reserved

[3:0] - Destination selector. Destination 0 is always present as a volatile destination that is
used with the Alert Immediate command.

data 2 - Destination Type

[7] - Alert Acknowledge.

 0b = Unacknowledged. Alert is assumed successful if transmission occurs
without error. This value is also used with Callback numbers.

 1b = Acknowledged. Alert is assumed successful only if acknowledged is
returned. Note, some alert types, such as Dial Page, do not support an
acknowledge.

[6:3] - reserved

[2:0] - Destination Type

000b = PET Trap destination

001b - 101b = reserved

110b = OEM 1

111b = OEM 2

data 3 - Alert Acknowledge Timeout / Retry Interval, in seconds, 0-based (i.e. minimum
timeout = 1 second).

This value sets the timeout waiting for an acknowledge, or the time between
automatic retries depending on whether the alert is acknowledge or not.
Recommended factory default = 3 seconds. Value is ignored if alert type does not
support acknowledge, or if the Alert Acknowledge bit (above) is 0b.

data 4 - Retries

[7:4] - reserved

[3] - reserved

[2:0] - Number of times to retry alert to given destination. 0 = no retries (alert is only sent
once). If the alert is acknowledged (Alert Acknowlege bit = 1b) the alert will only be
retried if a timeout occurs waiting for the acknowledge. Otherwise, this value
selects the number of times an unacknowledged alert will be sent out. The timeout
interval or time between retries is set by the Alert Acknowledge Timeout / Retry
Interval value (byte 3 of this parameter).

 Intelligent Platform Management Interface Specification

 347

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Destination Addresses 19 Sets/Gets the list of IP addresses that a LAN alert can be sent to. This parameter is not
present if the Number of Destinations parameter is 0.

data 1 - Set Selector = Destination Selector.

[7:4] - reserved

[3:0] - Destination selector. Destination 0 is always present as a volatile destination that is
used with the Alert Immediate command.

data 2 - Address Format

[7:4] - Address Format.

 0h = IPv4 IP Address followed by DIX Ethernet/802.3 MAC Address

 1h = IPv6 IP Address

[3:0] - reserved

For Address Format = 0h:

data 3 - Gateway selector

[7:1] - reserved

[0] - 0b = use default gateway first, then backup gateway (Note: older
implementations (errata 4 or earlier) may only send to the default gateway.)

 1b = use backup gateway

data 4:7 - Alerting IP Address (MS-byte first)

data 8:13 - Alerting MAC Address (MS-byte first)

For Address Format = 1h:

data 3:18 - Alerting IPv6 Address (MS-byte first)

(Router MAC Address is obtained through Neighbor Discovery or using the addressing
specified using static router configuration in the LAN Configuration Parameters)

Following parameters are introduced with IPMI v2.0 / RMCP+

VLAN configuration can be used with IPMI v1.5 and IPMI v2.0sessions. Parameters labeled “RMCP+” are specific to
IPMI v2.0 implementations that implement IPMI v2.0 / RMCP+ sessions.

802.1q VLAN ID (12-bit) 20 data 1

[7:0] - Least significant 8-bits of the VLAN ID. 00h if VLAN ID not used.

data 2

[7] - VLAN ID enable.

 0b = disabled, 1b = enabled. If enabled, the BMC will only accept packets for this
channel if they have 802.1q fields and their VLAN ID matches the VLAN ID value
given in this parameter.

[6:4] - reserved

[3:0] - most significant four bits of the VLAN ID

802.1q VLAN Priority 21 data 1

[7:3] - reserved

[2:0] - Value for Priority field of 802.1q fields. Ignored when VLAN ID enable is 0b
(disabled) - See 802.1q VLAN ID parameter, above. Setting is network dependent.
By default, this should be set to 000b.

RMCP+ Messaging
Cipher Suite Entry
Support

(Read Only)

22 This parameter provides a count of the number (16 max.) of Cipher Suites available to be
enabled for use with IPMI Messaging on the given channel.

Software can find out what security algorithms are associated with given Cipher Suite ID by
using the Get Channel Cipher Suites command. In addition, there are Cipher Suite IDs
assigned for standard Cipher Suites (see Table 22-20, Cipher Suite IDs)

data 1

[7:5] - reserved

[4:0] - Cipher Suite Entry count. Number of Cipher Suite entries, 1-based, 10h max.

Intelligent Platform Management Interface Specification

348

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

RMCP+ Messaging
Cipher Suite Entries
(Read Only)

23 This parameter contains zero to sixteen (16) bytes of Cipher Suite IDs for Cipher Suites that
can be used for establishing an IPMI messaging session with the BMC. The number of
Cipher Suites that are supported is given in the preceding parameter.

data 1 - Reserved

data 2 - Cipher Suite ID entry A.

data 3 - Cipher Suite ID entry B.

...

data 17 - Cipher Suite ID entry P.

RMCP+ Messaging
Cipher Suite Privilege
Levels

24 This parameter allows the configuration of which privilege levels are associated with each
Cipher Suite. The total number of nibbles supported (zero to sixteen) matches the number of
fixed Cipher Suite IDs.

data 1 - Reserved

data 2 - Maximum Privilege Level for 1st and 2nd Cipher Suites

[7:4] - Maximum Privilege Level for 2nd Cipher Suite

[3:0] - Maximum Privilege Level for 1st Cipher Suite

 0h = Unspecified (given Cipher Suite is unused)

 1h = Callback level

 2h = User level

 3h = Operator level

 4h = Administrator level

 5h = OEM Proprietary level

data 3 - Maximum Privilege Level for 3rd and 4th Cipher Suites

data 4 - Maximum Privilege Level for 5th and 6th Cipher Suites

…

data 9 - Maximum Privilege Level for 15th and 16th Cipher Suites

Destination Address
VLAN TAGs

(can be READ ONLY,
see description)

25 Sets/Gets the VLAN IDs (if any) addresses that a LAN alert can be sent to. This parameter
is not present if the Number of Destinations parameter is 0, or if the implementation does
not support the use of VLAN IDs for alerts. Otherwise, the number of VLAN TAG entries
matches the number of Alert Destinations.

An implementation may only be able to send alerts using the same VLAN TAG configuration
as specified by parameters 20 and 21, in which case this parameter is allowed to be READ
ONLY, where data 3-4 reflects the settings of parameters 20 and 21, and data 2 [7:4]
indicates that VLAN TAGs are being used for alerts. If the implementation does support
configurable VLAN TAGs for alert destinations, it must support configuring unique TAG
information for all destinations on the given channel.

data 1 - Set Selector = Destination Selector.

[7:4] - reserved

[3:0] - Destination selector. Destination 0 is always present as a volatile destination that is
used with the Alert Immediate command.

data 2 - Address Format

[7:4] - Address Format.

 0h = VLAN ID not used with this destination

 1h = 802.1q VLAN TAG

[3:0] - reserved

For Address Format = 1h:

data 3-4 - VLAN TAG

[7:0] - VLAN ID, least-significant byte

[11:8] - VLAN ID, most-significant nibble

[12] - CFI (Canonical Format Indicator. Set to 0b)

[15:13] - User priority (000b, typical)

 Intelligent Platform Management Interface Specification

 349

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Bad Password
Threshold (optional)

26 Sets/Gets the Bad Password Threshold. If implemented and non-zero, this value determines
the number of sequential bad passwords that will be allowed to be entered for the identified
user before the user is automatically disabled from access on the channel.

For example, a value of 3 indicates that 3 sequential attempts are allowed for the given
username on the particular channel. If the password for the third attempt is not correct, the
user will be disabled for the channel. If this value is zero (00h) then there is no limit on bad
passwords.

The effect of the disable is the same as if a Set User Access command were used to
remove the user's access from the channel.

Bad password attempts are tracked according to individual username on a per channel
basis. (Thus, a given username may be disabled on one channel, but still enabled on
another) Bad password attempts are not counted if integrity check or other session
parameters, such as session ID, sequence number, etc. are invalid. That is, bad password
attempts are not counted if there are any other errors that would have caused the login
attempt to be rejected even if the password was valid. The count of bad password attempts
is retained as long as the BMC remains powered and is not reinitialized.

Counting automatically starts over (is reset) under any one of the following conditions:

a) a valid password is received on any of the allowed attempts

b) the Attempt Count Reset Interval expires

c) the user is re-enabled using the Set User Access command

d) the user is automatically re-enabled when the User Lockout Interval expires.

e) the Bad Threshold number parameter value is re-written or changed

The Set User Access command is used to re-enable the user for the Channel.

data 1

[7:1] - reserved

[0] - 0b = do not generate an event message when the user is disabled.

 1b = generate a Session Audit sensor "Invalid password disable" event message.

data 2

7:0 - Bad Password Threshold number.

data 3:4

15:0 - Attempt Count Reset Interval. The interval, in tens of seconds, for which the
accumulated count of bad password attempts is retained before being
automatically reset to zero. The interval starts with the most recent bad password
attempt for the given username on the channel. This interval is allowed to reset if
a BMC power cycles or re-initialization occurs while the interval is being counted.

 0000h = Attempt Count Reset Interval is disabled. The count of bad password
attempts is retained as long as the BMC remains powered and is not
reinitialized.

data 5:6

15:0 - User Lockout Interval. The interval, in tens of seconds, that the user will remain
disabled after being disabled because the Bad Password Threshold number was
reached. The user is automatically re-enabled when the interval expires. Note that
this requires the BMC implementation to track that the user was disabled because
of a Bad Password Threshold. This interval is allowed to be restarted if a BMC
power cycle or re-initialization occurs while the interval is being counted. Note that
this requires an internal non-volatile setting to be maintained that tracks when a
particular user has been temporarily disabled due to the Bad Password
Threshold. This is required to distinguish a user that was disabled automatically
from a user that is intentionally disabled using the Set User Access command.

0000h = User Lockout Interval is disabled. If a user was automatically disabled
due to the Bad Password threshold, the user will remain disabled until
re-enabled via the Set User Access command.

Intelligent Platform Management Interface Specification

350

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6/IPv4 Support

(read only)

50 This parameter is Mandatory if IPv6 addressing is supported. This parameter and the
following parameters, up to and including the “IPv6 Neighbor Discovery / SLAAC Timing
Configuration” parameter should not be supported if the implementation does not support
IPv6 addressing per this specification.

data 1 –

[2] - 1b = Implementation supports IPv6 Destination Addresses for LAN Alerting.

[1] - 1b = Implementation can be configured to use both IPv4 and IPv6 addresses
simultaneously.

[0] - 1b = Implementation can be configured to use IPv6 addresses only.

IPv6/IPv4 Addressing
enables

51 This parameter is Mandatory if IPv6 addressing is supported.

data 1 –

The following values can be set according the capabilities specified in parameter 50.

00h = IPv6 addressing disabled.

01h = Enable IPv6 addressing only. IPv4 addressing is disabled.

02h = Enable IPv6 and IPv4 addressing simultaneously.

IPv6 Header Static
Traffic Class

52 This parameter is Mandatory if IPv6 addressing is supported. Recommended Default = 0.

data 1 – Traffic Class

This field determines the Traffic Class used by the BMC when transmitting Alert packets
using IPv6 addressing. Otherwise, the BMC uses the traffic class value from the remote
console. Refer to [RFC2460] and [RFC2474] for additional information.

IPv6 Header Static Hop
Limit

53 This parameter is Mandatory if IPv6 addressing is supported. Default = 64.

data 1 – Static Hop Limit

This parameter is used under two circumstances:

1. If the router returns ‘unspecified’ (00h) as the hop limit.

2. When a static router configuration is used, the BMC does not pay attention to the
Router Advertisement messages and uses this value for the Hop Limit instead.

IPv6 Header Flow Label
[OPTIONAL]

54 data 1:3 – Flow Label, 20-bits, right justified, MS Byte first. Default = 0.

If this configuration parameter is not supported, the Flow Label shall be set to 0 per
[RFC2460]. Bits [23:20] = reserved – set to 0b.

IPv6 Status (read only)

55 Provides the number of IPv6 addresses that are supported and configurable for use by the
BMC for IPMI.

This parameter is Mandatory if IPv6 addressing is supported.

data 1: - Static address max

Maximum number of static IPv6 addresses for establishing connections to the BMC. Note: in
some implementations this may exceed the number of simultaneous sessions supported on
the channel. 0 indicates that static address configuration is not available.

data 2: - Dynamic address max

Maximum number of Dynamic (SLAAC/ DHCPv6) IPv6 addresses that can be obtained for
establishing connections to the BMC. Note: in some implementations this may exceed the
number of simultaneous sessions supported on the channel. 0 = Dynamic addressing is not
supported by the BMC.

data 3: -

[7:2] - reserved

[1] - 1b = SLAAC addressing is supported by the BMC

[0] - 1b = DHCPv6 addressing is supported by the BMC (optional)

 Intelligent Platform Management Interface Specification

 351

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 Static Addresses 56 This parameter is Mandatory if IPv6 addressing is supported.

data 1 - Set Selector = Address selector, 0 based.

BMC shall provide at least one IPv6 Static Address entry if static address configuration is
supported. For the case of 0 Static addresses, only selector 0 is allowed, data[2:19] are
reserved, data 20 = “disabled”.

data 2 - Address source/type

[7]- enable=1/disable=0

[6:4] - reserved

[3:0]- source/type

 0h = Static

 All other = reserved

data 3:18 - IPv6 Address, MS-byte first.

data 19 - Address Prefix Length

data 20 - Address Status (Read-only parameter. Writes to this location are ignored.)

 00h = Active (in-use)
 01h = Disabled
 02h = Pending (currently undergoing DAD [duplicate address detection], optional)

 03h = Failed (duplicate address found, optional)

 04h = Deprecated (preferred timer has expired, optional)
 05h = Invalid (validity timer has expired, optional)

 All other = reserved

IPv6 DHCPv6 Static
DUID storage length

(read only)

57 This parameter is Mandatory if IPv6 addressing is supported.

data 1 – The maximum number of 16-byte blocks that can be used for storing each DUID via
the IPv6 DHCPv6 Static DUIDs parameter. 1-based. Returns 0 if IPv6 Static Address
configuration is not supported.

Per [RFC3315] the first two bytes hold a DUID Type Number. The following bytes hold the
DUID data. Depending on the Type, the DUID data can be up to 128 octets long (not
including the 2-byte type code) – though most forms are significantly shorter. (As of this
writing, DUID Type 2 (Vendor-assigned unique ID based on Enterprise Number is the one
Type that has a vendor-specific length and could be 128 octets long). It is recommended
that the implementation supports at least 3 blocks per DUID.

Intelligent Platform Management Interface Specification

352

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 DHCPv6 Static
DUIDs

58 DUIDs (DHCP Unique Identifiers). Per [RFC3315], each DHCP client and server has a
DUID. This parameter provides storage for each DUID that identifies a particular IPv6
Interface Association (IA).

This parameter is Mandatory if IPv6 addressing is supported.

data 1 - Set Selector = DUID selector, 0 based. Each set selector matches with the
corresponding Set Selector for the IPv6 Static Addresses parameter.

This parameter is Mandatory if IPv6 addressing is supported. If IPv6 Static Address
configuration is not supported, only selector 0 and block 0 is allowed and nothing is returned
for data 3-18.

data 2 - Block Selector, 0-based

Selects which 16-byte block of DUID data to write for the DUID storage from the given Set
Selector.

data 3-18 - DUID data for given block. The first byte of block 0 is the overall length of the
following DUID data (1-based). The remaining DUID data is formatted and stored in network
byte order (MS-bytes first) per [RFC3315], starting with the DUID Type field.

Notes: Per [RFC3315]: “A client must associate at least one distinct IA with each of its
network interfaces for which it is to request the assignment of IPv6 addresses from a DHCP
server. The client uses the IAs assigned to an interface to obtain configuration information
from a server for that interface. Each IA must be associated with exactly one interface.”

Consequently, the Set Selector for the DUID effectively becomes bound to a particular IA,
and since the Set Selector for the DUID and the Set Selector for the IPv6 Address
correspond to one another, the Set Selector for the IPv6 address is also associated with the
IA. In effect, the Set Selector value becomes the handle for a particular IA.

Depending on DUID Type, a given MAC address MAY have more than one DUID (and IPv6
Address) associated with it. The Type 3 DUID just uses the link layer address directly (MAC
address) and therefore would not support more than one DUID for the MAC address. Other
DUID Types do not have that restriction.

IPv6 Dynamic (SLAAC/
DHCPv6) Address

(read only)

59 This parameter is Mandatory if IPv6 addressing is supported.

data 1 - Set Selector = Address selector, 0 based.

BMC shall provide at least one entry in the array. For the case of 0 SLAAC and DHCPv6
addresses, only selector 0 is allowed, data[2:20] are reserved, data 21 = “disabled”.

Mandatory if IPv6 addressing is supported.

data 2 - Address source/type

[7:4] - reserved

[3:0]- source/type

 0 – Reserved

 1 – SLAAC (StateLess Address Auto Configuration)

 2 – DHCPv6 (optional)

 Other - reserved

data 3-18 - IPv6 Address, MS-byte first.

data 19 - Address Prefix Length

data 20 - Address Status

 0 – Active (in-use)
 1 – Disabled

 2 – Pending (currently undergoing DAD, optional)
 3 – Failed (duplicate address found, optional)

 4 – Deprecated (preferred timer has expired, optional)
 5 – Invalid (validity timer has expired, optional)

 other – reserved

 Intelligent Platform Management Interface Specification

 353

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 DHCPv6 Dynamic
DUID storage length

(read only)

60 This parameter is Mandatory if IPv6 addressing is supported.

data 1 – The maximum number of 16-byte blocks that can be used for storing each DUID via
the IPv6 DHCPv6 Static DUIDs parameter. 1-based. Returns 0 if IPv6 Static Address
configuration is not supported.

Per [RFC3315] the DUID can be up to 128 octets long – though most forms are significantly
shorter. As of this writing, DUID Type 2 (Vendor-assigned unique ID based on Enterprise
Number) is the format which has a vendor-specific length and could be lengthy It is
recommended that the implementation supports at least 3 blocks per DUID.

IPv6 DHCPv6 Dynamic
DUIDs

61 This parameter is Mandatory if IPv6 addressing is supported.

DUIDs (DHCP Unique Identifiers). Per [RFC3315], each DHCP client and server has a
DUID. Although DHCPv6 is not used for address assignment when IPv6 static addresses
are enabled, DHCPv6 may be used for discovery, configuration, or other purposes.
Therefore, this configuration parameter provides a mechanism for setting and returning a
DUID that is associated with each IPv6 Static Address that is supported. The Set Selector
for the Dynamic DUIDs Type parameter matches the set selector for the corresponding IPv6
Static address. . If IPv6 Dynamic Address configuration is not supported, only selector 0 and
block 0 is allowed and nothing is returned for data 3-18.

data 1 - Set Selector = DUID selector, 0 based.

Each set selector matches with the corresponding Set Selector for the IPv6 Dynamic
Addresses parameter.

This parameter is Mandatory if IPv6 addressing is supported. If IPv6 Dynamic Address
configuration is not supported, only selector 0 is allowed and the type shall be returned as
‘0’ (not supported).

data 2 - Block Selector (0-based)

Selects which 16-byte block of DUID data to write for the DUID storage from the given Set
Selector.

data 3-18 - DUID data for given block. The first byte of block 0 is the overall length of the
following DUID data (1-based). The remaining DUID data is formatted and stored in network
byte order (MS-bytes first) per [RFC3315], starting with the DUID Type field.

Notes: Refer to the notes for the IPv6 DHCPv6 Static DUIDs parameter, above, for more
information.

IPv6 DHCPv6 Timing
Configuration Support

(read only)

62 This parameter is Mandatory if IPv6 addressing is supported.

data1

[7:2] - reserved

[1:0] - 00b = DHCPv6 timing configuration per IPMI is not supported.

 01b = ‘Global’ - Timing configuration applies across all interfaces (IAs) that use
dynamic addressing and have DHCPv6 is enabled.

 10b = ‘Per interface’ - Timing is configurable for each interface and used when
DHCPv6 is enabled for the given interface (IA).

 11b = reserved

Intelligent Platform Management Interface Specification

354

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 DHCPv6 Timing &
Configuration

(optional,
recommended)

63 This parameter is Mandatory if DHCPv6 timing configuration is supported as indicated by
the IPv6 DHCPv6 Timing Configuration Support parameter, above.

If DHCPv6 Dynamic Address configuration is not supported, this parameter should not be
implemented.

This parameter is used to configure the default timing values for DHCPv6. These values are
used when the BMC is initially powered up or reinitialized, and after DHCPv6 address
configuration becomes enabled or is re-enabled. Note that some of these parameters may
be superseded by values received from the DHCP server. See Section 23.2a, DHCPv6
Timing Parameters, for more information.

The DHCPv6 Timing configuration can be ‘global’, where a single set of timing parameters
applies to all DHCPv6 transactions for all supported interfaces on the channel that are using
DCHPv6 for IPv6 address assignment on the channel or ‘per interface’ in which case only
one set of timing parameters needs to be supported. The IPv6 DHCPv6 Timing
Configuration Support parameter lets software know what is supported by the
implementation.

data 1 - Set Selector = IPv6 interface (IA) selector, 0 based.

If ‘global’ the Set Selector is always 0. If ‘per interface’, each set selector matches with the
corresponding Set Selector for the IPv6 Dynamic Addresses parameter.

data 2 - Block Selector (0-based)

Selects which 16-byte block of timing parameter data is accessed for the given Set Selector.
See Table 23-4a, DHCPv6 Timing Parameters, for the specification of the data content in
each block.

IPv6 Router Address
Configuration Control

64 This parameter is Mandatory if IPv6 addressing is supported.

Router discovery is part of support for SLAAC and DHCPv6 addressing (dynamic
addressing). This parameter controls whether automated router discovery occurs when
static addresses are used for the BMC. It also enables the use of static router addresses.

data 1 –

[7:2] - reserved

[1] - 1b = enable dynamic router address configuration via router advertisement
messages. Router solicitation messages are sent with timing and behavior as
specified in [RFC4861]. The router solicitation timing values from the IPv6
Neighbor Discovery / SLAAC Timing Configuration parameter (below) are
used if that parameter is implemented.

[0] - 1b = enable static router address. If static and dynamic router addressing are
enabled, the BMC shall attempt to use the static router address and prefix
first.

IPv6 Static Router 1 IP
Address

65 This parameter is Mandatory if IPv6 addressing is supported.

data 1:16 - IPv6 Router IP Address (Used when static address is selected in the IPv6 IP
Address Source configuration parameter).

16 bytes of IPv6 address, MS-byte first.

IPv6 Static Router 1
MAC Address

66 This parameter is Mandatory if IPv6 addressing is supported.

data 1:6 – Router MAC Address. MS-byte first.

IPv6 Static Router 1
Prefix Length

67 This parameter is Mandatory if IPv6 addressing is supported.

data 1 – Prefix length. Only used with static addressing. Used to determine whether an
address is ‘on link’ (can be accessed directly) or ‘off link’ (must go to the
corresponding Static GatewayStatic Router address). The upper bits of the first
address entry in the IPv6 Static Addresses parameter are used for the prefix
value.

 Prefix length should be from 0 to 128 as per [RFC4861].

IPv6 Static Router 1
Prefix Value

68 This parameter is Mandatory if IPv6 addressing is supported

data 1:16 – Prefix value. MS-byte first.

 Intelligent Platform Management Interface Specification

 355

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 Static Router 2 IP
Address

69 This parameter is Mandatory if IPv6 addressing is supported.

data 1:16 - IPv6 Static Router Address (Used when static address is selected in the IPv6 IP
Address Source configuration parameter).

 16 bytes of valid IPv6 address, MS-byte first.

IPv6 Static Router 2
MAC Address

70 This parameter is Mandatory if IPv6 addressing is supported.

data 1:6 - MAC Address. MS-byte first.

IPv6 Static Router 2
Prefix Length

71 This parameter is Mandatory if IPv6 addressing is supported.

data 1 – Prefix length. Only used with static addressing. Used to determine whether an
address is ‘on link’ (can be accessed directly) or ‘off link’ (must go to the
corresponding Static Gateway address). The upper bits of the first address entry
in the IPv6 Static Addresses parameter are used for the prefix value.

 Prefix length should be from 0 to 128 as per [RFC4861].

IPv6 Static Router 2
Prefix Value

72 This parameter is Mandatory if IPv6 addressing is supported.

data 1:16 – Prefix value. MS-byte first.

The following “Dynamic Router Info” parameters are informational and may be used to by software to
monitor whether the BMC is receiving router advertisements, and if so, the most recent router address
and prefix information it has received.
Number of Dynamic
Router Info Sets

(read-only)

73 This parameter is Mandatory if IPv6 dynamic addressing is supported.

data1- Number of dynamic Router Address information entries. If a router returns multiple
prefixes, there will be a one set of entries (prefix, router ip adddress, and router
mac address) for each prefix. Entries are handled in a FIFO manner. That is,
once all entries are used, the BMC replaces older sets with newer ones in the
order that they are received if the new information doesn’t match an entry that’s
already on the list.

 Set to 0 if dynamic Router Address information entries are not supported.
Otherwise, the required minimum = 2.

 Recommended: 4 entries, min. This allows the BMC to track two router
addresses and two prefixes per router address.

 Note that per [RFC4861] “a host MUST retain at least two router addresses and
SHOULD retain more.” The implementation should provide one info set for each
router address + prefix it supports.

IPv6 Dynamic Router
Info IP Address

(read-only)

74 This parameter is Mandatory if Number of Dynamic Router Info Sets is non-zero.

data1 - set selector (0-based)

data 2:17- IPv6 Router IP Address (Used when static address is selected in the IPv6 IP
Address Source configuration parameter).

 16 bytes of valid IPv6 address, MS-byte first. Set to 0000_0000h if the corresponding
IPv6 Dynamic Router Info Prefix Length = FFh.

IPv6 Dynamic Router
Info MAC Address

(read-only)

75 This parameter is Mandatory if Number of Dynamic Router Info Sets is non-zero.

data 1 - set selector (0-based)

data 2:7 - MAC Address. MS-byte first.

 Set to 00_0000h if the corresponding IPv6 Dynamic Router Info Prefix Length = FFh.

IPv6 Dynamic Router
Info Prefix Length

(read-only)

76 This parameter is Mandatory if Number of Dynamic Router Info Sets is non-zero.

data1 - set selector (0-based)

data 2 – Prefix length. Used with dynamic router address configuration. Used to determine
whether an address is ‘on link’ (can be accessed directly) or ‘off link’ (must go to the
corresponding Dynamic Router address). The upper bits of the first address entry in the
IPv6 Static Addresses parameter are used for the prefix value.

 Prefix length should be from 0 to 128 as per [RFC4861].

FFh = Dynamic address is unspecified. The corresponding IPv6 Dynamic Router Info IP
Address and MAC Address fields should be ignored.

Intelligent Platform Management Interface Specification

356

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPv6 Dynamic Router
Info Prefix Value

(read-only)

77 This parameter is Mandatory if Number of Dynamic Router Info Sets is non-zero.

data1- set selector (0-based)

data 2:17 – Prefix value. Set to all 0s if the corresponding IPv6 Dynamic Router Info Prefix
Length = FFh.

IPv6 Dynamic Router
Received Hop Limit
(read only)

[optional,
recommended]

78 This parameter is optional (recommended).

This value is obtained from the router as part of a Router Advertisement message. The BMC
returns the most recently received information that it has received, regardless of the router
that sent the advertisement.

data 1 – Hop Limit

IPv6 Neighbor
Discovery / SLAAC
Timing Configuration
Support

(read only)

79 This parameter is Mandatory if IPv6 static router address configuration is supported.

data1:
[7:2] - reserved
[1:0] - 00b = IPv6 Neighbor Discovery / SLAAC timing configuration per IPMI is not

supported.
 01b = ‘Global’ - Timing configuration applies across all interfaces (IAs) that have

IPv6 dynamic addressing enabled.
 10b = ‘Per interface’ - Timing is configurable for each interface and used when

IPv6 dynamic addressing is enabled for the given interface (IA).
 11b = reserved

IPv6 Neighbor
Discovery / SLAAC
Timing Configuration

80 This parameter is Mandatory if Neighbor Discovery / SLAAC Timing configuration is
supported. If it is not supported, this parameter is not implemented.

This parameter is used to configure the default timing values for IPv6 Neighbor Discovery /
SLAAC. These values are used when the BMC is initially powered up or reinitialized, and
after IPv6 dynamic addressing becomes enabled or is re-enabled for the interface(s). Note
that some of these parameters may be superseded by values received from the router. See
Section 23.2b, Neighbor Discovery / SLAAC Timing Parameters, for more information.

The Neighbor Discovery / SLAAC Timing configuration can be ‘global’, where a single set of
timing parameters applies to all Neighbor Discovery / SLAAC transactions for all supported
interfaces on the channel that are using Neighbor Discovery / SLAAC for IPv6 address
assignment on the channel or ‘per interface’ in which case only one set of timing
parameters needs to be supported. The IPv6 Neighbor Discovery / SLAAC Timing
Configuration Support parameter lets software know what is supported by the
implementation.

data 1: - Set Selector = IPv6 interface (IA) selector, 0 based.
If ‘global’ the Set Selector is always 0. If ‘per interface’, each set selector matches with the
corresponding Set Selector for the IPv6 Dynamic Addresses parameter.

data 2: - Block Selector (0-based)
Selects which 16-byte block of timing parameter data is accessed for the given Set Selector.
See Table 23-4b, Neighbor Discovery / SLAAC Timing Parameters for the specification of
the data content in each block.

OEM Parameters 192:
255

This range is available for special OEM configuration parameters. The OEM is identified
according to the Manufacturer ID field returned by the Get Device ID command.

1. Choice of system manufacturing defaults is left to the system manufacturer unless otherwise specified.
2. This configuration parameter must be supported if the controller autonomously issues gratuitous ARPs or ARP responses.

This requirement only applies to use of gratuitous ARPs or ARP responses that are being generated to support
IPMI over LAN communication sessions. It does not apply to LAN communications for features that are outside
the IPMI specification. Enabling or disabling gratuitous ARPs or ARP responses using this parameter for IPMI
does not necessarily affect ARP responses that are being generated by features that are defined outside the
IPMI specification.

23.2a DHCPv6 Timing Parameters

The following table specifies the block selector and offset values for the DHCPv6 timing parameters. Data must

be provided for all offsets. Unused / unsupported values shall be set to 00h unless otherwise specified. Refer to

[RFC3315] for the definitions of the timing parameters.

 Intelligent Platform Management Interface Specification

 357

Note: The default timing values shown are for example only. Please check the latest RFCs for actual values and

possible updates.

Table 23-4a, DHCPv6 Timing Parameters
Parameter Block

offset
M/O/R Size

(bytes)
Default Granularity Range

Block 1:

SOL_MAX_DELAY 0 M 1 1 sec .5 sec .5 to 127 secs. 1-based.

SOL_TIMEOUT 1 M 1 1 sec .5 sec .5 to 127 secs. 1-based.

SOL_MAX_RT 2 M 1 120 secs 30 sec 30 to 7650 secs. 1-based.

REQ_TIMEOUT 3 M 1 1 sec .5 sec .5 to 127 secs. 1-based.

REQ_MAX_RT 4 M 1 30 secs .5 sec 15 to 142 secs. 1-based

REQ_MAX_RC 5 M 1 10 1 count 0 to 100 counts.

CNF_MAX_DELAY 6 M 1 1 sec .5 sec .5 to 127 secs. 1-based.

CNF_TIMEOUT 7 M 1 1 sec .5 sec .5 to 127 secs. 1-based.

CNF_MAX_RT 8 M 1 4 secs 1 secs 1 to 127 secs. 1-based.

CNF_MAX_RD 9 M 1 10 secs 2 secs 2 to 510 secs. 1-based.

REN_TIMEOUT 10 M 1 10 secs 2 secs 2 to 510 secs. 1-based.

REN_MAX_RT 11 M 1 600 secs 10 secs 10 to 2550 secs. 1-based.

REB_TIMEOUT 12 M 1 10 secs 2 secs 2 to 510 secs. 1-based.

REB_MAX_RT 13 M 1 600 secs 4 secs 10 to 2550 secs. 1-based.

INF_MAX_DELAY 14 R [1] 1 1 sec .5 sec .5 to 127 secs. 1-based.

INF_TIMEOUT 15 R [1] 1 1 sec .5 sec .5 to 127 secs. 1-based.

Block 2:

INF_MAX_RT 0 R [1] 1 120 secs 30 sec 30 to 7650 secs. 1-based.

REL_TIMEOUT 1 R [2] 1 1 sec .5 sec .5 to 127 secs. 1-based.

REL_MAX_RC 2 R [2] 1 5 1 sec 1 to 255 secs. 1-based.

DEC_TIMEOUT 3 R [3] 1 1 sec .5 sec .5 to 127 secs. 1-based.

DEC_MAX_RC 4 R [3] 1 5 1 sec 1 to 255 secs. 1-based.

HOP_COUNT_LIMIT 5 R [4] 1 32 1 count 1 to 255 counts. 1-based.

[1] Recommended if BMC generates Information Request messages from a MAC Address that is associated with IPMI messaging.
[2] Recommended if BMC generates Release messages from a MAC Address or IPv6 address that is associated with IPMI

messaging.
[3] Recommended if BMC generates Decline messages from a MAC Address or IPv6 address that is associated with IPMI

messaging.
[4] Recommended if BMC functions as a relay agent at a MAC Address or IPv6 address that is associated with IPMI messaging.

23.2b Neighbor Discovery / SLAAC Timing Parameters

The following table presents the parameters and offsets that are used with the “Neighbor Discovery / SLAAC

Timing Configuration” parameter from the LAN Configuration Parameters. Refer to [RFC4861] and [RFC4862]

for the definitions of the timing parameters.

Note: The default timing values shown are for example only. Please check the latest RFCs for actual values and

possible updates.

The following definitions are used in the table, per [RFC4294]:

 IPv6 Node: A device that implements IPv6.

 IPv6 Router: A node that forwards IPv6 packets not explicitly addressed to itself.

 IPv6 Host: Any node that is not a router.

Intelligent Platform Management Interface Specification

358

The IPMI-specified timing parameters cover the BMC as a Node/Host only. They do not cover using the BMC as

a Router.

key: M/O/R = Mandatory / Optional / Recommended.

Table 23-4b, Neighbor Discovery / SLAAC Timing Parameters

Parameter
Block
offset M/O/R

Size
(bytes) Default Granularity Range

Block 1:

 Host constants:

 MAX_RTR_SOLICITATION_DELAY 0 M 1 1 second .25 sec .25 to 63.75 secs.

1-based.

 RTR_SOLICITATION_INTERVAL 1 M 1 4 seconds .5 sec .5 to 127.5 secs.

1-based.

 MAX_RTR_SOLICITATIONS 2 M 1 3 transmissions 1 count 1 to 100 counts.

1-based.

FFh = unlimited.

DupAddrDetectTransmits[3] 3 M 1 1 transmission 1 count 0 to 100 counts.

1-based.

Node constants:

 MAX_MULTICAST_SOLICIT 4 M 1 3 transmissions 1 count 1 to 100 counts.

1-based

 MAX_UNICAST_SOLICIT 5 M 1 3 transmissions 1 count 1 to 100 counts.

1-based.

 MAX_ANYCAST_DELAY_TIME 6 M 1 1 second .25 sec 0.25 to 63.75 secs.

1-based.

 MAX_NEIGHBOR_ADVERTISEMENT 7 M 1 3 transmissions 1 count 1 to 100 counts.

1-based.

 REACHABLE_TIME 8 M[1] 1 30 seconds 2 sec 2 to 510 secs.

1-based.

 RETRANS_TIMER 9 M 1 1 second .25 sec 0.25 to 63.75 secs.

1-based.

 DELAY_FIRST_PROBE_TIME 10 M 1 5 seconds .5 sec .5 to 127.5 secs.

1-based.

MAX_RANDOM_FACTOR 11 O[2] 1 1.5 .125 1.0 to 4.0. 1-based.

MIN_RANDOM_FACTOR 12 O[2] 1 0.5 .125 .125 to 1.0. 1-based

1. This parameter sets the default value for BaseReachableTime (per [RFC4861]). This value will be used after the BMC is reset

or reinitialized until an updated value is received from a router. Note that this parameter always returns the default setting. It
does not return the value given by the router.

2. If supported, both MIN_RANDOM_FACTOR and MAX_RANDOM_FACTOR must be implemented. Setting both
MIN_RANDOM_FACTOR and MAX_RANDOM_FACTOR removes any randomization of the associated intervals.

3. Refer to [RFC4862]

23.3 Suspend BMC ARPs Command

This command can be used to suspend BMC-generated Gratuitous ARPs or ARP responses (if implemented and

enabled) while run-time software is handling them. ARPs will automatically resume and the ARP suspend option

will be automatically disabled whenever the watchdog timer stops or when the Set Watchdog Timer command is

executed. Software must explicitly enable the suspension after starting or re-starting the Watchdog Timer. This is

to ensure that BMC-generated ARPs will resume if the watchdog expires (indicating that software may no longer

be handling the ARPs).

Software can examine the LAN Configuration Parameters for the desired channel to see if Gratuitous ARPs or

BMC-generated ARP Responses are enabled.

 Intelligent Platform Management Interface Specification

 359

Table 23-5, Suspend BMC ARPs Command
 byte data field

Request Data 1 [7:4] reserved

[3:0] Channel number

 2 [7:2] - reserved

ARP Response suspend

[1] - 0b = do not suspend BMC-generated ARP responses while the
Watchdog Timer is running.

 1b = suspend BMC-generated ARP responses while Watchdog Timer
is running. This value must be set after the Watchdog has been
configured using the Set Watchdog Timer command and, if it is
desired that the suspension of ARPs be continued, must be re-
written after any subsequent Set Watchdog Timer commands.

Gratuitous ARP suspend

[0] - 0b = do not suspend BMC-generated Gratuitous ARPs while the
Watchdog Timer is running.

 1b = suspend BMC-generated Gratuitous ARPs while the Watchdog
Timer is running. This value must be set after the Watchdog has
been configured using the Set Watchdog Timer command and, if it
is desired that the suspension of ARPs be continued, must be re-
written after any subsequent Set Watchdog Timer commands.

Response Data 1 Completion Code

 2 Present state of ARP suspension:

[7:2] - reserved

ARP Response status

[1] - 1b = BMC-generated ARP Responses are occurring

 0b = BMC-generated ARP Responses are presently being suspended
or are disabled.

Gratuitous ARP Response status

[0] - 1b = BMC-generated Gratuitous ARPs are occurring

 0b = BMC-generated Gratuitous ARPs are presently being suspended
or are disabled.

23.4 Get IP/UDP/RMCP Statistics Command

This command is used retrieving information about the IP connections on the given channel. The info is

cumulative but volatile. I.e. it is not required to keep these statistics across management controller power cycles. It

Intelligent Platform Management Interface Specification

360

is recommended that this information be kept across system resets and power cycles. The statistics values are

initialized to 0 unless otherwise noted.

Table 23-6, Get IP/UDP/RMCP Statistics Command
 byte data field

Request Data 1 [7:4] reserved

[3:0] Channel number.

 2 Clear Statistics

[7:1]- reserved

[0] - 0b = don’t clear statistics

 1b = clear all statistics values to 0

Response Data 1 Completion Code

 2:3 IP Packets Received. All statistics returned by this command are 1-based
unless otherwise noted. All statistics stop accumulating at FFFFh unless
otherwise noted.

 4:5 Received IP Header Errors

 6:7 Received IP Address Errors

 8:9 Fragmented IP Packets Received

 10:11 IP Packets Transmitted

 12:13 UDP Packets Received

 14:15 Valid RMCP Packets Received

 16:17 UDP Proxy Packets Received

 18:19 UDP Proxy Packets dropped

 Intelligent Platform Management Interface Specification

 361

Intelligent Platform Management Interface Specification

362

24. RMCP+ Support and Payload Commands
The following sections list the commands associated with discovering, enabling, and activating payloads under IPMI
v2.0/RMCP+. Also included in this section are updates and additions to IPMI commands to support IPMI v2.0/RMCP+
sessions, authentication, and configuration.

Table 24-1, RMCP+ Support and Payload Commands

Command

Section

Defined

O/M

Activate Payload 24.1 O[1]

Deactivate Payload 24.2 O[1]

Suspend/Resume Payload Encryption Command 24.3 O[3]

Get Payload Activation Status 24.4 O[1]

Get Payload Instance Info 24.5 O[1]

Set User Payload Access Command 24.6 O[1]

Get User Payload Access Command 24.7 O[1]

Get Channel Payload Support Command 24.8 O[1]

Get Channel Payload Version Command 24.9 O[1]

Get Channel OEM Payload Info Command 24.10 O[1,2]

1. Mandatory if standard payloads other than IPMI Messaging are available on the
channel.

2. Mandatory if OEM payloads are available on the channel.
3. Mandatory for standard payloads per Table 24-4, Payload-specific Encryption

Behavior, when a channel supports Cipher Suites that allow a session to be
established with a standard Cipher Suite that supports encryption.

24.1 Activate Payload Command

This command is used for activating and deactivating a payload type under a given IPMI session. The ability to

execute this command is determined via the user’s privileges as assigned via the Set User Payload Access

command.

The Activate Payload command may return a port number that is separate from the port number for the session

that the command was issued under. In this case, the remote console must establish a session on the port number

that the Activate Session command returned. The remote console must then issue the Activate Payload command

on that port number in order to actually activate the payload. It is possible that the remote console already had a

session active on the given port number. If the privileges associated with that session are sufficient (this will

typically be the case unless the remote console activated the session at a privilege level that was lower than the

maximum level for the user) the remote console can re-use the existing session and just use the Activate Payload

command to activate the new payload type.

BMCs may have limited resources for handling multiple sessions. It is highly recommended that a remote console

avoids creating multiple sessions and shares sessions for multiple payloads whenever possible.

The Activate Payload Command is only accepted over a channel on which payloads can be activated. E.g. the

Activate Payload command cannot be executed from the IPMB.

 Intelligent Platform Management Interface Specification

 363

Table 24-2, Activate Payload Command
 byte data field

Request Data 1 [7:6] - reserved

[5:0] - payload type (See Table 13-16, Payload Type Numbers) IPMI
Message payloads do not need to be explicitly activated. A payload
that is required to be launched over a different port than that used to
establish the initial IPMI session is only required to support the IPMI
commands needed by the particular payload type.

 2 Payload Instance

[7:4] - reserved

[3:0] - payload instance. 1-based. 0h = reserved.

 3:6 Auxiliary Request Data. Additional payload-specific parameters to configure
behavior of the payload when it becomes activated. Ignored if no auxiliary
data is specified for given payload type.

For Payload Type = SOL:

byte 1

[7] - Encryption Activation

Note: the encryption algorithms specified in this document must be used
with Authentication. The BMC will return an error completion code if an
attempt is made to activate encryption without also activating
authentication.

 1b: Activate payload with encryption. All SOL payload data from the
BMC will be encrypted, if encryption was negotiated at the time of
session activation.

0b: Activate payload without encryption. BMC will send all SOL
payload data unencrypted, if that option is allowed. (An SOL
configuration parameter allows a system to be configured to
require encryption for all SOL transfers)

[6] - Authentication Activation

1b: Activate payload with authentication. All SOL payload data from
the BMC will be authenticated, if authentication was negotiated at
the time of session activation.

0b: Activate payload without authentication. BMC will send all SOL
payload data unauthenticated, if that option is allowed. (An SOL
configuration parameter allows a system to be configured to
require authentication for all SOL transfers)

[5] - Test Mode (optional). Enables DCD/ and DSR to be manually
controlled by the remote console and the reporting of RTS and
DTR state via the SOL Operation/Status byte. This can be used to
facilitate software testing of the 16550 UART interface.

 1b = activate test mode. If test mode is not supported, bit [0] of the
auxiliary response data will be returned as 0b.

 0b = deactivate test mode

[4] - reserved

[3:2] - Shared Serial Alert Behavior

The following settings are determine what happens to serial alerts if IPMI
over Serial and SOL are sharing the same baseboard serial controller.

 11b: Reserved

 10b: Serial/modem alerts succeed while SOL active.

 01b: Serial/modem alerts deferred while SOL active.

 00b: Serial/modem alerts fail while SOL active.

[1] - SOL startup handshake

0b: BMC asserts CTS and DCD/DSR to baseboard upon activation.

1b: CTS and DCD/DSR remain deasserted after activation. Remote
console must send an SOL Payload packet with control field
settings to assert CTS and DCD/DSR. (This enables the remote
console to first alter volatile configuration settings before
hardware handshake is released).

[0] - reserved

byte 2:4 reserved - write a 00h

Intelligent Platform Management Interface Specification

364

Response Data 1 Completion Code

Generic plus the following command-specific completion codes:

(An error completion code should be returned if the payload type in the
request is set to “IPMI Message” (0h)).

80h: Payload already active on another session (required).

 This will be returned any time an attempt is made to activate a payload
type when that type is already activated for another session, and when
the BMC only supports one instance of that payload type running at a
time.

81h: Payload type is disabled (optional). Given payload type is not
configured to be enabled for activation.

82h: Payload activation limit reached. Cannot activate given payload type
because the maximum number of simultaneous instances of that
payload type are already running.

83h: Cannot activate payload with encryption.

84h: Cannot activate payload without encryption. BMC requires encryption
for all payloads for given privilege level.

 2:5 Auxiliary Response Data. LS-byte first.

For Payload = SOL:

[31:1] - reserved. Return as 0s

[0] - 0b = test mode not supported / enabled

 1b = test mode enabled

 6:7 Inbound Payload Size

Maximum size of payload data field from remote console to BMC. Excludes
size of confidentiality header and trailer fields, if any. 1-based.

 8:9 Outbound Payload Size

Maximum size of payload data field from BMC to remote console. Excludes
size of confidentiality header and trailer fields, if any. 1-based.

 10:11 Payload UDP Port Number

UDP port number that payload can be transferred over. If the port number is
same as the port that was used to establish the IPMI session, then SOL
payload transfers are now available under that IPMI session on that port.
Otherwise, the remote console will need to establish a separate IPMI Session
to the specified Port Number using the same IP Address, username and
password/key information that was used to establish the IPMI session. SOL
payload transfers will then be available over that session.

If the remote console already has an IPMI session established on that port for
a different payload type, the SOL payload type will now also be available over
that session - provided that the session was established at a privilege level
that matches the privilege level and authentication required for SOL.
Otherwise, the remote console will need to close that session and re-
establish it at the necessary privilege level.

 12:13 Payload VLAN Number - FFFFh if VLAN addressing is not used.

24.2 Deactivate Payload Command

This command is used to terminate use of a given payload on an IPMI session. This type of traffic then becomes

freed for activation by another session, or for possible re-activation under the present session. The Deactivate

Payload command does not cause the session to be terminated. The Close Session command should be used for

that purpose. A remote console application does not need to explicitly deactivate payload(s) prior to terminating a

session. When a session terminates all payloads that were active under that session are automatically deactivated

by the BMC.

 Intelligent Platform Management Interface Specification

 365

Table 24-3, Deactivate Payload Command
 byte data field

Request Data 1 [7:6] - reserved

[5:0] - payload type (See Table 13-16, Payload Type Numbers)

 2 Payload Instance

[7:4] - reserved

[3:0] - payload instance. 1-based. 0h = reserved.

 3:6 Payload Auxiliary Data. Additional parameters to configure behavior of the
payload when it becomes deactivated. Ignored if no auxiliary data is specified
for given payload type.

For Payload Type = SOL: (no auxiliary data) write as 0000_0000h

Response Data 1 Completion Code

Generic plus the following command-specific completion codes:

(An error completion code should be returned if the payload type in the
request is set to “IPMI Message” (0h)).

80h: Payload already deactivated.

81h: Payload type is disabled (optional). Given payload type is not
configured to be enabled for activation.

24.3 Suspend/Resume Payload Encryption Command

This command enables a remote console to control whether payload data from the BMC is sent encrypted or not.

Since encryption can be a significant burden on software, this command provides a mechanism to allow higher

performance by operating without encryption and only activating encryption when it is required for data

confidentiality. The command can also trigger a regeneration of the encryption Initialization Vector and re-

initialization of the encryption state machine for algorithms such as xRC4 that use the same initialization vector

for multiple packets.

The extent at which this command can control encryption of data from the BMC is dependent on the payload

definition. Some payload definitions may use a mix of encrypted and unencrypted payload data transfers. For

example, a payload may implement a ‘request/response’ protocol, where the BMC would return an encrypted or

unencrypted response based on whether the request from the remote console was encrypted or unencrypted. In this

case, the command may only affect data that is autonomously generated by the BMC. Other payload definitions

may just use whatever encryption the session was activated with, and offer no ‘run-time’ control of

encryption/decryption, while other payload definitions may be ‘stream based’ where it is desirable for the remote

console to be able to select when payload data is from the BMC is encrypted or not.

The Suspend/Resume Payload Encryption command is only accepted from the channel that the payload was

activated on.

Table 24-4, Payload-specific Encryption Behavior
Payload Type = IPMI Messaging

 Encrypted requests from the remote console will get encrypted responses from the BMC.

 The Suspend/Resume Payload Encryption command controls whether asynchronous
(unrequested) messages from the BMC are encrypted or not.

 PET Traps (which are actually separate from IPMI Messaging) are always sent unencrypted.

Payload Type = SOL

 The SOL configuration parameters allow configuring the system to require that SOL data be
encrypted.

 The BMC will transmit SOL payload data according to encryption settings that were selected when
the payload was activated unless over-ridden by SOL configuration parameters.

 The Suspend/Resume Payload Encryption command controls whether SOL Payload data is

encrypted or not.

Intelligent Platform Management Interface Specification

366

Table 24-5, Suspend/Resume Payload Encryption Command
 byte data field

Request Data 1 [7:6] - reserved

[5:0] - payload type (See Table 13-16, Payload Type Numbers)

 2 Payload Instance

[7:4] - reserved

[3:0] - payload instance. 1-based. 0h = reserved.

 3 [7:2] - reserved

[4:0] - Operation

2h = Regenerate initialization vector. For xRC4 encryption, this causes
the BMC to reinitialize the xRC4 state machine, reset the data
offset, and deliver a new Initialization Vector value in the next
encrypted packet it sends to the remote console. Because of
processing delays and potential tasks in progress, the remote
console may receive additional packets from the BMC that are
encrypted using the prior Initialization Vector before getting packets
that use the new IV.

1h = Resume/Start encryption on all transfers of specified payload data
from the BMC.

0h = Suspend encryption on all transfers of specified payload messages
from the BMC.

Response Data 1 Completion Code

Generic plus the following command-specific completion codes:

80h: Operation not supported for given payload type.

81h: Operation not allowed under present configuration for given payload
type.

82h: Encryption is not available for session that payload type is active under.

83h: The payload instance is not presently active.

24.4 Get Payload Activation Status Command

This command returns how many instances of a given payload type are presently activated, and how many total

instances can be activated.

 Intelligent Platform Management Interface Specification

 367

Table 24-6, Get Payload Activation Status Command
 byte data field

Request Data 1 Payload Type Number - Type number of the standard payload type or OEM
Payload Handle to retrieve status for.

See Table 13-16, Payload Type Numbers.

Response Data 1 Completion Code

 2 Instance capacity

[7:4] - reserved.

[3:0] - Number of instances of given payload type that can be simultaneously
activated on BMC. 1-based. 0h = reserved.

 3 [7] - 1b = instance 8 is activated.

 0b = instance 8 is deactivated.

[6] - 1b = instance 7 is activated.

 0b = instance 7 is deactivated.

…

[0] - 1b = instance 1 is activated.

 0b = instance 1 is deactivated.

 4 [7] - 1b = instance 16 is activated.

 0b = instance 16 is deactivated.

[6] - 1b = instance 15 is activated.

 0b = instance 15 is deactivated.

…

[0] - 1b = instance 9 is activated.

 0b = instance 9 is deactivated.

24.5 Get Payload Instance Info Command

This command returns information about a specific instance of a payload type. It is primarily used by software

that may want to negotiate with an application that is presently using the given payload type. It accomplishes this

by using the Session ID returned from this command with the Get Session Info command to look up the

addressing information for the party that activated the payload. The application may then use that information to

establish a direct dialog with the application that presently ‘owns’ the payload (note that this inter-application

communication is not defined in the IPMI specifications).

Table 24-7, Get Payload Instance Info Command
 byte data field

Request Data 1 Payload Type Number - Type number of the standard payload type or OEM
Payload Handle to retrieve status for.

See Table 13-16, Payload Type Numbers.

 2 Payload Instance. 1-based. 0h = reserved.

Response Data 1 Completion Code

An error completion code should be returned if the payload type in the
request is set to “IPMI Message” (0h) .

 2:5 Session ID - ID of session that instance is presently activated on. (The
Managed System Session ID that the BMC generated when the
session was activated). 00_00_00_00h if given instance is not
activated. Remote software can use this information with the Get
Session Info command to identify the remote console that presently is
using a given payload type.

 6:13 Payload-specific information (8-bytes)

For Payload Type = SOL:

Byte 1: Port Number

 A number representing the system serial port that is being redirected.
1-based. 0h = unspecified. Used when more than one port can be
redirected on a system.

Byte 2:8 = reserved.

Intelligent Platform Management Interface Specification

368

24.6 Set User Payload Access Command

IPMI v2.0 introduces the Set User Payload Access and Get User Payload Access commands. These commands

can be thought of as extensions to the Set User Access and Get User Access commands, respectively. The Set User

Payload Access command controls whether the specified user has the ability to activate the specified payload type

on the given channel.

The Set User Payload Access command uses bitfields to allow a configuration utility to use a single command to

set enable/disable multiple payloads at a time. Standard payloads are set separately from OEM payload enables.

The command would be issued at least once with Standard payloads selected to set the configuration for Standard

payloads, and then at least once with OEM Payloads selected to set the configuration for OEM payloads.

Table 24-8, Set User Payload Access Command
 byte data field

Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

 2 [7:6] - Operation

 00b = ENABLE.

 Writing a “1b” to enable/disable bit ENABLES corresponding
payload. Writing “0b” to bit causes no change to enabled/disabled
state

 01b = DISABLE.

 Writing a “1b” to bit DISABLES corresponding payload. Writing 0b
to bit causes no change to enabled/disabled state.

 10b, 11b = reserved

[5:0] - User ID. 000000b = reserved.

 3 Standard Payload enables 1

[7:2] - reserved for standard payloads 2-7 enable/disable bits

[1] - standard payload 1 (SOL) enable/disable

[0] - reserved. Note: IPMI Messsaging is enabled/disabled for users via the
Set User Access command.

 4 Standard Payload Enables 2 - reserved

 5 OEM Payload Enables 1

[7] - OEM Payload 7 enable/disable

[6] - OEM Payload 6 enable/disable

[5] - OEM Payload 5 enable/disable

[4] - OEM Payload 4 enable/disable

[3] - OEM Payload 3 enable/disable

[2] - OEM Payload 2 enable/disable

[1] - OEM Payload 1 enable/disable

[0] - OEM Payload 0 enable/disable

 6 OEM Payload Enables 2 - reserved

Response Data 1 Completion Code.

Note: an implementation will not return an error completion code if the user
access level is set higher than the privilege limit for a given channel. If it is
desired to bring attention to this condition, it is up to software to check the
channel privilege limits set using the Set Channel Access command and
provide notification of any mismatch.

1. The following commands remain available for payloads if IPMI Messaging Payload
type is disabled: Deactivate Payload, Suspend/Resume Payload Encryption (as
defined for given payload), Get Payload Activation Status, Get Channel Payload
Version Command, Get Channel OEM Payload Info (if implemented), Set Session
Privilege Level, and Close Session.

 Intelligent Platform Management Interface Specification

 369

24.7 Get User Payload Access Command

The Get User Payload Access command returns the user payload enable settings that were set using the Set User

Payload Access command.

Table 24-9, Get User Payload Access Command
 byte data field

Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

 2 User ID

[7:6] - reserved

[5:0] - User ID. 000000b = reserved

Response Data 1 Completion Code

 2 Standard Payload enables 1

[7:2] - reserved for standard payloads 2-7 enabled/disabled state

[1] - 1b = standard payload 1 enabled (SOL)

 0b = standard payload 1 disabled

[0] - reserved

 3 Standard Payload Enables 2 - reserved

 4 OEM Payload Enables 1. For each bit:

1b = payload enabled

0b = payload disabled

[7] - OEM Payload 7 enabled/disabled

[6] - OEM Payload 6 enabled/disabled

[5] - OEM Payload 5 enabled/disabled

[4] - OEM Payload 4 enabled/disabled

[3] - OEM Payload 3 enabled/disabled

[2] - OEM Payload 2 enabled/disabled

[1] - OEM Payload 1 enabled/disabled

[0] - OEM Payload 0 enabled/disabled

 5 OEM Payload Enables 2 - reserved

24.8 Get Channel Payload Support Command

This command enables local and remote console software to determine what payloads are enabled on the given

BMC. The command returns a bitfield indicating which Payload Type numbers can be activated on the given

channel.

Intelligent Platform Management Interface Specification

370

Table 24-10, Get Channel Payload Support Command
 byte data field

Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

Response Data 1 Completion Code

 2 [7] = Standard payload type #7 supported

…

[0] = Standard payload type #0 supported

 3 [7] = Standard payload type #15 (0Fh) supported

…

[0] = Standard payload type #8 supported

 4 [7] = Session Setup payload type #7 supported

…

[0] = Session Setup payload type #0 supported

 5 [7] = Session Setup payload type #15 (0Fh) supported

…

[0] = Session Setup payload type #8 supported

 6 [7] = Payload type 27h (OEM7) used

…

[0] = Payload type 20h (OEM0) used

 7 [7] = Payload type 2Fh (OEM15) used

…

[0] = Payload type 28h (OEM8) used

 8:9 reserved. Return as 0000h

24.9 Get Channel Payload Version Command

This command returns version information for the given payload type. The version number has major and minor

parts. The major part of the version should only increment when there are significant changes to the payload

format, commands, or payload-specific protocols that break backward compatibility with earlier versions. The

minor part of the version increments when there are extensions to the payload format that are significant but are

backwards compatible with earlier versions under the same major version number. An example of a major change

would be a change to the payload activation process that would prevent earlier applications from activating the

given payload type. An example of a minor format version change would be the definition of commands for new

functions that did not exist under the previous format, but if unused, do not interfere with the operation of older

applications.

 Intelligent Platform Management Interface Specification

 371

Table 24-11, Get Channel Payload Version Command
Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

 2 Payload Type Number / Payload Type Handle - number of the standard
payload type or OEM Payload Handle to retrieve status for.

See Table 13-16, Payload Type Numbers.

Response Data 1 Completion Code. Generic plus following command-specific completion
codes:

80h - Payload type not available on given channel.

 2 Format Version

[7:4] - Major Format Version. BCD encoded (0 to 9)

[3:0] - Minor Format Version. BCD encoded. (0 to 9)

 Software should present version data to the user in the format
“major.minor” - e.g. 10h  “1.0”

The Format Version for the SOL payload implemented per this specification is
1.0 (10h).

24.10 Get Channel OEM Payload Info Command

This command provides a mechanism for software to determine the OEM Payload Type Number that corresponds

to a particular type of OEM Payload, or vice versa. The command also returns the format version of the payload.

Table 24-12, Get Channel OEM Payload Info Command
Request Data 1 Channel Number

[7:4] - reserved

[3:0] - Channel Number

 2 Payload Type Number. (See Table 13-16, Payload Type Numbers). Use
“OEM Explicit” to look up information by OEM IANA/OEM Payload ID.

 3:5 OEM IANA. When Payload Type Number is 02h (OEM Explicit) this field
holds the OEM IANA for the OEM payload type to look up information
for. Otherwise, this field is set to 00_00_00h.

 6:7 OEM Payload ID. When Payload Type Number is 02h (OEM Explicit) this field
holds the OEM Payload ID for the OEM payload type to look up
information for. Otherwise, this field is set to 0000h.

Response Data 1 Completion Code

80h = OEM Payload IANA and/or Payload ID not supported.

 2 Payload Type Number. (See Table 13-16, Payload Type Numbers) This is
always returned as the OEM Payload Type number (OEM0-OEM7).
“OEM Explicit” is not returned for this parameter.

 3:5 OEM IANA. IANA for the OEM that has defined the OEM payload type.

 6:7 OEM Payload ID. Payload ID value, specified by the OEM the defined the
payload type.

 8 Format Version

[7:4] - Major Format Version. BCD encoded (0 to 9)

[3:0] - Minor Format Version. BCD encoded. (0 to 9)

Software should present version data to the user in the format
“major.minor” - e.g. 10h  “1.0”

Intelligent Platform Management Interface Specification

372

25. IPMI Serial/Modem Commands
This section defines the configuration and control commands that are specific to serial/modem channels. None of

the commands in the following table are required unless a serial/modem channel is implemented. Refer to

Appendix G - Command Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands.

Table 25-1, IPMI Serial/Modem Commands

Command

Section

Defined

O/M

Set Serial/Modem Configuration 25.1 M[1]

Get Serial/Modem Configuration 25.2 M[1]

Set Serial/Modem Mux 25.3 O[2]

Get TAP Response Codes 25.4 O[3]

Set PPP UDP Proxy Transmit Data 25.5 O[4]

Get PPP UDP Proxy Transmit Data 25.6 O[4]

Send PPP UDP Proxy Packet 25.7 O[4]

Get PPP UDP Proxy Receive Data 25.8 O[4]

Serial/Modem Connection Active 25.9 M[1]

Callback 25.10 O

Set User Callback Options 25.11 O[5]

Get User Callback Options 25.12 O[5]

1. Mandatory if serial/modem channel(s) supported.
2. Mandatory if Serial Port Sharing is supported.
3. Mandatory if TAP Paging is supported. If TAP Paging is supported it is

recommended, but not mandatory, that it be supported on all serial/modem
channels that could support a modem connection. (Some serial/modem channels
may never be connected to a modem)

4. Mandatory if PPP UDP Proxy capability is supported.
5. Mandatory if IPMI Callback is supported. Note that CBCP callback support is

optional. Whether CBCP is supported or not is determined from the serial/modem
configuration parameters.

25.1 Set Serial/Modem Configuration Command

This command is used for setting parameters such as the string used for initializing the modem, communication

bit rates, and selecting configuration options such as Direct Connect versus Modem Connect.

Table 25-2, Set Serial/Modem Configuration Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3:N Configuration parameter data, per Table 25-4, Serial/Modem Configuration
Parameters

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

83h = attempt to read write-only parameter

 Intelligent Platform Management Interface Specification

 373

25.2 Get Serial/Modem Configuration Command

This command is used for retrieving the configuration parameters from the Set Serial/Modem Configuration

command.

Table 25-3, Get Serial/Modem Configuration Command
 byte data field

Request Data 1 [7] - 0b = get parameter

 1b = get parameter revision only

[6:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3 Set Selector. Selects a particular set or block data under the given parameter
selector. 00h if parameter does not use a set selector.

 4 Block Selector (00h if parameter does not require a block number)

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

 2 [7:0] - Parameter revision.

 Format: MSN = present revision. LSN = oldest revision parameter is
backward compatible with. 11h for parameters in this specification.

 The following data bytes are not returned when the ‘get parameter revision
only’ bit is 1b.

 3:N Configuration parameter data, per Table 25-4, Serial/Modem Configuration
Parameters

If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

Intelligent Platform Management Interface Specification

374

Table 25-4, Serial/Modem Configuration Parameters
Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following parameters are
being updated, and when the updates are completed. The bit is primarily provided to alert
software than some other software or utility is in the process of making changes to the
data.

An implementation can also elect to provide a ‘rollback’ feature that uses this information
to decide whether to ‘roll back’ to the previous configuration information, or to accept the
configuration change.

If used, the roll back shall restore all parameters to their previous state. Otherwise, the
change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete. If a system reset or transition to powered down state occurs
while ‘set in progress’ is active, the BMC will go to the ‘set complete’ state.
If rollback is implemented, going directly to ‘set complete’ without first doing
a ‘commit write’ will cause any pending write data to be discarded.

 01b = set in progress. This flag indicates that some utility or other software is
presently doing writes to parameter data. It is a notification flag only, it is
not a resource lock. The BMC does not provide any interlock mechanism
that would prevent other software from writing parameter data while.

 10b = commit write (optional). This is only used if a rollback is implemented. The
BMC will save the data that has been written since the last time the ‘set in
progress’ and then go to the ‘set in progress’ state. An error completion
code will be returned if this option is not supported.

 11b = reserved

Authentication Type
Support (Read Only)

1 This ‘read only’ field returns which possible Authentication Types (algorithms) can be
enabled for the given channel. The following Authentication Type Enables parameter
selects which Authentication Types are available when activating a session for a
particular maximum privilege level.

[7:6] - reserved

[5:0] - Authentication type(s) enabled for this channel (bitfield):

All bits: 1b = supported

 0b = authentication type not available for use.

[5] - OEM proprietary (per OEM identified by the IANA OEM ID in the RMCP Ping
Response)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2
[0] - none

 Intelligent Platform Management Interface Specification

 375

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Authentication Type
Enables

2 This field is used to configure which Authentication Types are available for use when a
remote console activates an IPMI messaging connection to the BMC for a given
requested maximum privilege level. Once the session has been activated, the accepted
authentication type will be the only one used for authenticated packets, regardless of the
present operating privilege level, or the privilege level associated with the command.

Depending on configuration of per-message and user-level authentication disables,
unauthenticated packets (authentication type = none) may also be accepted. The BMC
makes no attempt to check or ensure that stricter authentication types are associated with
higher requested maximum privilege levels. E.g. it is possible to configure the BMC so
activating a session with a maximum privilege level of ‘User’ requires MD5 while ‘Admin’
requires ‘none’.

Note: An implementation that has fixed privilege and authentication type assignments, in
which case this parameter can be implemented as Read Only. It is recommended that an
implementation that implements a subset of the possible authentication types returns a
CCh error completion code if an attempt is made to select an unsupported authentication
type.

byte 1: Authentication Types returned for maximum requested privilege = Callback level.

[7:6] - reserved

[5:0] - Authentication type(s) enabled for this channel (bitfield):

All bits: 1b = authentication type enabled for use at given privilege level

 0b = authentication type not available for use at given privilege level.

[5] - OEM proprietary (For PPP, per OEM identified by the IANA OEM ID in the
RMCP Ping Response. For other serial/modem modes, a-priori knowledge of
the algorithm is required.)

[4] - straight password / key

[3] - reserved

[2] - MD5

[1] - MD2

[0] - none

byte 2: Authentication Type(s) for maximum privilege = User level

(format follows byte 1)

byte 3: Authentication Type (s) for maximum privilege = Operator level

(format follows byte 1)

byte 4: Authentication Type (s) for maximum privilege = Administrator level

(format follows byte 1)

byte 5: Authentication Type (s) for maximum privilege = OEM level
(format follows byte 1)

Intelligent Platform Management Interface Specification

376

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Connection Mode 3 data 1 - connection mode - This parameter determines the protocols used when
performing IPMI messaging to the BMC.

[7] - 0b = Modem Connect mode

 1b = Direct Connect mode

[6] - reserved

Connection mode enables.

Sets which mode or modes can be used for establishing an IPMI Messaging connection
with the BMC. If more than mode is enabled, the BMC will attempt to auto-detect the
appropriate connection mode based on snooping traffic from the remote console.
Supporting connection mode auto-detect is optional. If an implementation does not
support the capability, it shall return an “Illegal Data Field” completion code (CCh) if an
attempt is made to enable more than one connection mode at a time. An ‘Illegal Data
Field’ code shall also be returned if an attempt is made to enable a connection mode that
the implementation does not support.

[5:3] - reserved

[2] - 1b = enable Terminal mode

 (Note: Terminal mode auto-detect also requires that the “Enable
Baseboard-to-BMC switch on <ESC>(“ option be enabled in the Mux
Switch Configuration parameters, below.)

[1] - 1b = enable PPP mode

[0] - 1b = enable Basic mode

Session Inactivity Timeout
(optional)

4 [7:4] - reserved

[3:0] - Inactivity timeout in 30 second increments. 1-based. 0h = session does not
timeout and close due to inactivity.

 Intelligent Platform Management Interface Specification

 377

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Channel Callback Control 5 This is parameter determines which callback options are enabled or disabled for the
channel. These parameters take precedence over any user-specific callback settings
configured using the Set User Callback Options command. An option must be enabled in
this global parameter in order to be able to be enabled in the user-specific callback
settings. (see 25.11, Set User Callback Options Command).

data 1 - callback enable

[7:2] - reserved

[1] - 1b = enable CBCP callback protocol (see 14.6.1, Callback Control Protocol
(CBCP) Support)

[0] - 1b = enable IPMI callback

data 2 - CBCP Negotiation Options.

[7:4] - reserved.

[3] - 1b = enable callback to one from list of possible numbers

[2] - 1b = enable user-specifiable callback number. Allow caller to specify number to
be used for callback.

[1] - 1b = enable Pre-specified number. Allow caller to request that callback occur to a
single, pre-specified number for the user.

[0] - 1b = enable No Callback. Allow caller to request that callback not be used.

data 3 Callback destination 1. This field holds a Destination Selector that picks which
Destination Dial String from the serial/modem configuration parameters to use for
callback. This selector is used when the ‘pre-specified number’ option is used.
Otherwise, this is the first number in the list when the “caller selects one number
from a list of numbers” option is used. Refer to 14.6.1, Callback Control Protocol
(CBCP) Support for characters supported in dial strings for CBCP.

FFh = unspecified.

 Note, if this field is set to FFh, the BMC should reject negotiation for the ‘pre-
specified number’ option, even if it is enabled in the CBCP Negotiation Options
field, above.

data 4 Callback destination 2. This is the second number in the list when the “caller
selects one number from a list of numbers” option is used.

FFh = unspecified.

 Note, at least one destination must be specified in order for the ‘callback to one
from a list of numbers’ option to be negotiated, even it that option is enabled in
the CBCP Negotiation Options field, above.

data 5 Callback destination 3. This is the third number in the list when the “caller selects
one number from a list of numbers” option is used.

FFh = unspecified.

 Note, at least one destination must be specified in order for the ‘callback to one
from a list of numbers’ option to be negotiated, even it that option is enabled in
the CBCP Negotiation Options field, above.

Session Termination 6 data 1 - connection termination. This parameter determines whether serial/modem
connections are terminated by inactivity or by a loss of DCD. For modem mode, the line is
hung-up when the specified termination condition occurs. For both modem and direct
connect mode, the session will be terminated and will need to be reactivated and
authenticated (if authentication is enabled) in order for IPMI messaging communications
to be re-established.

[7:2] - reserved

[1] - 1b = enable session inactivity timeout

 0b = disable session inactivity timeout

[0] - 1b = close session on loss of DCD (this should be used as the default setting for
both Modem Connect and Direct Connect mode) [Also see bit to enable mux
switch on DCD assertion, in Mux Switch Control parameter, below]

 0b = ignore DCD (DCD is never ignored in Modem Mode)

Intelligent Platform Management Interface Specification

378

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

IPMI Messaging Comm
Settings

7 This parameter is used for IPMI messaging in PPP Mode, Basic Mode, and Terminal
Mode. These settings can be overridden on a per-destination basis for Dial-out LAN
Alerting, Dial-Paging, TAP Paging, and Callback Security, according to the Destination
Comm Settings parameter, below.

IPMI Messaging always occurs with 8 bits/character, no parity, and 1 stop bit.

data 1 - flow control, DTR hang-up, asynch format

[7:6] - Flow control

 00b = No flow control
 01b = RTS/CTS flow control (a.k.a. hardware handshake)
 10b = XON/XOFF flow control (optional) [if implemented, may not be supported for

all connection modes]
 11b = Reserved.

[5] - DTR hang-up

 0b = disable DTR hang-up

 1b = enable DTR hang-up

[4:0] - reserved.

data 2 - bit rate

[7:4] - reserved

[3:0] - 0-5h = reserved. Support for bit rates other than 19.2 kbps is optional. The BMC
must return an error completion if a requested bit rate is not supported. It is
recommended that the ‘parameter out-of-range’ (C9h) code be used for this
situation.

 6h = 9600 bps

 7h = 19.2 kbps (required)

 8h = 38.4 kbps

 9h = 57.6 kbps

 Ah = 115.2 kbps

 Intelligent Platform Management Interface Specification

 379

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Mux Switch Control 8 data 1

See 14.2.4, Serial Port Switching for additional information on these bits. Bit [3] is only
applicable if PPP Mode is supported.

[7] - reserved

[6] - 0b = Disable system power-up/wakeup via [MSVT] <ESC>^ escape sequence

 1b = Enable system power-up/wakeup via [MSVT] escape sequence[3] [5]

[5] - 0b = Disable hard reset on [MSVT] <ESC>R<ESC>r<ESC>R escape sequence

 1b = Enable hard reset on [MSVT] escape sequence[3]

[4] - 0b = Disable Baseboard-to-BMC switch on detecting basic mode Get Channel
Authentication Capabilities message pattern in serial stream.

 1b = Enable Baseboard-to-BMC switch on detecting basic mode Get Channel
Authentication Capabilities message pattern in serial stream.

[3] - 0b = Disable switch to BMC on PPP IPMI-RMCP pattern

 1b = Enable switch on PPP IPMI-RMCP pattern

[2] - 0b = Disable BMC-to-Baseboard switch on [MSVT] <ESC>Q

 1b = Enable BMC-to-Baseboard switch on [MSVT] <ESC>Q[3]

[1] - 0b = Disable Baseboard-to-BMC switch on [MSVT] <ESC>(

 1b = Enable Baseboard-to-BMC switch on [MSVT]<ESC>([3] [5]

[0] - Following only used in Direct Connect Mode (ignored in Modem Mode)

 0b = Disable mux switch to BMC on DCD loss

 1b = Enable mux switch on DCD loss

data 2

[7:4] - reserved

[3] - 0b = Disable Serial Port Sharing. (cannot force mux setting via Set
Serial/Modem Mux command)

 The serial connection is assigned to the BMC whenever the channel is
enabled, and cannot be switched to the baseboard UART. Note: if this
setting is 0b and the serial/modem channel is disabled, the mux will be
connected to the baseboard UART and will not be able to be switched to
the BMC by IPMI command. If Serial Port Sharing is not implemented,
this bit will always be set to ‘disabled’ and will not be changeable.

 1b = Enable Serial Port Sharing (can force mux setting using Set
Serial/Modem Mux command)

[2] - 0b = Disable Serial/Modem Connection Active message during Callback
connection.

 1b = Enable Serial/Modem Connection Active message during Callback
connection.

[1] - 0b = Disable Serial/Modem Connection Active message during direct-call

 1b = Enable Serial/Modem Connection Active message during direct-call

[0] - 0b = Send Serial/Modem Connection Active message only once before
switching mux to system

 1b = Mux switch acknowledge. Retry Serial/Modem Connection Active
message with retry counts and interval as specified in Section 14.3.2,
Mux Switch Coordination.

Modem Ring Time 9 Configures the amount of time that the BMC needs to see transitions or an active state on
RI before the BMC claims the mux in Modem Mode.

This setting only applies when the Access Mode is set to “Shared” or “Pre-boot Only”,
Serial Port Sharing is enabled, the channel is enabled for IPMI Messaging. This includes
when the system is powered down, in order to allow the possibility for using “Wake On
Ring” to trigger a wake of the system without causing the BMC answering the phone. See
14.2.7, Serial Port Sharing Access Characteristics for additional information.

data 1 - Ring Duration

[7:6] - reserved

[5:0] - Ring duration in 500 ms increments. 1 based.

 00_0000b = BMC switches mux immediately on first detected transition of RI.

 11_1111b (3Fh) = reserved

data 2 - Ring Dead Time

[7:4] - reserved

[3:0] - Amount of time, in 500 ms increments, that the RI signal must be deasserted
before the BMC determines that ringing has stopped. 0h = 500 ms.

Intelligent Platform Management Interface Specification

380

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Modem Init String 10 Sets the modem initialization string data. The BMC automatically follows this string with
an <enter> character when sending it to the modem.

data 1 - set selector = 16-byte block number to set, 1 based. Two blocks required, at
least three recommended.

data 2:N - Modem Init string data. String is stored as null terminated ASCII string.

Modem Escape Sequence

(optional)

11 data1:5- Null terminated ASCII string for the Escape string to be sent to the modem. If this
parameter is empty, or this configuration option is not implemented, the default ‘+++’
sequence will be used. [If a full five characters are provided, the last character does not
need to be null]

Modem Hang-up
Sequence (optional)

12 data1:8 - Null terminated ASCII string for the hang-up string to be sent to the modem. The
BMC automatically follows this string with an <enter> character when sending it to the
modem. If this parameter is empty, or this configuration option is not implemented, the
default ‘ATH’ sequence will be used. [If a full eight characters are provided, the last
character does not need to be null]

Modem Dial Command

(optional)

13 data1:8 - Null terminated ASCII string for the modem string used to initiate a dial
sequence with the modem. If this parameter is empty, or this configuration option is not
implemented, the default ‘ATD’ sequence will be used. [If a full eight characters are
provided, the last character does not need to be null]

Page Blackout Interval 14 data 1 - Dial Page, Directed Alert, or TAP Blackout Interval in minutes. 1 based. 00h = no
blackout. See Section 14.10, Page Blackout Interval for more information.

Community String 15 data 1:18 - Community String

Default = ‘public’. Used to fill in the ‘Community String’ field in a PET format trap. This
string may optionally be used to hold a vendor-specific string that is used to provide the
network name identity of the system that generated the event. Printable ASCII string. If 18
non-null characters are provided, the last character does not need to be a null. 18
characters must be written when setting this parameter, and 18 will be returned when this
parameter is read. The null character, and any following characters, will be ignored when
the Community String parameter is placed into the PET. The BMC will return whatever
characters were written. I.e. it will not set bytes following the null to any particular value.

(Community strings are supported on a ‘per channel’ basis in order to allow the possibility
that a different Community String would be used based on the type of connection.)

Number of Alert
Destinations

(READ ONLY)

16 data 1 - Number of non-volatile Alert Destinations for this channel. Destination 0 is always
present as a volatile destination that is used with the Alert Immediate command.

[7:5] - reserved.

[3:0] - Number of non-volatile alert destinations. One minimum, fifteen non-volatile
destinations maximum. It is recommended that an implementation provide at least
two destination numbers for each page/alert type supported, plus two for callback
if callback is supported.

 0h = Page Alerting not supported.

Destination Info

(volatile) &
(non-volatile) - see
description.

17 Sets the type of page associated with the given destination. For Dial Page, TAP Page,
and Callback, this also selects the dial string associated with the destination. Destination
0 is used to set a temporary, RAM-based, value. This value is used with the Alert
Immediate command. The value is not guaranteed to be retained across BMC or system
hard resets or power on/off transitions.

data 1 - Destination Selector

A minimum of one and a maximum of fifteen non-volatile destinations are supported in
the specification. If callback is supported, the callback number is also a type of
destination. Destination 0 is always present as a volatile destination that is used with
the Alert Immediate command.

[7:4] - reserved

[3:0] - destination selector.

 0h = volatile destination.

 1-Fh = non-volatile destination.

data 2 - Destination Type

[7] - Alert Acknowledge. Note, some alert types, such as Dial Page, do not support
acknowledge, in which case this bit is ignored and should be written as
0b.

 0b = Unacknowledged. Alert is assumed successful if transmission occurs
without error. This value is also used with Callback numbers.

 1b = Acknowledged. Alert is assumed successful only if acknowledged is
returned.

[6:4] - reserved

[3:0] - Destination Type:

 Intelligent Platform Management Interface Specification

 381

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

0000b = Dial Page

0001b = TAP Page

0010b = PPP Alert (PET Alert delivered via a PPP-to-LAN connection)

0011b = Basic Mode Callback

0100b = PPP Mode Callback

0101b:1101b = reserved

1110b = OEM 1

1111b = OEM 2

data 3 - Alert Acknowledge Timeout, in seconds, 0-based (i.e. minimum timeout = 1
second). Recommended factory default = 5 seconds. Value is ignored if alert type does
not support acknowledge, or if the Alert Acknowledge bit (above) is 0b.

data 4: Retries

[7] - reserved

[6:4] - Number of times to retry alert once call connection has been made. (Does not
apply to TAP Page or Dial Page alerts)

 1-based. 000b = no retries (alert is only sent once).

[3] - reserved

[2:0] - Number of times to retry call to given destination. (See below for Call Retry
Interval parameter) 1-based. 000b = no retries (call is only tried once).

data 5: Destination Type Specific:

For Destination Type = Dial Page:

[7:4] - Dial String Selector

[3:0] - reserved

For Destination Type = TAP Page:

Indicates which set of TAP Service Settings should be used for communication with this
destination.

[7:4] - reserved

[3:0] - TAP Account Selector

For Destination Type = PPP Alert:

Indicates which set of PPP Account settings should be used for communication with the
selected destination.

[7:4] - Destination IP Address Selector

[3:0] - PPP Account Set Selector

For Destination Type = PPP Mode Callback or Basic Mode Callback:

[7:4] - = Destination IP Address Selector for PPP Mode Callback (The IP Address is
used to enable the BMC to send a Serial/Modem Connection Active
message once the connection has been established.)

 = Dial String Selector for Basic Mode Callback

[3:0] - PPP Account Set Selector (PPP Mode Callback only, reserved otherwise)

Call Retry Interval

(non-volatile)

18 [7:0] - Number of seconds between call (‘busy signal’) retries.

Intelligent Platform Management Interface Specification

382

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Destination Comm
Settings

(volatile) &
(non-volatile) - see
description.

19 data 1 - Destination Selector

Note that each destination has its own comm settings.

[7:4] - reserved

[3:0] - Destination Selector.

 0 = volatile destination.

 1-Fh = non-volatile destination.

Destination comm settings. These settings override the IPMI Messaging Comm Setting
configuration parameter.

data 2 - flow control, DTR hang-up, asynch format

[7:6] - flow control

 00b = No flow control

 01b = RTS/CTS flow control

 10b = XON/XOFF flow control

 11b = reserved

[5] - reserved

[4] - stop bits

 0b = 1 stop bit (default)

 1b = 2 stop bits

[3] - character size

 0b = 8 bits (must be 8-bit for PPP)

 1b = 7-bits (most TAP services use 7-bit)

[2:0] - parity

 000b = no parity.

 001b = odd parity.

 010b = even parity

data 3 - bit rate

[7:4] - reserved

[3:0] - bit rate

 0-5h = reserved

 6h = 9600 bps

 7h = 19.2 kbps (required)

 8h = 38.4 kbps

 9h = 57.6 kbps

 Ah = 115.2 kbps

Number of Dial Strings

(READ ONLY)

20 data 1 - Number of non-volatile Dial Strings for this channel. Dial String 0 is always
present and is typically used as a volatile destination that is used with the Alert Immediate
command.

[7:5] - reserved.

[3:0] - Number of non-volatile dial strings. One minimum, fifteen non-volatile dial strings
maximum. An implementation should support one dial string for each destination.

 0h = Serial/Modem Alerting and Callback not supported.

Destination Dial Strings

(volatile) &
(non-volatile) - see
description.

21 Sets the phone number that the page, alert is to be sent to. The BMC automatically
precedes this string with the Modem Init String sequence, when not using direct connect
mode. The string can contain embedded modem control sequence characters.

data 1 - destination selector

[7:4] - reserved

[3:0] - Dial String Selector.

 0 = volatile dial string

 1-Fh = non-volatile dial string.

data 2 - block number to set, 1 based.

Blocks are 16-bytes. At least two blocks are required per number, supporting a dial
string of 31 characters plus terminator.

data 3:N - Dial string data. Null terminated ASCII string.

Number of Alert
Destination IP Addresses

(READ ONLY)

22 data 1 - Number of non-volatile Alert Destination IP Addresses for this channel. Address 0
is always present and is typically used as a volatile destination that is used with the Alert
Immediate command. It is recommended that there be at least one destination IP Address
per PPP Account.

[7:5] - reserved.

 Intelligent Platform Management Interface Specification

 383

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

[3:0] - Number of Destination IP Addresses. 0h = PPP Alerting and Callback are not
supported.

Destination IP Addresses
(volatile) & (non-volatile) -
See description.

23 data 1 - destination selector

[7:4] - reserved

[3:0] - Destination IP Address Selector.

 0 = volatile IP Address location

 1-Fh = non-volatile IP Address

data 2:5 - destination IP Address. MS-byte first.

Number of TAP Accounts

(READ ONLY)

24 data 1 - Number of non-volatile TAP Accounts for this channel. Account 0 is always
present and is typically used as a volatile destination that is used with the Alert Immediate
command. It is not included in the count.

[7:5] - reserved.

[3:0] - Number of TAP Accounts. 0h = TAP not supported.

TAP Account 25 data 1 - set selector = TAP Account Selector, 1-based. At least one set of TAP Account
parameters must be provided for each TAP destination supported. Account 0 is always
present and is typically used as a volatile destination that is used with the Alert Immediate
command.

data 2 - TAP Dial String and Service Setting selectors

[7:4] - Dial String Selector

[3:0] - TAP Service Settings Selector. 1-based. 0h if Destination Type is not ‘TAP Page’

TAP Passwords

(WRITE ONLY)

26 data 1 - set selector = TAP Account selector, 1 based.

data 2:8 - Password. This string is up to six ASCII characters. Null terminated if fewer
than six characters are used.

TAP Pager ID Strings

27 This parameter sets and returns the TAP Pager ID (also referred to as ‘Field 1’) for the
specified destination. This typically holds the phone number of the party to be paged.
Note that some paging services will reject transactions that have an empty Field 1.

data 1 - set selector = TAP Account selector, 1 based.

data 2:17 - Pager ID String. This string is up to 16 ASCII characters. Null terminated if
fewer than 16 characters are used. The string will be transmitted with escaping as
specified by the control-character escaping mask for the given destination.

TAP Service Settings 28 This parameter is used to configure one or more sets of values related to strings,
escaping, and timeouts and retries associated with a TAP paging service. The timing
parameters are per [TAP], with the exception of T6 and N4, which are extended
parameters for this specification. There must be at least one set of TAP Service Setting
parameters supported if TAP paging is supported on this channel.

data 1 - set selector = TAP Service Setting Selector

There is a 1:1 association between the TAP Parameter selector in this row, and the
selector in the previous row. Parameter fields that share the same parameter selector
form a parameter set.

[7:4] - reserved

[3:0] - TAP Parameter selector. 1-based. (0 = volatile paramters)

data 2 - TAP Confirmation

[7:2] - reserved.

[1:0] - confirmation. This parameter determines what criteria is used by PEF and the
Alert Immediate command to determine that a TAP Page was successfully
delivered to the paging service.

 00b = ACK received after end-of-transaction only

 01b = code 211 and ACK received after ETX

 10b = code 211or 213, and ACK, received after ETX

 11b = reserved

data 3:5 - TAP ‘SST’ Service Type field characters, in ASCII. Default = “PG1”.

 Three characters must be provided.

data 6:9 - TAP Control-character escaping mask. (Default = FFFF_FFFFh)

[31:0] - each bit position represents escaping for corresponding control characters 31h
through 00h. A bit value of 1b = escape the character. 0b = don’t escape the character.
This bit value is ignored for characters that a required to be escaped by TAP. By default,
all control characters are escaped.

data 10 - timeout parameters 1

Intelligent Platform Management Interface Specification

384

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

[7:4] TAP T2 - timeout in 500 ms. 0-based (0h = 500 ms). Default = 1h (1 second)

[3:0] TAP T1 - timeout in seconds. 0-based (0h = 1 second). Default = 1h (2 seconds)

data 11 - timeout parameters 2

[7:4] TAP T4 - timeout in seconds. 0-based (0h = 1 second). Default = 3h (4 seconds)

[3:0] TAP T3 - timeout in 2 second increments. 0-based (0h = 2 seconds). Default =
4h (10 seconds)

data 12 - timeout parameters 3

[7:4] IPMI T6 - IPMI timeout waiting for end-of-transaction acknowledge, in seconds.
0-based (0 = 1 second). Default = 1h (2 seconds).

[3:0] TAP T5 - timeout in 2 second increments. 0-based (0h = 2 seconds). Default =
3h (4 seconds)

data 13 - retry parameters 1

[7:4] TAP N2 - retries. 1-based. (0 = no retry). Default = 3.

[3:0] TAP N1 - retries. 1-based. (0 = no retry). Default = 3.

data 14 - retry parameters 2

[7:4] IPMI N4 - number of retries for end-of-transaction. Default = 3.

[3:0] TAP N3 - retries. 1-based. (0 = no retry). Default = 3.

Terminal Mode
Configuration[2]

29 This parameter and its fields only apply when Terminal Mode is enabled. The non-volatile
parameters are the initial values used whenever a terminal mode session is first
established. The settings are returned to the non-volatile settings when a loss of DCD is
detected and whenever the Terminal Mode session is deactivated.

data 1

Parameter Operation

[7:6] - 00b = Set volatile version of data 1 bits 5:0 and data 2

 01b = Set non-volatile version of data 1 bits 5:0 and data 2

 10b = Copy non-volatile setting to volatile setting (restore default).

 11b = reserved

Terminal mode options

[5] - 0b = disable line editing

 1b = enable line editing

[4] - reserved

[3:2] - delete control (only applies when line editing is enabled)

 00b = BMC outputs a character when <bksp> or is received

 01b = BMC outputs a <bksp><sp><bksp> sequence when <bksp> or is
received

[1] - 0b = no echo

 1b = echo (BMC echoes characters it receives)

[0] - 0b = disable handshake (See 14.7.7, Terminal Mode Packet Handshake)

 1b = enable handshake

data 2 - newline sequences

[7:4] - output newline sequence (BMC to console). Selects what characters the BMC
uses as a <newline> sequence when the BMC writes a line to the console in
Terminal Mode.

 0h = no termination sequence

 1h = <cr-lf> (default)

 2h = <NULL>

 3h = <CR>

 4h = <LF-CR>

 5h = <LF>

 all other = reserved.

[3:0] - input newline sequence (Console to BMC). Selects what characters the console
uses as the <newline> sequence when writing to the BMC in Terminal Mode.

 0h = reserved

 1h = <cr> (default)

 2h = <NULL>

 all other = reserved.

PPP Protocol Options 30 data 1 - Snoop Control

[7:3] - reserved

[2] - System Negotiation Snooping

 Intelligent Platform Management Interface Specification

 385

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

 1b = BMC snoops system’s PPP negotiation (optional)

 0b = BMC doesn’t snoop system’s PPP negotiation

[1:0] - Snoop ACCM Control

 00b = BMC uses Transmit ACCM when snooping (mandatory if connection mode
Auto-detect is supported)

 01b = BMC uses Snoop ACCM when snooping (mandatory if connection mode
Auto-detect is supported)

 10b = reserved

 11b = reserved

data 2 - Negotiation Control

[7:6] - reserved

[5:4] - Negotiation Control

 00b = BMC Negotiates link parameters (runs LCP) on initial connection and
whenever mux becomes switched to BMC and a connection is present.

 01b = BMC Negotiates link parameters on initial connection only. Upon a mux
switch to the BMC, the BMC continues using the parameters it had originally
negotiated. If BMC did not do the negotiation, BMC uses pre-configured
settings, following - unless system negotiation snooping is enabled, in which
case BMC uses system parameters.

 10b = BMC never negotiates link parameters. BMC always uses pre-configured
settings unless system negotiation snooping is enabled, in which case BMC
uses system parameters.

 11b = (optional)

[3] - reserved

Pre-configured link settings

[2] - 1b = BMC uses Transmit ACCM to filter received characters

 0b = BMC assumes all control characters 00h-1Fh are escaped

[1] - 1b = BMC transmits with Address and Control Field Compression

 0b = BMC transmits without Address and Control Field Compression

[0] - 1b = BMC transmits with Protocol Field Compression

 0b = BMC transmits without Protocol Field Compression

data 3 - Negotiation Configuration. This parameter selects what the BMC negotiates for
when it runs LCP.

[7:5] - reserved

[4:3] - BMC PPP IP Address Negotiation.

 00b = Request PPP IP Address Assignment. BMC issues an IPCP Configure-
Request for IPCP Option 3 “IP Address”. The BMC uses the PPP Account
#1’s IP Address parameter (below) as the initial value in the request. If the
remote console responds with a different address in a Configure-Nak for
option 3, the BMC shall accept that IP Address value and use it as its PPP IP
Address.

 Per [RFC1332], an address of 00.00.00.00 indicates a request to the peer
(remote console) to provide the IP Address. If option 3 is rejected, the BMC
shall use the PPP Account #1’s IP Address parameter setting for any IP
Protocol (0021h) packets it sends to the remote console. The BMC may
silently discard any IP Protocol packets addressed to an IP Address other
than the negotiated PPP IP Address.

 01b = Request Fixed PPP IP Address. This is the same as negotiation option 00b
“Request PPP IP Address Assignment” except that the BMC will reject any
alternative address offered by the remote console, and will continue to
request PPP Account #1’s IP Address as the IP Address it will use.

 10b = No PPP IP Address Negotiation. The BMC does not issue a Configure-
Request to request a PPP IP Address. If this option is selected, the BMC shall
accept any IP Protocol (0021h) message delivered to the Primary or
Secondary RMCP Port addresses. The BMC shall use the PPP IP Address
parameter setting for any IP Packets it generates.

 11b = reserved.

Intelligent Platform Management Interface Specification

386

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

[2] - 1b = Enable ACCM negotiation

 0b = Disable ACCM negotiation (also use 0b if this option not supported)

[1] - 1b = Enable Address and Control Field Compression

 0b = Disable Address and Control Field Compression (also use 0b if this option not
supported)

[0] - 1b = Enable Protocol Field Compression

 0b = Disable Protocol Field Compression(also use 0b if this option not supported)

PPP Primary RMCP Port
Number (optional)

31 data 1:2 - Primary RMCP Port Number, LS-byte first.

Default = 26Fh (RMCP ‘Aux Bus Shunt’ port)

PPP Secondary RMCP
Port Number (optional)

32 data 1:2 - Secondary Port Number, LS-byte first.

Default = 298h (RMCP ‘Secure Aux Bus’ port)

PPP Link Authentication 33 data 1 - Link Authentication Type. This configuration option selects whether the PPP Link
itself is authenticated or not. Used with IPMI Messaging in PPP Mode, this
parameter selects which type of Link Authentication will be used when a
remote console initiates the connection and the BMC acts as the
‘authenticator’.

 For PAP, CHAP, and MS-CHAP: The usernames (peer names / peer IDs) and
passwords (peer password) used for Link Authentication for IPMI Messaging
are obtained from users for which the “Enable User for Link Authentication” bit
has been set using the Set User Access command.

 For PAP: The ’peer ID’ field in the Authenticate Request from the remote console is
expected to hold the username, and the password field the password. The
BMC uses the peer ID field contents. Assuming the user is appropriately
enabled for the channel, the BMC then compares the stored password with the
password that was submitted in the Authenticate Request.

 For CHAP and MS-CHAP v1 & v2: The remote console responds to a challenge
generated by the BMC. The BMC takes the name field from that response and
uses it as the username to look up the user and password information from the
user configuration information. Assuming the user is appropriately enabled for
the channel, the BMC will then use that password to verify the response. If the
name field is empty, the BMC attempts to look up the password using the Null
username. Note that the BMC also inserts the CHAP Name (parameter 34) in
the name field of the challenge it generates.

[7:4] - reserved

[3:0] -PPP Link Authentication protocol

 0h = none

 1h = CHAP

 2h = PAP [RFC1334]

 3h = MS-CHAP v1 [RFC2433] BMC requires challenge response to be in Windows
NT format.

 4h = MS-CHAP v1 [RFC2433] BMC generates challenge response in LAN Manager
format. (LAN Manager format is deprecated in RFC 2433, this option is only
provided for implementations that may wish to support connecting to older
systems that do not support Windows NT format.)

 5h = MS-CHAP v2 [RFC2759]

CHAP Name

(required if CHAP
supported)

34 data 1:16 - Null terminated ASCII string for the “system name” used to represent the
BMC when it emits a challenge during CHAP. This is only used when dialing in to the
BMC. If this parameter is provided, it will also be used by MS-CHAP v1 & v2.

 Intelligent Platform Management Interface Specification

 387

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

PPP ACCM

(optional)

35 data 1:4 - Receive ACCM, MS-byte first. (ls-bit of ls-byte corresponds to character 00h,
ms-bit of ms-byte corresponds to character 1Fh). The BMC uses this field as part of link
negotiation. A 1b in a bit position identifies a character the must be escaped in order to be
accepted by the BMC.

The BMC will ignore any corresponding characters that are not escaped. Note that per
[RFC1662] the BMC is required to accept all escaped characters regardless of whether
they’re part of the set that the BMC required to be escaped.

 (If XON/XOFF is used, be sure to include the XON/XOFF characters in the ACCM.)

If ACCM Negotiation is not enabled (or this parameter is not supported), the BMC will
require that all control characters (00h-1Fh) be escaped.

data 5:8 - Transmit ACCM, MS-byte first (ls-bit of ls-byte corresponds to character 00h,
ms-bit of ms-byte corresponds to character 1Fh). If ACCM Negotiation is enabled, and
this field is supported, this field will determine which characters the BMC will always
transmit with escaping. Characters that match the value for the PPP flag character (7Eh)
and escape character (7Dh) are always escaped when encountered in the data, so the
values in the corresponding bit positions are ‘don’t care’. I.e. if you set this field to all 0’s,
the 7Eh and 7Dh will still be escaped before being transmitted.

If ACCM Negotiation is enabled, but this field is not supported, the BMC will negotiate to
transmit all control characters (00h-1Fh) with escaping.

If ACCM Negotiation is not enabled, the BMC will transmit all control characters (00h-1Fh)
with escaping.

PPP Snoop ACCM
(optional. Required if
Connection Mode Auto-
detect is supported for
PPP mode)

36 data 1:4 - Snoop Receive ACCM, MS-byte first. (ls-bit of ls-byte corresponds to character
00h, ms-bit of ms-byte corresponds to character 1Fh). A 1b in a bit position identifies a
character the must be escaped in order to be accepted by the BMC. The BMC can be
directed to use this receive ACCM when snooping for a PPP Packet for Connection Mode
Auto-detect. This ACCM is used while snooping when the mux is switched over to the
system.

Number of PPP Accounts

(READ ONLY)

37 data 1 - Number of non-volatile destination IP Addresses for this channel. Account 0 is
always present and is typically used as a volatile destination that is used with the Alert
Immediate command. Account 1 is used for IPMI Messaging via PPP.

[7:4] - reserved.

[3:0] - 0h = PPP Alerting and Callback are not supported.

 9h to Fh = reserved.

PPP Account Dial String
Selector

38 data 1 - set selector = account set selector.

data 2 - Dial String Selector. Selects which dial string from the Destination Dial Strings to
use for calling the given PPP account.

PPP Account IP
Addresses, BMC IP
Address

39 This is the IPv4 Address used to connect to a PPP Server for dial-out alerting or callback.
This value will be assumed to be the IP Address of the PPP Server unless the PPP
Server requests a different address by negotiating IPCP Option 3 (IP Address). The BMC
will offer this address to the PPP Server if the PPP Server passes 00.00.00.00 as the
requested IP Address when negotiating IPCP option 3. Otherwise, the BMC will accept
the IP Address requested by the PPP Server.

Account 0 is always present and is typically used as a volatile destination that is used with
the Alert Immediate command.

Account 1 holds the IP Address used for IPMI Messaging via PPP (the BMC’s IP
Address) instead of a PPP Server’s IP Address. It is also used as the BMC’s IP Address
when connecting to a remote system for callback or PPP Alerts. The Account 1 IP
Address is handled according to the PPP Protocol Options parameter, above.

data 1 - set selector = account set selector.

data 2:5 - IP Address. MS-byte first. 0000_0000h = unspecified.

Intelligent Platform Management Interface Specification

388

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

PPP Account User Names 40 This parameter holds the username data for dial-out alerting or callback.

 For MS-CHAP: The BMC will prefix the PPP Account Domain (parameter 41) to this
parameter an use the result in the name field of the response to the challenge.
The challenge response is based on the specified algorithm and the PPP
Account User Password (parameter #42) for the account.

 For PAP and CHAP: The BMC uses this parameter to populate the peer ID when
generating a PAP authentication request, or in the name field of the response
to a CHAP challenge. The challenge is signed using the specified algorithm
and the PPP Account User Password (parameter #42) for the account.

data 1 - set selector = account set selector.

data 2:N - User Name data. ASCII string. 16 characters, max. Null terminated if fewer
than 16 characters are used.

PPP Account User
Domains

41 Required for dial-out alerting using MS-CHAP v1 or v2. If string is non-empty it will be
transmitted as a prefix to the user name. Per [RFC2433] & [RFC2759] the domain and
user name are separated by a backslash ‘\’ character. This character is not automatically
added by the BMC and should be entered as the last character of the domain.

data 1 - set selector = account set selector.

data 2:N - User Domain data. ASCII string. 16 characters, max. Null terminated if fewer
than 16 characters are used.

PPP Account User
Passwords

(Write Only)

42 The PPP Account parameters (selected by the account set selector value) are used for
connecting to remote systems for dial-out alerting or callback using PPP/UDP mode.

Note, the usernames (peer names) and passwords used for Link Authentication for ‘call
in’ IPMI Messaging are obtained from users for which the “Enable User for Link
Authentication” bit has been set using the Set User Access command.

data 1 - set selector = account set selector.

data 2:N - password data. ASCII string. 16 characters max. Null terminated if fewer than
16 characters are used.

PPP Account
Authentication Settings

43 These parameters are used for ‘dial-out’ connections.

data 1 - set selector = account set selector

data 2 - Link Authentication Type

[7:4] - reserved

[3:0] -PPP Link Authentication protocol.

 0h = none (Link Authentication not used)

 1h = CHAP

 2h = PAP

 3h = MS-CHAP v1 [RFC2433] BMC generates challenge response in Windows NT
format

 4h = MS-CHAP v1 [RFC2433] BMC generates challenge response in LAN Manager
format. (LAN Manager format is deprecated in RFC 2433, this option is only
provided for implementations that may connect and send alerts to older
systems)

 5h = MS-CHAP v2 [RFC2759]

PPP Account Connection
Hold Times

44 Minimum number of seconds that the call to the given account will be held prior to
automatically hanging up the call. Note the connection will only stay open for this time if
no other alert or action needs to call a different location or use the channel. Note that an
implementation is allowed to terminate the connection on system resets, power on/off
transitions, and power cycles.

data 1 - set selector = account set selector

data 2 - connection hold time in seconds. 1-based.

PPP UDP Proxy IP
Header data

45 data 1:4 - Source IP Address. MS-byte first.

data 5:8 - Destination IP Address. MS-byte first.

PPP UDP Proxy Transmit
Buffer Size

(READ ONLY)

46 data 1:2 - Transmit buffer size in bytes. 1-based.

This parameter is used to return the size of the PPP UDP Proxy Data transmit buffer.
0000h if PPP UDP Proxy not supported on given channel.

PPP UDP Proxy Receive
Buffer Size

(READ ONLY)

47 data 1:2 - Receive buffer size in bytes. 1-based.

 This parameter is used to return the size of the PPP UDP Proxy Data transmit buffer.
0000h if PPP UDP Proxy not supported on given channel.

 Intelligent Platform Management Interface Specification

 389

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

PPP Remote Console IP
Address

(optional)[4]

48 data 1:4 - IP Address to offer remote peer if it requests the BMC to provide it an address
as part of IPCP Negotiation. MS-byte first.

System Phone Number

(optional)

49 This parameter can be used to store an ASCII string representing the ‘dial in’ number for
this channel. This can enable an application such as a LAN remote console to retrieve the
phone number for access when a LAN connection to the managed system becomes
unavailable.

data 1 - block number to set, 1 based.

Blocks are 16-bytes. At least two blocks are required per number string, supporting a
dial string of 31 characters plus terminator.

data 2:N - Dial string data. Null terminated ASCII string.

Bit Rate Support

(READ ONLY, optional)

50 This parameter returns a read-only bitfield indicating which bit rates are supported for this
serial channel.

data 1 - Bit Rate Support

[7:6] - reserved

[4] - 115.2 kbps

[3] - 57.6 kbps

[2] - 38.4 kbps

[1] - 19.2 kbps (required)

[0] - 9600 bps

System Serial Port
Association (optional)

(This parameter is allowed
to be READ ONLY for
implementations where
the serial port
configuration for IPMI is
fixed)

51 This parameter can be used to tell which serial controller channel is connected to a given
physical connector. It can also indicate whether that serial connector is used with Serial
Port Sharing, used for IPMI over Serial

data 1 - set selector = Serial Port Association Entry. 0-based. The set selector is only
required to cover entries for serial connectors and/or serial channels that are used with
IPMI.

data 2 - serial connector number (A number for the physical connector. The choice of this
number is implementation specific. For example, connector ‘1’ may correspond to a
connector on the rear of a chassis for one system, and an internal header on another.)

[7:4] - IPMI channel number (when connector is used for IPMI over serial)

 0h = connector is not used with IPMI over Serial

[3:0] - serial connector number

0h = no connector (e.g. when serial controller channel is used with IPMI SOL but
is not shared with a serial connector)

data 3 - serial controller channel number (a number for the system serial controller that is
presently connected to the connector. The choice of this number is implementation
specific.)

[7] - serial controller channel is used with IPMI Serial Port Sharing (note: if this bit is
1b then bits [7:4] of data 2 must hold a valid IPMI channel number.)

[6] - serial controller channel is used with IPMI SOL

[5:4] - reserved

[3:0] - serial controller channel number

0h = no channel. (e.g. when a serial connector is just used for IPMI over Serial,
and is not shared with the system)

Intelligent Platform Management Interface Specification

390

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

System Connector Names

(optional)

52 This parameter can be used to store strings for the serial connector names associated
with the system serial association entries described in parameter 51.

data 1 - set selector. 0-based. This matches up with the set selector for parameter 51.

data 2:17 - serial connector name or label. It is recommended that this match up with the
connector labeling on the chassis or system board. The first byte of this data indicates the
encoding of the string, as follows:

string data 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+LATIN 1. String is null terminated with 00h.

1h = UTF-8. ls-byte first. String is null terminated with 0000h.

2h = UNICODE. ls-byte first. String is null terminated with 0000h.

all other = reserved.

System Serial Channel
Names

(optional)

53 This parameter can be used to store a string for the serial controller channel names
associated with the system serial association entries described in parameter 51.

data 1 - set selector. 0-based. This matches up with the set selector for parameter 51.

data 2:17 - serial channel name or label. The first byte of this data indicates the
encoding of the string, as follows:

string data 1:

[7:4] - reserved

[3:0] - encoding

0h = ASCII+LATIN 1. String is null terminated with 00h.

1h = UTF-8. ls-byte first. String is null terminated with 0000h.

2h = UNICODE. ls-byte first. String is null terminated with 0000h.

all other = reserved.

 Intelligent Platform Management Interface Specification

 391

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Bad Password Threshold
(optional)

54 Sets/Gets the Bad Password Threshold. If implemented and non-zero, this value
determines the number of sequential bad passwords that will be allowed to be entered for
the identified user before the user is automatically disabled from access on the channel.

For example, a value of 3 indicates that 3 sequential attempts are allowed for the given
username on the particular channel. If the password for the third attempt is not correct,
the user will be disabled for the channel. If this value is zero (00h) then there is no limit on
bad passwords.

The effect of the disable is the same as if a Set User Access command were used to
remove the user's access from the channel.

Bad password attempts are tracked according to individual username on a per channel
basis. (Thus, a given username may be disabled on one channel, but still enabled on
another) Bad password attempts are not counted if integrity check or other session
parameters, such as session ID, sequence number, etc. are invalid. That is, bad
password attempts are not counted if there are any other errors that would have caused
the login attempt to be rejected even if the password was valid. The count of bad
password attempts is retained as long as the BMC remains powered and is not
reinitialized.

Counting automatically starts over (is reset) under any one of the following conditions:

a) a valid password is received on any of the allowed attempts

b) the Attempt Count Reset Interval expires

c) the user is re-enabled using the Set User Access command

d) the user is automatically re-enabled when the User Lockout Interval expires.

e) the Bad Threshold number parameter value is re-written or changed

The Set User Access command is used to re-enable the user for the Channel.

byte 1

[7:1] - reserved

[0] - 0b = do not generate an event message when the user is disabled.

 1b = generate a Session Audit sensor "Invalid password disable" event message.

byte 2

7:0 - Bad Password Threshold number.

byte 3:4

15:0 - Attempt Count Reset Interval. The interval, in tens of seconds, for which the
accumulated count of bad password attempts is retained before being
automatically reset to zero. The interval starts with the most recent bad
password attempt for the given username on the channel. This interval is
allowed to reset if a BMC power cycles or re-initialization occurs while the
interval is being counted.

 0000h = Attempt Count Reset Interval is disabled. The count of bad password
attempts is retained as long as the BMC remains powered and is not
reinitialized.

byte 5:6

15:0 - User Lockout Interval. The interval, in tens of seconds, that the user will remain
disabled after being disabled because the Bad Password Threshold number
was reached. The user is automatically re-enabled when the interval expires.
Note that this requires the BMC implementation to track that the user was
disabled because of a Bad Password Threshold. This interval is allowed to be
restarted if a BMC power cycle or re-initialization occurs while the interval is
being counted. Note that this requires an internal non-volatile setting to be
maintained that tracks when a particular user has been temporarily disabled
due to the Bad Password Threshold. This is required to distinguish a user that
was disabled automatically from a user that is intentionally disabled using the
Set User Access command.

0000h = User Lockout Interval is disabled. If a user was automatically disabled
due to the Bad Password threshold, the user will remain disabled
until re-enabled via the Set User Access command.

OEM Parameters 192:
255

This range is available for special OEM configuration parameters. The OEM is identified
according to the Manufacturer ID field returned by the Get Device ID command.

1. Choice of system manufacturing defaults is left to the system manufacturer unless otherwise specified.

Intelligent Platform Management Interface Specification

392

2. These settings are also copied from the corresponding non-volatile values whenever the system is powered up or hard
reset.

3. Optional but recommended if [MSVT] is implemented in conjunction with IPMI serial port sharing on the same serial
interface.

4. Optional but recommended if PPP supported.
5. Per [MSVT] The BMC should put out an <ESC>* to the remote console after being switched by the <ESC>(sequence

and after powering up/waking the system using the <ESC>^ sequence. Refer to [MSVT] for timing requirements.

 Intelligent Platform Management Interface Specification

 393

25.3 Set Serial/Modem Mux Command

This command is used to force or request the selected serial mux to connect the serial connector to the baseboard

serial port or the BMC serial port. The command also returns the present setting of the mux.

Table 25-5, Set Serial/Modem Mux Command
 byte data field

Request Data 1 Channel number. This must correspond to the channel number that the
desired serial/modem mux is on.
[7:4] - reserved
[3:0] - Channel number.

 2 Mux setting <VOLATILE> The BMC can override these settings on power
down, power on, and system resets, and change it during system operation
when a serial/modem connection is activated or deactivated.

Otherwise, the ‘mux block’ settings are set back to ‘allowed’ on system power
up, power down, power cycles, and resets except when those actions are
initiated by the Chassis Control command. This enables a remote console to
use the ‘block’ settings to keep connected to the BMC after causing a reset or
power state change using the Chassis Control command.

The BMC power-on default (i.e. when the BMC first gets powered/initialized) is
based on the Access Mode setting for the channel (See Table 14-2, Serial
Port Sharing Access Characteristics).

The blocking of ‘switch requests’ and ‘switch forces’ only affects the operation
of the Set Serial/Modem Mux command. Switching caused by other
mechanisms such as snooping and changes to system or connection states
are not blocked.

[7:4] - reserved
[3:0] - 0h = get present mux setting/status only
 1h = request switch of mux to system
 2h = request switch of mux to BMC
 3h = force switch of mux to system
 4h = force switch of mux to BMC
 5h = block requests to switch mux to system
 6h = allow requests to switch mux to system
 7h = block requests to switch mux to BMC
 8h = allow requests to switch mux to BMC

Response Data 1 Completion Code

 2 Mux setting. This returns the present state of the mux and the mux change
bits from the last Set Serial/Modem Mux command.

switch request enable settings
[7] - 0b = requests to switch mux to system are allowed
 1b = requests to switch mux to system are blocked
[6] - 0b = requests to switch mux to BMC are allowed
 1b = requests to switch mux to BMC are blocked
switch status
[5:4] - reserved
[3] - 0b = no alert presently in progress
 1b = alert in progress on channel
[2] - 0b = no IPMI or OEM messaging presently active on channel
 1b = IPMI or OEM messaging session active on channel
[1] - 0b = request was rejected
 1b = request was accepted (see note, below) or switch was forced
present mux setting
[0] - 0b = mux is set to system (system can transmit and receive)
 1b = mux is set to BMC (BMC can transmit. System can neither

transmit nor receive)
Note: Bit 1 will immediately indicate whether the request was accepted.

However, if ‘mux switch acknowledge’ is enabled, it may take seconds
before the actual switch occurs. Software that needs to confirm a
change of the present mux setting must poll the ‘present mux setting’
bit until it changes to the new state.

Intelligent Platform Management Interface Specification

394

25.4 Get TAP Response Codes Command

This command returns the values for up to the last five TAP response codes as an aid to verifying TAP settings.

The values are volatile and are not guaranteed to be retained across system or management controllers resets or

power on/off changes. The values are automatically cleared to ‘0’, ‘0’, ‘0’ at the start of a TAP page. The

command is provided to aid in verifying and debugging the TAP configuration settings.

Table 25-6, Get TAP Response Codes Command
 byte data field

Request Data 1 Channel number.

[7:4] - reserved

[3:0] - Channel number.

Response Data 1 Completion Code

 2:4 Most recent (last received) 3-character ASCII response code. MS-char. first.

 5:7 Second to last code.

 8:10 Third.

 11:13 Fourth.

 14:16 Fifth.

25.5 Set PPP UDP Proxy Transmit Data Command

This command is used to load data into the PPP UDP Proxy transmit data buffer. This data is expected to consist

of UDP Packet Data starting with the first UDP data byte (byte following UDP checksum) through the last UDP

data byte. The BMC fills in the remaining PPP and IP/UDP header information, and takes care of framing and

escaping for delivering the data over PPP per [RFC1662]. The BMC does not verify the correctness of the data.

Table 25-7, Set PPP UDP Proxy Transmit Data Command
 byte data field

Request Data 1 Channel number.

[7:4] - reserved

[3:0] - Channel number.

 2 Block number. 1-based.

 3:18 Block Data.

16-byte block of packet data to set. Note the management controller does not
check to see that the block is filled. All writes start at a 16-byte boundary in
the buffer specified by the block number. If fewer than 16-bytes are sent, the
BMC will not overwrite any prior data remaining in the block.

Response Data 1 Completion Code

25.6 Get PPP UDP Proxy Transmit Data Command

This command is used to retrieve data that has been written into the PPP UDP Proxy transmit data buffer. The

command is primarily to aid in the test and debug of software that uses the PPP UDP Proxy capability.

Table 25-8, Get PPP UDP Proxy Transmit Data Command
 byte data field

Request Data 1 Channel number.

[7:4] - reserved

[3:0] - Channel number

 2 Block number to get. 1-based.

Response Data 1 Completion Code

 2:17 Block Data. Note, the BMC always returns 16-bytes of data, even if fewer data
bytes were written to the specified block.

 Intelligent Platform Management Interface Specification

 395

25.7 Send PPP UDP Proxy Packet Command

This command is used to initiate the transmission of the PPP UDP Proxy Packet using the data stored in the PPP

UDP Proxy transmit data buffer.

Table 25-9, Send PPP UDP Proxy Packet Command
 byte data field

Request Data 1 Channel number.

[7:4] - reserved

[3:0] - Channel number.

 2:3 UDP Source Port Number. LS-byte first.

 4:5 UDP Destination Port Number. LS-byte first.

 6:9 Source IP Address. MS-byte first. 00 00 00 00h = Use PPP IP Address
associated with this channel. (See Table 25-4, Serial/Modem Configuration
Parameters)

 10:13 Destination IP Address. MS-byte first. MS-byte first. The Get Session Info
command can be used to look this up for a given session. Software using the
Send PPP UDP Proxy command will usually get a Session ID or Session
Handle from the Boot Options or from a message retrieved via a Get Message
command.

 14:15 Number of bytes to send. 1-based.

Response Data 1 Completion Code. Generic, plus the following command specific.

80h = PPP Link is not up

81h = IP Protocol is not up

25.8 Get PPP UDP Proxy Receive Data Command

This command is used to retrieve data from the PPP UDP Proxy receive data buffer. The data buffer holds the

complete received PPP IP Packet, from the byte following protocol field up to, but excluding, the FCS field. The

BMC handles PPP Framing and extracting the encapsulated IP data, including checking the PPP Header

Intelligent Platform Management Interface Specification

396

information and the FCS, and translating any escaped data in the packet. The BMC does not check the correctness

of the encapsulated IP data. The packet is silently discarded if a bad FCS or partial packet is received.

Table 25-10, Get PPP UDP Proxy Receive Data Command
 byte data field

Request Data 1 Channel number.

[7:4] - reserved

[3:0] - Channel number.

 2 [7] - Clear Buffer

 1b = clear buffer after returning response to this command.

 0b = don’t clear buffer after completing this command.

[6:0] - Block Number. 1-based.

 000_0000b = Get received data length.

Response Data 1 Completion Code.

80h = No packet data available. (Returned when a non-zero block number is
used but there’s no packet data available.)

 If block number = 000_0000b:

 2:3 Number of received data bytes.

0000h after buffer is emptied until a full packet received. This value can be
polled to see when a new packet is available. Software must explicitly clear
the buffer after completing the read of each packet.

Received packets are volatile. The controller may discard packets on
controller resets, system resets, system or controller power on/off changes,
the enable/disable of the associated channel, or the enable/disable of PPP
mode on the associated channel, on changes to the link up/down state, or
changes to the IP protocol up/down state.

 If block number non-zero:

 2:17 Block Data.

Note, the BMC implementation is allowed to always return a return a full 16-
byte block of data, even if fewer bytes were received in the last block.

25.9 Serial/Modem Connection Active (Ping) Command

This command is also referred to as the “Serial/Modem Ping”. It is sent by the BMC to tell a remote console

application whether the system or the BMC is connected to the serial connector before the remote console sends

any messages. If Serial Port Sharing is implemented, this command is also sent out before a mux switch from

BMC to the system occurs, and immediately after a switch from the system to the BMC occurs. Refer to 14.3,

Serial/Modem Connection Active (Ping) Message for details about the operation of this command.

When enabled, the Serial/Modem Connection Active message is sent out at a nominal rate of once every two

seconds, +/- 10% for Basic Mode and Terminal Mode. The BMC is required to send it’s first Serial/Modem

Connection Active message out within 100 milliseconds of the serial connection to the BMC being established.

For PPP Mode, the Serial/Modem Connection Active message will only be sent out before a mux switch from

BMC to the system occurs, and immediately after a switch from the system to the BMC occurs,

When the BMC issues the Serial/Modem Connection Active command, it will typically be addressed to remote

console software. Thus, for IPMI serial/modem and LAN connections the responder’s address byte should be set

 Intelligent Platform Management Interface Specification

 397

to 81h, which is the software ID (SWID) for remote console software. See Section 5.5,Software IDs (SWIDs), for

more information.

Table 25-11, Serial/Modem Connection Active Command
 byte data field

Request Data 1 Session state

[7:4] - reserved

[3:0] - session state

 0h - No session active (password required)

 1h - Session active (sent after mux switch to BMC or <ESC>([if enabled]
detected - and then periodically afterward)

 2h - Switching mux to system

 2 IPMI Version in hexadecimal, LSN first. 51h corresponds to IPMI 1.5.

Response Data 1 Completion Code

25.10 Callback Command

This command is used to initiate a callback to the selected destination. An error completion code will be returned

if the specified destination has not been configured to be a callback destination for the selected channel. This

callback is accomplished using IPMI commands. Note that there is also a PPP option to perform callback using

CBCP. CBCP callback does not use this command. See 14.6.1, Callback Control Protocol (CBCP) Support.

If the callback command is initiated over the same connection that the callback is to occur over, the BMC will

deliver the response to the callback command, and if the Completion Code is 00h (OK) the BMC will terminate

the session, hang-up the phone, and initiate the callback.

Table 25-12, Callback Command
 byte data field

Request Data 1 Channel number. (This value is required to select which configuration
parameters are to be used for callback.)

[7:4] - reserved

[3:0] - Channel number

 2 Destination Selector

Selects which alert destination the callback should go to.

[7:4] - reserved

[3:0] - destination selector. 0 = use volatile destination info. 1-Fh = non-
volatile destination.

Response Data 1 Completion Code. Generic codes, plus following command-specific
completion codes:

81h = Callback rejected due to alert in progress on this channel.

82h = Callback rejected due to IPMI messaging session active on the callback
channel.

Intelligent Platform Management Interface Specification

398

25.11 Set User Callback Options Command

This command is used to configure the callback options associated with a specific user. Note that the options are

also channel-specific. An implementation can allow three different callback numbers to be offered as part of the

callback negotiation.

Table 25-13, Set User Callback Options Command
 byte data field

Request Data 1 User ID. (00h = reserved. 01h=Set password and enable/disabled User 1)

7:6 - reserved.

5:0 - User ID. 000000b, 000001b = reserved. (User ID 1 is permanently
associated with User 1, the null user name).

 2 Channel Number

[7:4] - reserved

[3:0] - Channel number

 3 User callback capabilities

[7:2] - reserved

[1] - 1b = user enabled for CBCP callback

[0] - 1b = user enabled for IPMI callback

 4 CBCP Negotiation Options. Used when user enabled for CBCP callback, and
CBCP is globally enabled in the serial/modem configuration parameters.

[7:4] - reserved.

[3] - 1b = enable callback to one from list of possible numbers. Allow caller
to pick one of a set of phone numbers offered by the BMC.

[2] - 1b = enable user-specifiable callback number. Allow caller to specify
number to be used for callback.

[1] - 1b = enable pre-specified number. Allow caller to request that
callback occur to a single, pre-specified number for the user.

[0] - 1b = enable No Callback. Allow caller to request that callback not be
used.

 5 Callback destination 1. This field holds a Destination Selector that picks which
Destination Dial String from the serial/modem configuration parameters to use
for callback. This selector is used when the ‘pre-specified number’ option is
used. Otherwise, this is the first number in the list when the “caller selects one
number from a list of numbers” option is used.

FFh = unspecified.

Note, if this field is set to FFh, the BMC should reject CBCP negotiation for
the ‘pre-specified number’ option, even if it is enabled in the CBCP
Negotiation Options field, above.

 6 Callback destination 2. This is the second number in the list when the “caller
selects one number from a list of numbers” option is used.

FFh = unspecified.

Note, at least one destination must be specified in order for the ‘callback to
one from a list of numbers’ option to be negotiated, even it that option is
enabled in the CBCP Negotiation Options field, above.

 7 Callback destination 3. This is the third number in the list when the “caller
selects one number from a list of numbers” option is used.

FFh = unspecified.

Note, at least one destination must be specified in order for the ‘callback to
one from a list of numbers’ option to be negotiated, even it that option is
enabled in the CBCP Negotiation Options field, above.

Response Data 1 Completion Code.

 Intelligent Platform Management Interface Specification

 399

25.12 Get User Callback Options Command

This command is used to return the present settings for the User Callback Options.

Table 25-14, Get User Callback Options Command
 byte data field

Request Data 1 User ID. (00h = reserved. 01h=Set password and enable/disabled User 1)

[7:6] - reserved.

[5:0] - User ID. 000000b, 000001b = reserved. (User ID 1 is permanently
associated with User 1, the null user name).

 2 Channel Number

Response Data 1 Completion Code.

 2 User callback capabilities

[7:2] - reserved

[1] - 1b = user enabled for CBCP callback

[0] - 1b = user enabled for IPMI callback

 3 CBCP Negotiation Options. Used when user enabled for CBCP callback, and
CBCP is globally enabled in the serial/modem configuration parameters.

[7:4] - reserved.

[3] - 1b = callback to one from list of possible numbers enabled

[2] - 1b = user-specifiable callback number enabled.

[1] - 1b = callback to pre-specified number enabled.

[0] - 1b = No Callback enabled. Allow caller to negotiate that callback not
be used.

 4 Callback destination 1. This field holds a Destination Selector that picks which
Destination Dial String from the serial/modem configuration parameters to use
for callback. This selector is used when the ‘pre-specified number’ option is
used. Otherwise, this is the first number in the list when the “caller selects one
number from a list of numbers” option is used.

FFh = unspecified.

 5 Callback destination 2. This is the second number in the list when the “caller
selects one number from a list of numbers” option is used.

FFh = unspecified.

 6 Callback destination 3. This is the third number in the list when the “caller
selects one number from a list of numbers” option is used.

FFh = unspecified.

25.13 Set Serial Routing Mux Command

This optional command supports implementations where an add-in card can take over responsibility for Serial

Port Sharing from the BMC. The command enables an add-in card or adjunct management controller to direct the

BMC to route serial connections to the add-in or allow them to be handled by the BMC. Logically, this action can

be viewed as controlling a hardware multiplexer (serial routing mux) that routes the serial signals between the

BMC and the add-in, though this specification does not describe or require a particular hardware implementation

for supporting this capability. The command also returns the present setting of the serial routing mux.

For BMC implementations, the setting is volatile with respect to BMC initialization. The BMC ‘power on default’

shall be “BMC controlled”. Otherwise, the BMC must retain this setting across systems resets and power cycles as

Intelligent Platform Management Interface Specification

400

long as the BMC remains powered (with the exception of actions such as BMC Cold Resets or firmware updates,

where the setting is allowed to return to the power-on default).

Table 25-15, Set Serial Routing Mux Command
 byte data field

Request Data 1 Channel number. This must correspond to the channel number that the
desired serial/modem routing mux is associated with.

[7:4] - reserved

[3:0] - Channel number.

 2 Serial Port Association entry

This value matches up with the Serial Port Association Entry value used as
the set selector for the System Serial Port Association parameter in the serial
configuration parameters for the given channel. This enables support for
implementations where different IPMI serial capabilities are associated with
different ports or system serial controllers. For example, an implementation
where SOL is associated with a different system serial controller than IPMI
serial port sharing or IPMI over Serial.

 3 Mux setting <VOLATILE> The BMC can override these settings on power
down, power on, and system resets, and change it during system operation
when a serial/modem connection is activated or deactivated.

[7:4] - reserved

 [3:0] - 0h = get present mux setting/status only

 1h = serial routing is BMC controlled

 2h = force switch of mux to route “ System to Add-In”

 3h = force switch of mux to route “Connector to System”

 4h = force switch of mux to route “Connector to Add-in”

Response Data 1 Completion Code

 2 Mux setting. This returns the present state of the mux and the mux change
bits from the last Set Mux Control command.

present mux setting

[7:4] - reserved

[3:0] - 0h = reserved

 1h = routing under BMC control

 2h = routing set to “System to Add-in”

 3h = routing set to “Connector to System”

 4h = routing set to “Connector to Add-in”

 Intelligent Platform Management Interface Specification

 401

Intelligent Platform Management Interface Specification

402

26. SOL Commands
The following commands are specific to the SOL Payload type.

Table 26-1, SOL Commands

Command

Section

Defined

O/M

SOL Activating 26.1 O[2]

Set SOL Configuration Parameters 26.2 O[1]

Get SOL Configuration Parameters 26.3 O[1]

1. Mandatory if the SOL Payload type is implemented.
2. Mandatory if implementation uses Serial Port Sharing with SOL when

activating SOL causes a serial session to be closed.

26.1 SOL Activating Command

This command provides a mechanism for the BMC to notify a remote application that a SOL payload is activating

on another channel. The primary use for this command is in conjunction with Serial Port Sharing to notify an

application that is connected to the system serial port that they have lost their connection because another

application has activated SOL and the baseboard serial controller is now being used for SOL.

Table 26-2, SOL Activating Command
 byte data field

Request Data 1 SOL Session State

[7:4] - reserved

[3:0] - Session State

0h = SOL Activating (Shared serial connection about to be lost because
BMC is about to switch it over for SOL use)

 2 SOL Payload Instance

 3 SOL format version, major (SOL Payload Format version. See Table 13-16,
Payload Type Numbers.

 4 SOL format version, minor (SOL Payload Format version. See Table 13-16,
Payload Type Numbers.

Response Data 1 Completion Code

The request message is a message that is asynchronously generated by the
BMC. The BMC will not wait for a response from the remote console before
dropping the serial connection to proceed with SOL, therefore the remote
console does not need to respond to this command.

 Intelligent Platform Management Interface Specification

 403

26.2 Set SOL Configuration Parameters Command

This command is used for setting parameters such as the network addressing information required for SOL

payload operation. Parameters can be volatile or non-volatile. Refer to Section 15.8, Volatile and Non-volatile

SOL Configuration Parameters, for information on how these settings are handled for SOL payloads.

Table 26-3, Set SOL Configuration Parameters Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3:N Configuration parameter data, per Table 26-5, SOL Configuration Parameters

Response Data 1 Completion Code

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

83h = attempt to read write-only parameter

26.3 Get SOL Configuration Parameters Command

This command is used for retrieving the configuration parameters from the Set SOL Configuration Parameters

command.

Table 26-4, Get SOL Configuration Parameters Command
 byte data field

Request Data 1 [7] - 0b = get parameter

 1b = get parameter revision only.

[6:4] - reserved

[3:0] - Channel number.

 2 Parameter selector

 3 Set Selector. Selects a given set of parameters under a given Parameter
selector value. 00h if parameter doesn’t use a Set Selector.

 4 Block Selector (00h if parameter does not require a block number)

Response Data 1 Completion Code.

Generic codes, plus following command-specific completion code(s):

80h = parameter not supported.

 2 [7:0] - Parameter revision.

Format: MSN = present revision. LSN = oldest revision parameter is backward
compatible with. 11h for parameters in this specification.

 The following data bytes are not returned when the ‘get parameter revision
only’ bit is 1b.

 3:N Configuration parameter data, per Table 26-5, SOL Configuration Parameters

If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

Intelligent Platform Management Interface Specification

404

Table 26-5, SOL Configuration Parameters
Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following parameters
are being updated, and when the updates are completed. The bit is primarily
provided to alert software than some other software or utility is in the process of
making changes to the data.

An implementation can also elect to provide a ‘rollback’ feature that uses this
information to decide whether to ‘roll back’ to the previous configuration information,
or to accept the configuration change.

If used, the roll back shall restore all parameters to their previous state. Otherwise,
the change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete. If a system reset or transition to powered down state
occurs while ‘set in progress’ is active, the BMC will go to the ‘set
complete’ state. If rollback is implemented, going directly to ‘set
complete’ without first doing a ‘commit write’ will cause any pending
write data to be discarded.

 01b = set in progress. This flag indicates that some utility or other software is
presently doing writes to parameter data. It is a notification flag only, it
is not a resource lock. The BMC does not provide any interlock
mechanism that would prevent other software from writing parameter
data while.

 10b = commit write (optional). This is only used if a rollback is implemented.
The BMC will save the data that has been written since the last time
the ‘set in progress’ and then go to the ‘set in progress’ state. An error
completion code will be returned if this option is not supported.

 11b = reserved

SOL Enable 1 Byte 1:

[7:1]: Reserved

[0]: SOL Enable.
Note, this controls whether the SOL payload type can be activated. Noter
that whether an SOL stream can be established is also dependent on the
Access Mode and Authentication settings for the corresponding LAN
channel. The enabled/disabled state and access mode settings for the
serial/modem channel have no effect on SOL.

1b = enable SOL payload

0b = disable SOL payload

 Intelligent Platform Management Interface Specification

 405

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

SOL Authentication 2 Byte 1: SOL Authentication Enable

[7]: Force SOL Payload Encryption

1b: Force encryption. If the Cipher Suite for the session supports encryption this
setting will force the use of encryption for all SOL payload data.

0b: Encryption controlled by remote console. Whether SOL Packets are
encrypted or not is selectable by the remote console at the time the payload
is activated (using the Activate Payload command) and can be changed
during operation via the Suspend/Resume Payload Encryption command.

[6]: Force SOL Payload Authentication

1b: Force Authentication. If the Cipher Suite for the session supportes
authentication this setting will force the use of authentication on all SOL
Payload data.

0b: Authentication controlled by remote software. Note that for the standard
Cipher Suites, if encryption is used authentication must also be used.
Therefore, while encryption is being used software will not be able to select
using unauthenticated payloads.

[5:4]: Reserved

[3:0]: SOL Privilege Level. Sets the minimum operating privilege level that is required
to be able to activate SOL using the Activate Payload command.

0h: reserved

1h: reserved

2h: USER level

3h: OPERATOR level

4h: ADMINISTRATOR level

5h: OEM Proprietary level

all other: Reserved

Character Accumulate
Interval & Character
Send Threshold

3 Byte 1: Character Accumulate Interval in 5 ms increments. 1-based. This sets the
typical amount of time that the BMC will wait before transmitting a partial SOL
character data packet. (Where a partial packet is defined as a packet that has fewer
characters to transmit than the number of characters specified by the Send
Threshold - see next field in this parameter). A packet will not be sent

00h = reserved

Byte 2: Character Send Threshold. 1-based. The BMC will automatically send an
SOL character data packet containing this number of characters as soon as this
number of characters (or greater) has been accepted from the baseboard serial
controller into the BMC. This provides a mechanism to tune the buffer to reduce
latency to when the first characters are received after an idle interval. In the
degenerate case, setting this value to a ‘1’ would cause the BMC to send a packet as
soon as the first character was received.

This can be useful if the character accumulate interval is large. If the BMC is waiting
for an acknowledge from the previous packet, it will ignore this threshold and
continue to collect data until it has a full packet’s worth.

SOL Retry 4 Byte 1: Retry Count

[7:3] - Reserved

[2:0] - Retry count. 1-based. 0 = no retries after packet is transmitted. Packet will be
dropped if no ACK/NACK received by time retries expire.

Byte 2: Retry Interval. 1-based. Retry Interval in 10 ms increments. Sets the time that
the BMC will wait before the first retry and the time between retries when sending
SOL packets to the remote console.

00h: Retries sent back-to-back

Intelligent Platform Management Interface Specification

406

Parameter # Parameter Data (non-volatile unless otherwise noted)[1]

SOL non-volatile bit
rate

(non-volatile)

5 This configuration parameter is not supported if the implementation does not have a
BMC serial controller that can be potentially configured

Serial communication with the BMC when SOL is activated always occurs using 8
bits/character, no parity, 1 stop bit, and RTS/CTS (hardware) flow control.

Note: If SOL is enabled for multiple LAN channels, the BMC uses the serial
communication settings for the channel over which the Activate SOL command was
initially received. The settings for other channels are ignored.

Data 1

[7:4] - Reserved

[3:0] - Bit Rate. 1-5h = reserved. Support for bit rates other than 19.2 kbps is
optional. The BMC must return an error completion if a requested bit rate is not
supported. It is recommended that the parameter out-of-range (C9h) code be used
for this situation.

0h: Use setting presently configured for IPMI over serial channel. The setting will
be used even if the access mode for the serial channel is set to ‘disabled’. Note:
IPMI specification can allow more than one serial channel. If serial port sharing is
not implemented, this value is reserved.

6h: 9600 bps

7h: 19.2 kbps

8h: 38.4 kbps

9h: 57.6 kbps

Ah: 115.2 kbps

all other = reserved

SOL volatile bit rate

(volatile)

6 Set volatile version of SOL Serial Settings. Data follows that for the SOL non-volatile
bit rate parameter.

SOL Payload Channel

(optional, Read Only)

7 This parameter indicates which IPMI channel is being used for the communication
parameters (e.g. IP address, MAC address) for the SOL Payload. Typically, these
parameters will come from the same channel that the Activate Payload command for
SOL was accepted over.

SOL Payload Port
Number

(Read Only or
Read/Write - see
description)

8 This parameter is Read/Write when the implementation allows the port number over
which the SOL payload can be activated to be configurable. Otherwise, it is a Read
Only parameter.

data 1:2 - Primary RMCP Port Number, LSByte first.

OEM Parameters 192
:

 255

This range is available for special OEM configuration parameters. The OEM is
identified according to the Manufacturer ID field returned by the Get Device ID
command.

1. Choice of system manufacturing defaults is left to the system manufacturer unless otherwise specified.

 Intelligent Platform Management Interface Specification

 407

Intelligent Platform Management Interface Specification

408

27. BMC Watchdog Timer Commands
The BMC implements a standardized ‘Watchdog Timer’ that can be used for a number of system timeout

functions by system management software or by the BIOS. Setting a timeout value of ‘0’ allows the selected

timeout action to occur immediately. This provides a standardized means for devices on the IPMB, such as

Remote Management Cards, to perform emergency recovery actions. Refer to Appendix G - Command

Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands.

Table 27-1, BMC Watchdog Timer Commands

Command

Section

Defined

O/M

Reset Watchdog Timer 27.5 M

Set Watchdog Timer 27.6 M

Get Watchdog Timer 27.7 M

27.1 Watchdog Timer Actions

 The following actions are available on expiration of the Watchdog Timer:

 System Reset

 System Power Off

 System Power Cycle

 Pre-timeout Interrupt (OPTIONAL)

The System Reset on timeout, System Power Off on timeout, and System Power Cycle on timeout action

selections are mutually exclusive. The watchdog timer is stopped whenever the system is powered-down. A

command must be sent to start the timer after the system powers up.

27.2 Watchdog Timer Use Field and Expiration Flags

The watchdog timer provides a ‘timer use’ field that indicates the current use assigned to the watchdog timer. The

watchdog timer provides a corresponding set of ‘timer use expiration’ flags that are used to track the type of

timeout(s) that had occurred.

The timeout use expiration flags retain their state across system resets and power cycles, as long as the BMC

remains powered. The flags are normally cleared solely by the ‘Set Watchdog Timer’ command; with the

exception of the “don’t log” flag, which is cleared after every system hard reset or timer timeout.

The Timer Use fields indicate:

BIOS FRB2 timeout An FRB-2 (fault-resilient booting, level 2) timeout has occurred. This

indicates that the last system reset or power cycle was due to the system

timeout during POST, presumed to be caused by a failure or hang related to

the bootstrap processor6.

BIOS POST timeout In this mode, the timeout occurred while the watchdog timer was being used

by the BIOS for some purpose other than FRB-2 or OS Load Watchdog.

OS Load timeout The last reset or power cycle was caused by the timer being used to

‘watchdog’ the interval from ‘boot’ to OS up and running. This mode requires

system management software, or OS support. BIOS should clear this flag if it

starts this timer during POST.

6 In a multiprocessor system, the bootstrap processor is defined as the processor that, on system power-up or hard reset, is allowed

to run and execute system initialization (BIOS POST) while the remaining processors are held in a idle state awaiting startup by
the multiprocessing OS.

 Intelligent Platform Management Interface Specification

 409

SMS ‘OS Watchdog’ timeout This indicates that the timer was being used by System Management

Software. During run-time, System Management Software (SMS) starts the

timer, then periodically resets it to keep it from expiring. This periodic action

serves as a ‘heartbeat’ that indicates that the OS (or at least the SMS task) is

still functioning. If SMS hangs, the timer expires and the BMC generates a

system reset. When SMS enables the timer, it should make sure the ‘SMS’ bit

is set to indicate that the timer is being used in its ‘OS Watchdog’ role.

OEM Indicates that the timer was being used for an OEM-specific function.

27.2.1 Using the Timer Use field and Expiration flags

The software that sets the Timer Use field is responsible for managing the associated Timer Use Expiration flag.

For example, if system management software sets the timer use to ‘SMS/OS Watchdog’, then that same system

management software is responsible for acting on and clearing the associated Timer Use Expiration flag.

In addition, software should only interpret or manage the expiration flags for watchdog timer uses that it set. For

example, BIOS should not report watchdog timer expirations or clear the expiration flags for non-BIOS uses of

the timer. This is to allow the software that did set the Timer Use to see that a matching expiration occurred.

27.3 Watchdog Timer Event Logging

By default, the BMC will automatically log the corresponding sensor-specific watchdog sensor event when a

timer expiration occurs. A “don’t log” bit is provided to temporarily disable the automatic logging. The “don’t

log” bit is automatically cleared (logging re-enabled) whenever a timer expiration occurs.

27.4 Pre-timeout Interrupt

The Watchdog Timer offers a ‘Pre-timeout Interrupt’ option. This option is enabled whenever the ‘Interrupt on

timeout’ option is selected coincident with any of the other Watchdog Timer actions.

If this option is enabled, the BMC generates the selected interrupt a fixed interval before the timer expires. This

feature can be used to allow an interrupt handler to intercept the timeout event before it actually occurs.

The default pre-timeout interrupt interval is one (1) second.

The watchdog timeout action and the pre-timeout interrupt functions are individually enabled. Thus, the

Watchdog Timer can be configured so that when it times out it provides just an interrupt, just the selected action,

both an interrupt and selected action, or none.

If the pre-timeout interval is set to zero, the pre-timeout action occurs concurrently with the timeout action. Note

that if a power or reset action is selected with a pre-timeout interval of zero there is no guarantee that a pre-

timeout interrupt handler would have time to execute, or to run to completion.

27.4.1 Pre-timeout Interrupt Support Detection

An application that wishes to use a particular pre-timeout interrupt can check for its support by issuing a Set

Watchdog Timer command with the desired pre-timeout interrupt selection. If the controller does not return an

error completion code, then a Get Watchdog Timer command should be issued to verify that the interrupt

selection was accepted.

While it can be assumed that a controller that accepts a given interrupt selection supports the associated

interrupt, it is recommended that, if possible, an application also generate a test interrupt and verify that the

interrupt occurs and the handler executes correctly.

Intelligent Platform Management Interface Specification

410

27.4.2 BIOS Support for Watchdog Timer

If a system ‘Warm Reset’ occurs, the watchdog timer may still be running while BIOS executes POST.

Therefore, BIOS should take steps to stop or restart the watchdog timer early in POST. Otherwise, the timer

may expire later during POST or after the OS has booted.

27.5 Reset Watchdog Timer Command

The Reset Watchdog Timer command is used for starting and restarting the Watchdog Timer from the initial

countdown value that was specified in the Set Watchdog Timer command.

If a pre-timeout interrupt has been configured, the Reset Watchdog Timer command will not restart the timer once

the pre-timeout interrupt interval has been reached. The only way to stop the timer once it has reached this point is

via the Set Watchdog Timer command.

Table 27-2, Reset Watchdog Timer Command
 byte data field

Request Data - -

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:
80h = Attempt to start un-initialized watchdog. It is recommended that a

BMC implementation return this error completion code to indicate to
software that a Set Watchdog Timer command has not been issued
to initialize the timer since the last system power on, reset, or BMC
reset. Note that since many systems may initialize the watchdog timer
during BIOS operation, this condition may only be seen by software if
a BMC gets re-initialized during system operation (as might be the
case if a firmware update occurred, for example).

27.6 Set Watchdog Timer Command

The Set Watchdog Timer command is used for initializing and configuring the watchdog timer. The command is

also used for stopping the timer.

If the timer is already running, the Set Watchdog Timer command stops the timer (unless the “don’t stop” bit is

set) and clears the Watchdog pre-timeout interrupt flag (see Get Message Flags command). BMC hard resets,

system hard resets, and the Cold Reset command also stop the timer and clear the flag.

Byte 1 is used for selecting the timer use and configuring whether an event will be logged on expiration.

Byte 2 is used for selecting the timeout action and pre-timeout interrupt type.

Byte 3 sets the pre-timeout interval. If the interval is set to zero, the pre-timeout action occurs concurrently with

the timeout action.

Byte 4 is used for clearing the Timer Use Expiration flags. A bit set in byte 4 of this command clears the

corresponding bit in byte 5 of the Get Watchdog Timer command.

Bytes 5 and 6 hold the least significant and most significant bytes, respectively, of the countdown value. The

Watchdog Timer decrement is one count/100 ms. The counter expires when the count reaches zero. If the counter

is loaded with zero and the Reset Watchdog command is issued to start the timer, the associated timer events

occur immediately.

 Intelligent Platform Management Interface Specification

 411

Table 27-3, Set Watchdog Timer Command
 byte data field

Request Data 1 Timer Use

[7] - 1b = don’t log

[6] - 1b = don’t stop timer on Set Watchdog Timer command (new for IPMI
v1.5) new parameters take effect immediately. If timer is already
running, countdown value will get set to given value and
countdown will continue from that point. If timer is already
stopped, it will remain stopped. If the pre-timeout interrupt bit is
set, it will get cleared.[1]

 0b = timer stops automatically when Set Watchdog Timer command is
received

[5:3] - reserved

[2:0] - timer use (logged on expiration when “don’t log” bit = 0b)

 000b = reserved

 001b = BIOS FRB2

 010b = BIOS/POST

 011b = OS Load

 100b = SMS/OS

 101b = OEM

 110b -111b = reserved

 2 Timer Actions

[7] - reserved

[6:4] - pre-timeout interrupt (logged on expiration when “don’t log” bit = 0b)

 000b = none

 001b = SMI (optional)

 010b = NMI / Diagnostic Interrupt (optional)

 011b = Messaging Interrupt (this is the same interrupt as
allocated to the messaging interface, if communications
interrupts are supported for the system interface)

 100b,111b = reserved

[3] - reserved

[2:0] - timeout action

 000b = no action

 001b = Hard Reset

 010b = Power Down

 011b = Power Cycle

 100b,111b = reserved

 3 Pre-timeout interval in seconds. ‘1’ based.

 4 Timer Use Expiration flags clear

(0b = leave alone, 1b = clear timer use expiration bit)

[7] - reserved

[6] - reserved

[5] - OEM

[4] - SMS/OS

[3] - OS Load

[2] - BIOS/POST

[1] - BIOS FRB2

[0] - reserved

 5 Initial countdown value, lsbyte (100 ms/count)

 6 Initial countdown value, msbyte

Response Data 1 Completion Code

1. Potential race conditions exist with implementations of this option. If the Set Watchdog Timer
command is sent just before a pre-timeout interrupt or timeout is set to occur, the timeout
could occur before the command is executed. To avoid this condition, it is recommended that
software set this value no closer than 3 counts before the pre-timeout or timeout value is
reached.

Intelligent Platform Management Interface Specification

412

27.7 Get Watchdog Timer Command

This command retrieves the current settings and present countdown of the watchdog timer. The Timer Use

Expiration flags in byte 5 retain their states across system resets and system power cycles. With the exception of

bit 6 in the Timer Use byte, the Timer Use Expiration flags are cleared using the Set Watchdog Timer command.

They may also become cleared because of a loss of BMC power, firmware update, or other cause of BMC hard

reset. Bit 6 of the Timer Use byte is automatically cleared to 0b whenever the timer times out, is stopped when the

system is powered down, enters a sleep state, or is reset.

Table 27-4, Get Watchdog Timer Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Timer Use
[7] - 1b =don’t log
[6] - 1b = timer is started (running)
 0b = timer is stopped
[5:3] - reserved
[2:0] - timer use (logged on expiration if don’t log bit = 0b)
 000b = reserved
 001b = BIOS FRB2
 010b = BIOS/POST
 011b = OS Load
 100b = SMS/OS
 101b = OEM
 110b,111b = reserved

 3 Timer Actions
[7] - reserved
[6:4] - pre-timeout interrupt
 000b = none
 001b = SMI (if implemented)
 010b = NMI / Diagnostic Interrupt (if implemented)
 011b = Messaging Interrupt (this would be the same interrupt as

allocated to the messaging interface)
 100b,111b = reserved
[3] - reserved
[2:0] - timeout action
 000b = no action
 001b = Hard Reset
 010b = Power Down
 011b = Power Cycle
 100b,111b = reserved

 4 Pre-timeout interval in seconds. ‘1’ based.

 5 Timer Use Expiration flags (1b = timer expired while associated ‘use’ was
selected.)

[7] - reserved
[6] - reserved
[5] - OEM
[4] - SMS/OS
[3] - OS Load
[2] - BIOS/POST
[1] - BIOS FRB2
[0] - reserved

 6 Initial countdown value, lsbyte (100 ms/count)

 7 Initial countdown, msbyte

 8 Present countdown value, lsbyte. The initial countdown value and present
countdown values should match immediately after the countdown is
initialized via a Set Watchdog Timer command and after a Reset Watchdog
Timer has been executed.
Note that internal delays in the BMC may require software to delay up to 100
ms before seeing the countdown value change and be reflected in the Get
Watchdog Timer command.

 9 Present countdown value, msbyte

 Intelligent Platform Management Interface Specification

 413

Intelligent Platform Management Interface Specification

414

28. Chassis Commands
The following chassis commands are specified for IPMI v1.5. These commands are primarily to provide

standardized chassis status and control functions for Remote Management Cards and Remote Consoles that access

the BMC. They can also be used for ‘emergency’ management control functions by system management software.

Refer to Appendix G - Command Assignments

 for the specification of the Network Function and Command (CMD) values and privilege levels for these

commands.

Table 28-1, Chassis Commands

Command

Section

Defined

O/M

Get Chassis Capabilities 28.1 M

Get Chassis Status 28.2 M[1]

Chassis Control 28.3 M[1]

Chassis Reset 28.4 O

Chassis Identify 28.5 O

Set Front Panel Enables 22.5a O

Set Chassis Capabilities 28.7 O

Set Power Restore Policy 28.8 O

Set Power Cycle Interval 22.7a O

Get System Restart Cause 28.11 O[2]

Set System Boot Options 28.12 O[2]

Get System Boot Options 28.13 O[2]

Get POH Counter 28.14 O

1. These commands are mandatory for standalone server motherboards that
include ACPI-based power control capabilities.

2. Highly recommended. These commands should be supported on host systems
that support remote reset and power on/off capabilities, since these commands
enable remote coordination of the booting process with BIOS.

28.1 Get Chassis Capabilities Command

The Get Chassis Capabilities command returns information about which main chassis management functions are

present on the IPMB (or virtual IPMB) and what addresses are used to access those functions. This command is

used to find the devices that provide functions such as SEL, SDR, and ICMB Bridging so that they can be

accessed via commands delivered via a physical or logical IPMB. Note that the command does not include a

channel number for the individual functions, therefore all reported functions must be located on the primary

IPMB.

Refer to [ICMB] for additional information.

The Chassis Capabilities information is non-volatile. There is no requirement that the information be

configurable. The Chassis Device function in a peripheral chassis may be hardcoded with this information. For

example, a system that implements the ICMB as an add-on bridge to a BMC will typically be able to have the

well known address for the BMC (20h) hardcoded as the address for the Chassis SDR, SEL, and SM Devices,

while the Chassis FRU Info Device address could be set with the chassis devices own address.

An add-in device that serves as a bridge device that could be used in different vendors systems may want to

provide a way for this information to be configured. The Set Chassis Capabilities command is one option for

providing this.

 Intelligent Platform Management Interface Specification

 415

Table 28-2, Get Chassis Capabilities Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Capabilities Flags

[7:4] - reserved

[3] - 1b = provides power interlock (IPMI 1.5)

[2] - 1b = provides Diagnostic Interrupt (FP NMI) (IPMI 1.5)

[1] - 1b = Provides “Front Panel Lockout” (this indicates that the chassis
has capabilities to lock out external power control and reset
button or front panel interfaces and/or detect tampering with
those interfaces)

[0] - 1b = Chassis provides intrusion (physical security) sensor

 3 Chassis FRU Info Device Address.

Note: all IPMB addresses used in this command are have the 7-bit I2C slave
address as the most-significant 7-bits and the least significant bit set to 0b.

 00h = unspecified.

 4 Chassis SDR Device Address

 5 Chassis SEL Device Address

 6 Chassis System Management Device Address

 (7) Chassis Bridge Device Address. Reports location of the ICMB bridge
function. If this field is not provided, the address is assumed to be the BMC
address (20h). Implementing this field is required when the Get Chassis
Capabilities command is implemented by a BMC, and whenever the Chassis
Bridge function is implemented at an address other than 20h.

Intelligent Platform Management Interface Specification

416

28.2 Get Chassis Status Command

The following command returns information regarding the high-level status of the system chassis and main power

subsystem.

Table 28-3, Get Chassis Status Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Current Power State

[7] - reserved

[6:5] - power restore policy[1]

00b = chassis stays powered off after AC/mains returns

01b = after AC returns, power is restored to the state that was in effect
when AC/mains was lost

10b = chassis always powers up after AC/mains returns

11b = unknown

[4] - power control fault

 1b = Controller attempted to turn system power on or off, but system
did not enter desired state.

[3] - power fault

 1b = fault detected in main power subsystem.

[2] - 1b = Interlock (chassis is presently shut down because a chassis
panel interlock switch is active). (IPMI 1.5)

[1] - Power overload

 1b = system shutdown because of power overload condition.

[0] - Power is on

 1b = system power is on

 0b = system power is off (soft-off S4/S5 or mechanical off)

 3 Last Power Event

[7:5] - reserved

[4] - 1b = last ‘Power is on’ state was entered via IPMI command

[3] - 1b = last power down caused by power fault

[2] - 1b = last power down caused by a power interlock being activated

[1] - 1b = last power down caused by a Power overload

[0] - 1b = AC failed

 4 Misc. Chassis State

[7] - reserved

[6] - 1b = Chassis Identify command and state info supported (Optional)

 0b = Chassis Identify command support unspecified via this
command. (The Get Command Support command, if
implemented, would still indicate support for the Chassis Identify
command)

[5:4] - Chassis Identify State. Mandatory when bit [6] = 1b, reserved (return
as 00b) otherwise. Returns the present chassis identify state. Refer to
the Chassis Identify command for more info.

00b = chassis identify state = Off

01b = chassis identify state = Temporary (timed) On

10b = chassis identify state = Indefinite On

11b = reserved

[3] - 1b = Cooling/fan fault detected

[2] - 1b = Drive Fault

[1] - 1b = Front Panel Lockout active (power off and reset via chassis
push-buttons disabled.)

[0] - 1b = Chassis intrusion active

 Intelligent Platform Management Interface Specification

 417

 (5) Front Panel Button Capabilities and disable/enable status (Optional)

(“Button” actually refers to the ability for the local user to be able to perform
the specified functions via a pushbutton, switch, or other ‘front panel’ control
built into the system chassis.)

[7] - 1b = Standby (sleep) button disable allowed

[6] - 1b = Diagnostic Interrupt button disable allowed

[5] - 1b = Reset button disable allowed

[4] - 1b = Power off button disable allowed (in the case there is a single
combined power/standby (sleep) button, disabling power off also
disables sleep requests via that button.)

[3] - 1b = Standby (sleep) button disabled

[2] - 1b = Diagnostic Interrupt button disabled

[1] - 1b = Reset button disabled

[0] - 1b = Power off button disabled (in the case there is a single combined
power/standby (sleep) button, then this indicates that sleep
requests via that button are also disabled.)

1. In some installations, the chassis’ main power feed may be DC based. For
example, -48V. In this case, the power restore policy for AC/mains refers to the
loss and restoration of the DC main power feed.

28.3 Chassis Control Command

The following command provides a mechanism for providing power up, power down, and reset control.

Table 28-4, Chassis Control Command
 byte data field

Request Data 1 [7:4] - reserved

[3:0] - chassis control[2]

0h = power down. Force system into soft off (S4/S45) state. This is for
‘emergency’ management power down actions. The command
does not initiate a clean shut-down of the operating system prior to
powering down the system.

1h = power up.

2h = power cycle (optional). This command provides a power off interval
of at least 1 second following the deassertion of the system’s
POWERGOOD status from the main power subsystem. It is
recommended that no action occur if system power is off (S4/S5)
when this action is selected, and that a D5h “Request parameter(s)
not supported in present state.” error completion code be returned.
Note that some implementations may cause a system power up if a
power cycle operation is selected when system power is down. For
consistency of operation, it is recommended that system
management software first check the system power state before
issuing a power cycle, and only issue the command if system
power is ON or in a lower sleep state than S4/S5.

3h = hard reset. In some implementations, the BMC may not know
whether a reset will cause any particular effect and will pulse the
system reset signal regardless of power state. If the implementation
can tell that no action will occur if a reset is delivered in a given
power state, then it is recommended (but still optional) that a D5h
“Request parameter(s) not supported in present state.” error
completion code be returned.

4h = pulse Diagnostic Interrupt. (optional) Pulse a version of a diagnostic
interrupt that goes directly to the processor(s). This is typically used
to cause the operating system to do a diagnostic dump (OS
dependent). The interrupt is commonly an NMI on IA-32 systems
and an INIT on Intel® Itanium™ processor based systems.

5h = Initiate a soft-shutdown of OS via ACPI by emulating a fatal
overtemperature. (optional)

all other = reserved

Response Data 1 Completion Code[1]

1. The implementation is allowed to return the completion code prior to performing
the selected control action if necessary.

Intelligent Platform Management Interface Specification

418

2. The command can also be used for compute blades or compute partition
applications where the blades or partitions entities are emulating independent
computer systems that implement IPMI. In these applications, the chassis power
control aspects of the command are not required to be supported. Individual
blades or computer partitions can elect to either not support the power on/off
functions, can use them for power control of the blade/partition independent of
the containing chassis, or may map them into a power control scheme for the
overall chassis. For example, a scheme where chassis power will go off only
after all blades within a chassis have been commanded into the ‘power off’ state.

28.4 Chassis Reset Command
This command was used with early versions of the ICMB. It has been superceded by the Chassis Control command

and is not recommended for new implementations. Refer to [ICMB] for more information. The Chassis Reset

command allows chassis logic (excluding the chassis device itself) to be reset. For host systems, this corresponds to

a system hard reset.

Table 28-5, Chassis Reset Command
 byte data field

Request Data - -

Response Data 1 Completion Code

28.5 Chassis Identify Command

This command causes the chassis to physically identify itself by a mechanism chosen by the system

implementation; such as turning on blinking user-visible lights or emitting beeps via a speaker, LCD panel, etc.

Unless the optional “Force Identify On” capability is supported and used, the Chassis Identify command

automatically times out and deasserts the indication after a configurable time-out. Software must periodically

resend the command to keep the identify condition asserted. This will restart the timeout.

Table 28-6, Chassis Identify Command
 byte data field

Request Data (1)[1] [7:0] - Identify Interval in seconds. 1-based. Timing accuracy = -0/+20%.
This field is optional. If this byte is not provided the default timeout
shall be 15 seconds -0/+20%. Note that this byte can be overridden by
optional byte 2.

00h = Turn off Identify

 (2)[2] Force Identify On. This optional field enables software to command the
Identify to be On indefinitely. The BMC implementation should return
an error completion code if this byte is not supported.

[7:1] - reserved

[0] - 1b = Turn on Identify indefinitely. This overrides the values in byte 1.

 0b = Identify state driven according to byte 1.

Response Data 1 Completion Code

1. This parameter byte is optionally present. If not provided, the Chassis Identify can be used to turn
on the Identify indication for the default timeout interval, but cannot be used to turn the indication
off.

2. This parameter byte is optionally present. If provided, it is highly recommended that the chassis
provides a local manual mechanism that enables a user or service personnel to turn off Identify. If
a local manual mechanism is not provided, AC removal (BMC reset) should remove the indication.

28.6 Set Front Panel Enables

The following command is used to enable or disable the buttons on the front panel of the chassis. (Button actually

refers to the ability for the local user to be able to perform the specified functions via a pushbutton, switch, or

 Intelligent Platform Management Interface Specification

 419

other ‘front panel’ control built into the system chassis.) These values will be returned in the Front Panel Button

capabilities and disable/enable status (byte 5) of the Get Chassis Status command.

Table 28-7, Set Front Panel Button Enables Command
 byte data field

 1 Front Panel Button Enables

[7:4] - reserved

[3] - 1b = disable Standby (sleep) button for entering standby (sleep)
(control can still be used to wake the system)

[2] - 1b = disable Diagnostic Interrupt button

[1] - 1b = disable Reset button

[0] - 1b = disable Power off button for power off only (in the case there is a
single combined power/standby (sleep) button, then this also
disables sleep requests via that button)

Response Data 1 Completion Code

28.7 Set Chassis Capabilities Command

This command is used to set the values that will be returned for the Get Chassis Capabilities command into non-

volatile storage associated with the Chassis Device.

This command is recommended for all add-on bridge applications.

Table 28-8, Set Chassis Capabilities Command
 byte data field

Request Data 1 Capabilities Flags

[7:2] - reserved

[1] - 1b = Provides Front Panel Lockout (see 28.1, Get Chassis
Capabilities)

[0] - 1b = Provides intrusion

 2 Chassis FRU Info Device Address (see 28.1, Get Chassis Capabilities for a
description of these addresses, their use, and the field formatting)

 3 Chassis SDR Device Address

 4 Chassis SEL Device Address

 5 Chassis SM Device Address

 (6) Chassis Bridge Device Address

Response Data 1 Completion Code. Note, this command does not return an error completion
code if an attempt is made to change a ‘read-only’ parameter.
Software must check which fields in the response match the value
from the request by using the Get Chassis Capabilities command.

Intelligent Platform Management Interface Specification

420

28.8 Set Power Restore Policy Command

This command can be used to configure the power restore policy. This configuration parameter is kept in non-

volatile storage. The power restore policy determines how the system or chassis behaves when AC power returns

after an AC power loss. The Get Chassis Status command returns the power restore policy setting.

Table 28-9, Set Power Restore Policy Command
 byte data field

Request Data 1 [7:3] - reserved

[2:0] - power restore policy

 011b = no change (just get present policy support)

 010b = chassis always powers up after AC/mains is applied or
returns

 001b = after AC/mains is applied or returns, power is restored to the
state that was in effect when AC/mains was removed or lost

 000b = chassis always stays powered off after AC/mains is applied,
power pushbutton or command required to power on system

 all other = reserved

Response Data 1 Completion Code. A non-zero completion code should be returned if an
attempt is made to set a policy option that is not supported.

 2 power restore policy support (bitfield)

[7:3] - reserved

[2] - 1b = chassis supports always powering up after AC/mains returns

[1] - 1b = chassis supports restoring power to state that was in effect when
AC/mains was lost

[0] - 1b = chassis supports staying powered off after AC/mains returns

1. In some installations, the chassis’ main power feed may be DC based. For example, -48V.
In this case, the power restore policy for AC/mains refers to the loss and restoration of the
DC main power feed.

28.9 Set Power Cycle Interval

This command provides a mechanism for configuring the power cycle interval for the system. This interval

determines the time that system power will be powered down during a power cycle operation initiated by the

Chassis Control command or the watchdog time. The setting is non-volatile.

Table 28-10, Set Power Cycle Interval Command
 byte data field

Request Data 1 [7:0] - Power Cycle Interval in seconds. 1-based.

00h = no delay.

Response Data 1 Completion code.

28.10 Remote Access Boot control

The BMC allows a remote console application to optionally direct the boot process following a command to reset,

power-up, or power-cycle the system. The remote console sets Boot Option flags prior to issuing a command to

reset, power up, or power-cycle the system. The system BIOS can then read these flags after the system restarts

and perform the requested boot operation. This will typically be used to direct the system to boot to an alternative

partition or source in order to perform emergency remote recovery operations.

The Boot Option parameter definitions follow the set of Boot Option parameters defined by the DMTF Pre-OS

Working Group.

Implementing Remote Access Boot control is optional.

 Intelligent Platform Management Interface Specification

 421

28.11 Get System Restart Cause Command

This command returns information about what action last caused the system to restart. BIOS can use this

command in conjunction with the System Boot Options as additional information in determining whether to

perform the requested boot operation.

Table 28-11, Get System Restart Cause Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Restart Cause

[7:4] - reserved

[3:0] - 0h = unknown (system start/restart detected, but cause unknown)
[required if this condition exists]

 1h = Chassis Control command [required]

 2h = reset via pushbutton [optional]

 3h = power-up via power pushbutton [optional]

 4h = Watchdog expiration (see watchdog flags) [required]

 5h = OEM [optional]

 6h = automatic power-up on AC being applied due to ‘always restore’
power restore policy (see 28.8, Set Power Restore Policy
Command) [optional]

 7h = automatic power-up on AC being applied due to ‘restore previous
power state’ power restore policy (see 28.8, Set Power Restore
Policy Command) [optional]

 8h = reset via PEF [required if PEF reset supported]

 9h = power-cycle via PEF [required if PEF power-cycle supported]

 Ah = soft reset (e.g. CTRL-ALT-DEL) [optional]

 Bh = power-up via RTC (system real time clock) wakeup [optional]

 all other = reserved

 3 Channel number. (Channel that command was received over)

28.12 Set System Boot Options Command

This command is used to set parameters that direct the system boot following a system power up or reset. The

boot flags only apply for one system restart. It is the responsibility of the system BIOS to read these settings

from the BMC and then clear the boot flags.

It is possible that a remote console application could set the boot option flags and then be terminated either

accidentally or intentionally. In this circumstance, it’s possible that a user initiated system restart could occur

hours or even days later. If the boot options were used without examining the reset cause, this could cause an

unexpected boot sequence. Thus, the BMC will automatically clear a ‘boot flags valid bit’ if a system restart is

not initiated by a Chassis Control command within 60 seconds +/- 10% of the valid flag being set. The BMC

will also clear the bit on any system resets or power-cycles that are not triggered by a System Control command.

This default behavior can be temporarily overridden using the ‘BMC boot flag valid bit clearing’ parameter.

Intelligent Platform Management Interface Specification

422

Table 28-12, Set System Boot Options Command
 byte data field

Request Data 1 Parameter valid

[7] - 1b = mark parameter invalid / locked

 0b = mark parameter valid / unlocked

[6:0] - boot option parameter selector

 (2:N) Boot option parameter data, per Table 22-12, Boot Option Parameters.
Passing 0-bytes of parameter data allows the parameter valid bit to be
changed without affecting the present parameter setting.

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

28.13 Get System Boot Options Command

This command is used to retrieve the boot options set by the Set System Boot Options command.

Table 28-13, Get System Boot Options Command
 byte data field

Request Data 1 Parameter selector

[7] - reserved

[6:0] - boot option parameter selector

 2 [7:0] - Set Selector

Selects a particular block or set of parameters under the given parameter
selector.

Write as 00h if parameter doesn’t use a Set Selector

 3 [7:0] - Block Selector

Selects a particular block within a set of parameters.

Write as 00h if parameter doesn’t use a Block Selector.

Note: As of this writing, there are no IPMI-specified Boot Options parameters
that use the block selector. However, this field is provided for consistency with
other configuration commands and as a placeholder for future extension of the
IPMI specification.

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

 2 [7:4] - reserved

[3:0] - parameter version. 1h for this specification unless otherwise specified.

 3 Parameter valid

[7] - 1b = parameter marked invalid / locked

 0b = parameter marked valid / unlocked

[6:0] - boot option parameter selector

 4:N Configuration parameter data, per Table 28-14, Boot Option Parameters.

If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

 Intelligent Platform Management Interface Specification

 423

Table 28-14, Boot Option Parameters
Parameter # Parameter Data (non-volatile unless otherwise noted)

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following parameters are
being updated, and when the updates are completed. The bit is primarily provided to alert
software that some other software or utility is in the process of making changes to the
data.

An implementation can also elect to provide a ‘rollback’ feature that uses this information
to decide whether to ‘roll back’ to the previous configuration information, or to accept the
configuration change.

If used, the roll back shall restore all parameters to their previous state. Otherwise, the
change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete. If a system reset or transition to powered down state occurs
while ‘set in progress’ is active, the BMC will go to the ‘set complete’ state. If
rollback is implemented, going directly to ‘set complete’ without first doing a
‘commit write’ will cause any pending write data to be discarded.

 01b = set in progress. This flag indicates that some utility or other software is
presently doing writes to parameter data. It is a notification flag only, it is not
a resource lock. The BMC does not provide any interlock mechanism that
would prevent other software from writing parameter data while.

 10b = commit write (optional). This is only used if a rollback is implemented. The
BMC will save the data that has been written since the last time the ‘set in
progress’ and then go to the ‘set in progress’ state. An error completion
code will be returned if this option is not supported.

 11b = reserved

service partition
selector

(semi-volatile) [1]

1 data 1

[7:0] - service partition selector. This value is used to select which service partition BIOS
should boot using. This document doesn’t specify which value corresponds to a
particular service partition.

00h = unspecified.

service partition scan

(non-volatile)

2 data 1

[7:2] - reserved

[1] - 1b = Request BIOS to scan for specified service partition. BIOS clears this bit after
the requested scan has been performed.

[0] - 1b = Service Partition discovered. BIOS sets this bit to indicate it has discovered
the specified service partition. The bit retains the value from the last scan.
Therefore, to get up-to-date status of the discovery state, a scan may need to
be requested.

BMC boot flag valid bit
clearing

(semi-volatile) [1]

3 data 1- BMC boot flag valid bit clearing. Default = 00000b.

[7:5] - reserved

[4] - 1b = don’t clear valid bit on reset/power cycle caused by PEF

[3] - 1b = don’t automatically clear boot flag valid bit if Chassis Control command not
received within 60-second timeout (countdown restarts when a Chassis
Control command is received)

[2] - 1b = don’t clear valid bit on reset/power cycle caused by watchdog timeout

[1] - 1b = don’t clear valid bit on pushbutton reset / soft-reset (e.g. “Ctrl-Alt-Del”)

[0] - 1b = don’t clear valid bit on power up via power pushbutton or wake event

Intelligent Platform Management Interface Specification

424

boot info acknowledge

(semi-volatile) [1]

4 These flags are used to allow individual parties to track whether they’ve already seen and
handled the boot information. Applications that deal with boot information should check
the boot info and clear their corresponding bit after consuming the boot options data.

data 1: Write Mask (‘write-only’. This field is returned as 00h when read. This is to
eliminate the need for the BMC to provide storage for the Write Mask field.)

[7] - 1b = enable write to bit 7 of Data field

[6] - 1b = enable write to bit 6 of Data field

[5] - 1b = enable write to bit 5 of Data field

[4] - 1b = enable write to bit 4 of Data field

[3] - 1b = enable write to bit 3 of Data field

[2] - 1b = enable write to bit 2 of Data field

[1] - 1b = enable write to bit 1 of Data field

[0] - 1b = enable write to bit 0 of Data field

data 2:Boot Initiator Acknowledge Data

The boot initiator should typically write FFh to this parameter prior to initiating the boot.
The boot initiator may write 0’s if it wants to intentionally direct a given party to ignore the
boot info. This field is automatically initialized to 00h when the management controller is
first powered up or reset.

[7] - reserved. Write as 1b. Ignore on read.

[6] - reserved. Write as 1b. Ignore on read.

[5] - reserved. Write as 1b. Ignore on read.

[4] - 0b = OEM has handled boot info.

[3] - 0b = SMS has handled boot info.

[2] - 0b = OS / service partition has handled boot info.

[1] - 0b = OS Loader has handled boot info.

[0] - 0b = BIOS/POST has handled boot info.

 Intelligent Platform Management Interface Specification

 425

boot flags

(semi-volatile) [1]

5 data 1

[7] - 1b = boot flags valid. The bit should be set to indicate that valid flag data is present.
This bit may be automatically cleared based on the boot flag valid bit clearing
parameter, above.

[6] - 0b = options apply to next boot only.

 1b = options requested to be persistent for all future boots (i.e. requests BIOS to
change its boot settings)

 Note: In order to set this bit remotely (over a session), the user must execute
the Set System Boot Options command at ADMIN privilege level. In order to
retain backward compatibility, this bit will be AUTOMATICALLY CLEARED
by the BMC whenever the boot flags valid bit is clear (0b). This is to avoid
the possibility that this bit would already be set when an older application
changes other options. Thus, this bit and the boot flags valid bit must be set
simultaneously.

[5] - BIOS boot type (for BIOS that support both legacy and EFI boots)

 0b = “PC compatible” boot (legacy)

 1b = Extensible Firmware Interface Boot (EFI)

[4:0] - reserved

BIOS support for the following flags is optional. If a given flag is supported, it must cause
the specified function to occur in order for the implementation to be considered to be
conformant with this specification.

The following parameters represent temporary overrides of the BIOS default settings
when data1[6] has value 0b (one-boot), and represent requests to persistently change the
BIOS boot behavior when data1[6] has value 1b (persistent). BIOS should only use the
following flags when the boot flags valid bit (data1[7]) is set (1b).

If data[6] = 0b (one-boot) a value of 0 for a given data2 parameter indicates that BIOS
should use its default configuration for the given option (no override) - a non-zero value
requests BIOS to enter the requested state.

If data[6] = 1b (persistent) BIOS is requested to change its setting according to the flag.
This only applies to parameters labeled “”. Settings for other parameters are ignored.

data 2

[7] - 1b = CMOS clear

[6] - 1b = Lock Keyboard

[5:2] - Boot device selector 

 0000b = No override

 0001b = Force PXE

 0010b = Force boot from default Hard-drive[2]

 0011b = Force boot from default Hard-drive, request Safe Mode[2]

 0100b = Force boot from default Diagnostic Partition[2]

 0101b = Force boot from default CD/DVD[2]

 0110b = Force boot into BIOS Setup

 0111b = Force boot from remotely connected (redirected) Floppy/primary
removable media[2]

 1001b = Force boot from primary remote media[2]

 1000b = Force boot from remotely connected (redirected) CD/DVD[2]

 1010b = reserved

 1011b = Force boot from remotely connected (redirected) Hard Drive[2]

 1100-1110b = Reserved

 1111b = Force boot from Floppy/primary removable media[2]

[1] - 1b = Screen Blank

[0] - 1b = Lock out Reset buttons 

data 3

[7] - 1b = Lock out (power off/ sleep request) via Power Button 

[6:5] - Firmware (BIOS) Verbosity (Directs what appears on POST display) 

 00b = system default

 01b = request quiet display

 10b = request verbose display

Intelligent Platform Management Interface Specification

426

 11b = reserved

[4] - 0b (1b = Force progress event traps for [IPMI 2.0]) .

[3] - 1b = User password bypass . When set to 1b, the managed client’s BIOS boots
the system and bypasses any user or boot password that might be set in the
system. This option allows a system administrator to, for example, force a
system boot via PXE in an unattended manner.

[2] - 1b = Lock Out Sleep Button . When set to 1b, directs BIOS to disable the sleep
button operation for the system, normally until the next boot cycle. Client
instrumentation might provide the capability to re-enable the button
functionality without rebooting. (This only applies to systems that have a
separate sleep button on the chassis.)

[1:0] - Console Redirection control 

 00b = console redirection occurs per BIOS configuration setting (system default)

 01b = suppress (skip) console redirection if enabled

 10b = request console redirection be enabled

 11b = reserved

data 4

[7:4] - reserved

[3] - BIOS Shared Mode Override[3]

Can be used to request BIOS to temporarily place the channel into Shared access mode.

Per the recommendations in Table 14-2, Serial Port Sharing Access Characteristics,
‘Shared’ access causes the baseboard serial controller to remain enabled after
POST/start of OS boot while also allowing the BMC to be accessible. This can be useful
when booting to an alternative device such as a Diagnostic Partition since it means the
partition can use the serial port but that communication with the BMC can remain
available if the partition software fails.

Note: BIOS should only pay attention this field if when the ‘valid’ flag is set and the
‘BIOS/POST has handled boot info’ flag is set.

1b = Request BIOS to temporarily set the access mode for the channel specified in
parameter #6 to ‘Shared’. This is typically accomplished by sending a ‘Set
Channel Access’ command to set the volatile access mode setting in the
BMC[4].

 0b = No request to BIOS to change present access mode setting.

[2:0] - BIOS Mux Control Override

Can be used to request BIOS to force a particular setting of the serial/modem mux at the
conclusion of POST / start of OS boot. This override takes precedence over the mux
settings for the access mode even if the BIOS Shared Mode Override is set.

 Note: BIOS should only pay attention this field if when the ‘valid’ flag is set and
BIOS/POST has handled boot info flag is set.

000b = BIOS uses recommended setting of the mux at the end of POST (See
Table 14-2, Serial Port Sharing Access Characteristics for more info.)

001b = Requests BIOS to force mux to BMC at conclusion of POST/start of OS-
boot. If honored, this will override the recommended setting of the mux at
the end of POST (See Table 14-2, Serial Port Sharing Access
Characteristics for more info.)

010b = Requests BIOS to force mux to system at conclusion of POST/start of OS-
boot. If honored, this will override the recommended setting of the mux at
the end of POST (See Table 14-2, Serial Port Sharing Access
Characteristics for more info.)

data 5 -

[7:5] – reserved

[4:0] – Device Instance Selector

 If this value is 0, then there is no change to Boot Device Selector behavior. If this
value is not zero, then the behavior of Boot Device Selector for the following
values

0001b = Force PXE

0010b = Force boot from default Hard-drive,

0011b = Force boot from default Hard-drive, request Safe Mode,

0101b = Force boot from default CD/DVD,

0111b = Force boot from remotely connected (redirected) Floppy/primary
removable media

1000b = Force boot from remotely connected (redirected) CD/DVD

1001b = Force boot from primary remote media

 Intelligent Platform Management Interface Specification

 427

1011b = Force boot from remotely connected (redirected) Hard Drive

1111b = Force boot from Floppy/primary removable media

 is modified to use the value in this parameter to select a particular instance of a
device of that type to boot from.

 For example, if the Boot Device Selector were 0010b (Hard-drive) and the Logical

Device selector was 00010b, it would select logical external hard drive 1. Devices
instances may be physical or logical depending on the system.

 The system should attempt to boot from the specified device instance first. If the

boot fails the system should attempt booting using the system's boot order
configuration. If the requested value is out of the range of logical devices, then the
system should treat the value as zero.

00000b = no specific device instance requested
00001b to 01111b = external (direct attached) device instance 1 to 15,

respectively
10000b = reserved

 10001b to 11111b = internal device instance number 1 to 15, respectively

boot initiator info

(semi-volatile) [1]

6 Address & Identity information for the party that initiated the boot. The party that initiates
the boot writes this parameter and the boot info acknowledge parameter prior to issuing
the command that causes the system power up, power cycle, or reset. This data is
normally written by the remote console application, not the BMC.

boot source

data 1- Channel Number. Channel that will deliver the boot command (e.g. chassis
control). BIOS and boot software (e.g. service partition or OS loader) can use the
Get Session Info command to find out information about the party that initiated the
boot.

[7:4] - reserved

[3:0] - Channel Number

data 2:5 - Session ID. Session ID for session that the boot command will be issued over.
This value can be used with the Get Session Info command to find out information
about the party that initiated the boot. For IPMI v2.0/RMCP+ this is the Managed
System Session ID that was generated by the BMC when the session was
activated.

data 6:9 - Boot Info Timestamp. This timestamp is used to help software determine
whether the boot information is ‘stale’ or not. A service partition or OS loader may
elect to ignore the boot information if it is older than expected.

 The boot initiator should load this field with the timestamp value from the Get SEL
Time command prior to issuing the command that initiates the boot.

boot initiator mailbox

(semi-volatile) [1][2]

7 This parameter is used as a ‘mailbox’ for holding information that directs the operation of
the OS loader or service partition software. The data content is specified by the software
vendor.

Note: Since this information will be retained by the BMC and may be readable by other
software entities, care should be taken to avoid using it to carry ‘secret’ data.

data1: Set Selector = block selector

Selects which 16-byte info block to access. 0-based.

data 2:(17) block data

The first three bytes of block #0 are required to be an IANA Enterprise ID Number (least
significant byte first) for the company or organization that has specified the loader.

Up to 16-bytes per block of information regarding boot initiator, based on protocol and
medium.

An implementation is required to support at least 80-bytes (five blocks) of storage for this
command. Previous values are overwritten. The BMC does not automatically clear any
remaining data bytes if fewer than 16 bytes are written to a given block.

OEM Parameters

(optional. Non-volatile
or volatile as specified
by OEM)

96:127 This range is available for special OEM configuration parameters. The OEM is identified
according to the Manufacturer ID field returned by the Get Device ID command.

Intelligent Platform Management Interface Specification

428

1. The designation ‘semi-volatile’ means that the parameter will be kept across system power cycles, resets, system power
on/off, and sleep state changes, but will not be preserved if the management controller loses standby power or is cold reset.
Parameters designated as ‘semi-volatile’ are initialized to 0’s upon controller power up or hard reset, unless otherwise
specified.

2. IPMI allows software to use the boot initiator mailbox as a way for a remote application to pass OEM parameters for
additional selection of the boot process and direction of the startup of post-boot software. If additional parameters are not
included, the system boots the primary/first-scanned device of the type specified.

3. When BIOS temporarily changes the access mode to ‘Shared’, the BMC should operate according to the description for that
mode provided in Table 14-2, Serial Port Sharing Access Characteristics. Because this is a volatile setting, the BMC will
return to operating according to the non-volatile setting on the next system power down or hard reset. A remote application
that uses this bit should be aware of possible differences in operation between the non-volatile setting and Shared mode. For
example, the differences in answering behavior between “Shared” mode and “Always Available” mode.

4. BIOS should set this access mode and, if serial port sharing is enabled, configure the system UART according to Table 14-2,
Serial Port Sharing Access Characteristics prior to launching the load (boot) of the operating system. It is recommended that
this operation be performed as early in POST as feasible. In any case, a remote application should be aware that the BIOS
may be operating according to the non-volatile setting during a significant portion of POST until it reaches the point where it
acts on the BOOT options.

28.14 Get POH Counter Command

This version of IPMI provides a specification for an optional, POH (Power-On Hours) counter. The management

controller automatically increments non-volatile storage at the specified rate whenever the system is powered up.

It is recommended that this command be implemented in the BMC to provide a standardized location for this

function.

Note that in a power-managed system, the definition of ‘powered up’ can be somewhat ambiguous. The definition

used here is that the power-on hours shall accumulate whenever the system is in the operational (S0) state. An

implementation may elect to increment power-on hours in the S1 and S2 states as well.

‘Clear’ or ‘Set’ commands are not specified for this counter. This is because the counter is most typically used for

warranty tracking or replacement purposes where changing or clearing the counter would defeat the purpose.

The following command is used for accessing the POH Counter. This command returns the present reading of the

counter, plus the number of counts per hour.

Table 28-15, Get POH Counter Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Minutes per count.

 3:6 Counter reading. LS Byte first.

When the system is powered down between counts, the counter either picks up incrementing at the offset at which

the power down occurred, or starts counting at 0 minutes from the last counter reading, depending on the choice

of the implementer. In any case, the time does not get ‘rounded up’ to the next count as a result of powering down

between counts.

 Intelligent Platform Management Interface Specification

 429

Intelligent Platform Management Interface Specification

430

29. Event Commands
The ‘Sensor/Event’ Network Function is used for device functionality related to the transmission, reception, and

handling of ‘Event Messages’ and platform sensors.

What is commonly referred to as an ‘Event Message’ is actually a Sensor/Event Message with a command byte of

‘02h’. The request is also referred to as an ‘Event Request Message’, while the corresponding response is referred to

as an ‘Event Response Message’.

The following presents the list of the Event commands under the ‘Sensor/Event’ Network Function. Refer to

Appendix G - Command Assignments for the specification of the Network Function and Command (CMD) values

and privilege levels for these commands.

Table 29-1, Event Commands
 Mandatory/Optional

Command

Section

Defined

Event

Generator

Event

Receiver

Set Event Receiver 29.1 M O

Get Event Receiver 29.2 M O

Platform Event (a.k.a. “Event Message”) 29.3 M M

29.1 Set Event Receiver Command

This global command tells a controller where to send Event Messages. The slave address and LUN of the Event

Receiver must be provided. A value FFh for the Event Receiver Slave Address disables Event Message generation

entirely. This command is only applicable to management controllers that act as IPMB Event Generators.

A device that receives a ‘Set Event Receiver’ command shall ‘re-arm’ event generation for all its internal sensors.

This means internally re-scanning for the event condition, and updating the event status based on the result. This

will cause devices that have any pre-existing event conditions to transmit new event messages for those events.

 A reading/state unavailable (formerly “initial update in progress”) bit is provided with the

Get Sensor Reading and Get Sensor Event Status commands to help software avoid getting

incorrect event status due to a re-arm. For example, suppose a controller only scans for an

event condition once every four seconds. Software that accessed the event status using the Get

Sensor Reading command could see the wrong status for up to four seconds before the event

status would be correctly updated. A controller that has slow updates must implement the

reading/state unavailable bit, and should not generate event messages until the update has

completed. Software should ignore the Event Status bits while the reading/state unavailable

bit is set.

Table 29-2, Set Event Receiver
 byte data field

Request Data 1 Event Receiver Slave Address. 0FFh disables Event Message Generation,
Otherwise:

[7:1] - IPMB (I2C) Slave Address

[0] - always 0b when [7:1] hold I2C slave address

 2 [7:2] - reserved

[1:0] - Event Receiver LUN

Response Data 1 Completion Code

 Intelligent Platform Management Interface Specification

 431

29.2 Get Event Receiver Command

This global command is used to retrieve the present setting for the Event Receiver Slave Address and LUN. This

command is only applicable to management controllers that act as IPMB Event Generators.

Table 29-3, Get Event Receiver Command
 byte data field

Request Data - -

Response Data 1 Completion Code.

 2 Event Receiver Slave Address. 0FFh indicates Event Message Generation
has been disabled. Otherwise:

[7:1] IPMB (I2C) Slave Address

[0] always 0b when [7:1] hold I2C slave address

 3 [7:2] - reserved

[1:0] - Event Receiver LUN

29.3 Platform Event Message Command

This command may be thought of as a request for the BMC to process the event data that the command contains.

Typically, the data will be logged to the System Event Log (SEL). Depending on the implementation, the data

may also go to the Event Message Buffer and processed by Platform Event Filtering (PEF).

Table 29-4, Platform Event (Event Message) Command
 IPMB MESSAGING

(IPMB, LAN, Serial/Modem, PCI Mgmt. Bus)

 SYSTEM INTERFACE

 byte data field byte data field

 - Generator ID (RqSA, RqLUN) 1 Generator ID

Request Data 1 EvMRev 2 EvMRev

 2 Sensor Type 3 Sensor Type

 3 Sensor # 4 Sensor #

 4 Event Dir | Event Type 5 Event Dir | Event Type

 5 Event Data 1 6 Event Data 1

 6 Event Data 2 7 Event Data 2

 7 Event Data 3 8 Event Data 3

Response Data 1 Completion Code. 1 Completion Code.

The Generator ID field is a required element of an Event Request Message. For IPMB messages, this field is

equated to the Requester’s Slave Address and LUN fields. Thus, the Generator ID information is not carried in the

data field of an IPMB request message.

For ‘system side’ interfaces, it is not as useful or appropriate to ‘overlay’ the Generator ID field with the message

source address information, and so it is specified as being carried in the data field of the request.

29.4 Event Request Message Fields

An Event Request Message contains the following fields for the Event Receiver, regardless of whether the

message is received from the IPMB or from a ‘system side’ messaging interface, such as the KCS interface. Most

Intelligent Platform Management Interface Specification

432

of the information is passed in the data field of the message, however, in some cases field information is extracted

from the ‘message header’.

Table 29-5, Event Request Message Fields
Field Description

Generator ID This field identifies the device that has generated the Event Message. This is the 7-bit Requester’s
Slave Address (RqSA) and 2-bit Requester’s LUN (RqLUN) if the message was received from the
IPMB, or the 7-bit System Software ID if the message was received from system software.

EvMRev One byte. Event Message Revision. This field is used to identify different revisions of the Event
Message format. The revision number shall be 04h for Event Messages that comply with the format
given in this specification. IPMI v1.0 messages use 03h. It is recommended that software be able to

interpret both versions.

Sensor Type One byte. Indicates the event class or type of sensor that generated the Event Message. The
Sensor Type Codes are specified in Table 42-3, Sensor Type Codes.

Sensor # One byte. A unique number (within a given sensor device) representing the ‘sensor’ within the
management controller that generated the Event Message. Sensor numbers are used for both
identification and access of sensor information, such as getting and setting sensor thresholds.

Event Dir 1-bit. Indicates the event transition direction. (0 = Assertion Event, 1 = Deassertion Event)

Event Type 7-bits. This field indicates the type of threshold crossing or state transition (trigger) that produced the
event. This is encoded using the Event/Reading Type Code. See Section 42, Sensor and Event
Code Tables.

Event Data One to three Bytes. The remainder of the Event Message data according to the class of the Event
Type for the sensor (threshold, discrete, or OEM). The contents and format of this field is specified
in Table 29-6, Event Request Message Event Data Field Contents, below.

The following illustrates which fields from the Event Request Message get transferred to the System Event

Record.

29.5 IPMB Event Message Formats

The following figure illustrates the formatting of an Event Request Message as an ‘IPMB’ message on an I2C bus,

per the Intelligent Platform Management Bus Communications Protocol v1.0.

Figure 29-1, IPMB Event Request Message Format
RsSA NetFn /RsLUN Chk1

RqSA** RqSeq /RqLUN**

Cmd=02 EvMRev Sensor Type Sensor # Event Dir Event Type Event Data Chk2

** These fields constitute the ‘Generator ID’ field for the Event Request Message.

 Shading designates fields that are not stored in the event record.

The Event Receiver device responds to IPMB Event Request Messages by simply issuing the Event Response

Message with a single ‘Completion Code’ byte in the data field and a command code of 02h in IPMB Response

Message format.

29.6 System Interface Event Request Message Format

Event Request Messages are formatted differently over the System Interface than they are over the IPMB or

interfaces that use the IPMB message format. The following figure illustrates the formatting of an Event Request

Message as it would be transmitted over the SMIC interface. This is provided for illustration purposes only. Refer

to the individual sections for the System Interfaces for more information: Section Section 9.4, Logging Events

 Intelligent Platform Management Interface Specification

 433

from System Software via KCS Interface, 10.16, Logging Events from System Software via SMIC, and Section

11.5, Logging Events from System Software via BT Interface. SSIF uses the same format as KCS.

Figure 29-2, Example SMIC Event Request Message Format
NetFn /00

Cmd=02 7-bit Software ID** 1

EvMRev Sensor Type Sensor # Event Dir Event Type Event Data

** This field constitutes the ‘Generator ID’ field for the Event Request Message.

 Shading designates fields that are not stored in the event record.

Intelligent Platform Management Interface Specification

434

29.7 Event Data Field Formats

The contents of the Event Data field in an Event Request Message (Event Message) is dependent on the sensor

class of the sensor. The sensor class obtained from the Event/Reading Type Code specifies whether the sensor

event is threshold based, discrete, or OEM defined. Each Event Type is associated with a sensor class. An

application can extract the sensor class, and determine the corresponding Event Data format, from the

Event/Reading Type Code that was received in the Event Type field in the Event Message. See section 42.1,

Event/Reading Type Codes, for more information.

Table 29-6, Event Request Message Event Data Field Contents
Sensor

Class

Event Data

threshold Event Data 1
[7:6] - 00b = unspecified byte 2

 01b = trigger reading in byte 2

 10b = OEM code in byte 2

 11b = sensor-specific event extension code in byte 2

[5:4] - 00b = unspecified byte 3

 01b = trigger threshold value in byte 3

 10b = OEM code in byte 3

 11b = sensor-specific event extension code in byte 3

[3:0] - Offset from Event/Reading Code for threshold event.

 Event Data 2 reading that triggered event, FFh or not present if unspecified.

 Event Data 3 threshold value that triggered event, FFh or not present if unspecified. If present, byte 2 must be

present.

discrete Event Data 1
[7:6] - 00b = unspecified byte 2

 01b = previous state and/or severity in byte 2

 10b = OEM code in byte 2

 11b = sensor-specific event extension code in byte 2

[5:4] - 00b = unspecified byte 3

 01b = reserved

 10b = OEM code in byte 3

 11b = sensor-specific event extension code in byte 3

[3:0] - Offset from Event/Reading Code for discrete event state

 Event Data 2 Optional OEM code or severity / previous state fields. May be not present if byte is unspecified AND

Event Data 3 is also not present.
[7:4] - Optional offset from ‘Severity’ Event/Reading Code. (0Fh if unspecified).

[3:0] - Optional offset from Event/Reading Type Code for previous discrete event state. (0Fh if unspecified.)

 Event Data 3 Optional OEM code. FFh or not present if unspecified.

OEM Event Data 1
[7:6] - 00b = unspecified byte 2

 01b = previous state and/or severity in byte 2

 10b = OEM code in byte 2

 11b = reserved

[5:4] - 00b = unspecified byte 3

 01b = reserved

 10b = OEM code in byte 3

 11b = reserved

[3:0] - Offset from Event/Reading Type Code

 Event Data 2 Optional OEM code or severity / previous state fields. May be not present if byte is unspecified AND

Event Data 3 is also not present.

[7:4] - Optional OEM code bits or offset from ‘Severity’ Event/Reading Type Code. (0Fh if unspecified).

[3:0] - Optional OEM code or offset from Event/Reading Type Code for previous event state. (0Fh if unspecified).

 Event Data 3 Optional OEM code. FFh or not present if unspecified.

O/M = Optional/Mandatory. Mandatory indicates that the byte must be present in all messages. Optional bytes may be left
out of messages, as specified. If an optional byte is not present, the Event Receiver shall substitute the value FFh in the
corresponding Event Data byte position when transferring the information to the System Event Log function.

 Intelligent Platform Management Interface Specification

 435

Intelligent Platform Management Interface Specification

436

30. PEF and Alerting Commands
This section describes the formats of the commands related to configuring and controlling the Platform Event

Filtering (PEF) and Alerting capabilities. None of the commands in the following table are required unless PEF or

Alerting is supported. Refer to Appendix G - Command Assignments for the specification of the Network Function

and Command (CMD) values and privilege levels for these commands.

Table 30-1, PEF and Alerting Commands

Command

Section

Defined

O/M

Get PEF Capabilities 30.1 M[1]

Arm PEF Postpone Timer 30.2 M[1]

Set PEF Configuration Parameters 30.3 M[1]

Get PEF Configuration Parameters 30.4 M[1]

Set Last Processed Event ID 30.5 M[1]

Get Last Processed Event ID 30.6 M[1]

Alert Immediate 30.7 O[2]

PET Acknowledge 30.8 O[3]

1. Mandatory if PEF or Alerting is supported
2. Mandatory if Alerting is supported
3. Mandatory if LAN or PPP Alerting is supported

30.1 Get PEF Capabilities Command
This command returns the information about the implementation of PEF on the BMC.

Table 30-2, Get PEF Capabilities Command
 3 [7] - 1b = OEM Event Record Filtering supported

[6] - reserved

Action Support

[5] - 1b = diagnostic interrupt

[4] - 1b = OEM action

[3] - 1b = power cycle

[2] - 1b = reset

[1] - 1b = power down

[0] - 1b = Alert

 Intelligent Platform Management Interface Specification

 437

Table 30-2, Get PEF Capabilities Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 PEF Version (BCD encoded, LSN first, 51h for this specification. 51h 
version 1.5)

 3 [7] - 1b = OEM Event Record Filtering supported

[6] - reserved

Action Support

[5] - 1b = diagnostic interrupt

[4] - 1b = OEM action

[3] - 1b = power cycle

[2] - 1b = reset

[1] - 1b = power down

[0] - 1b = Alert

 4 Number of event filter table entries (1 based)

30.2 Arm PEF Postpone Timer Command

This command is used by software to enable and arm the PEF Postpone Timer. The command can also be used by

software to disable PEF indefinitely during run-time. Once enabled, the timer automatically starts counting down

whenever the last software-processed event Record ID is for a record that is not equal to the most recent (last)

SEL record. The countdown will begin immediately if the Record IDs are already different when the timer is

armed.

In order to keep the PEF Postpone Timer from expiring, software must use the Set Last Processed Event ID

command to update the last software-processed Record ID to match the value for the last SEL record. This will

cause the BMC to stop the timer and rearm it to start counting down from the value that was passed in the Arm

PEF Postpone Timer command.

The Get Last Processed Event ID command can be used to retrieve the present value for the last SEL record’s

Record ID, the last BMC-processed Record ID, and the last software-processed Record ID.

Table 30-3, Arm PEF Postpone Timer Command
 byte data field

Request Data 1 [7:0] - PEF Postpone Timeout, in seconds. 01h  1 second.

00h = disable Postpone Timer (PEF will immediately handle events, if
enabled). The BMC automatically disables the timer whenever the
system enters a sleep state, is powered down, or reset.

01h - FDh = arm timer. Timer will automatically start counting down from given
value when the last-processed event Record ID is not equal to the last
received event’s Record ID.

FEh = Temporary PEF disable. The PEF Postpone timer does not countdown
from the value. The BMC automatically re-enables PEF (if enabled in
the PEF configuration parameters) and sets the PEF Postpone timeout
to 00h whenever the system enters a sleep state, is powered down, or
reset. Software can cancel this disable by setting this parameter to 00h
or 01h-FDh.

FFh = get present countdown value

Response Data 1 Completion Code

 2 Present timer countdown value

30.3 Set PEF Configuration Parameters Command

This command is used for setting parameters such as PEF enable/disable and for entering the configuration of the

Event Filter table and the Alert Strings.

Intelligent Platform Management Interface Specification

438

Table 30-4, Set PEF Configuration Parameters Command
 byte data field

Request Data 1 Parameter selector

[7] - reserved

[6:0] - Parameter selector

 2:N Configuration parameter data, per Table 24-6, PEF Configuration Parameters.

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

81h = attempt to set the ‘set in progress’ value (in parameter #0) when not in
the ‘set complete’ state. (This completion code provides a way to
recognize that another party has already ‘claimed’ the parameters)

82h = attempt to write read-only parameter

83h = attempt to read write-only parameter

30.4 Get PEF Configuration Parameters Command

This command is used for retrieving the configuration parameters from the Set PEF Configuration command.

Table 30-5, Get PEF Configuration Parameters Command
 byte data field

Request Data 1 [7] - 1b = get parameter revision only.

 0b = get parameter

[6:0] - Parameter selector

 2 Set Selector (00h if parameter does not require a Set Selector)

 3 Block Selector (00h if parameter does not require a block number)

Response Data 1 Completion Code. Generic plus the following command-specific completion
codes:

80h = parameter not supported.

 2 [7:0] - Parameter revision.

 Format: MSN = present revision. LSN = oldest revision parameter is
backward compatible with. 11h for parameters in this specification.

 The following data bytes are not returned when the ‘get parameter revision
only’ bit is 1b.

 3:N Configuration parameter data, per Table 24-6, PEF Configuration Parameters.
If the rollback feature is implemented, the BMC makes a copy of the existing
parameters when the ‘set in progress’ state becomes asserted (See the Set In
Progress parameter #0). While the ‘set in progress’ state is active, the BMC
will return data from this copy of the parameters, plus any uncommitted
changes that were made to the data. Otherwise, the BMC returns parameter
data from non-volatile storage.

 Intelligent Platform Management Interface Specification

 439

Table 30-6, PEF Configuration Parameters
Parameter # Parameter Data

Set In Progress
(volatile)

0 data 1 - This parameter is used to indicate when any of the following
parameters are being updated, and when the updates are completed.
The bit is primarily provided to alert software than some other software or
utility is in the process of making changes to the data.

An implementation can also elect to provide a ‘rollback’ feature that uses
this information to decide whether to ‘roll back’ to the previous
configuration information, or to accept the configuration change.

If used, the roll back shall restore all parameters to their previous state.
Otherwise, the change shall take effect when the write occurs.

[7:2] - reserved

[1:0] - 00b = set complete. If a system reset or transition to powered
down state occurs while ‘set in progress’ is active, the
BMC will go to the ‘set complete’ state. If rollback is
implemented, going directly to ‘set complete’ without first
doing a ‘commit write’ will cause any pending write data to
be discarded.

 01b = set in progress. This flag indicates that some utility or other
software is presently doing writes to parameter data. It is a
notification flag only, it is not a resource lock. The BMC
does not provide any interlock mechanism that would
prevent other software from writing parameter data while.

 10b = commit write (optional). This is only used if a rollback is
implemented. The BMC will save the data that has been
written since the last time the ‘set in progress’ and then go
to the ‘set in progress’ state. An error completion code will
be returned if this option is not supported.

 11b = reserved

PEF control

(non-volatile)

1 data 1

[7:4] - reserved

[3] - PEF Alert Startup Delay disable. (optional)

 1b = enable PEF Alert Startup delay

 0b = disable PEF startup delay.

[2] - PEF Startup Delay disable. (optional)
An implementation that supports this bit should also provide
a mechanism that allows the user to Disable PEF in case
the filter entries are programmed to cause an ‘infinite loop’
of PEF actions (such as system resets or power cycles)
when the PEF startup delay is disabled. If this bit is not
implemented the PEF startup delay must always be
enabled.

 1b = enable PEF startup delay on manual (pushbutton) system
power-ups (from S4/S5) and system resets (including
system resets initiated by PEF).

 0b = disable PEF startup delay.

[1] - 1b = enable event messages for PEF actions. If this bit is set,
each action triggered by a filter will generate an event
message for the action. These allow the occurrence of PEF-
triggered actions to be logged (if event logging is enabled).
The events are logged as System Event Sensor 12h, offset
04h. See Table 42-3, Sensor Type Codes.) These event
messages are also subject to PEF.

 0b = disable event messages for PEF actions.

[0] - 1b = enable PEF.

 0b = disable PEF.

PEF Action global control

(non-volatile)

2 data 1

[7:6] - reserved

[5] - 1b = enable diagnostic interrupt

[4] - 1b = enable OEM action

[3] - 1b = enable power cycle action (No effect if power is already off)

[2] - 1b = enable reset action

[1] - 1b = enable power down action

[0] - 1b = enable Alert action

Intelligent Platform Management Interface Specification

440

Parameter # Parameter Data

PEF Startup Delay

(optional, non-volatile)

3 data 1 - time to delay PEF after a system power-ups (from S4/S5) and
resets. Default = 60 seconds. If this parameter is not provided, the
default PEF Startup Delay must be implemented. Enable/disable of the
delay is configured using the PEF Control parameter, above. If this
parameter is supported, a 00h value can also be used to disable the
delay if necessary. See Section 17.4, PEF Startup Delay, for more
information.

Note: An implementation that supports this parameter should also
provide a mechanism that allows the user to Disable PEF in case the
filter entries are programmed to cause an ‘infinite loop’ of PEF actions
under the situation where this parameter is set to too short an interval to
allow a user to locally disable PEF. An implementation is allowed to force
this parameter to a minimum, non-zero value.

PEF Startup Delay

[7:0] - PEF Startup Delay in seconds, +/- 10%. 1-based. 00h = no delay.

PEF Alert Startup Delay
(optional, non-volatile)

4 data 1 - time to delay Alerts after system power-ups (from S4/S5) and
resets. Default = platform-specific. 60-seconds typical, though may be
longer on systems that require more startup time before user can take
action to disable PEF. If this parameter is not provided, a default PEF
Startup Delay, appropriate for the platform, must be implemented.
Enable/disable of the delay can also be optionally configured using the
PEF Control parameter, above. An implementation can separately
implement this parameter and/or the enable/disable bit.

PEF Alert Delay

[7:0] - PEF Alert Startup Delay in seconds, +/- 10%. 1-based.

 00h = no delay.

Number of Event Filters

(READ ONLY)

5 Number of event filters supported. 1-based. This parameter does not
need to be supported if Alerting is not supported.

[7:0] - number of event filter entries. 0 = alerting not supported.

Event Filter Table, (non-
volatile)

6 data 1 - Set Selector = filter number.

[7:0] - Filter number. 1-based. 00h = reserved.

data 2:21 - filter data

Event Filter Table Data 1
(non-volatile)

7 This parameter provides an aliased access to the first byte of the event
filter data. This is provided to simplify the act of enabling and disabling
individual filters by avoiding the need to do a read-modify-write of the
entire filter data.

data 1 - Set Selector = filter number

[7:0] - Filter number. 1-based. 00h = reserved.

data 2 - data byte 1 of event filter data

Number of Alert Policy
Entries

(READ ONLY)

8 Number of alert policy entries supported. 1-based. This parameter does
not need to be supported if Alerting is not supported.

[7] - reserved

[6:0] - number of alert policy entries. 0 = alerting not supported.

Alert Policy Table

(non-volatile)

9 data 1 - Set Selector = entry number

[7] - reserved

[6:0] - alert policy entry number. 1-based.

data 2:4 - entry data

System GUID
(non-volatile)

10 data 1 Used to fill in the GUID field in a PET Trap. Stored per Table
20-10, GUID Format.

[7:1] - reserved

[0] - 1b = BMC uses following value in PET Trap.

0b = BMC ignores following value and uses value returned from
Get System GUID command instead.

2:17 - System GUID

Number of Alert Strings

(READ ONLY)

11 Number of alert strings supported in addition to Alert String 0. 1-based.
This parameter does not need to be supported if Alerting is not
supported.

[7] - reserved

[6:0] - number of alert strings.

 Intelligent Platform Management Interface Specification

 441

Parameter # Parameter Data

Alert String Keys

(volatile) & (non-volatile) -
see description

12 Sets the keys used to look up Alert String data in PEF. This parameter
does not need to be supported if Alerting is not supported.

data 1 - Set Selector = Alert string selector.

[7] - reserved.

[6:0] - string selector.

 0 = selects volatile string parameters

 01h-7Fh = non-volatile string selectors

PEF uses the following Event Filter Number and the Alert String Key
fields to look up the string associated with a particular event. String 0 is a
special, volatile string reserved for use by the Alert Immediate command.

The following two fields are used by PEF to look up a particular Alert
String based on information obtained from the alert policy entry. The
fields should typically be set to 0’s (unspecified) for string selector 0. PEF
will scan the values for string 0 when doing a look up, so the string 0
values can be set to non-zero values for PEF testing/debug purposes in
order to avoid writes to non-volatile storage.

data 2 - Event Filter Number

[7] - reserved.

[6:0] - Filter number. 1-based. 00h = unspecified.

data 3 - Alert String Set

[7] - reserved

[6:0] - Set number for string. 1-based. 00h = unspecified.

Alert Strings

(volatile) &
(non-volatile) - see
description.

13 Sets the Alert String data. The string data that should be used is
dependent on the Channel and Alert Type. This parameter does not
need to be supported if Alerting is not supported.

For Dial paging, the BMC automatically follows the string with a <CR>
(carriage return) character when sending it to the modem.

For TAP paging the string corresponds to ‘Field 2’, the Pager Message.
Note that while the string accepts 8-bit ASCII data, the TAP
implementation only supports 7-bit ASCII.

The BMC shall automatically zero the 8th bit when transmitting the string
during TAP paging.

String 0 is a special, volatile string reserved for use by the Alert
Immediate command.

data 1 - Set Selector = string selector.

[7] - reserved.

[6:0] - string selector.

 0 = selects volatile string

 01h-7Fh = non-volatile string selectors

data 2 - Block Selector = string block number to set, 1 based. Blocks
are 16 bytes.

data 3:N - String data. Null terminated 8-bit ASCII string. 16-bytes max.
per block.

Number of Group Control
Table entries
(READ ONLY)

(optional. Present if BMC
supports automatic ICMB
Group Power Control.
See ICMB specification
for details.)

14 data 1 - Number of group control table entries. 1-based (4 min, 8
max)

Group Control Table

15 data 1 - Set Selector = group control table entry selector.

[7] - reserved.

[6:0] - group control table entry selector.

Intelligent Platform Management Interface Specification

442

Parameter # Parameter Data

(optional, non-volatile.
Present if BMC supports
automatic ICMB Group
Power Control. See ICMB
specification for details.)

data 2 -

[7:6] - reserved

[5] - Request/Force

 0b = request control operation. A requested operation will only
complete once the same operation has been requested for
all control groups and all enabled control members for the
given chassis.

 1b = force control operation. A forced operation will occur
regardless of whether the same operation has been
requested for all control groups and all enabled control
membership for the given chassis.

[4] - Immediate/Delayed. Selects whether the BMC requests an
immediate or delayed control operation. Note: whether this
operation is initiated at the time the command is received is
dependent on the request/force bit, see above.

 0b = immediate control. BMC sends command that requests an
immediate control operation.

 1b = delayed control. BMC sends control command to request a
delayed control operation. This is conditioned by the
request/force bit.

[3:0] - Channel Number (channel number for ICMB that group
control operation is to be delivered over)

data 3: Group ID 0 (1-based)

00h = unspecified

FFh = all groups

data 4: Member ID 0 (0-based)

[7:5] - reserved

[4] - 0b = enable member ID check.

 1b = disable member ID check[1].

[3:0] - member ID. ID of this chassis within specified group. (value
is ignored if Group ID 0 = FFh)

data 5: Group ID 1 (1-based)

 00h = unspecified

 FFh = all groups

data 6: Member ID 1 (0-based)

[7:5] - reserved

[4] - 0b = enable member ID check.

 1b = disable member ID check[1].

[3:0] - member ID. ID of this chassis within specified group. (value
is ignored if Group ID 1 = FFh)

data 7: Group ID 2 (1-based)

 00h = unspecified

 FFh = all groups

data 8: Member ID 2 (0-based)

[7:5] - reserved

[4] - 0b = enable member ID check.

 1b = disable member ID check[1].

[3:0] - member ID. ID of this chassis within specified group. (value
is ignored if Group ID 2 = FFh)

data 9: Group ID 3 (1-based)

 00h = unspecified

 FFh = all groups

data 10: Member ID 3 (0-based)

[7:5] - reserved

[4] - 0b = enable member ID check.

 1b = disable member ID check[1].

[3:0] - member ID. ID of this chassis within specified group. (value
is ignored if Group ID 3 = FFh)

data 11: - Retries and Operation

[7] - reserved

[6:4] - number of times to retry sending the command to perform
the group operation [For ICMB, the BMC broadcasts a
Group Chassis Control command] (1-based)

 Intelligent Platform Management Interface Specification

 443

Parameter # Parameter Data

[3:0] - operation

0h = power down. Force system into soft off (S4/S45) state.
This is for ‘emergency’ management power down actions.
The command does not initiate a clean shut-down of the
operating system prior to powering down the system.

1h = power up.

2h = power cycle (optional). This command provides a power
off interval of at least 1 second.

3h = hard reset. Some systems may accept this option even if
the system is in a state (e.g. powered down) where resets
are unavailable.

4h = pulse Diagnostic Interrupt. (optional) Pulse a version of a
diagnostic interrupt that goes directly to the processor(s).
This is typically used to cause the operating system to do
a diagnostic dump (OS dependent). The interrupt is
commonly an NMI on IA-32 systems and an INIT on Intel®
Itanium™ processor based systems.

5h = Initiate a soft-shutdown of OS via ACPI by emulating a
fatal overtemperature. (optional)

OEM Parameters

(optional. Non-volatile or
volatile as specified by
OEM)

96:127 This range is available for special OEM configuration parameters. The
OEM is identified according to the Manufacturer ID field returned by the
Get Device ID command.

1. The enable/disable member ID check bit controls whether a control request for the group is checked against the
enabled members or not. If Member ID Check is disabled, then a control request to the group will automatically be
‘logged’ for that group. Note, however, that the requested control state must match for all enabled groups in order
for it to take effect.

30.5 Set Last Processed Event ID Command

This command is used to set the Record ID for the last event that was processed by system software. For test and

debug purposes, it can also be used to set the Record ID for the last event processed by the BMC. See sections

17.3, PEF Postpone Timer and 17.4.1, Last Processed Event Tracking for more information. The Last Processed

Event ID value is automatically set to FFFFh whenever the SEL is cleared using the Clear SEL command. If the

Delete SEL Entry command is used to either clear the SEL or delete the last event, software must set the Last

Processed event manually by using the Set Last Processed Event ID command.

Of the two Record IDs (software-processed or BMC-processed) PEF uses the Record ID for the most recent event

that was added to the SEL as the indicator of events that have yet to be processed. Both the last BMC-processed

and last software-processed IDs are kept in NV storage.

Table 30-7, Set Last Processed Event ID Command
 byte data field

Request Data 1 [7:1] - reserved.

[0] - 0b = set Record ID for last record processed by software.

 1b = set Record ID for last record processed by BMC.

 2:3 Record ID. LS-byte first.

Response Data 1 Completion Code

81h = cannot execute command, SEL erase in progress

Intelligent Platform Management Interface Specification

444

30.6 Get Last Processed Event ID Command

This command is used to retrieve the Record ID for the last event that was processed by system software and the

BMC. See sections 17.3, PEF Postpone Timer and 17.4.1, Last Processed Event Tracking for more information.

Table 30-8, Get Last Processed Event ID Command
 byte data field

Request Data - -

Response Data 1 Completion Code

81h = cannot execute command, SEL erase in progress

 2:5 Most recent addition timestamp. LS byte first.

 6:7 Record ID for last record in SEL. Returns FFFFh if SEL is empty.

 8:9 Last SW Processed Event Record ID.

 10:11 Last BMC Processed Event Record ID. Returns 0000h when event has been
processed but could not be logged because the SEL is full or logging has
been disabled.

30.7 Alert Immediate Command

This command is used to send an alert to the destination specified by the destination selector. The kind of alert

that will be sent is determined by Destination Type associated with the destination. Alerts that are initiated via this

command are never logged as events. This command is to support utilities or BIOS setup options that allow the

user to test their alerting configuration for a given destination. The command can also be used by system software

as a run-time mechanism to trigger the delivery of an alert.

These alerts are not subject to the Page Blackout intervals, although an alert must complete before the next Alert

Immediate command will be accepted. Alert Immediate commands are also rejected with an error completion code

if an IPMI messaging session or automatic page is already in progress.

Table 30-9, Alert Immediate Command
 Byte data field

Request Data 1 Channel number. (This value is required to select which configuration

parameters are to be used to send the Alert.)

[7:4] - reserved

[3:0] - Channel number.

Note: BMC stores the ‘Alert immediate status’ for each channel that

can send alert.

 2 Destination Selector/ Operation

[7:6] - Operation

 00b = Initiate alert

 01b = Get Alert Immediate status

 10b = Clear Alert Immediate status (sets status to 00h)

 11b = reserved

[5:4] - Reserved

[3:0] - destination selector. Selects which alert destination should go to.

0h = use volatile destination info. 1h-Fh = non-volatile destination.

Note: If Operation is ‘Get Alert Immediate status’ or ‘Clear Alert

Immediate Status’ bits [3:0] are reserved.

 Intelligent Platform Management Interface Specification

 445

 3 Alert String Selector

Selects which Alert String, if any, to use with the alert.

[7] - 0b = don’t send an Alert String

 1b = send Alert String identified by following string selector.

[6:0] - string selector.

 000_0000b = use volatile Alert String.

 01h-7Fh = non-volatile string selector.

 The following “Platform Event Parameters” (bytes 4:11) can be used to fill in

the corresponding event data fields of a Platform Event Trap. When

supported, all bytes (4:11) must be supplied. Implementation of this

capability is OPTIONAL but highly recommended for IPMI v2.0

implementations. See Table 29-5, Event Request Message Fields, for

specification of the individual fields.

 4 Generator ID

 5 EvMRev

 6 Sensor Type

 7 Sensor #

 8 Event Dir | Event Type

 9 Event Data 1

 10 Event Data 2

 11 Event Data 3

Response Data 1 Completion Code. Generic codes, plus following command-specific

completion codes:

81h = Alert Immediate rejected due to alert already in progress.

82h = Alert Immediate rejected due to IPMI messaging session active on this

channel.

83h = Platform Event Parameters (4:11) not supported.

 Following byte is only returned when Operation in request is set to “Get Alert

Immediate status”

 2 Alert Immediate Status

SMS can poll this status to determine present state of the immediate

alert.

00h = No status.

 Note: A BMC implementation is allowed (but not required) to abort

the Alert Immediate command due to a channel parameter

configuration, power, or reset state changes that occur while the

Alert Immediate command is being processed. In which case the

BMC will return the ‘no status’ state.

01h = Alert was Normal End. This will also be returned if one or more

attempts failed, but the last attempt was successful.

02h = “Call Retry” (Dial connection) retries failed.

03h = Alert failed due to timeouts waiting for acknowledge on all retries.

FFh = Alert by this command is in progress. Status pending.

Intelligent Platform Management Interface Specification

446

30.8 PET Acknowledge Command

This message is used to acknowledge a Platform Event Trap (PET) alert. PET alerts are SNMP Traps that are

delivered by LAN or PPP alerting, see [PET] for more info. The PET Acknowledge message is an IPMI Request

Message that is sent by the remote console that has received the trap.

Note: The PET Acknowledge command does not require that an IPMI Messaging session be established with the
BMC. It is in the same class as the Get Channel Authentication Capabilities command. In addition, if Alerting is
enabled and the configuration parameters for the Alert Destination require the PET Alert to be acknowledged, the
BMC will wait for and accept the PET Acknowledge command until the selected retry interval has expired, even if
IPMI Messaging is not available according to the present Access Mode for the channel. For systems using Serial
Port Sharing, the BMC will stay switched to the serial connector while waiting for the PET Acknowledge.

Table 30-10, PET Acknowledge Command
 byte data field

Request Data 1:2 Sequence Number. Value from the Sequence Number field of the PET. LS-
byte first[1].

 3:6 Local Timestamp. Value from the Local Timestamp field of the PET. LS-byte
first[1].

 7 Event Source type. From corresponding field in the PET.

 8 Sensor Device. From corresponding field in the PET.

 9 Sensor Number. From corresponding field in the PET.

 10:12 Event Data 1:3. From corresponding field in the PET.

Response Data 1 Completion Code.

1. Note: The sequence number and local timestamp fields in the actual PET on the network are
in network byte order, therefore filling in these values may require software to re-order the
bytes as they get them from the trap.

 Intelligent Platform Management Interface Specification

 447

Intelligent Platform Management Interface Specification

448

31. System Event Log (SEL) Commands
The System Event Log is a non-volatile repository for system events and certain system configuration information.

The device that fields the commands to access the SEL is referred to as the System Event Log Device or SEL Device.

Event Message information is normally written into the SEL after being received by the Event Receiver

functionality in the Event Receiver Device.

The SEL Device commands are structured in such a way that the SEL Device could actually be separated from the

Event Receiver Device. In which case it would be the responsibility of the Event Receiver Device to send the

appropriate ‘Add SEL Entry’ message directly to the SEL Device, or to pass the equivalent request through an

intermediary.

SEL Entries have a unique ‘Record ID’ field. This field is used for retrieving log entries from the SEL. SEL reading

can be done in a ‘random access’ manner. That is, SEL Entries can be read in any order assuming that the Record ID

is known.

SEL Record IDs 0000h and FFFFh are reserved for functional use and are not legal ID values. Record IDs are

handles. They are not required to be sequential or consecutive. Applications should not assume that SEL Record IDs

will follow any particular numeric ordering.

SEL Records are kept as an ordered list. That is, appending and deleting individual entries does not change the

access order of entries that precede or follow the point of addition or deletion.

31.1 SEL Device Commands

The following table summarizes the commands that are required for implementing a System Event Log device.

Note that this specification allows the System Event Log device to be implemented as a separate device from the

Event Receiver and Event Generator devices. If this is done, it is up to the implementer to create the method by

which Event Messages are passed from the Event Receiver Device to the System Event Log Device. Refer to

Appendix G - Command Assignments for the specification of the Network Function and Command (CMD) values

and privilege levels for these commands.

Table 31-1, SEL Device Commands
Command Section O/M

Get SEL Info 31.2 M

Get SEL Allocation Info 31.3 O

Reserve SEL 31.4 O[1]

Get SEL Entry 31.5 M

Add SEL Entry 31.6 M[2]

Partial Add SEL Entry 31.7 M[2]

Delete SEL Entry 31.8 O

Clear SEL 31.9 M

Get SEL Time 31.10 M

Set SEL Time 31.11 M

Get SEL Time UTC Offset 31.11a O[4]

Set SEL Time UTC Offset 31.11b O

Get Auxiliary Log Status 31.11a O

Set Auxiliary Log Status 31.13 O[3]

1. Mandatory if multiple entities have overlapping access to the SEL. If system
mechanisms or conventions are defined that preclude this operation, then this
command is optional.

2. Either Add SEL Entry or Partial Add SEL Entry must be provided. Providing both is
optional.

 Intelligent Platform Management Interface Specification

 449

3. Set Auxiliary Log Status cannot be implemented without also supporting Get Auxiliary
Log Status. However, Get Auxiliary Log Status is allowed to be implemented without
Set Auxiliary Log Status.

4. Mandatory if Set SEL Time UTC Offset command is implemented.

31.2 Get SEL Info Command

This command returns the number of entries in the SEL, SEL command version, and the timestamp for the most

recent entry and delete/clear. The timestamp format is provided in section 0,

Intelligent Platform Management Interface Specification

450

Timestamp Format. The Most Recent Addition timestamp field returns the timestamp for the last add or log

operation, while the Most Recent Erase field returns the timestamp for the last delete or clear operation.

These timestamps are independent of timestamps that may be returned by other commands, such as those returned

by the Get SDR Repository Info command. The timestamp reflects when the most recent SEL add or erase

occurred, not when the last add or erase occurred on the physical storage device.

For example, the SEL Info Most Recent Addition timestamp would reflect the last time a new event was added to

the SEL. This would be independent of the Most Recent Addition time for an SDR - even if the implementation

elected to implement the SEL and SDR Repository in the same storage device.

Table 31-2, Get SEL Info Command
 byte data field

Request Data - -

Response Data 1 Completion Code

81h = cannot execute command, SEL erase in progress

 2 SEL Version - version number of the SEL command set for this SEL Device.

51h for this specification.

(BCD encoded).BCD encoded with bits 7:4 holding the Least Significant
digit of the revision and bits 3:0 holding the Most Significant bits.

 3 Entries LS Byte - number of log entries in SEL, LS Byte

 4 Entries MS Byte - number of log entries in SEL, MS Byte

 5:6 Free Space in bytes, LS Byte first. FFFFh indicates 65535 or more bytes of
free space are available.

 7:10 Most recent addition timestamp. LS byte first.

Returns FFFF_FFFFh if no SEL entries have ever been made or if a
component update or error caused the retained value to be lost.

 11:14 Most recent erase timestamp. Last time that one or more entries were
deleted from the log. LS byte first.

 15 Operation Support

[7] - Overflow Flag. 1=Events have been dropped due to lack of space in
the SEL.

[6:4] - reserved. Write as 000

[3] - 1b = Delete SEL command supported

[2] - 1b = Partial Add SEL Entry command supported

[1] - 1b = Reserve SEL command supported

[0] - 1b = Get SEL Allocation Information command supported

31.3 Get SEL Allocation Info Command

Returns the number of possible allocation units, the amount of usable free space (in allocation units), the

allocation unit size (in bytes), and the size of the largest contiguous free region (in allocation units). The

 Intelligent Platform Management Interface Specification

 451

‘allocation unit size’ is the number of bytes in which storage is allocated. For example, if a 16-byte record is to be

added, and the SEL has a 32-byte allocation unit size, then the record would take up 32-bytes of storage.

The SEL implementation shall, at a minimum, support an allocation unit size of 16 bytes.

Table 31-3, Get SEL Allocation Info Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2

3

Number of possible allocation units, LS Byte

Number of possible allocation units, MS Bytes

This number indicates whether the total number of possible allocation units is
equal to, or some number less than the log size divided by the allocation unit
size.

0000h indicates ‘unspecified’.

 4

5

Allocation unit size in bytes, LS Byte. 0000h indicates ‘unspecified’.

Allocation unit size in bytes, MS byte.

 6

7

Number of free allocation units, LS Byte

Number of free allocation units, MS Byte

 8

9

Largest free block in allocation units, LS Byte

Largest free block in allocation units, MS Byte

 10 Maximum record size in allocation units.

31.4 Reserve SEL Command

This command is used to set the present ‘owner’ of the SEL, as identified by the Software ID or by the

Requester’s Slave Address from the command. The reservation process provides a limited amount of protection

on repository access from the IPMB when records are being deleted or incrementally read.

The Reserve SEL command is provided to help prevent deleting the wrong record when doing deletes, to provide

a mechanism to avoid clearing the SEL just after a new event has been received, and to prevent receiving

incorrect data when doing incremental reads.

The Reserve SEL command does NOT guarantee access to the SEL. That is, the case exists that a pair of

requesters could vie for access to the SEL in such a manner that they alternately cancel the reservation that is held

by the other - effectively ‘deadlocking’ each other.

A ‘Reservation ID’ value is returned in response to this command. This value is required in other requests, such as

the ‘Clear SEL’ command. These commands will not execute unless the correct Reservation ID value is provided.

The Reservation ID is used in the following manner. Suppose an application wishes to clear the SEL. The

application would first ‘reserve’ the repository by issuing a Reserve SEL command. The application would then

check that all SEL entries have been handled prior to issuing the Clear SEL command.

If an new event had been placed in the SEL after the records were checked, but before the Clear SEL command, it

is possible for the event to be lost. However, the addition of a new event to the SEL causes the present

Reservation ID to be ‘canceled’. This would prevent the Clear SEL command from executing. If this occurred, the

application would repeat the reserve-check-clear process until successful.

Table 31-4, Reserve SEL Command
 byte data field

Request Data - -

Response Data 1 Completion Code

81h = cannot execute command, SEL erase in progress

 2 Reservation ID, LS Byte 0000h reserved.

 3 Reservation ID, MS Byte

Intelligent Platform Management Interface Specification

452

31.4.1 Reservation Restricted Commands

A Requester must issue a ‘Reserve SEL’ command prior to issuing any of the following SEL commands. Note

that the ‘Reserve SEL’ command only needs to be reissued if the reservation is canceled. These commands shall

be rejected if the Requester’s reservation has been canceled.

 Delete SEL Entry command

 Clear SEL command

 Get SEL Entry command (if ‘get’ is from an offset other than 00h)

 Partial Add SEL Entry command

If the given reservation has been canceled, a ‘reservation canceled’ completion code shall be returned in the

response to the above commands.

Note that the Record ID associated with a given record could change between successive offset 0 ‘Gets’ to that

Record ID. For example, the first SEL Entry could change if the SEL were cleared and a new event came in. It

is thus the responsibility of the device accessing the SEL to verify that the retrieved record information matches

up with the ID information (timestamp, slave address, LUN, sensor ID, etc.) of the event record.

31.4.2 Reservation Cancellation

The SEL Device shall automatically cancel the present SEL reservation after any of the following events occur:

 A SEL entry is added.

 A SEL entry is deleted such that other Record IDs change. As a simplification, an implementation is

allowed to cancel the reservation on any SEL entry deletion.

 The SEL is cleared.

 The SEL Device is reset (via hardware or Cold Reset command)

 A new ‘Reserve SEL’ command is received.

 Intelligent Platform Management Interface Specification

 453

31.5 Get SEL Entry Command

This command is used to retrieve entries from the SEL. The record data field in the response returns the 16 bytes

of data from the SEL Event Record.

Table 31-5, Get SEL Entry
 byte data field

Request Data 1:2 Reservation ID, LS Byte first. Only required for partial Get. Use
0000h otherwise.[1]

 3:4 SEL Record ID, LS Byte first.

0000h = GET FIRST ENTRY

FFFFh = GET LAST ENTRY

 5 Offset into record

 6 Bytes to read. FFh means read entire record.

Response Data 1 Completion Code

Return an error completion code if the SEL is empty.

81h = cannot execute command, SEL erase in progress.

 2:3 Next SEL Record ID, LS Byte first (return FFFFh if the record just
returned is the last record.)

Note: FFFFh is not allowed as the record ID for an actual record.
I.e. the Record ID in the Record Data for the last record should not
be FFFFh.

 4:N Record Data, 16 bytes for entire record

1. The reservation ID should be set to 0000h for implementations that don’t implement the Reserve
SEL command.

31.6 Add SEL Entry Command

This command is provided to enable BIOS to add records to the System Event Log. Normally, the SEL Device

and the Event Receiver Device will be incorporated into the same management controller. In this case, BIOS or

the system SMI Handler adds its own events to the SEL by formatting an Event Message and transmitting it to the

SEL Device, rather than by using this command.

Records are added on after the last record in the SEL. The SEL Device adds the timestamp according to the SEL

Record Type (see 31.6.1, SEL Record Type Ranges, following) when it creates the record. Thus, in some cases the

timestamp bytes in the record data are ignored. However, ‘dummy’ timestamp bytes must still be present in the

data.

The record data field that is passed in the request consists of all bytes of the SEL event record. The Record ID

field that is passed in the request is just a placeholder. The Record ID field that was passed in the request will be

overwritten with a Record ID value that the SEL Device generates before the record is stored. Depending on the

Record Type, the entry may also be automatically timestamped (see following section). If the entry is

automatically timestamped, the SEL Device will also over-write the four bytes of the record’s timestamp field.

Note: The normal mechanism for adding entries to the SEL is via an Event Request message to the Event

Receiver device.

Intelligent Platform Management Interface Specification

454

Table 31-6, Add SEL Entry
 byte data field

Request Data 1:16 Record Data, 16 bytes. Refer to section 0,

SEL Record Formats

Response Data 1 Completion Code. Generic, plus following command specific:

80h = operation not supported for this Record Type

81h = cannot execute command, SEL erase in progress

 2:3 Record ID for added record, LS Byte first.

31.6.1 SEL Record Type Ranges

The following lists the ranges used for SEL Record types:

00h - BFh Range reserved for standard SEL Record Types. As of this writing, only type 02h is defined.

Records are automatically timestamped unless otherwise indicated.

C0h - DFh Range reserved for timestamped OEM SEL records. These records are automatically

timestamped by the SEL Device.

E0h - FFh Range reserved for non-timestamped OEM SEL records. The SEL Device does not automatically

timestamp these records. The four bytes passed in the byte locations for the timestamp will be

directly entered into the SEL.

31.7 Partial Add SEL Entry Command

This command is a version of the Add SEL Entry command that allows the record to be incrementally added to the

SEL. The Partial Add SEL Entry command must be preceded by a Reserve SEL command. The first partial add

 Intelligent Platform Management Interface Specification

 455

must be to offset 0000h, and subsequent partial adds must be done sequentially, with no gaps or overlap between

the adds.

The add must be completed before any of its contents can be retrieved from the SEL. If the reservation is canceled

before the add is completed, the information is discarded and the add must be redone starting at offset 0000h.

When the Record Type directs the BMC to automatically timestamp the record, the BMC will set the timestamp

when the last record is transferred.

Note: The normal mechanism for adding entries to the SEL is via an Event Request message to the Event

Receiver device.

Table 31-7, Partial Add SEL Entry Command
 byte data field

Request Data 1:2 Reservation ID, LS Byte first. Only required for partial add. Use
0000h for Reservation ID otherwise.[1]

 3:4 Record ID, LS Byte first. Used when continuing a partial add (non-
zero offset into record). Use 0000h for Record ID otherwise.

 5 Offset into record.

 6 In progress.

[7:4] - reserved

[3:0] - in progress

 0h = partial add in progress.

 1h = last record data being transferred with this request

 7:N SEL Record Data

Response Data 1 Completion Code

80h = Record rejected due to mismatch between record length in
header data and number of bytes written. (Verifying the
length is an optional operation for the management
controller)

81h = cannot execute command, SEL erase in progress

 2:3 Record ID for added record, LS Byte first.

1. The reservation ID should be set to 0000h for implementations that don’t implement the Reserve
SEL command.

31.8 Delete SEL Entry Command

Table 31-8, Delete SEL Entry
 byte data field

Request Data 1:2 Reservation ID, LS Byte first.[1]

 3:4 SEL Record ID to delete, LS Byte first.

0000h = FIRST ENTRY

FFFFh = LAST ENTRY

Response Data 1 Completion Code - Generic plus following command specific:

80h = operation not supported for this Record Type

81h = cannot execute command, SEL erase in progress

 2:3 Record ID for deleted record, LS Byte first.

1. The reservation ID should be set to 0000h for implementations that don’t implement the Reserve
SEL command.

Intelligent Platform Management Interface Specification

456

31.9 Clear SEL Command

The command ‘erases’ all contents of the System Event Log. Since this process may take several seconds, based

on the type of storage device, the command also provides a means for obtaining the status of the erasure.

Table 31-9, Clear SEL
 byte data field

Request Data 1:2 Reservation ID, LS Byte first.[1]

 3 ‘C’ (43h)

 4 ‘L’ (4Ch)

 5 ‘R’ (52h)

 6 AAh = initiate erase.

00h = get erasure status.

Response Data 1 Completion Code

 2 Erasure progress.

[7:4] - reserved

[3:0] - erasure progress

 0h = erasure in progress.

 1h = erase completed.

1. The reservation ID should be set to 0000h for implementations that don’t implement the Reserve
SEL command.

31.10 Get SEL Time Command

This command returns the time from the SEL Device. This time is used by the SEL Device for Event

Timestamping.

Table 31-10, Get SEL Time Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2:5 Present Timestamp clock reading. LS byte first. See Section 0,

Timestamp Format.

 Intelligent Platform Management Interface Specification

 457

31.11 Set SEL Time Command

This command initializes the time in the SEL Device. This time is used by the SEL Device for Event

Timestamping.

Table 31-11, Set SEL Time Command
 byte data field

Request Data 1:4 Time in four-byte format. LS byte first. See Section 0,

Timestamp Format.

Response Data 1 Completion Code

31.11a Get SEL Time UTC Offset

This command is used to retrieve the SEL Time UTC Offset that was set using the Set SEL Time UTC Offset

command. See Set SEL Time UTC Offset command for additional information.

Table 31-11a, Get SEL Time UTC Offset Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2:3 16-bit, 2s-complement signed integer for the offset in minutes from
UTC to SEL Time. LS-byte first. (ranges from -1440 to 1440)

07FFh = ‘unspecified’. Interpret SEL time as local time.

31.11b Set SEL Time UTC Offset

This command initializes and retrieve a UTC offset (timezone) that is associated with the SEL Time (see the Set

SEL Time command). The offset is the number of minutes difference between the local time zone and Universal

Coordinated Time (UTC).

If you know what the UTC time is, you get local time by adding the offset to the UTC time. To get UTC time

from local time (SEL Time) you subtract the offset from the local time. For example, the offset for United States

Pacific Standard Time is -8 (minus 8) hours. If the UTC time were 10am (10:00 hours), then Pacific Standard

Time would be 2am (02:00 hours). The offset for Tokyo, Japan is +9 (plus 9), so if the UTC time were 10am, then

the Tokyo, Japan time would be 7pm (19:00 hours).

Note that the UTC offset varies with DAYLIGHT SAVINGS TIME. Therefore, if this is capability is used,

software may be required to ensure the offset gets updated appropriately.

Intelligent Platform Management Interface Specification

458

In order to retain backward compatibility with the original ‘local only’ definition of SEL Time, the UTC Offset is

automatically reset to ‘unspecified’ whenever the Set SEL Time command is executed. Thus, the UTC Offset

must be re-written after using the Set SEL Time command.

Table 31-11b, Set SEL Time UTC Offset Command
 byte data field

Request Data 1:2 16-bit, 2s-complement signed integer for the offset in minutes from
UTC to SEL Time. LS-byte first. (ranges from -1440 to 1440)

07FFh = ‘unspecified’. Interpret SEL time as local time.

Response Data 1 Completion Code

31.12 Get Auxiliary Log Status Command

This command originated primarily to provide a mechanism that would allow remote software to know whether

new information has been added to Machine Check Architecture (MCA) Log. that can be provided. The MCA

Log is a storage area that can be implemented in Intel® Itanium™-based computer systems and holds information

from an MCA Handler running from system firmware.

For systems that lack MCA, the command can be used to return information about similar OEM-specified logs

that may hold extended event information for the platform. Since such logs are usually central resources, this

command will typically be implemented by a BMC in a host system, or the chassis controller in a managed

peripheral chassis.

Table 31-12, Get Auxiliary Log Status Command
 byte data field

Request Data 1 Log Type

[7:4] - reserved

[3:0] - Log Type

00h = MCA Log

01h = OEM 1

02h = OEM 2

all other = reserved

Response Data 1 Completion Code. An error completion code will be returned if the
given log type is not supported.

 For Log Type = MCA Log :

 2:5 IPMI Timestamp for when last entry was added to MCA Log, per
section 31,Timestamp Format.

 6:9 32-bit count of number of entries in MCA Log, LSByte first.
FFFF_FFFFh = unspecified.

 For Log Type = OEM 1 or OEM 2:

 2:5 IPMI Timestamp for when last entry was added to log, per section
31,Timestamp Format.

 6:8 OEM ID = three byte OEM IANA. IANA Enterprise Number for
OEM/Organization that specifies the following log status bytes. Least
significant byte first.

 9:16 Log status bytes per OEM identified by OEM ID

 Intelligent Platform Management Interface Specification

 459

31.13 Set Auxiliary Log Status Command

This command can be used by system software or firmware to set the status returned by the Get Auxiliary Log

Status command. Some implementations may elect to implement solely private mechanism for setting this status,

in which case this command may not be provided even if the Get Auxiliary Log Status is.

Table 31-13, Set Auxiliary Log Status Command
 byte data field

Request Data 1 Log Type

[7:4] - reserved

[3:0] - Log Type

00h = MCA Log

01h = OEM 1

02h = OEM 2

all other = reserved

 For Log Type = MCA Log :

 2:5 IPMI Timestamp for when last entry was added to MCA Log, per
section 31,Timestamp Format.

 6:9 32-bit count of number of entries in MCA Log, LSByte first.
FFFF_FFFFh = unspecified.

 For Log Type = OEM 1 or OEM 2:

 2:5 IPMI Timestamp for when last entry was added to log, per section
31,Timestamp Format.

 6:8 OEM ID = three byte OEM IANA. IANA Enterprise Number for
OEM/Organization that specifies the following log status bytes. Least
significant byte first.

 9:16 Log status bytes per OEM identified by OEM ID

Response Data 1 Completion Code. An error completion code will be returned if the
given Log Type is not supported.

Intelligent Platform Management Interface Specification

460

32. SEL Record Formats
The following sections present the record formats for SEL entries. Note that these are the ‘external’ specifications

for the records. The actual storage format within the SEL Device implementation may be different.

32.1 SEL Event Records

The following table presents the format of SEL Event Records This is the stored information from Event

Messages, as described in 29.4, Event Request Message Fields.

Table 32-1, SEL Event Records
Byte Field Description

1
2

Record ID ID used for SEL Record access. The Record ID values 0000h and FFFFh have
special meaning in the Event Access commands and must not be used as Record ID
values for stored SEL Event Records.

3 Record Type [7:0] - Record Type
02h = system event record
C0h-DFh = OEM timestamped, bytes 8-16 OEM defined
E0h-FFh = OEM non-timestamped, bytes 4-16 OEM defined

4
5
6
7

Timestamp Time when event was logged. LS byte first.

8
9

Generator ID RqSA & LUN if event was generated from IPMB. Software ID if event was generated
from system software.
Byte 1

[7:1] - 7-bit I2C . Slave Address, or 7-bit system software ID
[0] 0b = ID is IPMB Slave Address
 1b = system software ID
Byte 2
[7:4] - Channel number. Channel that event message was received over. 0h if the

event message was received via the system interface, primary IPMB, or
internally generated by the BMC. (New for IPMI v1.5. These bits were reserved
in IPMI v1.0)

[3:2] - reserved. Write as 00b.
[1:0] - IPMB device LUN if byte 1 holds Slave Address. 00b otherwise.

10 EvM Rev Event Message format version (=04h for events in this specification, 03h for IPMI
v1.0 Event Messages.)

Note: the BMC must accept Platform Event request messages that are in IPMI v1.0
format (EvMRev=03h) and log them as IPMI v1.5 / v2.0 Records by setting the
EvMRev field to 04h and setting the Channel Number in the Generator ID field
appropriately for the channel that the event was received from.

11 Sensor Type Sensor Type Code for sensor that generated the event

12 Sensor # Number of sensor that generated the event

13 Event Dir |
Event Type

Event Dir
[7] - 0b = Assertion event.
 1b = Deassertion event.
Event Type
Type of trigger for the event, e.g. critical threshold going high, state asserted, etc.
Also indicates class of the event. E.g. discrete, threshold, or OEM. The Event Type
field is encoded using the Event/Reading Type Code. See section 42.1,
Event/Reading Type Codes.
[6:0] - Event Type Code

14 Event Data 1 Per Table 29-6, Event Request Message Event Data Field Contents

15 Event Data 2 Per Table 29-6, Event Request Message Event Data Field Contents

16 Event Data 3 Per Table 29-6, Event Request Message Event Data Field Contents

 Intelligent Platform Management Interface Specification

 461

32.2 OEM SEL Record - Type C0h-DFh

C0h - DFh Range reserved for timestamped OEM SEL records. These records are automatically

timestamped by the SEL Device. These records are entered via the Add SEL or Partial Add SEL

commands.

Table 32-2, OEM SEL Record (Type C0h-DFh)
Byte Field Description

1
2

Record ID ID used for SEL Record access. The Record ID values 0000h and FFFFh have
special meaning in the event access commands, and are not to be used as Record
ID values for stored SEL Event Records.

3 Record Type [7:0] Record Type
C0h-DFh = OEM system event record

4
5
6
7

Timestamp Time when event was logged (automatically added by SEL device). LS byte first.

8:10 Manufacturer ID Manufacturer ID (see Get Device ID command for definition)

11:16 OEM Defined OEM Defined. This is defined according to the manufacturer identified by the
Manufacturer ID field.

32.3 OEM SEL Record - Type E0h-FFh

E0h - FFh Range reserved for non-timestamped OEM SEL records. The SEL Device does not automatically

timestamp these records. The four bytes passed in the byte locations normally used for the

timestamp will be directly entered into the SEL. SEL viewer applications should not interpret

byte positions 4:7 in this record as a timestamp. These records are entered via the Add SEL or

Partial Add SEL commands.

 Note that an OEM ID is not part of this record. Since the record also has no mechanism for

returning which controller or software logged the record, the OEM ID for this record is presumed

to be the MFR ID from the Get Device ID command to the BMC.

Table 32-3, OEM SEL Record (Type E0h-FFh)
Byte Field Description

1
2

Record ID ID used for SEL Record access. The Record ID values 0000h and FFFFh have
special meaning in the event access commands, and are not to be used as Record
ID values for stored SEL Event Records.

3 Record Type [7:0] - Record Type
E0h-FFh = OEM system event record

4:16 OEM OEM Defined. This is defined by the system integrator.

Intelligent Platform Management Interface Specification

462

33. SDR Repository
This section describes the logical SDR Repository Device, and the commands that are used to access the SDR

Repository. This section also describes a companion set of functionality, the Internal Sensor Initialization Agent,

that is part of a system that implements this platform and sensor instrumentation specification.

The SDR Repository is intended to hold information indicating the set of management controllers, sensors, and FRU

Devices that is expected to be in the system. Platform management often requires knowledge of what devices are

supposed to be there, as opposed to what devices are detected. This is because an undetected device may be

unintentionally absent, which in platform management usually constitutes a failure condition.

For example, suppose the baseboard had connectors for five fans, but only the first four were supposed to be

populated. The SDRs for the system would report four fan sensors, one for each of the first four connectors. This

tells system management software that any fewer than four fans on the designated connectors would be an error

condition. Thus, if the system user unintentionally disconnected a fan, system management software would see an

error when it tried to get the fan status. Keeping this information also enables features that allow the platform

management hardware itself to take automatic actions based on the ‘missing’ fan.

The SDR records can be used to represent a custom configuration. Using the same example, suppose a system

integrator wanted to attach only three fans to the baseboard, and use them on the last three connectors. The SDRs

could be changed to report only three fans, and indicate they’re on the last three connectors. System management

software only pays attention to sensors for which SDRs are present, thus by just adding, deleting, or modifying

SDRs a system integrator can change the population of sensors within the constraint of the total available sensors

built into the hardware. (I.e. you can’t ‘create’ a sensor that doesn’t pre-exist in hardware).

SDRs are kept in a single, centralized Sensor Data Record Repository to simplify the ability for out-of-band

applications to get information about the platform management subsystem. This eliminates the need for out-of-band

applications, which may be over slow transports, to perform discovery actions. It also is a better mechanism to

ensure that the information actually represents what’s supposed to be in the system, instead of just what was

discovered.

The SDR Repository implementation can be writable via standard IPMI commands, or it can be ‘read-only’.

Supporting a writable SDR Repository provides a common way to support adding Sensor Data Records for 3rd party

add-in devices and sensors, such as sensors provided by satellite management controllers on IPMB, Depending on

the sensor implementation, writable SDRs can also be used to provide a non-volatile mechanism for changing the

default behavior of sensors, such as whether they are scanning or generate events and what thresholds they use.

33.1 SDR Repository Device

The SDR Repository Device is a logical device that accepts and responds to SDR Repository commands. The

SDR Repository Device isolated from most aspects of the data that is in an SDR. The SDR Device manages SDRs

but does not interpret them or take action on the record contents. The exceptions to this is a small set of fixed

fields that are used to identify the record and the record type. These fields are contained in the Record Header

area of the Sensor Data Record.

Another important set of fields are those that are identified as the Record Key fields. The combined information in

these fields uniquely identifies the record contents. The Record Key fields are used for record content

identification, while the Record ID field is used for record access. For example, a given instance of a sensor will

always have the same Record Key information. The Record ID field, however can vary with time as records are

added to and removed from the SDR Repository.

The present specification only allows one SDR Repository device per system. For host systems that incorporate a

BMC, the SDR Repository is implemented via the BMC. For peripheral chassis that use the ICMB, the device

holding the SDR Repository is specified by the Chassis Capabilities command (refer to the Intelligent Chassis

Management Bus Bridge specification).

 Intelligent Platform Management Interface Specification

 463

33.2 Modal and Non-modal SDR Repositories

There are two possible writable SDR Repository implementations: modal and non-modal. A non-modal SDR

Repository can be written to at any time. Writing to the SDR does not impact the operation of other commands in

the management controller.

A modal SDR Repository is only updated when the controller is in an SDR Repository update mode. This

provision is made to allow SDR information to be kept in non-volatile storage devices that may require lengthy

write operations, or interfere with other controller operations when updated. For example, this could allow the

SDR Repository to be stored in a FLASH device that also holds a portion of management controller code. A

modal SDR Repository implementation would allow the functions associated with that code to be temporarily

unavailable during the update process.

An implementation that provides Modal SDR Repository Updates is not required to support non-modal SDR

updates. Generic SDR update software should first issue a Get SDR Repository Info command to determine which

type of update is supported. If the command returns ‘unspecified’, update software should first try a modal update

by issuing an Enter SDR Update Mode command. If that command is accepted, it should perform the update in

SDR Update Mode. If the command is not accepted, it should then attempt to perform a non-modal update.

33.2.1 Command Support while in SDR Repository Update Mode

The controller is only required to support a subset of its normal commands while it is in SDR Repository

Update Mode. A completion code of D0h must be returned as the response to any commands that are rejected

because the controller is in update mode. The list of commands that must be supported after entering SDR

Repository Update mode are listed in the following table. Detailed information is provided in following

sections.

The update mode commands must be supported via the system interface to the BMC. If the controller provides

an IPMB, it is recommended, but not mandatory, that the IPMB must remain active in SDR Repository Update

mode.

Table 33-1, Mandatory SDR Update Mode Commands
Command Section

Get Device ID 20.1

Get SDR[2] 33.12

Add SDR[1][2] 33.13

Partial Add SDR[1][2] 33.14

Clear SDR Repository[2] 33.16

Exit SDR Repository Update Mode[2] 33.20

1. Either Add SDR or Partial Add SDR must be provided. Providing both is optional.
2. These commands are only accepted from the System Interface if SDR

Repository Update Mode was entered via the System Interface, or are only
accepted from the device that put the controller into SDR Repository Update
mode. Other devices that try to issue these commands will receive a completion
code indicating that SDR Repository Update is in progress. Reservation is not
required for executing these commands in SDR Repository Update mode.

33.3 Populating the SDR Repository

Most systems are fundamentally static with respect to their platform management configuration once the system

integrator has put the system together. Thus, the typical model for an implementation that supports a writable

SDR Repository is that it is manually updated using a utility or other piece of software if the platform

management configuration is changed in the field.

For example, suppose a system could be upgraded to accept a new RAID backplane that had extra fans and

temperature sensors. Part of the upgrade process would be to run a utility, supplied by the system integrator, that

updated the SDR Repository with the new SDRs.

Intelligent Platform Management Interface Specification

464

33.3.1 SDR Repository Updating

An SDR Repository implementation is not required to implement the Delete SDR command. This means that

random updates of individual records is not supported. In this case, updating the SDR Repository requires

reading out the SDR Repository, updating the copy, clearing the SDR Repository, and writing the updated

records in. Note that this approach works for all implementations, and helps avoid potential issues with

fragmentation of the SDR Repository.

33.4 Discovering Management Controllers and Device SDRs

IPMI includes the capability for allowing system software to discover management controllers. The responsibility

of detecting and integrating new devices is left to system software. This is done to avoid placing additional

complexity in BMC firmware, and to allow the discovery and integration policy to be more flexible and

sophisticated.

A system can be created that allows new management controllers and SDRs to automatically be discovered and

integrated into the SDR Repository. The following steps outline this process:

1. System management software uses the Broadcast Get Device ID command to discover all management

controllers on the IPMB. It does this by repeatedly issuing the Broadcast Get Device ID, incrementing the

second byte in the message to select different management controller slave addresses. The software only

needs to go through the slave addresses that are assignable to IPMB devices (refer to the IPMB Address

Allocation specification.) System management software can go through this process when it initializes, or,

preferably, run this as a ‘background’ process that scans for new devices during run-time.

2. System management software reads the SDRs and gets a list of the known management controllers from the

Management Controller Device Locator records. For each discovered device, system management software

checks to see if the device is one of the known devices or not. If the device has a corresponding Management

Controller Confirmation record, this record can be used to verify that a different type or instance of controller

didn’t wind up at the address of a previously present controller.

3. For each newly discovered device, system management software would typically prompt the system user for

whether the device should be integrated or not. (For ‘missing’ devices, the system user would be notified of

the change). If the device supports Device SDRs, system management software would be able to read the

SDRs from the device and write them to the SDR Repository. If the device didn’t include Device SDRs, the

software would likely prompt the user for update software supplied by the system integrator or device

provider. Note that the management controllers now include information such as the manufacturer ID, that

can be an aid to creating useful prompts for this kind of information.

33.5 Reading the SDR Repository

An application that retrieves records from the SDR Repository must first read them out sequentially. This is

accomplished by using the Get SDR command to retrieve the first SDR of the desired type. The response to this

command returns the requested record and the Record ID of the next SDR in sequence in the repository. Note that

Record IDs are not required to be sequential or consecutive. Applications should not assume that SDR Record

IDs will follow any particular numeric ordering.

The application retrieves succeeding records by issuing a Get SDR command using the ‘next’ Record ID that was

returned with the response of the previous Get SDR command. This is continued until the ‘End of Records’ ID is

encountered.

Once the application has read out the desired records, it can then randomly access the records according to their

Record ID. An application that seeks to access records randomly must save a data structure that retains the Record

Key information according to Record ID.

Since it is possible for Record IDs to change with time, it is important for applications to first verify that the

Record Key information matches up with the retrieved record. If the Record Key information doesn’t match, then

 Intelligent Platform Management Interface Specification

 465

the Record ID is no longer valid for that Record Key, and the SDR Records must again be accessed sequentially

until the record that matches the Record Key is located.

An application can also tell whether records have changed by examining the ‘most recent addition’ timestamp

using the Get SDR Repository Info command.

If record information has changed, an application does not need to list out the entire contents of all records. The

Get SDR command allows a partial read of the SDR. Thus, an application can search for a given Record Key by

just retrieving that portion of the record.

33.6 Sensor Initialization Agent

The Sensor Initialization Agent is not a logical device, but rather a collection of functions and services that are

specific to handling SDR information. Unlike the SDR Repository Device, the Sensor Initialization Agent works

directly with the content of SDRs, in particular, the Sensor Data Records and Device Locator Records.

The Initialization Agent utilizes the SDR information for sensor and IPMB Device initialization during system

startup. The Initialization Agent knows how to interpret Sensor Data Records and is directed by the ‘init required’

fields to load thresholds to sensors that have the ‘threshold initialization required’ bit set in their SDR record.

Other bits in the record direct the agent to enable sensors/devices that come up with sensors and/or events

disabled.

The Initialization Agent Function normally runs whenever the system powers up, and upon system Hard Resets.

This ensures that the sensor subsystem and threshold values will be re-initialized in response to 'push-button'

hardware resets. It is also recommended that the Initialization Agent function run when the BMC first receives

standby power.

Note that in systems that implement power-management, System Management Software may need to take

additional steps to restore intermediate settings after the system has ‘woken up’.

33.6.1 System Support Requirements for the Initialization Agent

The BMC requires information about when the system has been powered up, hard reset, or warm ‘ctrl-alt-del’

reset. This information is needed to trigger the Initialization Agent function. The mechanism for accomplishing

this is implementation-dependent. Two common ways to provide this information are via hardware signals to

the BMC, or via a BMC-specific application command from BIOS. A combination of the two can also be used.

For example, a hardware signals could be used to indicate when the system is hard-reset, while a command

from BIOS could indicate warm ‘ctrl-alt-del’ resets.

33.6.2 IPMI and ACPI Interaction

The Initialization Agent restores ‘power-on default’ threshold values and event enable settings. In order to

provide consistent operation, the initialization agent takes the same actions on ‘warm’ (e.g. ctrl-alt-del) resets.

In a system that has ACPI, the platform management subsystem cannot generally distinguish between power-up

from an S5 ‘OFF’ state and power-up from an S4 ‘Suspend-to-disk’ sleep state. When the system wakes from

an S4 state, system management software should recognize this condition so that it can restore any ‘volatile’

settings that it may have gotten reset by the Initialization Agent.

For other sleep states (S1-S3), the management controllers should retain their settings and the Initialization

Agent should not be run on wake. If a management controller (other than the BMC) gets powered down in S1-

S3, that controller is responsible for retaining the last settings that were written to it by system software.

System management software should also be aware of ACPI interaction with the watchdog timer. The watchdog

timer does not automatically stop counting down when the system enters an S1-S3 sleep state. If the watchdog

timer is being used as an OS Watchdog, system management software should use support in the operating

system to schedule a ‘wake event’ such that system management software can run and reload the timer before it

Intelligent Platform Management Interface Specification

466

expires. Alternatively, system management software could shut down the timer upon receiving a notification of

entry into a sleep state, but that would reduce the value of using a watchdog timer to monitor OS or system

software health.

33.6.3 Recommended Initialization Agent Steps

1. Initialize any BMC internal functions that are required by BIOS during POST.

2. Disable the Event Receiver function for events received from any interface but the system interface, or from

BMC internal sensors that require initialization. The BMC should accept event messages from BIOS while the

initialization agent is running. The implementation may elect to accept BMC internal event messages from

sensors that do not require initialization. It is recommended that any events related to the initialization agent

operation are logged during the initialization agent process - but they may be collected and logged at its

conclusion.

3. Scan the SDR repository for Management Controller Device Locator records. Collect a list of the addresses of

management controllers that require initialization. (A field in the Management Controller Device Locator record

indicates whether the management controller requires initialization, and if so, whether event messaging should

be enabled after the controller has been initialized.) This list should include the BMC itself.

4. For each Management Controller in the list, turn off Event Generation by using the Set Event Receiver

command to set the Event Receiver. If the Management Controller does not respond to the Set Event Receiver

command, take it off the list.

a) Scan the SDR Repository for Type 01h & Type 02h SDRs. For each encountered:

b) Check the Device Owner ID to see if the sensor belongs to the BMC or one of the other management

controllers in the list. If it does not, go on to the next record.

c) It is possible that a management controller may have other actions that it takes on an event, thus it is

important to disable event scanning before setting thresholds and hysteresis. Check the Sensor Capabilities

field to see if per-sensor or per-threshold/per-state disable is supported. If it is, then use the Set Sensor

Event Enable command to disable scanning and event messages per the SDR.

d) Set the sensor type, sensor thresholds, and hysteresis as directed by the SDR using the Set Sensor Type, Set

Sensor Thresholds, and Set Sensor Hysteresis commands.

e) Use the Set Sensor Event Enable command to enable scanning and event generation per the SDR. Go on to

next SDR.

5. Enable the BMC Event Receiver function for the IPMB and other interfaces.

6. For each management controller in the list, enable event message generation or leave it disabled (A field in the

Management Controller Device Locator record indicates whether event messaging should be enabled after the

controller has been initialized.)

33.7 SDR Repository Device Commands

The following sections describe the commands that an SDR Repository Device provides for accessing the SDR

Repository.

The commands are designed to simplify the SDR Repository device’s implementation by ‘pushing back’

intelligence to higher-level software where possible. The SDR Repository device is not intended to be a ‘database’

engine. Thus, the SDR access commands do not include automatic search functions. It is recommended that an

application read the SDR Repository into a RAM buffer and work from that copy (keeping track of the SDR

Timestamp to check for possible changes to the SDR Repository). The general procedure for reading SDRs from

the SDR Repository is described under the Get SDR command.

 Intelligent Platform Management Interface Specification

 467

As with Event Messages, it is also the intent that the commands are designed so that the SDR Repository Device

is isolated from needing to know the content and format of the SDR records themselves.

Refer to Appendix G - Command Assignments for the specification of the Network Function and Command

(CMD) values and privilege levels for these commands.

Table 33-2, SDR Repository Device Commands
Command Section O/M

Get SDR Repository Info 33.9 M

Get SDR Repository Allocation Info 33.10 O

Reserve SDR Repository 33.11 M

Get SDR 33.12 M[5]

Add SDR 33.13 M[1]

Partial Add SDR 33.14 M[1][5]

Delete SDR 33.15 O[5]

Clear SDR Repository 33.16 M[5]

Get SDR Repository Time 33.17 O/M[2]

Set SDR Repository Time 33.18 O/M[2]

Enter SDR Repository Update Mode 33.19 O[3]

Exit SDR Repository Update Mode 33.20 O[3]

Run Initialization Agent 33.21 O[4]

1. If a writable Sensor Data Record Repository is implemented, either Add SDR or Partial Add
SDR must be provided via the system interface. Providing both via the system interface is
optional. For the IPMB, the Add SDR and Partial Add SDR commands are optional.

2. If the SEL Device and SDR Repository Device are implemented in separate controllers,
then both these commands are Mandatory for the SDR Repository Device. If the SDR
Repository Device shares the same controller as the SEL Device (This is normally
indicated in the IPM Device Support field of the Get Device ID command), then the SDR
device uses the SEL Device’s Timestamp Clock. In this case, the Get SDR Repository
Time command is optional, and the Set SDR Repository Time command is not used.

3. Support for both these commands is mandatory if a modal SDR Repository is implemented.
The Enter SDR Repository Update Mode command is mandatory when in ‘operational’
mode, while the Exit SDR Repository Update Mode is mandatory when in ‘update’ mode.

4. Highly recommended. This supports utilities that can update the SDRs during run-time.
Without this, a system reset will need to be performed to cause the initialization agent to
run.

5. Mandatory if writable Sensor Data Record Repository is implemented. A reservation field of
0000h is passed to these commands when in SDR Repository Update Mode.

33.8 SDR ‘Record IDs’

In order to generalize SDR access, Sensor Data Records are accessed using a ‘Record ID’ number. There are a

fixed number of possible Record IDs for a given implementation of the SDR Repository.

The most common implementation of ‘Record IDs’ is as a value that translates directly to an ‘index’ or ‘offset’

into the SDR Repository. However, it is also possible for an implementation to provide a level of indirection, and

implement Record IDs as ‘handles’ to the Sensor Data Records.

Record ID values may be ‘recycled’. That is, the Record ID of a previously deleted SDR can be used as the

Record ID for a new SDR. The requirement is that, at any given time, the Record IDs are unique for all SDRs in

the repository.

Record IDs can be reassigned by the SDR Repository Device as needed when records are added or deleted. An

application that uses a Record ID to directly access a record should always verify that the retrieved record

information matches up with the ID information (slave address, LUN, sensor ID, etc.) of the desired sensor. An

application that finds that the SDR at a given ‘Record ID’ has moved will need to re-enumerate the SDRs by

listing them out using a series of Get SDR commands. Note that it is not necessary to read out the full record data

to see if the Record ID for a particular record has changed. Software can determine whether a given record has

been given a different Record ID by examining just the SDR’s header and record key bytes.

Intelligent Platform Management Interface Specification

468

33.9 Get SDR Repository Info Command

This command returns the SDR command version for the SDR Repository. It also returns a timestamp for when

the last ADD, DELETE, or CLEAR occurred. The Most Recent Addition timestamp field returns the timestamp

for the last addition operation, while the Most Recent Erase field returns the timestamp for the last delete or clear

operation.

These timestamps are independent of timestamps that may be returned by other commands, such as those returned

by the Get SEL Info command. The timestamp reflects when the most recent SDR Repository add or erase

occurred, not when the last add or erase occurred on the physical storage device.

For example, the SDR Repository Info Most Recent Addition timestamp would reflect the last time a new record

was added to the SDR Repository. The SDR Repository’s most recent addition timestamp is always independent

of the most recent addition time for the SEL - even if the SEL and SDR Repository are implemented in the same

physical storage device.

Table 33-3, Get SDR Repository Info Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 SDR Version - version number of the SDR command set for the SDR Device.

51h for this specification. (BCD encoded with bits 7:4 holding the Least
Significant digit of the revision and bits 3:0 holding the Most Significant bits.)

 3 Record count LS Byte - number of records in the SDR Repository

 4 Record count MS Byte - number of records in the SDR Repository

 5:6 Free Space in bytes, LS Byte first. 0000h indicates ‘full’, FFFEh indicates
64KB-2 or more available. FFFFh indicates ‘unspecified’.

 7:10 Most recent addition timestamp. LS byte first.

 11:14 Most recent erase (delete or clear) timestamp. LS byte first.

 15 Operation Support

[7] - Overflow Flag. 1=SDR could not be written due to lack of space in the
SDR Repository.

[6:5] - 00b = modal/non-modal SDR Repository Update operation unspecified

 01b = non-modal SDR Repository Update operation supported

 10b = modal SDR Repository Update operation supported

 11b = both modal and non-modal SDR Repository Update supported

[4] - reserved. Write as 0b

[3] - 1b=Delete SDR command supported

[2] - 1b=Partial Add SDR command supported

[1] - 1b=Reserve SDR Repository command supported

[0] - 1b=Get SDR Repository Allocation Information command supported

33.10 Get SDR Repository Allocation Info Command

Returns the number of possible allocation units, the amount of usable free space (in allocation units), the

allocation unit size (in bytes), and the size of the largest contiguous free region (in allocation units). The

‘allocation unit size’ is the number of bytes in which storage is allocated. For example, if a 20-byte record is to be

 Intelligent Platform Management Interface Specification

 469

added, and the SDR Repository has a 16-byte allocation unit size, then the record would take up 32-bytes of

storage.

The SDR Repository implementation shall, at a minimum, provide an allocation unit size of 16 bytes and a

“maximum record size” supporting a record of  64 bytes.

Software should assume an allocation unit size of 16-bytes if this command is not implemented.

Table 33-4, Get SDR Repository Allocation Info Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2

3

Number of possible allocation units, LS Byte

Number of possible allocation units, MS Bytes

This number indicates whether the total number of possible allocation units is
equal to, or some number less than the log size divided by the allocation unit
size.

0000h indicates ‘unspecified’.

 4

5

Allocation unit size in bytes. 0000h indicates ‘unspecified’.

 6

7

Number of free allocation units, LS Byte

Number of free allocation units, MS Byte

 8

9

Largest free block in allocation units, LS Byte

Largest free block in allocation units, MS Byte

 10 Maximum record size in allocation units.

33.11 Reserve SDR Repository Command

This command is used to set the present ‘owner’ of the repository, as identified by the ‘Software ID’ or by the

Requester’s Slave Address from the command. The reservation process provides a limited amount of protection

on repository access from the IPMB when records are being deleted or incrementally read.

The Reserve SDR Repository command is provided to help prevent deleting the wrong record when doing deletes,

and to prevent receiving incorrect data when doing incremental reads.

The Reserve SDR Repository command does NOT guarantee access to the SDR Repository. That is, the case

exists that a pair of requesters could vie for access to the SDR in such a manner that they alternately cancel the

reservation that is held by the other - effectively ‘deadlocking’ each other.

A ‘Reservation ID’ value is returned in response to this command. This value is required in other requests, such as

the ‘Delete SDR’ command. These commands will not execute unless the correct Reservation ID value is

provided.

The Reservation ID is used in the following manner. Suppose an application wishes to delete a particular record.

The application would first ‘reserve’ the repository by issuing a Reserve SDR Repository command. The

application would then read the header and key information from the record to verify that it has the correct Record

ID for the record. Assuming this is correct, the application would then issue a Delete SDR command using the

Reservation ID and Record ID as parameters.

If an event had occurred that changed the Record IDs after the header and key information was read but before the

Delete SDR command, the Delete SDR command could be issued with the Record ID for the wrong record.

However, events that change Record IDs for any existing records cause the present Reservation ID to be

‘canceled’. This prevents software from using an out-of-date Record ID to access a record. For example, it would

prevent the Delete SDR command from executing and deleting the wrong record in case a given Record ID was

reassigned to a different record.

Intelligent Platform Management Interface Specification

470

Table 33-5, Reserve SDR Repository Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Reservation ID, LS Byte

 3 Reservation ID, MS Byte

33.11.1 Reservation Restricted Commands

A Requester must issue a ‘Reserve SDR Repository’ command prior to issuing any of the following SDR

Repository commands. Note that the ‘Reserve SDR Repository’ command only needs to be reissued if the

reservation is canceled. These commands shall be rejected if the Requester’s reservation has been canceled.

 Delete SDR command

 Clear SDR Repository command

 Get SDR command (if a partial read)

 Partial Add SDR command

If the given reservation has been canceled, a ‘reservation canceled’ completion code shall be returned in the

response to the above commands. This is explained further in the next section.

Note that since Record IDs could change between offset 0 ‘Gets’ of a given record, it is the responsibility of the

device accessing the repository to verify that the retrieved record information matches up with the ID

information (slave address, LUN, sensor ID, etc.) of the desired sensor.

33.11.2 Reservation Cancellation

The SDR Repository Device shall automatically cancel the present SDR Repository reservation after any of the

following events occur:

 An SDR record is added using the Add SDR command such that other Record IDs change. As a

simplification, an implementation is allowed to cancel the reservation on any SDR record add.

 An SDR record is deleted such that other Record IDs change. As a simplification, an implementation is

allowed to cancel the reservation on any SDR record deletion.

 The SDR Repository is cleared.

 The SDR Repository Device is reset (via hardware or Cold Reset command)

 A new ‘Reserve SDR Repository’ command is received.

An error completion code will be returned if an attempt is made to execute a command that requires a

reservation ID, but the reservation ID used is not valid or current.

33.12 Get SDR Command

Returns the sensor record specified by ‘Record ID’. The command also accepts a ‘byte range’ specification that

allows just a selected portion of the record to be retrieved (incremental read). The Requester must first reserve the

SDR Repository using the ‘Reserve SDR Repository’ command in order for an incremental read to an offset other

than 0000h to be accepted. (It is also recommended that an application use the Get SDR Repository Info command

 Intelligent Platform Management Interface Specification

 471

to verify the version of the SDR Repository before it sends any other SDR Repository commands. This is

important since the SDR Repository command format and operation can change between versions.)

If ‘Record ID’ is specified as 0000h, this command returns the Record Header for the ‘first’ SDR in the

repository. FFFFh specifies that the ‘last’ SDR in the repository should be listed. If ‘Record ID’ is non-zero, the

command returns the information from the matching record, and the Record ID for the next SDR in the repository.

An application that wishes to retrieve the full set of SDR Records must first issue the Get SDR starting with

0000h as the Record ID to get the first record. The Next Record ID is extracted from the response and this is then

used as the Record ID in a Get SDR request to get the next record. This is repeated until the ‘Last Record ID’

value (FFFFh) is returned in the ‘Next Record ID’ field of the response.

A partial read from offset 0000h into the record can be used to extract the header and associated ‘Key Fields’ for

the specified Sensor Data Record in the SDR Repository. An application can use the command in this manner to

get a list of what records are in the SDR and to identify the instances of each type. It can also be used to search for

an particular sensor record.

Note: to support future extensions, applications should check the SDR Version byte prior to interpreting any of

the data that follows.

The application issuing ‘Get SDR’ commands with a non-zero value for the Offset into record field must first

reserve the SDR Repository by issuing a ‘Reserve SDR Repository’ command.

If you issue a Get SDR command (storage 23h) with a 'bytes to read' size of 'FFh' - meaning 'read entire record'. A

value of 'FFh' will cause an error in most cases, since SDRs are bigger than the buffer sizes for the typical system

interface implementation. The controller therefore returns an error completion code if the number of record bytes

exceeds the maximum transfer length for the interface. The completion code CAh that indicates that the number

of requested bytes cannot be returned. Returning this code is recommended, although a controller could also

return an 'FFh' completion code. In either case, the algorithm for handling this situation is to "default to using

partial reads if the 'read entire record' operation fails" (that is, if you get a non-zero completion code).

Table 33-6, Get SDR Command
 byte data field

Request Data 1

Reservation ID. LS Byte. Only required for partial reads with a non-
zero ‘Offset into record’ field. Use 0000h for reservation ID
otherwise.

 2 Reservation ID. MS Byte.

 3 Record ID of record to Get, LS Byte

 4 Record ID of record to Get, MS Byte

 5 Offset into record

 6 Bytes to read. FFh means read entire record.

Response Data 1 Completion Code

 2 Record ID for next record, LS Byte

 3 Record ID for next record, MS Byte

 4:3+N Record Data

Intelligent Platform Management Interface Specification

472

33.13 Add SDR Command

This command adds the specified sensor record to the SDR Repository and returns its ‘Record ID’. The data

passed in the request must contain the SDR data in its entirety.

Table 33-7, Add SDR Command
 byte data field

Request Data 1:N SDR Data

Response Data 1 Completion Code

 2 Record ID for added record, LS Byte

 3 Record ID for added record, MS Byte

33.14 Partial Add SDR Command

This command is a version of the Add SDR command that allows the record to be incrementally added to the

repository. The Partial Add SDR command must be preceded by a ‘Reserve SDR Repository’ command. The first

partial add must be to offset 0000h, and partial adds must be done sequentially, with no gaps or overlap between

the adds.

The add must be completed before any of its contents can be retrieved from the SDR Repository. If the

reservation is canceled before the add is completed, the information is discarded and the add must be redone

starting at offset 0000h.

Software should assume an allocation unit size of 16-bytes if the Get SDR Allocation Info command is not

supported.

Table 33-8, Partial Add SDR Command
 byte data field

Request Data 1 Reservation ID, LS Byte.

 2 Reservation ID, MS Byte.

 3 Record ID, LS Byte for continuing partial add. Use 0000h for Record
ID otherwise.

 4 Record ID, MS Byte for continuing partial add. Use 0000h for
Record ID otherwise.

 5 Offset into record.

 6 In progress.

[7:4] - reserved

[3:0] - in progress

 0h = partial add in progress.

 1h = last record data being transferred with this request

 7:N SDR Record Data

Response Data 1 Completion Code. Generic, plus following command-specific:

80h = Record rejected due to mismatch between record length in
header data and number of bytes written. (Verifying the
length is an optional operation for the management
controller)

 2 Record ID for added record, LS Byte

 3 Record ID for added record, MS Byte

 Intelligent Platform Management Interface Specification

 473

33.15 Delete SDR Command

Deletes the sensor record specified by ‘Record ID’. The Requester’s ID and the ‘Reservation ID’ must also match

the present ‘owner’ of the SDR Repository.

Table 33-9, Delete SDR Command
 byte data field

Request Data 1 Reservation ID LS Byte

 2 Reservation ID MS Byte

 3 Record ID of record to delete, LS Byte

 4 Record ID of record to delete, MS Byte

Response Data 1 Completion Code

 2 Record ID for deleted record, LS Byte

 3 Record ID for deleted record, MS Byte

33.16 Clear SDR Repository Command

Clears all records from the SDR Repository and reinitializes the SDR Repository ‘subsystem’. Mainly a

development and production aid, use of this command should be generally avoided in utilities and system

management software. The Requester’s ID and Reservation ID information must also match the present ‘owner’

of the SDR Repository.

Table 33-10, Clear SDR Repository Command
 byte data field

Request Data 1 Reservation ID. LS Byte.

 2 Reservation ID. MS Byte.

 3 ‘C’ (43h)

 4 ‘L’ (4Ch)

 5 ‘R’ (52h)

 6 AAh = initiate erase.

00h = get erasure status.

Response Data 1 Completion Code

 2 Erasure progress.

[7:4] - reserved

[3:0] - erasure in progress

 0h = erasure in progress.

 1h = erase completed.

33.17 Get SDR Repository Time Command

This command returns the time from the SDR Repository Device. This time is used by the SDR Repository

Device for tracking when changes to the SDR Repository have been made. The time keeping format is specified

in Section 0,

Intelligent Platform Management Interface Specification

474

Timestamp Format.

A device that contains both a logical SEL device and an SDR Repository device can elect to implement just a

single Timestamp Clock, in which case, the Set SDR Repository command shall not be used. Instead, the Set SEL

Time command will be used for setting the time, and the Get SDR Repository Time and Get SEL Time commands

shall effectively return the same time values.

Table 33-11, Get SDR Repository Time Command
 byte data field

Request Data - -

Response Data 1 Completion Code

 2:5 Time in four-byte format. LS byte first.

33.18 Set SDR Repository Time Command

This command initializes the time in the SDR Repository Device. This time is used by the SDR Device for

tracking when SDR Repository changes have been made. The time keeping format is specified in Section 0,

 Intelligent Platform Management Interface Specification

 475

Timestamp Format.

A device that contains both a logical SEL device and an SDR Repository device can elect to implement just a

single Timestamp Clock, in which case, the Set SDR Repository command shall not be used. Instead, the Set SEL

Time command will be used for setting the time, and the Get SDR Repository Time and Get SEL Time commands

shall effectively return the same time values.

Table 33-12, Set SDR Repository Time Command
 byte data field

Request Data 1:4 Time in four-byte format. LS byte first.

Response Data 1 Completion Code

33.19 Enter SDR Repository Update Mode Command

Table 33-13, Enter SDR Repository Update Mode Command
 byte data field

Request Data - -

Response Data 1 Completion Code

33.20 Exit SDR Repository Update Mode Command

Table 33-14, Exit SDR Repository Update Mode Command
 byte data field

Request Data - -

Response Data 1 Completion Code

33.21 Run Initialization Agent Command

This command can be used to cause the Initialization Agent to run. The command can be used to check the status

of the Initialization Agent as well.

Table 33-15, Run Initialization Agent
 byte data field

Request Data 1 [7:1] - reserved

[0] - 1b = run initialization agent

 0b = get status of initialization agent process

Response Data 1 Completion Code

 2 [7:1] reserved

[0] - 1b = initialization completed

 0b = initialization in progress

Intelligent Platform Management Interface Specification

476

34. FRU Inventory Device Commands
The following sections describe the FRU (Field Replaceable Unit) Inventory Device format and access commands.

The FRU Inventory data contains information such as the serial number, part number, asset tag, and short

descriptive string for the FRU. The contents of a FRU Inventory Record are specified in the Platform Management

FRU Information Storage Definition.

The FRU Inventory Device is a ‘logical’ device. It is not necessarily implemented as a separate physical device,

though it can be. For example, the device that contains the SDR Repository Device also typically also holds ‘FRU

Inventory’ information for the main system board and chassis. On the other hand, there may be a separate FRU

Inventory device that provides access to the FRU information for a replaceable module such as a Memory Module.

Refer to Appendix G - Command Assignments for the specification of the Network Function and Command (CMD)

values and privilege levels for these commands.

Table 34-1, FRU Inventory Device Commands
Command Section O/M

Get FRU Inventory Area Info 34.1 M

Read FRU Data 34.2 M

Write FRU Data 34.3 M

O/M = Option/Mandatory for FRU Inventory Devices.

34.1 Get FRU Inventory Area Info Command

Returns overall the size of the FRU Inventory Area in this device, in bytes.

Table 34-2, Get FRU Inventory Area Info Command
 byte data field

Request Data 1 FRU Device ID. FFh = reserved.

Response Data 1 Completion Code

 2 FRU Inventory area size in bytes, LS Byte

 3 FRU Inventory area size in bytes, MS Byte

 4 [7:1] - reserved

[0] 0b = Device is accessed by bytes, 1b = Device is accessed by words

 Intelligent Platform Management Interface Specification

 477

34.2 Read FRU Data Command

The command returns the specified data from the FRU Inventory Info area. This is effectively a ‘low level’ direct

interface to a non-volatile storage area. This means that the interface does not interpret or check any semantics or

formatting for the data being accessed. The offset used in this command is a ‘logical’ offset that may or may not

correspond to the physical address used in device that provides the non-volatile storage. For example, FRU

information could be kept in FLASH at physical address 1234h, however offset 0000h would still be used with

this command to access the start of the FRU information. IPMI FRU device data (devices that are formatted per

[FRU]) as well as processor and DIMM FRU data always starts from offset 0000h unless otherwise noted.

Note that while the offsets are 16-bit values, allowing FRU devices of up to 64K words, the count to read, count

returned, and count written fields are only 8-bits. This is in recognition of the limitations on the sizes of messages.

For example, as of this writing, IPMB messages are limited to 32-bytes total.

Table 34-3, Read FRU Data Command
 byte data field

Request Data 1 FRU Device ID. FFh = reserved.

 2 FRU Inventory Offset to read, LS Byte

 3 FRU Inventory Offset to read, MS Byte

Offset is in bytes or words per device access type returned in the
Get FRU Inventory Area Info command.

 4 Count to read --- count is ‘1’ based

Response Data 1 Completion code. Generic, plus following command specific:

81h = FRU device busy. The requested cannot be completed
because the implementation of the logical FRU device is in a
state where the FRU information is temporarily unavailable.
This could be due to a condition such as a loss of arbitration
if the FRU is implemented as a device on a shared bus.

 Software can elect to retry the operation after at least 30
milliseconds if this code is returned. Note that it is highly
recommended that management controllers incorporate built-
in retry mechanisms. Generic IPMI software cannot be relied
upon to take advantage of this completion code.

 2 Count returned --- count is ‘1’ based

 3:2+N Requested data

34.3 Write FRU Data Command

The command writes the specified byte or word to the FRU Inventory Info area. This is a ‘low level’ direct

interface to a non-volatile storage area. This means that the interface does not interpret or check any semantics or

formatting for the data being written. The offset used in this command is a ‘logical’ offset that may or may not

correspond to the physical address used in device that provides the non-volatile storage. For example, FRU

information could be kept in FLASH at physical address 1234h, however offset 0000h would still be used with

this command to access the start of the FRU information. IPMI FRU device data (devices that are formatted per

[FRU]) as well as processor and DIMM FRU data always starts from offset 0000h unless otherwise noted.

Updating the FRU Inventory Data is presumed to be a system level, privileged operation. There is no requirement

for devices implementing this command to provide mechanisms for rolling back the FRU Inventory Area in the

case of incomplete or incorrect writes.

Intelligent Platform Management Interface Specification

478

Table 34-4, Write FRU Data Command
 byte data field

Request Data 1 FRU Device ID. FFh = reserved.

 2 FRU Inventory Offset to write, LS Byte

 3 FRU Inventory Offset to write, MS Byte

 4:3+N Data to write

Response Data 1 Completion code. Generic, plus following command specific:

80h = write-protected offset. Cannot complete write because one or
more bytes of FRU data are to a write-protected offset in the
FRU device. Note that an implementation may have allowed
a ‘partial write’ of the data to occur.

81h = FRU device busy. Refer to the preceding table for the Read
FRU Command for the description of this completion code.

 2 Count written --- count is ‘1’ based

 Intelligent Platform Management Interface Specification

 479

Intelligent Platform Management Interface Specification

480

35. Sensor Device Commands
The following table summarizes the commands that apply to a logical Sensor Device. Refer to Appendix G -

Command Assignments for the specification of the Network Function and Command (CMD) values and privilege

levels for these commands.

Table 35-1, Sensor Device Commands
Command Section O/M

Get Device ID 20.1 M
Cold Reset 20.2 O

Warm Reset 20.3 O[3]

Get Self Test Results 20.4 M

Manufacturing Test Mode On 20.5 O

Broadcast Get Device ID 20.6 M

reserved - -

Device Specific Commands - -

Get Device SDR Info 35.2 O
Get Device SDR 35.3 O[5]

Reserve Device SDR Repository 35.4 O[5]

Get Sensor Reading Factors 35.5 O[2]
Set Sensor Hysteresis 35.6 O

Get Sensor Hysteresis 35.7 O

Set Sensor Threshold 35.8 O

Get Sensor Threshold 35.9 O[4]

Set Sensor Event Enable 35.10 O
Get Sensor Event Enable 35.11 O[4]
Re-arm Sensor Events 35.12 O[3]

Get Sensor Event Status 35.13 O
reserved - -

Get Sensor Reading 35.14 M

Set Sensor Type 35.15 O

Get Sensor Type 35.16 O[4]

Set Sensor Reading and Event Status 35.17 O

Set Event Receiver 29.1 M[1]
Get Event Receiver 29.2 M[1]

Platform Event (a.k.a. Event Message) 29.3 M[1]

Notes: 1. - Mandatory for Event Message Generators only
 2. - Mandatory for Non-linear Sensors

 3. - Mandatory for manual re-arm Sensors

 4.- Mandatory if corresponding ‘Set’ command is implemented.
 5.- Mandatory per information returned in Get Device SDR Info

 Intelligent Platform Management Interface Specification

 481

35.1 Static and Dynamic Sensor Devices

Static Sensor Devices are defined as sensors that have their Sensor Data Records added to the SDR Repository

when the device is configured into the system. This is normally done either as part of the manufacturing of the

system, or via a separate utility when they are added to or deleted from the system configuration.

Dynamic Sensor Devices rely on being discovered by responding to a Broadcast Get Device ID formatted to their

slave address. (The IPMB format of this message is identical to that for a Get Device ID Request message that has

the entire message prefixed with the I2C broadcast slave address. [00h]) Once discovered, dynamic sensor devices

can be queried for their sensor population via the Get Device SDR Info command.

35.2 Get Device SDR Info Command

This command returns general information about the collection of sensors in a Dynamic Sensor Device.

Note: If the command is issued with no parameter for the request, the Device Sensor information is LUN based.

That is, it is returned individually for each LUN. E.g.. a device could implement four sensors under one LUN, and

twelve under another. The SDR Info does not return the aggregate of the sensor information. Rather, separate ‘Get

Device SDR Info’ commands need to be issued to each LUN. The ‘Device LUNs’ field is provided in the

response to support this.

Software should assume an allocation unit size of 16-bytes for device SDRs.

Table 35-2, Get Device SDR Info Command
Request Data (1) Operation (optional)

[7:1] - reserved

[0] - 1b = Get SDR count. This returns the total number of SDRs in the
device.

 0b = Get Sensor count. This returns the number of sensors
implemented on LUN this command was addressed to.

Response Data 1 Completion Code

 2 For Operation = “Get Sensor Count” (or if byte 1 not present in request):

Number of sensors in device for LUN this command was addressed to.

For Operation = “Get SDR Count”:

Total Number of SDRs in the device.

 3 Flags:

Dynamic population

[7] - 0b = static sensor population. The number of sensors handled by this
device is fixed, and a query shall return records for all sensors.

 1b = dynamic sensor population. This device may have its sensor
population vary during ‘run time’ (defined as any time other that
when an install operation is in progress).

Reserved

[6:4] - reserved

Device LUNs

[3] - 1b = LUN 3 has sensors

[2] - 1b = LUN 2 has sensors

[1] - 1b = LUN 1 has sensors

[0] - 1b = LUN 0 has sensors

 4:7 Sensor Population Change Indicator. LS byte first.

Four byte timestamp, or counter. Updated or incremented each time the
sensor population changes. This field is not provided if the flags indicate a
static sensor population.

Intelligent Platform Management Interface Specification

482

35.3 Get Device SDR Command

The ‘Get Device SDR’ command allows SDR information for sensors for a Sensor Device (typically implemented

in a satellite management controller) to be returned. The Get Device SDR Command can return any type of SDR,

not just Types 01h and 02h. This is an optional command for Static Sensor Devices, and mandatory for Dynamic

Sensor Devices. The format and action of this command is similar to that for the ‘Get SDR’ command for SDR

Repository Devices.

A Sensor Device shall always utilize the same sensor number for a particular sensor. This is mandatory to keep

System Event Log information consistent.

Sensor Devices that support the ‘Get Device SDR’ command return SDR Records that match the SDR Repository

formats. See section 0,

 Intelligent Platform Management Interface Specification

 483

Sensor Data Record Formats.

The ‘Get Device SDR’ command includes a Reservation ID that is used to notify the Requester that a record may

have changed during the process of a multi-part read. See 33.11,Reserve SDR Repository, for more information on

the function and use of the Reservation ID field.

Table 35-3, Get Device SDR Command
Request Data 1 Reservation ID. LS Byte. Only required for partial reads with a non-zero

‘Offset into record’ field. Use 0000h for reservation ID otherwise.

 2 Reservation ID. MS Byte.

 3 Record ID of record to Get, LS Byte. 0000h returns the first record.

 4 Record ID of record to Get, MS Byte

 5 Offset into record

 6 Bytes to read. FFh means read entire record.

Response Data 1 Completion Code. Generic, plus following command specific:

80h = record changed. This status is returned if any of the record contents
have been altered since the last time the Requester issued the request
with 00h for the ‘Offset into SDR’ field.

 2 Record ID for next record, LS Byte

 3 Record ID for next record, MS Byte

 4:3+N Requested bytes from record

35.4 Reserve Device SDR Repository Command

This command is used to obtain a Reservation ID. The Reservation ID is part of a mechanism that is used to

notify the Requester that a record may have changed during the process of a multi-part read. See 33.11,Reserve

SDR Repository, for more information on the function and use of Reservation IDs.

Table 35-4, Reserve Device SDR Repository
 byte data field

Request Data - -

Response Data 1 Completion Code

 2 Reservation ID, LS Byte 0000h reserved.

 3 Reservation ID, MS Byte

Intelligent Platform Management Interface Specification

484

35.5 Get Sensor Reading Factors Command

This command returns the Sensor Reading Factors fields for the specified reading value on the specified sensor. It

is used for retrieving the conversion factors for non-linear sensors that do not fit one of the generic linearization

formulas. See Non-Linear Sensors section.

This command is provided for ‘analog’ sensor devices that are capable of holding a table of factors for

linearization, but are incapable of performing the linearization calculations itself. Sensors that produce linear

readings, but have non-linear accuracy or resolution over their range can also use this command.

Note: the Response Data is based on the Version and Type of sensor record for the sensor. Only Type 01h record

information is presently defined.

Table 35-5, Get Sensor Reading Factors Command
Request Data 1 sensor number (FFh = reserved)

 2 reading byte

Response Data 1 Completion Code

 2 Next reading. This field indicates the next reading for which a different set of
sensor reading factors is defined. If the reading byte passed in the request
does not match exactly to a table entry, the nearest entry will be returned, and
this field will hold the reading byte value for which an exact table match would
have been obtained. Once the ‘exact’ table byte has been obtained, this field
will be returned with a value such that, if the returned value is used as the
reading byte for the next request, the process can be repeated to cycle
through all the Sensor Reading Factors in the device’s internal table. This
process shall ‘wrap around’ such a complete list of the table values can be
obtained starting with any reading byte value.

 3 M: LS 8 bits

 4 [7:6] - M: MS 2 bits

[5:0] - Tolerance in +/- ½ raw counts

 5 [7:0] - B: LS 8 bits

 6 [7:6] - B: MS 2 bits

Unsigned, 10-bit Basic Sensor Accuracy in 1/100 percent scaled up by
unsigned Accuracy exponent.

[5:0] - Accuracy: LS 6 bits

 7 [7:4] - Accuracy: MS 4 bits

[3:2] - Accuracy exp: 2 bits, unsigned

[1:0] - reserved: 2 bits, returned as 00b

 8 [7:4] - R (result) exponent 4 bits, signed

[3:0] - B exponent 4 bits, signed

35.6 Set Sensor Hysteresis Command

This command provides a mechanism for setting the hysteresis values associated with the thresholds of a sensor

that has threshold based event generation. Hysteresis setting applies to all thresholds for the sensor. The positive

hysteresis value is used for positive-going thresholds, while the negative going threshold hysteresis value is used

for negative-going thresholds. See section 35.13.2, Hysteresis and Event Status and section 35.13.3, High-going

versus Low-going Threshold Events.

 Intelligent Platform Management Interface Specification

 485

Table 35-6, Set Sensor Hysteresis
 byte data field

Request Data 1 sensor number (FFh = reserved)

 2 reserved for future ‘hysteresis mask’ definition. Write as ‘FFh’

 3 Positive-going Threshold Hysteresis Value. Set to 00h if sensor does not
support positive-going threshold hysteresis. This value is subtracted from
positive going thresholds to determine the point where the asserted status for
that threshold will clear. See section 35.13.2, Hysteresis and Event Status and
section 35.13.3, High-going versus Low-going Threshold Events.

 4 Negative-going Threshold Hysteresis Value. This value is added to negative
going thresholds to determine the point where the asserted status for that
threshold will clear. Set to 00h if sensor does not support negative-going
threshold hysteresis.

Response Data 1 Completion Code

35.7 Get Sensor Hysteresis Command

This command retrieves the present hysteresis values for the specified sensor. If the sensor hysteresis values are

‘fixed’, then the hysteresis values can be obtained from the SDR for the sensor.

Table 35-7, Get Sensor Hysteresis
 byte data field

Request Data 1 sensor number (FFh = reserved)

 2 reserved for future ‘hysteresis mask’ definition. Write as ‘FFh’

Response Data 1 Completion Code

 2 Positive-going Threshold Hysteresis Value. 00h if n/a.

 3 Negative-going Threshold Hysteresis Value. 00h if n/a.

35.8 Set Sensor Thresholds Command

This command is used to set the specified threshold for the given sensor. Note that the application issuing this

command is responsible for ensuring that thresholds for a sensor are set in the proper order (e.g. that the upper

critical threshold is set higher than the upper non-critical threshold).

Table 35-8, Set Sensor Thresholds
 byte data field

Request Data 1 sensor number (FFh = reserved)

 2 [7:6] - reserved. Write as 00b.

[5] - 1b = set upper non-recoverable threshold

[4] - 1b = set upper critical threshold

[3] - 1b = set upper non-critical threshold

[2] - 1b = set lower non-recoverable threshold

[1] - 1b = set lower critical threshold

[0] - 1b = set lower non-critical threshold

 3 lower non-critical threshold. Ignored if bit 0 of byte 2 = 0

 4 lower critical threshold. Ignored if bit 1 of byte 2 = 0

 5 lower non-recoverable threshold. Ignored if bit 2 of byte 2 = 0

 6 upper non-critical threshold. Ignored if bit 3 of byte 2 = 0

 7 upper critical threshold value. Ignored if bit 4 of byte 2 = 0

 8 upper non-recoverable threshold value. Ignored if bit 5 of byte 2 = 0

Response Data 1 Completion Code

Intelligent Platform Management Interface Specification

486

35.9 Get Sensor Thresholds Command

This command retrieves the threshold for the given sensor.

Table 35-9, Get Sensor Thresholds
 byte data field

Request Data 1 sensor number (FFh = reserved)

Response Data 1 Completion Code

 2 [7:6] - reserved. Return as 00b.

Readable thresholds: This bit mask indicates which thresholds are readable.

[5] - 1b = upper non-recoverable threshold

[4] - 1b = upper critical threshold

[3] - 1b = upper non-critical threshold

[2] - 1b = lower non-recoverable threshold

[1] - 1b = lower critical threshold

[0] - 1b = lower non-critical threshold

 3 lower non-critical threshold (if present, ignore on read otherwise)

 4 lower critical threshold (if present, ignore on read otherwise)

 5 lower non-recoverable threshold (if present, ignore on read otherwise)

 6 upper non-critical threshold (if present, ignore on read otherwise)

 7 upper critical (if present, ignore on read otherwise)

 8 upper non-recoverable (if present, ignore on read otherwise)

 Intelligent Platform Management Interface Specification

 487

35.10 Set Sensor Event Enable Command

This command provides the ability to disable or enable Event Message Generation for individual sensor events.

The command is also used to enable or disable sensors in their entirety using the disable scanning bit.

A typical sensor will come up with Event Messages (EvM) enabled for all thresholds/states. Sensors are not

required to have individual or per-event Event Message enables. The type of enable/disable support that a sensor

provides can be obtained from the Sensor Data Record for the sensor.

Note that internal event flags and scanning will continue even though Event Message generation is disabled,

unless sensor scanning is disabled.

Table 35-10, Set Sensor Event Enable
 byte data field

Request Data 1 sensor number (FFh = reserved)

 2 [7] - 0b = disable all Event Messages from this sensor (optional) [does not
impact individual enable/disable status]

[6] - 0b = disable scanning on this sensor (optional)

[5:4] - 00b = do not change individual enables

 01b = enable selected event messages

 10b = disable selected event messages

 11b = reserved

[3:0] - reserved

 (3)* For sensors with threshold based events:
[7] - 1b = select assertion event for upper non-critical going high
[6] - 1b = select assertion event for upper non-critical going low
[5] - 1b = select assertion event for lower non-recoverable going high
[4] - 1b = select assertion event for lower non-recoverable going low
[3] - 1b = select assertion event for lower critical going high
[2] - 1b = select assertion event for lower critical going low
[1] - 1b = select assertion event for lower non-critical going high
[0] - 1b = select assertion event for lower non-critical going low

For sensors with discrete events:
[7] - 1b = select assertion event for state bit 7
[6] - 1b = select assertion event for state bit 6
[5] - 1b = select assertion event for state bit 5
[4] - 1b = select assertion event for state bit 4
[3] - 1b = select assertion event for state bit 3
[2] - 1b = select assertion event for state bit 2
[1] - 1b = select assertion event for state bit 1
[0] - 1b = select assertion event for state bit 0

 (4)* For sensors with threshold based events:
[7:4] - reserved. Write as 0000b.
[3] - 1b = select assertion event for upper non-recoverable going high
[2] - 1b = select assertion event for upper non-recoverable going low
[1] - 1b = select assertion event for upper critical going high
[0] - 1b = select assertion event for upper critical going low

For sensors with discrete events:
[00h otherwise]
[7] - reserved. Write as 0b.
[6] - 1b = select assertion event for state bit 14
[5] - 1b = select assertion event for state bit 13
[4] - 1b = select assertion event for state bit 12
[3] - 1b = select assertion event for state bit 11
[2] - 1b = select assertion event for state bit 10
[1] - 1b = select assertion event for state bit 9
[0] - 1b = select assertion event for state bit 8

Intelligent Platform Management Interface Specification

488

 (5)* For sensors with threshold based events:
[7] - 1b = select deassertion event for upper non-critical going high
[6] - 1b = select deassertion event for upper non-critical going low
[5] - 1b = select deassertion event for lower non-recoverable going high
[4] - 1b = select deassertion event for lower non-recoverable going low
[3] - 1b = select deassertion event for lower critical going high
[2] - 1b = select deassertion event for lower critical going low
[1] - 1b = select deassertion event for lower non-critical going high
[0] - 1b = select deassertion event for lower non-critical going low

For sensors with discrete events:
(00h otherwise)
[7] - 1b = select deassertion event for state bit 7
[6] - 1b = select deassertion event for state bit 6
[5] - 1b = select deassertion event for state bit 5
[4] - 1b = select deassertion event for state bit 4
[3] - 1b = select deassertion event for state bit 3
[2] - 1b = select deassertion event for state bit 2
[1] - 1b = select deassertion event for state bit 1
[0] - 1b = select deassertion event for state bit 0

 (6)* For sensors with threshold based events:
[7:4] - reserved. Write as 0000b.
[3] - 1b = select deassertion event for upper non-recoverable going high
[2] - 1b = select deassertion event for upper non-recoverable going low
[1] - 1b = select deassertion event for upper critical going high
[0] - 1b = select deassertion event for upper critical going low

For sensors with discrete events:
(00h otherwise)
[7] - reserved. Write as 0b.
[6] - 1b = select deassertion event for state bit 14
[5] - 1b = select deassertion event for state bit 13
[4] - 1b = select deassertion event for state bit 12
[3] - 1b = select deassertion event for state bit 11
[2] - 1b = select deassertion event for state bit 10
[1] - 1b = select deassertion event for state bit 9
[0] - 1b = select deassertion event for state bit 8

Response Data 1 Completion Code

* = Devices must accept this command with a variable number (2 to 6) of request data
bytes. (In particular, bytes 3 to 6 do not need to be transferred if disabling all Event
Messages from the sensor.) This requirement is to allow a reduction in the number
of data bytes that must be transferred during the sensor initialization (init agent)
process. The receiver shall treat data bytes that are not explicitly transmitted as if
they were written as ‘00h’.

 Intelligent Platform Management Interface Specification

 489

35.11 Get Sensor Event Enable Command

This command returns the enabled/disabled state for Event Message Generation from the selected sensor. The

command also returns the enabled/disabled state for scanning on the sensor.

A typical sensor will come up with Event Messages (EvM) enabled for all thresholds. Sensors are not required to

have individual or per-event Event Message enables. The type of enable/disable support that a sensor provides can

be obtained from the Sensor Data Record for the sensor.

Table 35-11, Get Sensor Event Enable
 byte data field

Request Data 1 sensor number (FFh = reserved)

Response Data 1 Completion Code

 2 [7] - 0b = All Event Messages disabled from this sensor

[6] - 0b = Sensor scanning disabled

[5:0] - reserved. Ignore on read.

 (3)* For sensors with threshold based events:

[7] - 1b = assertion event for upper non-critical going high enabled

[6] - 1b = assertion event for upper non-critical going low enabled

[5] - 1b = assertion event for lower non-recoverable going high enabled

[4] - 1b = assertion event for lower non-recoverable going low enabled

[3] - 1b = assertion event for lower critical going high enabled

[2] - 1b = assertion event for lower critical going low enabled

[1] - 1b = assertion event for lower non-critical going high enabled

[0] - 1b = assertion event for lower non-critical going low enabled

For sensors with discrete events:

[7] - 1b = assertion event msg. for state bit 7 enabled

[6] - 1b = assertion event msg. for state bit 6 enabled

[5] - 1b = assertion event msg. for state bit 5 enabled

[4] - 1b = assertion event msg. for state bit 4 enabled

[3] - 1b = assertion event msg. for state bit 3 enabled

[2] - 1b = assertion event msg. for state bit 2 enabled

[1] - 1b = assertion event msg. for state bit 1 enabled

[0] - 1b = assertion event msg. for state bit 0 enabled

 (4)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = assertion event for upper non-recoverable going high enabled

[2] - 1b = assertion event for upper non-recoverable going low enabled

[1] - 1b = assertion event for upper critical going high enabled

[0] - 1b = assertion event for upper critical going low enabled

For sensors with discrete events:

(00h otherwise)

[7] - reserved.

[6] - 1b = assertion event msg. for state bit 14 enabled

[5] - 1b = assertion event msg. for state bit 13 enabled

[4] - 1b = assertion event msg. for state bit 12 enabled

[3] - 1b = assertion event msg. for state bit 11 enabled

[2] - 1b = assertion event msg. for state bit 10 enabled

[1] - 1b = assertion event msg. for state bit 9 enabled

[0] - 1b = assertion event msg. for state bit 8 enabled

 (5)* For sensors with threshold based events:

[7] - 1b = deassertion event for upper non-critical going high enabled

[6] - 1b = deassertion event for upper non-critical going low enabled

[5] - 1b = deassertion event for lower non-recoverable going high enabled

[4] - 1b = deassertion event for lower non-recoverable going low enabled

[3] - 1b = deassertion event for lower critical going high enabled

[2] - 1b = deassertion event for lower critical going low enabled

[1] - 1b = deassertion event for lower non-critical going high enabled

[0] - 1b = deassertion event for lower non-critical going low enabled

Intelligent Platform Management Interface Specification

490

For sensors with discrete events:

[7] - 1b = deassertion event msg. for state bit 7 enabled

[6] - 1b = deassertion event msg. for state bit 6 enabled

[5] - 1b = deassertion event msg. for state bit 5 enabled

[4] - 1b = deassertion event msg. for state bit 4 enabled

[3] - 1b = deassertion event msg. for state bit 3 enabled

[2] - 1b = deassertion event msg. for state bit 2 enabled

[1] - 1b = deassertion event msg. for state bit 1 enabled

[0] - 1b = deassertion event msg. for state bit 0 enabled

 (6)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = deassertion event for upper non-recoverable going high enabled

[2] - 1b = deassertion event for upper non-recoverable going low enabled

[1] - 1b = deassertion event for upper critical going high enabled

[0] - 1b = deassertion event for upper critical going low enabled

For sensors with discrete events:

(00h otherwise)

[7] - reserved.

[6] - 1b = deassertion event msg. for state bit 14 enabled

[5] - 1b = deassertion event msg. for state bit 13 enabled

[4] - 1b = deassertion event msg. for state bit 12 enabled

[3] - 1b = deassertion event msg. for state bit 11 enabled

[2] - 1b = deassertion event msg. for state bit 10 enabled

[1] - 1b = deassertion event msg. for state bit 9 enabled

[0] - 1b = deassertion event msg. for state bit 8 enabled

* = Devices must accept a variable number of response data bytes (2 to 6). (In
particular, bytes 3 to 6 do not need to be transferred if byte 2 indicates that all Event
Messages have been disabled.) This requirement is to allow a reduction in the
number of data bytes that must be transferred. It is recommended that
implementations only return the number of data bytes required to satisfy the
command.

35.12 Re-arm Sensor Events Command

This command is provided to enable software to re-arm thresholds on sensors that require ‘manual’ re-arming. It

is also used to enable software to cause sensors (both manual and auto re-arm sensors) to regenerate events

(update their event status and, if enabled, generate event messages) according to what event condition(s) currently

exist (is presently in effect) when the re-arm command is executed. Thus, the re-arm is actually a request for the

event status for a sensor to be rechecked and updated, and if enabled, generate event messages based on that event

status.

A reading/state unavailable (formerly “initial update in progress”) bit is provided with the Get Sensor Reading

and Get Sensor Event Status commands to help software avoid getting incorrect event status due to a re-arm. For

example, suppose a controller only scans for an event condition once every four seconds. Software that accessed

the event status using the Get Sensor Reading command could see the wrong status for up to four seconds before

the event status would be correctly updated. A controller that has slow updates must implement the initial update

in progress bit, and should not generate event messages until the update has completed. Software should ignore

the Event Status bits while the reading/state unavailable bit is set.

 Intelligent Platform Management Interface Specification

 491

Table 35-12, Re-arm Sensor Events
 byte data field

Request Data 1 sensor number (FFh = reserved)

 2 [7] - 0b = re-arm all event status from this sensor. If 0, following parameter
bytes are ignored, but should still be written as 0, if sent.

[6:0] - reserved. Write as 000_0000b.

 (3)* For sensors with threshold based events:

[7] - 1b = re-arm assertion event for upper non-critical going high

[6] - 1b = re-arm assertion event for upper non-critical going low

[5] - 1b = re-arm assertion event for lower non-recoverable going high

[4] - 1b = re-arm assertion event for lower non-recoverable going low

[3] - 1b = re-arm assertion event for lower critical going high

[2] - 1b = re-arm assertion event for lower critical going low

[1] - 1b = re-arm assertion event for lower non-critical going high

[0] - 1b = re-arm assertion event for lower non-critical going low

For sensors with discrete events:

[7] - 1b = re-arm assertion event for state bit 7

[6] - 1b = re-arm assertion event for state bit 6

[5] - 1b = re-arm assertion event for state bit 5

[4] - 1b = re-arm assertion event for state bit 4

[3] - 1b = re-arm assertion event for state bit 3

[2] - 1b = re-arm assertion event for state bit 2

[1] - 1b = re-arm assertion event for state bit 1

[0] - 1b = re-arm assertion event for state bit 0

 (4)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = re-arm assertion event for upper non-recoverable going high

[2] - 1b = re-arm assertion event for upper non-recoverable going low

[1] - 1b = re-arm assertion event for upper critical going high

[0] - 1b = re-arm assertion event for upper critical going low

For sensors with discrete events:

(00h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = re-arm assertion event for state bit 14

[5] - 1b = re-arm assertion event for state bit 13

[4] - 1b = re-arm assertion event for state bit 12

[3] - 1b = re-arm assertion event for state bit 11

[2] - 1b = re-arm assertion event for state bit 10

[1] - 1b = re-arm assertion event for state bit 9

[0] - 1b = re-arm assertion event for state bit 8

 (5)* For sensors with threshold based events:

[7] - 1b = re-arm deassertion event for upper non-critical going high

[6] - 1b = re-arm deassertion event for upper non-critical going low

[5] - 1b = re-arm deassertion event for lower non-recoverable going high

[4] - 1b = re-arm deassertion event for lower non-recoverable going low

[3] - 1b = re-arm deassertion event for lower critical going high

[2] - 1b = re-arm deassertion event for lower critical going low

[1] - 1b = re-arm deassertion event for lower non-critical going high

[0] - 1b = re-arm deassertion event for lower non-critical going low

For sensors with discrete events:

(00h otherwise)

[7] - 1b = re-arm deassertion event for state bit 7

[6] - 1b = re-arm deassertion event for state bit 6

[5] - 1b = re-arm deassertion event for state bit 5

[4] - 1b = re-arm deassertion event for state bit 4

[3] - 1b = re-arm deassertion event for state bit 3

[2] - 1b = re-arm deassertion event for state bit 2

[1] - 1b = re-arm deassertion event for state bit 1

[0] - 1b = re-arm deassertion event for state bit 0

Intelligent Platform Management Interface Specification

492

 (6)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = re-arm deassertion event for upper non-recoverable going high

[2] - 1b = re-arm deassertion event for upper non-recoverable going low

[1] - 1b = re-arm deassertion event for upper critical going high

[0] - 1b = re-arm deassertion event for upper critical going low

For sensors with discrete events:

(00h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = re-arm deassertion event for state bit 14

[5] - 1b = re-arm deassertion event for state bit 13

[4] - 1b = re-arm deassertion event for state bit 12

[3] - 1b = re-arm deassertion event for state bit 11

[2] - 1b = re-arm deassertion event for state bit 10

[1] - 1b = re-arm deassertion event for state bit 9

[0] - 1b = re-arm deassertion event for state bit 8

Response Data 1 Completion Code

* = Devices must accept a variable number of request data bytes (2 to 6). This requirement is to allow a
reduction in the number of data bytes that must be transferred. The receiver shall treat data bytes that
are not explicitly transmitted as if they were written as ‘00h’.

35.13 Get Sensor Event Status Command

The Get Sensor Event Status command is provided to support systems where sensor polling is used in addition to,

or instead of, Event Messages for event detection. The Get Sensor Event Status is also the only way to get the

‘latched’ status for sensors that require manual re-arming of their event detection mechanism.

A device that implements a sensor must only generate a single Event Message for a given sensor event. (Retries

may cause this message to be sent multiple times - but it is still the same message from an event handling point-

of-view).

In order to track the fact that the event message has been sent, an implementation will typically implement an

internal flag to indicate that the event condition has been met and the event generated. An ‘auto- re-arm’ sensor

will clear its internal flag when the event condition goes away. A manual re-arm sensor requires a Re-arm Sensor

Events command to clear the flag in order for event generation to be re-enabled for the event. The Get Sensor

Event Status commands may be considered as returning the state of these internal flags.

Since the ‘Event Status’ for a manual re-arm sensor stays until manual cleared, the state is sometime referred to as

the ‘Event History’ or just ‘History’ for the sensor.

The event status gets updated when the controller detects a state change or transition between the present state

and the previous state (conditioned by hysteresis as appropriate). The exception to this is when a sensor is re-

armed by a Re-arm Sensor or Set Event Receiver command. In this case, the event status gets updated after the

controller gets its first reading for the sensor.

35.13.1 Response According to Sensor Type

The response to the Get Sensor Event Status command is dependent on the type of event generation for the

sensor (threshold based or discrete) and whether the sensor is ‘manual re-arm’ or ‘auto- re-arm’.

If the sensor is ‘manual re-arm’ then the command returns the latched event status for the sensor. This is

essentially those ‘flag bits’ that indicate that the event had occurred and, if enabled, an event message was

generated. A manual re-arm sensor that supports both assertion and deassertion events can have both assertion

and deassertion event status set for a state simultaneously.

If the sensor is ‘auto- re-arm’ then the command returns unlatched present event status for the sensor. The event

status for auto- re-arm sensors can be derived from the present status information returned in a Get Sensor

Reading command, if the hysteresis values are known. For this reason, the Get Sensor Event Status command is

 Intelligent Platform Management Interface Specification

 493

typically not implemented for auto- re-arm sensors. Instead, if system management software needs to determine

event status, it derives it from the Get Sensor Reading and hysteresis settings.

The format of the Get Sensor Event Status response is dependent on whether the sensor was threshold based or

discrete.

Table 35-13, Get Sensor Event Status Response Overview
Sensor Class Auto- re-arm Status Returned

Threshold based Yes Present threshold comparison event status. This is redundant to the
threshold comparison status returned with the ‘Get Sensor Reading’
command if the sensor has no hysteresis. Otherwise, software can
derive the event status from the Get Sensor Reading command if it
knows the hysteresis value.

 No Latched threshold comparison status. Since manual re-arm status is
‘sticky’, the status may be different than the comparison status returned
with the ‘Get Sensor Reading’ command.

Discrete Yes Present event status represented by a bit mask indicating the event
conditions that are presently active on the sensor. Note: this is
redundant to the status returned with the ‘Get Sensor Reading’
command if there is no hysteresis associated with the sensor.

 No Latched event status represented by a bit mask indicating the event
conditions that have been detected on the sensor. Since manual re-arm
status is ‘sticky’, the status may be different than the comparison status
returned with the ‘Get Sensor Reading’ command.

35.13.2 Hysteresis and Event Status

For threshold-based sensors the event status reflects whether the sensor is armed (ready to generate another

event) or not. This means that there is a difference between the event status, returned by this command, and the

comparison status returned by the Get Sensor Reading command. For example, suppose a sensor has an upper

non-recoverable threshold with a threshold value of 98h and a positive-going threshold hysteresis value of 2.

That sensor’s event status (byte 3, bit 5, below) would get set when the reading hit 98h, but would not clear

until the reading hit 95h. (a 0 hysteresis would yield a re-arm point of 97h, therefore a positive-going hysteresis

of 2 corresponds to a re-arm point of 95h).

A sensor can only return a ‘1’ for the assertion or deassertion events that it supports. If a sensor does not support

particular assertion or deassertion event states it must always return a ‘0’ for the bits associated with those

states. For example, suppose a sensor supports assertion events for discrete state 0, but does not support

deassertion events. The sensor will set the state 0 assertion event status to 1 when the event becomes asserted

and to 0 when the event condition clears, but the state 0 deassertion event status bit will always be 0. This

operation is specified so that a sensor does not return an ‘event occurred’ status for states that can not generate

an Event Message.

35.13.3 High-going versus Low-going Threshold Events

The differences between high-going and low-going threshold events are in what direction the reading needs to

be going for an event to occur, in where deassertion events occur, and in how hysteresis affects where

deassertion events occur. Figure 29-1, High-Going and Low-Going Event Assertion/Deassertion Points,

illustrates these differences.

A high-going threshold has its assertion events become set when the reading is  the threshold, while for a low-

going event the assertion event becomes set when the reading is  the threshold. Even more difference is seen

with where the de-assertion events occur. A high-going threshold must have the reading drop to a value that is

positive_hysteresis+1 counts below the threshold value in order for the deassertion event to occur (and for the

assertion event status to clear). A low-going threshold must have the reading rise to negative_hysteresis+1

counts above the threshold to become deasserted.

Intelligent Platform Management Interface Specification

494

Note that a zero hysteresis value still leads to a difference between where the deassertion events occur. An event

can’t be in the asserted and deasserted states simultaneously. Thus, for zero hysteresis a high-going threshold

event becomes asserted when the reading is  the threshold, and becomes deasserted when the reading goes 

the threshold minus one. A low-going threshold event becomes asserted when the reading goes  the threshold,

and becomes deasserted when the reading goes  the threshold plus one.

A system implementation will typically only use either high-going or low-going events for a given threshold,

but not both simultaneously.

Figure 35-1, High-Going and Low-Going Event Assertion/Deassertion Points

threshold

threshold minus

(positive

hysteresis+1)

DGH(37)AGH(40)

 AGH = Assertion Going-High

 DGH = Deassertion Going-High

 AGL = Assertion Going-Low

 DGL = Deassertion Going-Low

DGL(43)

threshold plus

(negative

hysteresis+1)

40

37

43

AGL (40)

high-going threshold

time

re
a

d
in

g

low-going threshold

35.13.4 Get Sensor Event Status Command Format

The following table shows the format of the Get Sensor Event Status command.

Table 35-14, Get Sensor Event Status Command
Request Data 1 Sensor number (FFh = reserved)

Response Data 1 Completion Code

 2 [7] - 0b = All Event Messages disabled from this sensor

[6] - 0b = Sensor scanning disabled

[5] - 1b = reading/state unavailable (formerly “initial update in progress”). This bit
is set to indicate that a ‘re-arm’ or ‘Set Event Receiver’ command has been
used to request an update of the sensor status, and that update has not
occurred yet. Software should use this bit to avoid getting an incorrect status
while the first sensor update is in progress. This bit is only required if it is
possible for the controller to receive and process a ‘Get Sensor Reading’ or
‘Get Sensor Event Status’ command for the sensor before the update has
completed. This is most likely to be the case for sensors, such as fan RPM
sensors, that may require seconds to accumulate the first reading after a re-
arm. The bit is also used to indicate when a reading/state is unavailable
because the management controller cannot obtain a valid reading or state
for the monitored entity, typically because the entity is not present. See
Section 16.4, Event Status, Event Conditions, and Present State and Section
16.6, Re-arming for more information.

[4:0] - reserved. Ignore on read.

 Intelligent Platform Management Interface Specification

 495

 3 For sensors with threshold based events:

(High-going events are asserted when value first becomes  threshold. Low-going

events are asserted when value first becomes  corresponding threshold.)

[7] - 1b = assertion event condition for upper non-critical going high occurred

[6] - 1b = assertion event condition for upper non-critical going low occurred

[5] - 1b = assertion event condition for lower non-recoverable going high occurred

[4] - 1b = assertion event condition for lower non-recoverable going low occurred

[3] - 1b = assertion event condition for lower critical going high occurred

[2] - 1b = assertion event condition for lower critical going low occurred

[1] - 1b = assertion event condition for lower non-critical going high occurred

[0] - 1b = assertion event condition for lower non-critical going low occurred

For sensors with discrete events:

[7] - 1b = state 7 assertion event occurred

[6] - 1b = state 6 assertion event occurred

[5] - 1b = state 5 assertion event occurred

[4] - 1b = state 4 assertion event occurred

[3] - 1b = state 3 assertion event occurred

[2] - 1b = state 2 assertion event occurred

[1] - 1b = state 1 assertion event occurred

[0] - 1b = state 0 assertion event occurred

 (4)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = assertion event condition for upper non-recoverable going high
occurred

[2] - 1b = assertion event condition for upper non-recoverable going low occurred

[1] - 1b = assertion event condition for upper critical going high occurred

[0] - 1b = assertion event condition for upper critical going low occurred

For sensors with discrete events:

(00h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = state 14 assertion event occurred

[5] - 1b = state 13 assertion event occurred

[4] - 1b = state 12 assertion event occurred

[3] - 1b = state 11 assertion event occurred

[2] - 1b = state 10 assertion event occurred

[1] - 1b = state 9 assertion event occurred

[0] - 1b = state 8 assertion event occurred

Intelligent Platform Management Interface Specification

496

 (5)* For sensors with threshold based events:

(High-going events are deasserted when value goes less than the corresponding
threshold minus the positive-going hysteresis value. Low-going events are
deasserted when value goes greater than the corresponding threshold plus the
negative-going hysteresis value.)

[7] - 1b = deassertion event condition for upper non-critical going high occurred

[6] - 1b = deassertion event condition for upper non-critical going low occurred

[5] - 1b = deassertion event condition for lower non-recoverable going high
occurred

[4] - 1b = deassertion event condition for lower non-recoverable going low
occurred

[3] - 1b = deassertion event condition for lower critical going high occurred

[2] - 1b = deassertion event condition for lower critical going low occurred

[1] - 1b = deassertion event condition for lower non-critical going high occurred

[0] - 1b = deassertion event condition for lower non-critical going low occurred

For sensors with discrete events:

[7] - 1b = state 7 deassertion event occurred

[6] - 1b = state 6 deassertion event occurred

[5] - 1b = state 5 deassertion event occurred

[4] - 1b = state 4 deassertion event occurred

[3] - 1b = state 3 deassertion event occurred

[2] - 1b = state 2 deassertion event occurred

[1] - 1b = state 1 deassertion event occurred

[0] - 1b = state 0 deassertion event occurred

 (6)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = deassertion event condition for upper non-recoverable going high
occurred

[2] - 1b = deassertion event condition for upper non-recoverable going low
occurred

[1] - 1b = deassertion event condition for upper critical going high occurred

[0] - 1b = deassertion event condition for upper critical going low occurred

For sensors with discrete events:

(0h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = state 14 deassertion event occurred

[5] - 1b = state 13 deassertion event occurred

[4] - 1b = state 12 deassertion event occurred

[3] - 1b = state 11 deassertion event occurred

[2] - 1b = state 10 deassertion event occurred

[1] - 1b = state 9 deassertion event occurred

[0] - 1b = state 8 deassertion event occurred

* = Devices must accept a variable number of response data bytes (3 to 6). This

requirement is to allow a reduction in the number of data bytes that must be transferred. It is

recommended that implementations only return the number of data bytes required to satisfy

the command.

35.14 Get Sensor Reading Command

This command returns the present reading for sensor. The sensor device may return a stored version of a

periodically updated reading, or the sensor device may scan to obtain the reading after receiving the request.

The meaning of the state bits returned by Discrete sensors is based on the Event/Reading Type code from the SDR

for the sensor. This can also be obtained directly from the controller if the optional Get Sensor Type command is

 Intelligent Platform Management Interface Specification

 497

supported for the sensor. Refer to Section 41.2, Event/Reading Type Code, for information on interpreting

Event/Reading Type codes when used for present readings.

Table 35-15, Get Sensor Reading Command
Request Data 1 sensor number (FFh = reserved)

Response Data 1 Completion Code.

 2 Sensor reading

Byte 1: byte of reading. Ignore on read if sensor does not return an numeric
(analog) reading.

 3 [7] - 0b = All Event Messages disabled from this sensor

[6] - 0b = sensor scanning disabled

[5] - 1b = reading/state unavailable (formerly “initial update in progress”).
This bit is set to indicate that a ‘re-arm’ or ‘Set Event Receiver’
command has been used to request an update of the sensor
status, and that update has not occurred yet. Software should
use this bit to avoid getting an incorrect status while the first
sensor update is in progress. This bit is only required if it is
possible for the controller to receive and process a ‘Get Sensor
Reading’ or ‘Get Sensor Event Status’ command for the sensor
before the update has completed. This is most likely to be the
case for sensors, such as fan RPM sensors, that may require
seconds to accumulate the first reading after a re-arm. The bit
is also used to indicate when a reading/state is unavailable
because the management controller cannot obtain a valid
reading or state for the monitored entity, typically because the
entity is not present. See Section 16.4, Event Status, Event
Conditions, and Present State and Section 16.6, Re-arming for
more information.

[4:0] - reserved. Ignore on read.

 (4) For threshold-based sensors

Present threshold comparison status

[7:6] - reserved. Returned as 1b. Ignore on read.

[5] - 1b = at or above () upper non-recoverable threshold

[4] - 1b = at or above () upper critical threshold

[3] - 1b = at or above () upper non-critical threshold

[2] - 1b = at or below () lower non-recoverable threshold

[1] - 1b = at or below () lower critical threshold

[0] - 1b = at or below () lower non-critical threshold

For discrete reading sensors

[7] - 1b = state 7 asserted

[6] - 1b = state 6 asserted

[5] - 1b = state 5 asserted

[4] - 1b = state 4 asserted

[3] - 1b = state 3 asserted

[2] - 1b = state 2 asserted

[1] - 1b = state 1 asserted

[0] - 1b = state 0 asserted

 (5) For discrete reading sensors only. (Optional)

(00h Otherwise)

[7] - reserved. Returned as 1b. Ignore on read.

[6] - 1b = state 14 asserted

[5] - 1b = state 13 asserted

[4] - 1b = state 12 asserted

[3] - 1b = state 11 asserted

[2] - 1b = state 10 asserted

[1] - 1b = state 9 asserted

[0] - 1b = state 8 asserted

Intelligent Platform Management Interface Specification

498

35.15 Set Sensor Type Command

This command is used to assign the Sensor Type and Event/Reading Type to a specified sensor. A management

controller that implements sensors and generates events for those sensors must return the Sensor Type and

Event/Reading Type in the Event Messages from those sensors. By allowing those values to be assigned, it is

possible to create a ‘generic’ management controller with fixed firmware that is field configured with sensor type,

reading, and event type information for the particular application.

For example, a controller could provide a set of unassigned ‘digital’ discrete sensors. The Set Sensor Type

command could allow one of these sensors to be set as a ‘Processor’ sensor that returns ‘Inserted/Removed’

status, and generates an event on ‘Removed’. Another sensor could be assigned to be a Physical Security (Chassis

Intrusion) sensor the returns

The same approach could be used to assign monitoring functions to a controller that provides A/D inputs and an

associated set of unassigned threshold-based analog sensors. One sensor could be assigned to be a voltage sensor,

while another could be assigned to be a temperature sensor, etc.

The Sensor Data Records include an ‘Init Sensor Type’ bit that indicates whether this information should be

assigned to the controller as part of the Initialization Agent process.

The controller can implement this command such that the assignment is volatile or non-volatile. A non-volatile

assignment would allow the assignment to be retained across power cycles or system resets, at the cost of

providing non-volatile storage for the controller. A controller that has a volatile assignment would rely on the

Initialization Agent function to assign the sensor type. This trade-off with this approach is that there would be

more times when the sensor was disabled and unassigned prior to the execution of the Initialization Agent

process.

Table 35-16, Set Sensor Type Command
Request Data 1 sensor number (FFh = reserved)

 2 sensor type (per Table 42-3, Sensor Type Codes)

 3 [7] - reserved

[6:0] - Event/Reading type code (per Table 42-2, Generic Event/Reading
Type Codes)

Response Data 1 Completion Code.

35.16 Get Sensor Type Command

This command is used to retrieve the Sensor Type and Event/Reading Type for the specified sensor. This

command is mandatory for sensors that respond to the Set Sensor Type command.

Table 35-17, Get Sensor Type
Request Data 1 sensor number (FFh = reserved)

Response Data 1 Completion Code.

 2 sensor type (per Table 42-3, Sensor Type Codes)

 3 [7] - reserved.

[6:0] - Event/Reading type code (per Table 42-2, Generic Event/Reading
Type Codes)

 Intelligent Platform Management Interface Specification

 499

35.17 Set Sensor Reading And Event Status Command

This command enables software to set the present reading and event status for sensors that support this command.

This can be used to create sensors where the data comes from software, such as a BIOS SMI handler, rather than

being directly polled or accessed by BMC (or satellite management controller) hardware. The Type 01h and Type

02h SDRs include an optional bit that allows those records to report that a sensor is settable.

The command sets the event state and data values for the sensor directly into the management controller. The

management controller simply takes the parameters that are given to it and generates events based on the event

state settings. The management controller is not required to autonomously update the sensor event state based on

reading values. There is also no requirement for the BMC to make sure the event state and reading are in synch

with one another, though an implementation is allowed to reject ‘illegal’ combinations.

For example, if a sensor is threshold-based, the implementation is not required to update threshold state based on

the data value. Thus, software should always set the event state whenever it wants to cause events to be generated

based on data that is set with this command.

Since the management controller is not required to automatically update sensor event state, this means it is not

required to automatically clear or rearm event state once a given event state has been set. Therefore, if software

asserts an event state using this command, it will need to issue a separate command to explicitly deassert that state

before another event can be generated.

Intelligent Platform Management Interface Specification

500

Table 35-18, Set Sensor Reading and Event Status Command
Request Data 1 sensor number (FFh = reserved)

 2 Operation

[7:6] - Event Data Bytes operation

This field controls whether associated event data bytes are written or left
unchanged for the given sensor. These event data bytes will be returned in
any event message generated by the sensor.

11b = reserved

10b = Write given values to event data bytes, excluding bits [3:0] of
Event Data 1. (If values trigger an event, BMC will automatically
generate bits [3:0] based on the sensor reading and event
status.)

01b = Write given values to event data bytes, including bits [3:0] of
Event Data 1 (bits [3:0] written to Event Data 1 will override
BMC generation of the event offset value on next event
generated by the given sensor.)

00b = Don’t use Event Data bytes from this command. BMC will
generate it’s own Event Data bytes based on its sensor
implementation.

[5:4] - Assertion bits operation

This field controls whether the corresponding assertion event status bits in the
given sensor get set cleared according to the assertion event status
parameters in this command, or are left unchanged. If the parameter for the
assertion bits is absent from this command, the corresponding assertion bits
in the sensor (if any) will remain unchanged regardless of the selected
operation.

11b = A 0b in a given bit position in the given parameter causes
corresponding bit position to be cleared. A 1b causes no change
to the corresponding

10b = A 1b in a given bit position causes corresponding bit position to
be set to 1b. A 0b

01b = write given value to assertion event status bytes

00b = don’t change assertion event status bytes

[3:2] - Deassertion bits operation

This field controls whether the deassertion event status bits in the given
sensor get set, cleared according to the deassertion event status parameters
in this command, or are left unchanged. If the parameter for the deassertion
bits is absent from this command, the corresponding assertion bits in the
sensor (if any) will remain unchanged regardless of the selected operation.

11b = A 0b in a given bit position in the given parameter causes
corresponding bit position to be cleared. A 1b causes no change
to the corresponding

10b = A 1b in a given bit position causes corresponding bit position to
be set to 1b. A 0b

01b = write given value to assertion event status bytes

00b = don’t change assertion event status bytes

[1:0] - Sensor Reading operation

This field controls whether the sensor reading byte is written or left unchanged
according to the sensor

10b, 11b = reserved

01b = write given value to sensor reading byte

00b = don’t change sensor reading byte

 3 Sensor Reading

Byte 1: byte of reading.

 Intelligent Platform Management Interface Specification

 501

 (4)* For sensors with threshold based events:

(High-going events are asserted when value first becomes  threshold. Low-

going events are asserted when value first becomes  corresponding
threshold.)

[7] - 1b = assertion event condition for upper non-critical going high
occurred

[6] - 1b = assertion event condition for upper non-critical going low occurred

[5] - 1b = assertion event condition for lower non-recoverable going high
occurred

[4] - 1b = assertion event condition for lower non-recoverable going low
occurred

[3] - 1b = assertion event condition for lower critical going high occurred

[2] - 1b = assertion event condition for lower critical going low occurred

[1] - 1b = assertion event condition for lower non-critical going high
occurred

[0] - 1b = assertion event condition for lower non-critical going low occurred

For sensors with discrete events:

[7] - 1b = state 7 assertion event occurred

[6] - 1b = state 6 assertion event occurred

[5] - 1b = state 5 assertion event occurred

[4] - 1b = state 4 assertion event occurred

[3] - 1b = state 3 assertion event occurred

[2] - 1b = state 2 assertion event occurred

[1] - 1b = state 1 assertion event occurred

[0] - 1b = state 0 assertion event occurred

 (5)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = assertion event condition for upper non-recoverable going high
occurred

[2] - 1b = assertion event condition for upper non-recoverable going low
occurred

[1] - 1b = assertion event condition for upper critical going high occurred

[0] - 1b = assertion event condition for upper critical going low occurred

For sensors with discrete events:

(00h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = state 14 assertion event occurred

[5] - 1b = state 13 assertion event occurred

[4] - 1b = state 12 assertion event occurred

[3] - 1b = state 11 assertion event occurred

[2] - 1b = state 10 assertion event occurred

[1] - 1b = state 9 assertion event occurred

[0] - 1b = state 8 assertion event occurred

Intelligent Platform Management Interface Specification

502

 (6)* For sensors with threshold based events:

(High-going events are deasserted when value goes less than the
corresponding threshold minus the positive-going hysteresis value. Low-going
events are deasserted when value goes greater than the corresponding
threshold plus the negative-going hysteresis value.)

[7] - 1b = deassertion event condition for upper non-critical going high
occurred

[6] - 1b = deassertion event condition for upper non-critical going low
occurred

[5] - 1b = deassertion event condition for lower non-recoverable going high
occurred

[4] - 1b = deassertion event condition for lower non-recoverable going low
occurred

[3] - 1b = deassertion event condition for lower critical going high occurred

[2] - 1b = deassertion event condition for lower critical going low occurred

[1] - 1b = deassertion event condition for lower non-critical going high
occurred

[0] - 1b = deassertion event condition for lower non-critical going low
occurred

For sensors with discrete events:

[7] - 1b = state 7 deassertion event occurred

[6] - 1b = state 6 deassertion event occurred

[5] - 1b = state 5 deassertion event occurred

[4] - 1b = state 4 deassertion event occurred

[3] - 1b = state 3 deassertion event occurred

[2] - 1b = state 2 deassertion event occurred

[1] - 1b = state 1 deassertion event occurred

[0] - 1b = state 0 deassertion event occurred

 (7)* For sensors with threshold based events:

[7:4] - reserved. Write as 0000b.

[3] - 1b = deassertion event condition for upper non-recoverable going high
occurred

[2] - 1b = deassertion event condition for upper non-recoverable going low
occurred

[1] - 1b = deassertion event condition for upper critical going high occurred

[0] - 1b = deassertion event condition for upper critical going low occurred

For sensors with discrete events:

(0h otherwise)

[7] - reserved. Ignore on read.

[6] - 1b = state 14 deassertion event occurred

[5] - 1b = state 13 deassertion event occurred

[4] - 1b = state 12 deassertion event occurred

[3] - 1b = state 11 deassertion event occurred

[2] - 1b = state 10 deassertion event occurred

[1] - 1b = state 9 deassertion event occurred

[0] - 1b = state 8 deassertion event occurred

 Intelligent Platform Management Interface Specification

 503

 (8)* Event Data 1 (See Table 29 6, Event Request Message Event Data Field
Contents).

Note: bits 3:0 of Event Data 1 are the event offset. It is up to the party issuing
this command to ensure that any values written to the event offset field
are consistent with values written to the Reading and State fields. The
Event Data Bytes operation field in byte 1 of this request can be used
to select whether the BMC automatically generates the event offset
bits or uses values passed in this byte.

 (9)* Event Data 2

 (10)* Event Data 3

Response Data 1 Completion Code.

Generic plus the following command-specific completion codes:

80h: Attempt to change reading or set or clear status bits that are not
settable via this command

81h: Attempted to set Event Data Bytes, but setting Event Data Bytes is not
supported for this sensor.

* = Devices must accept a variable number of request data bytes (4 to 10). This requirement is to
allow a reduction in the number of data bytes that must be transferred.

Intelligent Platform Management Interface Specification

504

35b. Command Forwarding Commands
Command Forwarding is an optional capability that can be used to support add-in cards or auxiliary management

controllers. This functionality enables the specified commands on a given interface to be forwarded from the BMC

to the add-in instead of being processed directly by the BMC. The BMC accomplishes this by encapsulating the

forwarded command within a Forwarded Command command that it then sends to the target controller on the add-

in. Correspondingly, the controller on the add-in can uses the Forwarded Command to return forwarded command

responses to the BMC.

Only requests from the source to the target need to be forwarded. If the target (add-in) needs to deliver a request to a

particular channel, it can use the Send Message command to do so. Bridging in the BMC will then handle the

routing of the response back to the target. Thus, the Forwarded Command command is only used to forward request

messages to the target. Correspondingly, the BMC does not itself accept Forwarded Command requests, just

responses.

This is similar in operation to the Send Message command. The general process for initializing and using Command

Forwarding is:

 The Set Forwarded Commands command is used to select which commands are to be forwarded from a

given channel. In this section, channels that receive commands that are to be forwarded are referred to as

sources for Command Forwarding.

 The Enable Forwarded Commands command is used to configure which controller will receive the

forwarded commands, and also to enable (activate) Command Forwarding. In this section, the controller

that receives and processes forwarded commands is referred to as the target controller for Command

Forwarding.

 Subsequently, when the BMC receives a command over a channel, it checks to see if Command

Forwarding is enabled for that channel, and whether the command is to be Forwarded.

 If the command is to be forwarded, the BMC encapsulates the IPMI common command fields (i.e. NetFn,

LUN, CMD) in a Forwarded Command request message to the target controller.

 When the BMC issues the Forwarded Command command, it temporarily records the sequence number

that was used to send that command, along with information necessary to format and route the

corresponding response data back to the source channel.

 The target receives the Forwarded Command request, processes it, and returns a Forwarded Command

response. This response contains the encapsulated IPMI message data the original, forwarded, request. The

BMC uses the sequence number in this response to look up how to route and format the response data for

the particular source channel.

Table 35b-1, Command Forwarding Commands

Command

Section

Defined

O/M

Get Forwarded Commands 35b.1 O[1]

Set Forwarded Commands 35b.2 O[1]

Enable Forwarded Commands 35b.3 O[1]

Forwarded Command 35b.4 O[1]

 Intelligent Platform Management Interface Specification

 505

35b.1 Get Forwarded Commands Command
This command enables software to determine which commands are presently enabled for command forwarding from

a given channel on the BMC.

Table 35b-2 Get Forwarded Commands Command
 Byte Data field

Request Data 1 Source Channel Number (number for the channel that is the source
of forwarded commands)

 2 [7:6] Operation
00b = return forwarded mask for commands 00h through 7Fh
01b = return forwarded mask for commands 80h through FFh
10b, 11b = reserved

[5:0] NetFn

 3 [7:2] reserved
[1:0] LUN

Response Data 1 Completion code

 2:17 Forwarded Commands mask
These sixteen bytes form a 128-bit bitfield where each bit
indicates a particular command value under the given NetFn for
which forwarding is enabled.
For each bit in the bitfield:
0b = indicates the command is not forwarded
1b = indicates the command is forwarded

Depending on the value of the “Operation” parameter passed in the
request:

Byte 1, bit 0 corresponds to command 00h or command 80h
….
Byte 16, bit 7 corresponds to command 7Fh or command FFh

Intelligent Platform Management Interface Specification

506

35b.2 Set Forwarded Commands Command
This command enables software to set which commands are presently enabled for command forwarding from a

given channel on the BMC.

Table 35b-3, Set Forwarded Commands Command
 Byte Data field

Request Data 1 Source Channel Number (number for the channel that is the
source of forwarded commands)
All supported source channels are configured independently.

 2 [7:6] Operation
00b = set forwarded command mask for commands 00h

through 7Fh
01b = set forwarded command mask for commands 80h

through FFh
10b = disable Command Forwarding from this channel
11b = enable Command Forwarding form this channel

[5:0] NetFn

 3 [7:2] reserved
[1:0] LUN

 4:19 Forwarded Command mask
These sixteen bytes forms a 128-bit bitfield where each bit
indicates a particular command value under the given NetFn
for which forwarding is enabled
For each bit in the bitfield:
0b = indicates the command is not forwarded
1b = indicates the command is forwarded

Depending on the value of the “Operation” parameter passed in
the request:
Byte 1, bit 0 corresponds to command 00h or command 80h
….
Byte 16, bit 7 corresponds to command 7Fh or command FFh

Response Data 1 Completion code

35b.3 Enable Forwarded Commands Command
This command allows enabling and disabling Command Forwarding, and also provides the ability to configure

which interface (channel) the BMC sends forwarded commands to and receives forwarded command responses

from.

Note: a given BMC may not support Command Forwarding over all channels. The command returns which channels

command forwarding can be targeted to.

Table 35b-4, Enable Forwarded Commands Command
 Byte Data field

Request Data 1 [7:2] - reserved
[1:0] - Operation:

00b = get present configuration
01b = set target controller channel, slave address and

LUN
10b = enable Command Forwarding from given channel
11b = disable Command Forwarding from given channel

 2 Channel Number to be used for channel between BMC and
target controller
[3:0] - channel number.
 0h-Bh = channel numbers

 Intelligent Platform Management Interface Specification

 507

 0Ch-0Fh = reserved

 3 Target Controller LUN
[7:2] - reserved
[1:0] - target controller LUN

 4 Target Controller Slave Address
[7:1] - controller slave address
[0b] - reserved. Write as 0b.

 5 Forwarded command time-out, in 10’s of ms. 1-based. 30
ms, min. Sets the minimum time the BMC will wait before
timing out waiting for a response to a Forwarded Command
command.
00h-02h = reserved.
03h-FFh = timeout in 10’s of ms. E.g. 03h = 30 ms.

Response Data 1 Completion code

 2 Command Forwarding Status
[7:2] - reserved
[1:0] - command forwarding status

11b = command forwarding disabled
10b = command forwarding enabled
all other = reserved

 3 Channel Number to used for channel between BMC and
target controller.
[3:0] - channel number.
 0h-7h = channel numbers

 08h-0Fh = reserved

 4 Target Controller LUN
[7:2] - reserved
[1:0] - target controller LUN

 5 Target Controller Slave Address
[7:1] - controller slave address
[0b] - reserved. Write as 0b.

 6 Forwarded command time-out, in 10’s of ms. 1-based. 30
ms, min. Sets the minimum time the BMC will wait before
timing out waiting for a response to a Forwarded Command
command.
00h-02h = reserved.
03h-FFh = timeout in 10’s of ms. E.g. 03h = 30 ms.

Intelligent Platform Management Interface Specification

508

 7:8 Source Channel Support
bitfield indicating which channel numbers are available for
use for Command Forwarding sources.

The implementation must allow all supported source
channels for command forwarding to be enabled and used
for command forwarding simultaneously.

byte 1:
[7] - 1b = channel 7 supported for Command Forwarding
[6] - 1b = channel 6 supported for Command Forwarding
[5] - 1b = channel 5 supported for Command Forwarding
[4] - 1b = channel 4 supported for Command Forwarding
[3] - 1b = channel 3 supported for Command Forwarding
[2] - 1b = channel 2 supported for Command Forwarding
[1] - 1b = channel 1 supported for Command Forwarding
[0] - 1b = channel 0 (primary IPMB) supported for Command

Forwarding

byte 2:
[7] - 1b = channel Fh (system interface) supported for

Command Forwarding.
[6:4] - reserved
[3] - 1b = channel Bh supported for Command Forwarding
[2] - 1b = channel Ah supported for Command Forwarding
[1] - 1b = channel 9 supported for Command Forwarding
[0] - 1b = channel 8 supported for Command Forwarding

 9:10 Target Channel Support
bitfield indicating which channel numbers are available for
selection as the target channel for forwarded commands.

Note:

 Only one channel at a time can be set as the target
channel per this version of the specification.

 Only channels of type IPMB or PCI-SMBus are
supported as targets with this version of the
specification.

 OEM channel use is allowed, but the mechanism
used for handling forwarded commands on an
OEM channel is outside this specification.

byte 1:
[7] - 1b = channel 7 supported for Command Forwarding
[6] - 1b = channel 6 supported for Command Forwarding
[5] - 1b = channel 5 supported for Command Forwarding
[4] - 1b = channel 4 supported for Command Forwarding
[3] - 1b = channel 3 supported for Command Forwarding
[2] - 1b = channel 2 supported for Command Forwarding
[1] - 1b = channel 1 supported for Command Forwarding
[0] - 1b = channel 0 (primary IPMB) supported for Command

Forwarding

byte 2:
[7:4] - reserved
[3] - 1b = channel Bh supported for Command Forwarding
[2] - 1b = channel Ah supported for Command Forwarding
[1] - 1b = channel 9 supported for Command Forwarding
[0] - 1b = channel 8 supported for Command Forwarding

 Intelligent Platform Management Interface Specification

 509

35b.4 Forwarded Command Command
This command is used to encapsulate the forwarded command data between the add-in and the BMC. Below are

examples of the format of this command used to forward a request to a target controller on IPMB.

Note that for IPMB this encapsulation adds at least three bytes of overhead to forwarded requests, since there are

two occurrences of NetFn/LUN and CMD bytes, plus a field for the source channel number. (If the request is from a

session-based channel, two additional bytes of overhead are required.) For responses, there are three bytes of

overhead because the completion code byte is also duplicated. Thus, to support this command, the BMC must

include sufficient additionally buffering to accept this additional overhead for all interfaces that support using the

Forwarded Command message to deliver a message to a given target.

Example: Format of Forwarded Command request message used to carry a forwarded request from BMC

to target controller (add-in) via IPMB:

 RsSA NetFn/RsLun

(NetFn=even)

Chk1

 RqSA Seq/RqLUN CMD=Forwarded Command Channel number

Encapsulated Request  NetFn/LUN CMD Data

 Chk2

Example: Format of Forwarded Command response message from target controller (add-in) to BMC via

IPMB:

 RqSA NetFn/RqLun

(NetFn=odd)

Chk1

 RsSA Seq/RsLUN CMD=Forwarded Command

 Completion Code

Encapsulated Response  NetFn/LUN CMD Completion Code Data

 Chk2

The BMC will time out and return an FFh or C3h (Timeout while processing command. Response unavailable.)

error completion code to the requester if the target controller does not return a matching Forwarded Command

response message within the timeout set by the Enable Forwarded Commands command.

The Forwarded Command command is only sent out by the BMC as a request. It is not accepted as a request by the

BMC itself.

Table 35b-5, Forwarded Command Command
Request Data 1 [7] - 1b = forwarded request is from a session-based

channel
[6:4] - reserved
[3:0] - Channel number.

 2[1] [7:6] - reserved.
[5:0] - User ID. Use 000000b for single-session channels.

 3[1] [7:4] - User Maximum Privilege Level[2]
[3:0] - User Operating Privilege Level[2] (present privilege

level User that originated request is operating at)

 4[1] Session Handle. Use 00h for single-session channels.

 x:N Forwarded Command Request Data

Response Data 1 Completion Code
Generic plus the following command-specific completion
codes:
80h: Target controller unavailable.

The forwarded command failed because the target
controller could not accept the request. (On SMBus or

Intelligent Platform Management Interface Specification

510

I2C/IPMB, this would be the case if the target controller
were absent, or if it actively NAK’d the command).

BMC shall return FFh or C3h (Timeout while processing
command. Response Unavailable) completion code if the
target controller does not return a matching Forwarded
Command response message within the timeout set by the
Enable Forwarded Commands command.

 2:M Forwarded Command Response Data
1. These fields present only if request is forwarded from a session-based

channel.
2. Value is captured at time that the request is received and interpreted by the

BMC.

 Intelligent Platform Management Interface Specification

 511

Intelligent Platform Management Interface Specification

512

36. Sensor Types and Data Conversion
Sensors can be generally classified into two types, Linear/Linearizable Sensors and Non-Linear Sensors. The

difference between the two types is mainly in the manner in which software that accesses the sensors needs to

handle the conversion of the sensor readings.

Sensor Devices are allowed to implement their sensors using ‘raw’ values for their thresholds and for returning their

readings. For example, the physical device that implements a voltage sensor will often be an A/D converter. The

values that the Sensor Device returns will typically be in A/D counts, rather than an direct integer value in volts.

Therefore, software that interfaces to these values must know how to convert and interpret these values. The

‘conversion factors’ for these values shall either be provided in the Sensor Data Record for the sensor, or shall be

retrievable from the Sensor Device. In the example of the previous paragraph, the Sensor Data Record for the

voltage sensor would contain values that allow software to convert those A/D counts to a voltage value.

Allowing the sensor values to be isolated from the measurement units allows the Sensor Devices themselves to be

implemented in a simpler manner. The measured quantity can also be changed or measurement adjusted by changing

the Sensor Data Record without having to change the physical implementation of the Sensor Device. A physical

instantiation of a Sensor Device that implement a sensor that’s an A/D converter could have that sensor defined as a

voltage measurement sensor in one system implementation, and a current sensor in another.

36.1 Linear and Linearized Sensors

Linear sensors return readings that can be converted to the desired sensor units (temperature, voltage, etc.) using a

linear conversion formula. Linearized sensors are sensors that can have one of a set of pre-specified conversion

formulas applied to the reading to linearize it. After linearization the sensor reading can be converted to final units

as if it was linear in the first place.

Linear and Linearized sensors are also considered as having constant Accuracy, Tolerance, and Resolution over

the range of the raw readings from the sensor. Thus, for a linearized sensor, the effects of accuracy, tolerance, and

resolution are to be applied prior to application of the linearization formula.

36.2 Non-Linear Sensors

Non-linear sensors are sensors that either cannot be linearized using one of the pre-determined linearization

formula, or are sensors that do not have constant conversion factors, accuracy, tolerance, and/or resolution over

the range of their raw readings.

Because the conversion factors, accuracy, etc., can vary - System Management Software must treat non-linear

sensors by obtaining these factors for the reading of interest by querying the sensor using a ‘Get Sensor Reading

Factors’ command. This means that polling of non-linear sensors is a two-step process. First, System Management

Software obtains the raw reading from the sensor, second it issues a ‘Get Sensor Reading Factors’ command to

retrieve the conversion factors for that reading.

Since the conversion factors, accuracy, tolerance, etc., are returned with the reading, a linearization function is not

applied in the conversion.

 Intelligent Platform Management Interface Specification

 513

36.3 Sensor Reading Conversion Formula

The following presents the formula used for converting ‘raw’ sensor readings for linear and linearized sensors to

real values in the desired ‘units’ for the sensor (e.g. Volts, Amps, etc.).

y = L[(Mx + (B * 10 K 1)) * 10 K 2] units

where:

x Raw reading

y Converted reading

L[] Linearization function specified by ‘linearization type’.

This function is ‘null’ (y = f(x) = x) if the sensor is linear.

M Signed integer constant multiplier

B Signed additive ‘offset’

K1 Signed Exponent. Sets ‘decimal point’ location for B. This is called the ‘B’ exponent in the SDRs.

K2 Signed Result Exponent. Sets ‘decimal point’ location for the result before the linearization function

is applied. This is called the ‘R’ exponent in SDRs. Linear and Linearized readings have constant

accuracy, tolerance, M, and B factors regardless of the reading.

Accuracy, tolerance, M, and B for ‘Non-linear’ sensors are only valid at the nominal reading. Otherwise, these

factors must be obtained by ‘querying’ the sensor for these factors at the reading of interest using the ‘Get Sensor

Reading Factors’ command. Refer to Section 35.5, Get Sensor Reading Factors, for more information.

36.4 Resolution, Tolerance and Accuracy

Resolution, Tolerance, and Accuracy are applied to the RAW reading for Linear and Linearizable sensors, prior to

the application of any further conversion formula.

36.4.1 Tolerance

Tolerance is specified in the Sensor Data Records in +/- ½ raw counts. The +/- implies that the tolerance value

is ‘0’ based. There is no ‘B’ offset used in converting the tolerance value to units. Tolerance can thus be

converted to the to units using the formula y = L[Mx / 2 * 10 K 2] un i ts . Where L, M, and K2 are as specified

above.

Note that tolerance can vary at each reading for a non-linear sensor. The ‘Get Sensor Reading Factors’

command can be used to obtain the tolerance at a given reading.

36.4.2 Resolution

Resolution indicates the separation in units between successive raw reading values. For linear sensors,

resolution is obtained from the ‘M’ factor. To convert M to resolution in units, use the formula y = abs(M *
10 K 2) un i ts . Where abs() means use the absolute value.

36.4a Resolution for Non-linear & Linearizable Sensors

The resolution typically varies at each different reading value of a non-linear or linearizable sensor. One

approach to determining a resolution for these types of sensors is to examine the points neighboring the reading

Intelligent Platform Management Interface Specification

514

of interest. I.e. for reading ‘x’, take the difference between x and x+1 converted to units as the resolution in the

‘positive’ direction, and the difference between x and x-1 converted to units as the resolution in the ‘negative’

direction.

36.4b Offset Constant Relationship to Resolution

There is a relationship between the constant offset factor, ‘B’, and resolution. For example, if a voltage sensor

has a resolution of 100 mV and a zero ‘B’ offset, the raw readings and threshold settings from the sensor would

convert to units in even increments of 100 mV. E.g. starting from 0: 0.000V, 0.100V, 0.200V, etc. If the same

sensor had a ‘B’ offset equivalent to 2.250V, then the same readings would be 2.250V, 2.350V, 2.450V, etc.

This may need to be incorporated into the user interface for a management application that displays readings, or

allows thresholds to be set. For example, the user interface could provide a scrolling selection for threshold

settings in units that incremented and decremented according to the specified offset and resolution values.

36.5 Management Software, SDRs, and Sensor Display

Analog sensor devices are always accessed using raw values, where the term ‘raw values’ refers to the fact that

values from the sensor are not in the final assigned units. For example, an analog-to-digital converter returns a

number that is representative of a voltage applied to the device. Whether that voltage represents temperature or

fan speed is dependent on how the device is applied.

If a Get Sensor Reading command is issued to a management controller that provides the A/D converter reading,

the management controller will typically just return the direct reading from the converter. Software uses the

conversion factors in the SDR for the sensor to convert that reading to units that the platform vendor or system

integrator selected as being appropriate for the device. The selection of one type of unit versus another is typically

made according to what best fits the monitoring hardware and maintains the best accuracy.

Thresholds and threshold comparisons are also done with raw values. The threshold designations “Upper” and

“Lower” are solely with respect to the hardware that is doing the comparison of the thresholds with the raw

reading values. Correspondingly, the Upper and Lower threshold values in the SDRs reflect these raw values. The

upper threshold is always for the raw reading with the most positive value, the lower threshold with the most

negative value. This is not necessarily the value with the greatest absolute magnitude. E.g. if I have two threshold

values, 5 and 10, 5 would be the lower threshold and 10 would be the upper. If I have -5 and 10, -5 would be the

lower, and 10 would be the upper. If I have -5 and -10, however, -10 would be the lower threshold and -5 the

upper - since -5 is more positive than -10.

36.5.1 Software Display of Threshold Settings

In most cases, software can directly display thresholds directly after performing the conversion to units. There is

a set of cases, however, where it is recommended that software display the thresholds with the upper and lower

threshold names ‘swapped’ in order to provide a more intuitive user interface. This can occur with sensors that

have a 1/x Linearization factor, as described in the following example.

Suppose I have a ‘tach fan’ that outputs a number of pulses per fan revolution, and a sensor that returns a raw

reading that is directly proportional to the period (interval) between the pulses. As the fan speeded up, the

reading would decrease (since the interval between pulse would get smaller) and as the fan slowed down the

pulse period would increase. The following shows some example ‘raw value’ thresholds that might be returned

by such a sensor.

Sensor Hardware Settings (raw units):

Upper Critical going high Threshold = 100 (Fan going too slow)

Lower Critical going low Threshold = 10 (Fan going too fast)

 Intelligent Platform Management Interface Specification

 515

An SDR could be made that directed software to convert and report this period in terms of seconds. For

example, the SDR could contain linear conversion factors that converted the reading into seconds. In this

example, assume a reading of 100 corresponds to 100 milliseconds, and a value of 10 corresponds to 10

milliseconds. The user interface may then present the following information:

Software User Interface Display:

Sensor Type: Fan

Upper Critical Threshold: 100 ms

Lower Critical Threshold: 10 ms

While correct, this display is not particularly intuitive to the end user. The user would probably make more

sense of the values if they were given in RPM. Thus, a more ‘user friendly’ SDR would direct software to

present the reading as RPM. To do this requires converting the raw reading using a 1/x linearization factor,

either in the SDR or done by the system management software. In this example, assume the fan puts out 1 pulse

per revolution. A 10 ms interval would correspond to 1 revolution in 10 ms, which equals 100 revolutions per

second, or 6000 revolutions per minute (6000 RPM). Similarly, a 100 ms interval would correspond to 600

RPM.

In this case, a piece of user interface software that displayed the threshold settings directly by applying the

conversion factors would see:

Software User Interface Display:

Sensor Type: Fan

Upper Critical Threshold: 600 RPM

Lower Critical Threshold: 6000 RPM

While this is correct with respect to the management controller that is doing the comparisons, an end user may

be confused to see a Lower Critical Threshold value that is greater than the Upper Critical Threshold. Thus,

it’s recommended that the User Interface swap the threshold names when the 1/x factor is encountered. This

will allow the end user to see the thresholds presented as:

Software User Interface Display:

Sensor Type: Fan

Upper Critical Threshold: 6000 RPM

Lower Critical Threshold: 600 RPM

This presentation of fan speed thresholds is likely to make more sense to the typical user.

36.5.2 Notes on Displaying Sensor Readings & Thresholds

The following should be kept in mind when designing software that utilizes SDRs for the display for sensor

readings and thresholds:

 ‘Analog’ sensor readings and thresholds use raw values.

 Thresholds in sensors and SDRs are given in raw values.

 The management controller performs its threshold comparisons are done against raw values. Changing the

SDR has no effect on the meaning of Upper and Lower as far as the management controller is concerned.

 Changing the units and conversion factors for a sensor does not change the hardware behavior.

Intelligent Platform Management Interface Specification

516

 Sensor Data Records tell software how to convert the raw values into units that the platform vendor or

system integrator deemed appropriate for the sensor. The values are typically selected based on what

provides the most accurate or direct conversion of the hardware.

 System software can elect to convert units for display to the user. For example, system software may elect

to display all temperatures in Fahrenheit, even if the Sensor Data Record provides factors for converting the

reading to Celsius.

 To make the display more intuitive to the user, it’s recommended that software swap the threshold names

when linearization or conversions factors, e.g. 1/x, cause the sense of ‘Upper’ and ‘Lower’ to be reversed

during the conversion from raw values to display units.

 The System Event Log also returns values in raw units, and thresholds that are related to raw units. System

Events are best displayed when the SEL Record information is combined with the SDR information for the

sensor. The meaning of Upper and Lower threshold events cannot be fully understood without using the

SDR information. For example, it’s possible that an ‘Upper Critical’ temperature event could actually

correspond to a LOW TEMPERATURE. Thus, if a System Event Log display utility doesn’t have access to

the SDR information, it’s best to emphasize the criticality and sensor type associate with the event rather

than what particular threshold was crossed.

 Intelligent Platform Management Interface Specification

 517

Intelligent Platform Management Interface Specification

518

37. Timestamp Format
Timestamping is a key part of event logging and tracking changes to the Sensor Data Records and the SDR

Repository. The following specifies the format of the seconds-based timestamp used in this document.

Time is an unsigned 32-bit value representing the local time as the number of seconds from 00:00:00, January 1,

1970. This format is sufficient to maintain timestamping with 1-second resolution past the year 2100. This is based

on a long standing UNIX-based standard for time keeping, which represents time as the number of seconds from

00:00:00, January 1, 1970 GMT. Similar time formats are used in ANSI C.

The timestamps used for SDR and SEL records are assumed to be specified in relative local time. That is, the

difference between the timestamp does not include the GMT offset. To convert the timestamp to a GMT-based time

requires adding the GMT offset for the system. (The GMT offset needs to be obtained from system software level

interfaces, there is no provision in the IPMI commands for storing or returning a GMT offset for the system.)

Applications may use ANSI C time standard library routines for converting the SEL timestamp reading into other

time formats. Be aware that this may require additional steps to account for the system’s GMT offset.

37.1 Special Timestamp values

0xFFFFFFFF indicates an invalid or unspecified time value.

0x00000000 through 0x20000000 are used for timestamping events that occur after the initialization of the

System Event Log device up to the time that the timestamp is set with the system time value. Thus, these

timestamp values are relative to the completion of the SEL device’s initialization, not January 1, 1970.

 Intelligent Platform Management Interface Specification

 519

Intelligent Platform Management Interface Specification

520

38. Accessing FRU Devices
FRU devices can either be located behind a management controller or located directly on the IPMB. The sensor data

records include a FRU Device Locator record that tells software where the device is located and what type of

commands are required to access the FRU device. FRU devices can located in three different types of location:

 Behind a management controller and accessed using Read/Write FRU Data commands. Multiple FRU

devices can be behind a management controller. The Read/Write FRU Data commands include a FRU

Device ID field that is used to identify individual FRU devices on the given LUN in the management

controller. Up to 255 FRU devices can be located on a given LUN. FRU Device ID #00 at LUN 00b is pre-

defined as being the FRU Device for the FRU that the management controller is located on. Since there are

four possible LUNs for a management controller, this means up to 255*4 FRU devices can be supported

behind a single management controller using this mechanism. The Read/Write FRU Data commands

provide an abstracted interface that hides the technology used to implement the FRU device from system

software.

 SEEPROM on a private bus behind a management controller. These devices are accessed using Master

Write-Read commands. System software needs to know the operation of a 24C02-compatible SEEPROM

interface to access these devices.

 SEEPROM on the IPMB. These devices are typically accessed using a Master Write-Read command to the

IPMB via the BMC. System software needs to know the operation of a 24C02-compatible SEEPROM

interface to access these devices. Note that there are only eight IPMB addresses available for typical

24C02-type SEEPROM devices, four of which are reserved for the baseboard supplier. (Refer to the IPMB

Address Allocation specification).

The FRU Device Locator record provides fields that identifies the type of location for the FRU Device and where

it’s located. The following table illustrates how these fields are used.

 Intelligent Platform Management Interface Specification

 521

Table 38-1, FRU Device Locator Field Usage
FRU Device Type and
Location

FRU Device Locator Fields

Access Method

FRU Device Accessed via
Read/Write FRU commands to
management controller

Device Access Address: IPMB Slave address of the
controller that accepts the
Read/Write FRU Data
commands for access the
FRU Device.

Read / Write FRU Data
commands to management
controller providing access to
the FRU Device.

 FRU Device ID /

Device Slave Address:

FRU Device ID.

 Access LUN / Bus ID: bit 7 = 1 indicates device is
access using Read/Write FRU
Data commands.

bits 4:3 hold the LUN to send
the Read/Write FRU Data
commands to.

bits 2:0 = 000b. (no private
bus ID)

SEEPROM On private bus
behind a management
controller

Device Access Address: IPMB slave address of the
controller to send the Master
Write-Read command to.

Master Write-Read command
to management controller that
provides access

 FRU Device ID /

Device Slave Address:

Slave address of the
SEEPROM on the private bus.
Used in the Master Write-
Read command.

to the private bus

 Access LUN / Bus ID: bit 7 = 0 indicates device is a
non-intelligent device.

bits 4:3 hold the LUN to send
the Master Write-Read I2C
command to.

bits 2:0 hold the Private Bus
ID to use in the Master Write-
Read command.

SEEPROM Device directly on
IPMB

Device Access Address: 00h. Indicating device is
directly on IPMB

Master Write-Read command
through BMC from

 FRU Device ID /

Device Slave Address:

Slave address of the
SEEPROM on the IPMB.

system software, or access via
other interface providing

 Access LUN / Bus ID: bit 7 = 0 indicates device is a
non-intelligent device.

bits 3:0 = 0h indicates device
is on the IPMB.

low-level I2C access to the
IPMB.

Intelligent Platform Management Interface Specification

522

39. Using Entity IDs
An Entity ID is a standardized numeric code that is used in SDRs to identify the types of physical entities or FRUs

in the system. The codes include values for entities such as Processor, Power Supply, Fan, etc. The Entity ID values

are specified in Table 43-13, Entity ID Codes.

The Entity ID is associated with an Entity Instance value that is used to indicate the particular instance of an entity.

For example, a system with four processors would use an Entity Instance value of ‘0’ to identify the first processor,

‘1’ for the second, and so on. [Note: The assignment of Entity Instance values is up to the implementer. There’s no

predefined semantics on the Entity Instance other than its use to differentiate among Entities of the same type. For

example, an implementer could designate the first processor using Entity Instance 0, 1, or 12...]

The SDR for a sensor includes Entity ID and Entity Instance fields that identify the entity associated with the sensor.

This allows system software to tell a temperature sensor associated with ‘Processor 1’ from a temperature sensor

associated with ‘Power Supply 2’. The use of numeric codes facilitates the development of automated applications

that act on this relation information. It also supports internationalization and localization.

39.1 System- and Device-relative Entity Instance Values

Entity Instance values can be in one of two ranges, system-relative or device-relative. In IPMI v1.0, all Entity

Instance values were system-relative - meaning that the Entity Instance numbers for a given had to be unique for

all entities in the system sharing the same Entity ID. A problem with this approach is that add-in cards and

management controllers cannot have pre-assigned Entity Instances because of the potential that those values

would overlap with Entity Instance values already present in the system.

In order to correct this situation, the IPMI v1.5 specification splits the Entity Instance value into two ranges.

Entity Instance values in the system-relative range are required to be unique for all entities with the same Entity

ID in the system. Device-relative Entity Instance values are only required to be unique among all entities that have

the same Entity ID within a given device (management controller). For example, management controller ‘A’ and

‘B’ could both have FAN entities that have and Entity Instance value of ‘60h’.

The system-relative Entity Instance definition matches the original Entity Instance definition in IPMI v1.0.

Therefore an IPMI v1.0 implementation that is being migrated to IPMI v1.5 does not need to change Entity

Instance values if they’re already in the system-relative range.

Table 39-1, System and Device-Relative Entity Instance Values
Range Name Definition

00h-5Fh system-relative The Entity Instance number must be unique for each different entity of the same type
Entity ID in the overall system.

60h-7Fh device-relative Instance number is unique for each different entity of type Entity ID only relative to the
particular management controller device that provides access to the sensors for the
entity. The entity is uniquely identified at the system level by the combination of the
Sensor Device number and the Entity Instance number.

It is recommended that console software subtract 60h when presenting device-relative
Entity Instance values, and present the Entity Instance number along with an ID for the
device providing the interface to the entity. For example, suppose management
controller ‘1’ had a FAN entity with a device-relative Entity Instance value of 61h. It may
make more sense to the user to refer to the entity as “Controller 1, Fan 1” than
‘Controller 1, Fan 61h’. Entities with system-relative Entity Instance values could be
preceded with the word ‘System’ (or something similar). E.g. “System, Fan 1.”

39.2 Restrictions on Using Device-relative Entity Instance Values

Note that when using a Sensor Device Relative instance number, all sensors monitoring a given entity must be

provided via one management controller. Otherwise, it may appear that there are more instances of the entity than

 Intelligent Platform Management Interface Specification

 523

are actually present. For example, suppose an add-in card has a single fan where current is monitored via sensor 1

in management controller ‘A’ and the speed monitored via sensor 2 in management controller ‘B’. Because the

management controller’s ID is now part of what uniquely identifies the entity, software would view these sensors

as monitoring different fans, even if the Sensor Device Relative instance number were the same.

39.3 Sensor-to-FRU Association

A given Entity may itself be a FRU. In this case the Entity ID can be used to look up the FRU Device Locator

record for that Entity. (The FRU Device Locator record is a type of SDR that identifies the location and type of

FRU Devices in the platform management subsystem). The following figure presents an example illustrating the

steps that system management software could use to locate and access the FRU for the Entity associated with a

sensor.

Figure 39-1, Sensor to FRU Lookup

Sensor Data Record

Entity ID = Memory Module

Entity Instance = 1

FRU Device Locator

Entity ID = Memory Module

Entity Instance = 1

Look Up Device Access Addr. = 20h (BMC)

Access LUN / Bus ID = 0xxx0000b.

bit 7 = 0 (device is non-intelligent

device)

Access LUN = 00b

Bus ID = 01b (private bus #1)

FRU Device ID / Device Slave

Address = A2h
BMC

(slave addr 20h)

Memory Module

Private Bus 01

FRU SEEPROM

slave addr = A2h

System Interface

System Software

System mgmt. software extracts FRU device

location from FRU Device Locator record. It

determines the device is a FRU SEEPROM on

a private bus behind the BMC. It then

accesses the device by sending Master Write-

Read I2C command to BMC LUN 00b using

A2h as the slave address parameter, and 01

as the private bus ID parameter. System

software then walks the FRU fields and

extracts the serial number from the Board Info

area in the FRU Device.

System mgmt. software uses Entity ID and Entity

Instance fields in SDR to look up the

corresponding FRU Device Locator Record. If

there's no FRU Device Locator record for that

Entity, the entity may be a logical entity

represented via an Entity Association record.

System software finds an event for sensor number 12 in a

management controller with IPMB address 22h. System

management software desires to report the serial number of the

FRU that is associated with the event. System management

software first looks up the SDR for the sensor by searching for

the SDR for sensor #12 and mgmt. controller with IPMB

address 22h:

Sensor Number = 12h

Entity Instance = 1

1

2 3

Sensor Owner ID = 22h

Intelligent Platform Management Interface Specification

524

40. Handling Sensor Associations
This section presents information on handling the relationships between Entities and sensors.

40.1 Entity Presence

Multiple sensors can be associated with the same Entity. For example, a voltage sensor, temperature sensor, and

processor sensor can all be associated with the same Processor 1 entity. This forms a simple association among

the sensors.

Some entities, such as processors, have sensor-specific discrete sensor types that include presence as part of their

definition. If the Entity has a presence status associated with it, system management software should ignore

sensors and other status associated with the Entity when the Entity is absent. A bit in the SDR for each sensor

indicates whether the sensor should be ignored when the associated Entity is absent or disabled.

For other entities, an Entity Presence sensor can be defined. This sensor is always implemented as a generic

discrete sensor using an Event/Reading Type code of 08h, for Device Absent/Device Present, or 09h for Device

Enabled/Disabled.

40.2 Software detection of Entities

This section describes steps that software can use to detect the presence of an Entity. There are several ways to

detect the presence of an Entity. Software can determine that an Entity is present by the existence of a FRU device

for the entity, active sensors for that entity, by the state of a 'presence' bit for the sensor, or by an Entity Presence

sensor for the entity:

 An Entity is present or absent if there is an active sensor that holds an explicit present bit or presence

sensor that indicates the presence/absence of the Entity. Presence/absence bits and presence sensors take

precedence over all other presence determination mechanisms.

 An Entity is present if the FRU Device for that Entity exists (can be accessed) - unless overridden by an

explicit presence bit or Entity Presence sensor indicating that the entity is absent.

 An Entity should be assumed absent if the Entity Presence sensor for the entity is inaccessible, or the Entity

is part of an Entity Association under an inaccessible Entity Presence sensor. This provision allows the

entity presence sensor to represent the presence of a collection of entities. Software should then ignore any

sensors associated with absent entities.

 An Entity is present if there is at least one active sensor for the Entity (and there is no explicit sensor saying

the Entity is 'absent'). A sensor is 'active' if scanning is enabled. For each of these sensors, check to see that

at least one of the sensors is scanning by checking the "sensor scanning disabled" bit via the Get Sensor

Reading command. Per section 11.5, software should ignore this bit if its set to 'disabled'. If there are no

active sensors for the entity, then it should be assumed that the Entity is absent.

 An Entity is assumed present if the entity is a 'container' entity in an entity association, and at least one of

the 'contained' entities is present. For example, suppose there is a 'power unit' entity that is a container

entity for three power supply entities. Then the power unit entity is present if any of the power supply

entities are present.

 For a container entity that has a presence sensor associated with it, if the presence sensor indicates the

container entity is absent, software should consider the contained entities and associated sensors as also

being absent. Note that some software may not interpret Entity-association records. Therefore, if a given

sensor is described in the SDRs and remains accessible when the container entity is absent, either the

sensor should return ‘scanning disabled’ or, if the sensor has a presence bit, should return that the

monitored entity is ‘not present’.

 Intelligent Platform Management Interface Specification

 525

Thus, the steps to detecting an Entity are:

a) Scan the SDRs for sensors associated with the entity.

b) If there is an active sensor that includes a presence bit, or the entity has an active Entity Presence sensor,

use the sensor to determine the presence of the entity.

c) Otherwise, check to see that there is at least one active sensor associated with the entity. Do this by doing

'Get Sensor Readings' to the sensors associated with the entity until a scanning sensor is found.

d) If there are no active sensors directly associated with the entity, check the SDRs to see if the entity is a

container entity in an entity-association. If so, check to see if any of the contained entities are present, if so,

assume the container entity exists. Note that this may need to be iterative, since it's possible to have multi-

level entity associations.

e) If there are no active sensors for the entity, and the entity is not the container entity in an active entity-

association, then the entity is present is there is a FRU device for the entity, and the FRU device is present.

It should not be considered an error if a FRU device locator record is present for a FRU device, but the FRU

device is not there. This is because there may be a presence sensor that indicates the FRU is absent. It would only

be an error if there was an active sensor or entity-association that was associated with the Entity, and the FRU

device for the Entity wasn't there.

40.3 Using Entity Association Records

Entity Association Records allow multiple physical entities to be grouped into a single logical entity. (Note, the

structure also allows logical entities to be comprised of other logical entities...) This grouping is typically used for

defining a logical entity that has sensing associated with it that relates to the physical entities that comprise the

group.

For example, in a system with redundant power supplies, a Power Unit can be viewed as a logical entity

comprised of multiple Power Supply entities. The Entity Association Record can be used to tell system

management software which Power Supply entities make up the power unit. The association also allows system

management software to correlate failures from individual entities with status of the logical entity.

Continuing with the Power Unit example, suppose the Power Unit had a discrete sensor that returned Redundancy

Status (Redundant, Redundancy Degraded, Non-Redundant, etc.), and that each individual Power Supply had a

sensor that returned a failure status. System management software could use the association to correlate a change

in the Power Unit redundancy status with a corresponding failure of a Power Supply in the Power Unit.

The Entity Association record also allows physical entities to be grouped to indicate that a single sensor applies to

multiple entities. For example, a voltage regulator could be shared among pairs of processors. Logical grouping of

entities can be handled in one of two ways. The first is to use bit 7 in the Entity Instance field. This bit indicates

whether a particular entity should be viewed as a logical ‘group’ entity rather than by its base definition in the

Entity ID table.

For example, if the Entity was ‘Processor 1’, setting this bit would tell software to consider the entity as

‘Processor Group 1’ instead. The Entity Association record corresponding to this logical entity could then consist

of contained processor entities (by convention, a logical processor group only contains processor entities - though

this is not mandatory.)

If this way of identifying a grouping is not sufficient, there is a generic ‘Group’ Entity ID that is provided solely

to serve as the container entity for grouping of entities that do not fall under a specific logical Entity ID type.

It is thus possible to present several types of relationships between sensors and entities. With a direct Sensor-to-

entity relationship (no Entity Association record involved) a typical sensor-to-entity relationship would be:

“Power Supply 1 Temperature Sensor ”

Intelligent Platform Management Interface Specification

526

While with an Entity Association for a pre-defined logical entity a possible relationship would be:

“Redundancy Sensor for Power Unit 1 containing Power Supply 1, Power Supply 2, and Power Supply 3”

The Entity Association for a logical group relationship would be:

 “Voltage Sensor for Processor Group 1 containing Processor 1 and Processor 2”

Lastly, the Entity Association, a generic Group relationship could be:

“Voltage Sensor for Group 2 containing Processor 1 and Fan 2”

It is recommended that console software subtract 60h when presenting device-relative Entity Instance values, and

present the Entity Instance number along with an ID for the device providing the interface to the entity. For

example, suppose management controller ‘1’ had a FAN entity with a device-relative Entity Instance value of

61h. It may make more sense to the user to refer to the entity as “Controller 1, Fan 1” than ‘Controller 1, Fan

61h’. Entities with system-relative Entity Instance values could be preceded with the word ‘System’ (or

something similar). E.g. “System, Fan 1.”

 Intelligent Platform Management Interface Specification

 527

Intelligent Platform Management Interface Specification

528

41. Sensor & Event Message Codes
This section provides a description of the Sensor and Event Codes and the manner in which they are used within

Sensor Data Records and Event Messages. Following is a series of tables that define these codes.

41.1 Sensor Type Code

Each sensor has a Sensor Type Code. These codes are defined in Table 42-3, Sensor Type Codes. Sensor Type

Codes are used both in SDRs and Event Messages. An example of a Sensor Type Code is code 07h, which

indicates a Processor sensor.

41.2 Event/Reading Type Code

The Event/Reading Type Code is used for specifying the types of readings that a sensor can provide, the types of

events that a sensor can generate, and the type of state or transition that triggered an event.

Event/Reading Type Codes are split into three categories:

Generic The Event/Reading Type Code specifies one of a set of pre-defined enumerations that are

applicable to many different types of sensors. It is expected that system software will have

a-priori knowledge of how to interpret these types of states and events. As such, these

enumerations should be used whenever possible. For example, an Event/Reading Type

Code of 02h identifies the “DMI Usage State” enumeration, which consists of three

members “(transition to) Idle”, “(transition to) Active”, and “(transition to) Busy”. This

enumeration can be represent either a an event or state change (e.g. “transition to Idle”) or a

state (e.g. “Idle”) - based on the context in which it is used.

Sensor Specific An Event/Reading Type Code of 6Fh indicates that the enumeration is defined explicitly for

the particular Sensor Type. In an event message, an Event Dir bit of ‘0’ indicates the state

has become asserted, while an Event Dir bit of ‘1’ indicates the state has become

deasserted. For example, if the Sensor Type Code were 07h, “Processor”, then an

Event/Reading Type Code of 6Fh would indicate that the offsets specified in the Sensor

Type Codes table for “Processor” are to be used. A ‘0’ Event Dir bit with an event offset of

07h (processor presence) would indicate that the event was generated because a processor

has become present (inserted). If the Event Type Code were 6Fh, but the Event Dir bit was

1, the same 07h offset would indicate that the event was generated because the processor

had become not present (removed).

The advantage of the Sensor Specific enumeration is that it provides state and/or event type

information that is ‘customized’ to the particular sensor. The disadvantage is that System

Management Software requires a-priori knowledge of these enumerations in order to make

use of them. Thus, this type of enumeration is used sparingly.

OEM These Event/Reading Type Codes indicate that the sensor enumeration is OEM defined. It

is used in conjunction with a non-OEM Sensor Type Code as a way of specifying an OEM-

defined enumeration for a standard sensor type. This type of Event/Reading Type Code

should be avoided where possible. Making use of it requires a-priori knowledge of the

OEM-defined enumeration. Since multiple OEMs could define their own enumerations

under the same code, software needs to use the OEM ID (Manufacturer ID) information

along with the Event/Reading Type code to correctly interpret the code. The Manufacturer

ID value is obtained by issuing a Get Device ID command to the controller that generated

the event or owns the sensor identifies the OEM.

When event/reading offset values are returned as sensor readings (using the Get Sensor Reading command) they

represent the present state of the sensor. For example, for the offset that is described as “Transition to Idle” the

present state for the asserted condition of the offset would be interpreted as “Idle”. In some cases, the

 Intelligent Platform Management Interface Specification

 529

event/reading code also includes information that implies the previous state from which the present state was

entered. For example, the generic event/reading type code for the “Severity Event States” includes offsets such as

“Transition to Non-critical from OK”. However, when the platform management subsystem is initialized, the

BMC may not know what the previous state was. In the case that the BMC cannot determine the previous state of

the sensor, or an appropriate offset is not provided, it can return any offset that shows the correct current state.

By convention, if the previous state is unknown and there is a choice of possible offsets for the present state most

implementations will return the offset that corresponds to a previous state that is ‘OK’. For example, it would

return the offset for “Non-critical from OK” rather than “Non-critical from more severe”. This is not a

requirement, however. Therefore, since the actual previous state may be unknown, it is recommended that

management software ignores the ‘directionality’ information inferred by the offset for the present reading. For

example, when interpreting the present reading for the “Severity Event Status” it should present the present state

just as “Non-critical” and ignore the ‘from OK / from more severe’ aspect associated with the offset.

If software cares about the transition direction associated with entering a given present state, it should get that

information from the sensor event status (using the Get Sensor Event Status command). If a sensor returns ‘0b’

values for both assertion and deassertion offsets in the Get Sensor Event Status command, it means that the sensor

has been initialized with the previous state unknown. I.e. there have been no detected state transitions yet that

would cause the event status bits to become set. In this case, it is clear that there is no ‘directionality’ information

available and software should generally ignore any ‘directionality’ that is implied by the present reading.

41.3 SDR Specification of Event Types

The SDR uses an Event/Reading Type Code in the Event/Reading Base Code field to identify the particular

enumeration of states or transitions for which the sensor will generate an event. Often, the events that a sensor

generates will be only a subset of the enumerated events. Thus, the Event/Reading Base Code is coupled with an

‘Event Mask Field’ that identifies which elements of the enumeration could actually generate events.

The Assertion Event Mask field is used in the following manner. Suppose the SDR for a sensor has an

Event/Reading Base Code field of 02h, “DMI Usage State”. According to the Event/Reading Type Code tables,

this value indicates that the sensor produces discrete events of the generic event enumeration Transition to Idle,

Transition to Active, Transition to Busy. If the Assertion Event Mask field is 000000000101b this indicates that of

those three possible events in the enumeration, the Transition to Idle and Transition to Busy events may be issued

by the sensor, but the Transition to Active event will not. The Deassertion Event Mask is used the same way, but

to indicate events on the deassertion, rather than assertion, of a state.

41.4 SDR Specification of Reading Types

The SDR has bits that indicate whether the sensor returns a ‘present reading’ or not. If it does, it also indicates

whether the returned reading is discrete or threshold-based, and if an 8-bit analog (multilevel) value is returned.

If the sensor returns an analog reading, additional information such as the raw data format, units, and conversion

factors for the reading are specified in other fields of the SDR. System Management Software can use these values

for converting the reading from the sensor into units such as volts, degrees centigrade, etc.

If the sensor returns a discrete reading, the Event/Reading Type Code is used for specifying the possible states

that can be returned. For these sensors, the Reading Mask field indicates which possible states could be returned

from the sensor as a present reading in the same manner that the Assertion Event Mask and Deassertion Event

Mask fields are used to indicate states that can generate events.

Note that, by convention, the events that a discrete sensor generates must be a subset of the readable states.

41.5 Use of Codes in Event Messages

When a sensor generates an Event Message, the Event/Reading Type Code and corresponding event enumeration

‘offset’ will be returned in the Event Message. The Event/Reading Type Code is returned in the Event Type field,

Intelligent Platform Management Interface Specification

530

and the enumeration offset value is returned in a bit field in the Event Data field. An additional, optional, offset to

the ‘Severity’ enumeration offsets may also be provided if the sensor class is discrete or OEM. In these cases, the

base Event/Reading Type Code is implied to be 07h, “DMI-based Severity”.

 Intelligent Platform Management Interface Specification

 531

Intelligent Platform Management Interface Specification

532

42. Sensor and Event Code Tables
This section contains the tables that define the sensor and event code values used in SDRs and Event Messages.

42.1 Event/Reading Type Codes

Event/Reading Type codes are used in SDRs and Event Messages to indicate the trigger type for an event. These

codes are also used in SDRs to indicate what types of present reading a sensor provides.

Event/Reading Type Codes are used to specify a particular enumeration (offset) that identifies a set of possible

events that can be generated by a sensor. For discrete sensors, the specification of an Event/Reading Type code

enumeration also indicates the type of reading the sensor provides.

Sensors fall into the following classes:

Sensor Classes:

Discrete Multiple states possible. Discrete sensors can contain up to 15 possible states. For discrete

sensors, the Get Sensor Reading command returns a bit field where each bit reflects a

different state. It is possible for a discrete sensor to have more than one state active at a time.

Discrete sensors can be designed to provide either Generic or Sensor-specific states. The

Event/Reading Type Codes in Table 42-2 are used to specify the particular set of possible

Generic states for a discrete sensor. Generic states may be applicable to many types of sensors

- that is, a temperature sensor and a voltage sensor may both be implemented that return

Severity states (Event/Reading Type Code 07h).

For example, Event/Reading Type Code 0Bh indicates a discrete sensor that could return one

of three possible states “Redundancy Regained, Redundancy Lost, or Redundancy Degraded”.

The offsets from the table correspond to the bit positions in the Get Sensor Reading

command. The offset values are also used in event messages and in event configuration.

(Note, Event Messages reflect only one event at a time. Thus, Event Messages do not return a

bit field, just a single offset value corresponding to a single event.)

Sensor-specific states, however, are tied to a particular sensor type. The sensor-specific

offsets are specified in the sensor types table: Table 42-3, Sensor Type Codes. When the

sensor-specific offsets are used in the SDR for a sensor, the Event/Reading Type Code 6Fh is

used. This code is also used in Event Messages. An Event Dir bit in the Event Message

indicates whether the event is an assertion or deassertion event.

‘Digital’ A digital sensor is not really a unique class, but a term commonly used to refer to special case

of a discrete sensor that only has two possible states. Use the discrete sensor type when

formatting commands and events for digital sensors. Table 42-2, 04h is the Event/Reading

code for a ‘digital’ sensor that has the possible generic states “Predictive Failure deasserted”

and “Predictive Failure asserted”. If a Get Sensor Reading command returns an offset of ‘0’,

then that means the present state is “Predictive Failure deasserted”.

Threshold ‘Threshold based’. Changes event status on reading comparison to threshold values.

Threshold enumerations may be considered a special case of the discrete sensor type. The

Event/Reading Type Code for threshold-based sensors is specified in Table 42-2, Generic

Event/Reading Type Codes, below. The offsets specify each particular possible threshold

state.

Threshold-based sensors return a different response to the Get Sensor Reading command than

discrete sensors. The offsets The Get Sensor Reading command for a threshold-based sensor

contains the present ‘analog’ reading from the sensor along in addition to the discrete

 Intelligent Platform Management Interface Specification

 533

threshold comparison status bit field.

OEM Special case of discrete where the meaning of the states (offsets) are OEM defined.

Table 42-1, Event/Reading Type Code Ranges

Event/Reading
Type Code
category

7-bit
Event/Reading

Type Code
Range

Sensor

Class

Description

unspecified 00h n/a Event/Reading Type unspecified.

Threshold 01h threshold Threshold-based. Indicates a sensor that utilizes values that represent
discrete threshold states in sensor access and/or events. The
Event/Reading event offsets for the different threshold states are
given in Table 42-2, Generic Event/Reading Type Codes, below.

Generic 02h-0Ch discrete Generic Discrete. Indicates a sensor that utilizes an Event/Reading
Type code & State bit positions / event offsets from one of the sets
specified for Discrete or ‘digital’ Discrete Event/Reading class in Table
42-2, Generic Event/Reading Type Codes, below.

Sensor-specific 6Fh discrete Sensor-specific Discrete. Indicates that the discrete state information
is specific to the sensor type. State bit positions / event offsets for a
particular sensor type are specified in the ‘sensor-specific offset’
column in Table 42-3, Sensor Type Codes, below.

OEM 70h-7Fh OEM OEM Discrete. Indicates that the discrete state information is specific
to the OEM identified by the Manufacturer ID for the IPM device that is
providing access to the sensor.

Event/Reading Type Codes that are not explicitly specified in this table are reserved.

Table 42-2, Generic Event/Reading Type Codes
Generic

Event/Reading
Type Code

Event/Reading
Class

Generic
Offset

Description

 THRESHOLD BASED STATES

01h Threshold 00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

Lower Non-critical - going low

Lower Non-critical - going high

Lower Critical - going low

Lower Critical - going high

Lower Non-recoverable - going low

Lower Non-recoverable - going high

Upper Non-critical - going low

Upper Non-critical - going high

Upper Critical - going low

Upper Critical - going high

Upper Non-recoverable - going low

Upper Non-recoverable - going high

 DMI-based “Usage State” STATES

02h Discrete 00h

01h

02h

Transition to Idle

Transition to Active

Transition to Busy

 03h DIGITAL/DISCRETE EVENT STATES

03h ‘digital’ Discrete

00h

01h

State Deasserted

State Asserted

04h ‘digital’ Discrete 00h

01h

Predictive Failure deasserted

Predictive Failure asserted

05h ‘digital’ Discrete 00h

01h

Limit Not Exceeded

Limit Exceeded

06h ‘digital’ Discrete 00h

01h

Performance Met

Performance Lags

Intelligent Platform Management Interface Specification

534

Generic
Event/Reading

Type Code

Event/Reading
Class

Generic
Offset

Description

 SEVERITY EVENT STATES

07h Discrete 00h

01h

02h

03h

04h

05h

06h

07h

08h

transition to OK

transition to Non-Critical from OK

transition to Critical from less severe

transition to Non-recoverable from less severe

transition to Non-Critical from more severe

transition to Critical from Non-recoverable

transition to Non-recoverable

Monitor

Informational

 AVAILABILITY STATUS STATES

08h ‘digital’ Discrete 00h

01h

Device Removed / Device Absent

Device Inserted / Device Present

09h ‘digital’ Discrete 00h

01h

Device Disabled

Device Enabled

0Ah Discrete 00h

01h

02h

03h

04h

05h

06h

07h

08h

transition to Running

transition to In Test

transition to Power Off

transition to On Line

transition to Off Line

transition to Off Duty

transition to Degraded

transition to Power Save

Install Error

 Other AVAILABILITY STATUS STATES

0Bh Discrete

00h

01h

Redundancy States

Fully Redundant (formerly “Redundancy Regained”)
Indicates that full redundancy has been regained.

Redundancy Lost
Entered any non-redundant state, including Non-
redundant:Insufficient Resources.

 02h Redundancy Degraded
Redundancy still exists, but at a less than full level. For
example, a system has four fans, and can tolerate the
failure of two of them, and presently one has failed.

 03h Non-redundant:Sufficient Resources from Redundant
Redundancy has been lost but unit is functioning with
minimum resources needed for ‘normal’ operation.
Entered from Redundancy Degraded or Fully Redundant.

 04h Non-redundant:Sufficient Resources from Insufficient
Resources
Unit has regained minimum resources needed for ‘normal’
operation. Entered from Non-redundant:Insufficient
Resources.

 05h Non-redundant:Insufficient Resources
Unit is non-redundant and has insufficient resources to
maintain normal operation.

 06h Redundancy Degraded from Fully Redundant
Unit has lost some redundant resource(s) but is still in a
redundant state. Entered by a transition from Fully
Redundant condition.

 07h Redundancy Degraded from Non-redundant
Unit has regained some resource(s) and is redundant but
not fully redundant. Entered from Non-redundant:Sufficient
Resources or Non-redundant:Insufficient Resources.

0Ch Discrete

00h

01h

02h

03h

ACPI Device Power States

D0 Power State

D1 Power State

D2 Power State

D3 Power State

 Intelligent Platform Management Interface Specification

 535

42.2 Sensor Type Codes and Data

The following table provides the specification of the Sensor Type values and sensor-specific event offsets (if any).

Note that generic offsets can be used with any Sensor Type even if the sensor has a definition for sensor-specific

offsets. For example, a Processor sensor could be implemented that uses a Generic Event/ReadingType Code of

0Ah to provide a sensor that indicates whether a processor has entered a degraded state (offset 06h for

Event/Reading Type Code 0Ah).

Table 42-3, Sensor Type Codes

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

reserved 00h - reserved

Temperature 01h - Temperature

Voltage 02h - Voltage

Current 03h - Current

Fan 04h - Fan

Physical Security
(Chassis Intrusion)

05h 00h

01h

02h

03h

General Chassis Intrusion

Drive Bay intrusion

I/O Card area intrusion

Processor area intrusion

 04h LAN Leash Lost (system is unplugged from LAN)

The Event Data 2 field can be used to identify which network
controller the leash was lost on where 00h corresponds to the first
(or only) network controller.

 05h

06h

Unauthorized dock

FAN area intrusion (supports detection of hot plug fan tampering)

Platform Security
Violation Attempt

06h 00h

01h

02h

03h

04h

05h

Secure Mode (Front Panel Lockout) Violation attempt

Pre-boot Password Violation - user password

Pre-boot Password Violation attempt - setup password

Pre-boot Password Violation - network boot password

Other pre-boot Password Violation

Out-of-band Access Password Violation

Processor 07h 00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

IERR

Thermal Trip

FRB1/BIST failure

FRB2/Hang in POST failure (used hang is believed to be due or
related to a processor failure. Use System Firmware Progress
sensor for other BIOS hangs.)

FRB3/Processor Startup/Initialization failure (CPU didn’t start)

Configuration Error

SM BIOS ‘Uncorrectable CPU-complex Error’

Processor Presence detected

Processor disabled

Terminator Presence Detected

 0Ah Processor Automatically Throttled (processor throttling triggered by a
hardware-based mechanism operating independent from system
software, such as automatic thermal throttling or throttling to limit
power consumption.)

 0Bh Machine Check Exception (Uncorrectable)

 0Ch Correctable Machine Check Error

Intelligent Platform Management Interface Specification

536

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Power Supply (also used
for power converters
[e.g. DC-to-DC
converters] and VRMs
[voltage regulator
modules]).

08h 00h

01h

02h

03h

04h

05h

Presence detected

Power Supply Failure detected

Predictive Failure

Power Supply input lost (AC/DC)[2]

Power Supply input lost or out-of-range

Power Supply input out-of-range, but present

 06h Configuration error. The Event Data 3 field provides a more detailed
definition of the error:

7:4 = Reserved for future definition, set to 0000b

3:0 = Error Type, one of

 0h = Vendor mismatch, for power supplies that include this
status. (Typically, the system OEM defines the vendor
compatibility criteria that drives this status).

 1h = Revision mismatch, for power supplies that include this
status. (Typically, the system OEM defines the vendor
revision compatibility that drives this status).

 2h = Processor missing. For processor power supplies (typically
DC-to-DC converters or VRMs), there's usually a one-to-
one relationship between the supply and the CPU. This
offset can indicate the situation where the power supply is
present but the processor is not. This offset can be used for
reporting that as an unexpected or unsupported condition.

3h = Power Supply rating mismatch. The power rating of the
supply does not match the system's requirements.

4h = Voltage rating mismatch. The voltage rating of the supply
does not match the system's requirements.

 Others = Reserved for future definition

 07h Power Supply Inactive (in standby state). Power supply is in a
standby state where its main outputs have been automatically
deactivated because the load is being supplied by one or more other
power supplies.

Power Unit 09h 00h Power Off / Power Down

 01h Power Cycle

 02h 240VA Power Down

 03h Interlock Power Down

 04h AC lost / Power input lost (The power source for the power unit was
lost)

 05h Soft Power Control Failure (unit did not respond to request to turn on)

 06h Power Unit Failure detected

 07h Predictive Failure

Cooling Device 0Ah - -

Other Units-based
Sensor (per units given in
SDR)

0Bh - -

 Intelligent Platform Management Interface Specification

 537

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Memory 0Ch 00h

01h

02h

03h

04h

05h

Correctable ECC / other correctable memory error

Uncorrectable ECC / other uncorrectable memory error

Parity

Memory Scrub Failed (stuck bit)

Memory Device Disabled

Correctable ECC / other correctable memory error logging limit
reached

 06h Presence detected. Indicates presence of entity associated with the
sensor. Typically the entity will be a ‘memory module’ or other entity
representing a physically replaceable unit of memory.

 07h

Configuration error. Indicates a memory configuration error for the
entity associated with the sensor. This can include when a given
implementation of the entity is not supported by the system (e.g.,
when the particular size of the memory module is unsupported) or
that the entity is part of an unsupported memory configuration (e.g.
the configuration is not supported because the memory module
doesn’t match other memory modules).

 08h

Spare. Indicates entity associated with the sensor represents a
‘spare’ unit of memory.

The Event Data 3 field can be used to provide an event extension
code, with the following definition:

Event Data 3

[7:0] - Memory module/device (e.g. DIMM/SIMM/RIMM)
identification, relative to the entity that the sensor is
associated with (if SDR provided for this sensor).

 09h Memory Automatically Throttled. (memory throttling triggered by a
hardware-based mechanism operating independent from system
software, such as automatic thermal throttling or throttling to limit
power consumption.)

 0Ah Critical Overtemperature. Memory device has entered a critical
overtemperature state, exceeding specified operating conditions.
Memory devices in this state may produce errors or become
inaccessible.

Drive Slot (Bay) 0Dh 00h Drive Presence

 01h Drive Fault

 02h Predictive Failure

 03h Hot Spare

 04h Consistency Check / Parity Check in progress

 05h In Critical Array

 06h In Failed Array

 07h Rebuild/Remap in progress

 08h Rebuild/Remap Aborted (was not completed normally)

POST Memory Resize 0Eh - -

Intelligent Platform Management Interface Specification

538

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

System Firmware
Progress (formerly POST
Error)

0Fh 00h System Firmware Error (POST Error)

The Event Data 2 field can be used to provide an event extension
code, with the following definition:

Event Data 2

00h Unspecified.

01h No system memory is physically installed in the system.

02h No usable system memory, all installed memory has
experienced an unrecoverable failure.

03h Unrecoverable hard-disk/ATAPI/IDE device failure.

04h Unrecoverable system-board failure.

05h Unrecoverable diskette subsystem failure.

06h Unrecoverable hard-disk controller failure.

07h Unrecoverable PS/2 or USB keyboard failure.

08h Removable boot media not found

09h Unrecoverable video controller failure

0Ah No video device detected

0Bh Firmware (BIOS) ROM corruption detected

0Ch CPU voltage mismatch (processors that share same supply
have mismatched voltage requirements)

0Dh CPU speed matching failure

0Eh to FFh reserved

 01h System Firmware Hang (uses same Event Data 2 definition as
following System Firmware Progress offset)

 02h System Firmware Progress

The Event Data 2 field can be used to provide an event extension
code, with the following definition:

Event Data 2

00h Unspecified.

01h Memory initialization.

02h Hard-disk initialization

03h Secondary processor(s) initialization

04h User authentication

05h User-initiated system setup

06h USB resource configuration

07h PCI resource configuration

08h Option ROM initialization

09h Video initialization

0Ah Cache initialization

0Bh SM Bus initialization

0Ch Keyboard controller initialization

0Dh Embedded controller/management controller initialization

0Eh Docking station attachment

0Fh Enabling docking station

10h Docking station ejection

11h Disabling docking station

12h Calling operating system wake-up vector

13h Starting operating system boot process, e.g. calling Int 19h

14h Baseboard or motherboard initialization

15h reserved

16h Floppy initialization

17h Keyboard test

18h Pointing device test

19h Primary processor initialization

1Ah to FFh reserved

 Intelligent Platform Management Interface Specification

 539

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Event Logging Disabled 10h 00h Correctable Memory Error Logging Disabled

Event Data 2

[7:0] - Memory module/device (e.g. DIMM/SIMM/RIMM)
identification, relative to the entity that the sensor is
associated with (if SDR provided for this sensor).

 01h Event ‘Type’ Logging Disabled. Event Logging is disabled for
following event/reading type and offset has been disabled.

Event Data 2

Event/Reading Type Code

Event Data 3

[7:6] - reserved. Write as 00b.

[5] - 1b = logging has been disabled for all events of given type

[4] - 1b = assertion event, 0b = deassertion event

[3:0] - Event Offset

 02h Log Area Reset/Cleared

 03h All Event Logging Disabled

04h SEL Full. If this is used to generate an event, it is recommended
that this be generated so that this will be logged as the last entry in
the SEL. If the SEL is very small, an implementation can elect to
generate this event after the last entry has been placed in the SEL to
save space. In this case, this event itself would not get logged, but
could still trigger actions such as an alert via PEF. Note that an
application can always use the Get SEL Info command to determine
whether the SEL is full or not. Since Get SEL Info is a mandatory
command, this provides a cross-platform way to get that status.

05h SEL Almost Full. If Event Data 3 is not provided, then by default this
event represents the SEL has reached a point of being 75% or more
full. For example, if the SEL supports 215 entries, the 75% value
would be 161.25 entries. Therefore, the event would be generated on
the 162nd entry. Note that if this event itself is logged, it would be
logged as the 163rd entry.

Event Data 3

Contains hex value from 0 to 100 decimal (00h to 64h)
representing the % of which the SEL is filled at the time the event
was generated: 00h is 0% full (SEL is empty), 64h is 100% full, etc.

 06h Correctable Machine Check Error Logging Disabled

If the following field is not provided, then this event indicates that
Correctable Machine Check error logging has been disabled for all
Processor sensors.

Event Data 2

Event Data 2 may be optionally used to return an Entity Instance
or a vendor selected processor number that identifies the
processor associated with this event.

[7:0] - Instance ID number of the (processor) Entity that the sensor
is associated with (if SDR provided for this sensor), or a
vendor selected logical processor number if no SDR.

Event Data 3

If Event Data 2 is provided then Event Data 3 may be optionally
used to indicate whether Event Data 2 is being used to hold an
Entity Instance number or a vendor-specific processor number. If
Event Data 2 is provided by Event Data 3 is not, then Event Data 2
is assumed to hold an Entity Instance number.

[7] - 0b = Entity Instance number

 1b = Vendor-specific processor number

[6:0] - reserved

Watchdog 1 11h This sensor is provided to support IPMI v0.9 to v1.0 transition. This is
deprecated in IPMI v1.5. See sensor 23h for recommended definition
of Watchdog sensor for new v1.0 and for IPMI v1.5 implementations.

 00h BIOS Watchdog Reset

 01h OS Watchdog Reset

 02h OS Watchdog Shut Down

 03h OS Watchdog Power Down

 04h OS Watchdog Power Cycle

Intelligent Platform Management Interface Specification

540

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

 05h OS Watchdog NMI / Diagnostic Interrupt

 06h

07h

OS Watchdog Expired, status only

OS Watchdog pre-timeout Interrupt, non-NMI

System Event 12h 00h System Reconfigured

 01h

02h

03h

OEM System Boot Event

Undetermined system hardware failure

(this event would typically require system-specific diagnostics to
determine FRU / failure type)

Entry added to Auxiliary Log

(see 31.12, Get Auxiliary Log Status Command and 31.13, Set
Auxiliary Log Status Command, for more information)

Event Data 2

[7:4] - Log Entry Action

0h = entry added

1h = entry added because event did not be map to standard
IPMI event

2h = entry added along with one or more corresponding SEL
entries

3h = log cleared

4h = log disabled

5h = log enabled

all other = reserved

[3:0] - Log Type

0h = MCA Log

1h = OEM 1

2h = OEM 2

all other = reserved

 04h PEF Action

 Event Data 2

 The following bits reflect the PEF Actions that are about to be
taken after the event filters have been matched. The event is
captured before the actions are taken.

[7:6] - reserved

[5] - 1b = Diagnostic Interrupt (NMI)

[4] - 1b = OEM action

[3] - 1b = power cycle

[2] - 1b = reset

[1] - 1b = power off

[0] - 1b = Alert

 05h Timestamp Clock Synch.
This event can be used to record when changes are made to the
timestamp clock(s) so that relative time differences between SEL
entries can be determined. See note [1].

Event Data 2

[7] - first/second

 0b = event is first of pair.

 1b = event is second of pair.

[6:4] - reserved

[3:0] - Timestamp Clock Type

0h = SEL Timestamp Clock updated. (Also used when both
SEL and SDR Timestamp clocks are linked together.)

1h = SDR Timestamp Clock updated.

 Intelligent Platform Management Interface Specification

 541

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Critical Interrupt 13h 00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

Front Panel NMI / Diagnostic Interrupt

Bus Timeout

I/O channel check NMI

Software NMI

PCI PERR

PCI SERR

EISA Fail Safe Timeout

Bus Correctable Error

Bus Uncorrectable Error

Fatal NMI (port 61h, bit 7)

 0Ah Bus Fatal Error

 0Bh Bus Degraded (bus operating in a degraded performance state)

Button / Switch 14h 00h

01h

02h

Power Button pressed

Sleep Button pressed

Reset Button pressed

 03h FRU latch open (Switch indicating FRU latch is in ‘unlatched’ position
and FRU is mechanically removable)

 04h FRU service request button (1 = pressed, service, e.g.
removal/replacement, requested)

Module / Board 15h - -

Microcontroller /
Coprocessor

16h - -

Add-in Card 17h - -

Chassis 18h - -

Chip Set 19h 00h Soft Power Control Failure (chip set did not respond to BMC request
to change system power state). This offset is similar to offset 05h for
a power unit, except that the power unit event is only related to a
failure to power up, while this event corresponds to any system
power state change directly requested via the BMC.

Event Data 2

The Event Data 2 field for this command can be used to provide
additional information on the type of failure with the following
definition:

 Requested power state
00h = S0 / G0 “working”
01h = S1 “sleeping with system h/w & processor context

maintained”
02h = S2 “sleeping, processor context lost”
03h = S3 “sleeping, processor & h/w context lost, memory

retained.”
04h = S4 “non-volatile sleep / suspend-to disk”
05h = S5 / G2 “soft-off”
06h = S4 / S5 soft-off, particular S4 / S5 state cannot be

determined
07h = G3 / Mechanical Off
08h = Sleeping in an S1, S2, or S3 states (used when particular

S1, S2, S3 state cannot be determined)
09h = G1 sleeping (S1-S4 state cannot be determined)
0Ah = S5 entered by override
0Bh = Legacy ON state
0Ch = Legacy OFF state

0Dh = reserved

Event Data 3

The Event Data 3 field for this command can be used to provide
additional information on the type of failure with the following
definition:

 Power state at time of request
00h = S0 / G0 “working”
01h = S1 “sleeping with system h/w & processor context

maintained”
02h = S2 “sleeping, processor context lost”

Intelligent Platform Management Interface Specification

542

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

03h = S3 “sleeping, processor & h/w context lost, memory
retained.”

04h = S4 “non-volatile sleep / suspend-to disk”
05h = S5 / G2 “soft-off”
06h = S4 / S5 soft-off, particular S4 / S5 state cannot be

determined
07h = G3 / Mechanical Off
08h = Sleeping in an S1, S2, or S3 states (used when particular

S1, S2, S3 state cannot be determined)
09h = G1 sleeping (S1-S4 state cannot be determined)
0Ah = S5 entered by override
0Bh = Legacy ON state
0Ch = Legacy OFF state

0Dh = unknown

 01h Thermal Trip

Other FRU 1Ah - -

Cable / Interconnect 1Bh 00h Cable/Interconnect is connected

 01h Configuration Error - Incorrect cable connected / Incorrect
interconnection

Terminator 1Ch - -

System Boot / Restart
Initiated

1Dh 00h Initiated by power up (this would typically be generated by BIOS/EFI)

 01h Initiated by hard reset (this would typically be generated by
BIOS/EFI)

 02h Initiated by warm reset (this would typically be generated by
BIOS/EFI)

 03h

04h

User requested PXE boot

Automatic boot to diagnostic

 05h OS / run-time software initiated hard reset

 06h OS / run-time software initiated warm reset

 07h System Restart (Intended to be used with Event Data 2 and or 3 as
follows:)

Event Data 2

[7:4] - reserved

[3:0] - restart cause per Get System Restart Cause command.

Event Data 3

Channel number used to deliver command that generated restart,
per Get System Restart Cause command.

Boot Error 1Eh 00h

01h

02h

03h

04h

No bootable media

Non-bootable diskette left in drive

PXE Server not found

Invalid boot sector

Timeout waiting for user selection of boot source

Base OS Boot /
Installation Status

1Fh 00h

01h

02h

03h

04h

05h

06h

A: boot completed

C: boot completed

PXE boot completed

Diagnostic boot completed

CD-ROM boot completed

ROM boot completed

boot completed - boot device not specified

 07h Base OS/Hypervisor Installation started (Reflects Base Operating
System / Hypervisor Installation, not installing/provisioning a VM.)

 08h Base OS/Hypervisor Installation completed

 09h Base OS/Hypervisor Installation aborted

 0Ah Base OS/Hypervisor Installation failed

OS Stop / Shutdown 20h 00h

Critical stop during OS load / initialization. Unexpected error during
system startup. Stopped waiting for input or power cycle/reset.

 01h Run-time Critical Stop (a.k.a. ‘core dump’, ‘blue screen’)

 02h OS Graceful Stop (system powered up, but normal OS operation has
shut down and system is awaiting reset pushbutton, power-cycle or
other external input)

 03h OS Graceful Shutdown (system graceful power down by OS)

 Intelligent Platform Management Interface Specification

 543

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

 04h Soft Shutdown initiated by PEF

 05h Agent Not Responding. Graceful shutdown request to agent via BMC
did not occur due to missing or malfunctioning local agent.

Slot / Connector 21h 00h
01h
02h

03h

04h
05h
06h

07h

08h
09h

Fault Status asserted
Identify Status asserted
Slot / Connector Device installed/attached

[This can include dock events]
Slot / Connector Ready for Device Installation - Typically, this means

that the slot power is off. The Ready for Installation, Ready for
Removal, and Slot Power states can transition together,
depending on the slot implementation.

Slot/Connector Ready for Device Removal
Slot Power is Off
Slot / Connector Device Removal Request - This is typically

connected to a switch that becomes asserted to request removal
of the device)

Interlock asserted - This is typically connected to a switch that
mechanically enables/disables power to the slot, or locks the slot
in the ‘Ready for Installation / Ready for Removal states’ -
depending on the slot implementation. The asserted state
indicates that the lock-out is active.

Slot is Disabled
Slot holds spare device

The Event Data 2 & 3 fields can be used to provide an event
extension code, with the following definition:
Event Data 2
7 reserved
6:0 Slot/Connector Type
 0 PCI
 1 Drive Array
 2 External Peripheral Connector
 3 Docking
 4 other standard internal expansion slot
 5 slot associated with entity specified by Entity ID for sensor
 6 AdvancedTCA
 7 DIMM/memory device
 8 FAN
 9 PCI Express™
 10 SCSI (parallel)
 11 SATA / SAS
 all other = reserved
Event Data 3
7:0 Slot/Connector Number

System ACPI Power
State

22h 00h
01h
02h
03h
04h
05h
06h
07h
08h

09h
0Ah
0Bh
0Ch
0Eh

S0 / G0 “working”
S1 “sleeping with system h/w & processor context maintained”
S2 “sleeping, processor context lost”
S3 “sleeping, processor & h/w context lost, memory retained.”
S4 “non-volatile sleep / suspend-to disk”
S5 / G2 “soft-off”
S4 / S5 soft-off, particular S4 / S5 state cannot be determined
G3 / Mechanical Off
Sleeping in an S1, S2, or S3 states (used when particular S1, S2, S3

state cannot be determined)
G1 sleeping (S1-S4 state cannot be determined)
S5 entered by override
Legacy ON state
Legacy OFF state
Unknown

Intelligent Platform Management Interface Specification

544

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Watchdog 2 23h This sensor is recommended for new IPMI v1.0 and later
implementations.

 00h
01h
02h
03h

04h-07h
08h

Timer expired, status only (no action, no interrupt)
Hard Reset
Power Down
Power Cycle
reserved
Timer interrupt

The Event Data 2 field for this command can be used to provide an
event extension code, with the following definition:
7:4 interrupt type
 0h = none
 1h = SMI
 2h = NMI
 3h = Messaging Interrupt
 Fh = unspecified
 all other = reserved
3:0 timer use at expiration:
 0h = reserved
 1h = BIOS FRB2
 2h = BIOS/POST
 3h = OS Load
 4h = SMS/OS
 5h = OEM
 Fh = unspecified
 all other = reserved

Platform Alert 24h This sensor can be used for returning the state and generating
events associated with alerts that have been generated by the
platform mgmt. subsystem

 00h platform generated page

 01h platform generated LAN alert

 02h Platform Event Trap generated, formatted per IPMI PET specification

 03h platform generated SNMP trap, OEM format

Entity Presence 25h This sensor type provides a mechanism that allows a management
controller to direct system management software to ignore a set of
sensors based on detecting that presence of an entity. This sensor
type is not typically used for event generation - but to just provide a
present reading.

 00h Entity Present. This indicates that the Entity identified by the Entity ID
for the sensor is present.

 01h Entity Absent. This indicates that the Entity identified by the Entity ID
for the sensor is absent. If the entity is absent, system management
software should consider all sensors associated with that Entity to be
absent as well - and ignore those sensors.

 02h Entity Disabled. The Entity is present, but has been disabled. A
deassertion of this event indicates that the Entity has been enabled.

Monitor ASIC / IC 26h - -

LAN 27h 00h

01h

LAN Heartbeat Lost

LAN Heartbeat

Management Subsystem
Health

28h 00h sensor access degraded or unavailable (A sensor that is degraded
will still return valid results, but may be operating with a slower
response time, or may not detect certain possible states. A sensor
that is unavailable is not able to return any results (scanning is
disabled,)

 01h controller access degraded or unavailable (The ability to access the
controller has been degraded, or access is unavailable, but the party
that is doing the monitoring cannot determine which.)

 02h management controller off-line (controller cannot be accessed for
normal operation because it has been intentionally taken off-line for a
non-error condition. Note that any commands that are available must
function according to specification.)

 03h management controller unavailable (controller cannot be accessed
because of an error condition)

 Intelligent Platform Management Interface Specification

 545

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

 04h Sensor failure (the sensor is known to be in error. It may still be
accessible by software)

Event Data 2

The Event Data 2 field for this offset can be used to provide
additional information on the type of failure with the following
definition:

[7:0] - Sensor Number. Number of the failed sensor corresponding to
event offset 04h or 00h.

 05h FRU failure

The Event Data 2 and 3 fields for this offset can be used to provide
additional information on the type of failure with the following
definition:

Event Data 2

[7] - logical/physical FRU device

 0b = device is not a logical FRU Device

 1b = device is logical FRU Device (accessed via FRU
commands to mgmt. controller)

[6:5] - reserved.

[4:3] - LUN for Master Write-Read command or FRU Command. 00b
if device is non-intelligent device directly on IPMB.

[2:0] - Private bus ID if bus = Private. 000b if device directly on
IPMB, or device is a logical FRU Device.

Event Data 3

For LOGICAL FRU DEVICE (accessed via FRU commands to
mgmt. controller):

[7:0] - FRU Device ID within controller that generated the event.FFh
= reserved.

For non-intelligent FRU device:

[7:1] - 7-bit I2C Slave Address of FRU device . This is relative to the
bus the device is on. For devices on the IPMB, this is the
slave address of the device on the IPMB. For devices on a
private bus, this is the slave address of the device on the
private bus.

[0] - reserved.

Battery 29h 00h

01h

02h

battery low (predictive failure)

battery failed
battery presence detected

Session Audit 2Ah 00h Session Activated

 01h Session Deactivated

 02h Invalid Username or Password

An Invalid Username or Password was received during the session
establishment process.

 03h Invalid password disable.

A user's access has been disabled due to a series of bad password
attempts. This offset can be used in conjunction with the Bad
Password Threshold option. Refer to the LAN or serial/modem
configuration parameter for 'Bad Password Threshold' for more
information.

Intelligent Platform Management Interface Specification

546

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

 The Event Data 2 & 3 fields can be used to provide an event
extension code for the preceding offsets, with the following definition:

Event Data 2
7:6 reserved
5:0 User ID for user that activated session.

00_0000b = unspecified.
Event Data 3
7:6 reserved
5:4 Deactivation cause
 00b = Session deactivatation cause unspecified. This value

is also used for Session Activated events.
 01b = Session deactivated by Close Session command
 10b = Session deactivated by timeout
 11b = Session deactivated by configuration change

3:0 Channel number that session was activated/deactivated over.
Use channel number that session was activated over if a session
was closed for an unspecified reason, a timeout, or a configuration
change.

Version Change 2Bh 00h Hardware change detected with associated Entity. Informational. This
offset does not imply whether the hardware change was successful
or not. Only that a change occurred.

 01h Firmware or software change detected with associated Entity.
Informational. Success or failure not implied.

 02h Hardware incompatibility detected with associated Entity.

 03h Firmware or software incompatibility detected with associated Entity.

 04h Entity is of an invalid or unsupported hardware version.

 05h Entity contains an invalid or unsupported firmware or software
version.

 06h Hardware Change detected with associated Entity was successful.
(deassertion event means ‘unsuccessful’).

 07h Software or F/W Change detected with associated Entity was
successful. (deassertion event means ‘unsuccessful’)

 Intelligent Platform Management Interface Specification

 547

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

Event data 2 can be used for additional event information on the type
of version change, with the following definition:

Event Data 2

7:0 Version change type

 00h unspecified

 01h management controller device ID (change in one or more
fields from ‘Get Device ID’)

 02h management controller firmware revision

 03h management controller device revision

 04h management controller manufacturer ID

 05h management controller IPMI version

 06h management controller auxiliary firmware ID

 07h management controller firmware boot block

 08h other management controller firmware

 09h system firmware (EFI / BIOS) change

 0Ah SMBIOS change

 0Bh operating system change

 0Ch operating system loader change

 0Dh service or diagnostic partition change

 0Eh management software agent change

 0Fh management software application change

 10h management software middleware change

 11h programmable hardware change (e.g. FPGA)

 12h board/FRU module change (change of a module plugged
into associated entity)

 13h board/FRU component change (addition or removal of a
replaceable component on the board/FRU that is not
tracked as a FRU)

 14h board/FRU replaced with equivalent version

 15h board/FRU replaced with newer version

 16h board/FRU replaced with older version

 17h board/FRU hardware configuration change (e.g. strap,
jumper, cable change, etc.)

FRU State 2Ch 00h FRU Not Installed

 01h FRU Inactive (in standby or ‘hot spare’ state)

 02h FRU Activation Requested

 03h FRU Activation In Progress

 04h FRU Active

 05h FRU Deactivation Requested

 06h FRU Deactivation In Progress

 07h FRU Communication Lost

Intelligent Platform Management Interface Specification

548

Sensor Type

Sensor
Type
Code

Sensor-
specific
Offset

Event

 The Event Data 2 field for this command can be used to provide the
cause of the state change and the previous state:
7:4 Cause of state change

0h = Normal State Change.
1h = Change Commanded by software external to FRU.
2h = State Change due to operator changing a Handle

latch.
3h = State Change due to operator pressing the hot swap

push button.
4h = State Change due to FRU programmatic action.
5h = Communication Lost.
6h = Communication Lost due to local failure.
7h = State Change due to unexpected extraction.
8h = State Change due to operator intervention/update.
9h = Unable to compute IPMB address.
Ah = Unexpected Deactivation.
Fh = State Change, Cause Unknown.
All other = reserved

3:0 Previous state offset value (return offset for same state as
present state if previous state is unknown)

All other = reserved.

Reserved remaini
ng

- -

OEM RESERVED C0h-
FFh

- -

1. To track the relationship between timestamps, the timestamp change events should be logged in pairs - the first event being
logged just before the timestamp clock update followed by a second event that is logged after the timestamp clock has been
updated. This enables software that reads the SEL to be able to determine time relationship between events that were logged
before the update and those logged afterward. The generation of these events is normally the responsibility of the software that
changes the timestamp clock. Note that some implementations may queue events prior to their being logged. It is recommended
that generic software read the SEL to verify that the first event has been recorded with the relative timestamp before setting the
new timestamp value and generating the second event.

2. “Power supply input” refers to AC or DC source inputs to the power supply or power converter.

 Intelligent Platform Management Interface Specification

 549

Intelligent Platform Management Interface Specification

550

43. Sensor Data Record Formats
The general Sensor Data Record format consists of three major components, the Record Header, Record ‘Key’

fields, and the Record Body. In order to save space, Sensor Data Records are not required for sensors that only

generate events. In particular, sensors that do not require initialization by the initialization agent, and are not

expected to be accessed by system management software to obtain present readings, etc. (Generic system

management software does not access sensors that are not reported via the SDRs).

RECORD HEADER

Is the same for all records, consisting of:

Record ID: A value that’s used for accessing Sensor Data Records. Note that since Record IDs may be

reassigned, retrievers of a record should use the ‘KEY’ fields to verify that the expected record was

obtained.

SDR Version: The version number of the SDR specification. Used in conjunction with Record Type,

following.

Record Type: A number representing the type of the record. E.g. 01h = 8-bit Sensor with Thresholds.

Record Length: Number of bytes of data following the Record Length field.

RECORD ‘KEY’ FIELDS

The Record ‘Key’ Fields are a set of fields that together are unique amongst instances of a given record

type. For example, for ‘sensor’ records, these fields specify the location (e.g. slave address, LUN, and Bus

ID) and sensor number of the sensor. The Record Key bytes shall be contiguous and follow the Record

Header. The number of bytes that make up the Record Key field may vary according to record type.

RECORD BODY

The remaining Record Type specific information for the particular sensor data record.

 Intelligent Platform Management Interface Specification

 551

43.1 SDR Type 01h, Full Sensor Record

The Full Sensor Record can be used to describe any type of sensor. The Compact sensor record saves space, but

has limitations in the sensors it can describe. The Full record is defined as a 64-byte record, while the Compact

record is defined as 48-bytes. Other differences are summarized in the following table:

Sensor Capability

Supported in

Full Sensor Record?

(type 01h)

Supported in

Compact Sensor Record?

(type 02h)

Sensor provides analog readings yes no

Sensor requires threshold value initialization yes no

Sensor requires hysteresis value initialization yes yes*

Multiple sensors can share record no yes*

* Note: sensors that require unique event or hysteresis configuration cannot share a record.

A threshold-based sensor is a special-case of a discrete sensor. In the Get Sensor Reading command, a discrete

sensor returns the present status for all discrete states monitored by the sensor, while a threshold-based sensor

returns a threshold comparison status.

Thus, the Discrete Reading Mask field in the SDR for a discrete sensor is used to indicate which possible states

can be read using a Get Sensor Reading command. While the Upper and Lower Threshold Reading Mask fields

for a threshold-based sensor indicates which thresholds can be read.

Table 43-1, Full Sensor Record - SDR Type 01h
byte Field Name size Description

 SENSOR RECORD HEADER

1:2

Record ID 2 The Record ID is used by the Sensor Data Repository device for record
organization and access. It is not related to the sensor ID.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. BCD encoded with bits 7:4 holding the Least Significant
digit of the revision and bits 3:0 holding the Most Significant bits.

4 Record Type 1 Record Type Number = 01h, Full Sensor Record

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Sensor Owner ID 1 [7:1] - 7-bit I2C Slave Address, or 7-bit system software ID[2]

[0] - 0b = ID is IPMB Slave Address, 1b = system software ID

7 Sensor Owner LUN 1 [7:4] - Channel Number

The Channel Number can be used to specify access to sensors that are
located on management controllers that are connected to the BMC via
channels other than the primary IPMB. (Note: In IPMI v1.5 the ordering of
bits 7:2 of this byte have changed to support the 4-bit channel number.)

[3:2] - reserved

[1:0] - Sensor Owner LUN. LUN in the Sensor Owner that is used to send/receive
IPMB messages to access the sensor. 00b if system software is Sensor
Owner.

8 Sensor Number 1 Unique number identifying the sensor behind a given slave address and LUN.
Code FFh reserved.

 RECORD BODY BYTES

9 Entity ID 1 Indicates the physical entity that the sensor is monitoring or is otherwise
associated with the sensor. See Table 43-13, Entity ID Codes.

Intelligent Platform Management Interface Specification

552

byte Field Name size Description

10 Entity Instance 1 [7] - 0b = treat entity as a physical entity per Entity ID table

 1b = treat entity as a logical container entity. For example, if this bit is set,
and the Entity ID is ‘Processor’, the container entity would be considered
to represent a logical ‘Processor Group’ rather than a physical processor.
This bit is typically used in conjunction with an Entity Association record.

[6:0] - Instance number for entity. (See section 39.1, System- and Device-relative
Entity Instance Values for more information)

00h-5Fh system-relative Entity Instance. The Entity Instance number
must be unique for each different entity of the same type Entity
ID in the system.

60h-7Fh device-relative Entity Instance. The Entity Instance number must
only be unique relative to the management controller providing
access to the Entity.

11 Sensor Initialization 1 [7] - Settable Sensor 1b = Sensor is settable (Support the Set Sensor
Reading And Event Status command) note: using
this bit to report settable sensors is optional. I.e. it is
ok to report a settable sensor as ‘not settable’ in the
SDR if it is desired to not report this capability to
s/w)

 0b = Sensor is not settable

[6] - Init Scanning 1b = enable scanning (this bit=1 implies that the sensor
accepts the ‘enable/disable scanning’ bit in the Set
Sensor Event Enable command).

[5] - Init Events 1b = enable events (per Sensor Event Message Control
Support bits in Sensor Capabilities field, and per
the Event Mask fields, below).

[4] - Init Thresholds 1b = initialize sensor thresholds (per settable threshold
mask below).

[3] - Init Hysteresis 1b = initialize sensor hysteresis (per Sensor Hysteresis
Support bits in the Sensor Capabilities field,
below).

[2] - Init Sensor Type 1b = initialize Sensor Type and Event / Reading Type
code

Sensor Default (power up) State

Reports how this sensor comes up on device power up and hardware/cold reset.
The Initialization Agent does not use this bit. This bit solely reports to software
how the sensor comes prior to being initialized by the Initialization Agent.

[1] - 0b = event generation disabled, 1b = event generation enabled

[0] - 0b = sensor scanning disabled, 1b = sensor scanning enabled

 Intelligent Platform Management Interface Specification

 553

byte Field Name size Description

12 Sensor Capabilities 1 [7] - 1b = Ignore sensor if Entity is not present or disabled.

 0b = don’t ignore sensor

Sensor Auto Re-arm Support

Indicates whether the sensor requires manual rearming, or automatically rearms
itself when the event clears. ‘manual’ implies that the get sensor event status and
rearm sensor events commands are supported

[6] - 0b = no (manual), 1b = yes (auto)

Sensor Hysteresis Support

[5:4] - 00b = No hysteresis, or hysteresis built-in but not specified.

 01b = hysteresis is readable.

 10b = hysteresis is readable and settable.

 11b = Fixed, unreadable, hysteresis. Hysteresis fields values
implemented in the sensor.

Sensor Threshold Access Support

[3:2] - 00b = no thresholds.

 01b = thresholds are readable, per Reading Mask, below.

 10b = thresholds are readable and settable per Reading Mask and
Settable Threshold Mask, respectively.

 11b = Fixed, unreadable, thresholds. Which thresholds are supported is
reflected by the Reading Mask. The threshold value fields report
the values that are ‘hard-coded’ in the sensor.

Sensor Event Message Control Support

Indicates whether this sensor generates Event Messages, and if so, what type of
Event Message control is offered.

[1:0] - 00b = per threshold/discrete-state event enable/disable control (implies
that entire sensor and global disable are also supported)

 01b = entire sensor only (implies that global disable is also supported)

 10b = global disable only

 11b = no events from sensor

13 Sensor Type 1 Code representing the sensor type. From Table 42-3, Sensor Type Codes.

E.g. Temperature, Voltage, Processor, etc.

14 Event / Reading Type Code 1 Event/Reading Type Code. From Table 42-1, Event/Reading Type Code Ranges.

Intelligent Platform Management Interface Specification

554

byte Field Name size Description

15

16

Assertion Event Mask / Lower
Threshold Reading Mask

2 This field reports the assertion event generation or threshold event generation
capabilities for a discrete or threshold-based sensor, respectively. This field is
also used by the init agent to enable assertion event generation when the ‘Init
Events’ bit in the Sensor Capabilities field is set and the Sensor Event Message
Control Support field indicates that the sensor has ‘per threshold/discrete state’
event enable control.

Assertion Event Mask (for non- threshold-based sensors)

The Event Mask bytes are a bit mask that specifies support for 15 successive
events starting with the event specified by Event/Reading Type Code. LS byte
first.

[15] - reserved. Write as ‘0’.

[14:0] - Event offsets 14 through 0, respectively.

 1b = assertion event can be generated by this sensor

Lower Threshold Reading Mask (for threshold-based sensors)

Indicates which lower threshold comparison status is returned via the Get Sensor
Reading command.

[15] - reserved. Write as 0b

[14] - 1b = Lower non-recoverable threshold comparison is returned

[13] - 1b = Lower critical threshold is comparison returned

[12] - 1b = Lower non-critical threshold is comparison returned

Threshold Assertion Event Mask (for threshold-based sensors)

[11] - 1b = assertion event for upper non-recoverable going high supported

[10] - 1b = assertion event for upper non-recoverable going low supported

[9] - 1b = assertion event for upper critical going high supported

[8] - 1b = assertion event for upper critical going low supported

[7] - 1b = assertion event for upper non-critical going high supported

[6] - 1b = assertion event for upper non-critical going low supported

[5] - 1b = assertion event for lower non-recoverable going high supported

[4] - 1b = assertion event for lower non-recoverable going low supported

[3] - 1b = assertion event for lower critical going high supported

[2] - 1b = assertion event for lower critical going low supported

[1] - 1b = assertion event for lower non-critical going high supported

[0] - 1b = assertion event for lower non-critical going low supported

 Intelligent Platform Management Interface Specification

 555

byte Field Name size Description

17

18

Deassertion Event Mask / Upper
Threshold Reading Mask

2 Deassertion Event Mask (for non- threshold-based sensors)

The Event Mask bytes are a bit mask that specifies support for 15 successive
events starting with the event specified by Event/Reading Type Code. LS byte
first.

[15] - reserved. Write as 0b

[14:0] - Event offsets 14 through 0, respectively.

 1b = assertion event can be generated for this state.

Upper Threshold Reading Mask (for threshold-based sensors)

Indicates which upper threshold comparison status is returned via the Get Sensor
Reading command.

[15] - reserved. Write as 0b

[14] - 1b = Upper non-recoverable threshold comparison is returned

[13] - 1b = Upper critical threshold is comparison returned

[12] - 1b = Upper non-critical threshold is comparison returned

Threshold Deassertion Event Mask

[11] - 1b = deassertion event for upper non-recoverable going high supported

[10] - 1b = deassertion event for upper non-recoverable going low supported

[9] - 1b = deassertion event for upper critical going high supported

[8] - 1b = deassertion event for upper critical going low supported

[7] - 1b = deassertion event for upper non-critical going high supported

[6] - 1b = deassertion event for upper non-critical going low supported

[5] - 1b = deassertion event for lower non-recoverable going high supported

[4] - 1b = deassertion event for lower non-recoverable going low supported

[3] - 1b = deassertion event for lower critical going high supported

[2] - 1b = deassertion event for lower critical going low supported

[1] - 1b = deassertion event for lower non-critical going high supported

[0] - 1b = deassertion event for lower non-critical going low supported

19

20

Discrete Reading Mask / Settable
Threshold Mask, Readable
Threshold Mask

2 Reading Mask (for non- threshold based sensors)

Indicates what discrete readings can be returned by this sensor, or, for threshold
based sensors, this indicates which thresholds are settable and which are
readable. The Reading Mask bytes are a bit mask that specifies support for 15
successive states starting with the value from Table 36-1, Event/Reading Type
Code Ranges. LS byte first.

[15] - reserved. Write as 0b

[14:0] - state bits 0 through 14.

 1b = discrete state can be returned by this sensor.

Settable Threshold Mask (for threshold-based sensors)

Indicates which thresholds are settable via the Set Sensor Thresholds. This mask
also indicates which threshold values will be initialized if the ‘Init Events’ bit is set.
LS byte first.

[15:14] - reserved. Write as 00b.

[13] - 1b = Upper non-recoverable threshold is settable

[12] - 1b = Upper critical threshold is settable

[11] - 1b = Upper non-critical threshold is settable

[10] - 1b = Lower non-recoverable threshold is settable

[9] - 1b = Lower critical threshold is settable

[8] - 1b = Lower non-critical threshold is settable

Readable Threshold Mask (for threshold-based sensors)

Indicates which thresholds are readable via the Get Sensor Thresholds
command.

[7:6] - reserved. Write as 00b.

[5] - 1b = Upper non-recoverable threshold is readable

[4] - 1b = Upper critical threshold is readable

[3] - 1b = Upper non-critical threshold is readable

[2] - 1b = Lower non-recoverable threshold is readable

[1] - 1b = Lower critical threshold is readable

[0] - 1b = Lower non-critical threshold is readable

Intelligent Platform Management Interface Specification

556

byte Field Name size Description

21 Sensor Units 1 1 [7:6] - Analog (numeric) Data Format**

 00b = unsigned

 01b = 1’s complement (signed)

 10b = 2’s complement (signed)

 11b = Does not return analog (numeric) reading

[5:3] - Rate unit

 000b = none

 001b = per µS

 010b = per ms

 011b = per s

 100b = per minute

 101b = per hour

 110b = per day

 111b = reserved

[2:1] - Modifier unit

 00b = none

 01b = Basic Unit / Modifier Unit

 10b = Basic Unit * Modifier Unit

 11b = reserved

[0] - Percentage 0b = no, 1b = yes

** Specifies threshold and ‘analog’ reading, if ‘analog’ reading provided. If neither
thresholds nor analog reading are provided, this field should be written as 00h.

22 Sensor Units 2 - Base Unit 1 [7:0] - Units Type code: See Table 43-15, Sensor Unit Type Codes.

23 Sensor Units 3 - Modifier Unit 1 [7:0] - Units Type code, 00h if unused.

24 Linearization 1 [7] - reserved

[6:0] - enum (linear, ln, log10, log2, e, exp10, exp2, 1/x, sqr(x), cube(x), sqrt(x),
cube-1 (x)) - 70h = non-linear. 71h-7Fh = non-linear, OEM defined.

25 M 1 [7:0] - M: LS 8 bits [2’s complement, signed, 10 bit ‘M’ value.] -

26 M, Tolerance 1 [7:6] - M: MS 2 bits

[5:0] - Tolerance: 6 bits, unsigned (Tolerance in +/- ½ raw counts)

27 B 1 [7:0] - B: LS 8 bits [2’s complement, signed, 10-bit ‘B’ value.] -

28 B, Accuracy 1 [7:6] - B: MS 2 bits

Unsigned, 10-bit Basic Sensor Accuracy in 1/100 percent scaled up by unsigned
Accuracy exponent:

[5:0] - Accuracy: LS 6 bits

29 Accuracy, Accuracy exp, Sensor
Direction

1 [7:4] - Accuracy: MS 4 bits

[3:2] - Accuracy exp: 2 bits, unsigned

[1:0] - Sensor Direction. Indicates whether the sensor is monitoring an input or
output relative to the given Entity. E.g. if the sensor is monitoring a
current, this can be used to specify whether it is an input voltage or an
output voltage.

00b = unspecified / not applicable

01b = input

10b = output

11b = reserved

30 R exp, B exp 1 [7:4] - R (result) exponent 4 bits, 2’s complement, signed

[3:0] - B exponent 4 bits, 2’s complement, signed

31 Analog characteristic flags 1 [7:3] - reserved

[2] - normal min specified 1b = yes, 0b = normal min field unspecified

[1] - normal max specified 1b = yes, 0b = normal max field unspecified

[0] - nominal reading specified 1b = yes, 0b = nominal reading field
unspecified

32 Nominal Reading 1 Given as a raw value. Must be converted to units-based value using the ‘y=Mx+B’
formula. 1’s or 2’s complement signed or unsigned per flag bits in Sensor Units 1.

33 Normal Maximum 1 Given as a raw value. Must be converted to units-based value using the ‘y=Mx+B’
formula. 1’s or 2’s complement signed or unsigned per ‘signed’ bit in Sensor Units
1.

34 Normal Minimum 1 Given as a raw value. Must be converted to units-based value using the ‘y=Mx+B’
formula. Signed or unsigned per ‘signed’ bit in Sensor Units 1.

 Intelligent Platform Management Interface Specification

 557

byte Field Name size Description

35 Sensor Maximum Reading 1 Given as a raw value. Must be converted to units-based value based using the
y=Mx+B formula. Signed or unsigned per ‘signed’ bit in sensor flags. Normally
‘FFh’ for an 8-bit unsigned sensor, but can be a lesser value if the sensor has a
restricted range. If max. reading cannot be pre-specified this value should be set
to max value, based on data format, (e.g. FFh for an unsigned sensor, 7Fh for 2’s
complement, etc.)

36 Sensor Minimum Reading 1 Given as a raw value. Must be converted to units-based value using the ‘y=Mx+B’
formula. Signed or unsigned per ‘signed’ bit in sensor flags. If min. reading
cannot be pre-specified this value should be set to min value, based on data
format, (e.g. 00h for an unsigned sensor, 80h for 2’s complement, etc.)

37 Upper non-recoverable Threshold 1 Use of this field is based on Settable Threshold Mask. If the corresponding bit is
set in the mask byte and the ‘Init Sensor Thresholds’ bit is also set, then this
value will be used for initializing the sensor threshold. Otherwise, this value
should be ignored. The thresholds are given as raw values that must be
converted to units-based values using the ‘y=Mx+B’ formula.

38 Upper critical Threshold 1 Use of this field is based on Settable Threshold Mask, above

39 Upper non-critical Threshold 1 Use of this field is based on Settable Threshold Mask, above

40 Lower non-recoverable Threshold 1 Use of this field is based on Settable Threshold Mask, above

41 Lower critical Threshold 1 Use of this field is based on Settable Threshold Mask, above

42 Lower non-critical Threshold 1 Use of this field is based on Settable Threshold Mask, above

43 Positive-going Threshold
Hysteresis value

1 Positive hysteresis is defined as the unsigned number of counts that are
subtracted from the raw threshold values to create the ‘re-arm’ point for all
positive-going thresholds on the sensor. 0 indicates that there is no hysteresis on
positive-going thresholds for this sensor. Hysteresis values are given as raw
counts. That is, to find the degree of hysteresis in units, the value must be
converted using the ‘y=Mx+B’ formula.

44 Negative-going Threshold
Hysteresis value

1 Negative hysteresis is defined as the unsigned number of counts that are added
to the raw threshold value to create the ‘re-arm’ point for all negative-going
thresholds on the sensor. 0 indicates that there is no hysteresis on negative-going
thresholds for this sensor.

45 reserved 1 reserved. Write as 00h.

46 reserved 1 reserved. Write as 00h.

47 OEM 1 Reserved for OEM use.

48 ID String Type/Length Code 1 Sensor ‘ID’ String Type/Length Code, per Section 43.15, Type/Length Byte
Format.

49:
+N

ID String Bytes N Sensor ID String bytes. Only present if non-zero length in Type/Length field.

16 bytes, maximum. Note: the SDR can be implemented as a fixed length record.
Bytes beyond the ID string bytes are unspecified and should be ignored.

Notes:
1. Resolution, as used in the DMI Systems Standard Groups ‘probes’ groups, can be obtained from the “m” factor in the

‘y=mx+b’ reading conversion.
2. 7-bit I2C Slave Address field. By convention, we normally designate an I2C slave address as an eight-bit number with the

least-significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this
value. E.g. 0010000b.

Intelligent Platform Management Interface Specification

558

43.2 SDR Type 02h, Compact Sensor Record

The Full Sensor Record can be used to describe any type of sensor. The Compact sensor record saves space, but

has limitations in the sensors it can describe. The Full record is defined as a 64-byte record, while the Compact

record is defined as 48-bytes. See previous section for a description of other differences between the Full Sensor

Record and the Compact Sensor Record.

Table 43-2, Compact Sensor Record - SDR Type 02h
byte Field Name size Description

 SENSOR RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record
organization and access. It is not related to the sensor ID.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. BCD encoded with bits 7:4 holding the Least Significant
digit of the revision and bits 3:0 holding the Most Significant bits.

4 Record Type 1 Record Type Number = 02h, Compact Sensor Record

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Sensor Owner ID 1 [7:1] - 7-bit I2C Slave Address, or 7-bit system software ID[1]

[0] - 0b = ID is IPMB Slave Address, 1b = system software ID

7 Sensor Owner LUN 1 [7:4] - Channel Number

 The Channel Number can be used to specify access to sensors that are
located on management controllers that are connected to the BMC via
channels other than the primary IPMB. (Note: In IPMI v1.5 the ordering of
bits 7:2 of this byte have changed to support the 4-bit channel number)

[3:2] - FRU Inventory Device Owner LUN. LUN for Write/Read FRU commands to
access FRU information. 00b otherwise.

[1:0] - Sensor Owner LUN. LUN in the Sensor Owner that is used to send/receive
IPMB messages to access the sensor. 00b if system software is Sensor
Owner.

8 Sensor Number 1 Unique number identifying the sensor behind the given slave address and LUN.
Code FFh reserved.

 RECORD BODY BYTES

9 Entity ID 1 Indicates the physical entity that the sensor is monitoring or is otherwise
associated. See Table 43-13, Entity ID Codes.

10 Entity Instance 1 [7] - 0b = treat entity as a physical entity per Entity ID table

 1b = treat entity as a logical container entity. For example, if this bit is set,
and the Entity ID is ‘Processor’, the container entity would be
considered to represent a logical ‘Processor Group’ rather than a
physical processor. This bit is typically used in conjunction with an
Entity Association record.

[6:0] - Instance number for entity. (See section 39.1, System- and Device-relative
Entity Instance Values for more information)

 00h-5Fh system-relative Entity Instance. The Entity Instance number
must be unique for each different entity of the same type Entity
ID in the system.

 60h-7Fh device-relative Entity Instance. The Entity Instance number must
only be unique relative to the management controller providing
access to the Entity.

 Intelligent Platform Management Interface Specification

 559

byte Field Name size Description

11 Sensor Initialization 1 [7] - Settable Sensor 1b = Sensor is settable (Support the Set Sensor
Reading And Event Status command) note: using
this bit to report settable sensors is optional. I.e. it is
ok to report a settable sensor as ‘not settable’ in the
SDR if it is desired to not report this capability to
s/w)

 0b = Sensor is not settable

[6] - Init Scanning 1b = enable scanning (this bit=1b implies that the
sensor accepts the ‘enable/disable scanning’ bit in
the Set Sensor Event Enable command).

[5] - Init Events 1b = enable events (per Sensor Event Message Control
Support bits in Sensor Capabilities field, and per
the Event Mask fields, below.)

[4] - reserved. Write as 0b.

[3] - Init Hysteresis 1b = initialize sensor hysteresis (per Sensor Hysteresis
Support bits in the Sensor Capabilities field,
below).

[2] - Init Sensor Type 1b = initialize Sensor Type and Event / Reading Type
code

Sensor Default (power up) State

Reports how this sensor comes up on device power up and hardware/cold reset.

The Initialization Agent does not use this bit. This bit solely reports to software
how the sensor comes prior to being initialized by the Initialization Agent.

[1] - 0b = event generation disabled, 1b = event generation enabled

[0] - 0b = sensor scanning disabled, 1b = sensor scanning enabled

12 Sensor Capabilities 1 [7] - 1b = ignore sensor if Entity is not present or disabled.

 0b = don’t ignore sensor.

Sensor Auto Re-arm Support

Indicates whether the sensor requires manual rearming, or automatically rearms
itself when the event clears. ‘manual’ implies that the get sensor event
status and rearm sensor events commands are supported

[6] - 0b = no (manual), 1b = yes (auto)

Sensor Hysteresis Support

[5:4] - 00b = No hysteresis, or hysteresis built-in but not specified.

 01b = hysteresis is readable.

 10b = hysteresis is readable and settable.

 11b = Fixed, unreadable, hysteresis. Hysteresis fields values
implemented in the sensor.

Sensor Threshold Access Support

[3:2] - 00b = no thresholds.

 01b = thresholds are readable, per Reading Mask, below.

 10b = reserved

 11b = Fixed, unreadable, thresholds. Which thresholds are supported is
reflected by the Reading Mask. The threshold value fields report
the values that are ‘hard-coded’ in the sensor.

Sensor Event Message Control Support

Indicates whether this sensor generates Event Messages, and if so, what type of
Event Message control is offered.

[1:0] - 00b = per threshold/discrete-state event enable/disable control (implies
that entire sensor and global disable are also supported)

 01b = entire sensor only (implies that global disable is also supported)

 10b = global disable only

 11b = no events from sensor

13 Sensor Type 1 Code representing the sensor type. From the Table 42-3, Sensor Type Codes.

E.g. Temperature, Voltage, Processor, etc.

14 Event / Reading Type Code 1 Event/Reading Type Code. From the Table 42-1, Event/Reading Type Code
Ranges.

Intelligent Platform Management Interface Specification

560

byte Field Name size Description

15

16

Assertion Event Mask / Lower
Threshold Reading Mask

2 This field reports the assertion event generation or threshold event generation
capabilities for a discrete or threshold-based sensor, respectively. This field is
also used by the init agent to enable assertion event generation when the ‘Init
Events’ bit in the Sensor Capabilities field is set and the Sensor Event Message
Control Support field indicates that the sensor has ‘per threshold/discrete state’
event enable control.

Assertion Event Mask (for non- threshold-based sensors)

The Event Mask bytes are a bit mask that specifies support for 15 successive
events starting with the event specified by Event/Reading Type Code. LS byte
first.

[15] - reserved. Write as 0b.

[14:0] - Event offsets 14 through 0, respectively.

 1b = assertion event can be generated by this sensor

Lower Threshold Reading Mask (for threshold-based sensors)

Indicates which lower threshold comparison status is returned via the Get Sensor
Reading command.

[15] - reserved. Write as 0b

[14] - Lower non-recoverable threshold comparison is returned

[13] - Lower critical threshold is comparison returned

[12] - Lower non-critical threshold is comparison returned

Threshold Assertion Event Mask (for threshold-based sensors)

[11] - 1b = assertion event for upper non-recoverable going high supported

[10] - 1b = assertion event for upper non-recoverable going low supported

[9] - 1b = assertion event for upper critical going high supported

[8] - 1b = assertion event for upper critical going low supported

[7] - 1b = assertion event for upper non-critical going high supported

[6] - 1b = assertion event for upper non-critical going low supported

[5] - 1b = assertion event for lower non-recoverable going high supported

[4] - 1b = assertion event for lower non-recoverable going low supported

[3] - 1b = assertion event for lower critical going high supported

[2] - 1b = assertion event for lower critical going low supported

[1] - 1b = assertion event for lower non-critical going high supported

[0] - 1b = assertion event for lower non-critical going low supported

 Intelligent Platform Management Interface Specification

 561

byte Field Name size Description

17

18

Deassertion Event Mask / Upper
Threshold Reading Mask

2 Deassertion Event Mask (for non- threshold-based sensors)

The Event Mask bytes are a bit mask that specifies support for 15 successive
events starting with the event specified by Event/Reading Type Code. LS byte
first.

[15] - reserved. Write as 0b

[14:0] - Event offsets 14 through 0, respectively.

 1b = assertion event can be generated for this state.

Upper Threshold Reading Mask (for threshold-based sensors)

Indicates which upper threshold comparison status is returned via the Get Sensor
Reading command.

[15] - reserved. Write as 0b

[14] - Upper non-recoverable threshold comparison is returned

[13] - Upper critical threshold is comparison returned

[12] - Upper non-critical threshold is comparison returned

Threshold Deassertion Event Mask

[11] - 1b = deassertion event for upper non-recoverable going high supported

[10] - 1b = deassertion event for upper non-recoverable going low supported

[9] - 1b = deassertion event for upper critical going high supported

[8] - 1b = deassertion event for upper critical going low supported

[7] - 1b = deassertion event for upper non-critical going high supported

[6] - 1b = deassertion event for upper non-critical going low supported

[5] - 1b = deassertion event for lower non-recoverable going high supported

[4] - 1b = deassertion event for lower non-recoverable going low supported

[3] - 1b = deassertion event for lower critical going high supported

[2] - 1b = deassertion event for lower critical going low supported

[1] - 1b = deassertion event for lower non-critical going high supported

[0] - 1b = deassertion event for lower non-critical going low supported

19

20

Discrete Reading Mask / Settable
Threshold Mask, Readable
Threshold Mask

2 Reading Mask (for non- threshold based sensors)

Indicates what discrete readings can be returned by this sensor, or, for threshold
based sensors, this indicates which thresholds are settable and which are
readable. The Reading Mask bytes are a bit mask that specifies support for 15
successive states starting with the value from Table 36-1, Event/Reading Type
Code Ranges. LS byte first.

[15] - reserved. Write as 0b

[14:0] - state bits 0 through 14.

 1b = discrete state can be returned by this sensor.

Settable Threshold Mask (for threshold-based sensors)

Indicates which thresholds are settable via the Set Sensor Thresholds. This mask
also indicates which threshold values will be initialized if the ‘Init Events’ bit is set.
LS byte first.

[15:14] - reserved. Write as 00b.

[13] - Upper non-recoverable threshold is settable

[12] - Upper critical threshold is settable

[11] - Upper non-critical threshold is settable

[10] - Lower non-recoverable threshold is settable

[9] - Lower critical threshold is settable

[8] - Lower non-critical threshold is settable

Readable Threshold Mask (for threshold-based sensors)

Indicates which thresholds are readable via the Get Sensor Thresholds
command.

[7:6] - reserved. Write as 00b.

[5] - Upper non-recoverable threshold is readable

[4] - Upper critical threshold is readable

[3] - Upper non-critical threshold is readable

[2] - Lower non-recoverable threshold is readable

[1] - Lower critical threshold is readable

[0] - Lower non-critical threshold is readable

Intelligent Platform Management Interface Specification

562

byte Field Name size Description

21 Sensor Units 1 1 [7:6] - reserved. Write as 11b.

[5:3] - Rate unit

 000b = none

 001b = per µS

 010b = per ms

 011b = per s

 100b = per minute

 101b = per hour

 110b = per day

 111b = reserved

[2:1] - Modifier unit

 00b = none

 01b = Basic Unit / Modifier Unit

 10b = Basic Unit * Modifier Unit

 11b = reserved

[0] - Percentage 0b = no, 1b = yes

22 Sensor Units 2 - Base Unit 1 [7:0] - Units Type code: See Units Type Codes table.

23 Sensor Units 3 - Modifier Unit 1 [7:0] - Units Type code, 00h if unused.

24

Sensor Record Sharing, Sensor
Direction

2 Byte 1:

[7:6] - Sensor Direction. Indicates whether the sensor is monitoring an input or
output relative to the given Entity. E.g. if the sensor is monitoring a
current, this can be used to specify whether it is an input voltage or an
output voltage.

00b = unspecified / not applicable

01b = input

10b = output

11b = reserved

ID String Instance Modifier Type (The instance modifier is a character(s) that
software can append to the end of the ID String. This field selects whether the
appended character(s) will be numeric or alpha. The Instance Modified Offset
field, below, selects the starting value for the character.)

[5:4] - 00b = numeric

 01b = alpha

Share Count

[3:0] - Share count (number of sensors sharing this record). Sensor numbers
sharing this record are sequential starting with the sensor number
specified by the Sensor Number field for this record. E.g. if the starting
sensor number was 10, and the share count was 3, then sensors 10, 11,
and 12 would share this record.

Byte 2:

Entity Instance Sharing

[7] - 0b = Entity Instance same for all shared records

 1b = Entity Instance increments for each shared record

[6:0] - ID String Instance Modifier Offset

Multiple Discrete sensors can share the same sensor data record. The ID
String Instance Modifier and Modifier Offset are used to modify the Sensor ID
String as follows:

Suppose sensor ID is “Temp ” for ‘Temperature Sensor’, share count = 3, ID
string instance modifier = numeric, instance modifier offset = 5 - then the
sensors could be identified as:

 Temp 5, Temp 6, Temp 7

If the modifier = alpha, offset=0 corresponds to ‘A’, offset=25 corresponds to
‘Z’, and offset = 26 corresponds to ‘AA’, thus, for offset=26 the sensors could
be identified as:

 Temp AA, Temp AB, Temp AC

 (alpha characters are considered to be base 26 for ASCII)

 Intelligent Platform Management Interface Specification

 563

byte Field Name size Description

26 Positive-going Threshold
Hysteresis value

1 Positive hysteresis is defined as the unsigned number of counts that are
subtracted from the raw threshold values to create the ‘re-arm’ point for all
positive-going thresholds on the sensor. 0 indicates that there is no hysteresis on
positive-going thresholds for this sensor. Hysteresis values are given as raw
counts. That is, to find the degree of hysteresis in units, the value must be
converted using the ‘y=Mx+B’ formula.

Note: Cannot use shared record if sensors require individual hysteresis settings.

27 Negative-going Threshold
Hysteresis value

1 Negative hysteresis is defined as the unsigned number of counts that are added
to the raw threshold value to create the ‘re-arm’ point for all negative-going
thresholds on the sensor. 0 indicates that there is no hysteresis on negative-going
thresholds for this sensor.

Note: Cannot use shared record if sensors require individual hysteresis settings.

28 reserved 1 reserved. Write as 00h.

29 reserved 1 reserved. Write as 00h.

30 reserved 1 reserved. Write as 00h.

31 OEM 1 Reserved for OEM use.

32 ID String Type/Length Code 1 Sensor ‘ID’ String Type/Length Code, per Section 43.15, Type/Length Byte
Format.

33:
+N

ID String Bytes N Sensor ID String bytes. Only present if non-zero length in Type/Length field.

16 bytes, maximum.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

Intelligent Platform Management Interface Specification

564

43.3 SDR Type 03h, Event-Only Record

This record provides a mechanism to associate FRU and Entity information with a physical or logical sensor that

generates events, but cannot otherwise be accessed. This is typical of software-generated events, such as events

generated by BIOS. Use of this record is optional. A system is allowed to have ‘Event-Only’ sensors without

having a corresponding Event-Only Sensor Record.

While primarily used with software-generated events, it is possible for management controllers to implement

‘Event-Only’ sensors. Such sensors must have the following characteristics:

 The controller cannot rely on the Initialization Agent function to enable Event Generation for the sensor,

with the exception that the sensor can be ‘globally’ enabled/disabled with the Set Event Receiver

command.

 Since an ‘Event-Only’ sensor is not required to support any of the sensor access commands, software

will typically ignore the sensors and will not attempt to send IPMI commands to access or enable them.

Thus, the controller cannot rely on any software accesses to the sensor. Therefore, the sensor cannot

require manual-rearm for event operation.

 The sensor cannot return a units-based sensor reading. This record lacks the necessary conversion factors

for management software to be able to present the reading value.

If the sensor implementation does not meet the above criteria, the appropriate Type 01h or Type 02h record must

be used instead.

The controller is allowed to implement IPMI sensor commands for an Event-Only sensor, such as Get Sensor

Reading, or Get Sensor Event Status. Use of the Event-Only SDR implies that the sensor access commands are

not explicitly supported. Therefore, software should avoid issuing sensor access commands for sensors that use

the Event-Only SDR.

Table 43-3, Event-Only Sensor Record - SDR Type 03h
byte Field Name size Description

 SENSOR RECORD
HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization and
access. It is not related to the sensor ID.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. BCD encoded with bits 7:4 holding the Least Significant digit of
the revision and bits 3:0 holding the Most Significant bits.

4 Record Type 1 Record Type Number = 03h, Event-Only Sensor Record

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY
BYTES

6 Sensor Owner ID 1 [7:1] - 7-bit I2C Slave Address, or 7-bit system software ID[1]

[0] - 0b = ID is IPMB Slave Address, 1b = system software ID

7 Sensor Owner LUN 1 [7:4] - Channel Number

 The Channel Number can be used to specify access to sensors that are located on
management controllers that are connected to the BMC via channels other than the
primary IPMB. (Note: In IPMI v1.5 the ordering of bits 7:2 of this byte have changed
to support the 4-bit channel number)

[3:2] - FRU Inventory Device Owner LUN. LUN for Write/Read FRU commands to access
FRU information. 00b otherwise.

[1:0] - Sensor Owner LUN. LUN in the Sensor Owner that is used to send/receive IPMI
messages to access the sensor. 00b if system software is Sensor Owner.

8 Sensor Number 1 Unique number identifying the sensor behind the given slave address and LUN. Code FFh
reserved.

 RECORD BODY
BYTES

 Intelligent Platform Management Interface Specification

 565

byte Field Name size Description

9 Entity ID 1 Indicates the physical entity that the sensor is monitoring or is otherwise associated. See
Table 43-13, Entity ID Codes.

10 Entity Instance 1 [7] - 0b = treat entity as a physical entity per Entity ID table

 1b = treat entity as a logical container entity. For example, if this bit is set, and the
Entity ID is ‘Processor’, the container entity would be considered to represent a
logical ‘Processor Group’ rather than a physical processor. This bit is typically
used in conjunction with an Entity Association record.

[6:0] - Instance number for entity. (See section 33.1, System- and Device-relative Entity
Instance Values for more information)

 00h-5Fh system-relative Entity Instance. The Entity Instance number must be
unique for each different entity of the same type Entity ID in the system.

 60h-7Fh device-relative Entity Instance. The Entity Instance number must only be
unique relative to the management controller providing access to the
Entity.

11 Sensor Type 1 Code representing the sensor type. From the Table 36-3, Sensor Type Codes.

E.g. Temperature, Voltage, Processor, etc.

12 Event / Reading Type
Code

1 Event/Reading Type Code. From the Table 36-1, Event/Reading Type Code Ranges.

13

Sensor Record
Sharing, Sensor
Direction

2 Byte 1:

[7:6] - Sensor Direction. Indicates whether the sensor is monitoring an input or output
relative to the given Entity. E.g. if the sensor is monitoring a current, this can be
used to specify whether it is an input voltage or an output voltage.

00b = unspecified / not applicable

01b = input

10b = output

11b = reserved

ID String Instance Modifier Type

[5:4] - 00b = numeric

 01b = alpha

Share Count

[3:0] - Share count (number of sensors sharing this record). Sensor numbers sharing this
record are sequential starting with the sensor number specified by the Sensor
Number field for this record. E.g. if the starting sensor number was 10, and the share
count was 3, then sensors 10, 11, and 12 would share this record.

Byte 2:

Entity Instance Sharing

[7] - 0b = Entity Instance same for all shared records

 1b = Entity Instance increments for each shared record

[6:0] - ID String Instance Modifier Offset

Multiple Discrete sensors can share the same sensor data record. The ID String Instance
Modifier and Modifier Offset are used to modify the Sensor ID String as follows:

Suppose sensor ID is “Temp ” for ‘Temperature Sensor’, share count = 3, ID string
instance modifier = numeric, instance modifier offset = 5 - then the sensors could be
identified as:

 Temp 5, Temp 6, Temp 7

If the modifier = alpha, and offset = 26, then the sensors could be identified as:

 Temp AA, Temp AB, Temp AC

 (alpha characters are considered to be base 26 for ASCII)

15 reserved 1 reserved. Write as 00h.

16 OEM 1 Reserved for OEM use.

17 ID String
Type/Length Code

1 Sensor ‘ID’ String Type/Length Code, per Section 37.14, Type/Length Byte Format.

18:+N ID String Bytes N Sensor ID String bytes. Only present if non-zero length in Type/Length field.

16 bytes, maximum.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

Intelligent Platform Management Interface Specification

566

43.4 SDR Type 08h - Entity Association Record

This record is used to present the relationship between entities that contain, or are contained by, other entities. For

example, a particular Power Unit entity may consist of multiple Power Supply entities. In this case, the particular

Power Unit is designated as the container entity, while the individual Power Supply entities are designated as

contained entities. System Management Software can use this information to recognize the relationship between

‘logical’ entities (e.g. Cooling Unit), which typically would not have FRU information, and the physical FRUs

that comprise that unit (e.g. Fans). A ‘Group’ Entity ID is provided to be used as the container Entity if the

container is not covered by a pre-defined Entity.

System Management Software can use the Entity Association information to correlate events or sensor

information between the sensors for the container entity, and the contained entity. For example, a Power Unit may

have a redundancy sensor associated with it, while the individual Power Supplies within that Power Unit may

have failure status sensors. In the case of a Power Supply failure, there could be two events generated - one for the

Power Supply failure, and another for a loss of redundancy in the Power Unit. Having an Entity Association

record allows System Management Software to determine the inter-relationship between these events.

Each Entity Association Record can represent contained entities as a four entry list, or as up to two ranges of

entity instances. For example, suppose you have four Power Supply entities, with Instance IDs 1, 2, 7, and 8. This

could be listed as four separate entity/entity instance pairs, or as two ranges (range 1 comprised of entity instances

1 through 2, and range 2 comprised of entity instances 7 through 8).

Entity Association records can be ‘linked’ if necessary to extend the number of contained entities under a given

container entity. This would be needed if there were more than four contained entities of different entity types, or

with non-sequential instance IDs. Entity Association records that have the same Container Entity value and a non-

zero Record Link bit are considered to be linked. The contained entities from each linked record combine to form

the complete set of contained entities under the specified container entity.

The Container Record Link bit informs system software there is intentionally more than one Entity Association

record with the same Container Entity value. It is considered an error if Entity Association records are detected

that share the same Container Entity value but do not have the Record Link bit set. In addition, Entity/Entity

Instance ID pairs should not be repeated within an Entity Association record, nor between linked Entity

Association records.

This record only supports associations between entities that have system-relative Entity Instance values. See

section 39.1, System- and Device-relative Entity Instance Values for more information

 Intelligent Platform Management Interface Specification

 567

Table 43-4, Entity Association Record - SDR Type 08h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. 51h
corresponds to “1.5”.

4 Record Type 1 Record Type Number = 08h, Entity Association. The "RECORD KEY BYTES" includes
the first contained entity in order to allow records to be linked according to the
Container entity ID. Thus, more than one Entity Association Record can have the same
values for bytes 6, 7, and 8 - but must differ in bytes 9 & 10.

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Container Entity ID 1 Entity ID for container entity

7 Container Entity Instance 1 Instance ID for container entity

8 flags 1 [7] - 0b = contained entities specified as list

 1b = contained entities specified as range

[6] - Record Link

 0b = no linked Entity Association records

 1b = linked Entity Association records exist

[5] - 0b = Container entity and contained entities can be assumed absent if presence
sensor for container entity cannot be accessed. This value is also used if the
entity does not have a presence sensor.

 1b = Presence sensor should always be accessible. Software should consider it
an error if the presence sensor associated with the container entity is not
accessible. If a presence sensor is accessible, then the presence sensor can
still report that the container entity is absent.

[4:0] - reserved, write as 00000b

9 Contained Entity 1 /

Range 1 entity

1 If list: Entity ID for contained entity 1

If range: Entity ID of entity for contained entity range 1

10 Contained Entity 1 Instance

Range 1 first entity instance

1 If list: Instance ID for contained entity 1

If range: Instance ID for first entity in contained entity range 1

 RECORD BODY BYTES

11 Contained Entity 2 /

Range 1 entity

1 00h = unspecified

If list: Entity ID for contained entity 2

If range: Entity ID of entity for contained entity range 1 (must match byte 9)

12 Contained Entity 2 Instance /

Range 1 last entity Instance

1 Set to 00h if Entity 2 is unspecified

If list: Instance ID for contained entity 2

If range: Instance ID for last entity in contained entity range 1

13 Contained Entity 3 /

Range 2 entity

1 00h = unspecified

If list: Entity ID for contained entity 3

If range: Entity ID of entity for contained entity range 2

14 Contained Entity 3 Instance /

Range 2 first entity Instance

1 Set to 00h if Entity 3 is unspecified

If list: Instance ID for contained entity 3

If range: Instance ID for first entity in contained entity range 2

15 Contained Entity 4 /

Range 2 entity

1 00h = unspecified

If list: Entity ID for contained entity 4

If range: Entity ID for entity for contained entity range 2 (must match byte 13)

16 Contained Entity 4 Instance /

Range 2 last entity Instance

1 Set to 00h if Entity 4 is unspecified

If list: Instance ID for contained entity 4

If range: Instance ID for last entity in contained entity range 2

43.5 SDR Type 09h - Device-relative Entity Association Record

This record is the same as the Type 08h Entity Association record, except that it supports describing associations

between entities that have device-relative Entity Instance values as well as system-relative values. See section

Intelligent Platform Management Interface Specification

568

39.1, System- and Device-relative Entity Instance Values and the description for SDR Type 08h for more

information.

Table 43-5, Device-relative Entity Association Record - SDR Type 09h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. 51h
corresponds to “1.5”.

4 Record Type 1 Record Type Number = 09h, Device-relative Entity Association. The "RECORD KEY
BYTES" includes the first contained entity in order to allow records to be linked
according to the Container entity ID.

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Container Entity ID 1 Entity ID for container entity

7 Container Entity Instance 1 Instance ID for container entity

8 Container Entity Device
Address

1 [7:1] - Slave address of management controller against which the device-relative
Entity Instance for the container entity is defined.

[0] - reserved, write as 0b

 Set to 00h if Instance ID is device-relative.

9 Container Entity Device
Channel

1 [7:4] - Channel number of the channel that holds the management controller against
which the device-relative Entity Instance for the container entity is defined.

 0h if Instance ID is device-relative.

[3:0] - reserved, write as 0000b.

10 flags 1 [7] - 0b = contained entities specified as list

 1b = contained entities specified as range

[6] - Record Link

 0b = no linked Entity Association records

 1b = linked Entity Association records exist

[5] - 0b = Container entity and contained entities can be assumed absent if presence
sensor for container entity cannot be accessed. This value is also used if
the entity does not have a presence sensor.

 1b = Presence sensor should always be accessible. Software should consider it
an error if the presence sensor associated with the container entity is not
accessible. If a presence sensor is accessible, then the presence sensor
can still report that the container entity is absent.

[4:0] - reserved, write as 00000b

11 Contained Entity 1 Device
Address

1 [7:1] - Slave address of management controller against which the device-relative
Entity Instance for contained entity 1 is defined.

[0] - reserved, write as 0b

 Set to 00h if Entity Instance values are device-relative.

12 Contained Entity 1 Device
Channel

1 [7:4] - Channel number of the channel that holds the management controller against
which the device-relative Entity Instance for contained entity 1 is defined.

 0h if Entity Instance values are device-relative.

[3:0] - reserved, write as 0000b

13 Contained Entity 1 /

Range 1 Entity ID

1 If list: Entity ID for contained entity 1

If range: Entity ID of entity for contained entity range 1

14 Contained Entity 1 Instance

Range 1 first entity instance

1 If list: Entity Instance for contained entity 1

If range: Entity Instance for first entity in contained entity range 1

 RECORD BODY BYTES

15 Contained Entity 2 Device
Address

1 [7:1] - Slave address of management controller against which the device-relative
Entity Instance for contained entity 2 is defined.

[0] - reserved, write as 0b

 Set to 00h if Entity Instance values are device-relative or if the contained Entity
entry is unspecified.

 Intelligent Platform Management Interface Specification

 569

16 Contained Entity 2 Device
Channel

1 [7:4] - Channel number of the channel that holds the management controller against
which the device-relative Entity Instance for contained entity 2 is defined.

 0h if Instance ID is device-relative, if the contained Entity entry is unspecified.

[3:0] - reserved, write as 0000b

17 Contained Entity 2 /

Range 1 Entity ID

1 00h = unspecified

If list: Entity ID for contained entity 2

If range: Entity ID of entity for contained entity range 1 (must match byte 13)

18 Contained Entity 2 Instance /

Range 1 last Entity Instance

1 Set to 00h if Entity 2 is unspecified

If list: Entity Instance for contained entity 2

If range: Entity Instance for last entity in contained entity range 1

19 Contained Entity 3 Device
Address

1 [7:1] - Slave address of management controller against which the device-relative
Entity Instance for contained entity 3 is defined.

[0] - reserved, write as 0b

 Set to 00h if Entity Instance values are device-relative or if the contained Entity
entry is unspecified.

20 Contained Entity 3 Device
Channel

1 [7:4] - Channel number of the channel that holds the management controller against
which the device-relative Entity Instance for contained entity 3 is defined.

 0h if Instance ID is device-relative, if the contained Entity entry is unspecified.

[3:0] - reserved, write as 0000b

21 Contained Entity 3 /

Range 2 entity

1 00h = unspecified

If list: Entity ID for contained entity 3

If range: Entity ID of entity for contained entity range 2

22 Contained Entity 3 Instance /

Range 2 first entity Instance

1 Set to 00h if Entity 3 is unspecified

If list: Entity Instance for contained entity 3

If range: Entity Instance for first entity in contained entity range 2

23 Contained Entity 4 Device
Address

1 [7:1] - Slave address of management controller against which the device-relative
Entity Instance for contained entity 4 is defined.

[0] - reserved, write as 0b

 Set to 00h if Entity Instance values are device-relative or if the contained Entity
entry is unspecified.

24 Contained Entity 4 Device
Channel

1 [7:4] - Channel number of the channel that holds the management controller against
which the device-relative Entity Instance for contained entity 4 is defined.

 0h if Instance ID is device-relative, if the contained Entity entry is unspecified.

[3:0] - reserved, write as 0000b

25 Contained Entity 4 /

Range 2 entity

1 00h = unspecified

If list: Entity ID for contained entity 4

If range: Entity ID for entity for contained entity range 2 (must match byte 21)

26 Contained Entity 4 Instance /

Range 2 last entity Instance

1 Set to 00h if Entity 4 is unspecified

If list: Entity Instance for contained entity 4

If range: Entity Instance for last entity in contained entity range 2

27:
32

reserved 6 reserved

43.6 SDR Type 0Ah:0Fh - Reserved Records

This range and all other unspecified SDR Type values are reserved.

Intelligent Platform Management Interface Specification

570

43.7 SDR Type 10h - Generic Device Locator Record

This record is used to store the location and type information for devices on the IPMB or management controller

private busses that are neither IPMI FRU devices nor IPMI management controllers. These devices can either be

common non-intelligent I2C devices, special management ASICs, or proprietary controllers.

IPMI FRU Devices and Management Controllers are located via the FRU Device Locator and Management

Controller Device Locator records described in following sections.

Table 43-6, Generic Device Locator Record - SDR Type 10h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. 51h
corresponds to “1.5”.

4 Record Type 1 Record Type Number = 10h, Device Locator

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Device Access Address 1 [7:1] - Slave address of management controller used to access device. 0000000b if
device is directly on IPMB.

[0] - reserved

7 Device Slave Address 1 [7:1] - 7-bit I2C Slave Address[1] . This is relative to the bus the device is on. For
devices on the IPMB, this is the slave address of the device on the IPMB. For
devices on a private bus, this is the slave address of the device on the private
bus.

[0] - Channel Number ms-bit (For IPMI 1.5. This bit was reserved for IPMI v1.0.)

8 Access LUN / Bus ID 1 [7:5] - Channel Number ls-3 bits. Channel number for management controller used to
access device. 0000b if device directly on the primary IPMB, or if controller is on
the primary IPMB. (Note ms-bit of Channel Number is in Device Slave Address
byte)

[4:3] - LUN for Master Write-Read command. 00b if device is non-intelligent device
directly on IPMB.

[2:0] - Private bus ID if bus = Private. 000b if device directly on IPMB.

 RECORD BODY BYTES

9 Address span 1 [7:3] - reserved

[2:0] - number of additional consecutive slave addresses used by device. 00 indicates
device only uses single address.

10 reserved 1 reserved

11 Device Type 1 See Table 43-12, IPMB/I2C Device Type Codes

12 Device Type Modifier 1 See Table 43-12, IPMB/I2C Device Type Codes

13 Entity ID 1 Entity ID for the FRU associated with this device. 00h if not specified.

14 Entity Instance 1 Instance number for entity.

15 OEM 1 Reserved for OEM use.

16 Device ID String
Type/Length

1 Device ID String Type/Length code per Section 43.15, Type/Length Byte Format.

17:
+N

Device ID String N Short ‘ID’ string for the device.

16 bytes, maximum.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

 Intelligent Platform Management Interface Specification

 571

43.8 SDR Type 11h - FRU Device Locator Record

This record is used for locating FRU information that is on the IPMB, on a Private Bus behind or management

controller, or accessed via FRU commands to a management controller. This excludes any FRU Information that

is accessed via FRU commands at LUN 00b of a management controller. The presence or absence of that FRU

Information is indicated using the Management Device Locator record (see Table 43-8, Management Controller

Device Locator - SDR 12h, below).

Table 43-7, FRU Device Locator Record - SDR Type 11h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. 51h
corresponds to “1.5”.

4 Record Type 1 Record Type Number =11h, FRU Device Locator

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Device Access Address 1 [7:1] - Slave address of controller used to access device. 0000000b if device is directly
on IPMB. (This field indicates whether the device is on a private bus or not)

[0] - reserved

7 FRU Device ID / Device
Slave Address

1 For LOGICAL FRU DEVICE (accessed via FRU commands to mgmt. controller):

[7:0] - Number identifying FRU device within given IPM Controller. FFh = reserved.
The primary FRU device for a management controller is always device #0 at
LUN 00b. The primary FRU device is not reported via this FRU Device Locator
record - its presence is identified via the Device Capabilities field in the
Management Controller Device Locator record.

For non-intelligent FRU device:

[7:1] - 7-bit I2C Slave Address[1] . This is relative to the bus the device is on. For
devices on the IPMB, this is the slave address of the device on the IPMB. For
devices on a private bus, this is the slave address of the device on the private
bus.

[0] - reserved

8 Logical-Physical / Access
LUN / Bus ID

1 [7] - logical/physical FRU device

 0b = device is not a logical FRU Device

 1b = device is logical FRU Device (accessed via FRU commands to mgmt.
controller)

[6:5] - reserved.

[4:3] - LUN for Master Write-Read command or FRU Command. 00b if device is non-
intelligent device directly on IPMB.

[2:0] - Private bus ID if bus = Private. 000b if device directly on IPMB, or device is a
logical FRU Device.

9 Channel Number 1 [7:4] - Channel number for management controller used to access device. 000b if
device directly on the primary IPMB, or if controller is on the primary IPMB. Ms-
bit for channel number is kept in next byte. (For IPMI v1.5. This byte position
was reserved for IPMI v1.0.)

[3:0] - reserved

 RECORD BODY BYTES

10 reserved 1 reserved

11 Device Type 1 See Table 43-12, IPMB/I2C Device Type Codes. 10h for Logical FRU Device.

12 Device Type Modifier 1 See Table 43-12, IPMB/I2C Device Type Codes.

13 FRU Entity ID 1 Entity ID for the device associated with this FRU information.

14 FRU Entity Instance 1 Instance number for entity.

15 OEM 1 Reserved for OEM use.

16 Device ID String
Type/Length

1 Device ID String Type/Length code per Section 43.15, Type/Length Byte Format.

Intelligent Platform Management Interface Specification

572

17:
+N

Device String N Short ‘ID’ string for the FRU Device.

16 bytes, maximum.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

 Intelligent Platform Management Interface Specification

 573

43.9 SDR Type 12h - Management Controller Device Locator Record

This information is used for identifying management controllers on the IPMB and other internal channels, and for

providing Entity and initialization information for all management controllers, including the BMC.

Table 43-8, Management Controller Device Locator - SDR 12h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. 51h
corresponds to “1.5”.

4 Record Type 1 Record Type Number = 12h, Management Controller Locator

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Device Slave Address 1 [7:1] - 7-bit I2C Slave Address[1] of device on channel.

[0] - reserved.

7 Channel Number 1 [7:4] - reserved

[3:0] - Channel number for the channel that the management controller is on. Use 0h
for the primary BMC. (New byte for IPMI v1.5. Note this addition causes some
of the following byte offsets to be pushed down when compared to the IPMI
v1.0 version of this record.)

 RECORD BODY BYTES

8 Power State Notification

Global Initialization

1 Power State Notification

[7] - 1b = ACPI System Power State notification required (by system s/w)

 0b = no ACPI System Power State notification required

[6] - 1b = ACPI Device Power State notification required (by system s/w)

 0b = no ACPI Device Power State notification required

[5] - For backward compatibility, this bit does not apply to the BMC, and should be
written as 0b.

 0b = Dynamic controller - controller may or may not be present. Software
should not generate error status if this controller is not present.

 1b = Static controller - this controller is expected to be present in the system at
all times. Software may generate an error status if controller is not
detected.

[4] - reserved

Global Initialization

[3] - 1b = Controller logs Initialization Agent errors (only applicable to
Management Controller that implements the initialization agent
function. Set to 0b otherwise.)

[2] - 1b = Log Initialization Agent errors accessing this controller (this directs the
initialization agent to log any failures setting the Event Receiver)

[1:0] - 00b = Enable event message generation from controller (Init agent will set
Event Receiver address into controller)

 01b = Disable event message generation from controller (Init agent will set
Event Receiver to FFh). This provides a temporary fix for a broken
controller that floods the system with events. It can also be used for
development / debug purposes.

 10b = Do not initialize controller. This selection is for development / debug
support.

 11b = reserved.

Intelligent Platform Management Interface Specification

574

byte Field Name size Description

9 Device Capabilities 1 Device Support

[7] - 1b = Chassis Device. (device functions as chassis device, per ICMB spec)

[6] - 1b = Bridge (Controller responds to Bridge NetFn commands)

[5] - 1b = IPMB Event Generator (device generates event messages on IPMB)

[4] - 1b = IPMB Event Receiver (device accepts event messages from IPMB)

[3] - 1b = FRU Inventory Device (accepts FRU commands to FRU Device #0 at
LUN 00b)

[2] - 1b = SEL Device (provides interface to SEL)

[1] - 1b = SDR Repository Device (For BMC, indicates BMC provides interface to
1b = SDR Repository. For other controller, indicates controller accepts
Device SDR commands)

[0] - 1b = Sensor Device (device accepts sensor commands) See Table 37-11,
IPMB/I2C Device Type Codes

10 reserved 1 reserved

11 reserved 1 reserved

12 reserved 1 reserved

13 Entity ID 1 Entity ID for the FRU associated with this device. 00h if not specified. If device
supports FRU commands at LUN 00b, this Entity ID applies to both the IPM device
and the FRU information accessed via LUN 00b.

14 Entity Instance 1 Instance number for entity.

15 OEM 1 Reserved for OEM use.

16 Device ID String
Type/Length

1 Device ID String Type/Length code per Section 43.15, Type/Length Byte Format.

17:+N Device ID String N Short ‘ID’ string for the device.

16 bytes, maximum.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

 Intelligent Platform Management Interface Specification

 575

43.10 SDR Type 13h - Management Controller Confirmation Record

This record can be used by utility software to record that a given controller has been discovered in the system.

Later, the record information can be used by software to confirm that the same controller is still present.

Table 43-9, Management Controller Confirmation Record - SDR Type 13h
byte Field Name size Description

 RECORD HEADER

1:2

Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. E.g. I.e.
51h corresponds to “1.5”.

4 Record Type 1 Record Type Number = 13h, Management Controller Confirmation

5 Record Length 1 Number of remaining record bytes following.

 RECORD KEY BYTES

6 Device Slave Address 1 [7:1] - 7-bit I2C Slave Address[1] of device on IPMB.

[0] - reserved. Write as 0b

7 Device ID 1 Device ID from Get Device ID command. 00h = unspecified.

8 Channel Number / Device
Revision

1 [7:4] - Channel Number for channel that management controller is located on. Use 0h
for the primary BMC. (New for IPMI v1.5)

[3:0] - Device Revision from Get Device ID command, binary encoded.

 RECORD BODY BYTES

9 Firmware Revision 1 1 Firmware Revision 1 from Get Device ID command.

[7] - reserved. Do not compare against same bits returned from Get Device ID
command.

[6:0] - Major Firmware Revision, binary encoded.

10 Firmware Revision 2 1 Firmware Revision 2 from Get Device ID command.

Minor Firmware Revision. BCD encoded.

11 IPMI Version 1 IPMI Version from Get Device ID command. Holds IPMI Command Specification
Version. BCD encoded. 00h = reserved. Bits 7:4 hold the Least Significant digit of the
revision, while bits 3:0 hold the Most Significant bits. E.g. a value of 01h indicates
revision 1.0

12:14 Manufacturer ID 3 Manufacturer ID from Get Device ID command, LS Byte first.

Most significant four bits = reserved (0000b).

xFFFFFh = ignore Manufacturer ID. (use for IPMI v0.9 controllers that don’t provide a
Manufacturer ID)

15:16 Product ID 2 Product ID from Get Device ID command, LS Byte first.

0000h = unspecified. FFFFh = ignore Product ID. (use FFFFh for IPMI v0.9 controllers
that don’t provide a Manufacturer ID)

17:32 Device GUID 16 Device GUID from Get Device GUID command. Set to all 0’s if controller doesn’t
support Get Device GUID command.

Notes:
1. 7-bit I2C Slave Address field. By convention, the I2C slave address is represented as an eight-bit number with the least-

significant bit always 0. E.g. 20h = 00100000b. The 7-bit Slave Address field holds the most-significant 7 bits of this value.
E.g. 0010000b.

Intelligent Platform Management Interface Specification

576

43.11 SDR Type 14h - BMC Message Channel Info Record

This record describes the allocation and type for the BMC message channels. This record type has been

deprecated for IPMI v1.5. IPMI v1.5 systems should use the Get Channel Info command instead.

Table 43-10, BMC Message Channel Info Record - SDR Type 14h
byte Field Name size Description

 RECORD HEADER

1:2 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

01h for this specification. This is BCD encoded with bits 7:4 holding the Least

Significant digit of the revision and bits 3:0 holding the Most Significant bits. Note this
record keeps the IPMI v1.0 version number.

4 Record Type 1 Record Type Number = 14h, BMC Message Channel Info

5 Record Length 1 Number of remaining record bytes following.

 RECORD BODY BYTES

6 Message Channel 0 Info 1 Channel 0, if present, is pre-defined to be the channel used for communication with the
IPMB. Thus, the Message Channel 0 Info field either has bits 3:0 = 0h, indicating
‘channel not present’, or a constant ‘10100001’ (A1h) if an IPMB is present.

The following bit definitions apply to the Message Channel Info fields for all channels:

[7] - 1b = Transmit supported

 0b = receive message queue access only

[6:4] - Message Receive LUN

 000b-011b = LUN to receive messages from this channel.

 111b = no LUN associated with receiving messages from this channel.

 all other = reserved

[3:0] - Channel Protocol - this indicates the data format messages received from the
channel in the Receive Message Queue and the format of data to be used for
the Send Message command.

 0h = Channel not present / not used.

 1h = IPMB

 2h = ICMB v1.0

 3h = ICMB v0.9

 4h = SMBus v1.0 Host (the controller must accept being addressed as a
slave, and accept the SMBus Modified Write Word protocol. The
interface may optionally accept a full SMBus Write Block. An SMBus
channel can simultaneously support low-level I2C devices, but not IPMI
devices)

 5h = System Format (Request messages of the format defined by the system
interface: e.g. NetFn/LUN, Command, Data. Response messages as:
NetFn/LUN, Command, Completion Code, Data - with the same
messages size limitations as standard IPMI messages delivered over
the system interface.)

 Ch-Fh = OEM Protocol 1 through 4, respectively

 all other = reserved

7 Channel 1 Info 1 Message Channel 1 Info

8 Channel 2 Info 1 Message Channel 2 Info

9 Channel 3 Info 1 Message Channel 3 Info

10 Channel 4 Info 1 Message Channel 4 Info

11 Channel 5 Info 1 Message Channel 5 Info

12 Channel 6 Info 1 Message Channel 6 Info

13 Channel 7 Info 1 Message Channel 7 Info

 Intelligent Platform Management Interface Specification

 577

byte Field Name size Description

14 Messaging Interrupt Type 1 00h-0Fh = IRQ 0 through 15, respectively

10h-13h = PCI A-D, respectively

14h = SMI

15h = SCI

20h-5Fh = system interrupt 0 through 63, respectively

60h = assigned by ACPI / Plug ‘n Play BIOS

FFh = no interrupt

all other = reserved

15 Event Message Buffer
Interrupt Type

1 see types defined for Messaging Interrupt Type byte 14 in this record.

16 reserved 1 reserved

Intelligent Platform Management Interface Specification

578

43.12 SDR Type C0h - OEM Record

These record type numbers are reserved for OEM definition. OEM defined records are limited to a maximum of 64

bytes, including the header.

Note: OEM unique records should be avoided when possible. The amount of space available for these record

types is implementation dependent and may be limited.

Table 43-11, OEM Record - SDR Type C0h
byte Field Name size Description

 RECORD HEADER

1 Record ID 2 The Record ID is used by the Sensor Data Repository device for record organization
and access. This may not actually be stored, but may be calculated when records are
accessed.

2

3 SDR Version 1 Version of the Sensor Model specification that this record is compatible with.

51h for this specification. This is BCD encoded with bits 7:4 holding the Least
Significant digit of the revision and bits 3:0 holding the Most Significant bits.

4 Record Type 1 Record Type Number = C0h, OEM SDR

5 Record Length 1 Number of remaining record bytes following.

6

7

8

Manufacturer ID 3 Manufacturer ID code. LS Byte first. Most significant 4 bits = reserved (0000b).
000000h = unspecified, 0FFFFFh =reserved. This value is binary encoded. E.g. the ID
for Intel Corporation is 343 decimal, which is 157h, which would be stored in this record
as 57h, 01h, 00h for bytes 6 through 8, respectively.

9:

2+N

OEM Data N OEM Data. N bytes.

 Intelligent Platform Management Interface Specification

 579

43.13 Device Type Codes

These codes are used to identify different types of devices on an IPMB, PCI Management Bus, or Private

Management Bus connection to an IPMI management controller.

Table 43-12, IPMB/I2C Device Type Codes
Code IPMB Device Type Device Type Modifier

00h reserved. n/a

01h reserved. n/a

02h DS1624 temperature sensor / EEPROM or equivalent 00h = unspecified

03h DS1621 temperature sensor or equivalent 00h = unspecified

04h LM75 Temperature Sensor or equivalent 00h = unspecified

05h ‘Heceta’ ASIC or similar 00h = Heceta 1 e.g. LM78
01h = Heceta 2 e.g. LM79
02h = LM80
03h = Heceta 3 e.g. LM81/ ADM9240 / DS1780
04h = Heceta 4
05h = Heceta 5

06h-07h reserved n/a

08h EEPROM, 24C01 or equivalent EEPROM Use:
00h = unspecified
01h = DIMM Memory ID
02h = IPMI FRU Inventory
03h = System Processor Cartridge FRU / PIROM
(processor information ROM)
all other = reserved

09h EEPROM, 24C02 or equivalent same as for code 08h

0Ah EEPROM, 24C04 or equivalent same as for code 08h

0Bh EEPROM, 24C08 or equivalent same as for code 08h

0Ch EEPROM, 24C16 or equivalent same as for code 08h

0Dh EEPROM, 24C17 or equivalent same as for code 08h

0Eh EEPROM, 24C32 or equivalent same as for code 08h

0Fh EEPROM, 24C64 or equivalent same as for code 08h

10h FRU Inventory Device behind management controller
(accessed using Read/Write FRU commands at LUN other
than 00b)

00h = IPMI FRU Inventory [1]
01h = DIMM Memory ID
02h = IPMI FRU Inventory[1]
03h = System Processor Cartridge FRU / PIROM
(processor information ROM)
all other = reserved
FFh = unspecified

11h-13h reserved n/a

14h PCF 8570 256 byte RAM or equivalent 00h = unspecified

15h PCF 8573 clock/calendar or equivalent 00h = unspecified

16h PCF 8574A ‘i/o port’ or equivalent 00h = unspecified

17h PCF 8583 clock/calendar or equivalent 00h = unspecified

18h PCF 8593 clock/calendar or equivalent 00h = unspecified

19h Clock calendar, type not specified 00h = unspecified

1Ah PCF 8591 A/D, D/A Converter or equivalent 00h = unspecified

1Bh i/o port, specific device not specified 00h = unspecified

1Ch A/D Converter, specific device not specified 00h = unspecified

1Dh D/A Converter, specific device not specified 00h = unspecified

1Eh A/D, D/A Converter, specific device not specified 00h = unspecified

1Fh LCD controller / Driver, specific device not specified 00h = unspecified

20h Core Logic (Chip set) Device, specific device not specified 00h = unspecified

21h LMC6874 Intelligent Battery controller, or equivalent 00h = unspecified

22h Intelligent Battery controller, specific device not specified 00h = unspecified

23h Combo Management ASIC, specific device not specified 00h = unspecified

24h Maxim 1617 Temperature Sensor 00h = unspecified

BFh Other / unspecified device 00h = unspecified

C0h - FFh OEM specified device OEM specific

all other reserved n/a

1. Either value can be used. The 00h Device Type Modifier is present for backward compatibility. The remaining modifiers line up
with those for the 08h-0Fh Device Types.

Intelligent Platform Management Interface Specification

580

43.14 Entity IDs

The Entity ID field is used for identifying the physical entity that a sensor or device is associated with. If multiple

sensors refer to the same entity, they will have the same Entity ID field value. For example, if a voltage sensor

and a temperature sensor are both for a ‘Power Supply 1’ entity the Entity ID in their sensor data records would

both be 10 (0Ah), per the Entity ID table.

Table 43-13, Entity ID Codes
Code Entity

0 00h unspecified

1* 01h other

2* 02h unknown (unspecified)

3* 03h processor

4* 04h disk or disk bay

5* 05h peripheral bay

6* 06h system management module

7* 07h system board (main system board, may also be a processor board and/or internal expansion board)

8* 08h memory module (board holding memory devices)

9* 09h processor module (holds processors, use this designation when processors are not mounted on
system board)

10* 0Ah power supply (DMI refers to this as a “power unit”, but it’s used to represent a power supply).
Use this value for the main power supply (supplies) for the system.

11* 0Bh add-in card

12 0Ch front panel board (control panel)

13 0Dh back panel board

14 0Eh power system board

15 0Fh drive backplane

16 10h system internal expansion board (contains expansion slots).

17 11h Other system board (part of board set)

18 12h processor board (holds 1 or more processors - includes boards that hold SECC modules)

19 13h power unit / power domain - This Entity ID is typically used as a pre-defined logical entity for grouping
power supplies and/or sensors that are associated in monitoring a particular logical power domain.

20 14h power module / DC-to-DC converter - Use this value for internal converters.
Note: You should use Entity ID 10 (power supply) for the main power supply even if the main supply is
a DC-to-DC converter, e.g. gets external power from a -48 DC source.

21 15h power management / power distribution board

22 16h chassis back panel board

23 17h system chassis

24 18h sub-chassis

25 19h Other chassis board

26 1Ah Disk Drive Bay

27 1Bh Peripheral Bay

28 1Ch Device Bay

29 1Dh fan / cooling device

30 1Eh cooling unit / cooling domain - This Entity ID can be used as a pre-defined logical entity for grouping
fans or other cooling devices and/or sensors that are associated in monitoring a particular logical
cooling domain.

31 1Fh cable / interconnect

32 20h memory device -This Entity ID should be used for replaceable memory devices, e.g. DIMM/SIMM. It
is recommended that Entity IDs not be used for individual non-replaceable memory devices. Rather,
monitoring and error reporting should be associated with the FRU [e.g. memory card] holding the
memory.

33 21h System Management Software

34 22h System Firmware (e.g. BIOS / EFI)

35 23h Operating System

36 24h system bus

37 25h Group - This is a logical entity for use with Entity Association records. It is provided to allow an Entity-
association record to define a grouping of entities when there is no appropriate pre-defined entity for
the container entity. This Entity should not be used as a physical entity.

38 26h Remote (Out of Band) Management Communication Device

 Intelligent Platform Management Interface Specification

 581

Code Entity

39 27h External Environment - This Entity ID can be used to identify the environment outside the system
chassis. For example, a system may have a temperature sensor that monitors the temperature
“outside the box”. Such a temperature sensor can be associated with an External Environment entity.
This value will typically be used as a single instance physical entity. However, the Entity Instance
value can be used to denote a difference in regions of the external environment. For example, the
region around the front of a chassis may be considered to be different from the region around the
back, in which case it would be reasonable to have two different instances of the External
Environment entity.

40 28h battery

41 29h Processing blade (a blade module that contains processor, memory, and I/O connections that enable
it to operate as a processing entity)

42 2Ah Connectivity switch (a blade module that provides the fabric or network connection for one or more
processing blades or modules)

43 2Bh Processor/memory module (processor and memory together on a module)

44 2Ch I/O module (a module that contains the main elements of an I/O interface)

45 2Dh Processor/ IO module (a combination processor and i/O module)

46 2Eh Management Controller Firmware (Represents firmware or software running on a management
controller)

47 2Fh IPMI Channel - This Entity ID enables associating sensors with the IPMI communication channels - for
example a Redundancy sensor could be used to report redundancy status for a channel that is
composed of multiple physical links. By convention, the Entity Instance corresponds to the channel
number.

48 30h PCI Bus

49 31h PCI Express™ Bus

50 32h SCSI Bus (parallel)

51 33h SATA / SAS bus

52 34h Processor / front-side bus

53 35h Real Time Clock (RTC)

54 36h reserved. This value was previously a duplicate of 22h (System Firmware). This value should remain
reserved for any future versions of the specification to avoid conflicts with older applications that may
interpret this as System Firmware.

55 37h air inlet - This Entity ID enables associating sensors such as temperature to the airflow at an air inlet.

56-63 38h-3Fh reserved. (This value was previously a duplicate of 22h (System Firmware). This value should remain
reserved for any future versions of the specification to avoid conflicts with older applications that may
interpret this as System Firmware.)

64 40h air inlet - This Entity ID enables associating sensors such as temperature to the airflow at an air inlet.
This Entity ID value is equivalent to Entity ID 37h. It is provided for interoperability with the DCMI 1.0
specifications.

65 41h processor / CPU - This Entity ID value is equivalent to Entity ID 03h (processor). It is provided for
interoperability with the DCMI 1.0 specifications.

66 42h baseboard / main system board - This Entity ID value is equivalent to Entity ID 07h (system board). It
is provided for interoperability with the DCMI 1.0 specifications.

 90h-AFh Chassis-specific Entities. These IDs are system specific and can be assigned by the chassis provider.

 B0h-CFh Board-set specific Entities. These IDs are system specific and can be assigned by the Board-set
provider.

 D0h-FFh OEM System Integrator defined. These IDs are system specific and can be assigned by the system
integrator, or OEM.

- all other values reserved

* = DMI standard groups compatible. These codes can be mapped to corresponding codes in the DMI Systems Standard
Groups Definition MIF.

43.15 Type/Length Byte Format

The type/length byte is a variation of the type/length byte format defined in the Platform Management FRU

Information Storage Definition. The main differences being that bit 5 is reserved in the IPMI specification

type/length byte, where it is part of the length field in the Platform Management FRU specification, and bits 7:6 =

00b define a Unicode string in the IPMI specification, whereas they specify a binary field in the Platform

Management FRU specification.

Intelligent Platform Management Interface Specification

582

Type/Length Byte definition:

7:6 00 = Unicode
 01 = BCD plus (see below)
 10 = 6-bit ASCII, packed
 11 = 8-bit ASCII + Latin 1. At least two bytes of data must be present when this type is used. Therefore, the

length (number of data bytes) will be >1 if data is present, 0 if data is not present. A length of 1 is
reserved.

5 reserved.
4:0 length of following data, in characters. 00000b indicates ‘none following’. 11111b = reserved.

BCD PLUS definition:

0h - 9h = digits 0 through 9
Ah = space
Bh = dash ‘-’
Ch = period ‘.’
Dh = colon ‘:’
Eh = comma ‘,’
Fh = underscore ‘_’

Table 43-14, 6-bit ASCII definition
0 sp 10 0 20 @ 30 P

1 ! 11 1 21 A 31 Q

2 " 12 2 22 B 32 R

3 # 13 3 23 C 33 S

4 $ 14 4 24 D 34 T

5 % 15 5 25 E 35 U

6 & 16 6 26 F 36 V

7 ' 17 7 27 G 37 W

8 (18 8 28 H 38 X

9) 19 9 29 I 39 Y

A * 1A : 2A J 3A Z

B + 1B ; 2B K 3B [

C , 1C < 2C L 3C \

D - 1D = 2D M 3D]

E . 1E > 2E N 3E ^

F / 1F ? 2F O 3F _

"ASCII+LATIN1" is derived from the first 256 characters of Unicode 2.0. The first 256 codes of Unicode follow

ISO 646 (ASCII) and ISO 8859/1 (Latin 1). The Unicode "C0 Controls and Basic Latin" set defines the first 128 8-

bit characters (00h-7Fh) and the "C1 Controls and Latin-1 Supplement" defines the second 128 (80h-FFh).

"6-bit ASCII" is the 64 characters starting from character 20h (space) from the ASCII+LATIN1 set. So 6-bit ASCII

value 000000b maps to 20h (space), 000001b maps to 21h (!), etc. Packed 6-bit ASCII takes the 6-bit characters and

packs them 4 characters to every 3 bytes, with the first character in the least significant 6-bits of the first byte. A

table of 6-bit ASCII codes and an example of packed 6-bit ASCII characters follows:

 Intelligent Platform Management Interface Specification

 583

43.16 6-bit ASCII Packing Example

"IPMI" encoded in 6-bit ASCII is:

I = 29h (101001b)

P = 30h (110000b)

M = 2Dh (101101b)

I = 29h (101001b)

Which gets packed into bytes as follows:

Figure 43-1, 6-bit Packed ASCII Example
bit 7 6 5 4 3 2 1 0 hex

byte 1 0 0 1 0 1 0 0 1 29h

byte 2 1 1 0 1 1 1 0 0 DCh

byte 3 1 0 1 0 0 1 1 0 A6h

Intelligent Platform Management Interface Specification

584

43.17 Sensor Unit Type Codes

The following type codes are encodes units from the International System of Units, selected additional ‘imperial’

measures, and common ‘computer’ and communication measurements.

Table 43-15, Sensor Unit Type Codes
Code Unit Code Unit Code Unit

0 unspecified 34 m 68 megabit

1 degrees C 35 cu cm 69 gigabit

2 degrees F 36 cu m 70 byte

3 degrees K 37 liters 71 kilobyte

4 Volts 38 fluid ounce 72 megabyte

5 Amps 39 radians 73 gigabyte

6 Watts 40 steradians 74 word (data)

7 Joules 41 revolutions 75 dword

8 Coulombs 42 cycles 76 qword

9 VA 43 gravities 77 line (re. mem. line)

10 Nits 44 ounce 78 hit

11 lumen 45 pound 79 miss

12 lux 46 ft-lb 80 retry

13 Candela 47 oz-in 81 reset

14 kPa 48 gauss 82 overrun / overflow

15 PSI 49 gilberts 83 underrun

16 Newton 50 henry 84 collision

17 CFM 51 millihenry 85 packets

18 RPM 52 farad 86 messages

19 Hz 53 microfarad 87 characters

20 microsecond 54 ohms 88 error

21 millisecond 55 siemens 89 correctable error

22 second 56 mole 90 uncorrectable error

23 minute 57 becquerel 91 fatal error

24 hour 58 PPM (parts/million) 92 grams

25 day 59 reserved 93

26 week 60 Decibels 94

27 mil 61 DbA 95

28 inches 62 DbC 96

29 feet 63 gray 97

30 cu in 64 sievert 98

31 cu feet 65 color temp deg K 99

32 mm 66 bit 100

33 cm 67 kilobit 101

 Intelligent Platform Management Interface Specification

 585

Intelligent Platform Management Interface Specification

586

44. Examples

44.1 Processor Sensor with Sensor-specific States & Event
Generation

The following example shows a Processor sensor that has sensor specific discrete state information. The Sensor

Type Code for Processor is 07h. A sensor that uses sensor-specific state information is identified using an

Event/Reading Type Code of 6Fh in the SDR.

Sensor Type: Processor = 07h (From Table 42-3, Sensor Type Codes)

Event/Reading Type: Sensor-specific = 6Fh (From Table 42-1, Event/Reading Type Code Ranges)

The example processor sensor returns the following readings

IERR, Thermal Trip, and Processor Presence

and generates the following events:

IERR Asserted, Processor Presence Asserted, Processor Presence Deasserted

The Reading Mask and Event Mask fields in the SDR for the sensor is used to tell System Management Software

that these are the only possible readings that the sensor will return. System Management Software can use this

information to customize the way it displays or acts on the sensor state and sensor events. The same State Bit field

positions that are used for the masks are also used in commands for accessing and configuring the sensor, such as

the Get Sensor Reading and Set Sensor Event Enable commands.

Note that, for this example, the events that can be generated are a subset of the possible states that can be read

from the sensor, and that the deassertion events don’t necessarily match up with the assertion events. Most sensors

will be this way. In fact, in a typical implementation most sensors will not generate any deassertion events. The

guideline is that warning and error conditions should generate Event Messages (and be logged) while non-critical

or informational state changes should not. This helps ensure that the event log and event receiver does not get

clogged up with non-critical information. Event Messages do not utilize the state bit field directly - but instead use

an 4-bit offset value corresponding to the State Bit position of the state change that triggered the event. The 4-bit

offset helps keep Event Messages compact, allowing for additional parameter bytes to be passed with the event

while keeping the size of SEL Event Records at 16 bytes. While a discrete sensor can simultaneously track and

report multiple states, a consequence of using an offset in the Event Message is that only one state change event at

a time gets reported in an Event Message.

An Event Dir bit used in Event Messages and SEL Event Records indicates whether the event was an assertion

event (0) or a deassertion event (1). For example, if a Processor Presence Detection event occurred the Event

Message would contain an offset value of 7, with an event dir bit of 0.

 Intelligent Platform Management Interface Specification

 587

Table 44-1, Example discrete Processor sensor with Sensor-specific states & event generation

State

Offset

State Bit

SDR

Reading

Mask

SDR

Assertion

Event Mask

SDR

Deassertion

Event Mask

IERR 0h 0 1 1 0

Thermal Trip 1h 1 1 0 0

FRB1/BIST failure 2h 2 0 0 0

FRB2/Hang in POST failure 3h 3 0 0 0

FRB3/Processor Startup/Init failure 4h 4 0 0 0

Configuration Error (for DMI) 5h 5 0 0 0

SM BIOS ‘Uncorrectable CPU-complex Error’ 6h 6 0 0 0

Processor Presence detected 7h 7 1 1 1

Processor disabled 8h 8 0 0 0

Terminator Presence Detected 9h 9 0 0 0

unspecified Ah 10 0 0 0

unspecified Bh 11 0 0 0

unspecified Ch 12 0 0 0

unspecified Dh 13 0 0 0

unspecified Eh 14 0 0 0

Intelligent Platform Management Interface Specification

588

44.2 Processor Sensor with Generic States & Event Generation

Even though the Processor sensor type has sensor-specific states defined, that doesn’t mean you have to use them.

You can use the generic discrete states with any sensor type. In this example, we show the definition of a

Processor sensor that returns a generic severity state.

Sensor Type: Processor 07h (from Table 42-3, Sensor Type Codes)

Event/Reading Type: generic Severity 07h (from Table 42-1, Event/Reading Type Code Ranges and Table

42-2, Generic Event/Reading Type Codes)

In this example, assume that we return the following Severity status:

 OK, Non-Critical from OK, Non-Critical from more severe, Critical from less severe

and generate events on the following transitions

 Non-Critical from OK, Critical from less severe

Note that this definition only generates events on worsening severity conditions. This is a recommended practice

to avoid filling the SEL with non-failure related information.

The following table shows the event offsets returned in event messages, the state bits returned from the ‘Get

Sensor Reading’ command, and the Assertion / Deassertion Masks in the SDR corresponding to a sensor with the

example characteristics.

Table 44-2, Example discrete Processor sensor with Generic states & event generation

State

Offset

State Bit

SDR

Reading

Mask

SDR

Assertion

Event Mask

SDR

Deassertion

Event Mask

transition to OK 0h 0 1 0 0

transition to Non-Critical from OK 1h 1 1 1 0

transition to Critical from less severe 2h 2 1 1 0

transition to Non-recoverable from less severe 3h 3 0 0 0

transition to Non-Critical from more severe 4h 4 1 0 0

transition to Critical from Non-recoverable 5h 5 0 0 0

transition to Non-recoverable 6h 6 0 0 0

Monitor 7h 7 0 0 0

Informational 8h 8 0 0 0

reserved 9h 9 0 0 0

reserved Ah 10 0 0 0

reserved Bh 11 0 0 0

reserved Ch 12 0 0 0

reserved Dh 13 0 0 0

reserved Eh 14 0 0 0

 Intelligent Platform Management Interface Specification

 589

Intelligent Platform Management Interface Specification

590

Appendix A - Previous Sequence Number
Tracking
The following illustrates how a method for tracking the last eight received sequence numbers can be used for

handling out-of-sequence packet reception. The method illustration assumes that the receiver tracks the highest

received sequence number that has been accepted, shown as ‘Highest Received’ column, and which of the previous

eight sequence numbers have been received, shown as the ‘Previously Received List’.

Note that for implementation, the previously received list can be implemented as a bit field where 1=received, 0=not

received, and the bit positions correspond to sequence numbers for Highest Received-1, Highest Received-2,

Highest Received-3, etc. The handling of wrap-around of the sequence number is not shown and is left to the reader.

1. Startup initialization. Highest Received session sequence number is set to value that was sent with the

Activate Session command. The Previously Received List is initialized as if the preceding eight sequence

numbers were received. This prevents a packet with a sequence number less than the initial value from

being accepted. For this example, assume the initial sequence number is 40.

Initial values are:

Highest Received Previously Received List

40 39 38 37 36 35 34 33 32

Y Y Y Y Y Y Y Y

2. Packet 41 is received. Packet is accepted because it is no more than 8 counts greater than the Highest

Received value from step 1. Highest Received becomes 41. Previously received list gets ‘pushed up’.

Updated values are:

Highest Received Previously Received List

41 40 39 38 37 36 35 34 33

Y Y Y Y Y Y Y Y

3. Packet 44 received. Accepted because it is within 8 counts of the last Highest Received. Highest Received

becomes 44. Previous received list gets pushed up by 2. Note that packets 43 and 42 are listed as

unreceived. Updated values are:

Highest Received Previously Received List

44 43 42 41 40 39 38 37 36

N N Y Y Y Y Y Y

4. Packet 39 received. Dropped because it is a duplicate with previously received packet. No update to

Highest Received and Previously Received List. Updated values are:

Highest Received Previously Received List

44 43 42 41 40 39 38 37 36

N N Y Y Y Y Y Y

5. Packet 42 received. Accepted because it is listed as unreceived on the Previously Received List. Packet 42

listed as received. No update to Highest Received because 42 is not higher than 44. Updated values are:

Highest Received Previously Received List

44 43 42 41 40 39 38 37 36

N Y Y Y Y Y Y Y

 Intelligent Platform Management Interface Specification

 591

Intelligent Platform Management Interface Specification

592

Appendix B - Example PEF Mask Compare
Algorithm
This is an ‘untested’ algorithm provided as a starting point for guiding an implementation. While this looks a lot like

C code, consider this as pseudo-code - or just read the comments...

Figure B-1, Example Event Data Comparison Algorithm

//-------- here we go ---

// First, make a value that has the ‘don’t care’ bits forced to 0
temp1 = (test_value & AND_mask);

// Next, check it for a match with the ‘exact match’ bits

// (AND’ing with compare1 forces the ‘non-exact’ bit positions to 0.

// By AND’ing temp1 with compare 1, and compare2 with compare1 the result is two

// values that both have the ‘non-exact’ bit positions forced to 0. The

// remaining non-forced bit positions should match.

if ((temp1 & compare1)==(compare2 & compare1)) { // they match

 match = true; // so far! this may change! (innocent until proven guilty)

 // Now see if there are ‘non exact’ bits to check

 if (compare1 != 0xFF) { // yep, there are non-exact bits to check

 // Make a value that has both the ‘don’t care’ and the ‘exact compare’

// bits forced to 0.

 temp2 = temp1 & !compare1;

// then AND it with compare2. If the result is non-zero, you

// had at least one ‘1’ in the right place.

// (But first check if compare2 is 0. If so, there are no 1’s to check for.)

 if (compare2 != 0x00) {

 if !(temp2 & compare2) match = false; // No 1’s in right places

 };

// Take temp2 and AND with NOT compare2 to look for 0’s.

// (But first check if compare2 is FF. If so, no 0’s to check for.)

if (compare2 != 0xFF) {

 if !(temp2 & !compare2) match = false; // No 0’s in right places

 };

 };

} else (match = false); // ‘exact match’ bits didn’t match

//---

// somewhat nastier condensed version (test_value variable re-use, logical test

// used for detecting non-zero values, etc.)

// sets variable “match”: 0 = no match, non-zero = match.

//--

testValue &= AND_mask; // force don’t care bits to 0

// then check the ‘exact match’ bits

if ((testValue & compare1)==(compare2 & compare1)){

 match = 1; // so far, so good

 if (compare1 != 0xFF) { // we have ‘non-exact’ bits to check

 testValue &= !compare1; // force ‘exact match’ bits to 0, too

 if (compare2) match = testValue & compare2; // look for 1’s in right places

 // look for 0’s in right places, but not unless we still have a match

 if (match && (compare2 != 0xFF)) match = !(testValue & !compare2);

 };

} else (match=0);

 Intelligent Platform Management Interface Specification

 593

Intelligent Platform Management Interface Specification

594

Appendix C1 - Locating IPMI System Interfaces
via SM BIOS Tables

The System Management BIOS Reference Specification, Version 2.3.1, March 16, 1999 (hereon referred to as SM

BIOS) includes the following optional record for identifying the initial location of IPMI system interfaces and

interrupts. This is summarized in the following table. Fields in BOLD represent fields that are additions to the 2.3.1

specification. See [SMBIOS] for other application information on SM BIOS.

Note that the settings that this structure reports may be over-ridden by ‘Plug-and-Play’ reassignment by the OS.

Therefore, this structure should be used only when the interface cannot be discovered via ‘Plug-and-Play’ discovery

mechanisms incorporated in interfaces such as PCI and ACPI.

IPMI Device Information (Type 38).

Table C1-1, SM BIOS IPMI Device Information Record
Offset Name Length Value Description

00h

Type BYTE 38 IPMI Device Information structure indicator.
(Note this number is given in decimal)

01h

Length BYTE Length of the structure, a minimum of 10h (for
full IPMI address description, this is a minimum
of 12h)

02h Handle WORD Varies

04h Interface Type BYTE ENUM Baseboard Management Controller (BMC)
interface type, see Table C1-2, Interface Type
field values, below.

05h

IPMI

Specification

Revision

BYTE

Varies Somewhat mis-named. Actually identifies the
IPMI Specification Version, in BCD format, to
which the BMC was designed. Bits 7:4 hold the
most significant digit of the version, while bits
3:0 hold the least significant bits, e.g. a value
of 15h indicates version 1.5.

06h I2C Slave
Address

BYTE 32 The slave address on the I2C bus of this BMC.
(This refers to the address of the BMC on the
primary IPMB, if present. This value is set to
20h [0010_000x] per the IPMB specification.)

07h NV Storage
Device Address

BYTE Varies Bus id of the NV storage device. If no storage
device exists for this BMC, or if the device
cannot be accessed with the Read / Write FRU
Data commands, the field is set to 0FFh. (This
refers to the address of the primary FRU
device if the BMC implementation allows that
device to be accessed with the Master Write-
Read commands as well as the Read / Write
FRU Data commands.)

08h Base Address QWORD Varies Identifies the base address (either memory-
mapped or I/O) of the BMC. If the least-
significant bit of the field is a 1, the address is
in I/O space; otherwise, the address is
memory-mapped. If the BMC uses SSIF, the
first byte of the Base Address field holds the
Slave Address of the BMC on the SMBus from
the host controller, and the remaining bytes are
set to 00h. (The 7-bit slave address is left-
justified in the least-significant byte and the
least significant bit of the byte set to 0b. E.g. a
slave address of 0010000b is stored in this
field as: 00_00_00_00_00_00_00_20h.

 Intelligent Platform Management Interface Specification

 595

10h Base Address
Modifier /

Interrupt Info

BYTE Varies Base Address Modifier (This field is unused
and set to 00h for SSIF)

bit 7:6 - Register spacing

 00b = interface registers are on
successive byte boundaries

 01b = interface registers are on 32-bit
boundaries

 10b = interface registers are on 16-byte
boundaries

 11b = reserved

bit 5 - reserved. Return as 0b.

bit 4 - LS-bit for addresses

 0b = Address bit 0 = 0b

 1b = Address bit 0 = 1b

Interrupt Info

Identifies the type and polarity of the interrupt
associated with the IPMI system interface, if
any.

bit 3 - 1b = interrupt info specified

 0b = interrupt info not specified

bit 2 - reserved. Return as 0b.

bit 1 - Interrupt Polarity.
1b = active high, 0b = active low.

bit 0 - Interrupt Trigger Mode.
1b = level, 0b = edge.

11h Interrupt Number BYTE Varies Interrupt number for IPMI System Interface.
00h = unspecified / unsupported

C1-1 IPMI Device Information - BMC Interface

The following sections present more information describing the Type 38 record fields and their use.

C1-1.1 Interface Type
The following table presents the meaning of the values for the Interface Type Field:

Table C1-2, Interface Type field values
Byte Value Meaning

00h Unknown

01h KCS: Keyboard Controller Style

02h SMIC: Server Management Interface Chip

03h BT: Block Transfer

04h SSIF: SMBus System Interface

05h to 0FFh Reserved for future assignment by this specification

C1-1.2 IPMI Specification Revision Field
Identifies the IPMI Specification Revision, in BCD format, to which the BMC was designed. Bits 7:4 hold the most

significant digit of the revision, while bits 3:0 hold the least significant bits, e.g. a value of 10h indicates revision

1.0.

C1-1.3 I2C Slave Address Field
This field indicates the slave address of the BMC on the primary IPMB in the system. The most significant seven

bits hold the address. The least significant bit is reserved and shall be returned as 0b. The 7-bit portion of the slave

address for the BMC is 0010 000_b, therefore this field will typically be populated with the value 20h.

Intelligent Platform Management Interface Specification

596

C1-1.4 NV Storage Device Address Field
The field is reserved for use by the System Integrator (party that integrates motherboard and chassis).

This field describes the location of an auxiliary OEM NV Storage Device on the primary IPMB in the system.

C1-1.5 Base Address Field
This field is used to describe the base address for the BMC’s system interface. The field can describe both I/O

mapped and memory-mapped base addresses. The least significant bit of this field indicates whether the base

address is an I/O address or a memory address. The most significant 63-bits of this field holds the most significant

63 bits (bits 63:1) of a 64-bit address. The least significant bit (bit 0) of the base address is kept in the Base Address

Modifier field.

All IPMI system interface registers are inherently non-cacheable and the register locations must be implemented as

non-cacheable addresses.

C1-1.6 Base Address Modifier Field
This field provides the least-significant bit for the base address, information indicating how the system interface

registers are aligned (either on byte, 32-bit, or 16-byte boundaries).

C1-1.7 System Interface Register Alignment
System interface registers can optionally be defined on 32-bit or 16-byte boundaries. In this case, the registers are

32-bits (4 bytes) apart. Base Addresses must match the specified register alignment. For example, the base address

for a 32-bit aligned interface must have its two least significant address bits = 00b. Thus, the LS bit field in the Base

Address Modifier is always 0b for non-byte-aligned addresses.

C1-1.7.1 Byte-spaced I/O Address Examples
The following example shows how the default system interface addresses would be represented in the SM BIOS

Base Address and Base Address Modified fields. Base Address bit 0 = 1b indicates that the base address is an I/O

address. The default system interface definition specifies that the system interface registers occupy consecutive byte

locations. Thus, the register spacing in the Base Address Modifier is set to 0b. Note that the LS bit field in the Base

Address Modifier field matches the least-significant bit listed in the corresponding addresses from the Default Base

Address column.

Table C1-3, Byte-aligned I/O Mapped Register Address examples

Interface

Default Base Address

SM BIOS Base Address

LS bit
field

Register
spacing

KCS 0CA2h 0000 0000 0000 CA3h 0b 00b

SMIC 0CA9h 0000 0000 0000 CA9h 1b 00b

Block Transfer (BT) 00E4h 0000 0000 0000 00E5h 0b 00b

C1-1.7.2 32-bit Spaced I/O Address Examples
The following example shows examples addresses for a KCS interface implemented with 32-bit aligned registers at

I/O base address CACh.

Table C1-4, 32-bit aligned I/O Mapped Register Address examples

Example I/O Address

SM BIOS Base Address

LS bit
field

Register spacing

base address 0000 0CACh 0000 0000 0000 0CADh 0b 01b

Data_In 0000 0CACh 0000 0000 0000 0CADh 0b 01b

Data_Out 0000 0CACh 0000 0000 0000 0CADh 0b 01b

Command 0000 0CB0h 0000 0000 0000 0CB1h 0b 01b

Status 0000 0CB0h 0000 0000 0000 0CB1h 0b 01b

 Intelligent Platform Management Interface Specification

 597

C1-1.7.3 Memory-mapped Base Address
For memory-mapped system interfaces, the Base Address field and Base Address Modifier are used in the same

manner as for an I/O-mapped interface, except that Base Address bit 0 is set to 0b.

C1-1.7.4 Interrupt Info Field
This field identifies the type and polarity of the interrupt associated with the IPMI system interface, if any. Refer to

the Type 38 table, above, for individual bit descriptions.

C1-1.8 Interrupt Number Field
This field holds the interrupt number for the IPMI System Interface. The field is set to 00h when the number is

unspecified or an interrupt is not supported.

Intelligent Platform Management Interface Specification

598

Appendix C2 - Locating IPMI System Interfaces
on PCI

The PCI SIG (http://www.pcisig.com) has defined class codes for IPMI System Interfaces in Appendix D of the PCI

Local Bus Specification,Revision 2.3, March 29, 2002. PCI-based implementations of the IPMI System Interfaces

should use the appropriate PCI configuration space and the class code definition there to report the presence and

type of system interface for driver loading purposes.

A BMC is allowed to support more than one type of system interface simultaneously. It is possible Only an active

BMC should respond to the Get Device ID command.

The first base address register of the PCI function holding the IPMI System Interface. The IPMI System Interfaces

can be I/O or memory mapped, as indicated by read-only bits in the base address register.

Unless otherwise specified, IPMI System Interfaces on PCI must be byte aligned and located at offset 0 with respect

to the base address register. PCI implementations of the KCS interface that are not byte-aligned must return a fixed

00h in the unused byte positions. This enables a driver to test for alignment. Non- byte-aligned KCS interfaces must

also have their eight-bit registers aligned on even 32-bit or 16-byte boundaries starting at offset 0 with respect to the

base address register.

Table C2-1, PCI Class Codes for IPMI
Class
Code

Sub
Class

Interface Description

0Ch Serial Bus Controllers (Historically, the IPMI System Interfaces were defined
under this class because of the use of BMCs as interfaces to serial busses such
as private management busses and the IPMB)

 07h IPMI System Interfaces

 00h IPMI SMIC Interface

 01h IPMI Keyboard Controller Style (KCS) Interface

 02h IPMI Block Transfer (BT) Interface

http://www.pcisig.com/

 Intelligent Platform Management Interface Specification

 599

Intelligent Platform Management Interface Specification

600

Appendix C3 - Locating IPMI System Interfaces
with ACPI

Revision 1.2 of the IPMI v1.5 specification introduces the option of describing the presence of the IPMI System

Interface as a static (non- “Plug and Play”) resource using ACPI. The IPMI System Interface can also be

implemented as a relocate-able resource on PCI (refer to Appendix C2 - Locating IPMI System Interfaces on

PCI).

There are two ACPI-based mechanisms that work together when the IPMI System Interface is implemented as a

static resource, the Service Processor Management Interface (SPMI) Description Table and ACPI Control

Methods.

C3-1 SPMI Description Table and ACPI Control Methods

The SPMI Description Table is an optional table that describes the processor-relative, translated, fixed resources

of an IPMI system interface at system boot time. The purpose of the SPMI Table is to provide a mechanism that

can be used by the OSPM (an ACPI term for “OS Operating System-directed configuration and Power

Management” essentially meaning an ACPI-aware OS or OS loader) very early in the boot process, e.g., before

the ability to execute ACPI control methods in the OS is available.

The SPMI Description Table is similar to the SMBIOS Type 38 (IPMI Device Information) record. The main

difference between the two is that the SPMI Table is identified in the ACPI Specification as a table that has the

reserved signature “SPMI”. The SMBIOS Type 38 record type is from the SMBIOS specifications from the

Distributed Management Task Force (http://www.dmtf.org) pre-OS working group.

The SPMI Description Table can be used to describe the location of either fixed resource or PCI

implementations of the system interface. For system interfaces on PCI, the table can only describe the location

of the system interface at the time that the boot process is initiated. An OS may relocate these resources.

Therefore, whether or not a PCI-based system interface remains at the SPMI addresses is OS-dependent. During

normal run-time operation, software should locate the system interface directly on PCI and/or use the OS’s

support for PCI instead of the SPMI Table.

A management controller device may present more than one system interface for IPMI messaging to the BMC.

For example, a BMC may simultaneously support the KCS and the BT interfaces. A unique SPMI Table should

be provided for each of these interfaces. This allows the OSPM to select an interface that it is able to

communicate and hence maximize the supportability.

Per [ACPI 2.0], unless otherwise specified, numeric values for the table and any blocks or structures are always

encoded in little endian format. Signature values are stored as fixed-length strings.

Table C3-1, Service Processor Management Interface Description Table Format

Field
Byte

Length
Byte

Offset Description

Header

 Signature 4 0 ‘SPMI’. Signature for the Service Processor Management
Interface Table.

 Length 4 4 Length, in bytes, of the entire Service Processor
Management Interface Table.

 Revision 1 8 5

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID. Per ACPI specification. An OEM-supplied string that
identifies the OEM.

http://www.dmtf.org/

 Intelligent Platform Management Interface Specification

 601

Field
Byte

Length
Byte

Offset Description

 OEM Table ID 8 16 For the Service Processor Management Interface Table, the
table ID is the manufacturer model ID (assigned by the OEM
identified by “OEM ID”).

 OEM Revision 4 24 OEM revision of Service Processor Management Interface
Table for supplied the given OEM Table ID. Per ACPI, this is
“An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.”

 Creator ID 4 28 Vendor ID of utility that created the table. For the tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For the tables
containing Definition Blocks, this is the revision for the ASL
Compiler.

Interface Type 1 36 Indicates the type of IPMI interface:

0 Reserved

1 Keyboard Controller Style (KCS)

2 Server Management Interface Chip (SMIC)

3 Block Transfer (BT)

4 SMBus System Interface (SSIF)

5-255 Reserved

Reserved 1 37 This field must always be 01h to be compatible with any
software that implements previous versions of this spec.

Specification Revision
(version)

2 38 Identifies the IPMI specification revision, in BCD format, to
which the interface was designed. The first byte holds the
most significant digits, while second byte holds the least
significant digits of the revision, e.g. a value of 0x0150
indicates the interface is compatible with IPMI version v1.5.

Interrupt Type 1 40 Interrupt type(s) used by the interface:

[7:2] - Reserved (must be 0)

[1] - I/O APIC/SAPIC interrupt (Global System Interrupt)

[0] - SCI triggered through GPE (use 0b for SSIF)

 0 = not supported

 1 = supported

GPE 1 41 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE described if the FADT that the interface
triggers. (Note: This field is valid only if Bit[0] of the Interrupt
Type field is set. Otherwise set to 00h.)

Reserved 1 42 00h.

PCI Device Flag 1 43 [7:1] - Reserved

[0] - PCI Device Flag. For PCI IPMI devices, this bit is set. For
non-PCI devices, this bit is cleared. When this bit is cleared,
the PCI Segment Group, Bus, Device and Function Number
fields combined corresponds to the ACPI _UID value of the
device whose _HID or _CID contains IPI0001 plug and play
ID. _UID must be an integer. Byte 60 contains the least
significant byte of the _UID value. Set to 0b for SSIF.

Global System Interrupt 4 44 The I/O APIC or I/O SAPIC Global System Interrupt[1] used by
the interface. (Note: This field is valid only if Bit[1] of the
Interrupt Type field is set. Otherwise set to 00h.)

Intelligent Platform Management Interface Specification

602

Field
Byte

Length
Byte

Offset Description

Base Address 12 48 The base address of the interface register set described
using the Generic Address Structure (GAS, See [ACPI 2.0]
for the definition). The Address_Space_ID field in the GAS
can only be of the value of 0 (System Memory), 1 (System
IO), and 4 (SMBus). All other values are not permitted.

For SSIF:

The Address_Space_ID = 4 and the address field of the GAS
holds the 7-bit slave address of the BMC on the host SMBus
in the least significant byte. Note that the slave address is
stored with the 7-bit slave address in the least significant 7-
bits of the byte, and the most significant bit of the byte set to
0b.

Register_Bit_Width = 0

Register_Bit_Offset = 0

Address_Size field = 1 (Byte access)

Address = 7-bit SMBus address of BMC SSIF

PCI Segment Group
Number / UID byte 1

1 60 PCI Segment Group Number, if the IPMI device is a PCI
device. Otherwise, this field is byte 1 of a UID. See
description for PCI Device Flag, above.

PCI Bus Number / UID
byte 2

1 61 PCI Bus Number, if the IPMI device is a PCI device.

Otherwise, this field is byte 2 of a UID. See description for
PCI Device Flag, above.

PCI Device Number /
UID byte 3

1 62 PCI Device fields or byte 3 of a UID. Per PCI Device Flag,
above.

For PCI Device Flag = 1b:

[7:5] - Reserved

[4:0] - PCI Device Number: The PCI device number if the
IPMI device is a PCI device.

For PCI Device Flag = 0b:

[7:0] - byte 3 of UID

PCI Function Number /
UID byte 4

1 63 PCI Device fields or byte 4 of a UID. Per PCI Device Flag,
above.

For PCI Device Flag = 1b:

[7] - Reserved

[6] - Interrupt Flag:

 0b = interrupt not supported

 1b = interrupt supported

[5:3] - Reserved

[2:0] - PCI Function Number: The PCI function number if
the IPMI device is a PCI device.

For PCI Device Flag = 0b:

[7:0] - byte 4 of UID

Reserved 1 64 This field must always be null (0x00) to be compatible with
any software that implements previous versions of this spec.
This field is a deprecated “SPMI ID Field”. Implementations
based on pre-IPMI v2.0 versions of SPMI may contain a null-
terminated string here.

1. ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support APICs or SAPICs on an
ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped to the global system interrupt value used by
ACPI. See Section “Global System Interrupts” in [ACPI 2.0] for a description of Global System Interrupts.

C3-2 Locating IPMI System Interfaces in ACPI Name Space

The SPMI Description Table provides a mechanism that can be used before the ability to execute ACPI control

methods in the OS is available. This table is not, however, intrinsically supported in the OSPM as a way of

discovering and reporting system resources. Therefore, it is recommended that non-PCI IPMI System Interfaces on

 Intelligent Platform Management Interface Specification

 603

the baseboards be described in the ACPI name space. This makes it possible for the OSPM to enumerate the IPMI

System Interface as a device. In addition, the ACPI name space description is more flexible and friendly in hot-plug

scenarios.

Note that to be ACPI compatible, the fixed resources for IPMI System Interfaces must still be accounted for in

accordance with the ACPI specification. If the device is not formally described in the ACPI Name Space, its

resources must be described as fixed system resources or the resources appended to some other fixed resource

system device in order to ensure that the OSPM does not attempt to allocate those resources to some other device.

To formally describe the IPMI System Interface in ACPI Name Space, an IPMI device is created using the named

device object. The IPMI device object can have the following elements:

Table C3-2, IPMI Device Object Control Methods
Object Description Support Level

_ADR Named object that evaluates to the interface’s address on its parent bus.
_ADR is a standard device configuration control method defined in the ACPI
Specification.

Required only for
devices on a bus
that has standard
enumeration
mechanism.

_HID Named object that provides the interface's Plug and Play identifier. This
value can be vendor specific but must set to IPI00017 if no CID object is
provided. _HID is a standard device configuration control method defined in
the ACPI Specification.

Required

_CID Named object that provides the interface's compatible Plug and Play
identifier. This object is required and contains the value of IPI0001 if _HID
contains vendor specific identifier. Otherwise, this object is optional.

See description
to left

_STR Named object that evaluates to a Unicode string that may be used by an OS
to provide information to an end user describing the device. __STR is a
standard device configuration control method defined in the ACPI
Specification.

Required

_UID Named object that specifies a device’s unique persistent ID, or a control
method that generates it. _UID is a standard device configuration control
method defined in the ACPI Specification.

Required if more
than one device

_CRS Named object that returns the interface's current resource settings. System
Processor Management Interfaces are considered static resources; hence
only return their defined resources. The address region definition is interface
type/subtype dependent. _CRS is a standard device configuration control
method defined in the ACPI Specification.

Required

_STA Object that returns the status of the device: enabled, disabled or removed,
as defined in the ACPI Specification. If this method is not present, the
device is assumed to be enabled.

Recommended

_IFT Object that specifies the interface type, as defined in the SPMI Table. (Note:
_IFT and _SRV, following, have been reserved in ACPI 3.0 as names for
control methods defined for SPMI)

Required

_SRV Object that specifies the specification revision, as defined in the SPMI
Table.

Required

7 Intel has registered the IPIxxxx PNP ID with Microsoft for describing all IPMI related devices. Intel has granted the use of IPI0001

to describe the generic Service Processor Management Device as defined in this specification.

Intelligent Platform Management Interface Specification

604

_GPE Named object that evaluates to either an integer or a package. If _GPE
evaluates to an integer, the value is the bit assignment of the SCI interrupt
within the GPEx_STS register of a GPE block described in the FADT that
the Service Processor Management Interface will trigger.

If _GPE evaluates to a package, then that package contains two elements.
The first is an object reference to the GPE Block device that contains the
GPE register that will be triggered by the interface. The second element is
numeric (integer) that specifies the bit assignment of the SCI interrupt within
the GPEx_STS register of the GPE Block device referenced by the first
element in the package.

(Note: This object is only provided if the interface supports a GPE.)

Required if
interrupt through
GPE is supported

NOTE: Normally PCI based devices are not described in ACPI name space. OSPM should use the PCI enumeration

mechanism to locate IPMI interfaces. See Appendix C2 - Locating IPMI System Interfaces on PCI.

If the IPMI interface supports interrupts, the interrupt descriptor in _CRS is used if the interrupt is supported via IO

(S)APIC, while _GPE object is used if the interrupt is supported through the GPE register. Having both the interrupt

descriptor in _CRS and the _GPE object in the IPMI device scope is not permitted by this specification.

If the IPMI interface does not support interrupts, neither the interrupt descriptor in the _CRS nor the _GPE object

will be present.

In a multi-node system where there may be more than one IPMI device in an OS domain, it is highly recommended

that all IPMI devices be described in the ACPI name space with the _STA returning enabled for the active IPMI

device(s).

C3-3 Example IPMI Definition ASL Code

Example ASL code that defines IPMI System Interfaces is shown below:

Example 1: SMIC Interface in I/O Space
Example ASL for describing an IO-port based SMIC system interface:

Device(MI0) {

 Name(_HID, EISAID("IPI0001"))

 Name(_STR, Unicode("IPMI_SMIC")) // Optional, but recommended

 // for identifying IPMI system interface. // The strings "IPMI_KCS",

"IPMI_SMIC",

 // and "IPMI_BT" are recommended for

 // identifying the KCS, SMIC, and BT

 // interfaces, respectively.
 Name(_UID, 0) // UID for the primary IPMI system interface in the system

 // Returns the "Current Resources"

 Name(_CRS,

 ResourceTemplate() {

 IO(Decode16, 0xCA9, 0, 3) // Ports 0xCA9, 0xCAA & 0xCAB

 }

)

 // Returns the interface type

 Method(_IFT) {

 Return(0x02) // IPMI SMIC

 }

 // Returns the interface specification revision

 Method(_SRV) {

 Return(0x0100) // IPMI Specification Revision 1.0

 }

 Intelligent Platform Management Interface Specification

 605

 //This interface does not support interrupt

}

Example 2: KCS Interface in 64-bit Address Space
Example ASL for describing a memory-mapped KCS system interface, located in a 64-bit address space at address

0x80000FFFFC020CA2:

Device(MI0) {

 Name(_HID, EISAID("IPI0001"))

 Name(_STR, Unicode("IPMI_KCS")) // Optional, but recommended

 // for identifying IPMI system interface.

 // The strings "IPMI_KCS", "IPMI_SMIC",

 // and "IPMI_BT" are recommended for

 // identifying the KCS, SMIC, and BT

 // interfaces, respectively.

 Name(_UID, 0) // UID for the primary IPMI system interface in the system

 // Returns the "Current Resources"

 Name(_CRS,

 ResourceTemplate() {

QWordMemory(

 ResourceConsumer, //

 PosDecode, //

 MinFixed, //

 MaxFixed, //

 NonCacheable, //

 ReadWrite, //

 0xFFFFFFFFFFFFFFFF, // _GRA, Address granularity.

// E.g. All 64-bits decoded.

0x80000FFFFC020CA2, // _MIN, Address range minimum

// (System I/F base addr.)

 0x80000FFFFC020CA4, // _MAX, Address range max

 0x0000000000000000, // _TRA, Translation.

// 0 for non-bridge devices

 0x0000000000000002, // _LEN, Address range length

 , // Resource Source Index

 , // Resource Source Name

 , // A name to refer back to this resource

 , // _MTP, Nothing=>AddressRangeMemory

 , // _TTP, Translation. Nothing=>TypeStatic

// TypeTranslation: This resource, which is memory

// on the secondary side of the bridge is I/O on the

// primary side of the bridge.

// TypeStatic: This resource, which is memory on

// the secondary side of the bridge is also memory

// on the primary side of the bridge.

)

}

)

// Returns the interface type

Method(_IFT) {

Return(0x01) // IPMI KCS

}

// Returns the interface specification revision

Method(_SRV) {

Return(0x0100) // IPMI Specification Revision 1.0

}

// This interface does not support interrupt

}

Intelligent Platform Management Interface Specification

606

Example 3: SMIC Interface in I/O Space
Example ASL for describing a memory-mapped BT system interface using a fixed interrupt

Device(MI0) {

 Name(_HID, EISAID("IPI0001"))

 Name(_STR, Unicode("IPMI_BT")) // Optional, but recommended

 // for identifying IPMI system interface.

 // The strings "IPMI_KCS", "IPMI_SMIC",

 // and "IPMI_BT" are recommended for

 // identifying the KCS, SMIC, and BT

 // interfaces, respectively.

 Name(_UID, 0) // UID for the primary IPMI system interface in the system

 // Returns the "Current Resources"

 Name(_CRS,

 ResourceTemplate() {

 IO(Decode16, 0x0E4, 0, 3) // Ports 0xE4h:E6h

 Interrupt(ResourceProducer,…){20} // GSI is 20

 }

)

// Returns the interface type

Method(_IFT) {

Return(0x03) // IPMI BT

}

// Returns the interface specification revision

Method(_SRV) {

Return(0x0150) // IPMI Specification Revision 1.5

}

}

Example 4: SSIF Interface
Example ASL for describing the presence of the SSIF. In order to associate the SSIF with a particular SMBus host

controller interface, the SMBus host controller must be described as a resource under ACPI and the SSIF defined as

a device under the host controller. E.g.:

Device (SMB0) // example SMBus host controller

{

 Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID

 Name(_UID, 0) // Unique ID of particular host controller

 :

 :

 Device (SSIF)

 {

 Name(_HID,"IPI0001") // IPMI system interface

 Name(_UID, 0) // Unique device identifier

 Name(_STR, Unicode("IPMI_SSIF"))

 // Returns the interface type

 Method _IFT

 {

 Return(0x04) // Return interface type for SSIF

 }

 // Returns the SSIF slave address

 Method _ADR

 {

 Return(0x10) //Return SSIF Slave Address (e.g. 00010000b, left justified)

 }

 // Returns the interface specification version

 Method(_SRV)

 Intelligent Platform Management Interface Specification

 607

 {

 Return(0x0200) // IPMI Specification Version 2.0

 }

 } // end Device SSIF

} // end Device SMB0

Intelligent Platform Management Interface Specification

608

Appendix D - Determining Message Size
Requirements

Two factors drive the message size support requirements. The first is the message size limit of the IPMB. The

IPMB is specified to have a 32-byte maximum overall message length (from slave address through the last

checksum byte). The second is the ability for the Master Write-Read command to be able to be used to support

SMBus 2.0 protocols for accessing slave devices and supporting SMBus 2.0 channels in the BMC.

The largest SMBus 2.0 transaction is the Block-Write with PEC (Packet Error Code) protocol transaction. The

Block-Write with PEC protocol transaction requires 36 bytes (including slave address) to be transferred as a

single write transaction on SMBus.

 IPMB Message : 32 bytes, maximum, including slave address.

 SMBus 2.0 Message: 36 bytes, maximum, including slave address.

Local system software can use the BMC as a low-level controller to access private management busses, the IPMB,

and SMBus connections by sending a Master Write-Read command to the BMC through the system interface.

Using a Master Write-Read command to deliver a full-size SMBus 2.0 Block-Write protocol transaction requires

accepting a 40 byte message over the KCS system interface (see following figure). Note that while the SMBus

message is 36 bytes overall, the Slave Address is already part of the Master Write-Read command, so only 35

bytes is shown in the write data portion of the message.

Figure D-1, SMBus Write-Block by Master Write-Read through KCS/SMIC
NetFn/LUN Command Bus ID Slave Address Read

Count
[Write Data] total

1 1 1 1

(Slave address for
SMBus Write-

Block with PEC)

1 35

(Command, byte count,
data, & PEC for SMBus
Write-Block with PEC)

36

Similarly, the BMC needs to accept 36 bytes on any connection where the BMC could be the target of an SMBus

2.0 Write-Block protocol.

The SMBus 2.0 Block-Read operation only requires 34 bytes of input. (Byte Count, 32 data bytes, and PEC). So a

private management bus that accessed SMBus 2.0 devices as a slave would only need to support 34 input bytes.

(Note there’s no slave address read from a Read-Block because the device is acting as a slave on the bus.)

Therefore, the following show the size of Master Write-Read Response required to be delivered from the IPMB

and KCS interfaces:

Figure D-2, Master Write-Read Response via KCS/SMIC
NetFn/LUN Command Completion Code Read Data total

1 1 1 34
(bytecount, data, and

PEC for SMBus Read-
Block with PEC)

37

For comparison, the following shows the Get Message Response that would return an entire 32-byte message in

IPMB format.

Figure D-3, Get Message Response via KCS/SMIC
NetFn/LUN Command Completion Code Channel # Read Data total

1 1 1 1 32 36

 Intelligent Platform Management Interface Specification

 609

LAN or PPP IPMI request message for a Master Write-Read message to perform an SMBus 2.0 Block-Write with

PEC protocol transaction:

Figure D-4, Master Write-Read Request via LAN/PPP
Software

ID
NetFn/
LUN

Check 1 RqSA RqSeq
/LUN

CMD Bus
ID

Slave

Address

Read
Count

[Write
Data]

Check 2 total

1 1 1 1 1 1 1 1 1 35 1 45

LAN or PPP IPMI response message for a Master Write-Read response that returns data for an SMBus 2.0

Block-Read with PEC protocol transaction. The SMBus Block-Read with PEC protocol requires reading a

maximum of 34 bytes from the bus (byte count, 32-bytes of data, and PEC).

Figure D-5 Master Write-Read Response via LAN/PPP
Software

ID
NetFn/
LUN

Check 1 RqSA RqSeq
/LUN

CMD completion

code

[Read
Data]

Check 2 total

1 1 1 1 1 1 1 34 1 42

Private Bus Write from IPMB. Maximum Write Data that is supported to a private management bus using the

Master Write-Read command delivered via IPMB:

Figure D-6, Master Write-Read Response via LAN/PPP
RsSA NetFn/

LUN
Check 1 RqSA RqSeq

/LUN
CMD Bus

ID
Slave

Address

Read
Count

[Write
Data], max

Check
2

1 1 1 1 1 1 1 1 1 22 1

Intelligent Platform Management Interface Specification

610

Appendix E - Terminal Mode Grammar

E-1 Notation

[x] = x occurs one or more times. E.g. x, xx, xxxxx

[x | y | z] = A set consisting of one or more occurrences of x, y, or z in any order or combination. E.g. z, zyz,

xzyxyzzxy

(x | y) = Exclusive OR. Only one of x or y, but not both.

{ x } = Optionally present. x may or may not occur.

BOLD = A string literal. Case insensitive unless otherwise noted.

E-2 Grammar for Terminal Mode Input

input_line ::= start cmd_prefix space (command | message) {space} input_termination_seq

start ::= L_bracket

cmd-prefix ::= SYS

command ::= (password_cmd | set_cmd | reset_cmd | power_cmd | health_cmd | comset_cmd |

 oem_cmd)

message ::= message_segment { { space } line_continue message_segment }

input_termination_seq ::= stop input_newline

password_cmd ::= login_cmd | null_login_cmd | logout_cmd

login_cmd ::= PWD space -U space username {space password}

null_login_cmd ::= PWD space -N {space password}

logout_cmd ::= PWD space -X

set_cmd ::= SET space (set_boot | set_tcfg)

set_boot ::= BOOT space hex_pair

set_tcfg ::= TCFG space { (set_volatile) | (set_non-volatile) }

set_volatile ::= -V space hex_pair hex_pair

set_non-volatile ::= -N space hex_pair hex_pair

reset_cmd ::= RESET space

power_cmd ::= POWER space (ON | OFF)

health_cmd ::= HEALTH space QUERY {space opt_verbose}

oem_cmd ::= oem_id space printable

 Intelligent Platform Management Interface Specification

 611

username ::= [alphanumeric | punctuation]

// username is limited to 16 characters. Spaces are not allowed in usernames that work

with terminal mode.

password ::= [alphanumeric | punctuation]

 // password is limited to 16 characters. Spaces are not allowed in the terminal mode

password.

message_segment ::= hex-pair {space message_segment}

line_continue ::= backslash input_newline

stop ::= R_bracket

input_newline ::= (cr | null)

// note: A configuration option affects which of these in-termination options may be

enabled at a time.

oem_id ::= hex_pair hex_pair hex_pair hex_pair hex_pair hex_pair

opt_verbose ::= -V

printable ::= [alphanumeric | punctuation | space]

alphanumeric ::= [digit | alpha]

punctuation ::= [! | double-quote | # | $ | % | & | apostrophe | (|) | * | + | grave_accent |

 hyphen | period | / | : | ; | < | > | ? | @ | backslash | ^ | underscore | { | vertical_bar | tilde]

 // note that the L_bracket and R_bracket characters not part of this set.

-

alpha ::= a-z | A-Z

digit ::= 0-9

hex_pair ::= hex hex

hex ::= [digit | a-f | A-F]

L_bracket ::= [

R_bracket ::=]

space ::= ‘ ’ //20h

E-3 Grammar for Terminal Mode Output

output_line ::= start (ok_response | error_response | OEM_response | handshake)

 output_termination_seq

output_termination_seq ::= stop out_termination

output_newline ::= (cr lf | cr | lf | null) // Only one type used at a time. Configurable.

Intelligent Platform Management Interface Specification

612

ok_response ::= OK { {space} command_response }

error_response ::= ERR {space err_code}

command_response ::= {output_newline} printable {output_newline {printable}}

OEM_response ::= SYS space oem_id printable {output_newline {printable}}

handshake ::= SYS

err_code ::= hex-pair

oem_id ::= hex_pair hex_pair hex_pair hex_pair hex_pair hex_pair

printable ::= [alphanumeric | punctuation | space]

alphanumeric ::= [digit | alpha]

punctuation ::= [! | double-quote | # | $ | % | & | apostrophe | (|) | * | + | grave_accent |

 hyphen | period | / | : | ; | < | > | ? | @ | backslash | ^ | underscore | { | vertical_bar | tilde]

 // note that L_bracket and R_bracket characters not part of this set.

-

alpha ::= [a-z | A-Z]

digit ::= [0-9]

hex_pair ::= hex hex

hex ::= [digit | a-f | A-F]

L_bracket ::= [

R_bracket ::=]

space ::= ‘ ’ //20h

 Intelligent Platform Management Interface Specification

 613

Intelligent Platform Management Interface Specification

614

Appendix F - TAP Flow Summary

The following table presents implementation notes and an overview of the flow of a TAP page from a BMC. The

table is intended as a guideline and does not supercede the TAP specification. Refer to [TAP] for complete

information on implementing the Telocator Access Protocol.

Table F-1, TAP Flow Summary

step

Remote Entry Device
(BMC)

Paging Terminal

(Paging Service)

Description

1 Dial up the paging service.
Use the ATDT modem
command to start the
modem. The modem
returns one of the
following:

CONNECT

NO CARRIER

OK

2 Connection established

3 <CR> The carriage return <CR> is repeated at
t1 (2) second intervals until the paging
company responds with ID= at the
correct baud rate or until n1 (3)
transmissions of <CR> have been
completed.

4 ID= Request for ID should be returned
within t2 (1) second of the receipt of
<CR>. The paging service may send
<CR>, <LF>, <CR><LF>, or <LF><CR>
after the ID=. The BMC should ignore
extra characters after the ID=. Refer to
the TAP spec for implementation advice
on handling <LF> characters that may
be received from the paging service.

The paging service waits up to t5 (8)
seconds for response to "ID=". The
paging service may resend "ID=" up to
n3 (3) times if a proper response is not
received.

5 ESC>PG1<CR>

or for password entry:

<ESC>PG1pppppp<CR>

 <ESC> signifies that the BMC wants to
communicate with the paging company
in automatic mode.

"PG" signifies the type of service to be
accessed and the types of fields in the
message. P indicates that the message
contains a “Pager ID” field and G
indicates presence of a message text
field. The paging service provider
determines whether a Pager ID is used
with the message text. Note that PG will
typically be used even if the Pager ID
field is empty.

The next character represents the type
of terminal or device attempting to send
the pages:

 Intelligent Platform Management Interface Specification

 615

‘1’ is a category using the same
protocol. Refer to [TAP] for other field
values.

The 6-character pppppp stands for an
up to six character alphanumeric
password. Password is optional. The
paging service provider determines
whether a password should be used.

When an incorrect logon sequence
beginning with <ESC> is received, the
paging company sends "ID=" back to
indicate a retry is requested.

6 <Message Sequence>

followed by either:

A message sequence is defines as a
series of short messages separated by
<CR>’s. The first characters of each
response message are a three ASCII
digit response code. A <CR> always
follows the message sequence.

 <CR><ACK><CR> Logon accepted

 or: <CR><NAK><CR> Retry Logon

 or: <CR><ESC><EOT><CR> Forced disconnect by paging service.
The BMC firmware should drop the
transmission on the <EOT> and not
require a <CR> to follow the <EOT>.

6a (optional)

<Message Sequence> <CR>

The paging service may insert a
greeting message sequence at this
point.

7 <ESC>[p<CR> The paging service is ready to receive
the first transaction. Note that the ‘p’ is
in lowercase.

This response should be received within
t3 (10) seconds after step 6 / 6a.

8 <STX>

Pager_ID<CR>

Message<CR>

<ETX>

Checksum<CR>

The message transaction should be
sent within t4 (4) seconds of getting the
step 7 response from the paging
service. Message data is transferred as
a series of blocks, with message strings
(fields) within a block. A field is a series
of characters with <CR> indicating end-
of-field.

A block begins with <STX> and ends
with a TAP checksum followed by a
<CR>. The last character before the
checksum is set to either <ETB> if the
paging transaction takes multiple
blocks, <US> if a field spans blocks, or
<ETX> if the transaction ends within the
block. The pages sent by IPMI consist
of a single block with two fields:

Field 1 : Pager ID (a.k.a. PIN)

Field 2 : Message

This format is shown in the Remote
Entry Device column.

Intelligent Platform Management Interface Specification

616

The Pager ID number is determined by
the paging service. Most Pager IDs are
7 ASCII numeric characters long. Note
that there’s no restriction in the spec on
the maximum length for a Pager ID, nor
any restriction that the paging service
only require numeric characters. Any
characters in the 7-bit ASCII set,
including control characters, may be
required.

The response to each block (step 9)
should be sent by the paging service
within t3 (10) seconds of receiving the
block. If the response is not received,
the block may be resent. This can be
repeated up to n2 (3) times before the
BMC gives up and drops the line.

9 <Message Sequence>

followed by either:

The specification indicates that there
should be a message sequence from
the paging service at this point, which
should be a 3-character response code.
However, it’s possible that some paging
service implementations will skip
sending it.

The BMC thus should accept an ACK/
NAK/ Reject/ or EOT sequence without
a preceding message sequence. Per
the TAP spec, older versions of TAP did
not send a message sequence, and
earlier implementations may just send
<Ctrl-code><CR> instead of <CR><Ctrl-
code><CR>.

It’s recommended that the BMC accept
either the 2- or 3-character versions of
the ACK/ NAK/ Reject/ or EOT/
sequences in order to provide a level of
backward compatibility with earlier TAP
services.

 <CR><ACK><CR>

Message acknowledged, ready for next
block (if any).

 or: <CR><NAK><CR>

Message NAK’d (not acknowledged).
Typically due to a checksum or
transmission error. Resend block.

 or: <CR><RS><CR> Transaction rejected. Don’t retry.
Transaction violates TAP protocol, field
contents (e.g. Pager ID) were invalid, or
other issue with the paging service. The
BMC should give up and terminate the
page at this point. It’s probably best to
follow the TAP spec and send an
<EOT><CR> and wait for acknowledge
from the paging service rather than just
dropping the phone connection.

 or: <CR><ESC><EOT><CR> Forced disconnect by paging service.
The BMC firmware should drop the
transmission on the <EOT> and not
require a <CR> to follow the <EOT>.

 Intelligent Platform Management Interface Specification

 617

10 <EOT> <CR> Sent to paging service to indicate the
end of the paging transactions.

11a (optional)

<Message Sequence><CR>

The paging service may insert a
termination message sequence at this
point.

11b (optional)

<RS><CR>

The paging service may indicate a
transaction reject at this point.

11c <ESC><EOT><CR>

drop connection & hang up.

The paging service should indicate the
end of the transaction by transmitting
this sequence and hanging up at this
point. While the specification doesn’t
state this, it’s recommended that the
BMC resend <EOT><CR> at “t6”* (2)
“n4”* (3) times until acknowledged.

The reason for this provision is to help
ensure that the page transaction is
accepted.

Regardless, the BMC should time out
after t3 (10) seconds after sending the
last <EOT><CR> and drop the
connection.

* t6 and n4 are new timing /retry parameters just associated with the IPMI specification.

Intelligent Platform Management Interface Specification

618

Appendix G - Command Assignments
The following lists the commands defined in this specification and the minimum privilege level required to

execute a given command. In addition, the following apply:

 Unless otherwise specified, unauthenticated, session-less interfaces, such as the System Interface and

IPMB, can support any IPMI command.

 The privilege level requirements for OEM commands (NetFn=OEM, OEM/Group) is specified by the

OEM identified by the corresponding manufacturer ID.

 Note that the Send Message and Master Write-Read commands are not available at the User privilege level,

with the exception of using a Send Message command to deliver a message to the System Interface. This is

because these commands enable unfiltered access the IPMB, ICMB, private management busses, and PCI

Management Bus. This would potentially allow someone to use those commands to send commands to

other controllers or write to non-intelligent devices on those busses. As a consequence, a User is only able

to read FRU and sensors directly managed by the BMC. In addition, FRU must be accessed via the Read

FRU command and not Master Write-Read.

 The Send Message command can be used to deliver a message to the System Interface at User privilege

level. It is up to the system software to determine the privilege level and place any additional restrictions on

messages received via the Receive Message Queue. This can be accomplished by using the session handle

associated with the message and the Get Session Info command to look up the privilege level that the user

is operating at. Software can also check the limits for the channel and the user by using information from

the Get Channel Access and Get User Access commands to determine whether a given user has sufficient

privilege to deliver a particular command to system software.

 Unless otherwise specified, the listed IPMI commands, if supported, must be accessible via LUN 00b.

Key for Command Privilege Levels Table:

b = command only generated by BMC, can be sent prior to a session being established

b1 = command only generated by BMC, can only be delivered to a session-less channel, or a channel that

has an active session

b2 = command only generated by BMC, can be sent to a serial channel when serial port sharing is used and

activating the SOL payload causes the serial session to be terminated.

b3 = command only generated by BMC, can only be delivered to a session-less channel.

p = works at any privilege level, can be sent prior to a session being established

s = command executable via system interface only

X = supported at given privilege level or higher

I = command executable from local interfaces only (e.g. IPMB, SMBus, PCI Mgmt. bus or System

Interface)

C = Callback privilege

U = User Privilege level

O = Operator Privilege level

A = Administrator Privilege level

App = Application Network Function Code

S/E = Sensor/Event Network Function Code

- = Reserved/unassigned, or OEM specified

 Intelligent Platform Management Interface Specification

 619

Table G-1, Command Number Assignments and Privilege Levels
 section NetFn CMD C U O A

IPM Device “Global” Commands

reserved - App 00h - - - -

Get Device ID 20.1 App 01h X

Broadcast ‘Get Device ID’[1] 20.9 App 01h I I I I

Cold Reset 20.2 App 02h X

Warm Reset 20.3 App 03h X

Get Self Test Results 20.4 App 04h X

Manufacturing Test On 20.5 App 05h X

Set ACPI Power State 20.6 App 06h X

Get ACPI Power State 20.7 App 07h X

Get Device GUID 20.8 App 08h X

Get NetFn Support 21.2 App 09h X

Get Command Support 21.3 App 0Ah X

Get Command Sub-function Support 21.4 App 0Bh X

Get Configurable Commands 21.5 App 0Ch X

Get Configurable Command Sub-functions 21.6 App 0Dh X

unassigned - App 0Eh-0Fh - - - -

Set Command Enables 21.7 App 60h X

Get Command Enables 21.8 App 61h X

Set Command Sub-function Enables 21.9 App 62h X

Get Command Sub-function Enables 21.10 App 63h X

Get OEM NetFn IANA Support 21.11 App 64h X

BMC Watchdog Timer Commands

Reset Watchdog Timer 27.5 App 22h X

Set Watchdog Timer 27.6 App 24h X

Get Watchdog Timer 27.7 App 25h X

BMC Device and Messaging Commands

Set BMC Global Enables 22.1 App 2Eh s s s s

Get BMC Global Enables 22.2 App 2Fh X

Clear Message Flags 22.3 App 30h s s s s

Get Message Flags 22.4 App 31h s s s s

Enable Message Channel Receive 22.5 App 32h s s s s

Get Message 22.6 App 33h s s s s

Send Message 22.7 App 34h X2 X

Read Event Message Buffer 22.8 App 35h s s s s

Get BT Interface Capabilities 22.10 App 36h X

Get System GUID 22.14 App 37h p3 p3 p3 p3

Set System Info Parameters 22.14a App 58h X

Get System Info Parameters 22.14b App 59h X

Get Channel Authentication Capabilities 22.13 App 38h p3 p3 p3 p3

Get Session Challenge 22.15 App 39h p3 p3 p3 p3

Activate Session 22.17 App 3Ah p3 p3 p3 p3

Set Session Privilege Level 22.18 App 3Bh X4

Close Session 22.19 App 3Ch X5

Get Session Info 22.20 App 3Dh X

unassigned - App 3Eh - - - -

Get AuthCode 22.21 App 3Fh X

Set Channel Access 22.22 App 40h X

Get Channel Access 22.23 App 41h X

Get Channel Info Command 22.24 App 42h X

Set User Access Command 22.26 App 43h X

Get User Access Command 22.27 App 44h X

Intelligent Platform Management Interface Specification

620

 section NetFn CMD C U O A

Set User Name 22.28 App 45h X

Get User Name Command 22.29 App 46h X

Set User Password Command 22.30 App 47h X

Activate Payload 24.1 App 48h [10] [10] [10]

Deactivate Payload 24.2 App 49h [10] [10] [10]

Get Payload Activation Status 24.4 App 4Ah X

Get Payload Instance Info 24.5 App 4Bh X

Set User Payload Access 24.6 App 4Ch X

Get User Payload Access 24.7 App 4Dh X

Get Channel Payload Support 24.8 App 4Eh X

Get Channel Payload Version 24.9 App 4Fh X

Get Channel OEM Payload Info 24.10 App 50h X

unassigned - App 51h - - - -

Master Write-Read 22.11 App 52h X

unassigned - App 53h - - - -

Get Channel Cipher Suites 22.15 App 54h p p p p

Suspend/Resume Payload Encryption 24.3 App 55h X9

Set Channel Security Keys 22.25 App 56h X

Get System Interface Capabilities 22.9 App 57h X

unassigned - App 58h-5Fh - - - -

Firmware Firewall Configuration (see IPM
Device Commands, above)

- App 60h-64h - - - -

Chassis Device Commands

Get Chassis Capabilities 28.1 Chassis 00h X

Get Chassis Status 28.2 Chassis 01h X

Chassis Control 28.3 Chassis 02h X

Chassis Reset 28.4 Chassis 03h X

Chassis Identify 28.5 Chassis 04h X

Set Front Panel Button Enables 28.6 Chassis 0Ah X

Set Chassis Capabilities 28.7 Chassis 05h X

Set Power Restore Policy 28.8 Chassis 06h X

Set Power Cycle Interval 28.9 Chassis 0Bh X

Get System Restart Cause 28.11 Chassis 07h X

Set System Boot Options 28.12 Chassis 08h X6

Get System Boot Options 28.13 Chassis 09h X

unassigned - Chassis 0Ch-0Eh - - - -

Get POH Counter 28.14 Chassis 0Fh X

Event Commands

Set Event Receiver 29.1 S/E 00h X

Get Event Receiver 29.2 S/E 01h X

Platform Event (a.k.a. “Event Message”) 29.3 S/E 02h X

unassigned - S/E 03h-

0Fh

- - - -

PEF and Alerting Commands

Get PEF Capabilities 30.1 S/E 10h X

Arm PEF Postpone Timer 30.2 S/E 11h X

Set PEF Configuration Parameters 30.3 S/E 12h X

Get PEF Configuration Parameters 30.4 S/E 13h X

Set Last Processed Event ID 30.5 S/E 14h X

Get Last Processed Event ID 30.6 S/E 15h X

Alert Immediate 30.7 S/E 16h X

PET Acknowledge 30.8 S/E 17h p p p p

Sensor Device Commands

 Intelligent Platform Management Interface Specification

 621

 section NetFn CMD C U O A

Get Device SDR Info 35.2 S/E 20h I I I I

Get Device SDR 35.3 S/E 21h I I I I

Reserve Device SDR Repository 35.4 S/E 22h I I I I

Get Sensor Reading Factors 35.5 S/E 23h X

Set Sensor Hysteresis 35.6 S/E 24h X

Get Sensor Hysteresis 35.7 S/E 25h X

Set Sensor Threshold 35.8 S/E 26h X

Get Sensor Threshold 35.9 S/E 27h X

Set Sensor Event Enable 35.10 S/E 28h X

Get Sensor Event Enable 35.11 S/E 29h X

Re-arm Sensor Events 35.12 S/E 2Ah X

Get Sensor Event Status 35.13 S/E 2Bh X

Get Sensor Reading 35.14 S/E 2Dh X

Set Sensor Type 35.15 S/E 2Eh X

Get Sensor Type 35.16 S/E 2Fh X

Set Sensor Reading And Event Status 35.17 S/E 30h X

FRU Device Commands

Get FRU Inventory Area Info 34.1 Storage 10h X

Read FRU Data 34.2 Storage 11h X

Write FRU Data 34.3 Storage 12h X

SDR Device Commands

Get SDR Repository Info 33.9 Storage 20h X

Get SDR Repository Allocation Info 33.10 Storage 21h X

Reserve SDR Repository 33.11 Storage 22h X

Get SDR 33.12 Storage 23h X

Add SDR 33.13 Storage 24h X

Partial Add SDR 33.14 Storage 25h X

Delete SDR 33.15 Storage 26h X

Clear SDR Repository 33.16 Storage 27h X

Get SDR Repository Time 33.17 Storage 28h X

Set SDR Repository Time 33.18 Storage 29h X

Enter SDR Repository Update Mode 33.19 Storage 2Ah X

Exit SDR Repository Update Mode 33.20 Storage 2Bh X

Run Initialization Agent 33.21 Storage 2Ch X

SEL Device Commands

Get SEL Info 31.2 Storage 40h X

Get SEL Allocation Info 31.3 Storage 41h X

Reserve SEL 31.4 Storage 42h X

Get SEL Entry 31.5 Storage 43h X

Add SEL Entry 31.6 Storage 44h X

Partial Add SEL Entry 31.7 Storage 45h X

Delete SEL Entry 31.8 Storage 46h X

Clear SEL 31.9 Storage 47h X

Get SEL Time 31.10 Storage 48h X

Set SEL Time 31.11 Storage 49h X

Get Auxiliary Log Status 31.12 Storage 5Ah X

Set Auxiliary Log Status 31.13 Storage 5Bh X

Get SEL Time UTC Offset 31.11a Storage 5Ch X

Set SEL Time UTC Offset 31.11b Storage 5Dh X

LAN Device Commands

Set LAN Configuration Parameters 23.1 Transport 01h X

Get LAN Configuration Parameters 23.2 Transport 02h X

Suspend BMC ARPs 23.3 Transport 03h X

Intelligent Platform Management Interface Specification

622

 section NetFn CMD C U O A

Get IP/UDP/RMCP Statistics 23.4 Transport 04h X

Serial/Modem Device Commands

Set Serial/Modem Configuration 25.1 Transport 10h X

Get Serial/Modem Configuration 25.2 Transport 11h X

Set Serial/Modem Mux 25.3 Transport 12h X

Get TAP Response Codes 25.4 Transport 13h X

Set PPP UDP Proxy Transmit Data 25.5 Transport 14h s s s s

Get PPP UDP Proxy Transmit Data 25.6 Transport 15h s s s s

Send PPP UDP Proxy Packet 25.7 Transport 16h s s s s

Get PPP UDP Proxy Receive Data 25.8 Transport 17h s s s s

Serial/Modem Connection Active 25.9 Transport 18h b b b b

Callback 25.10 Transport 19h [7] X7

Set User Callback Options 25.11 Transport 1Ah X

Get User Callback Options 25.12 Transport 1Bh X

Set Serial Routing Mux 25.13 Transport 1Ch X

SOL Activating 26.1 Transport 20h b2 b2 b2 b2

Set SOL Configuration Parameters 26.2 Transport 21h X

Get SOL Configuration Parameters 26.3 Transport 22h X

Command Forwarding Commands

Forwarded Command 35b.4 Transport 30h b3 b3 b3 b3

Set Forwarded Commands 35b.1 Transport 31h X

Get Forwarded Commands 35b.2 Transport 32h X

Enable Forwarded Commands 35b.3 Transport 33h X

Bridge Management Commands (ICMB)

Get Bridge State [ICMB] Bridge 00h X

Set Bridge State [ICMB] Bridge 01h X

Get ICMB Address [ICMB] Bridge 02h X

Set ICMB Address [ICMB] Bridge 03h X

Set Bridge ProxyAddress [ICMB] Bridge 04h X

Get Bridge Statistics [ICMB] Bridge 05h X

Get ICMB Capabilities [ICMB] Bridge 06h X

Clear Bridge Statistics [ICMB] Bridge 08h X

Get Bridge Proxy Address [ICMB] Bridge 09h X

Get ICMB Connector Info [ICMB] Bridge 0Ah X

Get ICMB Connection ID [ICMB] Bridge 0Bh X

Send ICMB Connection ID [ICMB] Bridge 0Ch X

Discovery Commands (ICMB)

PrepareForDiscovery [ICMB] Bridge 10h X

GetAddresses [ICMB] Bridge 11h X

SetDiscovered [ICMB] Bridge 12h X

GetChassisDeviceId [ICMB] Bridge 13h X

SetChassisDeviceId [ICMB] Bridge 14h X

Bridging Commands (ICMB)[8]

BridgeRequest [ICMB] Bridge 20h X

BridgeMessage [ICMB] Bridge 21h X

Event Commands (ICMB) [8]

GetEventCount [ICMB] Bridge 30h X

SetEventDestination [ICMB] Bridge 31h X

SetEventReceptionState [ICMB] Bridge 32h X

SendICMBEventMessage [ICMB] Bridge 33h X

GetEventDestination (optional) [ICMB] Bridge 34h X

GetEventReceptionState (optional) [ICMB] Bridge 35h X

OEM Commands for Bridge NetFn

 Intelligent Platform Management Interface Specification

 623

 section NetFn CMD C U O A

OEM Commands [ICMB] Bridge C0h-FEh - - - -

Other Bridge Commands

Error Report (optional) [ICMB] Bridge FFh X

1. This command is sent using the Broadcast format on IPMB. See command description for details.
2. A User can use a Send Message command to deliver a message to system software, but

Operator privilege is required to use it to access other channels.
3. Command only applies to authenticated channels.
4. This is effectively a no-op if the user has a maximum privilege limit of User since the command

could not be used to change the operating privilege level to a higher value.
5. A session operating at Callback, User, or Operator can only use this command to terminate their

own session. An Administrator or system software can use the command to terminate any
session.

6. There is a bit in this command that can only be set at Administrator privilege level.
7. Command available for all levels except for User level
8. See [ICMB] specification for command specifications.
9. The Suspend/Resume Payload Encryption command may be overridden by a configuration

option for the particular payload type that forces encryption to be used. In this case, an Admin
level command would typically be required to change the configuration.

10. The configuration parameters for a given payload type determine the privilege level required to
activate / deactivate the payload.

Intelligent Platform Management Interface Specification

624

Appendix H - Sub-function Assignments
The following table lists the sub-function numbers associated with individual commands (if any). These numbers are

used with the “Firmware Firewall” configuration and command discovery commands.

Table H-1, Sub-function Number Assignments

Sub
Fn # NetFn CMD

IPM Device “Global” Commands

reserved App 00h

Get Device ID App 01h

Broadcast ‘Get Device ID’[1] App 01h

Cold Reset App 02h

Warm Reset App 03h

Get Self Test Results App 04h

Manufacturing Test On App 05h

Set ACPI Power State App 06h

Get ACPI Power State App 07h

Get Device GUID App 08h

reserved App 09h-0Fh

Set Command Enables App 60h

Get Command Enables App 61h

Set Command Sub-function Enables App 62h

Get Command Sub-function Enables App 63h

Get OEM NetFn IANA Support App 64h

BMC Watchdog Timer Commands

Reset Watchdog Timer App 22h

Set Watchdog Timer App 24h

Set Timer Use Field 0

Set Timer Actions 1

Clear Timer Use Expiration Flags 2

Set Countdown value 3

Get Watchdog Timer App 25h

BMC Device and Messaging Commands

Set BMC Global Enables App 2Eh

Change message queue interrupt enable 0

Change event message buffer full interrupt enable 1

Change event message buffer enable 2

Change System Event Logging enable 3

reserved / unspecified -

Change OEM 0 enable 5

Change OEM 1 enable 6

Change OEM 2 enable 7

Get BMC Global Enables App 2Fh

Clear Message Flags App 30h

Receive Message Queue clear 0

Event Message Buffer clear 1

reserved / unspecified 2

Watchdog pre-timeout interrupt clear 3

 reserved / unspecified 4

 OEM 0 clear 5

 OEM 1 clear 6

OEM 2 clear 7

Get Message Flags App 31h

Enable Message Channel Receive App 32h

 Intelligent Platform Management Interface Specification

 625

Sub
Fn # NetFn CMD

reserved / unspecified 0

Channel 1 enable/disable 1

Channel 2 enable/disable 2

Channel 3 enable/disable 3

Channel 4 enable/disable 4

Channel 5 enable/disable 5

Channel 6 enable/disable 6

Channel 7 enable/disable 7

Channel 8 enable/disable 8

Channel 9 enable/disable 9

Channel Ah enable/disable 10

Channel Bh enable/disable 11

Get Message App 33h

Send Message App 34h

Send to channel 0 0

Send to channel 1 1

Send to channel 2 2

Send to channel 3 3

Send to channel 4 4

Send to channel 5 5

Send to channel 6 6

Send to channel 7 7

Send to channel 8 8

Send to channel 9 9

Send to channel Ah 10

Send to channel Bh 11

Read Event Message Buffer App 35h

Get BT Interface Capabilities App 36h

Get System GUID App 37h

Get Channel Authentication Capabilities App 38h

Get Session Challenge App 39h

Activate Session App 3Ah

Set Session Privilege Level App 3Bh

Close Session App 3Ch

reserved / unspecified 0

Close Channel 1 1

Close Channel 2 2

Close Channel 3 3

Close Channel 4 4

Close Channel 5 5

Close Channel 6 6

Close Channel 7 7

Close Channel 8 8

Close Channel 9 9

Close Channel Ah 10

Close Channel Bh 11

Get Session Info App 3Dh

unassigned App 3Eh

Get AuthCode App 3Fh

Set Channel Access App 40h

Change configuration for channel 0 0

Change configuration for channel 1 1

Change configuration for channel 2 2

Change configuration for channel 3 3

Intelligent Platform Management Interface Specification

626

Sub
Fn # NetFn CMD

Change configuration for channel 4 4

Change configuration for channel 5 5

Change configuration for channel 6 6

Change configuration for channel 7 7

Change configuration for channel 8 8

Change configuration for channel 9 9

Change configuration for channel Ah 10

Change configuration for channel Bh 11

Get Channel Access App 41h

Get Channel Info Command App 42h

Set User Access Command App 43h

Get User Access Command App 44h

Set User Name App 45h

Get User Name Command App 46h

Set User Password Command App 47h

Activate Payload App 48h

Deactivate Payload App 49h

Get Payload Activation Status App 4Ah

Get Payload Instance Info App 4Bh

Set User Payload Access App 4Ch

Get User Payload Access App 4Dh

Get Channel Payload Support App 4Eh

Get Channel Payload Version App 4Fh

Get Channel OEM Payload Info App 50h

unassigned App 51h

Master Write-Read App 52h

reserved / unspecified 0

Access to public bus, channel 1 1

Access to public bus, channel 2 2

Access to public bus, channel 3 3

Access to public bus, channel 4 4

Access to public bus, channel 5 5

Access to public bus, channel 6 6

Access to public bus, channel 7 7

Access to private bus 0 8

Access to private bus 1 9

Access to private bus 2 10

Access to private bus 3 11

Access to private bus 4 12

Access to private bus 5 13

Access to private bus 6 14

Access to private bus 7 15

Access to public bus, channel 8 16

Access to public bus, channel 9 17

Access to public bus, channel Ah 18

Access to public bus, channel Bh 19

unassigned App 53h

Get Channel Cipher Suites App 54h

Suspend/Resume Payload Encryption App 55h

Set Channel Security Keys App 56h

Get System Interface Capabilities App 57h

 Intelligent Platform Management Interface Specification

 627

Sub
Fn # NetFn CMD

Set System Info App 58h

Get System Info App 59h

Chassis Device Commands

Get Chassis Capabilities Chassis 00h

Get Chassis Status Chassis 01h

Chassis Control Chassis 02h

reserved / unspecified 0

power up 1

power cycle 2

hard reset 3

pulse diagnostic interrupt 4

initiate soft shutdown via overtemp 5

Chassis Reset Chassis 03h

Chassis Identify Chassis 04h

Force On Indefinitely 0

Set Front Panel Button Enables Chassis 0Ah

Power off via front panel 0

Reset via front panel 1

Diagnostic Interrupt via front panel 2

Standby (sleep) via front panel 3

Set Chassis Capabilities Chassis 05h

Set Power Restore Policy Chassis 06h

Set Power Cycle Interval Chassis 0Bh

Get System Restart Cause Chassis 07h

Set System Boot Options Chassis 08h

reserved / unspecified 0

Write parameter 1 (service partition selector) 1

Write parameter 2 (service partition scan) 2

Write parameter 3 (‘valid bit’ clearing) 3

Write parameter 4 (boot info acknowledge) [also see sub functions
8 through 12 for add’l modifiers]

4

Write parameter 5 (boot flags) 5

Write parameter 6 (initiator info) 6

Write parameter 7 (initiator mailbox) 7

Write “OEM has handled boot info” bit 8

Write “SMS has handled boot info.” bit 9

Write “OS / service partition has handled boot info.” bit. 10

Write “OS Loader has handled boot info.” bit. 11

Write “BIOS/POST has handled boot info.” bit. 12

Get System Boot Options Chassis 09h

unassigned Chassis 0Ch-0Eh

Get POH Counter Chassis 0Fh

Event Commands

Set Event Receiver S/E 00h

Get Event Receiver S/E 01h

Platform Event (a.k.a. “Event Message”) S/E 02h

unassigned S/E 03h-

0Fh

PEF and Alerting Commands

Get PEF Capabilities S/E 10h

Arm PEF Postpone Timer S/E 11h

Disable Postpone Timer 0

Arm Timer 1

Temporary PEF disable 2

Intelligent Platform Management Interface Specification

628

Sub
Fn # NetFn CMD

Set PEF Configuration Parameters S/E 12h

Write parameter 1 (PEF control) 0

Write parameter 2 (PEF Action global control) 1

Write parameter 3 (PEF Startup Delay) 2

Write parameter 4 (PEF Alert Startup Delay) 3

Write parameter 6 (Event Filter Table) 4

Write parameter 7 (Event Filter Table Data 1) 5

Write parameter 9 (Alert Policy Table) 6

Write parameter 10 (System GUID) 7

Write parameter 12 (Alert String Keys) - volatile 8

Write parameter 12 (Alert String Keys) - non-volatile 9

Write parameter 13 (Alert Strings) - volatile 10

Write parameter 13 (Alert Strings) - non-volatile 11

Write parameter 15 (Group Control Table) - non-volatile 12

Write OEM parameters 13

Get PEF Configuration Parameters S/E 13h

Set Last Processed Event ID S/E 14h

Get Last Processed Event ID S/E 15h

Alert Immediate S/E 16h

reserved / unspecified 0

Alert to Channel 1 1

Alert to Channel 2 2

Alert to Channel 3 3

Alert to Channel 4 4

Alert to Channel 5 5

Alert to Channel 6 6

Alert to Channel 7 7

Platform Event Parameters 8

Alert to Channel 8 9

Alert to Channel 9 10

Alert to Channel Ah 11

Alert to Channel Bh 12

PET Acknowledge S/E 17h

Sensor Device Commands

Get Device SDR Info S/E 20h

Get Device SDR S/E 21h

Reserve Device SDR Repository S/E 22h

Get Sensor Reading Factors S/E 23h

Set Sensor Hysteresis S/E 24h

Get Sensor Hysteresis S/E 25h

Set Sensor Threshold S/E 26h

Get Sensor Threshold S/E 27h

Set Sensor Event Enable S/E 28h

Get Sensor Event Enable S/E 29h

Re-arm Sensor Events S/E 2Ah

Get Sensor Event Status S/E 2Bh

Get Sensor Reading S/E 2Dh

Set Sensor Type S/E 2Eh

Get Sensor Type S/E 2Fh

Set Sensor Reading and Event Status S/E 30h

FRU Device Commands

Get FRU Inventory Area Info Storage 10h

Read FRU Data Storage 11h

 Intelligent Platform Management Interface Specification

 629

Sub
Fn # NetFn CMD

Write FRU Data Storage 12h

SDR Device Commands

Get SDR Repository Info Storage 20h

Get SDR Repository Allocation Info Storage 21h

Reserve SDR Repository Storage 22h

Get SDR Storage 23h

Add SDR Storage 24h

Partial Add SDR Storage 25h

Delete SDR Storage 26h

Clear SDR Repository Storage 27h

Get SDR Repository Time Storage 28h

Set SDR Repository Time Storage 29h

Enter SDR Repository Update Mode Storage 2Ah

Exit SDR Repository Update Mode Storage 2Bh

Run Initialization Agent Storage 2Ch

SEL Device Commands

Get SEL Info Storage 40h

Get SEL Allocation Info Storage 41h

Reserve SEL Storage 42h

Get SEL Entry Storage 43h

Add SEL Entry Storage 44h

Partial Add SEL Entry Storage 45h

Delete SEL Entry Storage 46h

Clear SEL Storage 47h

Get SEL Time Storage 48h

Set SEL Time Storage 49h

Get Auxiliary Log Status Storage 5Ah

Set Auxiliary Log Status Storage 5Bh

Set MCA 0

Set OEM1 1

Set OEM2 2

Get SEL Time UTC Offset Storage 5Ch

Set SEL Time UTC Offset Storage 5Dh

LAN Device Commands

Set LAN Configuration Parameters Transport 01h

reserved / unspecified 0

Set for channel 1 1

Set for channel 2 2

Set for channel 3 3

Set for channel 4 4

Set for channel 5 5

Set for channel 6 6

Set for channel 7 7

The following sub-function enables apply across each channel for
which ‘Set’ has been enabled:

Write parameters 3, 4, 6, 7, 12-15 (IP Address, IP Address Source,
Subnet Mask, IPv4 Header Parameters, Default Gateway Address,
Default Gateway MAC Address, Backup Gateway Address, Backup
Gateway MAC Address)

8

Write parameter 5 (MAC Address) 9

Write parameters 8, 9 (Primary & Secondary RMCP Port) 10

Write parameter 10, 11 (Gratuitous ARP control, Gratuitous ARP
interval)

11

Write Parameter 16 (Community String) 12

Intelligent Platform Management Interface Specification

630

Sub
Fn # NetFn CMD

Write Parameter 18 (Destination Type) - volatile 13

Write Parameter 18 (Destination Type) - non-volatile 14

Write Parameter 19 (Destination Addresses) - volatile 15

Write Parameter 19 (Destination Addresses) - non-volatile 16

Write Parameter 20 (802.1q VLAN ID) 17

Write Parameter 21 (802.1q Priority) 18

Write Parameter 24 (RMCP+ Messaging Cipher Suite Privilege
Levels)

19

Write OEM Parameters 20

Set for channel 8 21

Set for channel 9 22

Set for channel Ah 23

Set for channel Bh 24

Write Parameter 25 (Destination Address VLAN TAGs) 25

Write Parameter 26 (Bad Password Threshold) 26

Get LAN Configuration Parameters Transport 02h

Suspend BMC ARPs Transport 03h

reserved / unspecified 0

ARP Response for channel 1 1

ARP Response for channel 2 2

ARP Response for channel 3 3

ARP Response for channel 4 4

ARP Response for channel 5 5

ARP Response for channel 6 6

ARP Response for channel 7 7

reserved / unspecified 8

Gratuitous ARP for channel 1 9

Gratuitous ARP for channel 2 10

Gratuitous ARP for channel 3 11

Gratuitous ARP for channel 4 12

Gratuitous ARP for channel 5 13

Gratuitous ARP for channel 6 14

Gratuitous ARP for channel 7 15

ARP Response for channel 8 16

ARP Response for channel 9 17

ARP Response for channel Ah 18

ARP Response for channel Bh 19

Gratuitous ARP for channel 8h 20

Gratuitous ARP for channel 9h 21

Gratuitous ARP for channel Ah 22

Gratuitous ARP for channel Bh 23

Get IP/UDP/RMCP Statistics Transport 04h

Serial/Modem Device Commands

Set Serial/Modem Configuration Transport 10h

reserved / unspecified 0

Set for channel 1 1

Set for channel 2 2

Set for channel 3 3

Set for channel 4 4

Set for channel 5 5

Set for channel 6 6

Set for channel 7 7

The following sub-function enables apply across each channel for
which ‘Set’ has been enabled:

Write Parameter 2 (Authentication Type Enables) 8

 Intelligent Platform Management Interface Specification

 631

Sub
Fn # NetFn CMD

Write Parameter 3 (Connection Mode) 9

Write Parameters 4 & 6 (Session Inactivity Timeout, Session
Termination)

10

Write Parameter 5 (Channel Callback Control) 11

Write Parameter 7 (IPMI Messaging Comm Settings) 12

Write Parameter 8 (Mux Switch Control) 13

Write Parameters 9, 10, 11, 12, & 13 (Modem Ring Time, Modem
Init String, Modem Escape Sequence, Modem Hang-up Sequence,
Modem Dial Command)

14

Write Parameters 14 & 18 (Page Blackout Interval, Call Retry
Interval)

15

Write Parameter Community String 15 16

Write Parameters 17, 19, 21, 23 [Destination Info (volatile),
Destination Comm Settings (volatile), Destination Dial Strings
(volatile), Destination IP Addresses (volatile)]

17

Write Parameters 17, 19, 21, 23 [Destination Info (non-volatile),
Destination Comm Settings (non-volatile), Destination Dial Strings
(non-volatile), Destination IP Addresses (non-volatile)]

18

Write Parameters 25, 26, 27, & 28 (TAP Account, TAP Passwords,
TAP Pager ID Strings, TAP Service Settings)

19

Write Parameter 29 (Terminal Mode Configuration) 20

Write Parameters 30, 33, 35, 36, & 48 (PPP Protocol Options, PPP
Link Authentication, PPP ACCM, PPP Snoop ACCM, PPP Remote
Console IP Address)

21

Write Parameters 31 & 32 (PPP Primary RMCP Port Number, PPP
Secondary RMCP Port Number)

22

Write Parameter 34 (CHAP Name) 23

Write Parameter 45 (PPP UDP Proxy IP Header) 24

Write Parameters 38-44 - volatile (Account 0) (PPP Account Dial
String Selector, PPP Account IP Addresses / BMC IP Address, PPP
Account User Names, PPP Account User Domains, PPP Account
User Passwords, PPP Account Authentication Settings,

PPP Account Connection Hold Times)

25

Write Parameters 38-44 - non-volatile (Account 1) (PPP Account
Dial String Selector, PPP Account IP Addresses / BMC IP Address,
PPP Account User Names, PPP Account User Domains, PPP
Account User Passwords, PPP Account Authentication Settings,

PPP Account Connection Hold Times)

26

Write Parameters 38-44 - non-volatile (Accounts 2-n) (PPP Account
Dial String Selector, PPP Account IP Addresses / BMC IP Address,
PPP Account User Names, PPP Account User Domains, PPP
Account User Passwords, PPP Account Authentication Settings,

PPP Account Connection Hold Times)

27

Write Parameter 49 (System Phone Number) 28

Write OEM Parameters 29

Set for channel 8 30

Set for channel 9 31

Set for channel Ah 32

Set for channel Bh 33

Write Parameter 54 (Bad Password Threshold) 34

Get Serial/Modem Configuration Transport 11h

Set Serial/Modem Mux Transport 12h

reserved / unspecified 0

Function 1h (request switch of mux to system) 1

Function 2h (request switch of mux to BMC) 2

Function 3h (force switch of mux to system) 3

Intelligent Platform Management Interface Specification

632

Sub
Fn # NetFn CMD

Function 4h (force switch of mux to BMC) 4

Function 5h (block requests to switch mux to system) 5

Function 6h (allow requests to switch mux to system) 6

Function 7h (block requests to switch mux to BMC) 7

Function 8h (allow requests to switch mux to BMC) 8

Get TAP Response Codes Transport 13h

Set PPP UDP Proxy Transmit Data Transport 14h

reserved / unspecified 0

Set for channel 1 1

Set for channel 2 2

Set for channel 3 3

Set for channel 4 4

Set for channel 5 5

Set for channel 6 6

Set for channel 7 7

Set for channel 8 8

Set for channel 9 9

Set for channel Ah 10

Set for channel Bh 11

Get PPP UDP Proxy Transmit Data Transport 15h

Send PPP UDP Proxy Packet Transport 16h

reserved / unspecified 0

Send for channel 1 1

Send for channel 2 2

Send for channel 3 3

Send for channel 4 4

Send for channel 5 5

Send for channel 6 6

Send for channel 7 7

Send for channel 8 8

Send for channel 9 9

Send for channel Ah 10

Send for channel Bh 11

Get PPP UDP Proxy Receive Data Transport 17h

Serial/Modem Connection Active Transport 18h

Callback Transport 19h

reserved / unspecified 0

Callback using channel 1 parameters 1

Callback using channel 2 parameters 2

Callback using channel 3 parameters 3

Callback using channel 4 parameters 4

Callback using channel 5 parameters 5

Callback using channel 6 parameters 6

Callback using channel 7 parameters 7

Callback using channel 8 parameters 8

Callback using channel 9 parameters 9

Callback using channel Ah parameters 10

Callback using channel Bh parameters 11

Set User Callback Options Transport 1Ah

reserved / unspecified 0

Set for channel 1 1

Set for channel 2 2

Set for channel 3 3

Set for channel 4 4

 Intelligent Platform Management Interface Specification

 633

Sub
Fn # NetFn CMD

Set for channel 5 5

Set for channel 6 6

Set for channel 7 7

Set for channel 8 8

Set for channel 9 9

Set for channel Ah 10

Set for channel Bh 11

Get User Callback Options Transport 1Bh

Set Serial Routing Mux Transport 1Ch

SOL Activating Transport 20h

Set SOL Configuration Parameters Transport 21h

reserved / unspecified 0

Set for channel 1 1

Set for channel 2 2

Set for channel 3 3

Set for channel 4 4

Set for channel 5 5

Set for channel 6 6

Set for channel 7 7

The following sub-function enables apply across each channel for
which ‘Set’ has been enabled:

Write Parameter 1 (SOL Enable) 8

Write Parameter 2 (SOL Authentication) 9

Write Parameters 3 & 4 (Character Accumulate Interval & Character
Send Threshold, SOL Retry)

10

Write Parameter 5 (SOL non-volatile bit rate -non-volatile) 11

Write Parameter 6 (SOL volatile bit rate -volatile) 12

Write Parameter 8 (SOL Payload Port Number) 13

Set for channel 8 14

Set for channel 9 15

Set for channel Ah 16

Set for channel Bh 17

Get SOL Configuration Parameters Transport 22h

Forwarded Command (NOTE: This command is a byproduct of the
Command Forwarding capability being enabled on one or more
channels and cannot be directly enabled/disabled via Firmware
Firmwall)

 Transport 30h

Set Forwarded Commands Transport 31h

Get Forwarded Commands Transport 32h

Enable Forwarded Commands Transport 33h

Bridge Management Commands (ICMB)

Get Bridge State Bridge 00h

Set Bridge State Bridge 01h

Get ICMB Address Bridge 02h

Set ICMB Address Bridge 03h

Set Bridge ProxyAddress Bridge 04h

Get Bridge Statistics Bridge 05h

Get ICMB Capabilities Bridge 06h

Clear Bridge Statistics Bridge 08h

Get Bridge Proxy Address Bridge 09h

Get ICMB Connector Info Bridge 0Ah

Get ICMB Connection ID Bridge 0Bh

Send ICMB Connection ID Bridge 0Ch

Discovery Commands (ICMB)

Intelligent Platform Management Interface Specification

634

Sub
Fn # NetFn CMD

PrepareForDiscovery Bridge 10h

GetAddresses Bridge 11h

SetDiscovered Bridge 12h

GetChassisDeviceId Bridge 13h

SetChassisDeviceId Bridge 14h

Bridging Commands (ICMB)[8]

BridgeRequest Bridge 20h

BridgeMessage Bridge 21h

Event Commands (ICMB) [8]

GetEventCount Bridge 30h

SetEventDestination Bridge 31h

SetEventReceptionState Bridge 32h

SendICMBEventMessage Bridge 33h

GetEventDestination (optional) Bridge 34h

GetEventReceptionState (optional) Bridge 35h

OEM Commands for Bridge NetFn

OEM Commands Bridge C0h-FEh

Other Bridge Commands

Error Report (optional) Bridge FFh

 Intelligent Platform Management Interface Specification

 635

 Intelligent Platform Management Interface Specification

 I

Index

‘

‘AT’ command set, 230

‘delimiter’ character, 230

‘long pause’ sequence, 230

‘Power supply failed’ event, 43

‘Redundancy lost’ event, 43

“

“(transition to) Active, 528

“(transition to) Busy, 528

“(transition to) Idle, 528

<

<ENTER> character, 230

0

00h Completion Code, 71

2

24C02, 42, 43, 520, 579

24C02-compatible SEEPROMs, 42

8

8742 interface, 44, 105

A

A/D Converter, 579

Aborted By Command, 108

Aborted return value, 122, 123

Access Mode for IPMI messaging, 329

ACCM, 203, 204, 217, 387

ACCM negotiation, 216, 217, 386

ACCM Negotiation, 387

ACK/Normal Bit, 153

ACPI Device Power State, 277, 278, 573

ACPI System Power State sensor, 35

Activate Session, 47, 82, 84, 85, 87, 88, 162, 171,

208, 225, 296, 301, 304, 308, 309, 319, 320, 321,

322, 323, 325, 590, 619, 625

Activate Session command, 82, 84, 85, 87, 88, 171,

215

Activate Session request, 82, 85, 171, 322

Activate Session response, 85, 171, 321

Active Sessions table, 325

Add SDR, 463, 467, 470, 472, 621, 629

Add SEL Entry, 448, 450, 453, 454, 621, 629

Additional Device Support, 271

Address & Control Field compression, 214

Address & Control Field Compression, 213, 215

Address and Control Field Compression, 214, 215,

385, 386

Address and Control fields, 214

Administrator level privilege, 78

Administrator privilege level, 78

Advancing eight-count, 86

Alert Acknowledge Timeout, 346, 381

Alert Acknowledge Timeout / Retry Interval, 346

Alert Immediate, 230, 257, 325, 329, 383, 436, 444,

620, 628

Alert Immediate command, 230, 257, 329

Alert policies, 35, 47

Alert Policies, 59, 62, 250

Alert Policy Number, 253

Alert Policy Table, 250, 252, 253, 256, 257, 258, 259,

440

Alert Processing, 59, 258, 259

Alert Processing after power loss, 258

Alert Processing Device, 55

Alert sending device, 46

Alert Standard Forum, 34, 45

Alert String Key, 257, 441

Alert String Keys, 441

Alert String Selector, 257

Alert Strings, 220, 230, 250, 257, 264, 437, 441

Always Available, 77

Always Available Manageability, 34

Always Available Mode, 199, 201, 202

Anonymous login, 79, 228

Anonymous Login Status field, 79

Application Device, 54

Arm PEF Postpone Timer, 436, 437

ARP Cache expiration, 166

ARP Requests, 165, 166

ARP Response, 165, 166, 359

ARP Responses, 166, 358

ARP table, 166

ASCII Escape <ESC> character, 208

ASF 2.0, 36, 45, 156, 157

ASF message class, 151

ASF messages, 46, 153

ASF Presence Ping message, 154

ASF Presence Pong Message, 154, 156

ASF Sensor Devices, 46

ASF’, 151

Assertion / Deassertion Masks, 588

Assertion Event Mask, 529, 554, 560

Asynch Control Character Map, 213

Asynchronous communication parameters, 195

Asynchronous Control Character Mask, 203

ATN flag, 97, 110

AuthCode, 82, 160, 171, 215, 296, 309, 310, 312,

320, 321, 322, 323, 326, 327, 619, 625

Authentication Code, 82, 309, 320, 321, 322

Intelligent Platform Management Interface Specification

II

Authentication Protocol, 213

Authentication protocols, 83

Authentication Type, 47, 82, 160, 171, 215, 300, 301,

304, 309, 310, 311, 320, 321, 322, 327, 329, 344,

374, 375

Authentication Type Enables, 344, 375

Authentication Type Support, 344, 374

Authentication Types, 326, 344, 374, 375

Authentication_Type, 326

Automatic alerting, 34

Automatic recovery, 28

Autonomous Manageability, 34

Aux Bus Shunt, 152, 345, 386

Auxiliary Channel Info, 332

Auxiliary Firmware Revision, 271

B

B_BUSY, 133, 134, 135, 137, 138

B2H_ATN, 133, 134, 136, 137, 138

B2H_IRQ, 136

B2H_IRQ_EN, 136

B2HI_EN, 134

Backup Gateway Address, 345

Backup Gateway MAC Address, 345

Backward compatibility, 34, 573, 579, 616

Base Address Modifier, 595, 596, 597

Baseboard Management Controller, 32, 33, 39, 58,

135, 136, 245, 594

Basic Mode, 44, 45, 61, 62, 75, 82, 83, 194, 195, 197,

198, 203, 204, 206, 207, 208, 221, 302, 304, 321,

378, 381, 396

Basic Mode Messaging, 210

Basic Mode, defined, 44

BIOS FRB2 timeout, 408

BIOS Mux Control Override, 426

BIOS POST timeout, 408

BIOS Shared Mode Override, 426

Block Selector, 313, 343, 373, 403, 422, 438, 441

BMC boot flag valid bit clearing, 421, 423

BMC buffer size, 214

BMC Message Bridging, 89

BMC PPP IP Address Negotiation, 385

BMC SMS LUN, 89, 97, 223

BMC to Host Attention, 134

BMC Watchdog Timer, 408

BMC_HWRST, 136

BMC2HOST, 132, 133, 134, 138

BMC-BT, 131, 136

BMC-generated ARP control, 345

BMC-to-Baseboard switch, 379

BMC-to-SMI Handler communication, 104

Boot Error, 542

Boot flags, 46, 50, 225, 421, 425

Boot info acknowledge, 424, 427

Boot Info Timestamp, 427

Boot initiator info, 427

Boot initiator mailbox, 427, 428

Boot Options, 35, 202, 225, 395, 421, 422, 620, 627

Bridge Device, 55, 100

Bridged Request parameter bit, 92

BridgeMessage, 622, 634

BridgeRequest, 622, 634

Bridging Support, 61

Broadcast Get Device ID, 280, 464, 480, 481

BT BMC to Host Buffer, 133

BT Host to BMC Buffer, 133

BT interface, 44, 94, 130, 131, 133, 136

BT Interface, 94, 130, 131, 132, 137, 307, 619, 625

BT Interface Event Request Message Format, 132

BT Interface Event Response Message Format, 132

BT Interface registers, 132

BT Interface Write Transfer, 137

BT System Interface Format, 75

BT_CTRL, 132, 133, 138

Bus timeout interrupts, 50

Busy bit, 121, 122

BUSY bit, 118, 119, 120, 121, 122, 134

C

C1h, 70, 71, 72, 126

Call down list, 47

Call Retry Interval, 381

Callback, 194, 397

Callback Control Protocol, 62, 219

Callback level privilege, 219

Callback privilege level, 78

Callback to a pre-specified number, 220

Callback to caller-specified number, 220

Callback to one from a list of numbers, 220

Callback, defined, 62

Callback, initiate, 219

Capabilities commands, 41

Capabilities Flags, 415, 419

CBCP, 194, 219, 377, 397, 398, 399

CBCP Address Type, 220

CBCP callback, 220, 377

CBCP Callback, 62

CBCP callback numbers, 219

CBCP callback support, 372

CBCP negotiation, 219

CBCP Negotiation Options, 377, 398, 399

CC_SMS_GET_STATUS, 125

CC_SMS_RD_END, 125

CC_SMS_RD_NEXT, 125, 126

CC_SMS_RD_START, 125

CC_SMS_WR_END, 125

CC_SMS_WR_NEXT, 125

CC_SMS_WR_START, 125

Challenge/response mechanism, 47

Channel / Destination, 257

 Intelligent Platform Management Interface Specification

 III

Channel Callback Control, 377

Channel Medium Type, 75, 332

Channel Medium Type number, 76

Channel Model, 47, 74

Channel number, 47, 52, 74, 75, 90, 283, 284, 286,

287, 288, 290, 291, 292, 294, 295, 301, 303, 308,

310, 317, 332, 393, 400, 414, 551, 558, 571

Channel Number, 35, 101, 102, 254, 257, 283, 284,

286, 287, 288, 290, 291, 292, 294, 295, 299, 301,

303, 310, 317, 327, 333, 335, 337, 368, 369, 370,

371, 398, 399, 427, 460, 551, 558, 570, 571, 573,

575

Channel Privilege Level Limit, 330, 331

Channel Privilege Limit, 48, 88

Channel Protocol Type, 75, 332

CHAP, 83, 213, 218, 220, 386, 388

CHAP link-level authentication, 218

CHAP Name, 386

CHAP, configuration class options, 218

Chassis Bridge Device, 100

Chassis Bridge Device Address, 415, 419

Chassis Capabilities, 414, 462

Chassis Control, 200, 393, 414, 417, 418, 421, 423,

620, 627

Chassis Device, 55, 67, 271, 414, 419, 574, 620, 627

Chassis FRU Info Device Address, 415, 419

Chassis Identify, 414, 418, 620, 627

Chassis Reset, 414, 620, 627

Chassis SDR Device Address, 415, 419

Chassis SEL Device Address, 415, 419

Chassis SM Device Address, 419

Chassis System Management Device Address, 415

Cipher Suites, 316

Class of Message, 153, 154, 155, 156, 160, 215

Clear Bridge Statistics, 622, 633

Clear Message Flags command, 110

Clear Read Pointer, 134

Clear SDR Repository, 467, 470, 473, 621, 629

Clear SEL, 443, 448, 451, 452, 456, 621, 629

Clear Write Pointer, 134

CLR_RD_PTR, 133, 134, 138

CLR_WR_PTR, 133, 134

Cold Reset, 410, 470, 480

Cold Reset command, 131, 274, 275, 452

Cold Reset Command, 274

Combo Management ASIC, 579

Command Byte, 108, 118, 164, 209

Command code, 127, 130

Command interpreter, 66

Command Register, 106, 108, 116

Command-specific completion codes, 70, 71, 268,

303, 305, 330, 331, 334, 340, 372, 373, 397, 410,

422, 438

Common commands, 28

Community String, 262, 345, 380

Compact sensor record, 551, 558

Completion Code, 128, 131, 397

Completion Code operation, 68

Completion code rules and guidelines, 71

Completion Code values, 69

Completion Codes, purpose, 71

Configure-ack, 217

Configure-Ack, 212, 213, 217

Configure-nak, 217

Configure-Nak, 212, 217, 218, 385

Configure-Reject, 212, 218

Configure-Request, 212, 213, 217, 218, 385

Connection Hold Time, 258, 259

Connection Mode Auto-detect, 197, 203, 387

Container Entity Device Address, 568

Container Entity Device Channel, 568

Container Entity Instance, 568

Container Record Link, 566

Control/Status register, 120, 121, 124

Control/Status Register, 118, 120

Core Logic device, 579

Correctable Memory Error Logging Disabled, 539

Count of currently enabled User IDs, 337

Critical events, 244

Critical Events, 50, 244

Critical Interrupt, 541

Critical system failure, 199

Cross-platform driver, 110, 111, 116

Current Power State, 416

D

D/A Converter, 579

D1h, 70, 71

Data records, 28, 41, 520, 580

Data Register, 108, 118, 121

Data to write, 308, 478

Data_In, 106, 107, 108, 109, 115, 596

Data_Out, 106, 107, 108, 109, 115, 596

Deassertion Event Mask, 529, 555, 561

Default Gateway Address, 345

Default Gateway MAC Address, 345, 354, 355

Deferred Alerts, 250

Delete SDR, 464, 467, 468, 469, 470, 473, 621, 629

Delete SEL Entry, 443, 448, 452, 455, 621, 629

Destination Addresses, 347

Destination Comm Settings, 378, 382

Destination Dial String, 377, 398, 399

Destination Dial Strings, 382, 387

Destination Info, 380

Destination IP Address, 159, 162, 215, 381, 383, 388,

395

Destination IP Addresses, 382, 383

Destination Port, 155, 156, 159, 162, 215

Destination Port Number, 395

Destination Type, 259, 346, 380, 381, 383, 444

Device Absent/Device Present, 524

Intelligent Platform Management Interface Specification

IV

Device Enabled/Disabled, 524

Device ID/Device Instance, 272

Device Locator, 60, 464, 465, 466, 570, 571

Device relative, 52

Device Revision, 271, 272, 575

Device Slave Address, 521

Device specific completion codes, 70

Device Type Codes, 574, 579

Device-specific completion codes, 72

DHCP, 164, 166, 167, 345

DHCP lease, 167

DHCP, resolving issues, 167

DHCPv6 Timing, 170, 354, 356

Diagnostic boot completed, 542

Dial Page, 46, 47, 61, 195, 230, 257, 259, 260, 346,

380, 381

Dial Paging, 194, 229, 230

Dial-out PET Alerting, 194, 229

Digital sensor, 532

Direct Connect Mode, 61, 87, 200, 201, 202, 206,

379

Discrete Reading Mask, 551, 555, 561

DMI Usage State, 528, 529

DMI-based Severity, 530

Dynamic Sensor Device, 481

E

Emergency management, 51, 199, 246

Enable Baseboard-to-BMC switch on <ESC>(, 376

Enable Message Channel Receive, 296, 299, 619, 624

Enable User for Link Authentication bit, 83, 386, 388

Enter SDR Repository Update Mode, 467, 475

Enter SDR Update Mode, 463

Entity, 524

Entity Association, 43, 52, 60, 524, 525, 526, 552,

558, 566, 567, 568

Entity Association Record, 52, 525, 566, 567, 568

Entity Association records, 60, 580

Entity Association Records, 43, 525

Entity ID Codes, 580

Entity ID field, 580

Entity Instance, 52, 263, 522, 525, 526, 552, 558,

562, 566, 567, 568, 569, 570, 571, 574

Entity Instance Sharing, 562

Entity Instance value, 52, 263, 522, 526, 581

Entity Instance value, restrictions, 523

Entity Presence, 544

Entity Presence sensor, 524, 525

Entity, presence, 524

ERROR_STATE, 107, 109, 110

Event commands, 52

Event Conditions, 247, 494, 497

Event Dir, 105, 128, 132, 262, 431, 432, 433, 460,

528, 532, 586

Event filter, 54, 59, 259, 260, 540

Event Filter Action, 253

Event Filter Entry, 250

Event filter table, 47, 250, 252, 256, 258, 437

Event Filter Table, 252, 261, 440, 628

Event formats, 28

Event Generation, 64, 466

Event Generator, 41, 54, 58, 61, 73, 245, 246, 271,

448, 574

Event Generator Device, 54

Event Logging Disabled, 539

Event Mask, 254, 529, 552, 554, 555, 559, 560, 561,

586, 587, 588

Event Mask Field, 529

Event Message Buffer, 80, 97, 98, 107, 116, 120,

251, 252, 264, 296, 297, 298, 299, 305, 332, 431,

577, 619, 625

Event Message Buffer Full, 110, 116, 305

Event Message Buffer Full flag, 110

Event Message, defined, 41

Event Message, routing, 41

Event Messages, 41, 50, 54, 58, 60, 67, 72, 73, 80,

97, 105, 128, 132, 244, 245, 246, 247, 430, 432,

448, 460, 467, 487, 488, 489, 490, 492, 494, 497,

498, 528, 529, 532, 553, 559, 586

Event Messages, retries, 245

Event Offset Mask, 254, 255

Event Receiver, 41, 58, 60, 70, 73, 96, 97, 98, 105,

128, 132, 244, 245, 246, 271, 296, 430, 431, 432,

434, 448, 453, 455, 466, 497, 573, 574, 620, 627

Event Receiver Device, 54, 448

Event Receiver Slave Address, 430, 431

Event Request Message, 105, 128, 132, 244, 246,

430, 431, 432, 433, 434

Event Request Messages, 80, 246

Event Response Message, 105, 128, 132, 246, 430,

432

Event Severity, 253, 263

Event Source type, 446

Event Status, 247, 492, 493, 494, 497, 621, 628

Event Trigger, 247, 254

Event/Reading Type Code, 247, 432, 434, 460, 528,

529, 532, 533, 535, 539, 553, 554, 555, 559, 560,

561, 586, 588

Event/Reading Type Code table, 529

EvMRev, 52, 105, 128, 132, 431, 432, 433, 460

EVT_ATN, 120, 133, 136, 137

Exit SDR Repository Update Mode, 467, 621, 629

Extended BMC Messaging Channel Model, 35

External Event Generation, 61

F

Failed hardware unit, 28

Fail-over, 165

Fault Status asserted, 543

FCS, 195, 204, 211, 214, 215, 216, 395

 Intelligent Platform Management Interface Specification

 V

FFh Completion Code, 72

Field Programmable Gate Array, 133

Filter Configuration, 253

Flag sequence, 215

Flags register, 118, 119, 121

Flags Register, 118

Flags register bits, 119

Force progress event traps, 426

FPGA, 44, 133

Fragment Offset, 159, 215

Frame check sequence, 211

Frame Check Sequence, 214

Frame Type, 159, 162

Front Panel Lockout, 415, 416, 419, 535

Front Panel NMI / Diagnostic Interrupt, 541

FRU Commands, 58

FRU Device ID / Device Slave Address, 571

FRU Device Locator, 520, 521, 523

FRU device locator record, 525

FRU Device Locator Record, 571

FRU Information Interface, 58

FRU information, accessibility, 42

FRU information, contents, 42

FRU Inventory Device, 54, 271, 476, 558, 574, 579

FRU Inventory Device Info, 60

FRU Inventory Offset, 477, 478

Full Sensor Record, 551, 558

G

Generator ID, 73, 253, 254, 431, 432, 433, 460

Generic Completion Codes, 69, 71

Generic Device Locator Record, 570

Get ACPI Power State, 270, 278, 619, 624

Get AuthCode, 323, 327

Get AuthCode Data, 326

Get Auxiliary Log Status, 448, 449, 458, 459, 621,

629

Get BMC Global Enables, 98, 116, 296, 297, 619,

624

Get BMC Global Enables command, 98, 116

Get Bridge Proxy Address, 622, 633

Get Bridge State, 622, 633

Get Bridge Statistics, 622, 633

Get BT Interface Capabilities, 296

Get BT Interface Capabilities, 307

Get BT Interface Capabilities command, 132

Get Channel Access, 199, 200, 296, 331, 334, 618,

619, 626

Get Channel Authentication Capabilities, 79, 84,

162, 197, 198, 215, 296, 308, 309, 310, 379, 446,

619, 625

Get Channel Authentication Capabilities command,

79, 82, 84, 171, 204

Get Channel Info, 52, 74, 75, 80, 296, 304, 332, 576,

619, 626

Get Channel Info command, 75, 88, 90

Get Channel Info Command, 296, 619, 626

Get Channel Sessions command, 427

Get Chassis Capabilities, 100, 414, 415, 419, 620,

627

Get Chassis Status, 414, 416, 419, 420, 620, 627

Get Device GUID, 270, 575, 619, 624

Get Device ID, 52, 270, 271, 273, 280, 356, 391, 427,

443, 461, 463, 464, 467, 480, 528, 575, 619, 624

Get Device ID command, 273, 461

Get Device ID Command, 270

Get Device SDR, 480, 482, 483, 621, 628

Get Device SDR Info, 480, 481, 621, 628

Get Event Receiver, 431

Get Event Status, 493

Get FRU Inventory Area Info, 476, 477, 621, 628

Get ICMB Address, 622, 633

Get ICMB Capabilities, 622, 633

Get ICMB Connection ID, 622, 633

Get ICMB Connector Info, 622, 633

Get IP/UDP/RMCP Statistics, 359, 360, 622, 630

Get LAN Configuration Parameters, 342, 621, 630

Get Last Processed Event ID, 251, 436, 437, 444,

620, 628

Get Message command, 89, 90, 97, 98, 100, 101,

127, 300, 395

Get Message Flags, 90, 107, 109, 110, 111, 296, 298,

305, 410, 619, 624

Get Message Flags command, 90, 107, 110, 111, 116

Get Message Flags commands, 109

Get Message Response, 101, 608

Get parameter revision only, 313, 343, 373, 403, 438

Get PEF Capabilities, 436, 620, 627

Get PEF Configuration Parameters, 436, 438, 620,

628

Get POH Counter, 414, 428, 620, 627

Get PPP UDP Proxy Receive Data, 372, 395, 396,

622, 632

Get PPP UDP Proxy Transmit Data, 372, 394, 622,

632

Get SDR, 271, 450, 463, 464, 465, 466, 467, 468,

470, 471, 472, 474, 482, 621, 629

Get SDR Repository Allocation Info, 467, 469, 621,

629

Get SDR Repository Info, 450, 463, 465, 467, 468,

470, 621, 629

Get SDR Repository Time, 467, 474, 475

Get SEL Allocation Info, 448, 451, 621, 629

Get SEL Entry, 448, 452, 453, 621, 629

Get SEL Info, 448, 450, 468, 621, 629

Get SEL Time, 427, 448, 456, 474, 475, 621, 629

Get Self Test Results, 49, 275, 480, 619, 624

Get Self Test Results command, 275

Get Sensor Event Enable, 480, 489, 621, 628

Get Sensor Event Status, 247, 248, 430, 480, 490,

492, 493, 494

Intelligent Platform Management Interface Specification

VI

Get Sensor Event Status command, 247

Get Sensor Hysteresis, 480, 485, 621, 628

Get Sensor Reading, 40, 247, 248, 430, 480, 490,

492, 493, 494, 496, 497, 500, 514, 524, 532, 551,

554, 555, 560, 561, 586, 588, 621, 628

Get Sensor Reading Factors, 484, 512, 513

Get Sensor Threshold, 621, 628

Get Sensor Thresholds, 486, 555, 561

Get Sensor Type, 480, 496, 498, 621, 628

Get Serial/Modem Configuration, 372, 373, 622, 631

Get Session Challenge, 47, 84, 85, 87, 88, 162, 171,

208, 215, 296, 308, 309, 319, 320, 321, 322, 619,

625

Get Session Challenge command, 82, 84, 87, 162,

216, 219

Get Session Challenge/Activate Session command,

221

Get Session Info, 88, 296, 324, 325, 395, 618, 619,

625

Get Status/Abort control code, 110

Get Status/Abort transaction, 109

Get System Boot Options, 225, 414, 422

Get System GUID, 162, 215, 296, 308, 440, 619, 625

Get System Restart Cause, 414, 421, 620, 627

Get TAP Response Codes, 372, 394

Get User Access, 296, 336, 337, 618, 619, 626

Get User Access Command, 296, 336, 619, 626

Get User Callback Options, 372, 399, 622, 633

Get User Name Command, 296, 338, 620, 626

Get Watchdog Timer, 408, 409, 410, 412

GET_BT_INTERFACE_CAPABILITIES, 133

GET_STATUS, 108, 109, 115, 116, 121

GET_STATUS / ABORT, 108

Get_Status control code, 107

GET_STATUS/ABORT, 109, 115, 116

GET_STATUS/ABORT control code, 108

GetAddresses, 622, 634

GetChassisDeviceId, 622, 634

GetEventCount, 622, 634

GetEventDestination, 622, 634

GetEventReceptionState, 622, 634

Global commands, 54

Gratuitous ARP, 165, 166, 342, 345, 358, 359

Gratuitous ARP interval, 345

Gratuitous ARP Response, 359

Gratuitous ARP suspend, 359

H

H_BUSY, 133, 134, 137, 138

H2B_ATN, 130, 133, 134, 137, 138

Handshake character, 210

Hard reset, 80, 107, 226, 379, 392, 408, 412, 417,

418, 428, 465, 542

Hardware component restrictions, 49

Hardware handshake, 203

Header Checksum, 159, 215

Header Length, 159, 215

Highest Received, 590

High-going threshold, 493, 494

Host BT interface, 133

Host Busy, 134

Host to BMC Attention, 134

HOST2BMC, 132, 133

HOST2BMC buffer, 132, 133, 134, 137

Hot-plug slot status, 35

I

I2C Master Write/Read, 52

IANA, 68, 153, 155, 156, 227, 264, 271, 332, 344,

374, 458, 459

IANA Enterprise ID Number, 427

IANA enterprise number, 155, 156, 311

IANA Enterprise Number, 332

IANA OEM ID, 310, 344, 375

ICMB Bridge Controller, implementing, 100

ICMB Bridge Device, implementation options, 100

Identify Status asserted, 543

IDLE_STATE, 107, 109, 110

IDLE_STATE OBF interrupt, 117

IDLE_STATE OBF interrupt, 111

Illegal Control Code, 108

Illegal Date Field, 376

Inbound Session Sequence Number, 85, 86

Initial inbound seq#, 322

Initialization Agent, 41, 60, 462, 465, 475, 498, 552,

559, 573

Initialization Agent steps, 466

Initialization Agent, requirements, 465

Initialization required field, 42

Intelligent Battery controller, 579

Intelligent Platform Management device, 54

Intelligent Platform Management, defined, 38

Intelligent Platform Management, key characteristics,

38

Interface circuitry, 132

Internal Event Generation, 61

INTMASK, 132, 134, 136

Invalid Command, 70, 71, 72

Inventory information, 28

IP Address Assignment, 217, 218, 385

IP Address of remote console, 325

IP Address Source, 345

IP Address, lost, 167

IP Control Protocol, 217

IP Header, 159, 162, 195, 215, 345

IP Packets Received, 360

IP Packets Transmitted, 360

IPCP, 198, 204, 206, 217, 218, 387

IPCP Configure-Request, 217, 218, 385

IPCP Negotiation, 389

 Intelligent Platform Management Interface Specification

 VII

IPCP option 1, 218

IPCP option 2, 218

IPCP option 3, 217, 218

IPCP Terminate-Request, 218

IPM Device, 54, 60, 467, 619, 624

IPM Device commands, 54, 64, 270

IPM Device support, 271

IPMB Event Receiver, 58

IPMB Interface, 58, 60, 96

IPMB message, restrictions, 97

IPMB Seq field, 246

IPMB, defined, 39

IPMI Challenge-Response, 84

IPMI managed systems discovery, 151

IPMI message class, 151

IPMI Message Length, 161, 214, 215

IPMI messaging, 194

IPMI Messaging Comm Settings, 378

IPMI Messaging streams, 47

IPMI over LAN, 45, 159, 194

IPMI serial/modem messages, 158

IPMI-over-LAN, 151, 153

IPv4 protocol, 218

IPv4 Protocol Packets, 218

IPv6, 150, 154, 162, 167, 168, 169, 347, 350, 351,

352, 353, 354, 355

K

KCS communication interrupts, 109

KCS interface, 44, 104, 108, 109, 110, 116, 118, 596

KCS Interface, 104, 105, 109, 115

KCS interface addresses, 106

KCS interface control codes, 108

KCS Interface control codes, 106

KCS Interface host software, 107

KCS Interface message transfers, 108

KCS Interface registers, 105, 106

KCS Interface state bits, 107

KCS Interface status codes, 108

KCS non-communication interrupts, 109, 116

KCS System Interface Format, 75

Keyboard Controller Style, 44, 104, 105, 595

L

LAN Alert Format, 46

LAN Alerting, 46, 61, 151, 164, 346, 378

LAN Alerts, 46, 164, 256

LAN channel, 47

LAN Channel, 171

LAN Configuration Parameters, 167, 313, 342, 343,

358, 403, 404, 621, 629

LAN Controller, 150

LAN interface, 40, 45, 95, 150

LAN Interface, 59, 150

LAN Messaging, 61

LAN Messaging and Alerting, 35

LAN/PPP Input, 95

LAN/PPP Output, 95

LAN-based interface, 49

Language Code, 263

Last BMC Processed Event, 251, 444

Last BMC Processed Record ID, 258, 260

Last BMC-processed Event, 251

Last Power Event, 416

Last Software Processed Event, 251

Layered Management Value, 33, 34

LCD controller, 579

LCP Fields, 212

LCP Packets, 214

Linear sensors, 512

Linear/Linearizable Sensors, 512

Link Authentication, 83, 218, 386, 388

Link Authentication protocol, 83

Lock Sleep Button, 426

Logical entity, 525, 526, 580

Logical management devices, 54

Logical Unit Number, 32, 104, 105, 127, 128, 130,

131

Low-going threshold, 493, 494

ls-bit, 214, 387

LUN 00b, 58, 91, 96, 97, 104, 127, 221, 268, 302,

520, 571, 574, 618

LUN 00b, defined, 96

LUN 01b, defined, 96

Lun 10b, 97

LUN 10b, 89, 90, 91, 97, 104, 221, 223, 300, 302,

303

LUN 10b, defined, 96

LUN 11b, defined, 96

M

MAC Address, 164, 165, 325, 345, 347, 348, 354,

355

Magic Number, 213

Management Controller Confirmation Record, 575

Management Controller Device Locator Record, 573

Management Subsystem Health, 52

Manual recovery, 28

Manufacturer ID, 68, 264, 271, 272, 273, 356, 391,

427, 443, 461, 528, 533, 575, 578

Manufacturing Test Mode On, 480

Master Write/Read, 52

Master Write-Read, 58, 72, 93, 94, 95, 96, 296, 308,

520, 521, 570, 571, 608, 609, 618, 620, 626

Master Write-Read command, 93, 94, 96, 571

Master Write-Read message, 95

Maximum number of User IDs, 337

Maximum Receive Unit, 213, 214

Message Authentication Code, 160, 215

Message Class, 153

Intelligent Platform Management Interface Specification

VIII

Message Data field, 301, 303, 304

Message Handler, 55, 58, 245

Message Interface, defined, 66

Message transfer control, 120

Message-digest algorithms, 47, 171

Messaging Channels, 80

Misc. Chassis State, 416, 417, 419

Modal SDR Repository, 463, 467, 468

Modem Connect Mode, 61, 62

Modem Dial Command, 380

Modem Escape Sequence, 205, 380

Modem Hang Up Sequence, 205

Modem Hang-up Sequence, 380

Modem Init String, 205, 380, 382

Modem Initialization and Hang Up Line, 205

Modem mode, 203, 377

Modem Ring Time, 77, 201, 202, 205, 379

Modem-answering characteristics, 200

Modified Write Word protocol, 40, 576

Modularity, 33, 92

Monitoring elements, 28

Most Recent Addition, 450, 468

Multiple management controllers, 39, 40

Multiple sessions, 47, 81, 82, 88, 211, 308, 309

Multi-session connection, 82, 83, 171, 309

Multi-session packets, 82

Mux switch, 197, 199, 207, 377, 379, 385, 393, 396,

397

Mux Switch Configuration, 376

Mux Switch Control, 377, 379

Mux switching, 200

N

NCP, 217

Negative-going Threshold Hysteresis, 485, 557, 563

Negative-going Threshold Hysteresis Value, 485

Negotiation Configuration, 385

Negotiation Control, 385

Neighbor Discovery / SLAAC Timing, 170, 356, 357

Network control packets, 217

Network Function, 40, 66, 104, 105, 108, 118, 121,

127, 128, 130, 131, 209, 268, 270, 296, 342, 372,

408, 414, 430, 436, 448, 467, 476, 480

Network Function code, 104, 164

Network Function Code, 40, 618

Network Function Codes, 66

Network Function handler, 66

Next SEL Record ID, 453

No Tracking option, 89

Non-bridging messages, 93

non-communications interrupt, 109, 110, 111, 117

Non-communications interrupts, 110, 111

Non-critical events, 244

Non-Linear Sensors, 512

Non-modal SDR Repository, 463, 468

Number of Alert Destination IP Addresses, 382

Number of Alert Destinations, 380

Number of Alert Policy Entries, 440

Number of Alert Strings, 440

Number of Destinations, 346, 347, 348

Number of Dial Strings, 382

Number of Event Filters, 440

Number of PPP Accounts, 387

NV Storage Device Address, 594, 596

O

OBF flag, 104, 108

OBF interrupt, 110, 111, 117

OBF-generated interrupt, 109

OEM auxiliary data, 311

OEM Commands, 58, 227, 622, 623, 634

OEM Custom Fields, 264

OEM Error, 108

OEM extensions, driver support, 116

OEM framing extensions, 218

OEM message class, 151

OEM Message Data, 153

OEM Parameters, 356, 391, 427, 443

OEM Protocol, 76, 576

OEM Text Commands, 227

OEM Transfer Stream Control Codes, 124

OEM Transfer Stream Status Codes, 124

Operating Privilege Level, 325

Operator privilege level, 78

OS Boot, 542

OS Critical Stop, 542

OS Load timeout, 408

OS Watchdog’ timeout, 409

Out-of-order packets, 86

P

PAD byte, 161

Page Blackout interval, 229

Page Blackout Interval, 229, 260, 380

PAP, 83, 213, 386, 388

Parameter selector, 313, 342, 343, 372, 373, 383,

403, 422, 438

Partial Add SDR, 463, 467, 468, 470, 472, 621, 629

Partial Add SEL Entry, 448, 452, 454, 455

Password data, 340

Password protection, 221, 339

PCI Management Bus Interface, 59, 61

PCI PERR, 50, 244, 541

PCI SERR, 50, 541

PCI Vital Product Data, 42

PEF Action global control, 439, 628

PEF Alert Startup Delay, 439, 440, 628

PEF Alerting Enable/Disable, 329

PEF control, 439, 628

PEF Device, 54

 Intelligent Platform Management Interface Specification

 IX

PEF Postpone Timer, 250, 251, 437, 620, 627

PEF Startup Delay, 251, 439, 440, 628

Pending bridged requests, 88

Pending Bridged Response, 91, 92, 93

Pending Bridged Response table, 92, 93

Per-Message Authentication, 82, 171

Per-Message Authentication Disable option, 83

PET Acknowledge, 46, 436, 446, 620, 628

PET Specific Trap, 262

PFC, 213

Platform Event, 430, 480

Platform Event Filtering, 33, 35, 47, 59, 61, 62, 229,

231, 250, 251, 256, 431, 436

Platform management datagrams, 150

Platform management, defined, 28

Plug ‘N Play, 34, 49

Plug-and-Play, 594

Point-to-point protocol, 211

policy number, 250, 253, 256, 257, 260, 261

Port Address of remote console, 325

Port Number of remote console, 325

Positive-going Threshold Hysteresis, 485, 557, 563

Positive-going Threshold Hysteresis Value, 485

POST Error sensor, 52

POST errors, log, 49

POST Memory Resize, 537

post-mortem analysis, 50

power cycle, 48, 50, 55, 59, 252, 253, 258, 259, 408,

417, 423, 427, 436, 437, 439, 540

power down, 77, 199, 201, 202, 229, 252, 393, 400,

416, 417, 428, 436, 437, 439

Power on/off operations, 28, 195

Power restore policy support, 420

Power up, 35, 50, 199, 273, 275, 276, 393, 417, 420,

421, 423, 427, 428, 542, 552, 559

PPP ACCM, 387

PPP Account Authentication Settings, 388

PPP Account Connection Hold Time, 259

PPP Account Connection Hold Times, 388

PPP Account Dial String Selector, 387

PPP Account Selector, 218

PPP Account User Domains, 388

PPP Account User Names, 388

PPP Account User Passwords, 388

PPP Alert, 46, 195, 259, 260, 261, 381

PPP Alerting, 61, 194, 233, 383, 387, 436

PPP CHAP, 335

PPP compatibility, 214

PPP Configure-Request message, 212

PPP Frame, 211, 214, 215

PPP IP Address Negotiation, 385

PPP IPMI-RMCP, 379

PPP Link authentication, 198, 220

PPP Link Negotiation request, 203

PPP Link options, 218

PPP Mode, 45, 61, 62, 82, 83, 194, 195, 198, 203,

204, 206, 218, 219, 221, 302, 304, 378, 379, 381,

386, 396

PPP Mode Callback, 62, 381

PPP Mode, defined, 45

PPP Protocol Options, 384, 387

PPP Remote Console IP Address, 389

PPP Snoop ACCM, 387

PPP UDP Proxy, 194, 195, 372, 388, 394, 395

PPP UDP Proxy IP Header data, 388

PPP UDP Proxy Receive Buffer Size, 388

PPP UDP Proxy Transmit Buffer Size, 388

PPP/UDP Mode, 194, 211

PPP/UDP Proxy Operation, 195

Pre-boot Access Mode, 77

Pre-boot only, 77, 199

Pre-boot Password Violation, 535

Predictive Failure asserted, 532, 533

Predictive Failure deasserted, 532, 533

Predictive Fault, 244

PrepareForDiscovery, 622, 634

Presence Ping message, 154, 156, 171

Pre-timeout Interrupt, 408, 409

Primary FRU inventory device, 60

Primary FRU Inventory Device, 54, 64

Primary RMCP port, 154

Primary RMCP Port, 152, 171, 345

Primary RMCP port address, 206

Primary RMCP Port Numbe, 386

Primary RMCP Port Number, 345

Private Bus Controller, 58

Private Bus Input, 94

Private Bus Output, 94

Private Enterprise ID, 271

Private Enterprise IDs, 264

Privilege Levels, 48, 78, 619, 624

Privilege Levels table, 618

Privilege Limits, 48, 88

Processor sensor type, 588

Protocol Field Compression, 213, 214, 385, 386

Proxy ARP, 166

Pulse Diagnostic Interrupt, 417

PXE boot, 542

Q

Quality Protocol, 213

R

RAKP, 173, 176, 181, 189

Raw values, 514, 515, 516, 557

READ, 107, 108, 109, 115, 120

Read count, 308

Read Event Message Buffer command, 97

Read FRU Data, 60, 477, 621, 628

Read Message command, 96, 110

Intelligent Platform Management Interface Specification

X

Read Message state, 107

Read Transfer, 109, 113, 137, 138

Read_Next, 122

READ_STATE, 107, 109, 115

Reading Mask, 529, 551, 553, 554, 555, 559, 560,

561, 586

READY status code, 120, 122, 123

Re-arm, 248, 621, 628

Re-arm Sensor, 480, 490, 491, 492

Re-arm Sensor Events, 480, 490, 491, 492

Re-arm, defined, 33

Receive Message Available, 299

Receive Message Available flag, 110

Receive Message Queue, 79, 82, 89, 90, 96, 97, 98,

100, 101, 104, 107, 110, 116, 119, 120, 127, 223,

297, 298, 299, 301, 304, 576, 618

Receive Message Queue not empty, 120

Received IP Address Errors, 360

Received IP Header Errors, 360

Receiving ACCM, 217

Record count LS Byte, 468

Record count MS Byte, 468

RECORD KEY BYTES, 551, 558, 567, 568, 570,

571, 573, 575

Redundancy Degraded, 525, 532

Redundancy Lost, 532

Redundancy Regained, 532

Remote Access Boot control, 420

Remote console, defined, 74

Remote Management Card, 42

Remote Management Control Protocol, 45, 151

Request and Response Messages, 109

Request Fixed PPP IP Address, 385

Request Messages, 54, 66, 96, 104, 105, 127, 128,

130, 132, 432

Request/Response identifier, 66, 72

Request/response protocol, 40

Requester’s ID, 66, 72, 127, 473

Request-to-Response interval, 132

Reservation ID, 70, 451, 453, 455, 456, 469, 470,

471, 472, 473, 483

Reservation Restricted, 452, 470

Reserve Device SDR Repository, 480, 483, 621, 628

Reserve SDR Repository, 467, 468, 469, 470, 471,

472, 621, 629

Reserve SEL, 448, 450, 451, 452, 453, 454, 455, 456,

621, 629

reset actions, 252

Reset Watchdog Timer, 408, 410, 412

Responder’s ID, 66, 72

Response Messages, 66, 68, 105, 127, 128, 131

RMCP, 45, 46, 77, 91, 95, 151, 152, 153, 154, 155,

156, 158, 161, 166, 197, 204, 206, 208, 214, 215,

216, 217, 342, 344, 345, 374

RMCP ACK, 153, 154, 155

RMCP ACK handling, 155

RMCP ACK messages, 155

RMCP ACK operation, 154

RMCP Acknowledge Messages, 153

RMCP data, 154

RMCP format, 45, 46

RMCP header, 153, 155, 156

RMCP Header, 160, 162

RMCP message, 214

RMCP message format, 153

RMCP Message Format, 215

RMCP message types, 153

RMCP messages, 152, 154, 155, 161

RMCP packet, 46, 77, 158, 159

RMCP Packet, 215

RMCP Packets, 211

RMCP Ping message, 154

RMCP ping response, 310

RMCP Ping Response, 344, 375

RMCP Ping/Pong, 77, 152, 171

RMCP port, 165, 197, 204

RMCP Port, 385

RMCP port address, 167, 195, 198

RMCP ports, 152

RMCP sequence number, 154, 155, 156, 160

RMCP Sequence Number, 161, 215

RMCP traffic, 198

RMCP, supported interfaces, 155

RMCP/IPMI Message packets, 218

RMCP/UDP packet, 214

RMCP+, 36, 45, 84, 156, 157, 172, 173, 175, 181

rmtBrXA, 101, 102

Rollback feature, 313, 343, 373, 403, 422, 438

rqAddr, 164, 209

rqLUN, 75, 97, 98, 164, 209, 224, 280, 301, 302, 304

rqSA, 75, 97, 280, 301, 302, 304

rqSeq, 75, 97, 98, 101, 164, 209, 222, 224, 280, 301,

302, 304

rqSWID, 75, 224, 302, 304

rsAddr, 164, 209

rsLUN, 75, 97, 98, 101, 102, 164, 209, 222, 224, 280,

301, 302, 304

rsSA, 75, 97, 98, 101, 102, 280, 301, 302, 304

rsSA slave address, 280

rsSWID, 75, 224, 302, 304

Run Initialization Agent, 467, 475, 621, 629

RX_DATA_RDY, 120, 121, 122, 123, 125

S

S1 sleep state, 60

SC_SMS_RD_END, 125, 126

SC_SMS_RD_NEXT, 125, 126

SC_SMS_RD_START, 125, 126

SC_SMS_RDY, 125, 126

SC_SMS_WR_END, 125, 126

SC_SMS_WR_NEXT, 125, 126

 Intelligent Platform Management Interface Specification

 XI

SC_SMS_WR_START, 125, 126

SDR Device, 54, 462, 468, 474, 621, 629

SDR Repository, 60

SDR Repository access, 60

SDR Repository Device, 54, 271, 462, 465, 466, 467,

470, 473, 474, 476, 574

SDR Repository Interface, 58

SDR Repository Update Mode, 463, 467, 475, 621,

629

SDR Type 14h, 52, 576

SDR update, 60, 251, 272, 463

Secondary RMCP Port, 152, 345

Secondary RMCP Port Number, 386

Secure Aux Bus, 152, 345, 386

SEL access, 60

SEL Aging, 252

SEL Device, 54, 271, 296, 448, 450, 452, 453, 454,

456, 457, 460, 461, 467, 574, 621, 629

SEL Event Record format, 52

SEL Interface, 58, 60

SEL Record Formats, 460

SEL Record ID, 453, 455

Send Alert, 252

Send ICMB Connection ID, 622, 633

Send Message, 52, 303, 304, 576, 618

Send Message command, 80, 82, 89, 90, 91, 92, 93,

96, 97, 100, 101, 102, 104, 127, 221, 223, 224,

300, 302, 618, 623

Send Message commands, 89, 100

Send Message request, 90, 102, 224

Send Message response, 224

Send PPP UDP Proxy Packet, 195, 372, 395, 622,

632

SendICMBEventMessage, 622, 634

Sending ACCM, 217

Sensor and Event Codes, 528

Sensor Auto Re-arm Support, 553, 559

Sensor Capabilities, 466, 552, 553, 554, 559, 560

Sensor commands, 52

Sensor Data Record format, 550

Sensor Data Record Repository, 42, 462

Sensor Data Records, 247

Sensor Data Records, purpose, 41

Sensor Device, 46, 54, 263, 271, 446, 480, 482, 512,

522, 574, 620, 628

Sensor Event Message Control Support, 552, 553,

554, 559, 560

Sensor Event/Reading Type codes, 52

Sensor Hysteresis Support, 552, 553, 559

Sensor Initialization, 42, 462, 465, 552, 559

Sensor Model, 40, 551, 558, 567, 568, 570, 571, 573,

575, 576, 578

Sensor Number, 72, 263, 446, 551, 558, 562

Sensor Owner ID, 72, 73, 551, 558

Sensor Owner LUN, 551, 558

Sensor Population Change Indicator, 481

Sensor Record Sharing, 562

Sensor scanning bit, 247

Sensor Specific enumeration, 528

Sensor Threshold Access Support, 553, 559

Sensor Type Code, 460, 528, 586

Sensor Unit Type Codes, 584

Sensors, 60

Sequence Number Allocator, 93

Sequence number expiration, 90, 93

Sequence number wrap-around, 86

Serial messaging, 61

Serial Messaging with PPP Mode, 61

Serial Port Sharing, 35, 59, 77, 194, 195, 197, 200,

202, 204, 372, 379, 446

Serial Port Switching, 197, 198

Serial signal lines, 202

Serial/Modem Callback, 219

Serial/modem channel, 47, 77, 195, 372

serial/modem configuration parameters, 83, 195, 197,

198, 199, 200, 203, 204, 205, 206, 217, 218, 220,

228, 229, 231, 232, 233, 258, 260, 335, 372, 377,

398, 399

Serial/Modem Connection Active, 198, 203, 206, 207,

208, 219, 228, 372, 379, 381, 396, 622, 632

Serial/Modem Connection Active message, 198, 206,

207, 396

Serial/Modem Connection Active messages, 198, 206,

207

Serial/modem interface, 49, 59, 164, 194, 207

Serial/Modem Messaging and Alerting, 35

Serial/Modem Ping, 206, 396

Service partition scan, 423

Service partition selector, 423

Service Type, 159, 215

Session Handle value, 90

Session header fields, 308, 309

Session ID, 47, 81, 84, 85, 160, 162, 171, 208, 215,

320, 321, 322, 324, 325, 395, 427

Session Inactivity Timeout, 87, 88, 219, 376

Session Sequence #, 160, 215

Session Sequence Number, 86, 162, 215

Session sequence numbers, 85

Session Sequence Numbers, 85

Session Termination, 377

Session, activate, 47

Session, purpose, 47

Session-based channels, 47, 76

Session-less channels, 47, 301, 308

session-less commands, 157

Session-less connection, 81, 83

Set ACPI Power State, 270, 276, 277, 619, 624

Set Auxiliary Log Status, 448, 449, 459, 621, 629

Set BMC Global Enables, 98, 109, 110, 116, 296,

297, 619, 624

Set BMC Global Enables command, 98, 109, 110,

116

Intelligent Platform Management Interface Specification

XII

Set Bridge ProxyAddress, 622, 633

Set Bridge State, 622, 633

Set Channel Access, 77, 78, 82, 83, 198, 296, 323,

328, 329, 334, 336, 368, 426, 619, 625

Set Channel Access command, 77, 78, 83

Set Chassis Capabilities, 414, 620, 627

Set Event Receiver, 61, 97, 98, 248, 430, 466, 492,

494

Set Event Receiver command, 97

Set ICMB Address, 622, 633

Set In Progress, 313, 343, 373, 374, 403, 404, 422,

423, 438, 439

Set Last Processed Event ID, 251, 436, 437, 443,

620, 628

Set PEF Configuration Parameters, 436, 437, 620,

628

Set Power Restore Policy, 414, 420, 620, 627

Set PPP UDP Proxy Transmit Data, 372, 394, 622,

632

Set SDR Repository Time, 467, 475, 621, 629

Set SEL Time, 448, 457, 474, 475, 621, 629

Set Selector, 313, 343, 346, 347, 348, 373, 381, 403,

422, 427, 438, 440, 441

Set Sensor Event Enable, 466, 480, 487, 552, 559,

586, 621, 628

Set Sensor Hysteresis, 466, 480, 484, 485, 621, 628

Set Sensor Threshold, 480, 621, 628

Set Sensor Thresholds, 466, 485, 555, 561

Set Sensor Type, 466, 480, 498, 621, 628

Set Serial Modem/Mux, 200

Set Serial/Modem Configuration, 372, 373, 622, 630

Set Serial/Modem Mux, 197, 198, 199, 200, 201, 202,

207, 372, 379, 393, 400, 622, 631

Set Session Privilege command, 88

Set Session Privilege Level, 296, 300, 301, 323, 324,

619, 625

Set System Boot Options, 225, 414, 421, 422

Set User Access, 323

Set User Access command, 79, 218, 219, 334, 386,

388

Set User Access Command, 296, 334, 335, 619, 626

Set User Callback Options, 372, 377, 398, 622, 632

Set User Name, 296, 338, 620, 626

Set User Password, 296, 339, 340, 620, 626

Set User Password Command, 296, 620, 626

Set Watchdog Timer, 358, 359, 408, 409, 410, 411,

412

Set/Get Channel Access, 218

Set/Get User Access, 218

Set/Get User Name, 218

SetChassisDeviceId, 622, 634

SetDiscovered, 622, 634

SetEventDestination, 622, 634

SetEventReceptionState, 622, 634

Settable Threshold Mask, 553, 555, 557, 561

Shared Mode, 77, 200

Side-band interface, 150

Simultaneous open sessions, 88

Simultaneous sessions, 81, 88, 335

Single-session connection, 82, 83

SLAAC Timing, 170, 356, 357

Slave Address, 66, 72, 73, 164, 209, 253, 280, 308,

430, 431, 432, 451, 460, 469, 521, 551, 557, 558,

563, 570, 571, 572, 573, 574, 575, 594, 608

Slave Address Field, 595

Slot/Connector sensor, 35

SMB Alert signal, 40

SMBus 2.0 Block-Read protocol, 94, 95

SMBus 2.0 Block-Write, 94, 95, 608, 609

SMBus 2.0 Output, 94

SMBus slave, 40, 308

SMI event flags, 120

SMI Handler, 33, 50, 51, 73, 80, 104, 118, 120, 122,

124, 130, 245, 453

SMIC interface, 44, 118, 119, 121, 127, 128, 432

SMIC interface registers, 118

SMIC interface, defined, 118

SMIC registers, 118

SMIC System Interface Format, 75

SMIC/BMC Interface Registers, 119

SMM Messaging, 80, 296

SMS LUN, 97, 98

SMS Message channel, 299

SMS transaction, interrupted, 118

SMS, defined, 74

SMS_ATN, 90, 106, 107, 108, 110, 111, 116, 117,

119, 120, 134

SMS_ATN bit, 90, 106, 107, 108, 110, 119

SMS_ATN flag, 107, 111

SMS_WR_START, 121

SNMP Traps, 46, 59, 446

Snoop ACCM Control, 385

Snoop Control, 384

Snoop Receive ACCM, 387

Software ID, 72, 73, 88, 105, 127, 128, 132, 164,

209, 221, 253, 432, 433, 451, 460, 469

Source Address, 159, 162

Source IP Address, 159, 162, 215, 388, 395

Source Port, 155, 156, 159, 162, 215

Source Port Number, 395

Standardized system interfaces, 43

Static IP addresses, 167

Status Register, 106

Stream ID, 120, 123

Stream switch, 123

Suspend BMC ARPs, 166, 342, 358, 359, 621, 630

SW_Authentication_Type, 326

SWIDs, 72, 302

SYS GET BOOTOPT, 225

SYS HEALTH QUERY, 226

SYS POWER OFF, 226

SYS POWER ON, 226

 Intelligent Platform Management Interface Specification

 XIII

SYS PWD, 225, 228

SYS RESET, 226, 228

SYS SET BOOTOPT, 225

SYS SET TCFG, 226

SYS TMODE, 225, 228

System ACPI Power State, 543

System boot events, log, 49

System Boot Initiated, 542

System Event Log, 40, 50, 54, 58, 66, 72, 80, 244,

245, 431, 434, 448, 453, 456, 482, 516, 518

System Event Log Restrictions, 244

System Event Log, defined, 33

System Event Log, minimum entries, 60

System Firmware Hang, 538

System Firmware Progress, 52, 535, 538

System FRED Intrusion, 261

System GUID, 178, 263, 311, 312, 440

System Interface, 60

System Interface Register, 596

System Management Software, 28, 33, 50, 59, 72, 73,

96, 108, 110, 118, 130, 131, 244, 252, 300, 409,

465, 512, 528, 529, 566, 580, 586

System management software, defined, 74

System Management Software, purpose, 50

System Negotiation Snooping, 384

System relative, 52

System reset action, 60

System Software ID, 72

T

TAP, 231

TAP Account, 381, 383

TAP Checksum, 232

TAP Confirmation, 383

TAP Control-character escaping mask, 383

TAP Escaping, 232

TAP Flow, 614

TAP Page, 46, 195, 231, 259, 260, 261, 325, 380,

381, 383

TAP Page Success Code, 232

TAP Pager ID Strings, 383

TAP Paging, 194, 231, 372, 378

TAP Paging transaction, 231

TAP Passwords, 383

TAP Response Codes, 232, 622, 632

TAP Service Setting Selector, 383

TAP Service Settings, 381, 383

TAP SST Service Type, 383

Teaming, 165

Telocator Access Protocol, 231, 614

Terminal Mode, 61, 73, 76, 83, 194, 195, 198, 203,

204, 206, 220, 221, 224, 225, 226, 228, 302, 304,

378, 384, 396, 610, 611

Terminal mode commands, 228

Terminal Mode Configurations, 384

Terminal Mode input restrictions, 229

Terminal Mode IPMI Message Bridging, 223

Terminal Mode Line Editing, 228

Terminal mode message, 223

Terminal Mode message format, 221

Terminal Mode messages, 221

Terminal mode options, 384

Terminal Mode remote console, 221

Terminal Mode Request, 223

Terminal Mode Request Message, 221

Terminal Mode Response, 223

Terminal Mode Text Commands, 225

Terminal Mode, defined, 45

Threshold Assertion Event Mask, 554

Threshold Deassertion Event Mask, 555

Threshold Settings, 514

Timeout value, 87

Timer Actions, 408, 411, 412

Timer Use Expiration flags, 410, 411, 412

Timer Use field, 409

Timer use fields, 59

Timestamp Format, 458, 459, 518

Time-to-Live, 159

Tolerance, 87, 484, 512, 513, 556

Tolerance value, 87

Total Length, 159, 215

Transaction size requirements, 93

Transfer End, 122

Transfer Middle, 122

Transfer Start, 122

Transfer Stream Control Codes, 124

Transfer Stream Status Codes, 124, 126

Transition to Active, 529, 533

Transition to Busy, 529, 533

Transition to Idle, 529, 533

Transmit ACCM, 387

TX_DATA_RDY, 120, 121, 122, 123, 125

U

UDP Checksum, 155, 156, 159, 162, 214, 215

UDP datagrams, 150, 151, 158, 194, 195, 211, 218

UDP Header, 155, 156, 159, 162, 215

UDP Length, 155, 156, 159, 162, 214, 215

UDP Packets Received, 360

UDP Proxy Packets dropped, 360

UDP Proxy Packets Received, 360

UDP/RMCP Packet, 216

Undetected error, 43

Unspecified Error, 108

Upper Threshold Reading Mask, 555, 561

User Access levels, 334

User Authentication, 85, 171

User ID, 78, 79, 218, 219, 319, 325, 327, 335, 336,

337, 338, 340, 398, 399

Intelligent Platform Management Interface Specification

XIV

User Level Authentication, 82, 83, 85, 311, 321, 322,

329

User Level Authentication Disable option, 83

User Level Authentication Enable/Disable, 329

User Level commands, 82, 311, 329

User level privilege, 78

User Level privilege, 88, 322

User Link authentication enable/disable, 335

User password bypass, 426

User privilege, 82, 219, 309, 618

User privilege level, 78

User Privilege Limit, 48, 88, 324, 335

User Session Limit, 335

User support, minimum requirements, 79

User-level authentication, 300, 301

V

Valid RMCP Packets Received, 360

Van Jacobsen compression, 218

Virtual IPMB, 100, 414

W

Wake On Ring, 203, 379

Wake-On-LAN, 166, 167

Warm reset, 274, 542

Warm Reset, 480

Warm Reset Command, 274

Watchdog commands, 52

Watchdog expiration, 421

Watchdog sensor, 35, 539

Watchdog Timer, 48, 49, 59, 60, 61, 77, 110, 116,

166, 228, 359, 408, 409, 410, 619, 624

Watchdog Timer actions, 408

Watchdog Timer Event Logging, 409

Watchdog Timer interface, 60

Watchdog Timer, BIOS support, 410

Watchdog Timer, Timer Use, 408

wr_data, 111

WR_END, 121, 123

WR_NEXT, 121, 123

WR_START, 123

Write FRU Data, 477, 478, 621, 629

Write Transfer, 108, 109, 137

WRITE_END, 108, 115

WRITE_END control code, 108

Write_Next, 122

WRITE_START, 108, 109, 115, 116, 121

WRITE_START control code, 108

WRITE_STATE, 107, 115, 116

X

X-bus, 44

XC4003E, 133

