

Intel[®] 6 Series Chipset and Intel[®] C200 Series Chipset

Specification Update

June 2013

Notice: Intel[®] 6 Series Chipset and Intel[®] C200 Series Chipset may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are documented in this specification update.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel[®] High Definition Audio (Intel[®] HD Audio): Requires an Intel[®] HD Audio enabled system. Consult your PC manufacturer for more information. Sound quality will depend on equipment and actual implementation. For more information about Intel[®] HD Audio, refer to http://www.intel.com/design/chipsets/hdaudio.htm

Intel[®] Active Management Technology (Intel[®] AMT) requires activation and a system with a corporate network connection, an Intel[®] AMT-enabled chipset, network hardware and software. For notebooks, Intel AMT may be unavailable or limited over a host OS-based VPN, when connecting wirelessly, on battery power, sleeping, hibernating or powered off. Results dependent upon hardware, setup & configuration. For more information, visit http://www.intel.com/technology/platform-technology/intel-amt

Intel[®] Virtualization Technology (Intel[®] VT) for Directed I/O (Intel[®] VT-d) requires a computer system with an enabled Intel[®] processor, BIOS, virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

I²C is a two-wire communications bus/protocol developed by NXP. SMBus is a subset of the I²C bus/protocol and was developed by Intel. Implementations of the I²C bus/protocol may require licenses from various entities, including NXP Semiconductors N.V.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Intel, Intel Core, Intel AMT, Intel RST, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011-2013, Intel Corporation. All rights reserved.

Contents

Preface	7
Summary Tables of Changes	8
Identification Information	
PCH Device and Revision Identification	13
Errata	
Specification Changes	
Specification Clarifications	
Documentation Changes	

§§

Revision History

Revision	Description	Date
001	Initial Release	January 2011
002	 Updated Top Markings PCH Device and Revision Identification Added Erratum 14: SATA Ports 2-5 Issue 	February 2011
003	Updated — Top Markings — PCH Device and Revision Identification	February 2011
004	 Added Intel[®] Q65 Chipset to Top Markings and PCH Device and Revision Identification Specification Change 1: Intel Q65 SKU Addition 	April 2011
005	 Removed Specification Change 1 that went into Datasheet rev 003 Added Intel[®] C200 Series Chipsets to Top Markings, PCH Device and Revision Identification, and Errata 	April 2011
006	 Added Intel[®] Z68 Chipset to Top Markings and PCH Device and Revision Identification 	May 2011
007	 Updated Erratum 12: High-speed USB 2.0 Transmit Signal Amplitude Added Erratum 15: Intel[®] ME Clock Throttling Failure Causes Hang 	July 2011
008	 Updated PCH Device and Revision Identification Erratum 12 and USB terminology changed for consistency on various errata Added Errata 16: USB Full-/low-speed Port Reset or Clear TT Buffer Request and 17: Intel[®] 82579 Gigabit Ethernet Controller Transmission Issue Specification Change 1: LED Locate Intel[®] Rapid Storage Technology Capability Removal Specification Clarifications: 1: Device 31 Function 6 Disable Bit, 2: LAN Disable Reset, 3: SGPIO Signal Usage, 4: RTCRST# and SRTCRST# Clarification, 5: PPM of 25 MHz Option for CLKOUTFLEX2, 6: SATA Alternate ID Enable Definition Update, 7: SATA Hot Plug Operation, 8: GPIO13 Voltage Tolerance, and 9: EHC1 Configuration Programming Documentation Changes: 1: Addition of LPC Capability List Pointer Register, 2: Intel[®] Smart Response Technology Functional Description Updates, 3: Addition of Legacy ATA Backwards Compatibility Registers, 4: DMI L1 Exit Latency Documentation Change, 5: Device 30 Function 0 Naming Consistency Change, 6: Gigabit Ethernet Capabilities and Status Registers Additions, 7: Measured ICC Corrections, and 8: Miscellaneous Documentation Corrections 	August 2011
009	 Added Specification Change: 2: Removal of S1 Support on Intel[®] C200 Series Chipset Specification Clarifications: 10: PCH Thermal Sensor Temperature Range and 11: Secondary PCI Device Hiding Register Attribute Clarification Documentation Changes: 9: 25 MHz Flex Clock AC Timings, 10: Fan Speed Control Signals Functional Description Introduction, 11: SMBus/SMLink Timing Naming Corrections, 12: PCI Express* Lane Reversal Bit Change, 13: Auxiliary Trip Point Lock Bit Correction, 14: Top Swap Updates, and 15: Miscellaneous Documentation Corrections II 	September 2011
010	 Updated PCIe* PCH Device and Revision ID Table Documentation Change: PCI Express* Lane Reversal Bit Change Added Specification Clarifications: 12: GPIO Lock Clarification and 13: GPIO13 Voltage Well Documentation Change: 16: Ballout Documentation Changes 	October 2011

Revision	Description	Date
011	 Added Specification Change: 3: A20GATE and A20M# Functionality Removal Specification Clarifications: 14: SLP_SUS# Clarifications and 15: PME_Turn_Off TLP Documentation Changes: 17: Integrated Digital Display Audio Device and Revision IDs and 18: Miscellaneous Documentation Corrections III 	November 2011
012	 Updated Specification Changes: 3: A20GATE and A20M# Functionality Removal Documentation Changes: 8: Miscellaneous Documentation Corrections and 17: Integrated Digital Display Audio Device and Revision IDs Added Erratum: 18: USB RMH Think Time Issue Specification Clarifications: 16: GPIO Clarifications and 17: Power Button Override and Deep S4/S5 Documentation Changes: 19: SPI Documentation Changes, 20: Miscellaneous Documentation Corrections IV, and 21: Mobile SFF PCH Ballout 	December 2011
013	 Updated Revision History content and formatting PCH Device and Revision ID Table Specification Clarification: 16: GPIO Clarifications Documentation Changes: 8: Miscellaneous Documentation Corrections, 10: Fan Speed Control Signals Functional Description Introduction, 11: SMBus/SMLink Timing Naming Corrections, and 16: Ballout Documentation Changes Added Specification Clarification: 18: Power Management Clarifications 	January 2012
014	 Added Erratum: 19: Intel[®] AMT and Intel[®] Standard Manageability KT/SOL Interrupt Status Cleared Prematurely Documentation Changes: 22: Thermal Sensor Thermometer Read Register Updates, 23: DC Inputs Characteristics Tables Corrections, 24: CPU_PWR_FLR Removal, and 25: Miscellaneous Documentation Corrections V. 	February 2012
015	 Added Erratum: 20: Incorrect IRQ(x) Vector Returned for 8259 Interrupts With RAEOI Enabled. Specification Clarification: 19: t203 Deep S3/S4 Exit Clarification. Documentation Changes: 26: PCI Express Initialization Registers Corrections, 27: VccSus3_3 Description, 28: Register Default Value Corrections, and 29: Miscellaneous Documentation Corrections VI. 	April 2012
016	 Updated Documentation Change: 29: Miscellaneous Documentation Corrections VI. Added Erratum: 21: USB RMH False Disconnect Issue. Documentation Change: 30: Miscellaneous Documentation Correction VII. 	May 2012
017	 Updated Specification Clarification: 18: Power Management Clarifications. Added Erratum: 22: USB RMH Think Time Issue. Documentation Changes: 31: Function Level Reset Pending Status Register Correction and 32: Miscellaneous Documentation Correction VIII. 	June 2012

Revision	Description	Date
018	 Updated Specification Clarification: 16: GPIO Clarifications. Added Specification Clarifications: 20: RAID 1 Description, 21: V_PROC_IO Definition, 22: Manageability Signals Clarifications, and 23: ACPRESENT Definition. Documentation Change: 33: SPI Required Region Correction. 	July 2012
019	 Updated Documentation Changes: 6: Gigabit Ethernet Capabilities and Status Registers Additions, 28: Register Default Value Corrections, 29: Miscellaneous Documentation Corrections VI, and 33: SPI Required Region Correction. Added Erratum: 23: Packet Loss on Intel[®] 82579 Gigabit Ethernet Controller. Specification Clarification: 24: SPI Overview. Documentation Changes: 34: High Precision Event Timers Functional Description and 35: Miscellaneous Documentation Corrections IX. 	August 2012
020	 Added Erratum: 24- Intel[®] 6/ C200 Series Chipset Family PCI-Express Root Ports Unsupported Request Complete Issue; 25- Intel[®] 6/ C200 Series Chipset Family SATA Automatic Partial Slumber Transitions Issue. Specification Change: 4- UM67 Raid Mode Support. 	June 2013

§§

Preface

This document is an update to the specifications contained in the Affected Documents/Related Documents table below. This document is a compilation of device and documentation errata, specification clarifications and changes. It is intended for hardware system manufacturers and software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Title	Document Number
Intel [®] 6 Series Chipset and Intel [®] C200 Series Chipset Datasheet	324645-006

Nomenclature

Errata are design defects or errors. Errata may cause the behavior of the PCH to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present in all devices.

Specification Changes are modifications to the current published specifications. These changes will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a specification's impact to a complex design situation. These clarifications will be incorporated in any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published specifications. These will be incorporated in any new release of the specification.

§§

Summary Tables of Changes

The following tables indicate the errata, specification changes, specification clarifications, or documentation changes which apply to the product. Intel may fix some of the errata in a future stepping of the component and account for the other outstanding issues through documentation or specification changes as noted. These tables use the following notations:

Codes Used in Summary Tables

Stepping

X:	Erratum exists in the stepping indicated. Specification Change that applies to this stepping.
(No mark)	
or (Blank box):	This erratum is fixed or not applicable in listed stepping or Specification Change does not apply to listed stepping.
Doc:	Document change or update will be implemented.
Plan Fix:	This erratum may be fixed in a future stepping of the product.
Fixed:	This erratum has been previously fixed.
No Fix:	There are no plans to fix this erratum.

Row

Status

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the document.

Erratum	Stepping		Charles	EDDATA	
Number	B2	B3	Status	ERRATA	
1	Х	Х	No Fix	USB Isoch In Transfer Error Issue	
2	Х	Х	No Fix	USB Full-/low-speed Device Removal Issue	
3	Х	Х	No Fix	USB Babble Detected with SW Overscheduling	
4	Х	Х	No Fix	USB Full-/low-speed EOP Issue	
5	Х	Х	No Fix	USB PLL Control FSM Not Getting Reset on Global Reset	
6	Х	Х	No Fix	Asynchronous Retries Prioritized Over Periodic Transfers	
7	Х	Х	No Fix	USB FS/LS Incorrect Number of Retries	
8	Х	Х	No Fix	Incorrect Data for FS/LS USB Periodic IN Transaction	
9	Х	Х	No Fix	HDMI* 222 MHz Electrical Compliance Testing Failures	
10	Х	Х	No Fix	SATA Signal Voltage Level Violation	
11	Х	Х	No Fix	SATA Differential Return Loss Violations	
12	Х	Х	No Fix	High-speed USB 2.0 Transmit Signal Amplitude	
13	Х	Х	No Fix	Delayed Periodic Traffic Timeout Issue	
14	Х		Fixed	SATA Ports 2-5 Issue	
15	Х	Х	No Fix	Intel [®] ME Clock Throttling Failure Causes Hang	
16	Х	Х	No Fix	USB Full-/Low-speed Port Reset or Clear TT Buffer Request	
17	Х	Х	No Fix	Intel [®] 82579 Gigabit Ethernet Controller Transmission Issue	
18	Х	Х	No Fix	USB RMH Think Time Issue	
19	х	х	No Fix	Intel [®] AMT and Intel [®] Standard Manageability KT/SOL Interrupt Status Cleared Prematurely	
20	Х	Х	No Fix	Incorrect IRQ(x) Vector Returned for 8259 Interrupts With RAEOI Enabled	
21	Х	Х	No Fix	USB RMH False Disconnect Issue	
22	Х	Х	No Fix	USB RMH Think Time Issue	
23	Х	Х	No Fix	Packet Loss on Intel [®] 82579 Gigabit Ethernet Controller	
24	Х	х	No Fix	Intel [®] 6/ C200 Series Chipset Family PCI-Express Root Ports Unsupported Request Complete Issue	
25	Х	Х	No Fix	Intel [®] 6/ C200 Series Chipset Family SATA Automatic Partial Slumber Transitions Issue	

Specification Changes

Spec Change	Stepping		SPECIFICATION CHANGES			
Number	B2	B3				
1	Х	Х	LED Locate Intel [®] Rapid Storage Technology Capability Removal			
2	Х	Х	Removal of S1 Support on Intel [®] C200 Series Chipset			
3	Х	Х	A20GATE and A20M# Functionality Removal			
4	Х	Х	UM67 Raid Mode Support			

Specification Clarifications

No.	Document Revision	SPECIFICATION CLARIFICATIONS		
1	006	Device 31 Function 6 Disable Bit		
2	006	LAN Disable Reset		
3	006	SGPIO Signal Usage		
4	006	RTCRST# and SRTCRST# Clarification		
5	006	PPM of 25 MHz Option for CLKOUTFLEX2		
6	006	SATA Alternate ID Enable Definition Update		
7	006	SATA Hot Plug Operation		
8	006	GPIO13 Voltage Tolerance		
9	006	EHCI Configuration Programming		
10	006	PCH Thermal Sensor Temperature Range		
11	006	Secondary PCI Device Hiding Register Attribute Clarification		
12	006	GPIO Lock Clarification		
13	006	GPIO13 Voltage Well		
14	006	SLP_SUS# Clarifications		
15	006	PME_Turn_Off TLP		
16	006	GPIO Clarifications		
17	006	Power Button Override and Deep S4/S5		
18	006	Power Management Clarifications		
19	006	t203 Deep S3/S4 Exit Clarification		
20	006	RAID 1 Description		
21	006	V_PROC_IO Definition		
22	006	Manageability Signals Clarifications		
23	006	ACPRESENT Definition		
24	006	SPI Overview		

Documentation Changes (Sheet 1 of 2)

No.	Document Revision	DOCUMENTATION CHANGES			
1	006	Addition of LPC Capability List Pointer Register			
2	006	Intel [®] Smart Response Technology Functional Description Updates			
3	006	Addition of Legacy ATA Backwards Compatibility Registers			
4	006	DMI L1 Exit Latency Documentation Change			
5	006	Device 30 Function 0 Naming Consistency Change			
6	006	Gigabit Ethernet Capabilities and Status Registers Additions			
7	006	Measured ICC Corrections			
8	006	Miscellaneous Documentation Corrections			
9	006	25 MHz Flex Clock AC Timings			
10	006	Fan Speed Control Signals Functional Description Introduction			
11	006	SMBus/SMLink Timing Naming Corrections			

Documentation Changes (Sheet 2 of 2)

No.	Document Revision	DOCUMENTATION CHANGES		
12	006	PCI Express* Lane Reversal Bit Change		
13	006	Auxiliary Trip Point Lock Bit Correction		
14	006	Top Swap Updates		
15	006	Miscellaneous Documentation Corrections II		
16	006	Ballout Documentation Changes		
17	006	Integrated Digital Display Audio Device and Revision IDs		
18	006	Miscellaneous Documentation Corrections III		
19	006	SPI Documentation Changes		
20	006	Miscellaneous Documentation Corrections IV		
21	006	Mobile SFF PCH Ballout		
22	006	Thermal Sensor Thermometer Read Register Updates		
23	006	DC Inputs Characteristics Tables Corrections		
24	006	CPU_PWR_FLR Removal		
25	006	Miscellaneous Documentation Corrections V		
26	006	PCI Express* Initialization Registers Corrections		
27	006	VccSus3_3 Description		
28	006	Register Default Value Corrections		
29	006	Miscellaneous Documentation Corrections VI		
30	006	Miscellaneous Documentation Corrections VII		
31	006	Function Level Reset Pending Status Register Correction		
32	006	Miscellaneous Documentation Correction VIII		
33	006	SPI Required Region Correction		
34	006	High Precision Event Timers Functional Description		
35	006	Miscellaneous Documentation Correction IX		

§§

Identification Information

Markings

PCH Stepping	S-Spec	Top Marking	Notes
B2	SLH82	BD82H67	Intel [®] H67 Chipset
B2	SLH84	BD82P67	Intel [®] P67 Chipset
B2	SLH9C	BD82HM67	Intel [®] HM67 Chipset
B2	SLH9D	BD82HM65	Intel [®] HM65 Chipset
В3	SLJ4D	BD82Q67	Intel [®] Q67 Chipset
В3	SLJ4E	BD82Q65	Intel [®] Q65 Chipset
В3	SLJ4A	BD82B65	Intel [®] B65 Chipset
B3	SLJ4F	BD82Z68	Intel [®] Z68 Chipset
В3	SLJ49	BD82H67	Intel [®] H67 Chipset
B3	SLJ4C	BD82P67	Intel [®] P67 Chipset
B3	SLJ4B	BD82H61	Intel [®] H61 Chipset
B3	SLJ4J	BD82C202	Intel [®] C202 Chipset
B3	SLJ4H	BD82C204	Intel [®] C204 Chipset
В3	SLJ4G	BD82C206	Intel [®] C206 Chipset
В3	SLJ4M	BD82QM67	Intel [®] QM67 Chipset
B3	SLJ4L	BD82UM67	Intel [®] UM67 Chipset
B3	SLJ4N	BD82HM67	Intel [®] HM67 Chipset
B3	SLJ4P	BD82HM65	Intel [®] HM65 Chipset
B3	SLJ4K	BD82QS67	Intel [®] QS67 Chipset

§§

PCH Device and Revision Identification

The Revision ID (RID) is an 8-bit register located at offset 08h in the PCI header of every PCI device and function. The assigned value is based on the product's stepping.

PCH Device and Revisio	n ID Table	(Sheet 1	of 3)
------------------------	------------	----------	-------

Device Function	Description	Dev I D	B2 Rev ID	B3 Rev ID	Comments
		1C4Eh		05h	Intel [®] Q67 Chipset
		1C4Ch		05h	Intel [®] Q65 Chipset
		1C50h		05h	Intel [®] B65 Chipset
		1C4Ah	04h	05h	Intel [®] H67 Chipset
		1C44h		05h	Intel [®] Z68 Chipset
		1C46h	04h	05h	Intel [®] P67 Chipset
		1C5Ch		05h	Intel [®] H61 Chipset
D31:F0	LPC	1C52h		05h	Intel [®] C202 Chipset
		1C54h		05h	Intel [®] C204 Chipset
		1C56h		05h	Intel [®] C206 Chipset
		1C4Fh		05h	Intel [®] QM67 Chipset
	1C47h		05h	Intel [®] UM67 Chipset	
		1C4Bh	04h	05h	Intel [®] HM67 Chipset
		1C49h	04h	05h	Intel [®] HM65 Chipset
		1C4Dh		05h	Intel [®] QS67 Chipset
		1C00h	04h	05h	Desktop: Non-AHCI and Non-RAID Mode (Ports 0-3)
		1C02h	04h	05h	Desktop: AHCI (Ports 0-5)
		2822h ²	04h	05h	Desktop: Intel [®] Rapid Storage Technology RAID with or without Intel [®] Smart Response Technology (Ports 0-5) (AIE bit = 0)
D31:F2 SATA ¹	SATA ¹	1C04h ²	04h	05h	Desktop (all RAID-capable SKUs except Intel Z68 Chipset): RAID Capable3 (Ports 0-5) (AIE bit = 1)
		1C06h ²	04h	05h	Desktop (Intel Z68 Chipset only): RAID Capable ³ (Ports 0-5) (AIE bit = 1)
		1C01h	04h	05h	Mobile: Non-AHCI and Non-RAID Mode (Ports 0-3)
		1C03h	04h	05h	Mobile: AHCI (Ports 0-5)
		282Ah ²	04h	05h	Mobile: Intel Rapid Storage Technology RAID (Ports 0-5) (AIE bit = 0)
		1C05h ²	04h	05h	Mobile: RAID Capable ³ (Ports 0-5) (AIE bit = 1)

PCH Device and Revision ID Table (Sheet 2 of 3)

Device Function	Description	Dev I D	B2 Rev ID	B3 Rev ID	Comments
D31.E2	SATA ^{1,4}	1C08h	04h	05h	Desktop: Non-AHCI and Non-RAID Mode (Ports 4 and 5)
031.13	JAIA	1C09h	04h	05h	Mobile: Non-AHCI and Non-RAID Mode (Ports 4 and 5)
D31:F3	SMBus	1C22h	04h	05h	
D31:F6	Thermal	1C24h	04h	05h	
		1C25h	04h	05h	Desktop (When D30:F0:4Ch:bit 29 = 1)
	PCI to PCI	244Eh	A4h	A5h	Desktop (When D30:F0:4Ch:bit $29 = 0$)
D30.F0	Bridge	1C25h	04h	05h	Mobile (When D30:F0:4Ch:bit 29 = 1)
		2448h	A4h	A5h	Mobile (When D30:F0:4Ch:bit $29 = 0$)
D29:F0	USB EHCI #1	1C26h	04h	05h	
D26:F0	USB EHCI #2	1C2Dh	04h	05h	
D27:F0	Intel [®] HD Audio	1C20h	04h	05h	
		1C10h	B4h	B5h	Desktop and Mobile (When D28:F0:ECh:bit 1= 0)
D28:F0	PCI Express* Port 1	244Eh	B4h	B5h	Desktop (When D28:F0:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F0:ECh:bit 1 = 1)
		1C12h	B4h	B5h	Desktop and Mobile (When D28:F1:ECh:bit 1 = 0)
D28:F1	PCI Express Port 2	244Eh	B4h	B5h	Desktop (When D28:F1:ECh:bit 1 = 1)
	2	2448h	B4h	B5h	Mobile (When D28:F1:ECh:bit 1 = 1)
		1C14h	B4h	B5h	Desktop and Mobile (When D28:F2:ECh:bit 1 = 0)
D28:F2	PCI Express Port 3	244Eh	B4h	B5h	Desktop (When D28:F2:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F2:ECh:bit 1 = 1)
		1C16h	B4h	B5h	Desktop and Mobile (When D28:F3:ECh:bit 1 = 0)
D28:F3	PCI Express Port 4	244Eh	B4h	B5h	Desktop (When D28:F3:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F3:ECh:bit 1 = 1)
		1C18h	B4h	B5h	Desktop and Mobile (When D28:F4:ECh:bit 1 = 0)
D28:F4	PCI Express Port 5	244Eh	B4h	B5h	Desktop (When D28:F4:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F4:ECh:bit 1 = 1)
		1C1Ah	B4h	B5h	Desktop and Mobile (When D28:F5:ECh:bit 1 = 0)
D28:F5	PCI Express Port 6	244Eh	B4h	B5h	Desktop (When D28:F5:ECh:bit 1 = 1)
	2448h	B4h	B5h	Mobile (When D28:F5:ECh:bit 1 = 1)	
		1C1Ch	B4h	B5h	Desktop and Mobile (When D28:F6:ECh:bit 1 = 0)
D28:F6	D28:F6 PCI Express		B4h	B5h	Desktop (When D28:F6:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F6:ECh:bit 1 = 1)
		1C1Eh	B4h	B5h	Desktop and Mobile (When D28:F7:ECh:bit 1 = 0)
D28:F7	PCI Express Port 8	244Eh	B4h	B5h	Desktop (When D28:F7:ECh:bit 1 = 1)
		2448h	B4h	B5h	Mobile (When D28:F7:ECh:bit 1 = 1)

Device Function	Description	Dev ID	B2 Rev ID	B3 Rev ID	Comments
D25:F0	LAN	1C33h ⁵	04h	05h	
D22:F0	Intel [®] ME Interface #1	1C3Ah	04h	05h	
D22:F1	Intel ME Interface #2	1C3Bh	04h	05h	
D22:F2	IDE-R	1C3Ch	04h	05h	
D22:F3	КТ	1C3Dh	04h	05h	

PCH Device and Revision ID Table (Sheet 3 of 3)

NOTES:

1

2.

3 4.

S: PCH contains two SATA controllers. The SATA Device ID is dependent upon which SATA mode is selected by BIOS and what RAID capabilities exist in the SKU. The SATA RAID Controller Device ID is dependent upon: 1) the AIE bit setting (bit 7 of D31:F2:Offset 9Ch); and 2) (only when the AIE bit is 1) which desktop PCH SKU is in the system. A third party RAID driver is required to utilize the SATA ports of the PCH for RAID functionality. Intel Rapid Storage Technology and Intel Smart Response Technology require that the AIE bit is set to 0. SATA Controller 2 (D31:F5) is only visible when D31:F2 CC.SCC =01h. LAN Device ID is loaded from EEPROM. If EEPROM contains either 0000h or FFFFh in the Device ID location, then 1C33h is used. Refer to the appropriate Intel[®] GbE physical layer Transceiver (PHY) datasheet for LAN Device IDs. 5. datasheet for LAN Device IDs.

This table shows the default PCI Express Function Number-to-Root Port mapping. Function numbers for 6. a given root port are assignable through the "Root Port Function Number and Hide for PCI Express Root Ports" register (RCBA+0404h).

USB Isoch In Transfer Error Issue 1. Problem: If a USB full-speed inbound isochronous transaction with a packet length 190 bytes or greater is started near the end of a microframe the PCH may see more than 189 bytes in the next microframe. If the PCH sees more than 189 bytes for a microframe an error will be sent to software Implication: and the isochronous transfer will be lost. If a single data packet is lost no perceptible impact for the end user is expected. Note: Intel has only observed the issue in a synthetic test environment where precise control of packet scheduling is available, and has not observed this failure in its compatibility validation testing. · Isochronous traffic is periodic and cannot be retried thus it is considered good practice for software to schedule isochronous transactions to start at the beginning of a microframe. Known software solutions follow this practice. To sensitize the system to the issue additional traffic such as other isochronous transactions or retries of asynchronous transactions would be required to push the inbound isochronous transaction to the end of the microframe. Workaround: None. Status: No Plan to Fix. 2. USB Full-/low-speed Device Removal Issue If two or more USB full-/low-speed devices are connected to the same USB controller, Problem: the devices are not suspended, and one device is removed, one or more of the devices remaining in the system may be affected by the disconnect. The implication is device dependent. A device may experience a delayed transaction, Implication: stall and be recovered via software, or stall and require a reset such as a hot plug to resume normal functionality.

Workaround: None.

3. USB Babble Detected with SW Overscheduling

- Problem: If software violates USB periodic scheduling rules for full-speed isochronous traffic by overscheduling, the RMH may not handle the error condition properly and return a completion split with more data than the length expected.
- Implication: If the RMH returns more data than expected, the endpoint will detect packet babble for that transaction and the packet will be dropped. Since overscheduling occurred to create the error condition, the packet would be dropped regardless of RMH behavior. If a single isochronous data packet is lost, no perceptible impact to the end user is expected.
- *Note:* USB software overscheduling occurs when the amount of data scheduled for a microframe exceeds the maximum budget. This is an error condition that violates the USB periodic scheduling rule.
- *Note:* This failure has only been recreated synthetically with USB software intentionally overscheduling traffic to hit the error condition.

Workaround: None.

Status: No Plan to Fix.

4. USB Full-/low-speed EOP Issue

Problem: If the EOP of the last packet in a USB Isochronous split transaction (Transaction >189 bytes) is dropped or delayed 3 ms or longer the following may occur:

- If there are no other pending low-speed or full-speed transactions the RMH will not send SOF, or Keep-Alive. Devices connected to the RMH will interpret this condition as idle and will enter suspend.
- If there is other pending low-speed or full-speed transactions, the RMH will drop the isochronous transaction and resume normal operation.

Implication:

- If there are no other transactions pending, the RMH is unaware a device entered suspend and may starting sending a transaction without waking the device. The implication is device dependent, but a device may stall and require a reset to resume functionality.
- If there are other transactions present, only the initial isochronous transaction may be lost. The loss of a single isochronous transaction may not result in end user perceptible impact.
- *Note:* Intel has only observed this failure when using software that does not comply with the USB specification and violates the hardware isochronous scheduling threshold by terminating transactions that are already in progress.

Workaround: None.

Status: No Plan to Fix.

5. USB PLL Control FSM not Getting Reset on Global Reset

Problem: Intel[®] 6 Series Chipset and Intel[®] C200 Series Chipset USB PLL may not lock if a Global Reset occurs early during a cold boot sequence.

Implication: USB interface would not be functional an additional cold boot would be necessary to recover.

Workaround: None.

6. Asynchronous Retries Prioritized Over Periodic Transfers

Problem: The integrated USB RMH incorrectly prioritizes full-speed and low-speed asynchronous retries over dispatchable periodic transfers.

- Implication: Periodic transfers may be delayed or aborted. If the asynchronous retry latency causes the periodic transfer to be aborted, the impact varies depending on the nature of periodic transfer:
 - If a periodic interrupt transfer is aborted, the data may be recovered by the next instance of the interrupt or the data could be dropped.
 - If a periodic isochronous transfer is aborted, the data will be dropped. A single dropped periodic transaction should not be noticeable by end user.
- *Note:* This issue has only been seen in a synthetic environment. The USB spec does not consider the occasional loss of periodic traffic a violation.

Workaround: None.

Status: No Plan to Fix.

7. USB FS/LS Incorrect Number of Retries

- Problem: A USB low-speed Transaction may be retried more than three times, and a USB full-speed transaction may be retried less than three times if all of the following conditions are met:
 - A USB low-speed transaction with errors, or the first retry of the transaction occurs near the end of a microframe, and there is not enough time to complete another retry of the low-speed transaction in the same microframe.
 - There is pending USB full-speed traffic and there is enough time left in the microframe to complete one or more attempts of the full-speed transaction.
 - Both the low-speed and full-speed transactions must be asynchronous (Bulk/Control) and must have the same direction either in or out.
- *Note:* Note: Per the USB EHCI Specification a transaction with errors should be attempted a maximum of 3 times if it continues to fail.

Implication:

- For low-speed transactions the extra retry(s) allow a transaction additional chance(s) to recover regardless of if the full-speed transaction has errors or not.
- If the full-speed transactions also have errors, the PCH may retry the transaction fewer times than required, stalling the device prematurely. Once stalled, the implication is software dependent, but the device may be reset by software.

Workaround: None.

8.	Incorrect Data for FS/LS USB Periodic IN Transaction
Problem:	The Periodic Frame list entry in DRAM for a USB FS or LS Periodic IN transaction may incorrectly get some of its data from a prior Periodic IN transaction which was initiated very late into the preceding microframe.
	It is considered good practice for software to schedule Periodic Transactions at the start of a microframe. However Periodic transactions may occur late into a microframe due to the following cases outlined below:
	 Asynchronous transaction starting near the end of the proceeding microframe gets Asynchronously retried.
Note:	Transactions getting Asynchronous retried would only occur for ill behaved USB device or USB port with a signal integrity issue
	 Or Two Periodic transactions are scheduled by software to occur in the same microframe and the first needs to push the second Periodic IN transaction to the end of the microframe boundary.
Implication:	The implication will be device, driver or operating system specific.
Note:	This issue has only been observed in a synthetic test environment.
Workaround:	None.
Status:	No Plan to Fix.
9.	HDMI * 222 MHz Electrical Compliance Testing Failures
Problem:	HDMI* 222 MHz electrical compliance testing may show eye diagram and jitter test failures on Intel 6 Series Chipset and Intel C200 Series Chipset.
Implication:	No functional or visual failures have been observed by Intel. HDMI electrical compliance failures may be seen at 222 MHz Deep Color Mode. This issue does not prevent HDMI with Deep Color Logo certification as no failures have been seen with 74.25 MHz Deep Color Mode (720P 60 Hz or 1080P 30 Hz) as required HDMI Compliance Test Specification.
Workaround:	None.
Status:	No Plan to Fix.
10.	SATA Signal Voltage Level Violation
Problem:	SATA transmit buffers have been designed to maximize performance and robustness over a variety of routing scenarios. As a result, the SATA transmit signaling voltage levels may exceed the maximum motherboard TX connector and device RX connector voltage specifications as defined in section 7.2.1 of the Serial ATA specification, rev 3.0. This issue applies to Gen 1 (1.5 Gb/s) and Gen 2 (3.0 Gb/s).
Implication:	None known.
Workaround:	None.
Status:	No Plan to Fix.

11.	SATA Differential Return Loss Violations
Problem:	The Intel 6 Series Chipset and Intel C200 Series Chipset SATA buffer capacitance may be higher than expected.
Implication:	There are no known functional failures. This may cause a violation of the SATA-IO* compliance test for Receiver or Transmitter Differential Return Loss.
Workaround:	None.
Note:	Intel has obtained a waiver for the SATA-IO building block status.
Status:	No Plan to Fix.
12.	High-speed USB 2.0 Transmit Signal Amplitude
Problem:	Intel 6 Series Chipset and Intel C200 Series Chipset High-speed USB 2.0 transmit signal amplitude may exceed the USB 2.0 specification.
	 USB 2.0 Specification Transmit Eye template maximum boundary is +/- 525 mV following bit transitions and +/- 475 mV for non-transitional bit patterns.
	 USB 2.0 Specification V_{HSOH} maximum is 440 mV.
Implication:	There are no known functional failures.
Workaround:	None.
Status:	No Plan to Fix.
13.	Delayed Periodic Traffic Timeout Issue
Problem:	If a periodic interrupt transaction is pushed out to the $x+4$ microframe boundary, the RMH may not wait for the transaction to timeout before starting the next transaction.
Implication:	If the next full-speed or low-speed transaction is intended for the same device targeted by the periodic interrupt, the successful completion of that transaction is device dependent and cannot be guaranteed. The implication may differ depending on the nature of the transaction:
	 If the transaction is asynchronous and the device does not respond, it will eventually be retried with no impact.
	• If the transaction is periodic and the device does not respond, the transfer may be dropped. A single dropped periodic transaction should not be noticeable by end user.
Note:	This issue has only been seen in a synthetic environment.
Workaround:	None.
Status:	No Plan to Fix.

14. SATA Ports 2-5 Issue

Problem: Due to a circuit design issue on Intel 6 Series Chipset and Intel C200 Series Chipset, electrical lifetime wear out may affect clock distribution for SATA ports 2-5. This may manifest itself as a functional issue on SATA ports 2-5 over time.

- The electrical lifetime wear out may result in device oxide degradation which over time can cause drain to gate leakage current.
- This issue has time, temperature and voltage sensitivities.
- Implication: The increased leakage current may result in an unstable clock and potentially functional issues on SATA ports 2-5 in the form of receive errors, transmit errors, and unrecognized drives.
 - Data saved or stored prior to functional issues on a SATA device will be retrievable if connected to a working SATA port.
 - SATA ports 0-1 are not affected by this design issue as they have separate clock generation circuitry.
- Workaround: Intel has worked with board and system manufacturers to identify and implement solutions for affected systems.
 - Use only SATA ports 0-1.
 - Use an add-in PCIe SATA bridge solution.
- Status: Fixed. For steppings affected, see the Summary Table of Changes.
 - This issue has been resolved with a silicon stepping for all Intel 6 Series Chipset and Intel C200 Series Chipset incorporating a minor metal layer change.
 - The fix does not impact the designed functionality and electrical specifications of the Intel 6 Series Chipset and Intel C200 Series Chipset.

15. Intel[®] ME Clock Throttling Failure Causes Hang

- Problem: When the Intel[®] Management Engine (Intel[®] ME) firmware sets the internal clock frequency, the Intel ME clock may stop toggling, potentially causing the Intel[®] Management Engine Interface to become unresponsive.
- Implication: Parts that exhibit this issue may hang during POST.
- *Note:* No functional failures have been seen due to this issue.
- Workaround: An Intel[®] ME Firmware code change has been identified and may be implemented as a workaround for this erratum.

16. USB Full-/Low-speed Port Reset or Clear TT Buffer Request

- Problem: One or more full-/low-speed USB devices on the same RMH controller may be affected if the devices are not suspended and either (a) software issues a Port Reset OR (b) software issues a Clear TT Buffer request to a port executing a split full-/low-speed Asynchronous Out command.
 - The Small window of exposure for full-speed device is around 1.5 microseconds and around 12 microseconds for a low-speed device.
- Implication: The affected port may stall or receive stale data for a newly arrived split transfer occurring at the time of the Port Reset or Clear TT Buffer request.
- *Note:* This issue has only been observed in a synthetic test environment.

Workaround: None.

Status: No Plan to Fix.

17. Intel[®] 82579 Gigabit Ethernet Controller Transmission Issue

- Problem: Intel[®] 82579 Gigabit Ethernet Controller with the Intel 6 Series Chipset and Intel C200 Series Chipset and Intel ME Firmware 7.x 5 MB may stop transmitting during a data transfer.
- Implication: Intel 82579 Gigabit Ethernet Controller may stop transmitting packets, the link LED will blink, and a power cycle may be required to resume transmission activity.
- *Note:* This issue has only been observed in a focused test environment where data is constantly transferred over an extended period of time (more than approximately 3 hours).
- Workaround: A combination of Intel ME Firmware code change and Intel 82579 Gigabit Ethernet Controller LAN Driver update has been identified and may be implemented as a workaround for this erratum.
- Status: No Plan to Fix.

18. USB RMH Think Time Issue

- Problem: The Intel 6 Series Chipset and Intel C200 Series Chipset USB RMH Think Time may exceed its declared value in the RMH hub descriptor register of 8 full-speed bit times.
- Implication: If the OS USB driver fully subscribes a USB microframe, full-/low-speed transactions may exceed the microframe boundary.
- *Note:* No functional failures have been observed.

Workaround: None.

19. Intel[®] AMT and Intel[®] Standard Manageability KT/SOL Interrupt Status Cleared Prematurely

- Problem: A read of the Intel[®] AMT and Intel[®] Standard Manageability enabled SOL KTIIR (KT Interrupt Identification Register) or KTLSR (KT Line Status Register) that occurs simultaneous to the arrival of an SOL Host interrupt event may result in a read of the Interrupt Status (INTSTS) bit 0 returning the status of "No Pending interrupt to Host" despite KTLSR reporting a serviceable event.
- Implication: Implication of a missed SOL Host interrupt is software implementation dependent. Subsequent interrupts not aligned to a KTIIR or KTLSR read will clear "0" bit 0 (INTSTS) to indicate a pending interrupt to the Host.
- Workaround: Software should not rely on reading only bit 0 (INTSTS) of the KTIIR register and should also poll the KTLSR to determine if a SOL Host interrupt is pending.

Status: No Plan to Fix.

- 20. Incorrect IRQ(x) Vector Returned for 8259 Interrupts With RAEOI Enabled
- Problem: If multiple interrupts are active prior to an interrupt acknowledge cycle with Rotating Automatic End of Interrupt (RAEOI) mode of operation enabled for 8259 interrupts (0-7), an incorrect IRQ(x) vector may be returned to the processor.
- Implication: Implications of an incorrect IRQ(x) vector being returned to the CPU are SW implementation dependent.
- *Note:* This issue has only been observed in a synthetic test environment.
- Workaround: None.

Status: No Plan to Fix.

21. USB RMH False Disconnect Issue

- Problem: The PCH may falsely detect a USB High-Speed (HS) device disconnect if all of the following conditions are met:
 - The HS Device is connected through the Rate Matching Hub (RMH) of the PCH's EHCI controller.
 - The device is resuming from selective suspend or port reset.
 - The resume occurs within a narrow time window during the EOP (End of Packet) portion of the SOF (Start of Frame) Packet on the USB bus.
- Implication: Following the false disconnect, the HS device will be automatically re-enumerated. The system implication will depend on the resume event cause:
 - If the resume event is a port reset, a second port reset will be automatically generated and the device re-enumerated. No end user impact is expected.
 - If the resume event is a hardware or software initiated resume from selective suspend, the implication will be device and software specific, which may result in anomalous system behavior.
- *Note:* If the HS device is a hub, then all of the devices behind the hub, independent of the device speed, may also be re-enumerated.

Workaround: None.

22. USB RMH Think Time Issue

Problem: The USB RMH Think Time may exceed its declared value in the RMH hub descriptor register of 8 full-speed bit times.

Implication: If the USB driver fully subscribes a USB microframe, LS/FS transactions may exceed the microframe boundary.

Note: No functional failures have been observed.

Workaround: None.

Status: No Plan to Fix.

23. Packet Loss on Intel[®] 82579 Gigabit Ethernet Controller

- Problem: Systems with Intel 6 Series Chipset and Intel C200 Series Chipset using the Intel 82579 Gigabit Ethernet Controller may experience packet Loss at 100 Mbps and 1 Gbps speeds when the link between the Intel 82579 Gigabit Ethernet Controller and the PCH Integrated LAN Controller is exiting the Low Power Link (K1) State.
- Implication: Implications are application and Internet Protocol dependent.
- Workaround: A BIOS code change has been identified and may be implemented as a workaround for this erratum.
- Status: No Plan to Fix.

24. Intel[®] 6/ C200 Series Chipset Family PCI-Express Root Ports Unsupported Request Complete Issue

Problem: Intel[®] 6 / C200 Series Chipset Family PCI-Express Root Ports in receipt of a Memory Read TLP may return a Unsupported Request (UR) Completion with an incorrect lower address field if any of the following are true:

Bus Master Enable is disabled in the PCI-Express Root Port's Command register (PCICMD bit2 =0)

- AT field of the TLP header is non-zero.
- The requested upstream address falls within the memory range claimed by the secondary side of the bridge.
- Requester ID with Bus Number of 0.
- Implication: The UR Completion with an incorrect lower address field may be handled as a malformed TLP by the requestor causing an ERR_NONFATAL or ERR_FATAL message to be sent upstream to the root port. System level implication is dependent on platform error handling configuration.
- *Note:* The message type sent by the requestor will depend on the requestor's severity setting for a malformed TLP in the Uncorrectable Error Severity Register (UEV).
- Workaround: None.
- Status: No Plan to Fix.

25. Intel[®] 6 / C200 Series Chipset Family SATA Automatic Partial Slumber Transitions Issue

Problem: Intel[®] 6 / C200 Series Chipset Family SATA Automatic Partial Slumber Transitions (APST) feature may prevent internal clock gating when SATA Ports transition from Partial to Slumber state.

Implication: For platforms implementing APST, power savings maybe less than expected when SATA port(s) are in the slumber state.

- Workaround: Software should not enable Automatic Partial Slumber Transitions for both the SATA Host controller and SATA Devices supporting APST. Intel[®] Rapid Storage Technology (Intel[®] RST) Driver version 11.5 or later does not enable APST.
- *Note:* Active to Slumber transitions are still supported with APST disabled, maintaining power savings due to clock gating when in Slumber.

Specification Changes

1. LED Locate Intel[®] Rapid Storage Technology (Intel[®] RST) Capability Removal

Bit 7 of 14.4.1.10 RSTF—Intel[®] RST Feature Capabilities Register (ABAR + C8h–C9h), previously known as the LED Locate (LEDL) bit, is changed to Reserved.

2. Removal of S1 Support on Intel[®] C200 Series Chipset

The S1 power state is no longer supported for the $Intel^{(R)}$ C200 Series Chipset. The change is made accordingly in the Datasheet.

3. A20GATE and A20M# Functionality Removal

A20M# functionality is not supported on processors on Intel[®] 6 Series Chipset and Intel C200 Series Chipset-based platforms.

а	Table	2-9	is	updated	as	shown:
---	-------	-----	----	---------	----	--------

Name	Туре	Description
A20GATE	I	A20 Gate: Functionality reserved. A20M# functionality is not supported.

b. Table 3-4 is updated as shown:

Signal Name	Power Well	Driver During Reset	S0/S1	S 3	S4/S5
		Processor Interface			
A20GATE	Core	External Micro controller or Pull-up	Static	Off	Off

c. Table 3-5 is updated as shown:

Signal Name	Power Well	Driver During Reset	C-x states	S0/S1	S 3	S4/S 5
		Processor Interface				
A20GATE	Core	External Micro controller or Pull-up	Static	Static	Off	Off

- d. A20M# is removed as a VLW message from section 5.12.
- e. Section 5.12.1.1 is removed.
- f. A20GATE/A20M# removed from section 5.12.2.1.
- g. A20M# removed from section 5.12.3.

h. 13.1.27 ULKMC — USB Legacy Keyboard / Mouse Control Register bit 5 is modified as shown:

Bit	Description
5	 A20Gate Pass-Through Enable (A20PASSEN) — R/W. 0 = Disable. 1 = Enable. Allows A20GATE sequence Pass-Through function. A specific cycle sequence involving writes to port 60h and 64h does not result in the setting of the SMI status bits. NOTE: A20M# functionality is not supported.

i. Section 13.7.3 name changed from PORT92—Fast A20 and Init Register to PORT92—Init Register and bit 1 is modified as shown:

Bit	Description
1	Alternate A20 Gate (ALT_A20_GATE) — R/W. Functionality reserved. A20M# functionality is not supported.

4. UM67 Raid Mode Support

Update Table 1-3 UM67 Raid Support.

 Table 1-3.
 Mobile Intel[®] 6 Series Chipset SKUs

Feature Set		SKU Name					
	QM67	UM67	HM67	HM65	QS67		
PCI Express* 2.	0 Ports	8	8	8	8	8	
PCI Interface		No	No	No	No	No	
USB* 2.0 Ports		14	14	14	12 ⁵	14	
Total number of	SATA ports	6	6	6	6	6	
SATA Ports (6	2 ⁴	2 ⁴	24	24	24		
SATA Ports (3	4	4	4	4	4		
HDMI/DVI/VGA/	'SDVO/DisplayPort*/eDP*/LVDS	Yes	Yes	Yes	Yes	Yes	
Integrated Grap	hics Support with PAVP 2.0	Yes	Yes	Yes	Yes	Yes	
Intel [®] Rapid	AHCI	Yes	Yes	Yes	Yes	Yes	
Storage Technology	RAID 0/1/5/10 Support	Yes	Yes	Yes	No	Yes	
Intel [®] Anti-Theft		Yes	Yes	Yes	Yes	Yes	
Intel [®] AMT 7.0	Yes	No	No	No	Yes		
ACPI S1 State S	Yes	Yes	Yes	Yes	Yes		

§§

Specification Clarifications

1. Device 31 Function 6 Disable Bit

Section 10.1.45 FD—Function Disable Register bit 24 is changed as shown:

Bit	Description
24	 Thermal Sensor Registers Disable (TTD) — R/W. Default is 0. 0 = Thermal Sensor Registers (D31:F6) are enabled. 1 = Thermal Sensor Registers (D31:F6) are disabled.

2. LAN Disable Reset

Section 10.1.44 BUC—Backed Up Control Register bit 5 is changed as shown:

Bit	Description
	LAN Disable — R/W.
	0 = LAN is Enabled 1 = LAN is Disabled.
5	Changing the internal GbE controller from disabled to enabled requires a system reset (write of 0Eh to CF9h (RST_CNT Register)) immediately after clearing the LAN disable bit. A reset is not required if changing the bit from enabled to disabled.
	This bit is locked by the Function Disable SUS Well Lockdown register. Once locked, this bit cannot be changed by software.

3. SGPIO Signal Usage

The following note is added at the conclusion of the first paragraph of section 5.16.13:

Intel does not validate all possible usage cases of this feature. Customers should validate their specific design implementation on their own platforms.

4. RTCRST# and SRTCRST# Clarification

The following replaces section 5.13.10.6:

RTCRST# is used to reset PCH registers in the RTC Well to their default value. If a jumper is used on this pin, it should only be pulled low when system is in the G3 state and then replaced to the default jumper position. Upon booting, BIOS should recognize that RTCRST# was asserted and clear internal PCH registers accordingly. It is imperative that this signal not be pulled low in the S0 to S5 states.

SRTCRST# is used to reset portions of the Intel Management Engine and should not be connected to a jumper or button on the platform. The only time this signal gets asserted (driven low in combination with RTCRST#) should be when the coin cell battery is removed or not installed and the platform is in the G3 state. Pulling this

signal low independently (without RTCRST# also being driven low) may cause the platform to enter an indeterminate state. Similar to RTCRST#, it is imperative that SRTCRST# not be pulled low in the S0 to S5 states.

See Figure 2-2 which demonstrates the proper circuit connection of these pins.

5. PPM of 25 MHz Option for CLKOUTFLEX2

The following note is added to table 4-2 and applies to CLKOUFLEX2:

The 25 MHz output option for CLKOUTFLEX2 is derived from the 25 MHz crystal input to the PCH. The PPM of the 25 MHz output is equivalent to that of the crystal.

6. SATA Alternate ID Enable Definition Update

Section 14.1.33 D31:F2:Offset 9Ch is changed as follows:

a. Name of register is changed from SCLKGC-SATA Clock General Configuration Register to SGC-SATA General Configuration Register

b. Bit 7 is redefined as shown:

Bit	Description					
7 (non-RAID Capable SKUs Only)	Reserved					
7 (RAID Capable	 Alternate ID Enable (AIE) — R/WO. 0 = Clearing this bit when in RAID mode, the SATA Controller located at Device 31: Function 2 will report its Device ID as 2822h for all Desktop SKUs of the PCH or 282Ah for all Mobile SKUs of the PCH. Clearing this bit is required for the Intel[®] Rapid Storage Technology driver (including the Microsoft* Windows Vista* OS and later in-box version of the driver) to load on the platform. Intel[®] Smart Response Technology also requires that the bit be cleared in order to be enabled on the platform. 1 = Setting this bit when in RAID mode, the SATA Controller located at Device 31: Function 2 will report its Device ID as called out in the table below for Desktop SKUs or 1C05h for all Mobile SKUs of the chipset. This setting will prevent the Intel Rapid Storage Technology driver (including the Microsoft Windows* OS in-box version of the driver) from loading on the platform. During the Microsoft Windows do S installation, the user will be required to "load" (formerly done by pressing the F6 button on the keyboard) the appropriate RAID storage driver that is enabled by this setting. 					
Only)	D31:F2 Configured in RAID Mode with AIE = 1 (Desktop Only)					
	Feature Vector Re					
	RAID Capability Bit 1	RAID Capability Bit 0	DST.12 DEVID			
	0	0	Not applicable			
	0	1	Not applicable			
	1	0	1C04h			
	1	1	1C06h			
	This field is reset by PLTRST after resuming from S3, S4	#. BIOS is required to reand S5.	program the value of this bit			

c. the following is added to the list of items describing when Intel Rapid Storage Technology is not available in section 5.16.7:

2. The SATA controller is programmed in RAID mode, but the AIE bit (D31:F2:Offset 9Ch bit 7) is set to 1.

d. The SATA D31:F2 Device ID table is updated; see PCH Device and Revision Identification section in this document.

7. SATA Hot Plug Operation

Section 5.16.5 Hot Plug Operation is modified as shown below. Section 5.16.5.1 is removed.

The PCH supports Hot Plug Surprise removal and Insertion Notification. An internal SATA port with a Mechanical Presence Switch can support PARTIAL and SLUMBER with Hot Plug Enabled. Software can take advantage of power savings in the low power states while enabling hot plug operation. Refer to chapter 7 of the AHCI specification for details.

8. GPI013 Voltage Tolerance

GPIO13 is powered by VccSusHDA well and therefore, the voltage tolerance value varies according to the voltage connected to VccSusHDA. The following clarifications are made:

a. Table 2-24, GPIO13 Tolerance is change from "3.3 V" to "3.3 V or 1.5 V" and the following note is added to table 2-24: "GPIO13 is powered by VccSusHDA (either 3.3 V or 1.5 V). Voltage tolerance on the signal is the same as VccSusHDA."

b. The following note is added to GPIO13 in table 3-2 as note 16: "GPIO13 is powered by VccSusHDA (either 3.3 V or 1.5 V). Pin tolerance is determined by VccSusHDA voltage."

c. The following note is added to HDA_DOCK_RST#/GPI013 in table 3-3 as note 24: "HDA_DOCK_RST#/GPI013 is powered by VccSusHDA (either 3.3 V or 1.5 V). Pin tolerance is determined by VccSusHDA voltage."

9. EHCI Configuration Programming

a. Section 16.1.31 EHCIIR1—EHCI Initialization Register 1 bits 18 and 10:9 are changed as shown:

Bit	Description		
18	EHCI Initialization Register 1 Field 2— R/W. BIOS may write to this bit field.		
10:9	EHCI Initialization Register 1 Field 1— R/W. BIOS may write to this bit field.		

b. Section 16.1.32 EHCIIR2—EHCI Initialization Register 2 is modified as shown:

Bit	Description
31:30	Reserved
29	EHCI Initialization Register 2 Field 6 — R/W. BIOS may write to this bit field.
28:20	Reserved
19	EHCI Initialization Register 2 Field 5 — R/W. BIOS may write to this bit field.
18:12	Reserved

Bit	Description
11	EHCI Initialization Register 2 Field 4 — R/W. BIOS may write to this bit field.
10	EHCI Initialization Register 2 Field 3 — R/W. BIOS may write to this bit field.
9	Reserved
8	EHCI Initialization Register 2 Field 2 — R/W. BIOS may write to this bit field.
7:6	Reserved
5	EHCI Initialization Register 2 Field 1 — R/W. BIOS may write to this bit field.
4:0	Reserved

c. Section 16.1.38 EHCIIR3—EHCI Initialization Register 3 bits 32:22 are changed as shown:

Bit	Description
23:22	EHCI Initialization Register 3 Field 1 $-$ R/W. BIOS may write to this bit field.

d. Section 16.1.39 EHCIIR4—EHCI Initialization Register 4 bits 17 and 15 are changed as shown:

Bit	Description		
17	EHCI Initialization Register 4 Field 2 — R/W. BIOS may write to this bit field.		
15	EHCI Initialization Register 4 Field 1 $-$ R/W. BIOS may write to this bit field.		

10. PCH Thermal Sensor Temperature Range

The following sentence is added at the end of the first paragraph of section 5.21.1:

The normal readable temperature range of the PCH thermal sensor is from 53 °C to 134 °C. Note that some parts can read down to 43 °C but this is part to part dependent.

11. Secondary PCI Device Hiding Register Attribute Clarification

The following is added to the register summary of section 11.1.20 SPDH—Secondary PCI Device Hiding Register:

Bits 3:0 are Read Only on PCI Interface-disabled SKUs; bits 3:0 are Read/Write for PCI Interface-enabled SKUs (see Section 1.3 for full details on SKU definition).

12. GPIO Lock Clarification

The following note is added to section 5.15.4 GPIO Registers Lockdown:

Note: All other GPIO registers not listed here are not be locked by GLE.

13. GPIO13 Voltage Well

The power well for GPIO13 in table 2-24 is changed from Suspend to HDA Suspend.

14. SLP_SUS# Clarifications

a. The definition for SLP_SUS# is replaced as follows in table 2-8 Power Management Interface Signals:

Name	Туре	Description
SLP_SUS#	0	Deep S4/S5 Indication: When asserted (low), this signal indicates PCH is in Deep S4/S5 state where internal Sus power is shut off for enhanced power saving. When deasserted (high), this signal indicates exit from Deep S4/S5 state and Sus power can be applied to PCH. If Deep S4/S5 is not supported, then this pin can be left unconnected. This pin is in the DSW power well.

b. SLP_SUS# is added to Table 3-2 Power Plane and States for Output and I/O Signals for Desktop Configurations.

Signal Name	Power Plane	During Reset	Immediately after Reset	S0/S1	S 3	S4/S5	
Power Management							
SLP_SUS#	DSW	Low	High	High	High	High	

c. SLP_SUS# is added to Table 3-3. Power Plane and States for Output and I/O Signals for Mobile Configurations

Signal Name	Power Plane	During Reset	Immediately after Reset	C-x states	S0/S1	S 3	S4/S5
Power Management							
SLP_SUS#	DSW	Low	High	High	High	High	High

d. The following section is added after section 5.13.10.6.

SUSPWRDNACK/SUSWARN#/GPI030 Pin Behavior

The following tables summarize SUSPWRDNACK/SUSWARN#/GPI030 pin behavior.

SUSPWRDNACK/SUSWARN#/GPIO30 Steady State Pin Behavior

	Deep S4/S5 (Supported /Not-Supp orted)	GPI030 Input/Out put (Determine by GP_I0_SEL bit)	Pin Value in S0	Pin Value in Sx/Moff	Pin Value in Sx/M3	Pin Value in Deep S4/S5
SUSPWRDNACK	Not Supported	Native	Depends on Intel [®] ME power package and power source (Note 1)	Depends on Intel ME power package and power source (Note 1)	Intel ME drives low	Off
SUSWARN#	Supported Native		1	1 (Note 2)	1	Off
GPIO30	Don't Care	IN	High-Z	gh-Z High-Z		Off
	Don't Care	OUT	Depends on GPIO30 output data value	Depends on GPIO30 output data value	Depends on GPIO30 output data value	Off

NOTES:

- 1. Intel ME will drive SPDA pin high if power package 1 or DC. Intel ME will drive SPDA pin low if power package 2.
- 2. If entering Deep S4/S5, pin will assert and become undriven ("Off") when suspend well drops upon Deep S4/S5 entry.

SUSPWRDNACK during reset

Reset Type	Reset Initiated By	SPDA Value		
Power Cycle Reset	Host or Intel ME (Power Cycle Reset)	Intel ME drives low		
Olyhed Deved	Host (using CF9GR)	Host drives low (using BIOS flow)		
GIODAI Reset	Intel ME	Intel ME drives low		
	HW/WDT expiration	Steady-state value		

e. The following note is added to Figure 8-1 G3 w/RTC Loss to S4/S5 (With Deep S4/S5 Support) Timing Diagram:

VccSus rail ramps up later in comparison to VccDSW due to assumption that SLP_SUS# is used to control power to VccSus.

15. PME_Turn_Off TLP

The following note is added to section 5.2.2.1 S3/S4/S5 Support:

Note: The PME_Turn_Off TLP messaging flow is also issued during a host reset with and without power cycle. Refer to table 5-38 for a list of host reset sources.

16. GPIO Clarifications

a. Table 2-24 is replaced as following:

Table 2-24 General Purpose I/O Signals (Sheet 1 of 5)

Name	Туре	Toler- ance	Power Well	Default	Blink Capa- bility	Glitch Protection during Power-On Sequence	GPI Event Support	Description	
GPIO75	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with SML1DATA ¹⁰	
GPIO74	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with SML1ALERT#/PCHHOT# ¹⁰	
GPIO73 (Mobile Only)	I/O	3.3 V	Suspend	Native	No	No	No	Multiplexed with PCIECLKRQ0#	
GPIO72	1/0	3.3 V	Suspend	Native (Mobile Only) GPI (Desktop Only)	No	No	No	Mobile: Multiplexed with BATLOW#. Desktop: Unmultiplexed; requires pull-up resistor ⁴ .	
GPIO[71: 70]	1/0	3.3 V	Core	Native	No	No	No	Desktop: Multiplexed with TACH[7:6] Mobile: Used as GPIO only	
GPIO[69: 68]	I/0	3.3 V	Core	GPI	No	No	No	Desktop: Multiplexed with TACH[5:4] Mobile: Used as GPIO only	
GPIO67	1/0	3.3 V	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX3	
GPIO66	1/0	3.3 V	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX2	
GPIO65	1/0	3.3 V	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX1	
GPIO64	1/0	3.3 V	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX0	
GPIO63	1/0	3.3 V	Suspend	Native	No	Yes	No	Multiplexed with SLP_S5#	
GPIO62	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with SUSCLK	
GPIO61	1/0	3.3 V	Suspend	Native	No	Yes	No	Multiplexed with SUS_STAT#	
GPIO60	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with SMLOALERT#	
GPIO59	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with OC0#10	
GPIO58	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with SML1CLK	
GPIO57	1/0	3.3 V	Suspend	GPI	No	Yes	No	Unmultiplexed	
GPIO56 (Mobile Only)	1/0	3.3 V	Suspend	Native	No	No	No	Mobile: Multiplexed with PEG_B_CLKRQ#	

Name	Туре	Toler- ance	Power Well	Default	Blink Capa- bility	Glitch Protection during Power-On Sequence	GPI Event Support	Description	
GPIO55 ⁸	1/0	3.3 V	Core	Native	No	No	No	Desktop: Multiplexed with GNT3# Mobile: Used as GPIO only	
GPIO54	1/0	5.0 V	Core	Native	No	No	No	Desktop: Multiplexed with REQ3# ¹⁰ . Mobile: Used as GPIO only	
GPIO53 ⁸	1/0	3.3 V	Core	Native	No	No	No	Desktop: Multiplexed with GNT2# Mobile: Used as GPIO only	
GPIO52	1/0	5.0 V	Core	Native	No	No	No	Desktop: Multiplexed with REQ2# ¹⁰ . Mobile: Used as GPIO only	
GPIO51 ⁸	1/0	3.3 V	Core	Native	No	No	No	Desktop: Multiplexed with GNT1# Mobile: Used as GPIO only	
GPIO50	1/0	5.0 V	Core	Native	No	No	No	Desktop: Multiplexed with REQ1# ¹⁰ . Mobile: Used as GPIO only	
GPIO49	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SATA5GP and TEMP_ALERT#	
GPIO48	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SDATAOUT1.	
GPIO47 (Mobile Only)	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with PEG_A_CLKRQ#	
GPIO46	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with PCIECLKRQ7#	
GPIO45	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with PCIECLKRQ6#	
GPIO44	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with PCIECLKRQ5#	
GPIO[43: 40]	1/0	3.3 V	Suspend	Native	No	No	No	Multiplexed with OC[4:1]# ¹⁰ .	
GPIO39	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SDATAOUT0.	
GPIO38	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SLOAD.	
GPIO37 ⁸	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SATA3GP.	
GPIO36 ⁸	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with SATA2GP.	
GPIO35	1/0	3.3 V	Core	GPO	No	No	No	Multiplexed with NMI#.	
GPIO34	1/0	3.3 V	Core	GPI	No	No	No	Multiplexed with STP_PCI#	
GPIO33	1/0	3.3 V	Core	GPO	No	No	No	Mobile: Multiplexed with HDA_DOCK_EN# (Mobile Only) ⁴ . Desktop: Used as GPIO only	
GPIO32 (not available in Mobile)	1/0	3.3 V	Core	GPO, Native (Mobile only)	No	No	No	Unmultiplexed (Desktop Only) Mobile Only: Used as CLKRUN#, unavailable as GPIO ⁴ .	

Table 2-24 General Purpose I/O Signals (Sheet 2 of 5)

Name	Туре	Toler- ance	Power Well	Default	Blink Capa- bility	Glitch Protection during Power-On Sequence	GPI Event Support	Description
GPIO31	1/0	3.3 V	DSW ¹²	GPI	Yes	Yes	No	Multiplexed with ACPRESENT. Mobile: This GPIO pin is permanently appropriated by the Intel ME for ACPRESENT function. Desktop: This pin is only GPIO31. NOTES: 1. Toggling this pin at a frequency higher than 10 Hz is not supported. 2. GPIO_USE_SEL[31] is internally hardwired to a lb, which means GPIO mode is permanently selected and cannot be changed.
GPIO30	1/0	3.3 V	Suspend	Native	Yes	Yes	No	Multiplexed with SUSPWRDNACK, SUSWARN# Desktop: Can be configured as SUSWARN# or GPIO30 only. Cannot be used as SUSPWRDNACK. Mobile: Used as SUSPWRDNACK, SUSWARN#, or GPIO30
GPIO29	1/0	3.3 V	Suspend	Native	Yes	Yes	No	Multiplexed with SLP_LAN# Pin usage as GPIO is determined by SLP_LAN#/GPIO Select Soft-strap ⁹ . Soft-strap value is not preserved for this signal in the Sx/Moff state and the pin will return to its native functionality (SLP_LAN#)
GPIO28 ⁸	1/0	3.3 V	Suspend	GPO	Yes	No	No	Unmultiplexed
GPIO27	1/0	3.3 V	DSW ¹²	GPI	Yes	No	No	Unmultiplexed. Can be configured as wake input to allow wakes from Deep S4/S5. This GPIO has no GPIO functionality in the Deep S4/S5 states other than wake from Deep S4/S5 if this option has been configured.
GPIO26 (Mobile Only)	1/0	3.3 V	Suspend	Native	Yes	No	No	Mobile: Multiplexed with PCIECLKRQ4#

Name	Туре	Toler- ance	Power Well	Default	Blink Capa- bility	Glitch Protection during Power-On Sequence	GPI Event Support	Description
GPIO25 (Mobile Only)	1/0	3.3 V	Suspend	Native	Yes	No	No	Mobile: Multiplexed with PCIECLKRQ3#
GPIO24	1/0	3.3 V	Suspend	GPO	Yes	Yes	No	Desktop: Can be used as PROC_MISSING configured using Intel ME firmware. Mobile: Unmultiplexed NOTE: GPIO24 configuration register bits are cleared by RSMRST# and not cleared by CF9h reset event.
GPIO23	1/0	3.3 V	Core	Native	Yes	No	No	Multiplexed with LDRQ1#.
GPIO22	1/0	3.3 V	Core	GPI	Yes	No	No	Multiplexed with SCLOCK
GPIO21	1/0	3.3 V	Core	GPI	Yes	No	No	Multiplexed with SATAOGP
GPIO20	1/0	3.3 V	Core	Native	Yes	No	No	Multiplexed with PCIECLKRQ2#, SMI#
GPIO19 ⁸	1/0	3.3 V	Core	GPI	Yes	No	No	Multiplexed with SATA1GP
GPIO18 (Mobile Only)	1/0	3.3 V	Core	Native	Yes ⁶	No	No	Mobile: Multiplexed with PCIECLKRQ1#
GPIO17	1/0	3.3 V	Core	GPI	Yes	No	No	Desktop: Multiplexed with TACH0. Mobile: Used as GPIO17 only.
GPIO16	1/0	3.3 V	Core	GPI	Yes	No	No	Multiplexed with SATA4GP
GPIO15 ⁸	1/0	3.3 V	Suspend	GPO	Yes	No	Yes ²	Unmultiplexed
GPIO14	1/0	3.3 V	Suspend	Native	Yes	No	Yes ²	Multiplexed with OC7#
GPIO13	1/0	3.3 V or 1.5 V ¹¹	HDA Suspend	GPI	Yes	No	Yes ²	Multiplexed with HDA_DOCK_RST# (Mobile Only) ⁴ . Desktop: Used as GPIO only
GPIO12	1/0	3.3 V	Suspend	Native	Yes	No	Yes ²	Multiplexed with LAN_PHY_PWR_CTRL. GPIO / Functionality controlled using soft strap ⁷ , ¹³
GPIO11	1/0	3.3 V	Suspend	Native	Yes	No	Yes ²	Multiplexed with SMBALERT# ¹⁰ .
GPIO10	1/0	3.3 V	Suspend	Native	Yes	No	Yes ²	Multiplexed with OC6# ¹⁰ .
GPIO9	1/0	3.3 V	Suspend	Native	Yes	No	Yes ²	Multiplexed with OC5# ¹⁰ .
GPIO8	1/0	3.3 V	Suspend	GPO	Yes	No	Yes ²	Unmultiplexed
GPIO[7:6]	1/0	3.3 V	Core	GPI	Yes	No	Yes ²	Multiplexed with TACH[3:2]. Mobile: Used as GPIO[7:6] only.
GPIO[5:2]	I/OD	5 V	Core	GPI	Yes	No	Yes ²	Multiplexed PIRQ[H:E]# ⁵ .

Table 2-24 General Purpose I/O Signals (Sheet 4 of 5)

Table 2-24 General Purpose I/O Signals (Sheet 5 of 5)

Name	Туре	Toler- ance	Power Well	Default	Blink Capa- bility	Glitch Protection during Power-On Sequence	GPI Event Support	Description
GPIO1	1/0	3.3 V	Core	GPI	Yes	No	Yes ²	Multiplexed with TACH1. Mobile: Used as GPIO1 only.
GPI00	1/0	3.3 V	Core	GPI	Yes	No	Yes ²	Multiplexed with BMBUSY#

NOTES:

- 1. All GPIOs can be configured as either input or output.
- 2. GPI[15:0] can be configured to cause a SMI# or SCI. Note that a GPI can be routed to either an SMI# or an SCI, but not both.
- 3. Some GPIOs exist in the VccSus3_3 power plane. Care must be taken to make sure GPIO signals are not driven high into powered-down planes. Also, external devices should not be driving powered down GPIOs high. Some GPIOs may be connected to pins on devices that exist in the core well. If these GPIOs are outputs, there is a danger that a loss of core power (PWROK low) or a Power Button Override event will result in the PCH driving a pin to a logic 1 to another device that is powered down.
- 4. The functionality that is multiplexed with the GPIO may not be used in desktop configuration.
- 5. When this signal is configured as GPO the output stage is an open drain.
- 6. GPIO18 will toggle at a frequency of approximately 1 Hz when the signal is programmed as a GPIO (when configured as an output) by BIOS.
- For GPIOs where GPIO vs. Native Mode is configured using SPI Soft Strap, the corresponding GPIO_USE_SEL bits for these GPIOs have no effect. The GPIO_USE_SEL bits for these GPIOs may change to reflect the Soft-Strap configuration even though GPIO Lockdown Enable (GLE) bit is set.
- 8. These pins are used as Functional straps. See Section 2.27 for more details.
- Once Soft-strap is set to GPIO mode, this pin will default to GP Input. When Soft-strap is SLP_LAN# usage and if Host BIOS does not configure as GP Output for SLP_LAN# control, SLP_LAN# behavior will be based on the setting of the RTC backed SLP_LAN# Default Bit (D31:F0:A4h:Bit 8).
- 10. When the multiplexed GPIO is used as GPIO functionality, care should be taken to ensure the signal is stable in its inactive state of the native functionality, immediately after reset until it is initialized to GPIO functionality.
- 11. GPIO13 is powered by VccSusHDA (either 3.3 V or 1.5 V). Voltage tolerance on the signal is the same as VccSusHDA.
- 12. GPIO functionality is only available when the Suspend well is powered although pin is in DSW.
- 13. GPIO will assume its native functionality until the soft strap is loaded after which time the functionality will be determined by the soft strap setting.

b. Section 13.8.3.6 GPE0_EN—General Purpose Event 0 Enables Register bit 35 is changed as shown:

Bit	Description
35	 GPIO27_EN — R/W. 0 = Disable. 1 = Enable the setting of the GPIO27_STS bit to generate a wake event/SCI/SMI#. GPIO27 is a valid host wake event from Deep S4/S5. The wake enable configuration persists after a G3 state. NOTE: In the Deep S4/S5 state, GPIO27 has no GPIO functionality other than wake enable capability, which is enabled when this bit is set.

17. Power Button Override and Deep S4/S5

a. The following note is added to the PWRBTN# Description in table 2-8 Power Management Interface Signals:

Note: Upon entry to S5 due to a power button override, if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will transition to Deep S4/S5.

b. The following is added as note 5 to table 5-23 State Transition Rules for the PCH and applies to all Power Button Override statements in the table:

Note: Upon entry to S5 due to a power button override, if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will transition to Deep S4/S5.

C.	Table 5-32	Transitions	Due to	Power	Button	is	modified as shown	1:
с.		manantions			Dutton	13	mounicu as snow	

Present State	Event	Transition/Action	Comment
S0–S4	PWRBTN# held low for at least 4 consecutive seconds	Unconditional transition to S5 state and if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will then transition to Deep S4/S5.	No dependence on processor (DMI Messages) or any other subsystem

d. The Power Button Override Function sub-section of section 5.13.8.1 PWRBTN# (Power Button) is replaced with the following:

If PWRBTN# is observed active for at least four consecutive seconds, the state machine unconditionally transitions to the G2/S5 state or Deep S4/S5, regardless of present state (S0–S4), even if the PCH PWROK is not active. In this case, the transition to the G2/S5 state or Deep S4/S5 does not depend on any particular response from the processor (such as, a DMI Messages), nor any similar dependency from any other subsystem.

The PWRBTN# status is readable to check if the button is currently being pressed or has been released. The status is taken after the de-bounce, and is readable using the PWRBTN_LVL bit.

- Note: The 4-second PWRBTN# assertion should only be used if a system lock-up has occurred. The 4-second timer starts counting when the PCH is in a S0 state. If the PWRBTN# signal is asserted and held active when the system is in a suspend state (S1–S5), the assertion causes a wake event. Once the system has resumed to the S0 state, the 4-second timer starts.
- *Note:* During the time that the SLP_S4# signal is stretched for the minimum assertion width (if enabled by D31:F0:A4h Bit 3), the Power Button is not a wake event. As a result, it is conceivable that the user will press and continue to hold the Power Button waiting for the system to awake. Since a 4-second press of the Power Button is already defined as an Unconditional Power down, the power button timer will be forced to inactive while the power-cycle timer is in progress. Once the power-cycle timer has expired, the Power Button awakes the system. Once the minimum SLP_S4# power cycle expires, the Power Button must be pressed for another 4 to 5 seconds to create the Override condition.

e. Note 6 is added to the "Straight to S5 (Host Stays there) column in Table 5-38 Causes of Host and Global Resets:

6. Upon entry to S5, if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will transition to Deep S4/S5.

f. Bits 11 and 8 of section 13.8.3.1 PM1_STS—Power Management 1 Status Register are modified as shown.

Bit	Description
	Power Button Override Status (PWRBTNOR_STS) — R/WC.
11	 0 = Software clears this bit by writing a 1 to it. 1 = This bit is set any time a Power Button Override occurs (that is, the power button is pressed for at least 4 consecutive seconds), due to the corresponding bit in the SMBus slave message, Intel ME Initiated Power Button Override, Intel ME Initiated Host Reset with Power down or due to an internal thermal sensor catastrophic condition. The power button override causes an unconditional transition to the S5 state. The BIOS or SCI handler clears this bit by writing a 1 to it. This bit is not affected by hard resets using CF9h writes, and is not reset by RSMRST#. Thus, this bit is preserved through power failures. Note that if this bit is still asserted when the global SCI_EN is set then an SCI will be generated. NOTE: Upon entry to S5 due to an event described above, if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will transition to Deep S4/S5.
	Power Button Status (PWRBTNSTS) — R/WC. This bit is not affected by hard resets caused by a CF9 write but is reset by DPWROK.
	0 = If the PWRBTN# signal is held low for more than 4 seconds, the hardware clears the PWRBTN_STS bit, sets the PWRBTNOR_STS bit, and the system transitions to the S5 state with only PWRBTN# enabled as a wake event.
	This bit can be cleared by software by writing a one to the bit position.
	of any other enable bit.
8	In the S0 state, while PWRBTN_EN and PWRBTN_STS are both set, an SCI (or SMI# if SCI_EN is not set) will be generated
	In any sleeping state S1–S5, while PWRBTN_EN (PMBASE + 02h, bit 8) and
	NOTES:
	1. If the PWRBTN_STS bit is cleared by software while the PWRBTN# signal is sell
	must go inactive and active again to set the PWRBTN_STS bit.
	2. Upon entry to S5 due to a power button override, if Deep S4/S5 is enabled and conditions are met per section 5.13.7.6, the system will transition to Deep S4/S5.

18. Power Management Clarifications

a. Clarify t200 timing by adding the following note to table 8-37:

Note: Measured from VccRTC-10% to RTCRST# reaching 55%*VccRTC. VccRTC is defined as the final settling voltage that the rail ramps.

- b. Delete t226 (in table 8-37, figure 8-1, and figure 8-2) as it is replaced by t200a.
- c. t200a min timing is changed from 0 ms to 1 us.

	d.	Table	2-13	is	modified	as	shown
--	----	-------	------	----	----------	----	-------

Name	Туре	Description
RTCRST#	I	 RTC Reset: When asserted, this signal resets register bits in the RTC well. NOTES: Unless CMOS is being cleared (only to be done in the G3 power state), the RTCRST# input must always be high when all other RTC power planes are on. In the case where the RTC battery is dead or missing on the platform, the RTCRST# pin must rise before the DPWROK pin.

19. t203 Deep S3/S4 Exit Clarification

The following note is added to t203 in table 8-37:

Timing does not apply after Deep S3/S4 exit when Intel ME has configured SLP_S5# and/or SLP_S4# to rise with SLP_A#.

20. RAID 1 Description

The second bullet of section 5.16.7 $\mbox{Intel}^{\ensuremath{\mathbb{R}}}$ Rapid Storage Technology Configuration is changed to:

Data redundancy is offered through RAID Level 1, which performs mirroring.

21. V_PROC_IO Definition

Table 2-26 Power and Ground Signals is modified as shown:

Name	Description
VccDMI	Power supply for DMI. For 3rd generation Intel [®] Core [™] processors-based platforms, this supply can be connected to the PCH VccIO. For 2nd generation Intel [®] Core [™] processors-based platforms, this supply must be connected to the same supply as the processor I/O voltage.
V_PROC_IO	This supply is used to drive the processor interface signals. For 3rd generation Intel [®] Core [™] processors-based platforms, this supply can be connected to the PCH VccIO. For 2nd generation Intel [®] Core [™] processors-based platforms, this supply must be connected to the same supply as the processor I/O voltage.

22. Manageability Signals Clarifications

The following replaces section 2.25:

2.25 Manageability Signals

The following signals can be optionally used by Intel Management Engine supported applications and appropriately configured by Intel Management Engine firmware. When configured and used as a manageability function, the associated host GPIO functionality is no longer available. If the manageability function is not used in a platform, the signal can be used as a host General Purpose I/O or a native function.

Table 2-25 Desktop/Mobile Manageability Signals

Functionality Name	Functionality Description	Pin Name(s) ¹
SUSWARN# or SUSPWRDNACK (Mobile Only)	Used by Intel [®] ME as either SUSWARN# in Deep S4/S5 state supported platforms or as SUSPWRDNACK in non Deep S4/S5 state supported platforms.	SUSWARN# /SUSPWRDNACK#/ GPIO30
AC Present (Mobile Only)	Input signal from the Embedded Controller (EC) on Mobile systems to indicate AC power source or the system battery. Active High indicates AC power.	ACPRESENT / GPIO31
Temperature Alert	Used as an alert (active low) to indicate to the external controller (such as EC or SIO) that temperatures are out of range for the PCH or Graphics/Memory Controller or the processor core.	SATA5GP / GPIO49 / TEMP_ALERT#
Processor Missing (Desktop Only)	Used to indicate Processor Missing to the Intel Management Engine.	GPIO24 / PROC_MISSING

NOTES:

- 1. Manageability functionality can be assigned to at most one pin and is configured through Intel ME FW.
- 2. See GPIO table for power well each Pin Name is associated with in Section 2-24.

Table 2-26 Server Manageability Signals

Functionality Name	Functionality Description	MGPIO Name(s) ¹
SMBALERT# signal from PSU to PCH	Indicates the PSU may cause system shutdown due to a momentary loss of AC input voltage or an over temperature condition.	MGPIO2
Intel ME FW Recovery Mode Strap	Input to PCH to force Intel ME to stay in recovery boot loader.	MGPIO0, MGPIO1, MGPIO2, MGPIO3, MGPIO4, MGPIO5, MGPIO6, MGPIO7, or MGPIO8

NOTES:

- 1. Manageability functionality can be assigned to at most one pin and is configured through Intel ME FW.
- 2. See GPIO table for power well each Pin Name is associated with in Section 2-24.

Table 2-27 Server MGPIO Signal to Pin Name Conversion Table (Sheet 1 of 2)

MGPIO	Ballout Pin Name
MGPIOO	GPIO24/PROC_MISSING
MGPIO1	SUSWARN#/GPIO30
MGPIO2	GPIO31
MGPIO3	SLP_LAN#/GPIO29
MGPIO4	SML0ALERT#/GPIO60
MGPIO5	GPI057

Table 2-27 Server MGPIO Signal to Pin Name Conversion Table (Sheet 2 of 2)

MGPIO	Ballout Pin Name
MGPIO6	GPIO27
MGPI07	GPIO28
MGPI08	SML1ALERT#/PCHHOT#/GPI074

23. ACPRESENT Definition

 Table 2-8 Power Management Interface Signals is modified as shown:

Name	Туре	Description	
ACPRESENT (Mobile Only) / GPIO31	I	ACPRESENT: This input pin indicates when the platform is plugged into AC power or not. In addition to the previous Intel [®] ME to EC communication, the PCH uses this information to implement the Deep S4/S5 policies. For example, the platform may be configured to enter Deep S4/S5 when in S4 or S5 and only when running on battery. This is powered by Deep S4/S5 Well. Mobile: This GPIO pin is permanently appropriated by the Intel ME for ACPRESENT function. Desktop: This pin is only GPIO31, ACPRESENT is not supported. NOTE: This signal is muxed with GPIO31 but GPIO_USE_SEL[31] is internally hardwired to a 1b, which means GPIO mode is permanently selected and cannot be changed.	

24. SPI Overview

The Serial Peripheral Interface (SPI) subsection of section 1.2.1 Capability Overview is replaced as follows:

The PCH provides an SPI Interface and is required to be used on the platform in order to provide chipset configuration settings and Intel ME firmware. If integrated Gigabit Ethernet MAC/PHY is implemented on the platform, the interface is used for this device configuration settings. The interface may also be used as the interface for the BIOS flash device or alternatively a FWH on LPC may be used. The PCH supports up to two SPI flash devices using two chip select pins with speeds up to 50 MHz.

§§

Documentation Changes

1. Addition of LPC Capability List Pointer Register

The following is added immediately after 13.1.11:

CAPP – Capability List Pointer Register (LPC I/F—D31:F0)Offset Address:34hAttribute:RODefault Value:E0hSize:8 bits

Bit	Description
7:0	Capability Pointer (CP) — RO. Indicates the offset of the first Capability Item.

2. Intel[®] Smart Response Technology Functional Description Updates

The following replaces section 5.16.8:

Part of the Intel[®] RST storage class driver feature set, Intel[®] Smart Response Technology implements storage I/O caching to provide users with faster response times for things like system boot and application startup. On a traditional system, performance of these operations is limited by the hard drive, particularly when there may be other I/O intensive background activities running simultaneously, like system updates or virus scans. Intel Smart Response Technology accelerates the system response experience by putting frequently-used blocks of disk data on an SSD, providing dramatically faster access to user data than the hard disk alone can provide. The user sees the full capacity of the hard drive with the traditional single drive letter with overall system responsiveness similar to what an SSD-only system provides.

See Section 1.3 for SKUs enabled for Intel Smart Response Technology.

3. Addition of Legacy ATA Backwards Compatibility Registers

a. Section 14.1.22 IDE_TIM — IDE Timing Register is modified as shown:

Bit	Description
15	 IDE Decode Enable (IDE) — R/W. Individually enable/disable the Primary or Secondary decode. 0 = Disable. 1 = Enables the PCH to decode the associated Command Block (1F0–1F7h for primary, 170–177h for secondary, or their native mode BAR equivalents) and Control Block (3F6h for primary, 376h for secondary, or their native mode BAR equivalents). This bit effects the IDE decode ranges for both legacy and native-mode decoding.

Bit	Description
14:12	IDE_TIM Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.
11:10	Reserved
9:0	IDE_TIM Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.

b. The following paragraph is added to the register summary of section 14.1.22 IDE_TIM — IDE Timing Register: Bits 14:12 and 9:0 of this register are R/W to maintain software compatibility. These

c. The following registers are added immediately following section 14.1.22:

SIDETIM—Slav	e IDE Timing Regist	er (SATA–D31:F2)	
Address Offset:	44h	Attribute:	R/W
Default Value:	00h	Size:	8 bits

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description
7:0	SIDETIM Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.

SDMA_CNT—Synchronous DMA Control Register

bits have no effect on hardware.

(SATA-	D31:F2)		
Address Offset:	48h	Attribute:	R/W
Default Value:	00h	Size:	8 bits

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description
7:4	Reserved
3:0	SDMA_CNT Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.

SDMA_TIM—Synchronous DMA Timing Register (SATA-D31:F2)

	JJI . (2)		
Address Offset:	4Ah–4Bh	Attribute:	R/W
Default Value:	0000h	Size:	16 bits

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description
15:14	Reserved
13:12	SDMA_TIM Field 4 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.
11:10	Reserved

Bit	Description
9:8	SDMA_TIM Field 3 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.
7:6	Reserved
5:4	SDMA_TIM Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.
3:2	Reserved
1:0	SDMA_TIM Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.

IDE_CONFIG—IDE I/O Configuration Register (SATA–D31:F2) Address Offset: 54h–57h Attribute:

Address Offset:	54h–57h	Attribute:	R/W
Default Value:	0000000h	Size:	32 bits

Note:

This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description	
31:24	Reserved	
23:12	IDE_CONFIG Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
11:8	Reserved IDE_CONFIG Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
7:0		

d. Section 15.1.21 IDE_TIM — IDE Timing Register is modified as shown:

Bit	Description	
15	 IDE Decode Enable (IDE) — R/W. Individually enable/disable the Primary or Secondary decode. 0 = Disable. 1 = Enables the PCH to decode the associated Command Block and Control Block. 	
14:12	IDE_TIM Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
11:10	Reserved	
9:0	IDE_TIM Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	

e. The following paragraph is added to the register summary of section 15.1.21 IDE_TIM — IDE Timing Register: Bits 14:12 and 9:0 of this register are R/W to maintain software compatibility. These bits have no effect on hardware.

f. The following registers are added immediately following section 15.1.21:

R/W

16 bits

SDMA_CNT—Synchronous DMA Control Register

(SATA-D31:F5)			
Address Offset:	48h	Attribute:	R/W
Default Value:	00h	Size:	8 bits

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description	
7:4	Reserved	
3:0	SDMA_CNT Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	

SDMA_TIM—Synchronous DMA Timing Register (SATA-D31:F5) Address Offset: 4Ah-4Bh Attribut

Address Offset:	4Ah–4Bh	Attribute:
Default Value:	0000h	Size:

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description	
15:10	Reserved	
9:8	SDMA_TIM Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
7:2	Reserved	
1:0	SDMA_TIM Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	

IDE_CONFIG—IDE I/O Configuration Register (SATA–D31:F5)

V			
Address Offset:	54h–57h	Attribute:	R/W
Default Value:	00000000h	Size:	32 bits

Note: This register is R/W to maintain software compatibility. These bits have no effect on hardware.

Bit	Description	
31:24	Reserved	
23:16	IDE_CONFIG Field 6 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
15	Reserved	
14	IDE_CONFIG Field 5 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware. Reserved	
13		
12	IDE_CONFIG Field 4 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
11:8	Reserved	
7:4	IDE_CONFIG Field 3 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.	
3	Reserved	

Bit	Description
2	IDE_CONFIG Field 2 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.
1	Reserved
0	IDE_CONFIG Field 1 — R/W. This field is R/W to maintain software compatibility. This field has no effect on hardware.

4. DMI L1 Exit Latency Documentation Change

Section 10.1.14 LCAP—Link Capabilities Register bits 17:15 are changed as shown:

Bit	Description	
	L1 Exit Latency (EL1) — R/WO.	
	000b – Less than 1 µs	
	001b – 1 µs to less than 2 µs	
	010b – 2 µs to less than 4 µs	
17:15	011b – 4 µs to less than 8 µs	
	100b – 8 µs to less than 16 µs	
	101b – 16 µs to less than 32 µs	
	110b – 32 µs to 64 µs	
	111b – More than 64 µs	

5. Device 30 Function 0 Naming Consistency Change

Device 30 Function 0 is named PCI-to-PCI Bridge throughout document for consistency.

6. Gigabit Ethernet Capabilities and Status Registers Additions

a. The follow is added as section 12.2

12.2 Gigabit LAN Capabilities and Status Registers (CSR)

The internal CSR registers and memories are accessed as direct memory mapped offsets from the base address register in Section 12.1.10. Software may only access whole DWord at a time.

Note: Register address locations that are not shown in Table 12-2 should be treated as Reserved.

Table 12-2. Gigabit LAN Capabilities and Status Registers Address Map (Gigabit LAN —MBARA) (Sheet 1 of 2)

MBARA + Offset	Mnemonic	Register Name	Default	Attribute
00h-03h	GBECSR1	Gigabit Ethernet Capabilities and Status Register 1	00100241h	R/W
18h-1Bh	GBECSR2	Gigabit Ethernet Capabilities and Status Register 2	01501000h	R/W/SN
20h-23h	GBECSR3	Gigabit Ethernet Capabilities and Status Register 3	1000XXXXh	R/W
2Ch-2Fh	GBECSR4	Gigabit Ethernet Capabilities and Status Register 4	00000000h	R/W

Table 12-2. Gigabit LAN Capabilities and Status Registers Address Map (Gigabit LAN —MBARA) (Sheet 2 of 2)

MBARA + Offset	Mnemonic	Register Name	Default	Attribute
F00h-F03 h	GBECSR5	Gigabit Ethernet Capabilities and Status Register 5	00010008h	R/W
F10h-F13 h	GBECSR6	Gigabit Ethernet Capabilities and Status Register 6	0004000Ch	R/W/SN
5400h-54 03h	GBECSR7	Gigabit Ethernet Capabilities and Status Register 7	XXXXXXXX	R/W
5404h-54 07h	GBECSR8	Gigabit Ethernet Capabilities and Status Register 8	XXXXXXXXh	R/W
5800h-58 03h	GBECSR9	Gigabit Ethernet Capabilities and Status Register 9	0000008h	R/W/SN

12.2.1 GBECSR1—Gigabit Ethernet Capabilities and Status Register 1Address Offset:MBARA + 00hAttribute:R/W

Address Offset:	MBARA + 00
Default Value:	00100241h

Size:

32 bit

Bit	Description
31:25	Reserved
24	PHY Power Down (PHYPDN) — R/W. When cleared (0b), the PHY power down setting is controlled by the internal logic of PCH.
23:0	Reserved

12.2.2 GBECSR2—Gigabit Ethernet Capabilities and Status Register 2

Address Offset:	MBARA + 18h	Attribute:	R/W/SN
Default Value:	01501000h	Size:	32 bit

Bit	Description
31:21	Reserved
20	PHY Power Down Enable (PHYPDEN) — R/W/SN. When set, this bit enables the PHY to enter a low-power state when the LAN controller is at the DMoff/D3 or with no WOL.
19:0	Reserved

12.2.3 GBECSR3—Gigabit Ethernet Capabilities and Status Register 3Address Offset:MBARA + 20hAttribute:R/W

Default Value: 1000XXXXh Size:

32 bit

Bit	Description
31:29	Reserved
28	Ready Bit (RB) — R/W. Set to 1 by the Gigabit Ethernet Controller at the end of the MDI transaction. This bit should be reset to 0 by software at the same time the command is written.
27:26	MDI Type — R/W. 01 = MDI Write 10 = MDI Read All other values are reserved.
25:21	LAN Connected Device Address (PHYADD) - R/W.
20:16	LAN Connected Device Register Address (PHYREGADD) — R/W.
15:0	DATA — R/W.

12.2.4 GBECSR4—Gigabit Ethernet Capabilities and Status Register 4Address Offset:MBARA + 2ChAttribute:R/W Default Value: 00000000h Size: 32 bits

Bit	Description
31	WOL Indication Valid (WIV) — R/W . Set to 1 by BIOS to indicate that the WOL indication setting in bit 30 of this register is valid.
30	WOL Enable Setting by BIOS (WESB) — R/W. 1 = WOL Enabled in BIOS. 0 = WOL Disabled in BIOS.
29:0	Reserved

12.2.5 GBECSR5—Gigabit Ethernet Capabilities and Status Register 5

Address Offset: MBARA + F00h Default Value: 00010008h

Attribute: R/W

32 bits

Bit	Description
31:6	Reserved
5	SW Semaphore FLAG (SWFLAG) — R/W . This bit is set by the device driver to gain access permission to shared CSR registers with the firmware and hardware.
4:0	Reserved

Size:

12.2.6 GBECSR6—Gigabit Ethernet Capabilities and Status Register 6

Address Offset:	MBARA + F10h	Attribute:	R/W/SN
Default Value:	0004000Ch	Size:	32 bits

Bit	Description
31:7	Reserved
6	Global GbE Disable (GGD) — R/W/SN. Prevents the PHY from auto negotiating 1000Mb/s link in all power states.
5:4	Reserved
3	GbE Disable at non D0a — R/W/SN. Prevents the PHY from auto negotiating 1000Mb/s link in all power states except D0a. This bit must be set since GbE is not supported in Sx states.
2	LPLU in non D0a (LPLUND) — R/W/SN. Enables the PHY to negotiate for the slowest possible link in all power states except D0a.
1	LPLU in D0a (LPLUD) — $R/W/SN$. Enables the PHY to negotiate for the slowest possible link in all power states. This bit overrides bit 2.
0	Reserved

12.2.7 GBECSR7—Gigabit Ethernet Capabilities and Status Register 7

Address Offset:	MBARA + 5400h	Attribute:	R/W	
Default Value:	XXXXXXX	Size:	32 bits	
Delaun value.		JIZE.	52 DILS	

Bit	Description
31:0	Receive Address Low (RAL)— R/W. The lower 32 bits of the 48 bit Ethernet Address.

12.2.8 GBECSR8—Gigabit Ethernet Capabilities and Status Register 8

Address Offset:	MBARA + 5404h	Attribute:	R/W	•
Default Value:	XXXXXXXXh	Size:	32 bits	

Bit	Description
31	Address Valid— R/W.
30:16	Reserved
15:0	Receive Address High (RAH)— R/W. The lower 16 bits of the 48 bit Ethernet Address.

12.2.9 GBECSR9—Gigabit Ethernet Capabilities and Status Register 9

Dit		Description		
Address Offset: Default Value:	MBARA + 5800h 00000008h	Attribute: Size:	R/W/SN 32 bits	

Bit	Description
31:1	Reserved
0	Advanced Power Management Enable (APME) — R/W/SN. 1 = APM Wakeup is enabled 0 = APM Wakeup is disabled

-

b. Bit and register attributes of the type R/W/SN are defined as follows. This is added to the beginning of chapter 9:

R/W/SN Read/Write register initial value loaded from NVM

7. Measured ICC Corrections

The following updates are made in table 8-5:

Voltage Rail	Voltage (V)	S0 Iccmax Current Integrated Graphics ⁵ (A)	S0 Iccmax Current External Graphics ⁵ (A)	S0 Idle Current Integrated Graphics ^{4,5} (A)	S0 Idle Current External Graphics ⁵ (A)	Sx Iccmax Current ⁵ (A)	Sx Idle Current (A)	G3
VccADPLLA	1.05	0.08	0.02	0.073	0.01	0	0	—
VccDSW3_3	3.3	0.001	0.001	0.001	0.001	0.002	0.001	—

8. Miscellaneous Documentation Corrections

a. Sections 23.1.1.17 PID—PCI Power Management Capability ID Register and 23.2.1.16 PID—PCI Power Management Capability ID Register default is changed to 8C01h and the register is modified as shown:

Bit	Description
15:8	Next Capability (NEXT) — RO. Value of 8Ch indicates the location of the next pointer.

b. Sections 23.1.1.8 and 23.2.1.8 naming is updated to be consistent with section 23.1.2 and 23.2.2 respectively.

Section	Mnemonic	Register Name
23.1.1.8	MEIO_MBAR	Intel MEI 1 MMIO Base Address
23.2.1.8	MEI1_MBAR	Intel MEI 2 MMIO Base Address

c. In table 8-5 Measured ICC (Desktop Only) VccDMI voltage is changed from 1.05 V to 1.05 V / 1.0 V.

d. In table 4-2 CLKOUTFLEX2 is changed to reflect that it is muxed with GPIO66.

e. Section 10.1.20 D31IP—Device 31 Interrupt Pin Register (RCBA+3100) bits 27:24 are changed as shown:

Bit	Description
27:24	Thermal Sensor Pin (TSIP) — R/W. Indicates which pin the Thermal Sensor controller drives as its interrupt Oh = No interrupt 1h = INTA# 2h = INTB# (Default) 3h = INTC# 4h = INTD# 5h-Fh = Reserved

f. Section 17.1.2.41 is renamed to ISDFIFOS—Input Stream Descriptor FIFO Size Register and section 17.1.2.42 is renamed to OSDFIFOS—Output Stream Descriptor FIFO Size Register.

- g. 82C37 is changed to 8237 throughout document.
- h. 82C54 is changed to 8254 throughout document.
- i. 82C59 is changed to 8259 throughout document.
- j. The second paragraph of section 5.10 is changed as shown:

The PCH supports a message for 21 serial interrupts. These represent the 15 ISA interrupts (IRQ0–1, 3–15), the four PCI interrupts, and the control signals SMI# and IOCHK#. The serial IRQ protocol does not support the additional APIC interrupts (20–23).

k. Section 5.13.11 Clock Generators is removed.

I. Section 5.8.4.6 Cascade Mode is removed.

m. THERM_ALERT# is changed to TEMP_ALERT# throughout document.

n. Section 10.1.36 PRSTS—Power and Reset Status Register (RCBA+3310h) bit 4 is changed as shown:

Bit	Description
4	PRSTS Field 1 — R/WC. BIOS may write to this bit field.

o. The following table lists changes to terms (bit names) made throughout the document to ensure consistent naming throughout the document.

Old Term	New (Correct) Term
CPUSCI_STS	DMISCI_STS
CPUSMI_STS	DMISMI_STS
USB2_STS	INTEL_USB2_STS
USB2_EN	INTEL_USB2_EN
SWGPE	SWGPE_EN
SPI_SMI_STS	SPI_STS
SMI_ON_SLP_EN_STS	SLP_SMI_STS
SMI_ON_SLP_EN	SLP_SMI_EN
OS_TCO_SMI	SW_TCO_SMI

p. The following sentence is removed from section 5.16.7:

"By using the PCH's built-in Intel Rapid Storage Technology, there is no loss of PCI resources (request/grant pair) or add-in card slot."

q. Section 14.4.2.5 PxIS—Port [5:0] Interrupt Status Register (ABAR+110h, 190h, 210h, 290h, 310h, 390h) bit 23 is changed as shown:

Bit	Description
23	Incorrect Port Multiplier Status (IPMS) — R/WC. The PCH SATA controller does not support Port Multipliers.

r. Section 14.4.2.6 PxIE—Port [5:0] Interrupt Enable Register (ABAR+114h, 194h, 214h, 294h, 314h, 394h) bit 23 is changed as shown:

Bit	Description
23	Incorrect Port Multiplier Enable (IPME) — R/W. The PCH SATA controller does not support Port Multipliers. BIOS and storage software should keep this bit cleared to 0.

s. The first sentence of section 2.20 is changed to "All signals are Mobile Only, except as noted that are also available in Desktop."

t. Table 8-17 title is changed from "HDMI Interface Timings (DDP[D:B][3:0])Timings" to "HDMI Interface Timings (DDP[D:B][3:0])".

u. Table 3-3 is updated to show that the PMSYNCH signal is Defined in Cx States.

v. Table 3-2 SMLOALERT# / GPIO60 note in Immediately after Reset is changed from 11 to 12.

w. Tables 3-2 and 3-3 note 7 removed from GPIO8 and GPIO27.

x. In section 13.8.3.5 GPE0_STS—General Purpose Event 0 Status Register, the SMBus Wake Status (SMB_WAK_STS) bit description is updated remove "SCI" to reflect that the SMBus controller can only generate an SMI#.

y. References to the Coprocessor Error Enable bit (RCBA+31FEh bit 9) mnemonic "COPROC_ERR_EN" are changed to "CEN" to represent the actual mnemonic.

9. 25 MHz Flex Clock AC Timings

a. The following rows are added to table 8-24 Clock Timings:

Sym	Parameter	Min	Max	Unit	Notes	Figure
	25 MHz F	lex Clock				
t51	Period	39.84	40.18	ns		8-11
t52	High Time	16.77	21.78	ns		8-11
t53	Low Time	16.37	21.58	ns		8-11
	Duty Cycle	45	55	%		
	Rising Edge Rate	1.0	4	V/ns	5	
	Falling Edge Rate	1.0	4	V/ns	5	
	Jitter (25 MHz configured on CLKOUTFLEX2)	_	_	ps	16	

b. The following note is added to table 8-24:

16. The 25 MHz output option for CLKOUTFLEX2 is derived from the 25 MHz crystal input to the PCH. The PPM of the 25 MHz output is equivalent to that of the crystal.

10. Fan Speed Control Signals Functional Description Introduction

The following is added immediately before section 5.24.9:

5.25 Fan Speed Control Signals (Server/Workstation Only)

The PCH implements 4 PWM and 8 TACH signals for integrated fan speed control.

Note: Integrated fan speed control functionality requires a correctly configured system, including an appropriate processor, Server/Workstation PCH with Intel ME, Intel ME Firmware, and system BIOS support.

11. SMBus/SMLink Timing Naming Corrections

a. The following table lists changes to SMBus/SMLink timings symbols.

Old Symbol	New (Correct) Symbol
t22	t18
t23	t19
t24	t20
t25	t21
t22_SML	t18_SML
t23_SML	t19_SML
t24_SML	t20_SML
t25_SML	t21_SML

b. Figure 8-20 name is changed from SMBus Transaction to SMBus/SMLink Transaction and Figure 8-21 name is changed from SMBus Timeout to SMBus/SMLink Timeout.

c. The following note is added to Figure 8-20:

txx also refers to txx_SML, txxx also refers to txxxSMLFM, SMBCLK also refers to SML[1:0]CLK, and SMBDATA also refers to SML[1:0]DATA in Figure 8-20.

d. The following note is added to Figure 8-21:

Note: SMBCLK also refers to SML[1:0]CLK and SMBDATA also refers to SML[1:0]DATA in Figure 8-21.

12. PCI Express* Lane Reversal Bit Change

The Lane Reversal bit is moved from section 19.1.50 MPC—Miscellaneous Port Configuration Register to 19.1.63 PEETM — PCI Express* Extended Test Mode Register and modified as shown:

Bit	Description			
	Lane Reversal (LR) — RO. This register reads the setting of the PCIELR1 soft strap for port 1 and the PCIELR2 soft strap for port 5.			
4	 0 = No Lane reversal (default). 1 = PCI Express lanes 0-3 (register in port 1) or lanes 4-7 (register in port 5) are reversed. 			
	 The port configuration straps must be set such that Port 1 or Port 5 is configured as a x4 port using lanes 0–3, or 4–7 when Lane Reversal is enabled. x2 lane reversal is not supported. 			
	2. This register is only valid on port 1 (for ports 1–4) or port 5 (for ports 5–8).			

13. Auxiliary Trip Point Lock Bit Correction

Section 22.2.5 TSTTP—Thermal Sensor Temperature Trip Point Register bits 23:16 are changed as shown:

Bit	Description
23:16	Auxiliary Trip Point Setting (ATPS) — R/W. These bits set the Auxiliary trip point. These bits are lockable using programming the policy-lock down bit (bit 7) of TSPC register. These bits may only be programmed from 0h to 7Fh. Setting bit 23 is not supported.

14. Top Swap Updates

a. Section 10.1.44 BUC—Backed Up Control Register bit 0 is changed as shown:

Bit	Description			
0	 Top Swap (TS) — R/W. 0 = PCH will not invert A16. 1 = PCH will invert A16, A17, or A18 for cycles going to the BIOS space. If booting from LPC (FWH), then the boot-block size is 64 KB and A16 is inverted if Top Swap is enabled. If booting from SPI, then the BIOS Boot-Block size soft strap determines if A16, A17, or A18 should be inverted if Top Swap is enabled. 			
	If PCH is strapped for Top Swap (GNT3#/GPI055 is low at rising edge of PWROK), then this bit cannot be cleared by software. The strap jumper should be removed and the system rebooted.			

b. BOOT_BLOCK_SIZE soft strap name is changed to BIOS Boot-Block size soft strap.

c. Table 2-27 is updated as shown:

Signal	Usage	When Sampled	Comment
GNT3# / GPI055	Top-Block Swap Override	Rising edge of PWROK	 The signal has a weak internal pull-up. If the signal is sampled low, this indicates that the system is strapped to the "top-block swap" mode. The status of this strap is readable using the Top Swap bit (Chipset Config Registers: Offset 3414h: Bit 0). NOTES: The internal pull-up is disabled after PLTRST# deasserts. Software will not be able to clear the Top Swap bit until the system is rebooted without GNT3#/GP1055 being pulled down.

15. Miscellaneous Documentation Corrections II

a. Section 13.10.15 GP_IO_SEL3—GPIO Input/Output Select 3 Register is modified as shown:

Bit	Description
11:0	 GP_IO_SEL3[75:64]— R/W. O = GPIO signal is programmed as an output. 1 = Corresponding GPIO signal (if enabled in the GPIO_USE_SEL3 register) is programmed as an input.

b. Section 13.10.16 GP_LVL3—GPIO Level for Input or Output 3 Register is modified as shown:

Bit	Description		
11:0	 GP_LVL[75:64] — R/W. These registers are implemented as dual read/write with dedicated storage each. Write value will be stored in the write register, while read is coming from the read register which will always reflect the value of the pin. If GPIO[n] is programmed to be an output (using the corresponding bit in the GP_IO_SEL register), then the corresponding GP_LVL[n] write register value will drive a high or low value on the output pin. 1 = high, 0 = low. When configured in native mode (GPIO_USE_SEL[n] is 0), writes to these bits are stored but have no effect to the pin value. The value reported in this register is undefined when programmed as native mode. This register corresponds to GPIO[75:64]. Bit 0 corresponds to GPIO64 and bit 11 		
	corresponds to GPI075.		

c. Note 5 is removed from SPI_MOSI in table 3-1.

d. Default value of 19.1.38 LCTL2—Link Control 2 Register (PCI Express*—D28:F0/F1/F2/F3/F4/F5/F6/F7) is changed from 0001h to 0002h.

e. Section 16.1.20 PWR_CNTL_STS—Power Management Control/Status Register bits 1:0 are modified as shown

Bit	Description
1:0	Power State — R/W. This 2-bit field is used both to determine the current power state of EHC function and to set a new power state. The definition of the field values are: 00 = D0 state $11 = D3_{HOT}$ state If software attempts to write a value of 10b or 01b in to this field, the write operation completes normally; however, the data is discarded and no state change occurs. When in the $D3_{HOT}$ state, the PCH does not accept accesses to the EHC memory range; but the configuration space is still accessible. When not in the D0 state, the generation of the interrupt output is blocked. Specifically, the EHC interrupt is not asserted by the PCH when not in the D0 state. When software changes this value from the $D3_{HOT}$ state to the D0 state, an internal warm (soft) controller reset is generated, and software must re-initialize the function.

f. Section 10.1.35 OIC—Other Interrupt Control Register note is corrected as shown:

FEC1_0000h-FEC4_FFFFh is allocated to PCIe when I/OxAPIC Enable (PAE) bit is set.

g. Table 9-4 PCIe memory ranges are corrected as shown:

Memory Range	Target	Dependency/Comments
FEC1 8000h-FEC1 FFFFh	PCI Express* Port 2	PCI Express* Root Port 2 I/OxAPIC Enable (PAE) set
FEC2 8000h-FEC2 FFFFh	PCI Express* Port 4	PCI Express* Root Port 4 I/OxAPIC Enable (PAE) set
FEC3 8000h-FEC3 FFFFh	PCI Express* Port 6	PCI Express* Root Port 6 I/OxAPIC Enable (PAE) set

h. SUSPWRDNACK is mobile only - this is more clearly indicated in table 2-8 and table 8-9.

i. ACPRESENT is mobile only - this is more clearly indicated in table 2-8 and sections 5.13.7.6.1 and 5.13.7.6.2.

j. HDA_DOCK_EN# and HDA_DOCK_RST# pin functionality are mobile only - this is more clearly indicated in table 2-14.

k. Section 13.10.2—GP_IO_SEL register default value is changed to EEFF66EFFh.

I. Section 13.10.15—GP_IO_SEL3 register default value is changed to 00000FF0h.

m. "Intel[®] RST SSD Caching" is changed to "Intel[®] Smart Response Technology" and note 11 is removed from table 1-2.

n. The register named GPIO_SEL3 (GPIOBASE +44h) is changed to GP_IO_SEL3.

16. Ballout Documentation Changes

a. In table 6-1, the following changes are made:

- Remove BATLOW# from GPI072
- Remove HDA_DOCK_RST# from GPI013
- Remove HDA_DOCK_EN# from GPIO33
- Remove CLKRUN# from GPIO32
- Remove SUSPWRDNACK from SUSWARN# / GPIO30 (and add spaces)

17. Integrated Digital Display Audio Device and Revision IDs

a. The title of section 17.2 is changed to Integrated Digital Display Audio Registers, Verb IDs, and Device/Revision IDs

b. The following section is added at the conclusion of section 17.2.1:

Integrated Digital Display Audio Device ID and Revision ID

The Intel 6 Series Chipset/Intel C200 Series Chipset provides a Device ID of 2805h for the integrated digital display audio codec. This is not a PCI Device ID. Instead, it is a Device ID associated with the Intel HD Audio bus.

The integrated digital display codec Revision ID is 00h for all PCH steppings.

18. Miscellaneous Documentation Corrections III

a. In section 10.1.2 RPC—Root Port Configuration Register, the encoding for bits 10:8 is corrected as shown:

Description				
GbE Over PCIe Root Port Select (GBEPCIERPSEL) — R/W. If the GBEPCIERPEN is a '1', then this register determines which port is used for GbE MAC/PHY communication over PCI Express. This register is set by soft strap and is writable to support separate PHY on motherboard and docking station. 111 = Port 8 (Lane 7) 110 = Port 7 (Lane 6) 101 = Port 6 (Lane 5) 100 = Port 5 (Lane 4) 011 = Port 4 (Lane 3) 010 = Port 3 (Lane 2) 001 = Port 2 (Lane 1) 000 = Port 1 (Lane 0) The default value for this register is set by the GBE_PCIEPORTSEL[2:0] soft strap. Note: GbE and PCIe will use the output of this register and not the soft strap				

b. Section 22.1.13 TBARH—Thermal Base High DWord bit description is changed from "Thermal Base Address High (TBAH) — R/W. TBAR bits 61:32." to "Thermal Base Address High (TBAH) — R/W. TBAR bits 63:32."

c. Table 5-24 System Power Plane the plane labeled as Deep S4/S5 Well is changed to Suspend.

d. t238 parameter is changed from "DPWROK falling to any of VccDSW, VccSUS, VccASW, VccASW3_3, or Vcc falling" to "DPWROK falling to any of VccDSW, VccSUS, VccASW, or Vcc falling"

e. VccASW3_3 in Figure 8-31 is replaced with VccSPI.

19. SPI Documentation Changes

a. Section 5.24.4.4.2 Serial Flash Discoverable Parameters (SFDP) is removed.

b. Bits 7 and 6 of section 21.1.18 SSFS—Software Sequencing Flash Status Register (SPI Memory Mapped Configuration Registers) are added as:

Bit	Description
7	Fast Read Supported — RO. This bit reflects the value of the Fast Read Support bit in the flash Descriptor Component Section.
6	Dual Output Fast Read Supported — RO. This bit reflects the value of the Dual Output Fast Read support bit in the Flash Descriptor Component Section

c. Section 21.1.23 BBAR—BIOS Base Address Configuration Register (SPI Memory Mapped Configuration Registers) is removed and the register is Reserved.

d. Section 21.4.2 HSFS—Hardware Sequencing Flash Status Register (GbE LAN Memory Mapped Configuration Registers) bit 2 is modified as shown:

Bit	Description
2	Access Error Log (AEL)— R/WC. Hardware sets this bit to a 1 when an attempt was made to access the GbE region using the direct access method or an access to the GbE Program Registers that violated the security restrictions. This bit is simply a log of an access security violation. This bit is cleared by software writing a 1.

e. Section 21.4.4 FADDR—Flash Address Register (GbE LAN Memory Mapped Configuration Registers) bits 24:0 are modified as shown:

Bit	Description
24:0	Flash Linear Address (FLA) — R/W. The FLA is the starting byte linear address of a SPI Read or Write cycle or an address within a Block for the Block Erase command. The Flash Linear Address must fall within a region for which GbE has access permissions.

f. Section 21.4.6 FRAP—Flash Regions Access Permissions Register (GbE LAN Memory Mapped Configuration Registers) is modified as shown:

Bit	Description
31:24	GbE Master Write Access Grant (GMWAG) — R/W. Each bit 31:24 corresponds to Master[7:0]. GbE can grant one or more masters write access to the GbE region 3 overriding the permissions in the Flash Descriptor. Master[1] is Host Processor/BIOS, Master[2] is Intel [®] Management Engine, Master[3] is Host processor/GbE. Master[0] and Master[7:4] are reserved. The contents of this register are locked by the FLOCKDN bit.
23:16	GbE Master Read Access Grant (GMRAG) — R/W. Each bit 23:16 corresponds to Master[7:0]. GbE can grant one or more masters read access to the GbE region 3 overriding the read permissions in the Flash Descriptor. Master[1] is Host processor/BIOS, Master[2] is Intel [®] Management Engine, Master[3] is GbE. Master[0] and Master[7:4] are reserved. The contents of this register are locked by the FLOCKDN bit
15:8	GbE Region Write Access (GRWA) — RO. Each bit 15:8 corresponds to Regions 7:0. If the bit is set, this master can erase and write that particular region through register accesses. The contents of this register are that of the Flash Descriptor. Flash Master 3. Master Region Write Access OR a particular master has granted GbE write permissions in their Master Write Access Grant register OR the Flash Descriptor Security Override strap is set.
7:0	GbE Region Read Access (GRRA) — RO. Each bit 7:0 corresponds to Regions 7:0. If the bit is set, this master can read that particular region through register accesses. The contents of this register are that of the Flash Descriptor. Flash Master 3. Master Region Write Access OR a particular master has granted GbE read permissions in their Master Read Access Grant register.

g. Bits 7 and 6 of section 21.4.13 SSFS—Software Sequencing Flash Status Register (GbE LAN Memory Mapped Configuration Registers) are added as:

Bit	Description
7	Fast Read Supported — RO. This bit reflects the value of the Fast Read Support bit in the flash Descriptor Component Section.
6	Dual Output Fast Read Supported — RO. This bit reflects the value of the Dual Output Fast Read support bit in the Flash Descriptor Component Section

20. Miscellaneous Documentation Corrections IV

a. References to "MPGIO9" are removed.

b. The Opcodes for Enable Write to Status Register in table 5-58 Hardware Sequencing Commands and Opcode Requirements is change from "50h or 60h" to "06h or 50h".

c. 17.1.1.20 HDINIT1—Intel $^{\ensuremath{\mathbb{R}}}$ High Definition Audio Initialization Register 1 register attribute changed to R/W.

d. References to GEN_PMCON3 are changed to GEN_PMCON_3.

21. Mobile SFF PCH Ballout

The following replaces section 6.3 Mobile SFF PCH Ballout:

Figure 6-9. Mobile SFF PCH Ballout (Top View - Upper Left)

Figure 6-10. Mobile SFF PCH Ballout (Top View - Lower Left)

25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
TP36		DMI1RX N		DMIORX N		DMI2RX P		DMI3RX N		FDI_RXP 1		FDI_RX NO		FDI_RXP 3		FDI_RXP 6		TP22		Reserve d	Vss_NCT F	Vss_NCT F		Vss_NCT F	BL
	TP2				DMI2RBI AS				TP4				FDI_LSY NCO				FDI_FSY NC1		Reserve d						BK
TP40		DMI1RX P		DMIORX P		DMI2RX N		DMI3RX P		FDI_RX N1		FDI_RXP 0		FDI_RX N3		FDI_RX N6		Reserve d		Reserve d	Reserve d	Vss_NCT F		Vss_NCT F	BJ
	TP1				TP3				TP5				FDI_FSY NCO				FDI_LSY NC1				Reserve d	Reserve d		Vss_NCT F	BH
																						Reserve d		Reserve d	BG
	Vss		DMIOTX P			DMI_ZC OMP		CLKIN_ DMI_P		Vss			FDI_RXP 2		FDI_RX N7			Reserve d	Reserve d						BF
																			Reserve d			Reserve d		Reserve d	BE
	Vss		DMIOTX N			DMI_IRC OMP		CLKIN_ DMI_N		Vss			FDI_RX N2		FDI_RXP 7						Reserve d		Reserve d		BD
																THRMTR IP#		DF_TVS				Reserve d		Reserve d	BC
	CLKOUT _DMI_N		DMI1TX N			DMI2TX N		DMI3TX N		FDI_RXP 4			FDI_RXP 5		FDI_INT		PMSYNC H		Reserve d						BB
																						Reserve d		Reserve d	BA
	CLKOUT _DMI_P		DMI1TX P			DMI2TX P		DMI3TX P		FDI_RX N4			FDI_RX N5				Reserve d		Reserve d		Reserve d		Reserve d		AY
				VccVRM			VccVRM		VccDMI													Reserve d		Reserve d	AW
																									AV
VccIO		VccIO		VCCADM I_VRM		VCCAFD I_VRM		Vss		VccDMI			PECI		PROCPW RGD		Reserve d		Reserve d			SATAOTX N		SATAOTX P	AU
												VccIO									TP14		TP15		AT
VccIO		VccIO		Vss		Vss		Vss		VccIO			CLKOUT _ITPXDP _N		CLKOUT _ITPXDP _P		Vss		Vss			SATA1TX N		SATA1TX P	AR
Vss		Vss		Vss		VccAPLL EXP		Vss		VccAFDI PLL		/ccAFDI PLL													AP
													CLKOUT _DP_P		CLKOUT _DP_N		SATA1R XP		SATA1R XN			SATAOR XN		SATAOR XP	AN
Vss		VccDMI		VccIO		Vss		V_PROC _IO		Vss											TP13		VCCAPLL _SATA3		AM
												/ccDFTE RM										SATA2TX N		SATA2TX P	AL
Vss		Vss		VccIO		Vss		Vss		VccDFTE RM			TS_VSS 3		TS_VSS 1		CLKIN_S ATA_N		CLKIN_S ATA_P						AK
VccCore		VccCore		VccCore		Vss		VccIO		VccDFTE RM		/ccDFTE RM										SATA5TX N		SATA5TX P	AJ
													TS_VSS 2		TS_VSS 4		SATA4TX N		SATA4TX P		SATA3R BIAS				AH
VccCore		VccCore		VccCore		Vss		Vss		VccIO		VccIO										SATA3TX N		SATA3TX P	AG

Figure 6-11. Mobile SFF PCH Ballout (Top View - Upper Right)

Vss		VccCore		VccCore		Vss		VccVRM		VccIO			SATA3C OMPI		SATA3R COMPO		Vss		Vcc3_3						AF
Vss		VccCore		VccCore		VccVRM		Vss		Vss												SATA4R XN		SATA4R XP	AE
													SPI_CLK		TP16		SATA3R XN		SATA3R XP		SATA2R XN		SATA2R XP		AD
Vss		VccCore		VccCore		Vcc3_3		Vss		VccIO		VccIO										SATA5R XN		SATA5R XP	AC
Vss		VccCore		VccCore		Vcc3_3		Vss		VccIO			SATAICC MPI		SATAICC MPO		SPI_CS0 #		SPI_CS1 #						AB
												VccIO										SATA4G P / GPIO16		SATA5G P / GPIO49 / TEMP_A LERT#	АА
VccASW		VccASW		VccASW		VccSPI		Vss		Vss											SERIRQ		SPI_MIS O		Y
													GPIO35		SATALEC #		SPI_MO SI		SATA2G P / GPIO36			SCLOCK / GPIO22		BMBUSY # / GPIO0	W
VccASW		VccASW		VccASW		VccASW		Vss		Vss		DcpSus													V
VccIO		VccIO		VccASW		VccASW		DcpSST		DcpRTC			JTAG_TE		SDATAO UTO / GPIO39		PCIECLK RQ1# / GPIO18		RCIN#			A20GAT E		SDATAO UT1 / GPIO48	U
																					PCIECLK RQ2# / GPIO20		CLKRUN # / GPIO32		Т
VccIO		VccIO		Vss		VccASW		Vss		DcpRTC			VccDSW 3_3		DcpSusE yp		CLKRQ# GPIO47		INIT3_3 V#			STP_PCI # / GPIO34		SATA1G P / GPIO19	R
																									Ρ
Vss		Vss					VccIO		VccRTC													SLOAD / GPIO38		SPKR	Ν
	CLKIN_ DOT_96 N		PWROK			PCIECLK RQ4# / GPIO26		JTAG_TC K		JTAG_T MS			JTAG_TE O		SYS_PW ROK		CL_RST 1#		SATA3G P / GPIO37		PCIECLK RQ0# / GPIO73		SATAOG P / GPIO21		М
																						CL_CLK1		SYS_RE SET#	L
	CLKIN_ DOT_96 P		INTRUD ER#			PWRBTN #		GPIO57		GPIO24			SMLOCL K		SLP_S4 #		PCIECLK RQ5# / GPIO44		GPIO15						к
																						PCIECLK RQ6# / GPIO45		CL_DAT A1	J
	USBPOP		SMLOAL ERT# / GPIO60			ACPRES ENT / GPIO31		GPI08		OC7# / GPIO14			SMBALE RT# / GPIO11		BATLOW # / GPIO72						PCIECLK RQ7# / GPIO46		PME#		н
																			SUS_ST AT# / GPIO61			APWROK		GPIO28	G
	USBPON		DSWVR MEN			RTCRST #		SMBCLK		SUSACK #			RI#		SMBDAT A			PLTRSTB #	SLP_S5 # / GPIO63						F
																						TP12		Vss_NCT F	E
	TP18				TP10				OC3# / GPIO42				SML1CL K / GPIO58				WAKE#				SLP_S3 #	SUSCLK / GPIO62		Vss_NCT F	D
USBP1N		OC6# / GPIO10		INTVRM EN		RTCX2		OC0# / GPIO59		GPIO27		N#/SUS PWRDNA CK/GPIC 30		SML1DA TA / GPI075		SMLTAL ERT# / PCHHOT # / GPI074		SLP_A#		LAN_PH Y_PWR_ CTRL / GPIO12	PEG_B_ CLKRQ# / GPIO56	Vss_NCT F			С
	TP17				RSMRST #				OC5# / GPIO9				DRAMP WROK				PCIECLK RQ3# / GPIO25								В
USBP1P		SRTCRS T#		DPWRO K		RTCX1		OC1# / GPIO40		SLP_SU S#		OC2# / GPIO41		OC4# / GPIO43		SMLODA TA		SLP_LAN # / GPIO29		Vss_NCT F	Vss_NC1 F				Α
25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Figure 6-12. Mobile SFF PCH Ballout (Top View - Lower Right)

(intel)

Table 6-3. Mobile SFF PCH Ballout By Signal Name

SFF Ball Name	Ball #
A20GATE	U3
ACPRESENT / GPIO31	H19
APWROK	G3
BATLOW# / GPIO72	H10
BMBUSY# / GPIOO	W1
CL_CLK1	L3
CL_DATA1	J1
CL_RST1#	M8
CLKIN_DMI_N	BD17
CLKIN_DMI_P	BF17
CLKIN_DOT_96N	M24
CLKIN_DOT_96P	K24
CLKIN_GND1_N	BB26
CLKIN_GND1_P	AY26
CLKIN_PCILOOPBA CK	E51
CLKIN_SATA_N	AK8
CLKIN_SATA_P	AK6
CLKOUT_DMI_N	BB24
CLKOUT_DMI_P	AY24
CLKOUT_DP_N	AN10
CLKOUT_DP_P	AN12
CLKOUT_ITPXDP_N	AR12
CLKOUT_ITPXDP_P	AR10
CLKOUT_PCI0	G51
CLKOUT_PCI1	E49
CLKOUT_PCI2	H48
CLKOUT_PCI3	J43
CLKOUT_PCI4	G45
CLKOUT_PCIEON	AD48
CLKOUT_PCIE0P	AD50
CLKOUT_PCIE1N	AE49
CLKOUT_PCIE1P	AE51
CLKOUT_PCIE2N	AD40
CLKOUT_PCIE2P	AD42
CLKOUT_PCIE3N	AA49
CLKOUT_PCIE3P	AA51
CLKOUT_PCIE4N	Y48
CLKOUT_PCIE4P	Y50
CLKOUT_PCIE5N	AB40
CLKOUT_PCIE5P	AB42
CLKOUT_PCIE6N	AB44

SFF Ball Name	Ball #
CLKOUT_PCIE6P	AB46
CLKOUT_PCIE7N	W44
CLKOUT_PCIE7P	W46
CLKOUT_PEG_A_N	AF44
CLKOUT_PEG_A_P	AF46
CLKOUT_PEG_B_N	AF40
CLKOUT_PEG_B_P	AF42
CLKOUTFLEX0 / GPIO64	H50
CLKOUTFLEX1 / GPIO65	D48
CLKOUTFLEX2 / GPIO66	G49
CLKOUTFLEX3 / GPIO67	J51
CLKRUN# / GPIO32	T2
CRT_BLUE	M46
CRT_DDC_CLK	R49
CRT_DDC_DATA	N49
CRT_GREEN	R46
CRT_HSYNC	M50
CRT_IRTN	T48
CRT_RED	U46
CRT_VSYNC	N51
DAC_IREF	R51
DcpRTC	R15
DcpRTC	U15
DcpSST	U17
DcpSus	AR33
DcpSus	AU31
DcpSus	AU33
DcpSus	V13
DcpSusByp	R10
DDPB_ON	AY48
DDPB_0P	AY50
DDPB_1N	AY44
DDPB_1P	AY46
DDPB_2N	BB44
DDPB_2P	BB46
DDPB_3N	BA49
DDPB_3P	BA51
DDPB_AUXN	AW51
DDPB_AUXP	AW49
DDPB_HPD	AY42
DDPC_ON	BC49
DDPC_0P	BC51

SFF Ball Name	Ball #
DDPC_1N	BD48
DDPC_1P	BD50
DDPC_2N	BF46
DDPC_2P	BF45
DDPC_3N	BE49
DDPC_3P	BE51
DDPC_AUXN	AU51
DDPC_AUXP	AU49
DDPC_CTRLCLK	T50
DDPC_CTRLDATA	U44
DDPC_HPD	BE46
DDPD_ON	BG51
DDPD_0P	BG49
DDPD_1N	BF42
DDPD_1P	BD42
DDPD_2N	BJ47
DDPD_2P	BL47
DDPD_3N	BL45
DDPD_3P	BJ45
DDPD_AUXN	AU46
DDPD_AUXP	AU44
DDPD_CTRLCLK	M48
DDPD_CTRLDATA	U42
DDPD_HPD	BK44
DF_TVS	BC7
DMI_IRCOMP	BD19
DMI_ZCOMP	BF19
DMIORXN	BL21
DMIORXP	BJ21
DMIOTXN	BD22
DMIOTXP	BF22
DMI1RXN	BL23
DMI1RXP	BJ23
DMI1TXN	BB22
DMI1TXP	AY22
DMI2RBIAS	BK20
DMI2RXN	BJ19
DMI2RXP	BL19
DMI2TXN	BB19
DMI2TXP	AY19
DMI3RXN	BL17
DMI3RXP	BJ17
DMI3TXN	BB17
DMI3TXP	AY17
DPWROK	A21

SFF Ball Name	Ball #
DRAMPWROK	B12
DSWVRMEN	F22
FDI_FSYNC0	BH12
FDI_FSYNC1	BK8
FDI_INT	BB10
FDI_LSYNC0	BK12
FDI_LSYNC1	BH8
FDI_RXN0	BL13
FDI_RXN1	BJ15
FDI_RXN2	BD12
FDI_RXN3	BJ11
FDI_RXN4	AY15
FDI_RXN5	AY12
FDI_RXN6	BJ9
FDI_RXN7	BF10
FDI_RXP0	BJ13
FDI_RXP1	BL15
FDI_RXP2	BF12
FDI_RXP3	BL11
FDI_RXP4	BB15
FDI_RXP5	BB12
FDI_RXP6	BL9
FDI_RXP7	BD10
FWH0 / LAD0	A37
FWH1 / LAD1	A39
FWH2 / LAD2	C39
FWH3 / LAD3	C37
FWH4 / LFRAME#	K40
GNT1# / GPIO51	F42
GNT2# / GPI053	H42
GNT3# / GPIO55	D44
GPIO1	B40
GPIO6	C43
GPI07	A45
GPI08	H17
GPIO15	K6
GPIO17	B44
GPIO24	K15
GPIO27	C15
GPIO28	G1
GPIO35	W12
GPIO57	K17
GPIO68	K42
GPIO69	A43
	-

SFF Ball Name	Ball #
GPIO70	D40
GPIO71	A41
HDA_BCLK	H35
HDA_DOCK_EN# /	K 35
GPIO33	K35
HDA_DOCK_RST# /	M35
GPI013	505
HDA_RSI#	F35
HDA_SDIN0	D36
HDA_SDIN1	B36
HDA_SDIN2	C35
HDA_SDIN3	A35
HDA_SDO	K37
HDA_SYNC	H37
INIT3_3V#	R6
INTRUDER#	K22
INTVRMEN	C21
JTAG_TCK	M17
JTAG_TDI	U12
JTAG_TDO	M12
JTAG_TMS	M15
L_BKLTCTL	L49
L_BKLTEN	M44
L_CTRL_CLK	R42
L_CTRL_DATA	M40
L_DDC_CLK	L51
L_DDC_DATA	K46
L_VDD_EN	M42
LAN_PHY_PWR_CTR L / GPIO12	C5
LDRQ0#	H40
LDRQ1# / GPIO23	F37
LVD_IBG	AH42
LVD_VBG	AH40
LVD_VREFH	AG51
LVD_VREFL	AG49
LVDSA_CLK	AK46
LVDSA_CLK#	AK44
LVDSA_DATA#0	AR46
LVDSA_DATA#1	AN49
LVDSA_DATA#2	AN44
LVDSA_DATA#3	AK40
LVDSA_DATA0	AR44
LVDSA_DATA1	AN51
 LVDSA_DATA2	AN46

SFF Ball Name	Ball #
LVDSA_DATA3	AK42
LVDSB_CLK	AH44
LVDSB_CLK#	AH46
LVDSB_DATA#0	AM50
LVDSB_DATA#1	AL49
LVDSB_DATA#2	AJ51
LVDSB_DATA#3	AH50
LVDSB_DATA0	AM48
LVDSB_DATA1	AL51
LVDSB_DATA2	AJ49
LVDSB_DATA3	AH48
NC_1	U40
OC0# / GPI059	C17
OC1# / GPIO40	A17
OC2# / GPIO41	A13
OC3# / GPIO42	D16
OC4# / GPIO43	A11
OC5# / GPIO9	B16
OC6# / GPIO10	C23
OC7# / GPIO14	H15
PCIECLKRQ0# / GPI073	M4
PCIECLKRQ1# / GPIO18	U8
PCIECLKRQ2# / GPIO20	Τ4
PCIECLKRQ3# / GPIO25	B8
PCIECLKRQ4# / GPIO26	M19
PCIECLKRQ5# / GPIO44	K8
PCIECLKRQ6# / GPIO45	J3
PCIECLKRQ7# / GPIO46	H4
PECI	AU12
PEG_A_CLKRQ# / GPIO47	R8
PEG_B_CLKRQ# / GPIO56	C4
PERn1	BJ33
PERn2	BJ35
PERn3	BH36
PERn4	BJ37
PERn5	BJ39
PERn6	BH40

SFF Ball Name	Ball #
PERn7	BJ41
PERn8	BJ43
PERp1	BL33
PERp2	BL35
PERp3	BK36
PERp4	BL37
PERp5	BL39
PERp6	BK40
PERp7	BL41
PERp8	BL43
PETn1	BB30
PETn2	BB33
PETn3	BF33
PETn4	BD35
PETn5	AY35
PETn6	BD37
PETn7	AY37
PETn8	AY40
PETp1	AY30
PETp2	AY33
PETp3	BD33
PETp4	BF35
PETp5	BB35
РЕТр6	BF37
PETp7	BB37
PETp8	BB40
PIRQA#	D49
PIRQB#	C48
PIRQC#	C47
PIRQD#	C45
PIRQE# / GPIO2	A47
PIRQF# / GPIO3	C41
PIRQG# / GPIO4	F45
PIRQH# / GPIO5	F40
PLTRST#	F7
PME#	H2
PMSYNCH	BB8
PROCPWRGD	AU10
PWRBTN#	K19
PWROK	M22
RCIN#	U6
REFCLK14IN	J49
REQ1# / GPI050	G46
REQ2# / GPI052	K44
REQ3# / GPI054	F46
	·

SFF Ball Name	Ball #
Reserved	AU6
Reserved	AU8
Reserved	AW1
Reserved	AW3
Reserved	AY2
Reserved	AY4
Reserved	AY6
Reserved	AY8
Reserved	BA1
Reserved	BA3
Reserved	BB6
Reserved	BC1
Reserved	BC3
Reserved	BD2
Reserved	BD4
Reserved	BE1
Reserved	BE3
Reserved	BE6
Reserved	BF6
Reserved	BF7
Reserved	BG1
Reserved	BG3
Reserved	BH3
Reserved	BH4
Reserved	BJ4
Reserved	BJ5
Reserved	BJ7
Reserved	BK6
Reserved	BL5
RI#	F12
RSMRST#	B20
RTCRST#	F19
RTCX1	A19
RTCX2	C19
SATAOGP / GPIO21	M2
SATAORXN	AN3
SATAORXP	AN1
SATAOTXN	AU3
SATAOTXP	AU1
SATA1GP / GPIO19	R1
SATA1RXN	AN6
SATA1RXP	AN8
SATA1TXN	AR3
SATA1TXP	AR1
SATA2GP / GPIO36	W6
	·J

SFF Ball Name	Ball #
SATA2RXN	AD4
SATA2RXP	AD2
SATA2TXN	AL3
SATA2TXP	AL1
SATA3COMPI	AF12
SATA3GP / GPIO37	M6
SATA3RBIAS	AH4
SATA3RCOMPO	AF10
SATA3RXN	AD8
SATA3RXP	AD6
SATA3TXN	AG3
SATA3TXP	AG1
SATA4GP / GPIO16	AA3
SATA4RXN	AE3
SATA4RXP	AE1
SATA4TXN	AH8
SATA4TXP	AH6
SATA5GP / GPIO49 / TEMP_ALERT#	AA1
SATA5RXN	AC3
SATA5RXP	AC1
SATA5TXN	AJ3
SATA5TXP	AJ1
SATAICOMPI	AB12
SATAICOMPO	AB10
SATALED#	W10
SCLOCK / GPIO22	W3
SDATAOUTO / GPIO39	U10
SDATAOUT1 / GPIO48	U1
SDVO_CTRLCLK	W42
SDVO_CTRLDATA	R44
SDVO_INTN	AT50
SDVO_INTP	AT48
SDVO_STALLN	AR51
SDVO_STALLP	AR49
SDVO_TVCLKINN	AU40
SDVO_TVCLKINP	AU42
SERIRQ	Y4
SLOAD / GPIO38	N3
SLP_A#	C7
SLP_LAN# / GPIO29	A7
SLP_S3#	D4
SLP_S4#	K10
	-

SFF Ball Name	Ball #
SLP_S5# / GPIO63	F6
SLP_SUS#	A15
SMBALERT# /	Н12
GPIO11	1112
SMBCLK	F17
SMBDATA	F10
SMLOALERT# /	H22
SMLOCEK	К12
SMLODATA	A9
SML1ALERT# /	
PCHHOT# / GPIO74	C9
SML1CLK / GPI058	D12
SML1DATA /	C11
GPIO75	011
SPI_CLK	AD12
SPI_CS0#	AB8
SPI_CS1#	AB6
SPI_MISO	Y2
SPI_MOSI	W8
SPKR	N1
SRTCRST#	A23
STP_PCI# / GPIO34	R3
SUS_STAT# / GPIO61	G6
SUSACK#	F15
SUSCLK / GPIO62	D3
SUSWARN#/SUSPW RDNACK/GPIO30	C13
SYS_PWROK	M10
SYS_RESET#	L1
THRMTRIP#	BC9
TP1	BH24
TP2	BK24
TP3	BH20
TP4	BK16
TP5	BH16
TP6	AN42
TP7	AN40
TP8	AR40
TP9	AR42
TP10	D20
TP11	M30
TP12	E3
TP13	AM4
TP14	AT4

SFF Ball Name	Ball #
TP15	AT2
TP16	AD10
TP17	B24
TP18	D24
TP19	AD44
TP20	AD46
TP21	BJ48
TP22	BL7
TP23	W40
TP24	K30
TP25	BJ25
TP26	BJ27
TP27	BJ31
TP28	BJ29
TP29	BL25
TP30	BL27
TP31	BL31
TP32	BL29
TP33	BF26
TP34	BB28
TP35	BF28
TP36	BF30
TP37	BD26
TP38	AY28
TP39	BD28
TP40	BD30
TP41	BH49
TP42	BB42
TS_VSS1	AK10
TS_VSS2	AH12
TS_VSS3	AK12
TS_VSS4	AH10
USBPON	F24
USBPOP	H24
USBP1N	C25
USBP1P	A25
USBP2N	C27
USBP2P	A27
USBP3N	H28
USBP3P	F28
USBP4N	M26
USBP4P	K26
USBP5N	D28
USBP5P	B28
	1

SFF Ball Name	Ball #
USBP6N	H26
USBP6P	F26
USBP7N	D32
USBP7P	B32
USBP8N	M28
USBP8P	K28
USBP9N	C29
USBP9P	A29
USBP10N	C31
USBP10P	A31
USBP11N	H33
USBP11P	F33
USBP12N	H30
USBP12P	F30
USBP13N	M33
USBP13P	K33
USBRBIAS	A33
USBRBIAS#	C33
V_PROC_IO	AM17
V5REF	N36
V5REF_Sus	M37
Vcc3_3	AB19
Vcc3_3	AC19
Vcc3_3	AF6
Vcc3_3	BK28
Vcc3_3	R40
Vcc3_3	T39
Vcc3_3	U37
Vcc3_3	V37
Vcc3_3	V39
VccAClk	AC51
VccADAC	U51
VccADPLLA	BF40
VccADPLLB	BD40
VccAFDIPLL	AP13
VccAFDIPLL	AP15
VccALVDS	AF33
VccALVDS	AG33
VccAPLLDMI2	AW31
VccAPLLEXP	AP19
VccAPLLSATA	AM2
VccASW	AB27
VccASW	AB29
VccASW	AB31

SFF Ball Name	Ball #
VccASW	AC27
VccASW	AC29
VccASW	AC31
VccASW	AE27
VccASW	AE29
VccASW	AE31
VccASW	R19
VccASW	U19
VccASW	U21
VccASW	V19
VccASW	V21
VccASW	V23
VccASW	V25
VccASW	Y21
VccASW	Y23
VccASW	Y25
VccASW	Y27
VccASW	Y29
VccASW	Y31
VccClkDMI	AP39
VccCore	AB21
VccCore	AB23
VccCore	AC21
VccCore	AC23
VccCore	AE21
VccCore	AE23
VccCore	AF21
VccCore	AF23
VccCore	AG21
VccCore	AG23
VccCore	AG25
VccCore	AG27
VccCore	AJ21
VccCore	AJ23
VccCore	AJ25
VccCore	AJ27
VccCore	AJ29
VccCore	AJ31
VccCore	AK29
VccCore	AK31
VccCore	AK33
VccCore	AM33
VccCore	AM35
VccDFTERM	AJ13
VccDFTERM	AJ15

SFF Ball Name	Ball #
VccDFTERM	AK15
VccDFTERM	AL13
VccDIFFCLKN	AC37
VccDIFFCLKN	AE37
VccDIFFCLKN	AE39
VccDMI	AM23
VccDMI	AU15
VccDMI	AW16
VccDSW3_3	R12
VccIO	AA13
VccIO	AB15
VccIO	AC13
VccIO	AC15
VccIO	AF15
VccIO	AG13
VccIO	AG15
VccIO	AJ17
VccIO	AK21
VccIO	AM21
VccIO	AP27
VccIO	AR15
VccIO	AR23
VccIO	AR25
VccIO	AR27
VccIO	AR29
VccIO	AT13
VccIO	AU23
VccIO	AU25
VccIO	AU27
VccIO	AU29
VccIO	AU35
VccIO	AW34
VccIO	N18
VccIO	R23
VccIO	R25
VccIO	U23
VccIO	U25
VccRTC	N16
VccSPI	Y19
VccSSC	AC35
VccSus3_3	AM27
VccSus3_3	N27
VccSus3_3	R27
VccSus3_3	R29
VccSus3_3	R33
	J

SFF Ball Name	Ball #
VccSus3_3	R35
VccSus3_3	U27
VccSus3_3	U29
VccSus3_3	U33
VccSus3_3	U35
VccSusHDA	V31
VccTX_LVDS	AF37
VccTX_LVDS	AG37
VccTX_LVDS	AG39
VccTX_LVDS	AJ37
VccVRM	AC39
VccVRM	AE19
VccVRM	AF17
VccVRM	AU19
VccVRM	AU21
VccVRM	AW18
VccVRM	AW21
Vss	AA11
Vss	AA39
Vss	AA41
Vss	AA43
Vss	AA45
Vss	AA7
Vss	AA9
Vss	AB17
Vss	AB2
Vss	AB25
Vss	AB33
Vss	AB35
Vss	AB37
Vss	AB4
Vss	AB48
Vss	AB50
Vss	AC11
Vss	AC17
Vss	AC25
Vss	AC41
Vss	AC43
Vss	AC45
Vss	AC7
Vss	AC9
Vss	AE11
Vss	AE13
Vss	AE15
Vss	AE17

SFF Ball Name	Ball #
Vss	ΔF25
Vss	ΔΕ35
Vss	ΔΕ/1
Vss	
Vss	AE45
Vss	AL45
Vss	AL7
Vss	AL 9
VSS	AF19
VSS	AF2
VSS	AF20
VSS	AF27
VSS	AF29
V55	AF31
VSS	AF35
VSS	AF4
VSS	AF48
VSS	AF50
VSS	AF8
Vss	AGTT
Vss	AG17
Vss	AG19
Vss	AG29
Vss	AG31
Vss	AG35
Vss	AG41
Vss	AG43
Vss	AG45
Vss	AG7
Vss	AG9
Vss	AH2
Vss	AJ11
Vss	AJ19
Vss	AJ33
Vss	AJ35
Vss	AJ39
Vss	AJ41
Vss	AJ43
Vss	AJ45
Vss	AJ7
Vss	AJ9
Vss	AK17
Vss	AK19
Vss	AK2
Vss	AK23

SFF Ball Name	Ball #	
Vss	AK25	V
Vss	AK27	V
Vss	AK35	V
Vss	AK37	V
Vss	AK4	V
Vss	AK48	V
Vss	AK50	V
Vss	AL11	V
Vss	AL39	V
Vss	AL41	V
Vss	AL43	V
Vss	AL45	V
Vss	AL7	V
Vss	AL9	V
Vss	AM15	V
Vss	AM19	V
Vss	AM25	V
Vss	AM29	V
Vss	AM31	V
Vss	AM37	V
Vss	AP11	V
Vss	AP17	V
Vss	AP2	V
Vss	AP21	V
Vss	AP23	V
Vss	AP25	V
Vss	AP29	V
Vss	AP31	V
Vss	AP33	V
Vss	AP35	V
Vss	AP37	V
Vss	AP4	V
Vss	AP41	V
Vss	AP43	V
Vss	AP45	V
Vss	AP48	V
Vss	AP50	V
Vss	AP7	V
Vss	AP9	V
Vss	AR17	V
Vss	AR19	V
Vss	AR21	V
Vss	AR31	V
Vss	AR35	V
	•	L

SFF Ball Name	Ball #
Vss	AR37
Vss	AR6
Vss	AR8
Vss	AT11
Vss	AT39
Vss	AT41
Vss	AT43
Vss	AT45
Vss	AT7
Vss	AT9
Vss	AU17
Vss	AU37
Vss	AV2
Vss	AV4
Vss	AV48
Vss	AV50
Vss	AW11
Vss	AW13
Vss	AW23
Vss	AW25
Vss	AW27
Vss	AW29
Vss	AW36
Vss	AW39
Vss	AW41
Vss	AW43
Vss	AW45
Vss	AW7
Vss	AW9
Vss	AY10
Vss	B10
Vss	B14
Vss	B18
Vss	B22
Vss	B26
Vss	B30
Vss	B34
Vss	B38
Vss	B42
Vss	B46
Vss	B6
Vss	BA11
Vss	BA13
Vss	BA16

VssBA18VssBA21VssBA23VssBA25VssBA27VssBA27VssBA27VssBA27VssBA27VssBA29VssBA31VssBA34VssBA36VssBA37VssBA41VssBA43VssBA45VssBA7VssBA7VssBA7VssBB2VssBB2VssBB2VssBB48VssBC11VssBC13VssBC13VssBC23VssBC23VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC31VssBC41VssBC41VssBC41VssBC13VssBC13VssBE13VssBE13VssBE13VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23VssBE23	SFF Ball Name	Ball #
VssBA21VssBA23VssBA25VssBA27VssBA27VssBA27VssBA29VssBA31VssBA34VssBA36VssBA37VssBA41VssBA43VssBA43VssBA45VssBA45VssBA7VssBA7VssBB2VssBB2VssBB2VssBB48VssBC11VssBC13VssBC13VssBC13VssBC23VssBC23VssBC24VssBC34VssBC34VssBC43VssBC41VssBC43VssBC41VssBC13VssBC43VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBE16VssBE13VssBE14VssBE13VssBE23VssBE23VssBE23VssBE23VssBE23	Vss	BA18
VssBA23VssBA27VssBA27VssBA29VssBA31VssBA34VssBA36VssBA37VssBA41VssBA43VssBA43VssBA43VssBA45VssBA45VssBA7VssBA7VssBA7VssBB2VssBB4VssBB4VssBB43VssBC11VssBC13VssBC14VssBC21VssBC23VssBC27VssBC29VssBC34VssBC34VssBC34VssBC34VssBC34VssBC35VssBC43VssBC43VssBC43VssBE11VssBE13VssBE13VssBE14VssBE13VssBE13VssBE13VssBE23VssBE23VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA21
VssBA25VssBA27VssBA29VssBA31VssBA34VssBA36VssBA37VssBA41VssBA43VssBA43VssBA45VssBA7VssBA7VssBB2VssBB4VssBB2VssBB4VssBB4VssBC11VssBC13VssBC16VssBC21VssBC23VssBC25VssBC34VssBC34VssBC34VssBC34VssBC35VssBC43VssBC43VssBC43VssBC43VssBE11VssBE13VssBE13VssBE13VssBE13VssBE13VssBE23VssBE23VssBE23VssBE23VssBE25VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25<	Vss	BA23
VssBA27VssBA31VssBA34VssBA34VssBA36VssBA37VssBA43VssBA43VssBA43VssBA43VssBA45VssBA7VssBA7VssBB2VssBB4VssBB4VssBB4VssBB43VssBC11VssBC13VssBC13VssBC13VssBC23VssBC23VssBC24VssBC34VssBC34VssBC34VssBC43VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBE11VssBE13VssBE13VssBE13VssBE18VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA25
VssBA29VssBA31VssBA34VssBA36VssBA39VssBA43VssBA43VssBA43VssBA45VssBA7VssBA7VssBA7VssBA7VssBA9VssBB4VssBB4VssBB48VssBC11VssBC13VssBC16VssBC18VssBC23VssBC23VssBC24VssBC34VssBC34VssBC34VssBC41VssBC43VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBE13VssBE13VssBE13VssBE13VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25<	Vss	BA27
VssBA31VssBA34VssBA36VssBA39VssBA41VssBA43VssBA43VssBA45VssBA7VssBA7VssBA7VssBA7VssBA7VssBA9VssBB2VssBB4VssBB4VssBC11VssBC13VssBC16VssBC21VssBC23VssBC23VssBC27VssBC31VssBC34VssBC34VssBC34VssBC34VssBC43VssBC43VssBD15VssBC13VssBC14VssBE13VssBE13VssBE13VssBE13VssBE18VssBE23VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25 <td< td=""><td>Vss</td><td>BA29</td></td<>	Vss	BA29
VssBA34VssBA36VssBA39VssBA41VssBA43VssBA43VssBA45VssBA7VssBA7VssBA9VssBB2VssBB4VssBB4VssBB48VssBB48VssBC11VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC34VssBC34VssBC34VssBC34VssBC43VssBC43VssBC41VssBC45VssBC45VssBE11VssBE13VssBE18VssBE18VssBE23VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA31
VssBA36VssBA39VssBA41VssBA43VssBA43VssBA45VssBA7VssBA9VssBB2VssBB4VssBB4VssBB4VssBB43VssBC11VssBC13VssBC13VssBC13VssBC13VssBC23VssBC23VssBC27VssBC31VssBC31VssBC34VssBC34VssBC43VssBC43VssBC41VssBC41VssBC41VssBC41VssBC41VssBE11VssBE13VssBE13VssBE14VssBE13VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA34
VssBA39VssBA41VssBA43VssBA45VssBA7VssBA7VssBA7VssBA9VssBB2VssBB4VssBB48VssBB48VssBC11VssBC13VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC31VssBC34VssBC34VssBC34VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBE11VssBE13VssBE13VssBE13VssBE18VssBE23VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA36
VssBA41VssBA43VssBA45VssBA7VssBA7VssBA9VssBB2VssBB4VssBB4VssBB43VssBB43VssBB43VssBC11VssBC13VssBC13VssBC14VssBC21VssBC23VssBC25VssBC27VssBC31VssBC34VssBC34VssBC34VssBC43VssBC41VssBC43VssBC41VssBD15VssBC41VssBE11VssBE13VssBE13VssBE18VssBE18VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA39
VssBA43VssBA45VssBA7VssBA9VssBB2VssBB4VssBB4VssBB48VssBC1VssBC11VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC27VssBC27VssBC34VssBC34VssBC34VssBC43VssBC43VssBC45VssBD15VssBE11VssBE13VssBE13VssBE18VssBE23VssBE23VssBE23VssBE25	Vss	BA41
VssBA45VssBA7VssBA9VssBB2VssBB4VssBB48VssBB50VssBC11VssBC13VssBC13VssBC13VssBC13VssBC13VssBC21VssBC23VssBC23VssBC27VssBC27VssBC27VssBC27VssBC31VssBC34VssBC34VssBC41VssBC43VssBC41VssBD15VssBD24VssBE11VssBE13VssBE18VssBE18VssBE23VssBE23VssBE25 </td <td>Vss</td> <td>BA43</td>	Vss	BA43
VssBA7VssBA9VssBB2VssBB4VssBB48VssBB48VssBC11VssBC13VssBC13VssBC16VssBC21VssBC23VssBC23VssBC27VssBC31VssBC31VssBC31VssBC34VssBC34VssBC41VssBC43VssBC41VssBC41VssBD15VssBD24VssBE11VssBE13VssBE18VssBE18VssBE23VssBE23VssBE25VssS<	Vss	BA45
VssBA9VssBB2VssBB4VssBB48VssBB50VssBC11VssBC13VssBC13VssBC16VssBC21VssBC23VssBC27VssBC27VssBC29VssBC31VssBC34VssBC34VssBC34VssBC43VssBC41VssBC45VssBD15VssBD15VssBE11VssBE13VssBE13VssBE18VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE25VssBE25	Vss	BA7
VssBB2VssBB4VssBB48VssBB50VssBC11VssBC13VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC27VssBC34VssBC34VssBC34VssBC41VssBC43VssBC43VssBC45VssBD15VssBE11VssBE13VssBE13VssBE18VssBE23VssBE23VssBE23VssBE25	Vss	BA9
VssBB4VssBB48VssBB50VssBC11VssBC13VssBC13VssBC14VssBC18VssBC21VssBC23VssBC27VssBC27VssBC31VssBC31VssBC34VssBC34VssBC41VssBC41VssBC41VssBC41VssBD15VssBD24VssBE11VssBE13VssBE18VssBE23VssBE23VssBE23	Vss	BB2
VssBB48VssBB50VssBC11VssBC13VssBC13VssBC16VssBC17VssBC21VssBC23VssBC25VssBC27VssBC27VssBC31VssBC34VssBC34VssBC34VssBC43VssBC41VssBC41VssBD15VssBD15VssBE11VssBE13VssBE14VssBE18VssBE23VssBE23VssBE23	Vss	BB4
VssBB50VssBC11VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC29VssBC31VssBC34VssBC34VssBC43VssBC41VssBC43VssBC41VssBC45VssBC45VssBD15VssBE11VssBE13VssBE14VssBE18VssBE23VssBE23VssBE25	Vss	BB48
VssBC11VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC27VssBC31VssBC34VssBC34VssBC41VssBC43VssBC41VssBC41VssBC41VssBC45VssBD15VssBE11VssBE13VssBE13VssBE18VssBE23VssBE23VssBE25VssBE25	Vss	BB50
VssBC13VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC27VssBC31VssBC34VssBC36VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBC41VssBE11VssBE12VssBE13VssBE18VssBE23VssBE23VssBE25VssBE25VssBE25VssBE25VssBE27	Vss	BC11
VssBC16VssBC18VssBC21VssBC23VssBC25VssBC27VssBC29VssBC31VssBC34VssBC34VssBC34VssBC34VssBC43VssBC41VssBC45VssBD15VssBD15VssBE11VssBE13VssBE13VssBE18VssBE23VssBE23VssBE25VssBE25	Vss	BC13
VssBC18VssBC21VssBC23VssBC25VssBC27VssBC27VssBC31VssBC34VssBC34VssBC36VssBC41VssBC43VssBC45VssBD15VssBE11VssBE13VssBE13VssBE14VssBE18VssBE23VssBE23VssBE25VssBE25	Vss	BC16
VssBC21VssBC23VssBC25VssBC27VssBC27VssBC27VssBC31VssBC34VssBC34VssBC36VssBC41VssBC43VssBC41VssBC45VssBD15VssBD24VssBE11VssBE13VssBE18VssBE21VssBE23VssBE23VssBE25VssBE27	Vss	BC18
VssBC23VssBC25VssBC27VssBC29VssBC31VssBC34VssBC36VssBC36VssBC43VssBC41VssBC43VssBC45VssBD15VssBD24VssBE11VssBE13VssBE13VssBE18VssBE21VssBE23VssBE25VssBE25	Vss	BC21
VssBC25VssBC27VssBC29VssBC31VssBC34VssBC34VssBC39VssBC41VssBC43VssBC45VssBD15VssBD24VssBE11VssBE13VssBE14VssBE14VssBE18VssBE21VssBE23VssBE25VssBE25	Vss	BC23
VssBC27VssBC29VssBC31VssBC34VssBC36VssBC36VssBC41VssBC43VssBC45VssBD15VssBD24VssBE13VssBE14VssBE13VssBE18VssBE23VssBE25VssBE25	Vss	BC25
VssBC29VssBC31VssBC34VssBC36VssBC39VssBC41VssBC43VssBC45VssBD15VssBD24VssBE11VssBE13VssBE18VssBE21VssBE23VssBE23VssBE25	Vss	BC27
VssBC31VssBC34VssBC36VssBC39VssBC41VssBC43VssBC45VssBD15VssBD24VssBE11VssBE13VssBE14VssBE18VssBE21VssBE23VssBE25VssBE25	Vss	BC29
Vss BC34 Vss BC36 Vss BC39 Vss BC41 Vss BC43 Vss BC45 Vss BC45 Vss BD15 Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE25 Vss BE27	Vss	BC31
Vss BC36 Vss BC39 Vss BC41 Vss BC43 Vss BC45 Vss BC45 Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE23 Vss BE23 Vss BE25 Vss BE25	Vss	BC34
Vss BC39 Vss BC41 Vss BC43 Vss BC45 Vss BD15 Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE23 Vss BE25 Vss BE27	Vss	BC36
Vss BC41 Vss BC43 Vss BC45 Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE23 Vss BE25 Vss BE27	Vss	BC39
Vss BC43 Vss BC45 Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE23 Vss BE25 Vss BE27	Vss	BC41
VssBC45VssBD15VssBD24VssBE11VssBE13VssBE16VssBE18VssBE21VssBE23VssBE25VssBE27	Vss	BC43
Vss BD15 Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE23 Vss BE25 Vss BE27	Vss	BC45
Vss BD24 Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE25 Vss BE27	Vss	BD15
Vss BE11 Vss BE13 Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE25 Vss BE27	Vss	BD24
VssBE13VssBE16VssBE18VssBE21VssBE23VssBE25VssBE27	Vss	BE11
Vss BE16 Vss BE18 Vss BE21 Vss BE23 Vss BE25 Vss BE27	Vss	BE13
VssBE18VssBE21VssBE23VssBE25VssBE27	Vss	BE16
Vss BE21 Vss BE23 Vss BE25 Vss BE27	Vss	BE18
Vss BE23 Vss BE25 Vss BE27	Vss	BE21
Vss BE25 Vss BE27	Vss	BE23
Vss BE27	Vss	BE25
	Vss	BE27

SFF Ball Name	Ball #
Vss	BE29
Vss	BE31
Vss	BE34
Vss	BE36
Vss	BE39
Vss	BE41
Vss	BE43
Vss	BE45
Vss	BE7
Vss	BE9
Vss	BF15
Vss	BF2
Vss	BF24
Vss	BF4
Vss	BF48
Vss	BF50
Vss	BH10
Vss	BH14
Vss	BH18
Vss	BH22
Vss	BH26
Vss	BH28
Vss	BH30
Vss	BH32
Vss	BH34
Vss	BH38
Vss	BH42
Vss	BH44
Vss	BH46
Vss	BH48
Vss	BH6
Vss	BK10
Vss	BK14
Vss	BK18
Vss	BK22
Vss	BK26
VSS	BK30
VSS	BK32
VSS	BK34
VSS	BK38
VSS	BK42
VSS	BK46
VSS	
VSS	D14
V 22	אוט

SFF Ball Name	Ball #
Vss	D22
Vss	D26
Vss	D30
Vss	D34
Vss	D38
Vss	D42
Vss	D46
Vss	D6
Vss	F2
Vss	F4
Vss	F48
Vss	F50
Vss	G11
Vss	G13
Vss	G16
Vss	G18
Vss	G21
Vss	G23
Vss	G25
Vss	G27
Vss	G29
Vss	G31
Vss	G34
Vss	G36
Vss	G39
Vss	G41
Vss	G43
Vss	G7
Vss	G9
Vss	J11
Vss	J13
Vss	J16
Vss	J18
Vss	J21
Vss	J23
Vss	J25
Vss	J27
Vss	J29
Vss	J31
Vss	J34
Vss	J36
Vss	J39
Vss	J41
Vss	145
Vss	17
v 33	57

SFF Ball Name	Ball #	SFF Ball Name
Vss	J9	Vss
Vss	K2	Vss
Vss	K4	Vss
Vss	K48	Vss
Vss	K50	Vss
Vss	L11	Vss
Vss	L13	Vss
Vss	L16	Vss
Vss	L18	Vss
Vss	L21	Vss
Vss	L23	Vss
Vss	L25	Vss
Vss	L27	Vss
Vss	L29	Vss
Vss	L31	Vss
Vss	L34	Vss
Vss	L36	Vss
Vss	L39	Vss
Vss	L41	Vss
Vss	L43	Vss
Vss	L45	Vss
Vss	L7	Vss
Vss	L9	Vss
Vss	N11	Vss
Vss	N13	Vss
Vss	N21	Vss
Vss	N23	Vss
Vss	N25	Vss
Vss	N29	Vss
Vss	N31	Vss_NCTF
Vss	N34	Vss_NCTF
Vss	N39	Vss_NCTF
Vss	N41	Vss_NCTF
Vss	N43	Vss_NCTF
Vss	N45	Vss_NCTF
Vss	N7	Vss_NCTF
Vss	N9	Vss_NCTF
Vss	P2	Vss_NCTF
Vss	P4	Vss_NCTF
Vss	P48	Vss_NCTF
Vss	P50	Vss_NCTF
Vss	R17	Vss_NCTF
Vss	R21	Vss_NCTF
Vss	R31	Vss_NCTF
Vss	R37	Vss_NCTF

SFF Ball Name	Ball #
Vss_NCTF	BL51
Vss_NCTF	C3
Vss_NCTF	C49
Vss_NCTF	C51
Vss_NCTF	D1
Vss_NCTF	D51
Vss_NCTF	E1
VssADAC	V50
VssALVDS	AC33
VssALVDS	AE33
WAKE#	D8
XCLK_RCOMP	AC49
XTAL25_IN	W49
XTAL25_OUT	W51

Ball #

T11 T13 T41 T43 T45 Τ7 Τ9 U31 U49 V11 V15 V17 V2 V27 V29 V33 V35 V4 V41 V43 V45 V48 V7 ٧9 Y15 Y17 Y33 Y35 Y37 A4 A48 A49 A5 A51 BH1 BH51 BJ1 BJ3 BJ49 BJ51 BL1 BL3 BL4 BL48 BL49

22.

Thermal Sensor Thermometer Read Register Updates

Section 22.2.4 TSTR—Thermal Sensor Thermometer Read Register is modified as

3110 1011.			
Offset Address:	TBARB+03h	Attribute:	RO
Default Value:	yFh (y = x111b)	Size:	8 bit

This register provides the calibrated current temperature from the thermometer circuit when the thermometer is enabled.

Bit	Description
7	Reserved
6:0	Thermometer Reading (TR) — RO. Value corresponds to the thermal sensor temperature. A value of 00h means the hottest temperature and 7Fh is the lowest. The range is approximately between 40 °C to 130 °C. Temperature below 40 °C will be truncated to 40 °C.

23. DC Inputs Characteristics Tables Corrections

a. All notes are removed from the end of table 8-7 DC Characteristic Input Signal Association.

b. "(1)" removed from SML[1:0]CLK, SML[1:0]DATA in table 8-7 DC Characteristic Input Signal Association.

c. Table 8-8 DC Input Characteristics and its notes are modified as follows:

i) Note 11 is removed from VIL6.

ii) Note 10 is removed from VIL16.

iii) Note 8 is removed from the table.

24. CPU_PWR_FLR Removal

In table 5-39 Event Transitions that Cause Messages, the CPU_PWR_FLR event is removed from the table as this is no longer a valid event.

25. Miscellaneous Documentation Corrections V

a. t121gen3 max is changed to 0.48.

b. Usages of "display port" not referring to the DisplayPort interface are changed to "digital port" or "display interface" throughout the document as well as changing "display port" to DisplayPort when referring to the interface.

c. The attribute of TCO_EN (PMBASE+30h: bit 13) is changed from R/W to R/WL.

d. The attribute of GBL_SMI_EN (PMBASE+30h:bit 0) is changed from R/W to R/WL.

e. The second paragraph of section 5.21.3.1 Supported Addresses is removed.

f. The following sentence in section 5.21.3.6 Temperature Comparator and Alert:

In general the TEMP_ALERT# signal will assert within a 1–4 seconds, depending on the actual BIOS implementation and flow.

is changed to:

In general the TEMP_ALERT# signal will assert within 1–4 seconds, depending on the actual BIOS implementation and flow.

g. Section 5.21.3.8.2 title is changed from Power On to Block Read Special Handling

h. Note 1 is added to PWM[3:0] in table 8-9 DC Characteristic Output Signal Association.

26. PCI Express* Initialization Registers Corrections

19.1.62 PECR2 — PCI Express* Configuration Register 2 and 19.1.64 PEC1 — PCI Express Configuration Register 1 are removed from the Datasheet. No BIOS programming is required.

27. VccSus3_3 Description

The description for VccSus3_3 in table 2-26 is changed as shown:

Name	Description	
VccSus3_3	3.3 V supply for suspend well I/O buffers. This power may be shut off in the Deep S4/S5 or G3 states.	

28. Register Default Value Corrections

The following table lists the correct default value for the given register at the location of the incorrect value.

Register NameLocation of Incorrect Default Value		Correct Default Value
USBOCM1	Table 10-1	C0300C03h
BIOS_CNTL	Table 13-1	20h
САР	Table 15-1	70h
EHCIIR1	Section 16.1.31	83088E01h
ХСАР	Table 19-1	0042h
DCAP	Table 19-1	00008000h
SLCAP	Table 19-1	00040060h
CEM	Table 19-1	00002000h
SSFC	Table 21-1	F80000h
FRAP	Table 21-2	0000088h
CC	Table 23-1	078000h
CC	Table 23-3	078000h
НТҮРЕ	Table 23-1	80h
НТҮРЕ	Table 23-3	80h
HERES	Section 23.1.1.26	4000000h
HERES	Section 23.2.1.25	4000000h
ME_CB_RW	Table 23-2	FFFFFFFh
ME_CB_RW	Table 23-4	FFFFFFFh

Register Name	Location of Incorrect Default Value	Correct Default Value
INTR	Table 23-3	0200h
INTR	Section 23.2.1.12	0200h
ME_UMA	Table 23-1	8000000h
KTIIR	Section 23.4.2.6	01h
KTLCR	Section 23.4.2.8	03h
SCTLBA	Section 23.3.1.11	0000001h

29. Miscellaneous Documentation Corrections VI

- a. Section 15.1.33 title is changed to ATS-APM Trapping Status Register.
- b. Section 16.1.37 mnemonic is changed to FLR_STAT.

30. Miscellaneous Documentation Correction VII

Section 10.1.80 FDSW—Function Disable SUS Well Register is updated as shown:

Bit	Description
	Function Disable SUS Well Lockdown (FDSWL)— R/W
7	 0 = FDSW registers are not locked down. 1 = FDSW registers are locked down and this bit will remain set until a global reset
	NOTE: This bit must be set when Intel [®] Active Management Technology is enabled.

31. Function Level Reset Pending Status Register Correction

Section 10.1.4 FLRSTAT—Function Level Reset Pending Status Register is updated as shown:

Bit	Description
31:24	Reserved
23	FLR Pending Status for EHCI #1 (D29) — RO. 0 = Function Level Reset is not pending.
	1 = Function Level Reset is pending.
22:16	Reserved
	FLR Pending Status for EHCI #2 (D26) — RO.
15	0 = Function Level Reset is not pending.
	1 = Function Level Reset is pending.
14:0	Reserved

32. Miscellaneous Documentation Correction VIII

In section 21.1 Serial Peripheral Interface Memory Mapped Configuration Registers, the RCBA register cross reference is corrected to be Section 13.1.39 (the RCBA—Root Complex Base Address Register).

33. SPI Required Region Correction

The second paragraph of section 5.24.1.2.1 SPI Flash Regions is changed to the following:

Only three masters can access the four regions: Host processor running BIOS code, Integrated Gigabit Ethernet and Host processor running Gigabit Ethernet Software, and Intel Management Engine. The Flash Descriptor and Intel ME region are the only required regions. The Flash Descriptor has to be in Region 0 and Region 0 must be located in the first sector of Device 0 (offset 10).

34. High Precision Event Timers Functional Description

a. The following replaces section 5.17:

5.17 High Precision Event Timers (HPET)

This function provides a set of timers that can be used by the operating system. The timers are defined such that the operating system may be able to assign specific timers to be used directly by specific applications. Each timer can be configured to cause a separate interrupt.

The PCH provides eight timers. The timers are implemented as a single counter, and each timer has its own comparator and value register. The counter increases monotonically. Each individual timer can generate an interrupt when the value in its value register matches the value in the main counter.

The registers associated with these timers are mapped to a memory space (much like the I/O APIC). However, it is not implemented as a standard PCI function. The BIOS reports to the operating system the location of the register space. The hardware can support an assignable decode space; however, the BIOS sets this space prior to handing it over to the operating system. It is not expected that the operating system will move the location of these timers once it is set by the BIOS.

5.17.1 Timer Accuracy

- 1. The timers are accurate over any 1 ms period to within 0.05% of the time specified in the timer resolution fields.
- 2. Within any 100 microsecond period, the timer reports a time that is up to two ticks too early or too late. Each tick is less than or equal to 100 ns, so this represents an error of less than 0.2%.
- 3. The timer is monotonic. It does not return the same value on two consecutive reads (unless the counter has rolled over and reached the same value).

The main counter is clocked by the 14.31818 MHz clock. The accuracy of the main counter is as accurate as the 14.31818 MHz clock.

5.17.2 Interrupt Mapping

The interrupts associated with the various timers have several interrupt mapping options. When reprogramming the HPET interrupt routing scheme (LEG_RT_CNF bit in the General Configuration Register), a spurious interrupt may occur. This is because the other source of the interrupt (8254 timer) may be asserted. Software should mask interrupts prior to clearing the LEG_RT_CNF bit.

Mapping Option #1 (Legacy Replacement Option)

In this case, the Legacy Replacement Rout bit (LEG_RT_CNF) is set. This forces the mapping found in Table 5-41.

Table 5-41 Legacy Replacement Routing

Timer	8259 Mapping	APIC Mapping	Comment
0	IRQ0	IRQ2	In this case, the 8254 timer will not cause any interrupts
1	IRQ8	IRQ8	In this case, the RTC will not cause any interrupts.
2 & 3	Per IRQ Routing Field.	Per IRQ Routing Field	
4, 5, 6, 7	not available	not available	

NOTE: The Legacy Option does not preclude delivery of IRQ0/IRQ8 using processor message interrupts.

Mapping Option #2 (Standard Option)

In this case, the Legacy Replacement Rout bit (LEG_RT_CNF) is 0. Each timer has its own routing control. The interrupts can be routed to various interrupts in the 8259 or I/O APIC. A capabilities field indicates which interrupts are valid options for routing. If a timer is set for edge-triggered mode, the timers should not be shared with any PCI interrupts.

For the PCH, the only supported interrupt values are as follows:

Timer 0 and 1: IRQ20, 21, 22 & 23 (I/O APIC only).

Timer 2: IRQ11 (8259 or I/O APIC) and IRQ20, 21, 22 & 23 (I/O APIC only).

Timer 3: IRQ12 (8259 or I/O APIC) and IRQ 20, 21, 22 & 23 (I/O APIC only).

Interrupts from Timer 4, 5, 6, 7 can only be delivered using processor message interrupts.

Mapping Option #3 (Processor Message Option)

In this case, the interrupts are mapped directly to processor messages without going to the 8259 or I/O (x) APIC. To use this mode, the interrupt must be configured to edge-triggered mode. The Tn_PROCMSG_EN_CNF bit must be set to enable this mode.

When the interrupt is delivered to the processor, the message is delivered to the address indicated in the Tn_PROCMSG_INT_ADDR field. The data value for the write cycle is specified in the Tn_PROCMSG_INT_VAL field.

Notes:

1. The processor message interrupt delivery option has HIGHER priority and is mutually exclusive to the standard interrupt delivery option. Thus, if the Tn_PROCMSG_EN_CNF bit is set, the interrupts will be delivered directly to the processor rather than via the APIC or 8259.

- 2. The processor message interrupt delivery can be used even when the legacy mapping is used.
- 3. The *IA-PC HPET Specification* uses the term "FSB Interrupt" to describe these type of interrupts.

5.17.3 Periodic vs. Non-Periodic Modes

Non-Periodic Mode

Timer 0 is configurable to 32 (default) or 64-bit mode, whereas Timers 1:7 only support 32-bit mode (See Section 20.1.5).

Warning: Software must be careful when programming the comparator registers. If the value written to the register is not sufficiently far in the future, then the counter may pass the value before it reaches the register and the interrupt will be missed. The BIOS should pass a data structure to the OS to indicate that the OS should not attempt to program the periodic timer to a rate faster than 5 microseconds.

All of the timers support non-periodic mode.

Refer to Section 2.3.9.2.1 of the *IA-PC HPET Specification* for more details of this mode.

Periodic Mode

Timer 0 is the only timer that supports periodic mode. Refer to Section 2.3.9.2.2 of the *IA-PC HPET Specification* for more details of this mode.

If the software resets the main counter, the value in the comparator's value register needs to reset as well. This can be done by setting the TIMERn_VAL_SET_CNF bit. Again, to avoid race conditions, this should be done with the main counter halted. The following usage model is expected:

- 1. Software clears the ENABLE_CNF bit to prevent any interrupts.
- 2. Software Clears the main counter by writing a value of 00h to it.
- 3. Software sets the TIMERO_VAL_SET_CNF bit.
- 4. Software writes the new value in the TIMERO_COMPARATOR_VAL register.
- 5. Software sets the ENABLE_CNF bit to enable interrupts.

The Timer 0 Comparator Value register cannot be programmed reliably by a single 64-bit write in a 32-bit environment except if only the periodic rate is being changed during run-time. If the actual Timer 0 Comparator Value needs to be reinitialized, then the following software solution will always work regardless of the environment:

- 1. Set TIMERO_VAL_SET_CNF bit.
- 2. Set the lower 32 bits of the Timer0 Comparator Value register.
- 3. Set TIMERO_VAL_SET_CNF bit.
- 4. Set the upper 32 bits of the TimerO Comparator Value register.

5.17.4 Enabling the Timers

The BIOS or operating system PnP code should route the interrupts. This includes the Legacy Rout bit, Interrupt Rout bit (for each timer), and interrupt type (to select the edge or level type for each timer).

The Device Driver code should do the following for an available timer:

- 1. Set the Overall Enable bit (Offset 10h, bit 0).
- 2. Set the timer type field (selects one-shot or periodic).
- 3. Set the interrupt enable.
- 4. Set the comparator value.

5.17.5 Interrupt Levels

Interrupts directed to the internal 8259s are active high. See Section 5.9 for information regarding the polarity programming of the I/O APIC for detecting internal interrupts.

If the interrupts are mapped to the 8259 or I/O APIC and set for level-triggered mode, they can be shared with PCI interrupts.

If more than one timer is configured to share the same IRQ (using the TIMERn_INT_ROUT_CNF fields), then the software must configure the timers to level-triggered mode. Edge-triggered interrupts cannot be shared.

5.17.6 Handling Interrupts

Section 2.4.6 of the IA-PC HPET Specification describes Handling Interrupts.

5.17.7 Issues Related to 64-Bit Timers with 32-Bit Processors

Section 2.4.7 of the *IA-PC HPET Specification* describes Issues Related to 64-Bit Timers with 32-Bit Processors.

b. The following replaces section 5.27.5:

5.27.5 Virtualization Support for High Precision Event Timer (HPET)

The Intel VT-d architecture extension requires Interrupt Messages to go through the similar Address Remapping as any other memory requests. This is to allow domain isolation for interrupts such that a device assigned in one domain is not allowed to generate interrupts to another domain.

The Address Remapping for Intel VT-d is based on the Bus:Device:Function field associated with the requests. Hence, it is required for the HPET to initiate processor message interrupts using unique Bus:Device:Function.

The PCH supports BIOS programmable unique Bus: Device: Function for each of the HPET timers. The Bus: Device: Function field does not change the HPET functionality in anyway, nor promoting it as a stand-alone PCI device. The field is only used by the HPET timer in the following:

- As the Requestor ID when initiating processor message interrupts to the processor
- As the Completer ID when responding to the reads targeting its Memory-Mapped registers
- The registers for the programmable Bus: Device: Function for HPET timer 7:0 reside under the Device 31: Function 0 LPC Bridge's configuration space.

35. Miscellaneous Documentation Corrections IX

a. Remove "1.05 V Core Voltage" from Platform Controller Hub Features section.

b. The GPIO bullet in the Platform Controller Hub Features section is replaced with the following:

```
    GPIO

            Inversion; Open-Drain (not available on all GPIOs)
            GPIO lock down
```

c. The first sentence of the seventh paragraph of section 1.1 About This Manual is changed to:

This manual assumes a working knowledge of the vocabulary and principles of interfaces and architectures such as PCI Express*, USB, AHCI, SATA, Intel[®] High Definition Audio (Intel[®] HD Audio), SMBus, PCI, ACPI and LPC.

d. Table 1-1 Industry Specifications is updated as follows:

1. The URL for *IA-PC HPET (High Precision Event Timers) Specification, Revision 1.0a* is changed to:

http://www.intel.com/content/www/us/en/software-developers/software-developers-h pet-spec-1-0a.html

2. The URL for *SFF-8485 Specification for Serial GPIO (SGPIO) Bus, Revision 0.7* is changed to:

ftp://ftp.seagate.com/sff/SFF-8485.PDF

3. The URL for *Advanced Host Controller Interface specification for Serial ATA, Revision 1.3* is changed to:

http://www.intel.com/content/www/us/en/io/serial-ata/serial-ata-ahci-spec-rev1_3.ht ml

4. The URL for Intel[®] High Definition Audio Specification, Revision 1.0a is changed to:

http://www.intel.com/content/www/us/en/standards/standards-high-def-audio-specs-general-technology.html

e. The Function Disable bullet of the Manageability subsection of section 1.2.1 Capability Overview is replaced as follows:

Function Disable. The PCH provides the ability to disable most integrated functions, including integrated LAN, USB, LPC, Intel HD Audio, SATA, PCI Express, and SMBus. Once disabled, functions no longer decode I/O, memory, or PCI configuration space. Also, no interrupts or power management events are generated from the disabled functions.

f. The second paragraph of section 5.16.7 Intel[®] Rapid Storage Technology Configuration is replaced as follows:

By using the PCH's built-in Intel Rapid Storage Technology, there is no loss of additional PCIe/system resources or add-in card slot/motherboard space footprint used compared to when a discrete RAID controller is implemented.

g. The fourth sentence of the first paragraph of section 5.19.1 [USB 2.0 RMH] Overview is replaces as follows:

The RMHs will appear to software like an external hub is connected to Port 0 of each EHCI controller.

h. Occurrences of "DOCK_RST#" are changed to "HDA_DOCK_RST#".

i. The default value for section 10.1.27 D22IP—Device 22 Interrupt Pin Register is changed from 00000001h to 00004321h.

j. R/W/C attribute is changed to R/WC.

k. Section 23.1.1.12 INTR-Interrupt Information Register (Intel® MEI 1-D22:F0) is updated as shown: Default Value: Size: 16 bits

0100h

Bit	Description
15:8	Interrupt Pin (IPIN) — RO. This indicates the interrupt pin the Intel MEI host controller uses. A value of 1h/2h/3h/4h indicates that this function implements legacy interrupt on INTA/INTB/INTC/INTD, respectively. The upper 4 bits are hardwired to 0 and the lower 4 bits are programmed by the MEI1IP bits (RCBA+3124:bits 3:0).

I. Section 23.1.1.25 HIDM-MEI Interrupt Delivery Mode Register (Intel® MEI 1—D22:F0) is updated as shown:

Bit	Description
1:0	Intel MEI Interrupt Delivery Mode (HIDM) — R/W. These bits control what type of interrupt the Intel MEI will send the host. They are interpreted as follows: 00 = Generate Legacy or MSI interrupt 01 = Generate SCI 10 = Generate SMI

m. Section 23.2.1.12 INTR-Interrupt Information Register (Intel® MEI 2-D22:F1) is updated as shown: Default Value: 0200h Size: 16 bits

Bit	Description
15:8	Interrupt Pin (IPIN) — RO. This indicates the interrupt pin the Intel MEI host controller uses. A value of 1h/2h/3h/4h indicates that this function implements legacy interrupt on INTA/INTB/INTC/INTD, respectively. The upper 4 bits are hardwired to 0 and the lower 4 bits are programmed by the MEI2IP bits (RCBA+3124:bits 7:4).

n. Section 23.2.1.24 HIDM—Intel® MEI Interrupt Delivery Mode Register (Intel® MEI 2—D22:F1) is updated as shown:

Bit	Description
1:0	Intel MEI Interrupt Delivery Mode (HIDM) — R/W. These bits control what type of interrupt the Intel MEI will send the host. They are interpreted as follows: 00 = Generate Legacy or MSI interrupt 01 = Generate SCI 10 = Generate SMI

o. Section 23.3.1.16 INTR—Interrupt Information Register (IDER—D22:F2) is updated as shown:

Bit	Description
15:8	Interrupt Pin (IPIN) — RO. A value of 1h/2h/3h/4h indicates that this function implements legacy interrupt on INTA/INTB/INTC/INTD, respectively. The upper 4 bits are hardwired to 0 and the lower 4 bits are programmed by the IDERIP bits (RCBA+3124: bits 11:8).

p. Section 23.4.1.13 INTR—Interrupt Information Register (KT—D22:F3) is updated as shown: Default Value: 0400h Size: 16 bits

Bit	Description
15:8	Interrupt Pin (IPIN) — RO. A value of 1h/2h/3h/4h indicates that this function implements legacy interrupt on INTA/INTB/INTC/INTD, respectively. The upper 4 bits are hardwired to 0 and the lower 4 bits are programmed by the KTIP bits (RCBA+3124:bits 15:12).

§§

