
Table of Contents
Introduction . 1
Cryptography and Security 2
FPGA Advantages vs . Processors 3
Examples . 4
Root-of-Trust . 6
Summary . 6
Glossary . 7

Authors
Matti Tommiska

 Xiphera Ltd.
Espoo, Finland

matti.tommiska@xiphera.com

Mark Jervis
Intel® Corporation

Programmable Solutions Group
High Wycombe, UK

mark.jervis@intel.com

Karl Wachswender
Intel® Corporation

Programmable Solutions Group
High Wycombe, UK

karl.wachswender@intel.com

Industrial
IP Xiphera root-of-trust that works across all Intel FPGA devices

FPGA-Based Security Solutions

Introduction
The term Industry 4.0 is used to describe the fourth Industrial Revolution1, where
the technology fusion between physical, digital, and biological domains creates
interconnected cyber-physical systems, including the Internet of Things (IoT). The
real-time communication between cyber-physical systems and humans will create
new business opportunities, including smart factories, cloud-based automation,
and, for example, using artificial intelligence in predictive maintenance.

The long-term promise of Industry 4.0 and IoT is unquestionable, but key
technical requirements must be met before its full potential can be reached. These
requirements include ubiquitous connectivity, 24/7 availability, low latency, and
most importantly comprehensive end-to-end security, all the way from "Sensors
to the Cloud". The most important security requirements include protection2 of IoT
devices and the data they produce, process, and transmit, complying with relevant
standard requirements, copy protection as well as supply chain security, while at
the same time achieving performance requirements, seamless availability, and ease
of use.

A major challenge for corporations — and industrial companies are no exception
here — is to translate the high-level security requirements listed above into
concrete and secure implementations in their own products. This implementation
challenge is compounded with historically diverse hardware architectures, very few
standards targeted for industrial security requirements3, overlap and confusion
between security and (functional) safety, and in some cases a general lack of
knowledge and terminology about security.

Examples of recent highly sophisticated industrial cyberattacks include Stuxnet
targeting SCADA systems, Triton targeting industrial control systems, and
Crashoverride targeting electric transmission and distribution networks. While
not all details of these attacks — and they are just the tip of the iceberg — are
known in public, a common denominator is their software-based nature. It should
also be noted, that based on publicly available information these attacks did not
break the underlying cryptographic algorithms (See also Section 1) — in other
words, no cryptanalytical breakthroughs were achieved — but rather exploited the
weaknesses in the implementation of security.

Consequently, the security challenges of the current Internet4 have almost always
been both created and also solved with software, and there exists a
multibillion-dollar industry of companies offering information security solutions
to address these challenges (intrusion detection, malware prevention, resilience
against (Distributed) Denial of Service attacks, etc.). However, the current
software-centric approach to addressing security challenges is not directly
applicable for Industry 4.0 and IoT for a number of reasons, including the required
lifetime, updateability, power consumption, end product form factor, etc. The
advantages of hardware-based security are further discussed in Section 2.

Notes:
1. The previous three industrial revolutions are generally defined to describe the widespread adoption of mechanization and

steam power, electricity and mass production, and computers and automation.
2. In this context protection means authentication, confidentiality, and authenticity of data. These are further explained in

Section 1.
 3. The recently published IEC 62443-4-2 provides the cybersecurity technical requirements for components that make up

an IACS (Industrial Automation and Control System), but "component" in the context of IEC 62443-4-2 does not refer to
semiconductor components.

 4. Sometimes also called the "Internet of People and Organizations" in contrast to the emerging "Internet of Things".

white paper

mailto:matti.tommiska@xiphera.com
mailto:mark.jervis@intel.com
mailto:karl.wachswender@intel.com

2

White Paper | FPGA-Based Security Solutions

Table 1 . Security Goals

An interesting point to note is that the military market
has long ago adopted hardware-based security solutions
for many of the above-mentioned reasons; and as the
Industry 4.0 and IoT deployment will also spread to critical
infrastructure (electricity distribution, energy, petrochemical
industry), it can be argued that the current military market
security requirements of today will become the Industry 4.0
and IoT security requirements of tomorrow.

The rest of the white paper is structured as follows: Since
security is fundamentally based on cryptography and its
flawless implementation, Section 1 presents a brief overview
of cryptography.

The benefits of hardware-based (specifically, FPGA-based)
security are explained in Section 2, followed by an example
of an FPGA-based communications endpoint implementation
in Section 3. A critical component in a security design is the
Root-of-Trust, and the FPGA-based root-of-trust solution
is presented in Section 4, after which the white paper is
concluded by the summary in Section 5.

• Symmetric cryptography: Cryptographic algorithms
where the sender and receiver both have the same key.

In symmetric encryption, the sender uses the key
in a cryptographic algorithm to turn a plaintext (the
message) into a ciphertext that an adversary cannot
interpret without the key and, thus, protects the
confidentiality of communication. The receiver uses
the same key for decrypting the ciphertext back to
the original plaintext. It is critical for the security
that an adversary is not able to find the correct key.
An example of a symmetric encryption algorithm is
Advanced Encryption Standard (AES).

In message authentication codes (MAC), the sender
uses the key in a cryptographic algorithm to derive
an authentication tag, which is sent to the receiver
together with the message. The receiver uses the
same key and the received message to compute
another tag. The receiver accepts the message only
if the two tags are the same (otherwise, the message
or the tag are not the same that the sender sent). An
adversary, who does not have the key, cannot forge
a valid tag and, thus, the authenticity (and integrity)
of the communication is protected. Hash-based MAC
(HMAC) is an example of a MAC algorithm.

Authenticated encryption combines confidentiality
and authenticity protections into a single
cryptographic primitive. An example is AES in Galois
Counter Mode (AES-GCM).

• Asymmetric cryptography: Cryptographic algorithms
where one party generates a pair of keys: private key and
public key. The public key is generated from a private
key using a mathematical function that is believed to be
extremely hard5 to invert and, thus, can be published
(also to the adversary) without sacrificing security.

In public-key encryption, the public key is used for
encryption but decryption requires the private key;
hence, everybody is able to encrypt, but only the
receiver can open the encryption. Examples include
RSA (named after its inventors Ron Rivest, Adi
Shamir, and Leonard Adleman) and El-Gamal.

In digital signatures, the private key is used for
signing a message and the public key can be used
for verifying the correctness of the signature; hence,
everybody can use the public key to verify that a
message was signed by the claimed signer and the
signer cannot later deny this (non-repudiation). An
example is Digital Signature Algorithm (DSA) or its
elliptic curve variant ECDSA.

A key exchange protocol uses asymmetric
cryptography to share a secret key between
two parties that can be later used in symmetric
cryptography, which is typically much more efficient
than asymmetric cryptography. Elliptic Curve
Diffie-Hellman (ECDH) is an example of a key
exchange protocol.

Cryptography and Security
Cryptography is the art and science of protecting data
and communication from unauthorized parties, typically
referred to as adversaries. Cryptography is central for
modern information security where cryptographic algorithms
and protocols are used for numerous objectives: securing
communication over untrusted networks, preventing
unauthorized access to stored data, authenticating users, etc.
In these systems, cryptography is used for ensuring specific
security goals such as the ones shown in Table 1.

SECURITY GOAL DESCRIPTION

Confidentiality
(secrecy)

Ensures that information can be
accessed only by authorized parties

(e.g. the legitimate sender and receiver).

Integrity Protects information from either
accidental or intentional manipulation.

Authenticity
Provides assurances that an entity is

the one who it claims to be or that data
originates from its claimed origin.

Non-repudiation Prevents an entity from denying its
previous actions or commitments.

Such security goals are ensured in computer systems
using cryptographic protocols which in turn consists of
cryptographic primitives, well-established algorithms for
protecting specific security properties.

Note:
5. Extremely hard is to be understood as impossible in practice.

One way to categorize cryptographic primitives is by the type
of keys they use:

3

Modern cryptography is based on Kerckhoffs's principle:
It is assumed that the adversary knows all the details of
the cryptosystem except for the secret key. Hence, the
security relies solely on the secrecy of the key. This means
that for both symmetric and asymmetric cryptography it is
essential that (secret) keys are hard to predict. Hence, the
cryptographic system must have a source of randomness for
deriving random keys. These random number generators
(RNGs) are divided into two categories: true random number
generators (TRNGs) and pseudo-random number generators
(PRNGs). A TRNG uses a physical entropy source to derive
truly random bits based on certain unpredictable physical
phenomenon, whereas PRNGs are deterministic algorithms
that generate a sequence of random-looking bits from an
initial seed value. Typically, a PRNG is used even with a TNRG
to clear possible biases from the bits from a TRNG.

A typical cryptographic protocol utilizes multiple
cryptographic primitives. E.g., the Transport Layer Security
(TLS) handshake protocol uses asymmetric cryptography
for validating certificates with digital signatures and for
key exchange to derive a shared secret key for a client
and server. Then, the TLS record protocol uses symmetric
cryptography for encryption and MAC (or authenticated
encryption) for securing confidentiality and integrity of the
bulk communication between the client and server.

Examples of cryptographic protocols are presented later in
Sections 3: Examples and 4: Root-of-Trust.

In addition to the above list, a software-based security
implementation may also not meet the required performance
(throughput and/or latency). In many cases the power
consumption can also be a challenge.

Importantly, the continuous updateability (during the
entire lifetime of the industrial system) for both software
libraries (including the cryptographic libraries) as well as
operating systems may be an insurmountable maintenance
challenge. For example, the bug fixes6 have to be updated
to the IoT devices during its entire lifecycle, which can span
several decades. This is a huge undertaking, and increases
substantially the total cost of ownership of a software-based
security solution.

A recent development in security thinking has been to
also question the security of the underlying processor
architecture. While previously the underlying hardware
processor was automatically assumed to be secure,
the recent disclosures about the possibilities to exploit
performance-enhancing optimizations (for example, out-
of-order execution and speculative branch execution)
of processor microarchitecture (Meltdown, Spectre,
Foreshadow, etc.) have put this basic assumption into
question. Most of the security weaknesses mentioned before
have been patched, but the possibility of new disclosures
cannot be eliminated.

For the reasons described above a hardware-based
security solution is often required, and a growing trend is to
implement security in reprogrammable hardware, especially
FPGAs.

FPGA Advantages vs . Processors
The majority of current security implementations are based
on implementing the cryptographic protocols in software,
most often using a third-party cryptographic software library,
which is compiled for and executed on a general-purpose
processor running an established and well-known operating
system.

While software-based implementations of cryptography are
most widespread, there is an increasing trend to implement
security directly in hardware, especially in critical embedded
systems. The motivations and realizations of this trend are
explored further in the following sections.

White Paper | FPGA-Based Security Solutions

Note:
6. For example, a search for "openssl" at cve.mitre.org (which maintains a list of publicly

known cybersecurity vulnerabilities) gives 288 results (March 11, 2019).

• Others: Certain cryptographic algorithms do not have a
key at all.

Well-known examples are cryptographic hash
functions. A hash function takes in an arbitrarily
long input and produces a fixed-length output,
the hash, which can be seen as a fingerprint of the
message. The hash function must be such that it
is impossible to find the input message from the
hash, another message that has the same hash as
the input message, or two messages with same hash
(a collision). Hash functions are used for numerous
purposes in cryptographic protocols and are also
used to build other cryptographic primitives such as
MACs, key derivation functions (KDFs), etc. SHA-2
(Secure Hash Algorithm) is an example of a family of
hash functions.

The overall complexity of modern software-based security
implementations presents multiple potential targets for a
malicious third party (in technical terms, the "attack surface"
is large), including but not limited to:

• The operating system;

• Device drivers;

• Implementation of cryptographic primitives (for example,
with 3rd party cryptographic libraries);

• Compiler optimizations and possible microarchitectural
changes between processor generations;

• The sheer depth of the software stack;

• Cache and memory management;

• Key management — for example, a buffer overflow bug
can leak everything, including the secret keys;

• Lack of full control of the security algorithm
implementation.

4

Examples
As mentioned in Section 2, setting up a secure
communication channel requires a complete cryptographic
protocol built from multiple cryptographic primitives.
Therefore, an FPGA-based implementation requires a
combination of IP blocks for the cryptographic primitives,
secure key storage for the keys used in the protocol, and
control. In this section, an example of how an FPGA can set
up a secure connection to a remote server over an insecure
network (Internet) is presented, along with the IP blocks
required. The focus is particularly on industrial applications
where the throughput requirements are from low to
moderate, but the required FPGA resource requirements
should be as small as possible.

The additional technical advantages of FPGA-based
implementation of cryptography include:

• Algorithm and protocol agility and updateability;

• Possibility to utilize built-in FPGA security features:

- Encrypted and authenticated configuration;

- Anti-tamper features;

- Partial reconfiguration (in selected cases);

- Design methods to achieve red-black separation in
hardware;

• Tighter control of the algorithm implementation,
including importantly key management.

In practice, an FPGA-based implementation of a security
protocol utilizes a combination of individual intellectual
property (IP) blocks. An example is presented in the following
section.

The above can be realized with the following combination of
FPGA-based IP blocks:

1. An RNG, preferably a TRNG to enable the secure seeding
of a PRNG.

2. A hash algorithm with multiple uses in the protocol,
including

- PRNG of the RNG;

- MAC algorithm (one example is HMAC) for protecting
integrity of the bulk communication;

- KDF which can be instantiated with a hash algorithm
(one example is the HMAC-based HKDF).

3. Asymmetric cryptography for digital signatures and key
exchange, where the recommended way is to use an IP
block for Elliptic Curve Cryptography (ECC), since the
other main option, RSA, is significantly less efficient.
Operations for asymmetric cryptographic are the
computationally heaviest operations in building a secure
connection. However, as these operations are needed
only in the beginning of a session, their latency is not
critical and IP blocks, where the FPGA resource utilization
has been minimized, can be selected.

4. Symmetric cryptography. This is used for protecting the
bulk communication. The most popular choice here is
to use AES in a secure mode of operation, for example
AES-GCM which provides simultaneous protection for
confidentiality, integrity, and authenticity (so-called
authenticated encryption).

5. Secure key storage used for storing all security-critical
information in the FPGA.

White Paper | FPGA-Based Security Solutions

Note:
7. FTLS uses certificates issued by mutually trusted parties (certificate authorities) to build

trust for the public keys, but without loss of generality the example assumes that a trusted
public key exists in the FPGA

FPGAs are integrated circuits, whose functionality is typically
specified by using a Hardware Description Language (VHDL
and/or Verilog), and which can be reprogrammed by the
designer or the customer after deployment in the field.
The vast majority of FPGAs available in the market today
are based on volatile SRAM technology, meaning that the
functionality of an FPGA is specified by a configuration file
in an external non-volatile memory. Modern FPGA families
support encrypted and authenticated configuration, where
the configuration file is never stored as cleartext in the
external non-volatile configuration memory, and at FPGA
startup time the FPGA decrypts and authenticates the
configuration file contents.

The traditional use case of reprogrammable logic (FPGAs)
in security implementations has been to offload a host
processor system by accelerating the performance-
critical algorithms of a cryptographic protocol. The design
techniques typically used to achieve speed-up include
pipelining, parallelizability, and loop unrolling. The speedups
— and also cost and power savings — have been especially
true for symmetric cryptography, for example AES.

However, as mentioned earlier in this section, the advantages
of FPGA-based security implementation are not limited to
performance boosts, as properly implementing the security
functions in FPGA logic also enhance the security level of the
end product.

There are multiple ways to set up a secure connection, but
this example assumes a TLS-like use case where the FPGA
acts as a client in the protocol. The client must verify the
authenticity of the server so that it can be assured that it
connects to the real server and not to a malicious third party
(a man-in-the-middle attack). It can be assumed that the
client has the server's long-term public key that it can use for
authenticating the server's messages with digital signatures7.
The key exchange should derive different keys for each
session (so-called ephemeral keys) that are not connected to
any long-term keys to achieve forward secrecy that protects
previous communications against any future compromises.
After the key exchange has been completed, the bulk
communication should protect confidentiality, integrity, and
authenticity of the exchanged messages using the session
keys.

5

Figure 1 . Setting up a secure connection between an FPGA client and a remote server

Server

t

k

Server generates an
ephemeral key pair

(sks, pks)

SKs

(pks, s)

Server signs pkc with its
long-term signing key

SKs and gets signature s

FPGA

RNG

KDF

ECC-KG

(skc, pkc)

(pks, s)

PKs s pks

pks

pkc

fail pass

valid

ECC-KE

ECC-SV

t

k

KDF

AES-GCM
Secure Channel

FP
G

A
ge

ne
ra

te
s

an
 e

ph
em

er
al

ke
y

pa
ir

by
 c

ol
le

ct
in

g
ra

nd
om

bi
ts

 fr
om

 a
n

RN
G

abort

FP
G

A
ve

rf
ie

s
th

e
si

gn
at

ur
e

on
 p

ks
 b

y
us

in
g

se
rv

er
’s

lo
ng

-t
er

m
 P

Ks

FP
G

A
pe

rf
or

m
s

ke
y

ex
ch

an
ge

ro
ut

in
es

, c
om

pu
te

s
th

e
KD

F
to

 g
et

 a
 s

ha
re

d
k,

an
d

us
e

it
in

 A
ES

-G
CM

pkc

skc sks

Server performs key
exchange routines

Server computes
the KDF function

Server uses AES-GCM
for secure communication

4. The FPGA uses its own ephemeral secret key skc and the
server's ephemeral public key pks to calculate a shared
secret value t with the asymmetric cryptography IP block
for ECC-based key exchange. This shared secret value
is then fed into the KDF (the hash algorithm IP block) to
derive a shared secret key k that can be used in the bulk
communication.

5. The server uses its own ephemeral secret key sks and the
client's ephemeral public key pkc for calculating the same
shared secret key k (with key exchange computations and
KDF).

6. The FPGA uses shared secret key k and AES-GCM
(the symmetric cryptography IP block) for secure
communication with the server. The RNG may be used for
generating initialization vectors used in AES-GCM. Once
the session is closed, all ephemeral keys (including the
shared secret key) are removed.

In the above steps, only the FPGA (client) verified the
authenticity of the server. The FPGA could be authenticated
similarly with long-term public keys in steps 1 and 2 or
with another authentication mechanism over the secure
communication channel that was set up above. This approach
requires root-of-trust in the FPGA, which is the subject of the
following section.

White Paper | FPGA-Based Security Solutions

The combination of IP blocks is used for setting up a secure
connection to the remote server in the following way (see
Figure 1 for a pictorial presentation):

1. The FPGA uses the RNG, KDF (the hash algorithm IP
block), and the ECC IP block to generate an ephemeral
key pair (the client's secret key skc and public key pkc).
The public key pkc is sent to the server.

2. The server also generates its own ephemeral key pair (the
server's secret key sks and public key pks). It signs this
ephemeral public key pks by using its long-term secret
key SK and sends pks and signature s to the client.

3. The FPGA uses the asymmetric cryptography IP block
based on ECC for verifying the signature s attached to
the server's ephemeral public key pks. This verification
is done by using the server's long-term public key PK
that the FPGA has and if this verification succeeds, the
FPGA can be assured that the ephemeral public key
indeed came from the legitimate server and not from an
adversary.

6

Summary
Industry 4.0 is the ongoing and accelerating fourth
Industrial Revolution, but its ultimate adoption and success
require comprehensive end-to-end security. The vast
majority of security breaches so far have been due to the
careful exploitation of weaknesses in software-based
implementations of security and cryptography. Therefore,
implementing the critical functionality directly in hardware
is being recognized as the preferred methodology to meet
the critical security requirements. Additional advantages of
hardware-based security implementation may also include
improvements in performance and reduction in power
consumption.

FPGAs are a strong candidate for hardware-based security
designs, as their reprogrammability enables various iterations
of the cryptographic algorithms and security protocols during
the design phase, while allowing the designer to maintain full
control and understanding of the implementation. Typically,
FPGA-based security uses a combination of individual IP
blocks to build complete security protocols, including key
management.

Xiphera's root-of-trust solution requires only a volatile SRAM-
based FPGA and external configuration memory. The root-
of-trust solution allows the FPGA to generate a unique secret
key and to derive additional secret and public keys from it
during initialization so that the same keys are restored even if
the power is turned off and on again. This makes it possible to
build a secure hardware root-of-trust module with a volatile
FPGA.

Root-of-Trust
A root-of-trust can be defined as a set of functions in a
trusted computing unit, which can always be trusted by the
system. Consequently, a root-of-trust enables building trust
to the entire system. Additionally, it is critical that every
device in the system has a unique identifier or a secret key,
which can be used to derive additional key material, including
public keys.

The need for hardware-based root-of-trust has been
recognized for critical IoT applications, and the most common
way to achieve this in embedded systems has been to use an
external security chip, also often called a Trusted Platform
Module (TPM). However, external security chips may not
always have the features required by the application (for
example, their symmetric encryption throughput may not be
sufficiently high), In addition, they may also add cost, board
space, and power consumption to the design budget.

For designs already using a volatile FPGA, it would be
tempting to embed a unique secret key into the encrypted
configuration file to attempt hardware-based root-of-
trust functionality. However, this approach requires the
manufacturer to first generate unique configuration files for
each FPGA-based end product, and afterwards to maintain a
post-launch database linking every individual end product to
a particular configuration file, even though the functionality
of all launched products is based on the same FPGA
design. Very quickly the cost and time required for these
configuration file generation and maintenance tasks would
become unbearable.

To overcome this challenge, Xiphera has developed an
FPGA-based solution for root-of-trust functionality requiring
only an FPGA and its configuration memory8. The Xiphera
root-of-trust solution is based on currently available Xiphera
IP blocks and allows using the same configuration file for a
batch9 of FPGAs.

The main target application for an FPGA-based root-of-trust
solution is in new designs and deployments of FPGA-based
security. However, the root-of-trust solution can also be
retrofitted to existing installations in selected cases, provided
that there are enough available resources in an FPGA and its
reprogramming can be performed.

The functionality of FPGA-based root-of-trust is
accomplished by using a combination of IP blocks for RNG,
KDF, and secure key storage, guaranteeing that all security-
critical functionality remains inside the FPGA. The root-
of-trust solution provides strong separation of security-
critical key material and the general data, ensuring that keys
cannot be accessed from the outside, and that the keys are
never outside the FPGA without being protected by strong
encryption.

White Paper | FPGA-Based Security Solutions

Notes:
8. For the Intel® MAX® 10 FPGA, the Xiphera root-of-trust solution can be a single-chip

solution as the Intel MAX 10 FPGA configuration flash is in the same package.
9. Batch can be thought of as a group of FPGAs having the same configuration; this can be

customer-specific, product-specific, etc., but the size of a batch does not have practical
numerical upper or lower boundaries.

It should be noted, that the FPGA-based root-of-trust
solution allows for integration with a cipher suite of the
customer's own choosing or as required by a particular
standard. Likewise, the performance (for example,
throughput) of a cryptographic algorithm can be customized.
As an example, if the bulk communication protocol uses
AES-GCM as the authenticated encryption algorithm, the
throughput can be set to 100 Mbps, 1 Gbps, or 10 Gbps, but
all versions are based on the same root-of-trust solution.

The FPGA-based root-of-trust solution can be interfaced with
external control logic and/or a host processor, which can be
either external or internal to the FPGA (softcore or hardcore).
This makes sense for handling the non-security critical parts
of a communications protocol, for example TLS over TCP/IP.

7

Glossary
Attack surface. The different points of a system that an
adversary can target in order to attack the system.

Authenticated encryption. An encryption system that
provides both confidentiality (secrecy) and authenticity (e.g.,
AES-GCM).

Buffer overflow. An event where data are written (or read)
over the boundaries of a buffer.

Configuration file. The file that configures an FPGA to
implement a specific design.

Cryptanalysis. The study of cryptosystems that aims to break
the protection offered by cryptography.

Cryptographic algorithm. A specific algorithm for performing
a cryptographic operation (e.g., AES).

Cryptographic protocol. A protocol that applies specific
cryptographic algorithms to achieve certain security goals
(e.g., TLS).

Cryptography. The science and techniques of protecting data
and communication from unauthorized parties.

Digital signature. A technique that allows verifying the
authenticity of a digital document, cf. handwritten signatures
for paper documents.

Elliptic curve cryptography. Asymmetric cryptosystems
based on the use of mathematical constructions called
elliptic curves. Their security relies on the difficulty of elliptic
curve discrete logarithm.

Encryption/decryption. The processes of encoding and
decoding the context of a message so that it can be read only
by the sender and receiver.

Ephemeral key. A cryptographic key that is generated and
used only for a single session.

 Please Recycle WP-01297-1.0

White Paper | FPGA-Based Security Solutions

Field programmable gate array. A programmable integrated
circuit that enables configuring the operation of the device at
the logic level.

Forward secrecy. A feature that assures that previously used
session keys are not compromised even if long-term secrets
are compromised.

Hash function. A function that maps an arbitrarily long
message to a fixed-length value (the hash).

Intellectual property block. A component of a digital
design that implements a specific functionality (e.g., an
implementation of a cryptographic algorithm).

Key exchange. A technique that allows two parties to
exchange a secret key over an insecure network.

Key management. The process of managing (generating,
storing, using, etc.) cryptographic keys in a cryptosystem.

Message authentication code. A technique that authenticates
a message and prevents it from being tampered.

Random number generator. A component or function that
produces random bits. A true random number generator uses
a physical entropy source based on certain unpredictable
physical phenomenon and pseudo random number
generator is a deterministic algorithm producing random-
looking bit sequence from a seed value.

Red-black separation. Strict separation of unencrypted (red)
and encrypted (black) information.

Root-of-trust. A set of (cryptographic) functions that can
always be trusted by the system.

Transport Layer Security (TLS). A protocol that provides a
secure communication channel between a client and a server
over Internet.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced data are accurate.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

*Other marks and brands may be claimed as the property of others.

