Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision History</td>
<td>4</td>
</tr>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>Summary Tables of Changes</td>
<td>6</td>
</tr>
<tr>
<td>Errata</td>
<td>9</td>
</tr>
<tr>
<td>Specification Changes</td>
<td>22</td>
</tr>
<tr>
<td>Documentation Changes</td>
<td>23</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>• Initial Release</td>
<td>September 2015</td>
</tr>
<tr>
<td>002</td>
<td>• Errata: Added errata 21-25</td>
<td>March 2016</td>
</tr>
<tr>
<td>003</td>
<td>• Errata: Added errata 26-29</td>
<td>May 2016</td>
</tr>
<tr>
<td>004</td>
<td>• Errata:</td>
<td>June 2016</td>
</tr>
<tr>
<td></td>
<td>— Removed erratum 11 in previous revision as it was replaced with erratum 26, eSPI Error Reporting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Added errata 29-30</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>• Errata:</td>
<td>August 2016</td>
</tr>
<tr>
<td></td>
<td>— Removed erratum 5 in previous revision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Added errata 30-31</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>• Errata:</td>
<td>September 2016</td>
</tr>
<tr>
<td></td>
<td>— Added erratum 32</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>• Errata:</td>
<td>February 2017</td>
</tr>
<tr>
<td></td>
<td>— Added erratum 33</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>• Errata:</td>
<td>March 2017</td>
</tr>
<tr>
<td></td>
<td>— Updated erratum 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Added errata 34-38</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>• Errata:</td>
<td>June 2017</td>
</tr>
<tr>
<td></td>
<td>— Added errata 39-40</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>• Errata:</td>
<td>July 2017</td>
</tr>
<tr>
<td></td>
<td>— Added erratum 41</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>• Errata:</td>
<td>August 2017</td>
</tr>
<tr>
<td></td>
<td>— Added erratum 42</td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>• Replaced the stepping from C0 to C1 in the Errata Summary table.</td>
<td>June 2018</td>
</tr>
<tr>
<td>013</td>
<td>• Errata:</td>
<td>September 2018</td>
</tr>
<tr>
<td></td>
<td>— Added errata 43-45</td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>• Errata:</td>
<td>November 2018</td>
</tr>
<tr>
<td></td>
<td>— Added errata 46</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>• Errata:</td>
<td>December 2018</td>
</tr>
<tr>
<td></td>
<td>— Added errata 47</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>• Errata:</td>
<td>September 2019</td>
</tr>
<tr>
<td></td>
<td>— Added errata 48</td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>• Errata:</td>
<td>January 2020</td>
</tr>
<tr>
<td></td>
<td>— Updated erratum 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Removed erratum 32</td>
<td></td>
</tr>
</tbody>
</table>
Preface

This document is an update to the specifications contained in the Affected Documents table below. This document is a compilation of device and documentation errata and specification changes. It is intended for hardware system manufacturers and software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents

<table>
<thead>
<tr>
<th>Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th Generation Intel® Processor I/O for U/Y Platforms Datasheet – Volume 1 of 2</td>
<td>332690</td>
</tr>
<tr>
<td>6th Generation Intel® Processor I/O for U/Y Platforms Datasheet – Volume 2 of 2</td>
<td>332996</td>
</tr>
</tbody>
</table>

Nomenclature

Errata are design defects or errors. Errata may cause the behavior of the PCH to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present in all devices.

Specification Changes are modifications to the current published specifications. These changes will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s impact to a complex design situation. These clarifications will be incorporated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particular stepping is no longer commercially available. Under these circumstances, errata removed from the specification update are archived and available on request. Specification changes, specification clarifications and documentation changes are removed from the specification update when the appropriate changes are made to the appropriate product specification or user documentation (datasheets, manuals, and so on).
Summary Tables of Changes

The following tables indicate the errata, specification changes, specification clarifications, or documentation changes which apply to the product. Intel may fix some of the errata in a future stepping of the component and account for the other outstanding issues through documentation or specification changes as noted. These tables use the following notations:

Codes Used in Summary Tables

Stepping

<table>
<thead>
<tr>
<th>X:</th>
<th>Erratum exists in the stepping indicated. Specification Change that applies to the stepping indicated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No mark)</td>
<td>This erratum is fixed or not applicable in listed stepping or Specification Change does not apply to listed stepping.</td>
</tr>
</tbody>
</table>

Status

<table>
<thead>
<tr>
<th>Doc:</th>
<th>Document change or update will be implemented.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Fix:</td>
<td>This erratum may be fixed in a future stepping of the product.</td>
</tr>
<tr>
<td>Fixed:</td>
<td>This erratum has been previously fixed.</td>
</tr>
<tr>
<td>No Fix:</td>
<td>There are no plans to fix this erratum.</td>
</tr>
</tbody>
</table>

Row

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the document.
Errata Summary (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Erratum Number</th>
<th>Stepping</th>
<th>Status</th>
<th>ERRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>No Fix</td>
<td>xHC Data Packet Header and Payload Mismatch Error Condition</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>No Fix</td>
<td>USB SuperSpeed Packet with Invalid Type Field Issue</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>No Fix</td>
<td>xHC Behaviour with Three Consecutive Failed U3 Entry Attempts</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>No Fix</td>
<td>Max Packet Size and Transfer Descriptor Length Mismatch</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Controller OC# Issue</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI USB2.0 Split-Transactions Error Counter Reset Issue</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>No Fix</td>
<td>USB xHCI Controller May Not Re-enter a D3 State After a USB Wake Event</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>No Fix</td>
<td>USB 3.0 Devices Not Detected After Sx Resume</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>No Fix</td>
<td>PCI Express Unexpected Completion Status Bit May Get Set</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>No Fix</td>
<td>eSPI Concurrent Get-Config and Flash Cycles</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI U3 Wake exit Issue</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Controller USB Debug Port Disconnect Issue</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>No Fix</td>
<td>PSIC Field Incorrect Value</td>
</tr>
<tr>
<td>14</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Extended Capabilities Registers are Incorrectly Implemented as Read/Write</td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>No Fix</td>
<td>SPI Dual I/O and Quad I/O Modes</td>
</tr>
<tr>
<td>16</td>
<td>X</td>
<td>No Fix</td>
<td>eSPI Turn Around (TAR) Spec Violation</td>
</tr>
<tr>
<td>17</td>
<td>X</td>
<td>No Fix</td>
<td>SMBus Transaction Using Memory Mapped I/O Registers</td>
</tr>
<tr>
<td>18</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Warm Reset to Unused USB3 Port May Hang the Platform</td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Host Controller USB 2.0 Control Transfer May Cause IN Data to be Dropped</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>No Fix</td>
<td>System May Hang While Restoring HSIO ModPHY Configuration</td>
</tr>
<tr>
<td>21</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Host Controller Reset May Cause a System Hang</td>
</tr>
<tr>
<td>22</td>
<td>X</td>
<td>No Fix</td>
<td>PCI Express Gen2 x4 Device may cause a Machine Check Exception</td>
</tr>
<tr>
<td>23</td>
<td>X</td>
<td>No Fix</td>
<td>PCH PCIe* Controller Root Port Access Control Services Control Registers (ACSCTLR) appear as Read Only</td>
</tr>
<tr>
<td>24</td>
<td>X</td>
<td>No Fix</td>
<td>Pull-up and Pull-down on SPI CS# and CLK Signals</td>
</tr>
<tr>
<td>25</td>
<td>X</td>
<td>No Fix</td>
<td>eSPI Error Reporting</td>
</tr>
<tr>
<td>26</td>
<td>X</td>
<td>No Fix</td>
<td>USB 3.0 DCI Control Packet Issue</td>
</tr>
<tr>
<td>27</td>
<td>X</td>
<td>No Fix</td>
<td>eSPI Fatal Error Handling</td>
</tr>
<tr>
<td>28</td>
<td>X</td>
<td>No Fix</td>
<td>PCH PCIe* TX Pin State During L1.0 and L1.1 Substates</td>
</tr>
<tr>
<td>29</td>
<td>X</td>
<td>No Fix</td>
<td>Power Down Sequencing Issue During Entry to G3 or Deep Sx</td>
</tr>
<tr>
<td>30</td>
<td>X</td>
<td>No Fix</td>
<td>Subsequent Deep S5 and S5 Exits Impacted After "Straight to S5 (Host Stays There)" Resets</td>
</tr>
<tr>
<td>31</td>
<td>X</td>
<td>No Fix</td>
<td>eSPI Bus Mastering</td>
</tr>
<tr>
<td>32</td>
<td>X</td>
<td>No Fix</td>
<td>N/A. Erratum has been removed</td>
</tr>
<tr>
<td>33</td>
<td>X</td>
<td>No Fix</td>
<td>The PCIe Gen3 PLL May Not Wake From Link Low Power States</td>
</tr>
<tr>
<td>34</td>
<td>X</td>
<td>No Fix</td>
<td>Voltage Floating on USB - Device Mode Capable Port</td>
</tr>
<tr>
<td>35</td>
<td>X</td>
<td>No Fix</td>
<td>USB3.0 – Jitter Tolerance Margin</td>
</tr>
<tr>
<td>36</td>
<td>X</td>
<td>No Fix</td>
<td>Failure of USB compliance test TD 7.01 Link Bring-up Test (Subtests 1 and 2)</td>
</tr>
<tr>
<td>37</td>
<td>X</td>
<td>No Fix</td>
<td>Intermittent Failure of USB Compliance Test TD3.08</td>
</tr>
<tr>
<td>38</td>
<td>X</td>
<td>No Fix</td>
<td>Intel® RST for PCIe Storage - SATA PCI Configuration Read</td>
</tr>
</tbody>
</table>
Errata Summary (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Erratum Number</th>
<th>Stepping</th>
<th>Status</th>
<th>ERRATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI Controller May Hang on D3 Entry Following a Hot-Plug Event</td>
</tr>
<tr>
<td>40</td>
<td>X</td>
<td>No Fix</td>
<td>Dual PCIe*/SATA Muxing Configurations May Prevent HSIO Phy Power Gating</td>
</tr>
<tr>
<td>41</td>
<td>X</td>
<td>No Fix</td>
<td>USB2.0 PLL May Fail to Lock During S3 Resume</td>
</tr>
<tr>
<td>42</td>
<td>X</td>
<td>No Fix</td>
<td>PCIEXP_WAKE_STS Bit Not Set as Expected</td>
</tr>
<tr>
<td>43</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI USB Hardware LPM Capability (HLC) Register Reset to the Default Value During D3-D0 Transition</td>
</tr>
<tr>
<td>44</td>
<td>X</td>
<td>No Fix</td>
<td>Intel® Serial I/O Controller DMA LLP 4 GB Boundary Alignment</td>
</tr>
<tr>
<td>45</td>
<td>X</td>
<td>No Fix</td>
<td>eMMC/SDXC/SDIO CRC Detection</td>
</tr>
<tr>
<td>46</td>
<td>X</td>
<td>No Fix</td>
<td>USB DbC or Device Mode Port When Resuming from Sx/G3 State</td>
</tr>
<tr>
<td>47</td>
<td>X</td>
<td>No Fix</td>
<td>PCIe Root Port CLKREQ# Asserted Low to Clock Active Timing</td>
</tr>
<tr>
<td>48</td>
<td>X</td>
<td>No Fix</td>
<td>xHCI USB 2.0 ISOCH Device Missed Service Interval</td>
</tr>
</tbody>
</table>

Specification Changes

<table>
<thead>
<tr>
<th>Number</th>
<th>Stepping</th>
<th>SPECIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>There are no Specification Changes in this revision of the specification update.</td>
</tr>
</tbody>
</table>

Specification Clarifications

<table>
<thead>
<tr>
<th>Number</th>
<th>SPECIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are no Specification Clarifications in this revision of the specification update.</td>
</tr>
</tbody>
</table>

Documentation Changes

<table>
<thead>
<tr>
<th>Number</th>
<th>SPECIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are no Documentation Changes in this revision of the specification update.</td>
</tr>
</tbody>
</table>

§§
Errata

1. xHC Data Packet Header and Payload Mismatch Error Condition

Problem: If a SuperSpeed device sends a DPH (Data Packet Header) to the xHC with a data length field that specifies less data than is actually sent in the DPP (Data Packet Payload), the xHC will accept the packet instead of discarding the packet as invalid.

Note: The USB 3.0 specification requires a device to send a DPP matching the amount of data specified by the DPH.

Implication: The amount of data specified in the DPH will be accepted by the xHC and the remaining data will be discarded and may result in anomalous system behavior.

Note: This issue has only been observed in a synthetic test environment with a synthetic device.

Workaround: None.

Status: No Plan to Fix.

2. USB SuperSpeed Packet with Invalid Type Field Issue

Problem: If the encoding for the "type" field for a SuperSpeed packet is set to a reserved value and the encoding for the "subtype" field is set to "ACK", the xHC may accept the packet as a valid acknowledgment transaction packet instead of ignoring the packet.

Note: The USB 3.0 specification requires that a device never set any defined fields to reserved values.

Implication: System implication is dependent on the misbehaving device and may result in anomalous system behavior.

Note: This issue has only been observed in a synthetic test environment with a synthetic device.

Workaround: None.

Status: No Plan to Fix.

3. xHC Behaviour with Three Consecutive Failed U3 Entry Attempts

Problem: The xHC does not transition to the SS.Inactive USB 3.0 LTSSM (Link Training and Status State Machine) state after a SuperSpeed device fails to enter U3 upon three consecutive attempts.

Note: The USB 3.0 specification requires a SuperSpeed device to enter U3 when directed.

Implication: The xHC will continue to try to initiate U3. The implication is driver and operating system dependent.

Workaround: None.

Status: No Plan to Fix.
4. **Max Packet Size and Transfer Descriptor Length Mismatch**

Problem: The xHC may incorrectly handle a request from a low-speed or full-speed device when all the following conditions are true:

- The sum of the packet fragments equals the length specified by the TD (Transfer Descriptor)
- The TD length is less than the MPS (Max Packet Size) for the device
- The last packet received in the transfer is "0" or babble bytes

Implication: The xHC will halt the endpoint if all the above conditions are met. All functions associated with the endpoint will stop functioning until the device is unplugged and reinserted.

Workaround: None.

Status: No Plan to Fix.

5. **xHCI Controller OC# Issue**

Problem: xHCI Host Controller Reset (HCRST) may not complete if a USB over-current event occurs while powering on or resuming from S5 or S4.

Implication: Upon resume all xHCI Ports may become non-functional.

Note: To recover xHCI port functionality requires the USB Device causing an over-current event to be removed and the system to be reset.

Workaround: None.

Status: No plan to fix.

6. **xHCI USB2.0 Split-Transactions Error Counter Reset Issue**

Problem: The xHCI controller may not reset its split transaction error counter if a high-speed USB hub propagates a mal-formed bit from a low-speed or full-speed USB device exhibiting non-USB specification compliant signal quality.

Implication: The implication is device dependent.

- Full Speed and Low Speed devices behind the hub may be re-enumerated and may cause a device to not function as expected.

Workaround: None.

Status: No plan to fix.

7. **USB xHCI Controller May Not Re-enter a D3 State After a USB Wake Event**

Problem: After processing a USB 3.0 wake event, the USB xHCI controller may not re-enter D3 state.

Implication: When the failure occurs, the system will not enter a Sx state.

Workaround: Software should clear bit 28 PME Enable (PME_EN) of PMCRTL[28]PWR_CNTL_STS--Power management Control/Status Register (USB xHCI-D20:F0: Offset 74h) after the controller enters D0 state following an exit from D3.

For Microsoft* Windows* 7, workaround is included in Intel® USB 3.0 eXtensible Host Controller Driver, version 4.0.0.23 or later.

For Microsoft* Windows* 8.1, workaround is included in Intel® USB 3.0 Host Controller Adaptation Driver, version 1.0.0.27 or later.

Intel has notified all major OSV’s of this behavior so this workaround may be implemented as needed.
8. **USB 3.0 Devices Not Detected After Sx Resume**

Problem: While the system is in S3/S4/S5 and a USB 3.0 device is disconnected and reconnected to a system, the Cold Attach Status (CAS) bit 24 of PORTSCNUSB3-xHCI USB3 Port N Status and Control Register may be overwritten.

Implication: The system may not detect USB 3.0 devices after wake from S3/S4/S5.

Workaround: Software should issue a warm port reset when the PORTSCNUSB3-xHCI USB3 Port N Status and Control Register Port Link State (PLS) bits 8:5 is 0x7h(Link is in Polling State) and the CAS bit is 0. For Microsoft* Windows* 7, workaround is included in Intel® USB 3.0 eXtensible Host Controller Driver, version 4.0.0.23 or later.

For Microsoft* Windows* 8.1, workaround is included in Intel® USB 3.0 Host Controller Adaptation Driver, version 1.0.0.27 or later.

Intel has notified all major OSV’s of this behavior so this workaround may be implemented as needed.

Status: No plan to fix.

9. **PCI Express Unexpected Completion Status Bit May Get Set**

Problem: A PCI Express Device replaying a Completion TLP may incorrectly cause an Unexpected Completion Error.

Note: This has only been observed when a PCIe device causes frequent link corruptions and recovery events to occur.

Implication: Bit 16 Unexpected Completion Status (UC) may get set in the Uncorrectable Error Status (UES) Register (PCI Express*-D28:F0/F1/F2/F3/F4/F5:offset 104h).

Workaround: System Software may set bit 16 Unexpected Completion Mask (UC) in the Uncorrectable Error Mask (UEM) Register (PCI Express*-D28:F0/F1/F2/F3/F4/F5:Offset 108h).

Status: No plan to fix.

10. **eSPI Concurrent Get-Config and Flash Cycles**

Problem: When an eSPI Get_Config cycle occurs concurrently with a flash cycle, the eSPI controller may stop working.

Note: The issue has only been observed in a synthetic test environment only

Implication: System may hang.

Workaround: None.

Status: No Plan to Fix.

11. **xHCI U3 Wake exit Issue**

Problem: xHCI Controller does not send the LFPS wake handshake for the full 10ms and reattempts U3 wakeup prior to the minimum 100ms wait time following a tNoLFPSResponseTimeout.

Note: USB3 Specification Section 7.5.9.2 Exit from U3 specifies the port shall remain in U3 when the 10-ms LFPS handshake timer times out (tNoLFPSResponseTimeout). And 7.2.4.2.7 Low Power Link State Exit Flow specifies a minimum of 100-ms delay between attempts to re-initiate U3 wakeup again.

Implication: Implication will be USB3 Super-Speed Device and OS / Host Driver dependent.

Note: Intel has Only observed this in a Synthetic Test Environment.
Workaround: None
Status: No Plan To Fix.

12. **xHCI Controller USB Debug Port Disconnect Issue**
Problem: USB 3.0 Debug Port may hang when removing USB debug device.

Note: This issue has only been observed infrequently during USB debug connector unplug events

Implication: The Port will not function and require a Platform Reset to recover.

Workaround: None.
Status: No Plan To Fix.

13. **PSIC Field Incorrect Value**
Problem: PSIC (The Protocol Speed ID Count) field incorrectly reports a value of 3. PSIC should report 6 indicating SSIC support.

Implication: If software utilizes PSIC, it may incorrectly determine SSIC is not supported. Additionally xHCI CV TD 1.09 Protocol Speed ID Test fails. Intel has obtained a waiver for PSIC.

Workaround: None Identified.
Status: No Plan To Fix.

14. **xHCI Extended Capabilities Registers are Incorrectly Implemented as Read/Write**
Problem: Bits [15:0] of xHCI Extended Capabilities CSR (Debug Capability Descriptor Parameters – XHCI_BAR, Offset 8740H) are incorrectly implemented as Read/Write, instead of Read-Only.

Implication: This erratum causes the USB-IF xHCI CV TD 1.05 Extended Capabilities Registers Tests to report a failure; Intel has obtained a waiver for TD1.05. Intel has not observed this erratum with any commercially available software.

Workaround: None.
Status: No Plan To Fix.

15. **SPI Dual I/O and Quad I/O Modes**
Problem: When the PCH SPI controller is in Quad I/O or Dual I/O mode and reads a flash device which uses "mode cycles" after the address phase to enable the flash device's special mode, the MISO, IO2, and IO3 signals will be pulled high by the PCH while the device expects the signals to be low.

Implication: SPI transactions may fail resulting in possible system hang or failure during boot.

Status: A BIOS code change has been identified and may be implemented as a workaround for this erratum. No Plan To Fix.

16. **eSPI Turn Around (TAR) Spec Violation**
Problem: During the Turn Around (TAR) window, the eSPI controller does not drive the data lines to logic ‘1’ for the first clock as specified by the eSPI specification.

Implication: There are no known functional failures due to this issue.

Workaround: None.
Status: No Plan to Fix.
17. **SMBus Transaction Using Memory Mapped I/O Registers**

Problem: When using memory-mapped-I/O DATA register for a SMBus write transaction, data transmitted from the register for Byte Write, Block Write, or Send Byte operation with Packet Error Check (PEC) enabled may not match the data programmed by software.

Implication: The SMBus transaction may fail. Implication depends on the failing transaction.

Workaround: Platform software should use IO-mapped registers for SMBus transactions.

Status: No Plan to Fix.

18. **xHCI Warm Reset to Unused USB3 Port May Hang the Platform**

Problem: Setting the USB3 Port Disable Override (USB3PDO) bit in xHCI Memory Mapped register USB3 Port Disable Override (USB3PDO)—Offset 84FCh Bits 9:0 for an unused port may cause the port to get stuck in RXDetect State not allowing a platform to reboot or enter S3, S4 or S5.

Implication: Platform may hang upon rebooting or entering S3, S4 or S5.

Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.

Status: No Plan to Fix.

19. **xHCI Host Controller USB 2.0 Control Transfer May Cause IN Data to be Dropped**

Problem: USB 2.0 Control Transfers may incorrectly clear a USB 2.0 flow control condition to a USB 2.0 IN endpoint resulting in the dropping of IN Data to the flow controlled endpoint. Exposure is sensitive to high volume of unrelated OUT transactions occurring on the xHCI Host controller.

Implication: USB 2.0 Device dependent and may result in anomalous USB 2.0 Device behavior.

Note: Intel has only observed this with a single USB2.0 Device which frequently used USB 2.0 Control Transfers during operation.

Workaround: None. A BIOS code change has been identified and may be implemented as a workaround to significantly minimize exposure to the occurrence of this erratum.

Status: No Plan To Fix.

20. **System May Hang While Restoring HSIO ModPHY Configuration**

Problem: While Power Management Controller (PMC) is restoring High Speed I/O (HSIO) Modular Physical Layer (ModPHY) configuration during resume from S3, S4, S5 or while performing a platform reset the PMC may hang if a PMC managed timer expires during this time period.

Implication: System may hang during resume.

Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.

Status: No Plan To Fix.

21. **xHCI Host Controller Reset May Cause a System Hang**

Problem: The xHCI host controller may fail to respond if either of the two actions are performed:

1) Accessing xHCI configuration space within 1 ms of setting the xHCI HCRST (Host Controller Reset) bit of the USB Command Register (xHC IBAR, offset 80h, Bit [1]), or

2) Setting the HCRST bit two times within 120 ms.

Implication: The system may hang.

Workaround: None identified.
Note: Software must not make any accesses to the xHCI Host Controller registers for 1 ms after setting the HCRST bit 1 of the USB Command Register (xHCI BAR + 80h) and must add a 120 ms delay in between consecutive xHCI host controller resets.

Status: No Plan To Fix.

22. **PCI Express Gen2 x4 Device may cause a Machine Check Exception**

Problem: PCH PCI Express Host Controller when configured as Gen2 x4 may not properly handle an abrupt link transition to electrical idle without receiving Electrical Idle Ordered Set (EIOS) such as during hot unplug event.

Implication: Platform May Hang due to a Machine Check Exception if all of the following conditions are met when the link is terminated abruptly:
- No 8b10b errors occur,
- A TLP of exactly 3DWords is received (length started to count from STP as the first byte) **Note:** A valid TLP length is 5DWords at least),
- The TLP must end with END or EDB,
- And dependent on the specific internal timing of the DW alignment.

Workaround: None.

Status: No Plan To Fix.

23. **PCH PCIe* Controller Root Port Access Control Services Control Registers (ACSCTLR) Appear as Read Only**

Problem: ACSCTLR is implemented and documented in the External Design Specification (EDS) at Offset 0x148 instead of at Offset 0x146 as documented in the PCI-SIG PCI Express Base Specification.

Implication: ACS aware software will not be able to access and configure ACSCTLR at Offset 0x146.

Workaround: ACS aware software must account for and access ACSCTLR at Offset 0x148 as documented in the .

Status: No Plan To Fix.

24. **Pull-up and Pull-down on SPI CS# and CLK Signals**

Problem: The pull up/pull down implementation before RSMRST# assertion on SPI chip select (CS#) and clock (CLK) signals does not match the specified behavior. The actual implementation has no pull-up or pull down before RSMRST# assertion.

Implication: System implication depends on the external device requirements sampling the SPI CS# and CLK signals.

Workaround: Implement an external pull-up, depending on the external device requirements.

Status: No Plan to Fix.

The correct implementation information will be updated in Revision 002 of the 6th Generation Intel Processor Families IO Platform Datasheet.

25. **eSPI Error Reporting**

Problem: When errors occur on the eSPI interface, the eSPI error reporting registers (VWERR_SLV, LNKERR_SLV, FCERR_SLV, PCERR_SLV, SLV_CFG_REG_CTL) may not be updated correctly.

Implication: Platform implication depends on the software usage of the registers.

Workaround: None.

Note: eSPI error handling software may issue an in-band reset to the eSPI device when detecting an error associated with these registers.

Status: No Plan to Fix.
26. **USB 3.0 DCI Control Packet Issue**

Problem: DbC (Debug Capability) Device connection may hang if the USB 3.0 host controller DCI (Direct Connect Interface) does not send Control Packets in multiples of 16.

Implication: USB 3.0 host controller DCI may hang.

Workaround: DbC software must ensure DCI Control Packets are sent in multiples of 16. And no concurrent OUT EP traffic is occurring while the Control Packets are in progress to the DCI device.

Status: No Plan to fix.

27. **eSPI Fatal Error Handling**

Problem: The eSPI controller may not correctly handle fatal errors occurring on the eSPI bus.

Note: System implication depends on the type of the fatal error and may result in a system hang.

Implication: A fatal error is a rare event on the eSPI interface and this issue has only been observed by Intel in a synthetic test environment.

Workaround: None.

Status: No Plan to Fix.

28. **PCH PCIe* TX Pin State During L1.0 and L1.1 Substates**

Problem: Upon entry to L1.0 or L1.1 Substates the PCH PCIe* TX pins may internally get pulled down to ground instead of maintaining the link common mode voltage.

Implication: PCIe* devices that are in L1.0 or L1.1 may interpret the grounding of the TX pins as an exit event from electrical idle which may cause them to assert their CLKREQ# and exit the L1 Power Management.

Notes:
- The issue has only been observed with a single 3rd Party PCIe* Device
- The issue is depended on the end point device input squelch sensitivity and if the device sends a Latency Tolerance and Reporting (LTR) Snoop/Non-Snoop Latency Message above 50 Microseconds while entering L1.0 or L1.1 with CLKREQ# de-asserted

Workaround: None.

Status: No Plan to Fix.
29. **Power Down Sequencing Issue During Entry to G3 or Deep Sx**

Problem: Platforms with independent Voltage Regulators (VRs) where voltage rail VCCPRIM_CORE discharges before VCCPRIM_1P0 during entry to G3 or Deep Sx, may experience anomalous platform behavior after a resume from G3 or Deep Sx state.

Note: Platforms with a shared Voltage Regulator (VR) for VCCPRIM_CORE and VCCPRIM_1P0 voltage rails are not affected.

Implication: Platform may experience anomalous behavior after a resume from G3 or Deep Sx state.

Workaround: A Platform Firmware mitigation code change has been identified and may be implemented as mitigation to this erratum.

Status: No Plan to Fix

30. **Subsequent Deep S5 and S5 Exits Impacted After “Straight to S5 (Host Stays There)” Resets**

Problem: Following a S0 resume from a “Straight to S5 (Host Stays There)” reset, the PCH may enforce earlier wake event restrictions from the “Straight to S5 (Host Stays There)” reset on subsequent Deep S5 and S5 exits causing some wake events not to be recognized by the PCH.

Note: This issue only occurs on platforms where Deep S5 is enabled. This issue does not impact S3/S4 exits.

Implication:
- On subsequent Deep S5 exits, the following events will not be able to wake the system:
 - RTC Alarm, PCIe WAKE# pin, and Wake Alarm Device.
- On subsequent S5 exits if the S5 entry is due leaving Deep Sx because of ACPRESENT assertion, the following events will not be able to wake the system:
 - RTC Alarm, PCIe WAKE# pin, Wake Alarm Device, GPIOs and Secondary PME#
- If system is in S5 for any other reason, this issue will not be present.

Workaround: None.

Note: Deep S5 / S5 exit restrictions will be cleared after DSW_PWROK assertion (G3 power state) or after another global reset occurs (as long as global reset is not of the type "Straight to S5 (Host Stays There)").

Status: No Plan to Fix.
31. **eSPI Bus Mastering**

Problem: The eSPI controller may not successfully complete bus mastering cycles from a slave device as described below:

1. Upstream memory write from EC may have the last DW dropped if there’s an upstream completion of a configuration cycle occurring at the same time.
2. The controller may prevent the system from entering a warm reset if an upstream non-posted cycle is pending.
3. The controller may not perform ordering between posted/non-posted/completion requests.

The issue has only been observed in synthetic testing environment.

Implication: System may hang.

Workaround: None.

Status: No Plan to Fix.

32. **N/A. Erratum has been removed**

33. **The PCIe Gen3 PLL May Not Wake From Link Low Power States**

Problem: The PCIe Gen3 PLL may not wake from link low power states.

Implication: The system may hang or PCIe 3.0 device(s) may not function. A reboot will likely recover the system.

Note: The occurrence of the issue is rare and has only been observed on a small subset of units on a small number of platform designs.

Workaround: None.

Status: No Plan to Fix.

34. **Voltage Floating on USB - Device Mode Capable Port**

Problem: During warm reset or host deep reset, the USB port 1 defaults to Device Controller mode and may take ~250 ms to switch back to Host Controller mode. During this time, the USB2 integrated pull downs are disabled and the D+/D- lines may float.

Implication: Device susceptible to SE1 will respond unexpectedly and may fail to enumerate.

Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.

Status: No Fix.
35. **USB3.0 – Jitter Tolerance Margin**

Problem: Following a Sx exit, or Cold Reset, BIOS and Intel® ME Firmware may not restore the electrical parameters associated with Rx jitter tolerance margin for the USB 3.0 interface.

The issue does not occur on an initial boot from G3 or warm reboot.

Implication: Degradation of jitter tolerance margin on USB3.0 port may be observed.

Workaround: None.

Status: No Fix.

36. **Failure of USB compliance test TD 7.01 Link Bring-up Test (Subtests 1 and 2)**

Problem: Upon receiving Polling.LFPS burst, the xHCI controller sends 3 consecutive Polling.LFPS bursts instead of 4 as per xHCI spec - section 7.5.4.3.2.

Implication: USB-IF TD 7.01 Link Bring-up Test (Subtests 1 and 2) may report a failure. Intel has obtained a waiver for TD 7.01.

Note: Intel has not observed any functional failure.

Workaround: None.

Status: No plan to fix.

37. **Intermittent Failure of USB Compliance Test TD3.08**

Problem: USB 2.0 port on the xHCI controller may remain in RESUME state for up to additional 20ms after software writes PORTSC.PLS to U0.

Implication: USB-IF xHCI CV TD 3.08 may report a failure. Intel has obtained a waiver for TD 3.08.

Note: Intel has not observed any functional failure with any commercially available software.

Workaround: None.

Status: No Fix.

38. **Intel® RST for PCIe Storage - SATA PCI Configuration Read**

Problem: If a PCIe link configured for Intel® RST for PCIe Storage is not trained to L0 due to an error condition (such as device misbehavior, board instability, or system mis-configuration, etc.), a read to any SATA PCI Configuration Space register may not be completed.

Note: This issue has only been observed in a synthetic test environment

Implication: The incomplete transaction may cause a CATERR, resulting in a system hang.

Workaround: None.

Status: No Fix.

39. **xHCI Controller May Hang on D3 Entry Following a Hot-Plug Event**

Problem: The xHCI controller may hang on D3 entry if the xHCI driver is unable to service a port status change in between disconnect and re-connect of Super Speed device.

Implication: Due to this erratum the system may hang.

Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.

Status: No Fix.
40. Dual PCIe*/SATA Muxing Configurations May Prevent HSIO Phy Power Gating
Problem: Mulxed PCIe* Controller x2 or x4 configurations where logical lane 0 is assigned as SATA and the upper logical lanes are assigned to PCIe*, may prevent HSIO Phy Power Gating for the assigned PCIe* lanes.
Implication: SLP_S0# may not assert as expected.
Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.
Status: No Fix.

41. USB2.0 PLL May Fail to Lock During S3 Resume
Problem: When a system is woken from S3 using a USB2.0 device, the USB2.0 PLL may fail to lock during the initialization process. Then, the eXtensible Host Controller may not send the Start of Frame (SOF) packets at the correct interval as specified per USB 2.0 specification.
Implication: USB2.0 devices may not enumerate correctly or yellow bang after resuming from S3.
Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.
Status: No Fix.

42. PCIEXP_WAKE_STS Bit Not Set as Expected
Problem: PCIEXP_WAKE_STS bit (PMC Controller D31:F2, Bit 14) is not set as expected after a PCI Express WAKE# event.
Implication: System Software may not be able to identify wake from PCI Express wake event using PCIEXP_WAKE_STS bit.
Workaround: None.
Status: No Fix.

43. xHCI USB Hardware LPM Capability (HLC) Register Reset to the Default Value During D3-D0 Transition
Problem: xHCI USB Hardware LPM Capability (HLC) registers 19 offset 8008 defaults back to its default value of “1” after D3-D0 transition.
Implication: System software may read this value and may enable LPM capability on a platform which is configured to disable LPM.

Note: Intel has only observed this in the Intel Windows* 7 xHCI driver (4.0.5.55 and older) which may check this bit during a driver upgrade.
Workaround: System software (driver) should not rely on the HLC bit. Fixed in Intel xHCI driver 4.0.6.60
Status: No Fix.

44. Intel® Serial I/O Controller DMA LLP 4 GB Boundary Alignment
Problem: If software assigns a 4 GB-aligned address to the Linked List Pointer (LLP_LOn = 0h) for Intel® Serial I/O Controller DMA engine, then the DMA engine interprets this as an empty link list and will not perform DMA transfers.
Implication: An Intel® Serial IO controller (i.e. I2C, GSPI, or UART) may stop operating which may cause the system to hang.
Workaround: Driver software should not assign LLP to a 4 GB-aligned address.
Status: This issue has been addressed in the Intel Serial IO drivers in the following versions or later: For Microsoft* Windows* 10, I2C device driver rev 30.100.1724.2, SPI device driver rev 30.100.1725.1, and UART device driver rev 30.100.1725.1

45. eMMC/SDXC/SDIO CRC Detection

Problem: The eMMC or SDXC controllers may fail to detect a CRC error if a bit error occurs on the DATA3 signal during read operations when in eMMC DDR50/HS400 mode or SDXC DDR50 mode. CRC detection on other DATA signals is not impacted.

Implication: The controller will not flag the CRC error to the driver or application, which could result in data integrity issues. Bit errors on eMMC or SDXC DATA signals are not expected on platforms that follow the Intel recommended design guidelines and tuning processes.

Workaround: None identified. To mitigate the issue, eMMC HS200 or SDXC SDR50 modes can be used instead of HS400 or DDR50.

Status: No fix.

46. USB DbC or Device Mode Port When Resuming from Sx/G3 State

Problem: If a PCH USB 3.1 Type-C port is configured in Device Mode (or in DbC mode) and connected to an external USB 3.1 host controller, it may cause the USB port to go into a non-functional state in the following scenarios:

1. The PCH resumes from Sx state, the port may remain in U2.
2. The port is connected to a USB 3.1 Gen1 host controller when resuming from Sx or G3, the port may enter into Compliance Mode or an inactive state if Compliance mode is disabled.
3. The port is connected to a USB 3.1 Gen2 host controller when resuming from Sx or G3, the port may enter an inactive state.

Implication: PCH USB 3.1 Type-C port configured in Device Mode (or in DbC mode) may fail to enumerate or become unavailable.

Workaround: None.

Status: No plan to fix.

47. PCIe Root Port CLKREQ# Asserted Low to Clock Active Timing

Problem: During L1 exit, the PCH PCIe Root Ports may exceed the CLKREQ# asserted low to clock active maximum specification due to PCH PCIe clock un-gate path delays.

Implication: PCIe end point device L1 exit instabilities may be observed.

Note: PCIe end point devices that message LTR latency greater than or equal to 1 µs are not affected by this.

Workaround: None.

- Platforms not supporting S0ix with PCIe end point devices that do not support LTR may disable the associated PCH SRCCLKREQ# signal to keep the PCIe clock active during L1.
- Platforms supporting S0ix with PCIe end point devices that have LTR latencies less than 1 µs may disable the associated PCH SRCCLKREQ# signal to keep the PCIe clock active during L1.

Status: No plan to fix.

48. xHCI USB 2.0 ISOCH Device Missed Service Interval

Problem: When the XHCI Controller is stressed with concurrent traffic across multiple USB ports, the xHCI controller may fail to service USB 2.0 Isochronous IN endpoints within the required service interval.
Implication: USB 2.0 isochronous devices connected to the xHCI controller may experience dropped packets.

Note: This issue has only been observed in a synthetic environment.

Workaround: None.

Status: No Plan to Fix.
There are no Specification Changes in this revision of the Specification Update.
There are no Documentation Changes in this revision of the Specification Update.