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Preface  

Compute-Intensive, Highly Parallel Applications and Uses 
by Lin Chao  
Publisher, Intel Technology Journal 

“If a man can write a better book, preach a better sermon, or make a better mouse trap than his 
neighbor, though he build his house in the woods, the world will make a beaten path to his door.”  
The sentence, usually shortened to emphasize the better mouse trap, is by Ralph Waldo Emerson 
(1803-1882), an American poet and philosopher. What Emerson said so long ago applies even today  
as inventive people work to build a better computer mouse such as wireless or optical. 

In the Research and Development Labs at Intel, we are applying Emerson’s philosophy to building 
smarter computers which are more natural and easier to use—a lot less strict and a lot more adaptive 
to humans. We’re building smarter computer technologies that can rapidly and transparently analyze 
large complex datasets and explore different outcomes, and ultimately help people do what they want 
to do more easily. These new capabilities or “uses” are driving a whole new set of computer and 
architecture requirements.  

The seven papers in this issue of Intel Technology Journal (Volume 9, Issue 2) focus on Compute-
Intensive, Highly Parallel Applications and Uses. They review the exploratory work into complex  
and large “workloads” that can ultimately run efficiently on future computers. Generally, these are 
characterized as compute-intensive, highly parallel workloads requiring new levels of intelligence, 
performance, and sophistication in both hardware and software that does not exist today. And we look 
at how the performance scalability and uses on parallel architectures of such applications can help to 
best architect the next generation of computers. 

The first paper is on ray tracing, a technique used in photo-realistic imagery such as in the creation of 
computer games and special digital effects in movies. Ray tracing can be an important workload to 
establish requirements for new architecture that will one day run efficiently on mainstream computers. 
 
The second and third papers are on computer vision. The vast accumulation of digital data requires 
new classes of applications. We are investigating computing platforms that can deliver enough 
performance for these future workloads to enable their use in mass-market applications. Computer 
Vision (CV) is one such workload. In the second paper we introduce and characterize some of the 
most common CV algorithms and applications. We chose a complete video surveillance application as 
a representative case study for a complex CV workload. The third paper looks at Intel’s Open Source 
Computer Vision Library and describes using OpenCV for “learning-based vision,” where objects 
such as faces, or patterns such as roads, are learned and recognized. 
 
The fourth and fifth papers look at data mining, or the ability to extract knowledge, acquire models, 
and draw meaningful conclusions from a dataset. The fourth paper examines data mining applied  
to bioinformatics. Bioinformatics is the recording, annotation, storage, analysis, and search/retrieval 
of gene sequences, protein sequences, and structural information. In this paper, we report on the  
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performance scalability analysis of six bioinformatics applications on a 16-way Intel® Xeon™ 
multiprocessor system. The fifth paper looks at large-scale data-mining problems based on tree-based 
models. Tree-based models, in the context of large-scale data-mining problems, provide many 
challenges for a computing platform. The balance between complexity and accuracy is studied  
for different parameter sets and its performance impact is discussed. 
 
The sixth paper looks at optimization algorithms using the Interior Point Method (IPM). IPM has 
become a dominant choice for solving large optimization problems for many scientific, engineering, 
and commercial applications. In this paper we describe a parallel IPM for solving optimization 
problems.  
 
The seventh paper examines future IT enterprise platform requirements based on usages and 
deployment models. We present the needs of various vertical industries (e.g., retail, manufacturing, 
financial) and discuss the business usage and the technology deployment trends across these industries. 
We describe how the emerging models are different in their characteristics from those prevalent today, 
and, using several real-world examples, explain the platform implications. 
 
These papers look at new, intelligent, large, and sophisticated workloads that can analyze large 
complex datasets and explore different outcomes, and ultimately help people do what they want  
to do more easily on computers. We also look at vertical industries and how their needs will steer 
platform definitions. These capabilities or “uses” are driving a whole new set of computer and 
architecture requirements. Let’s experiment together on future usage models impacting future 
computer platforms to build tomorrow’s smarter computers. 
 

                                                 
  Intel and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries  
in the United States and other countries. 
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Foreword 

Recognition, Mining and Synthesis 
 
By: 
Bob Liang 
Director, Application Research Lab, Corporate Technology Group 
 
Pradeep Dubey  
Senior Principal Engineer and Manager, Innovative Platform Architecture,  
Corporate Technology Group  
 
 
Intel’s RMS (recognition, mining and synthesis) taxonomy1 offers a way to describe a class of 
emerging applications. This issue of Intel Technology Journal (Vol 9, Issue 2) discusses a small 
subset of RMS applications to help the reader understand the nature of such applications. In turn, the 
reader will understand the high-level platform requirements for these workloads and the implications 
for processor platforms of tomorrow.2  The technology underlying these applications is likely to have 
broad applicability to a wide range of emerging applications with mass appeal in various market 
segments including digital enterprise, digital home, and digital health.  

The wave of digitization is all around us. While none of us has a crystal ball to predict the future 
“killer app” (any new application with universal appeal), it is our belief that the next round of 
applications will be about solving the data explosion problem for end-users, a problem of growing 
concern for both enterprise and home users. Digital content continues to grow by leaps and bounds in 
various forms, including unstructured text on the web; digital images from consumer cameras to high-
definition medical images; streams of network access logs or e-Commerce transactions; and digital 
video data from consumer cameras and surveillance cameras.  Add to this massive virtual reality 
datasets and complex models capable of interactive and real-time rendering, and approaching photo-
realism and real-world animation.  

Recognition is a type of machine learning which enables computers to model objects or events of 
interest to the user or application. Given such a model, the computer must be able to search or mine 
instances of the model in complex, often massive, static or streaming datasets. Synthesis is 
discovering “what if” cases of a model. If an instance of the model doesn’t exist, a computer should 
be able to create it in a virtual world.  

Beyond its use as a taxonomy, RMS offers an integrated view of underlying technologies. 
Traditionally we have treated “R,” “M,” and “S” components as independent application classes.  
For example, graphics (a form of synthesis application), computer vision, and data mining are 
traditionally considered independent, stand-alone applications. However, an integration of these 
component technologies, if achieved real-time in an iRMS (interactive RMS) loop, may lead to 
exciting new usages. For example, consider a virtual dressing room which lets you use an archive  
of apparel and images, and create various synthetic combinations of these, or a further extension to  



Intel Technology Journal, Volume 9, Issue 2, 2005 

 

Compute-Intensive, Highly Parallel Applications and Uses  vi 
 
 

richer forms of real-time reality augmentation. Processor platforms of today still have a long way to 
go before the compute power reaches the required level for these applications, which in many cases 
go well beyond teraflops. However, it is our belief that this dawn of tera-era3 has an unprecedented 
value proposition to the end user in terms of significantly increased visual realism, and productivity in 
the face of the digital data explosion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Dubey, Pradeep.  A Platform 2015 Model: Recognition, Mining and Synthesis Moves Computers to 
the Era of Tera. Feb. 2005. 
2 Borkar, S.; Dubey, P.; Kahn, K.; Kuck, D.; Mulder, H.; Pawlowski, S.; Rattner, J. Platform 2015:  
Intel Processor and Platform Evolution for the Next Decade.  2005. 
3 Gelsinger, Pat. Architecting the Era of Tera. IDF R&D Keynote Address, Feb. 2004. 

ftp://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf
ftp://download.intel.com/technology/comms/nextnet/download/Tera_Era.pdf
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ABSTRACT 

We present an introduction to the rendering technique 
known as “ray tracing.” We propose that its performance 
has reached the stage where it is feasible that it will take 
over from raster graphics in the near future for interactive 
gaming and other application domains. We investigate 
various aspects of ray tracing and compare and contrast 
them with the raster equivalent. Finally, we analyze ray 
tracing’s platform requirements and scalability potential. 

INTRODUCTION 
Ray tracing is the act of tracing the trajectory of a ray 
from one point to another to determine if anything is hit 
and the distance to the nearest hit point. Although for our 
purposes ray tracing can be thought of as a “workload,” in 
the larger graphics world, ray tracing is considered to be a 
tool. Rendering systems use a variety of such tools to 
achieve their goals. In almost all graphics workloads, the 
rendering portion consumes >90% of the available 
resources. Nowadays, more and more of the techniques 
used in photo-realistic imagery are based on ray tracing. 

HOW RAY TRACING IS USED 
The following is a partial list of how ray tracing is used: 

•  Visibility testing is used to determine if there is an 
unobstructed path from A to B. “Eye rays” are shot 
from a camera to determine what can be seen. This is 
known as inverse/reverse ray tracing. 

•  Illumination testing is used to determine if there is an 
unobstructed path from A to a light source. This 
enables us to determine very precise and accurate 
shadows and illumination. 

•  Perfect reflection and refraction: subsequent ray 
trajectory based on the properties of a material struck 
by a visibility ray. (Very few real materials exhibit 
such perfect properties.) 

•  Diffuse or anisotropic reflection and refraction gives 
a more realistic determination of the consequences of 
a ray intersecting with a realistic material. Typically, 

a “shader” is invoked whenever a ray strikes a 
surface. This shader then determines some 
distribution and “weights” of subsequent reflected 
and refracted rays in various directions. 

•  Light transport determines how light flows from the 
various light sources in an environment to one or 
more “cameras.” Recall that that we mentioned that 
“eye rays” are shot from the camera into the scene to 
determine what is visible. These “forward” rays travel 
in the opposite direction. Some light will flow in such 
a way that it does not impact the image seen by the 
camera (i.e., may or may not bounce off various 
surfaces in the scene, but nothing that the camera sees 
is directly or indirectly effected); other light may 
directly influence the image seen by the camera, and 
some other light may indirectly influence the image 
seen by the camera. 

•  Ambient occlusion is a “trick” used extensively by 
Pixar and other movie-production studios. An 
assumption is made that the lighting environment 
consists of a horizon-to-horizon hemisphere of 
uniform illumination intensity. Whenever an “eye 
ray” intersects a surface, some number of visibility 
rays are shot over a hemisphere sample space. The 
rays are shot to determine how ”exposed” the 
intersection point is to the “sky.” The farther more of 
the rays travel before hitting anything, the more 
exposed the intersection point. The “weight” of these 
feeler rays is used to determine an ambient intensity 
for the intersection point. Ambient occlusion 
produces a pleasing look to the image because of its 
soft intensity transitions. Note that no consideration 
of material properties, or actual light placement etc. is 
taken into account. Usually an ambient occlusion map 
is produced as a result of this pass, and this map is 
considered the base layer to which other lighting 
layers are added; sometimes, this pass alone is 
performed.  
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Figure 1: Image demonstrating Ambient Occlusion.  
Copyright   2003 Pixar [1] 

HOW RAY TRACING IS USED WITH 
OTHER TOOLS 
Photo-realistic rendering, the ultimate goal of all graphics, 
is achieved by using a variety of tools, several of which 
use ray tracing directly or indirectly. Ray tracing can 
easily be used to determine the direct illumination of a 
given scene. Indirect illumination is more difficult, as not 
only light paths are important, material properties play a 
significant role also. However, even in indirect 
illumination, ray tracing techniques can be employed. 
Some techniques effectively allocate a budget of rays 
dedicated to forward tracing from light sources; the 
remainder of the rays are used in the usual fashion of 
inverse tracing from the camera. Forward ray tracing is 
used to trace the path of light as it emanates from various 
light sources, strikes various surfaces in the scene, and 
reflects, refracts, etc. from surface to surface. As the rays 
land on various surfaces, material shaders are invoked that 
determine how the light energy is absorbed, reflected, 
refracted, scattered, etc. from the surface, and at each such 
spot the color at that point is stored in a cache. 
Subsequently, during the inverse tracing phase, the cached 
photons are effectively treated as a larger collection of 
light sources. Ray tracing itself does not solve the problem 
of creating photo-realistic images; however, it is an 
important tool that is used extensively in conjunction with 
a wide variety of other tools.  

True photo-realistic rendering requires solving a “global 
illumination” problem, namely that everything in a scene 
affects everything else in the scene (to some degree), and 
that indirect illumination is vitally important, even though 
it might only have a subtle effect on the final image. It is 
this subtle effect that makes the difference between a 
false-looking image and one that looks “real.” (The goal is 
to achieve the effect called “suspension of disbelief”; in 

other words, the imagery created can be intended to be a 
cartoon or “live action”).   

Raster Graphics and Ray Tracing  
Ray tracing and “raster graphics” can be used to attempt 
to solve the above-mentioned global illumination 
problem. In fact, ray-tracing techniques can achieve the 
exact same results as raster-based techniques (including 
all the approximations and tricks that raster solutions 
typically require); however, it does not work the other way 
around. Both of these approaches have their advantages 
and disadvantages, and both work in very different ways 
with very different system implications which we 
summarize here. 

Raster Graphics 
The primary differentiating factor between raster- and ray-
tracing approaches is that a ray tracing approach enables 
one to solve a global problem, while a raster-based 
approach seeks to achieve similar results by solving a 
local problem. Raster graphics attempts to render an 
image efficiently by making certain convenient 
assumptions. In particular, it treats triangles as if each 
triangle is entirely independent of every other triangle. 
Raster graphics hardware is capable of achieving 
extremely high throughput. However, the triangles are not 
independent, and in fact, this presumption places a lot of 
restrictions on the rendering system. Modern raster 
graphics APIs work in “immediate mode” where there is 
an expectation that the raster engine renders each triangle 
or command upon receipt. There is a concept of the 
current state and the current triangle. This is the Graphics 
Processing Unit’s (GPU) view of the entire world; it has 
no idea if or what comes next. Modern raster systems are 
extremely efficient, and some of the above-mentioned 
limitations can be worked around some of the time: for 
example, by rendering in multiple passes, or by employing 
a variety of approximations, tricks, etc. to leverage the 
tremendous performance of these devices. However, these 
approximations and multi-pass approaches impose 
limitations that Independent Software Vendors (ISVs) 
either have to live with or learn to avoid. 

Raster and ray-traced systems have different cost 
functions and scaling characteristics, listed below. In 
general, due to the way that raster systems work, they 
process every pixel of every submitted triangle to 
determine the final image that needs to be displayed. 
Raster graphics performance scales strongly with the 
number of triangles and pixels that have to be processed 
for a given image, so cost scales roughly linearly with 
viewport size and overall scene complexity, as follows: 

•  If a scene requires 100M triangles to be submitted for 
rastering, and each has an average of 10 pixels, the 
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raster system has to process 1B pixels. That is if it 
only takes one rendering pass. 

•  ISVs very carefully manage the complexity of their 
content, and various occlusion-culling techniques are 
used to minimize the quantity of submitted triangles.  

•  Because geometry must be grossly simplified to avoid 
the above performance problems, various techniques 
are used to create the illusion of more detail than 
what actually exists. 

•  Texture mapping is used to simulate extra detail. In 
fact, multiple layers of textures are often used.  

•  As mentioned earlier, part of the cost function is 
related to the number of pixels that have to be 
rendered. Often, multiple textures get applied per 
pixel, and each layer of texture can require many 
samples from the texture buffers; consequently, the 
bandwidth requirements of raster-based solutions can 
be astronomical. 

Raster graphics assumes that the triangles in a scene are 
independent of each other. This allows hardware to 
process each triangle independently and even to process 
multiple triangles and pixels simultaneously. But, in fact, 
the triangles are not independent: triangles can cast 
shadows on other objects or other triangles in the same 
object, but also triangles can be translucent, and they can 
reflect and refract light, and so on. Raster systems can get 
around some of these limitations using a variety of tricks. 
The tricks, such as those listed below, usually work under 
certain circumstances, and those situations where they fail 
must be avoided in order to preserve “suspension of 
disbelief.” 

•  Complex lighting effects, caused by objects reflecting 
and refracting light, can be simulated by running a 
real offline global illumination solution and extracting 
the results and storing them in maps. This can lead to 
plausible images being generated. However, these 
light maps are captured at a point in time, and with a 
particular arrangement of all the lights and objects in 
a scene, that they do not accommodate dynamic 
lighting situations.  

•  The Z buffer is used to perform a binary test to decide 
if a point on the screen covered by a new triangle is 
closer to the camera than the same point on the screen 
covered by a previous triangle. However, this makes 
the assumption that all triangles are opaque. Where 
translucency is involved, the translucent objects have 
to be separated from the rest of the objects, and all 
the objects need to be rendered in a particular order 
to avoid artifacts.  

•  To compensate for lower triangle counts, various 
bump maps and normal maps are used to create the 
illusion of increased complexity. Texture maps were 
originally intended to represent the micro-detailed 

texture of a surface; however, raster solutions often 
use texture maps to represent macro-level features. 
Lower precision models cause lots of problems: 
silhouette edges are blocky, and it is very difficult for 
artists to get the look and feel of what they are 
striving for. When the models are viewed from 
shallow angles, it becomes apparent that the surface 
details are not really there; the ISV has to work hard 
to understand all the limitations and to avoid those 
situations where these techniques break down. 

•  Shadows are another issue. Firstly, shadows are 
critical; images without shadows appear to have 
objects floating in space. Shadows are important 
visual clues that help associate an object with the 
surface that it is on or above, etc. Raster solutions 
don’t really handle shadows because of the 
independent triangles presumption; instead raster 
techniques emulate shadows. There are a variety of 
ways of doing this: some require rendering the scene 
many times from the point of view of each light, and 
some involve determining the silhouette edges of an 
object from a particular light’s point of view and 
casting rays through these silhouette edges to form 
so-called shadow volumes, etc. Each of these 
techniques works after a fashion, but all have various 
artifacts and restrictions. In fact, in one raster-based 
game we investigated recently, we found that there 
were five different shadow algorithms in use, and the 
ISV had to pick which one to use, on an object-by-
object basis. 

RAY TRACING 
Ray tracing, and by extension, global illumination does 
not suffer from these limitations just outlined, but it has its 
own set of problems that we discuss here. Firstly, there are 
fundamental differences between raster and ray-tracing 
approaches. Because ray tracing takes a global approach, 
the natural interface to it is different than that used with 
raster graphics. Recall that raster graphics use an 
“immediate mode” interface, and is only aware of a 
current state and a current primitive at any point in time. 
Ray tracing, on the other hand, needs a “retained mode” 
interface where random access to the whole scene is 
required, and when a visible triangle is determined, a 
specific shader needs to be invoked on demand.  

Ray tracing relies on a so-called “acceleration structure”; 
this is organized as a spatial partitioning or indexing 
structure. Any given object or scene is decomposed into 
regions of empty space and finer and finer partitioning of 
filled space. This structure allows us to efficiently 
determine the path a ray would take through space, and to 
test it only against those triangles that would be in the 
vicinity of the ray’s trajectory. Otherwise, we would need 
to test every ray against every triangle to test for any 
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possible intersection. If the scene is composed of rigid 
bodies, or articulated rigid bodies, the acceleration 
structure can be constructed in advance and loaded into 
the application along with the scene’s geometry. If the 
scene is dynamic, then the acceleration structure may have 
to be built on the fly, per frame, which can be very 
expensive. We have found that kd-trees make the best 
acceleration structures. If one needs to build an 
acceleration structure, with a very large model, the 
algorithm (greatly simplified) goes something like this: 

•  Read in all the vertices, think about them for a while, 
then propose a (single) split based on some cost 
function. This effectively gives you two sub-trees. 

•  Repeat the previous step for each and every sub-tree 
you create until certain termination criteria are met. 

•  You will notice that, at the higher parts of the tree, 
traditional caches won’t help much. However, once a 
certain threshold is reached, where the entire sub-tree 
fits, constructing the lower parts of the tree gets easier 
and easier. 

•  Conversely, you can see that if you are given the 
higher parts of the tree, building the rest of the tree is 
relatively inexpensive. Unless the object literally 
comes apart at the seams, the top-most parts of the 
tree rarely ever change.  

•  Often, in a gaming scenario, for example, other parts 
of the application require some sort of spatial 
partitioning structure (such as the occlusion-culling 
engine, the physics engine, the collision detection 
engine, etc.). If all of these used the same structure 
that the ray-tracing engine requires, even if at lower 
precision, this would greatly facilitate those cases 
where the tree needs to be built on the fly. 
 

 

Figure 2: An example of a model, and how it is 
decomposed into an acceleration structure 

Building these trees, and building them well is a huge 
topic all by itself. We have implemented algorithms that 
result in incredibly good trees, but it would take a separate 
white paper to describe the techniques used in detail. 
Also, separate research has begun in areas related to lazily 
building such trees (only build what’s needed, when it’s 
needed) and building them to a sufficient (i.e., minimal) 
level of detail. Finally, the very best acceleration 
structures are built using a cost function that trades off a 
given platform’s computation and memory system’s 
characteristics: these structures need to be built on the 
platform that they will get used on.  

The next issue to tackle is the platform cost of tracing a 
ray. This requires traversing the acceleration structure in a 
serialized sequentially dependent fashion until the ray 
finds a leaf node. Every time we traverse the structure it 
will be for a different ray, but if you shoot rays in a 
spatially coherent fashion, most likely the rays will take 
the same path through the structure. The (simplified) 
traversal algorithm is as follows: 

•  Test the ray against the split plane defined for the 
current volume of space. 
- Perform a simple test (a few simple ops and a 

compare).  

•  Determine if the ray goes cleanly to one side or the 
other of the split plane, or passes through it. 
- Perform a data dependent unpredictable branch. 

- Go to the “left,” “right” or both  sub-node(s). 

•  Move onto the next node(s) and repeat. 

Once a leaf node is encountered, we need to perform a 
computationally intensive ray-triangle intersection test for 
every triangle in the node. Even then, the ray might miss 
all the triangles there (hence it is best that leaf nodes hug 
the boundary of an object as tightly as possible). We have 
optimized these algorithms extensively, and we have 
optimized the acceleration structures to minimize the 
number of traversal steps to a leaf node, greedily 
accounting for as much empty space as possible, and we 
have minimized the number of triangles in each leaf node, 
for any given platform. Remember, it is cheaper to test a 
ray against an empty space than to test it against a bunch 
of triangles in a cell and find out that the ray misses them 
all. We have figured out how to shoot arbitrary groups of 
rays as a beam, performing most of the traversal using the 
beam instead of all the rays in the beam. We use vector 
approaches where they make sense: testing the four planes 
that represent the limits of a beam against each split plane, 
testing the triangles in a leaf node against each ray that 
gets that far, etc. 

The result of using beams is that a lot of the time, the 
beam finds a very deep “entry point” in the kd-tree for all 
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the rays in the beam. Often, this entry point is at the leaf 
node itself, meaning that the bulk of the work is now 
computational. Also, as we report later, we find that we 
get really excellent cache hit rates, which dramatically 
lowers the external bandwidth cost of using ray tracing 
(assuming traditional CPU-style cache hierarchies). 

However, the really exciting news is how the ray tracing 
workload scales. It is strongly effected by the number of 
rays shot in a scene and weakly effected by the complexity 
of the scene, which is different than raster graphics. Recall 
its performance scales with the number of triangles and 
pixels rendered, which is a function of the scene 
complexity and the overall viewport size. In contrast, ray 
tracing scales linearly with the number of rays shot and 
only logarithmically with the complexity of the scene. For 
a fixed resolution image, the cost of raster graphics 
doubles (roughly) as the complexity of the scene doubles; 
for ray tracing, you would have to increase the viewed 
scene complexity by 10x to double the cost. We have 
found that even with today’s hardware (HW) raster 
accelerators, a single CPU running software (SW), ray 
tracing will catch up with the HW raster engine around the 
1M triangles per scene mark, and will always outperform 
it above that. We have also discovered that the 
performance of ray tracing scales linearly with the number 
of CPUs. Another observation is that the performance of 
ray tracing is not so much overall scene complexity 
dependent, but dependent upon the visible complexity of 
the scene. Imagine a world where there are millions of 
triangles, but only 50K are visible at a time (such as a 
building). Given the above mentioned beam concept, the 
ray-tracing algorithm will quickly zero in on just those 
parts of the overall structure where the visible triangles 
are, effectively, shrinking the tree to just that part. 
Therefore, ray tracing performance scales with the 
observed complexity, rather than the overall complexity. 
Effectively, the acceleration structure behaves like an 
infinite level of detail occlusion-culling mechanism. 

ISV Implications 
ISVs can build complex models, without having to fake 
details, or have harsh polyganized outlines, silhouettes, 
etc. Moreover, they do not have to compromise by trading 
off model and scene complexity against overall 
performance. And finally, turning on more and more 
features just results in more rays: 

•  Visibility is determined by shooting (1 - n) “eye” rays 
per viewport pixel (depending on how much anti-
aliasing is needed).  

•  Infinitely precise shadows cost 1 ray per eye 
ray/triangle hit point, per light.  

•  Exact reflections, refractions are 1 ray each (times the 
number of subsequent bounces that are permitted). 

•  For translucency, keep refracting rays through 
translucent surfaces until an opaque one is hit, or 
some saturation point is reached.  

•  For anisotropic reflections/refractions. a budget of 
subsequent sample rays per surface struck must be 
allocated, which can be bound by the limits of new 
rays per bounce, and the number of bounces, etc.  

•  For global illumination, use more rays: forward rays 
and regular rays. In essence, everything boils down to 
rays. 

All of the above work exactly as expected: there are no 
corner cases where they don’t. The cost of a scene can be 
calculated very accurately and parameters can be tweaked 
to hit frame rates. The platform implications boil down to 
how coherent those rays are: eye rays can be engineered to 
be highly coherent as can shadow rays. This is less so for 
reflected and refracted rays. Not only can an ISV budget 
exactly what he or she can (or cannot) afford given a 
target platform and other application parameters such as 
model complexity, etc., but an ISV can safely use these 
features individually or in combination: 

•  For one thing, shadows are no longer an issue: they 
are on all the time for everything. There is no need 
for tricks, or hacks. Different algorithms don’t need 
to be chosen selectively for individual objects, and 
there is no need for multi-pass approaches. Moreover, 
those shadows are exact, perfect, and always right, 
and everything shadows everything else: a character’s 
nose casts a shadow on its face, and dimples in the 
nose have shadows inside them. If the ISV wants a 
shadow to fall a particular way, he or she can 
engineer that by selecting a mask to indicate which 
lights to seek shadows from.  

•  There are no multiple passes of rendering from virtual 
cameras behind reflective surfaces, and no need to 
texture the result into the rendering pass. No 
environmental maps are needed that only comprehend 
infinitely distant scenery. And, multiple reflections 
work–naturally. 

•  Translucency is no longer a problem. There is no 
need for sorting of geometry or for careful ordering 
of what gets rendered first. It all just works. Even if 
the desire is to have everything be translucent and 
there are sufficient  rays available, this can also be 
done.  

•  All of the above-mentioned techniques work together 
in one pass without the need for complex sorting of 
what needs to happen first, or for what limitations 
exist. 

Everything else that gets used in raster graphics, such as 
multiple texture mapping for simulation of fine detail 
surface texture, still works, and all the sampling and 
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filtering that goes with that. All the hacks and tricks used 
to simulate complex lighting like pre-rendered global 
illumination solutions etc. can still be used. In fact, you 
can create exactly the same results as a raster platform 
using ray tracing instead. However, unless all the hacks 
and tricks that simulate complexity, shadows, and 
complex lighting are used, then fine details will go 
missing: triangles that appear to have surface detail and 
shadows, when rastered, will actually appear flat and 
featureless and have weird colors that don’t appear to 
belong there when ray traced, if all the aforementioned 
tricks are not used. 

RAY TRACING PERFORMANCE 
The basic core of a ray-tracing engine is the act of 
shooting a ray, and that, in turn, depends heavily on three 
key algorithms: acceleration structure traversal, ray 
triangle intersection tests, and an arbitrarily complex 
“shader,” invoked if there is a ray-triangle hit. We 
determined that we needed to establish a “benchmark” by 
which we could gauge performance: the number of ray-
segments per unit time. A ray segment is one leg of the 
journey of a ray. Each “bounce,” if you will, also each ray 
shot at a light to determine if the current spot is in 
shadow, is also a ray segment. We determined that overall 
performance could be characterized in terms of some 
aggregate number of ray segments per second; there were 
three main dimensions:  

 

Figure 3: Diagram illustrating how a single pixel’s 
rays decompose into eight ray segments 

1. The number of rays shot per pixel–a quality metric. 
More raysegs per pixel account for more and more 
lights, bounces, sampling, etc. 

2. The number of pixels per frame (grows in discrete 
steps, 640x740 to 1024x768 …etc.). 

3. The number of frames per second (30fps for movies, 
75fps for games). 

We determined that 450M raysegs/S was the threshold 
where real-time ray tracing becomes interesting. We 

assumed a frame rate of 30fps, an image size of 1M 
pixels, and 15 raysegs per pixel. This could quickly 
escalate (linearly) if 75fps, 3M pixel displays, and higher 
quality is taken into account. We measured the 
computation and raw and external bandwidth required for 
a variety of scenes (recall that performance is viewport 
and scene complexity dependant) and found that the per 
ray segment cost was 1500-3000 FLOPS and 600-1400 
raw bytes, with cache hit ratios of 300-1200:1. We were 
able to achieve up to 100M raysegs/S for simple models 
and large viewports on desktop machines (a 3.2 GHz 
Pentium® 4 processor), and measured linear performance 
scaling up to 128 CPUs in cluster configurations. 

Scalability of the Ray Tracing Algorithm 
Ray tracing scales strongly with the number of actual rays 
that need to be traced and weakly with the overall 
complexity of the scene being rendered. The number of 
rays that need to be traced depends on the following 
conditions: 

•  The raw dimensions of the viewport (i.e., the number 
of pixels). Over sampling or anti-aliasing would 
increase the number of rays per pixel shot into the 
scene. 

•  The frame rate (24fps for movies, 72-75 Hz for game 
content). 

•  The number of active lights. If a ray hits an object, 
rays are shot from the hit point to all of the active 
lights to determine if there is an unobstructed path. 

•  The number of bounces allowed per ray. Some 
engines place a cap on the number of subsequent 
bounces caused by reflection or refraction, as each 
such bounce contributes less and less to the value 
returned to the eye. 

•  The sophistication of the shaders invoked when a ray 
hits a triangle. Most surfaces are not perfect reflectors 
or refractors; instead a shader invoked at an initial hit 
point may choose to shoot many secondary rays in a 
non-uniform distribution, thereby integrating the 
resulting returned values. Similarly, the first set of 
secondary rays can spawn its own second set of 
secondary rays, etc. 

•  Whether or not global illumination techniques are 
employed. Some techniques take a budget of rays and 
shoot them from the lights into the scene letting them 
bounce around, thereby caching the light intensities of 
the various hit points. A subsequent traditional ray 
tracing pass might then consider these cached hit 
points as additional light sources, for example. 

                                                           
® Pentium is a registered trademark of Intel Corporation 
or its subsidiaries in the United States and other countries. 
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Ray tracing scales weakly with the complexity of the 
scene because of the acceleration structure. Due to the 
structure’s hierarchical nature, ray tracing reduces the cost 
of finding a ray triangle intersection to O Log N. As the 
size of the model increases linearly, the overall size of the 
acceleration structure can grow linearly also, but the cost 
of finding an intersection doesn’t.  

Scalability studies for raster graphics and ray tracing 
graphics have been performed. In general, the cost of 
raster graphics processing is linear with the number of 
pixels to be processed. The cost of ray tracing scales 
linearly with the number of rays shot, so roughly one can 
claim that ray tracing performance scales linearly with 
viewport size.  

Figure 4: Frame complexity vs. performance of SW 
ray tracing vs. HW raster 

If the viewport size remains fixed, then the ray-tracing 
performance scales logarithmically with the complexity of 
the scene. This means that if you compare a HW raster 
engine and a SW ray-tracing engine using the same input 
for both engines, although the HW will initially beat the 
SW, the SW will eventually catch up with the HW. In fact 
we measured this and found that the intersection point is 
in the vicinity of the 1M triangle range, i.e., when the 
scene complexity exceeds 1M triangles, a SW ray-tracing 
solution will always outperform a HW raster solution. 

Figure 4 is a log/linear chart. We created many versions of 
the same model at various resolutions from 10K to 10M 
triangles, and we fed them into an nVidia GeForce FX 
4200 (lower blue curve) and an nVidia GeForce FX 5900 

Ultra (upper blue curve). A SW ray tracer running on the 
same 3.2 GHz Pentium 4 processor (with a 512 KB L2 
cache) was used to drive the HW cards (performance 
above the 10M triangle mark is extrapolated from curves 
fitted to the measured data). The curved blue lines show 
the performance of the HW cards: performance declines at 
1/X. The (almost) straight yellow/orange lines represent 
SW ray-tracing engine performance on a single processor 
and 2- and 4-way Symmetrical Multi-Processor (SMP) 
systems. Performance declines at 1/Log(X).  

Scene and Visibility Complexity Implications 
Figure 5 shows the three scenes used in this analysis of the 
ray-tracing algorithm. The scenes are carefully chosen to 
span a wide range of visual complexity. One can see that 
the level of detail as well as the quality of the images are 
at least as good as those produced by the high-end raster 
graphics engine today.   

The first scene is a typical bar illuminated with one light. 
The model consists of about 250K triangles with about 
300K vertices. The size of the acceleration structure that 
represents the spatial distribution of detail is 18 MB, and 
the scene data itself is 29 MB. The model has 54 different 
textures, and the texture maps to a total of 30 MB in size. 
Given the camera placement in this scene, the majority of 
the room’s details are visible. There are no reflections or 
refractions in this scene. The second scene is a top view of 
a VW Beetle illuminated with three lights. The model 
consists of 1.87M triangles with about 4M vertices. The 
size of the acceleration structure is 127 MB, and the scene 
data itself is 224 MB. The image uses 20 texture maps 
totaling 11 MB in size. This particular view of the car was 
chosen because most of the geometric detail is in the 
interior of the car. Reflections are enabled with a 
maximum of two reflections per ray. The third scene is of 
the inside of a room in UC Berkeley’s Soda Hall. The 
model consists of 2.2M triangles with about 1.6M 
vertices.  

The size of the acceleration structure is 148 MB; the scene 
data is 226 MB. The model has 20 texture maps totaling 
17 MB in size. This model was chosen because despite the 
fact that the whole model has 2.2M triangles, only a small 
percentage is visible at any time. If the camera is outside, 
we can see only the shell of the building; if it is inside the 
building we can only see the details of that particular area. 
In this particular room there are three lights. The full 
model has 1300, but the rest are disabled. Reflections and 
refractions are disabled. 
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Figure 5: Scenes with different visual complexities used in this ray-tracing analysis 

 

Table 1 shows the raw FLOPs and bandwidth required 
per ray segment across the various models all rendered at 
the same 1024x1024 resolution. As you can see, there is 
some correlation between overall model complexity and 
required performance as we go from the bar scene (250K 
Triangles) to the beetle scene (~2M Triangles). Although 
complexity increases 10x, the computational and 
bandwidth costs only increase ~2x.  

Table 1: Computation and memory requirements 

Measured Data Room (Bar) Car (Beetle) Building (Soda Hall)

Flop / RaySeg 1518 2954 1488

Byte / RaySeg     586 1382    793

Byte / Flop 0.386 /  2.59:1 0.467 / 2.14:1 0.533 / 1.87:1

 

Table 2: Bandwidth at each level of memory 
hierarchy 

Measured Data Room (Bar) Car (Beetle) Building 

Core to L1 BW 1,300.0 GB/s 920.0 GB/s 1,260.0 GB/s

L1 to L2 BW      66.5 GB/s   57.6 GB/s      49.5 GB/s

External BW        6.1 GB/s   12.7 GB/s        1.1 GB/s

Raw / Ext BW 216:1 72:1 1141:1

 

However, as we go from the Beetle to the soda hall, we 
note that even though both models are about equally 
complex, because only a fraction of the scene is visible 
in any frame, the cost is dramatically lower for the soda 
hall. Table 2 shows the raw and cache filtered 
bandwidths required for the same scenes assuming each 
is rendered at 30fps. Here we see that the cache hit rate 
seems to correlate with the observed model complexity, 
so the soda hall scene shows the best performance thanks 
to the beam effect zeroing in on the portion of the 
acceleration structure that is effectively used by the ray 
tracing algorithm. 

Performance Scalability Studies 
Performance data was collected on 2-, 4- and 8-way 
SMP machines and for large cluster configurations with 
up to 128 nodes. As you can see from Figure 7, 
performance scales linearly with the number of 
processors for the SMP systems, and from Figure 8 you 
can see a similar story for clusters of systems with up to 
128 nodes. We also measured performance with and 
without hyper-threading on the SMP systems. From 
Figure 6, you can see that we get a >25% overall 
performance improvement across the board when hyper 
threading is turned on.    

Geometry: 306K Vertices, 
234K Triangles (30 MB) 

Texture: 54 Textures 
(30 MB) 

1 light 

Room (Bar) 

Geometry: 1.6M Vertices, 
2.2M Triangles (226 MB) 

Texture: 20 Textures 
(17 MB) 

3 lights 

Car (Beetle) Room (Soda Hall) 

Geometry: 4M Vertices, 
1.87M Triangles (224 MB) 

Texture: 20 Textures 
(11 MB) 

3 lights 
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Figure 6: Hyper-threading effect on  ray-tracing 

performance for 1-, 2-, 4- and 8-CPU systems  

 

 

 

 

 

 

 

 

 

 

Figure 7: Scaling of ray-tracing performance for 
2-, 4- and 8-way SMP machines  

(L = Lights, R = Reflections) 

Figure 8: Scaling of ray-tracing performance for 
cluster systems with 1-128 CPUs 

CONCLUSION 
Ray tracing has long been considered too expensive for 
mainstream rendering purposes. Movie production 
studios have only recently begun the transition to using 
it; however, the true cost of ray tracing has been very 
poorly understood until recently. It is now poised to 
replace raster graphics for mainstream rendering 
purposes. Its behavior is very well suited to CPU 
processors, and scales well with hyper threading and 
multi-processor configurations. The traditional cache 
hierarchy associated CPUs is very effective at managing 
the external memory bandwidth requirements. For ISVs, 
a transition to ray tracing is a huge step forward freeing 
them from all the limitations imposed on them by 
today’s raster-based approaches. Ray tracing is one tool 
that can enable ISVs to aspire to achieving high fidelity 
photo (or cartoon) realistic imagery. 
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ABSTRACT 

The vast accumulation of digital data requires new classes 
of applications that impact a computer user’s life. We are 
investigating computing platforms that can deliver 
enough performance for these future workloads to enable 
their use in mass-market applications. Recognition, 
Mining, and Synthesis (RMS) are three key classes of 
workloads that distill enormous amounts of data. Among 
these is Computer Vision (CV), an important workload 
that will greatly benefit from future architecture and 
algorithm innovations. 

We illustrate these innovations by introducing and 
characterizing some of the most common CV algorithms 
and applications. We focus on (1) algorithms for Gaussian 
mixture models, (2) particle filtering (condensation 
filtering), and (3) optical flow/motion estimation, which 
are key ingredients of many modern CV algorithms. We 
also discuss computer vision applications, such as video 
surveillance, autonomous (intelligent) vehicles and driver 
assistance systems, entertainment and augmented reality, 
and smart health care. 

We chose a complete video surveillance application as a 
representative case study for a complex CV workload. 
Video surveillance is one of the most resource-demanding 
CV applications that has wide-spread application. We 
analyze an entire pipeline of a video surveillance system 
to obtain computation and bandwidth characteristics. 

Our characterization of individual CV algorithms as well 
as complete CV systems can be used to guide algorithm 
researchers to develop new algorithms that run faster on 
existing and future computing platforms. Furthermore, we 
hope that it will raise the awareness of the application 
developers to optimize their programs. It will also provide 
input data for architects to develop future computing 
platforms that run these workloads more efficiently. 

INTRODUCTION 
The amount of data in the world is doubling every three 
years. This includes data found on the Web, in our 
personal albums, and digital music collections, etc. 
However, these data are usually not organized efficiently 
and not used to their full extent. For example, we might 
spend hours opening images we have on our hard-drives 
(assuming they are still stored in the hard-drive without 
losses) to look for one image of ourselves with a 
particular person. Looking forward, three fundamental 
processing capabilities: Recognition, Mining, and 
Synthesis (RMS), will be the key to future data 
processing, and Computer Vision (CV) is one of its main 
workloads. 

This paper is organized as follows. In “Trends in 
Computer Vision Workloads,” we discuss the key 
algorithms and applications of CV workloads, as well as 
current trends. In “Introduction to the Video Surveillance 
System,” we study in more detail one of the most 
representative CV workloads: video surveillance. We first 
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describe the complete pipeline of a video surveillance 
system and its individual components, and then we present 
results from workload analysis of the video surveillance 
system. We conclude with a summary of our findings and 
future research opportunities. 

TRENDS IN COMPUTER VISION 
WORKLOADS 

Key Algorithms of Computer Vision 
Workloads 
Computer Vision (CV) algorithms can be categorized as 
low-level image-processing techniques and high-level 
analysis techniques. Image-processing techniques include 
filtering, and feature extraction, which have been 
extensively studied and are thus not elaborated on in this 
paper. High-level analysis usually involves probability-
based approaches. We discuss the Gaussian mixture 
model, and particle filters, since these are used extensively 
in tracking and motion analysis.  

We believe the trend in CV algorithms is moving towards 
higher level analyses (such as semantics), which make 
extensive use of probability-based techniques. Probability-
based algorithms are our main focus. We start with 
discussing probability distribution models. We then 
discuss multi-model data fusion from color images, the 
integration of color video and range data, and the 
integration of face images, fingerprint images, and iris 
images.  

Gaussian Mixture Model 
In order to track an object in the scene, knowledge about 
what the object looks like is needed. Such knowledge is 
described by the statistical distribution of the region of 
interest (which could be the foreground object or the 
background). The Gaussian mixture model is used widely 
to describe the region of interest [1]-[6], and has been 
incorporated into a variety of algorithms for tracking and 
recognition in CV. 

A Gaussian mixture model with m  components is 
described as a sum over Gaussian probability 
distributions: 

( ) ( )∑
=

=
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m
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where mu  is the mean of component m , mσ  is the 

variance of component m , and mπ  is the weight of 

component m . By applying the Estimation-
Maximization (EM) algorithm, the Gaussian mixture 
model parameters can be trained. 

Particle Filter/Condensation Filter 
The particle filtering algorithm is a sequential Monte 
Carlo method. The algorithm is powerful in 
approximating non-Gaussian probability distributions, 
and it has a wide range of applications including object 
tracking in CV [7][8][9]. Particle filtering is based on 
sequential importance sampling and Bayesian theory. It 
models the data distribution by random sample measures 
composed of particles, that are samples from the space of 
the unknowns, and their associated weights. 

There are two main steps in the algorithm: 
selection/updating and mutation/prediction. The first step 
selects the particles for reproduction. The particles 
representing the most likely parameter candidates are the 
ones most likely to be selected. During this step, heavy 
particles generate new ones, while light particles are 
eliminated. The second step allows each particle to evolve 
according to a given transition probability kernel. The 
pictorial description of the algorithm is shown in Figure 1. 

 

Figure 1: A pictorial description of particle filtering 

Similarly, in using random samples to estimate 
distribution, Markov Chain Monte Carlo (MCMC) is also 
often used. References can be found in [10][11]. 

Optical Flow/Motion Estimation 
Optical flow estimation is a technique used to compute 
the apparent image motion field of the scene. Besides 
tracking objects, the motion field is useful for extracting 
objects from video sequences. When there is discontinuity 
in the motion field, it often means there are different 
depths of pixels and the depth discontinuities may 
correspond to the outlines of different objects. An 
introduction to optical flow can be found in [12][13], and 
its application to road detection can be found in [14]. 
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Key Computer Vision Applications and 
Opportunities  
Digital video recording devices are now ubiquitous in our 
daily lives. They are mounted indoors in offices, 
hospitals, and outdoors in parking lots and intersections. 
Some vehicles even have cameras recording passengers 
and the surroundings of the car. Massive amounts of 
video data are collected by these “digital eyes.” CV 
technologies can add intelligence to these digital eyes, 
adding “brains” to these imaging devices.  

With both digital eyes and brains, CV can be a very 
useful tool: it can be used for video surveillance, 
entertainment/augmented reality applications, 
autonomous vehicles and driver assistance systems, 
robotics, and smart health care. With the rapid growth in 
CV, we believe more innovation in this field is inevitable. 
We now discuss these CV applications.  

Video Surveillance/Security 
Video surveillance addresses real-time observation of 
humans or vehicles in some environment (indoor, 
outdoor, or aerial), leading to a description about the 
activities of the objects with the environment or among 
the objects. It is used mostly for security monitoring, as 
well as traffic flow measuring, accident detection on 
highways, and routine maintenance in nuclear facilities, 
etc. Interested readers can refer to [17][18]. 

From a workload analysis perspective, video surveillance 
is one of the most interesting CV applications. The reason 
is twofold. First, a complete video surveillance system 
consists of foreground segmentation, object detection, 
object tracking, human or object analysis, and activity 
analysis. It touches many core topics of CV. By 
understanding and analyzing a complete video 
surveillance system, we can obtain insights on general CV 
workloads. Second, video surveillance is currently 
gaining increasing importance for security applications 
worldwide. “Traditional” video surveillance systems have 
been used pervasively in airports, banks, parking lots, 
military sites, etc. However, to get any useful information 
from these systems, humans either have to watch a 
massive amount of video data in real-time with full 
attention to detect any anomalies, or the video data can 
only be used as evidence after an abnormal event has 
occurred, due to the lack of real-time automatic tracking 
and analysis. Automatic video surveillance, as opposed to 
traditional video surveillance, adopts CV algorithms such 
as those mentioned in the last section to alleviate the load 
on humans and to enable preventative acts when an 
anomaly is detected. We will use the term video 
surveillance, instead of automatic video surveillance, 

hereafter. A comprehensive introduction to video 
surveillance systems can be found in the next section. 

Autonomous Vehicles and Driver Assistance Systems 
Driver safety is a very important issue in our lives. CV 
can serve as a third eye for a driver to enhance the safety 
of vehicles and of their occupants. Example uses of CV 
for intelligent vehicles include (1) parking assistance; (2) 
landmark detection to assist the car in following the road; 
(3) traffic sign detection and recognition for route 
planning and alerting the driver; (4) obstacle detection, 
especially detecting the presence of pedestrians in a 
driver’s blind spot; (5) driver condition monitor for 
intelligent airbag deployment and to monitor a driver’s 
distraction level [19][20][21]. 

Figure 2 (from [22]) shows a road detection example. The 
detection result can be used for the later obstacle 
detection in knowing the 3D location of the obstacle. 
Figure 3 from [23] shows an example of how CV can help 
in locating pedestrians/obstacles. Pedestrian/obstacle 
detection and tracking is harder than conventional object 
detection and tracking.  Both the camera in the car and the 
objects are moving. The background changes constantly. 
Figure 4 (from [24]) shows different poses of a driver for 
safe airbag deployment as shown in Figure 5 (from [24] 
as well). 

 

Figure 2: Road-detection result for highways and the 
3-D projected model with different conditions. © 2005 

IEEE, courtesy of [22] 
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Figure 3: Obstacle detection example: fusion of the 
results from two resolutions. (a) Input image, (b) 
results of low-resolution processing, (c) results of 
original resolution processing, and (d) final fused 

results. © 2005 IEEE, courtesy of [23] 
 

 

Figure 4: Example images of occupant script poses. 
From top left: sitting normally, leaning halfway, 

leaning completely forward, leaning back, leaning 
right, leaning left, moving hands about cabin, opening 
glove box, hands on face, stretching, adjusting radio, 
hat in lap, putting on hat, moving while wearing hat, 

removing hat, feet on dashboard. © 2005 IEEE, 
courtesy of [24] 

 

 

Figure 5: Occupant position and posture-based safe 
airbag deployment. © 2005 IEEE, courtesy of [24] 

 

Entertainment/Augmented Reality 
Another interesting application of CV techniques is 
augmented reality, which combines real video content, a 
real object extracted from the video, and rendered 
graphical models. That is, three-dimensional virtual 
objects are embedded in the real video scene. Augmented 
reality applications can be seen in entertainment scenarios 
such as games and movies. This technique is useful for 
3D manipulation and maintenance tasks, and it is helpful 
during surgical procedures as clinical data can be overlaid 
on real video content. 

CV techniques are needed to extract the 3D information 
from the environment, so that the virtual objects can be 
placed in the proper locations (an example is shown in 
Figure 6 from [25]). Articulated body tracking can be 
used to animate the character in the gaming environment 
(an example is shown in Figure 7 from [26]). 
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Figure 6: Visible-surface rendering of texture-mapped 
affine virtual objects. Affine basis points were defined 

by the centers of the four green dots. The virtual 
towers were defined with respect to those points: (a) 
initial augmented view; (b) augmented view after a 

clockwise rotation of the object containing the affine 
basis points; (c) hidden-surface elimination occurs 

only between virtual objects; correct occlusion 
resolution between physical and virtual objects 

requires information about the geometric relations 
between them; (d) real-time visible surface rendering 

with occlusion resolution between virtual and real 
objects. © 2005 IEEE, courtesy of [25] 

 

 

Figure 7: Virtual metamorphosis. The motion of the 
person (P1) in the dancing area controlled the 

movement of the tuxedo-wearing cartoon character 
(C1). A person in another dancing area controlled the 
movement of the sumo wrestler cartoon (C2). © 2005 

IEEE, courtesy of [26] 

Smart Health Care 
CV can be used in health care for the elderly and the 
disabled. Human body tracking and activity analysis can 
help detect anomalies, such as a person falling. Human 
subjects can also use their hand or body gestures to 
control the home environment if hand or body tracking is 

in place [27]. Similar ideas can be applied to smart offices 
and smart homes. 

We do not discuss CV for medical image-related 
applications in this paper. Although CV has been studied 
extensively, the techniques used are mostly lower-level 
image processing. Interested readers can refer to [28]. 

INTRODUCTION TO VIDEO 
SURVEILLANCE AND COMPUTER 
VISION  
Traditional video surveillance is labor intensive and 
usually not very effective. Video surveillance with 
computer vision techniques, however, saves on labor and 
provides a consistent monitoring quality. The input to a 
video surveillance system is video streams from a single 
or multiple cameras. The system analyzes the video 
content by separating the foreground from the 
background, detecting and tracking the objects, and 
performing a high-level analysis. The high-level analysis 
provides results such as a scenario being normal or 
abnormal. The human operator can then focus on the 
abnormal scenarios and not have to stare at the video 
trying to find any anomaly.  

A general scheme of the video surveillance system is 
shown in Figure 8, where 

•  A “Foreground/Background (FG/BG) Detection” 
module performs FG/BG classification of each image 
pixel.  

•  A “Blob Entering Detection” module uses the result 
(FG mask) of the “FG/BG Detection” module to 
detect that a new blob object enters the scene. 

•  A “Blob Tracking” module is initialized by the “Blob 
Entering Detection” module. This module tracks each 
blob from the tracked blob list. 

•  A “Trajectory Generation” module collects all blobs’ 
positions and saves each blob trajectory to hard disk 
when the motion of the object is no longer presented 
(for example, when the tracking is lost). 

•  A “Trajectory Post Processing” module executes a 
smoothing function on a blob trajectory. This module 
is optional and need not be included in a specific 
pipeline. 

•  A “Trajectory Analysis” module performs a blob 
trajectory analysis and detection of abnormal 
trajectories. 

We will discuss each module in later sessions.
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Figure 8: Video surveillance system pipeline 

 

Foreground and Background Estimation 
Given a video sequence, extracting the FG from the BG is 
an important step in the whole video surveillance pipeline. 
FG estimation is the first stage in the pipeline. Its accuracy 
affects the accuracy of the later stages. It could affect the 
performance of the later stages as well. Note that in this 
paper we use “accuracy” for algorithm accuracy, and 
“performance” for computation performance such as the 
speed of computation. 

FG detection is generally easier in the indoor 
environment. Ideally, we want FG/BG estimation to work 
well in both indoor and outdoor environments. The 
outdoor environment is more complex, as wavering tree 
branches, flickering water surfaces, periodic opening and 
closing of doors, etc. are occurring. We use the approach 
proposed by Li et al. [29] in our video surveillance 
system, for its capability in processing complex 
backgrounds. This method is based on pixel color and 
color co-occurrence statistics. The pixel color and color 
co-occurrence distributions are represented by histograms. 
Bayes decision rule is applied to classify the pixel to BG 
or FG pixel. The BG is updated after the classification of 
pixels. The algorithm can successfully handle gradual as 
well as sudden BG changes, and stationary as well as 
moving objects. 

 

Figure 9: Foreground extraction in outdoor 
environment 

Blob Entering Detection 
Our blob detection module is based on a connected 
component tracker [30]. It does the following: 

1. Calculates connected components of the FG mask 
obtained by the FG/BG estimation module. Each 
component is considered as a blob. 

2. Tracks each blob by trying to find it in the current and 
the previous frame.  

3. Adds a new blob into the tracked blob list if it can be 
tracked successfully across multiple successive 
frames.  

With the tracked blob list, we can apply object detectors 
such as those proposed by [31][32] to determine the class 
of the blob objects: “human,” “car,” or “unknown.”  

Blob Tracking 
The blob tracking module provides frame-by-frame 
tracking of the blob position and size. We developed a 
hybrid object tracker that consists of two components. The 
first one is a connected-component tracker. It provides 
reliable and fast tracking results when there is no overlap 
of two human blobs. The second component is a tracker 
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that is based on mean-shift algorithms and  particle 
filtering [33][34]. A Kalman filter is used to predict the 
position of the blob in the next frame, thus implying that 
overlap will occur in the next frame. If overlap is to occur, 
the second component, the particle filter-based tracker, is 
used. Otherwise, the fast connected-component-based 
tracker is used. 

PF 
tracker

Object collision detection

CC 
tracker 

yes no

 

Figure 10: Switching of trackers 

Activity Analysis 
To detect the anomaly of a scene, we classify the blob 
trajectories. Trajectory analysis approaches can be found 
in [35]-[38]. To detect abnormal trajectories, a histogram 
approach is used. This method treats a trajectory as an 
independent set of feature vectors. Each feature vector 
includes such features as blob position, blob velocity, and 
blob state duration. A 5D histogram of these features is 
continuously collected and analyzed. Thus, if the current 
blob has features that were never or rarely observed 
before, then the blob and its trajectories are classified as 
abnormal. 

 

Figure 11: Abnormal trajectory 

WORKLOAD ANALYSIS OF THE VIDEO 
SURVEILLANCE SYSTEM  
In this section, we profile the video surveillance system by 
the Intel® VTune  Performance Analyzer [39]. We 
                                                           
® Intel and VTune are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States 
and other countries. 

identify hot spots for future performance improvement, 
either in algorithm modification or in hardware 
acceleration. Furthermore, we explore the distribution of 
the operations.  

Profiling our system shows that the most computationally 
expensive modules of the whole video surveillance system 
are FG detection (up to 95% of execution time) and object 
tracking (about 5% when only the connected components 
method is used, and up to 20% when mean shift 
algorithms with particle filtering is employed). Histogram-
based trajectory analysis doesn’t take a significant portion 
of the computational resources; although more 
sophisticated techniques may potentially contribute more 
to this workload. Note that the numbers given are not 
universal to all kinds of scenarios including both indoor 
and outdoor environments. In a scene where there are 
more objects presented, object tracking may consume a 
larger proportion of computational resources, whereas the 
resources used by FG/BG estimation remain about the 
same.  

The most computationally expensive module of the 
pipeline, FG/BG estimation, consumes 1 billion 
microinstructions per frame of size 720x576. On a 3.2 
GHz Intel® Pentium  4 processor, therefore, it takes 0.4 
sec.  

We further profile the FG/BG module as shown in Figure 
12. The most expensive part of the algorithm is the 
histogram update, which scans all histogram bins. 
Classification uses only a subset of the histogram. Other 
parts of the algorithm work only with frame pixels, 
searching the place for the current pixel value.  

10%

60%

25%

5%

Classification

Histogram Update

Change Detection

Noise removal

 

Figure 12: Foreground detection algorithm profile 

                                                           
  Intel and Pentium are trademarks or registered 
trademarks of Intel Corporation or its subsidiaries in the 
United States and other countries. 

Abnormal trajectory 

Normal trajectories  
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The algorithm consumes a large amount of memory. Each 
pixel keeps a set of color and color co-occurrence 
histograms, which takes up about 1 kb per pixel. The 
whole frame, of size 720x576, needs about 400 MB of 
memory. However, according to the memory statistics (see 
Table 1), accesses to the histogram are mostly cached, so 
we don’t have to read the same histogram values from the 
memory several times; we can get them from the cache.  

Table 1: Memory characteristics of foreground 
detection algorithm 

L1 cache hit rate 90% 

L2 cache hit rate 77% 

Bus data traffic per frame 134 MB

Bus utilization  6% 

 

We now look at the operation distribution (as shown in 
Figure 13). Most of the arithmetic operations are from 
integer operations. Operations done on pixel values and 
histogram bins are mostly integer operations. We see 
similar situations in many CV workloads where pixel 
values, histograms, and array indices calculation, are often 
involved. Floating-point operations in FG/BG estimation 
are minimal, since the FG/BG algorithm accesses floating-
point data only for the histogram bin that is hit by the 
pixel value. The branches portion is noticeable. However, 
the branch prediction is good (about 90% correct). 
Therefore, mis-predicted branches do not significantly 
impact performance. 

56%

23%

6%

9%
3% 3%

Integer ops

Loads

Stores

Branches

SIMD ops

FP ops

 

Figure 13: Operations distribution for foreground 
detection algorithm 

SUMMARY 
RMS will be the key to future data processing. CV 
workload is one important RMS workload. In this paper, 

we talked about trends in CV algorithms and applications. 
Understanding the trends in CV algorithms and identifying 
trends in CV applications help Intel in developing future 
computing platforms.  

We then focused on video surveillance systems. A 
complete video surveillance pipeline captures important 
aspects of many CV workloads. Video surveillance is one 
of the most important and resource-demanding CV 
applications. We identified the hot spots and operation 
distributions of the system using the Intel VTune 
Performance Analyzer. Such performance analysis results 
will be useful for future Intel architecture innovations. 
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ABSTRACT 

The rapid expansion of computer processing power 
combined with the rapid development of digital camera 
capability has resulted in equally rapid advances in 
computer vision capability and use. Intel has long been at 
the forefront of enabling this advance on the computer 
hardware and software side. Computer vision software is 
supported by the free Open Source Computer Vision 
Library (OpenCV) that optionally may be highly 
optimized by loading the commercial Intel Integrated 
Performance Primitives (IPP). IPP now automatically 
supports OpenCV with no need to change or even 
recompile the user’s source code. This functionality 
enables development groups to deploy vision and provides 
basic infrastructure to experts in vision. 

OpenCV has long supported “geometric vision” from 
camera calibration, motion tracking in 2D, finding the 
camera location given a known 3D object, on up to 
producing depth maps from stereo vision. This paper 
describes using OpenCV for “learning-based vision,” 
where objects such as faces, or patterns such as roads, are 
learned for segmentation and recognition. 

INTRODUCTION 
The Open Source Computer Vision Library (OpenCV) [1] 
is a free, open source collection of computer vision 
routines geared mainly towards human-computer 
interaction, robotics, security, and other vision 
applications where the lighting and context of use cannot 
be controlled. OpenCV is not geared towards factory 
machine vision where the environmental conditions can be 
controlled and one generally knows what one is looking 
for, although there is a large overlap. 

OpenCV was designed for enablement and infrastructure. 
Many groups who could make use of vision were 
prevented from doing so due to lack of expertise; OpenCV 

enables these types of groups to add functionality such as 
face finding and tracking in a few lines of code. Other 
groups have vision expertise but were uselessly recreating 
vision algorithms that were already standard; OpenCV 
provides experts with a solid vision infrastructure and 
thereby allows experts to work at a higher level rather than 
have to worry about the basics. Because of the above, 
OpenCV’s BSD type license is designed to promote free 
commercial and research use. Optionally, users may install 
the IPP libraries and benefit from highly optimized code 
without needing to recompile via the use of automatically 
selected optimized dynamic linked libraries.  

OpenCV support for vision is extensive. It supports 
routines for input, display, and storage of movies and 
single images. Image-processing debug is supported by 
drawing and text display functions. Image processing 
itself is handled through convolution, thresholding, 
morphological operations, floodfills, histogramming, 
smoothing, pyramidal sub-sampling and a full suite of 
image algebra and arithmetic. Geometry is supported by 
Delaney triangulation, calibration, fundamental and 
essential matrices computation, image alignment, and 
stereo depth calculation. A full range of feature detection 
algorithms exists from corner detectors, Canny edge 
operators, blob finders, scale invariant features, and so on. 
Shape descriptors such as Hu moments, contour 
processing, Fourier descriptors, convex hulls, and 
connected components exist. Motion is covered via 
several types of optical flow, background learning and 
differencing, motion templates, and motion gradients. 
Learning-based vision is supported through feature 
histogram comparison, image statistics, template-based 
correlation, decision trees, and statistical boosting on up 
to convolutional neural networks.  

OpenCV was released in Alpha in 2000, Beta in 2003, and 
will be released in official version 1.0 in Q4 2005. If the 
Intel Integrated Performance Primitives (IPP) library [2] is 

http://www.intel.com/research/mrl/research/opencv/
http://www.intel.com/software/products/perflib/
http://www.intel.com/software/products/perflib/
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optionally installed, OpenCV will automatically take 
advantage of and swap in the hand optimized routines in 
IPP providing a substantial speed-up to many vision 
routines.  

In this paper, we describe computer vision routines based 
on learning. Learning-based vision has applications to 
image-based Web mining, image retrieval, video indexing, 
security, etc. OpenCV has strong and growing support for 
learning-based vision. We start out, however, by first 
discussing a recent change to OpenCV, full IPP support, 
and then move on to discuss two learning applications. 
We begin by describing automatic optimization of 
OpenCV using IPP and then we discuss using OpenCV for 
learned object finding and tracking (face), and end with 
abstract pattern segmentation (road finding).  

AUTOMATIC OPTIMIZATION USING 
INTEGRATED PERFORMANCE 
PRIMITIVES 

How to Make Use of IPP 
Intel Integrated Performance Primitives (IPP) library is a 
large collection of low-level computational kernels highly 
optimized for Intel architectures, including the latest 
Pentium®, Itanium®, and XScale® processors. It consists 
of multiple domains that reside in separate dynamic 
libraries: signal and image processing, matrix processing, 
audio and video codecs, computer vision, speech 
recognition, cryptography, data compression, text 
processing, etc. It can be retrieved from 
http://www.intel.com/software/products/ipp [2]; full 
evaluation versions for Windows∗  and Linux∗ , and a free 
non-commercial version for Linux are available.  

OpenCV is able to automatically detect and use the IPP 
library once the latter is installed; there is no need to 
recompile it. On Windows, make sure that the bin 
subdirectory of IPP is in the system path, for example, if 
IPP is installed to “C:\Program 
Files\Intel\IPP”, add “C:\Program 
Files\Intel\IPP\bin” to the path. On Linux the 
IPP dynamic libraries should be already in one of the 
standard paths after installation. 

To check whether OpenCV has found IPP or not, the user 
application may call the cvGetModuleInfo() 
function: 

                                                           
® Pentium, Itanium, and XScale are all registered 
trademarks of Intel Corporation or its subsidiaries in the 
United States and other countries. 
∗  All other brands and names are the property of their 
respective owners. 

 

const char* opencv_libraries = 0; 

const char* addon_modules = 0; 

cvGetModuleInfo( 0, &opencv_libraries, 

                 &addon_modules ); 

printf( “OpenCV: %s\nAdd-on Modules: %s\n”, 

         opencv_libraries, addon_modules ); 

When IPP is detected, it will print something like this: 

OpenCV: cxcore: beta 4.1 (0.9.7), cv: beta 4.1 
(0.9.7) 

Add-on modules: ippcv20.dll, ippi20.dll, 
ipps20.dll, ippvm20.dll 

where ipp*.dll are names of IPP components, used by 
OpenCV: ippcv – computer vision, ippi – image 
processing, ipps – signal processing, ippvm – fast math 
functions. 

Note that the functions in ippi20.dll and the other ‘20’ 
libraries do not contain the processing functions 
themselves. They are proxies for CPU-specific libraries 
(ippia6.dll, ippiw7.dll etc. for IPPI) that are loaded by the 
IPP dispatcher. The dispatcher mechanism and other 
concepts behind IPP are explained in detail in the IPP 
book [3]. 

How Automatic Use of Optimized IPP Works 
The mechanism to swap in optimized code if found is 
simple. It uses function pointers and dynamic library-
loading facilities provided by the operating system (OS). 
For every IPP function that OpenCV can use there is a 
pointer to a function that is initially set to null and which 
is assigned to a valid address when the corresponding IPP 
component is detected and loaded. So, while OpenCV can 
benefit from using IPP, it does not depend on it; the 
functionality is the same, regardless of whether IPP is 
installed or not. That is, for every IPP function there is a 
backup C code that is always included inside OpenCV 
binaries. So, a higher-level external OpenCV function 
loads a function pointer that calls either optimized IPP 
code or embedded low-level OpenCV C code depending 
on which is available. 

Let’s consider an example. The function cvPyrDown 
reduces image size down one level by employing 
Gaussian smoothing and sub-sampling. Smoothing is 
preformed prior to sub-sampling so that spurious 
frequencies are not introduced due to violations of the 
Nyquist sampling theorem. cvPyrDown supports multiple 
image types via several lower-level functions. In 
particular, 8-bit single-channel images are processed with 
icvPyrDownG5x5_8u_CnR. The corresponding IPP 
function for this type of images is 
ippiPyrDown_Gauss5x5_8u_C1R. 

http://www.intel.com/software/products/ipp
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So we have the following code (simplified compared to 
the actual implementation): 

// --- cvpyramids.cpp: --- 

// declaration of the function type. 

// Matches to the declaration in IPP header 
files 

typedef int (CV_STDCALL * 
icvPyrDown_Gauss5x5_8u_C1R_t)( const uchar* src, 
int src_step, uchar* dst, int dst_step, CvSize 
size, void* buffer ); 

// pointer to the IPP function 

icvPyrDown_Gauss5x5_8u_C1R_t 

icvPyrDown_Gauss5x5_8u_C1R_p = 0; 

 

// C implementation, embedded in OpenCV 

static int icvPyrDownG5x5_8u_CnR( 

    const uchar* src, int src_step, 

    uchar* dst, int dst_step, CvSize size, 

    void* buffer, int cn ) 

{ 

   … 

   return CV_OK; 

} 

 

// external high-level function  

void cvPyrDown( const CvArr* src_arr, 

                CvArr* dst_arr, 

                int filter ) 

{ 

    … 

    if( data_type == CV_8UC1 ) { 

        if( icvPyrDown_Gauss5x5_8u_C1R_p ) 

            icvPyrDown_Gauss5x5_8u_C1R_p(…); 

        else 

            icvPyrDownG5x5_8u_CnR(…,1); 

    } 

    … 

} 

 

Also, the function pointer and the related information are 
stored to the joint table that is used by the OpenCV 
initialization procedure (a.k.a. switcher). 

//cvswitcher.cpp: 

… 

{ (void**)&icvPyrDown_Gauss5x5_8u_C1R_p, 0, 

  “ippiPyrDown_Gauss5x5_8u_C1R”, 
CV_PLUGINS1(CV_PLUGIN_IPPI), 0 }, 

… 

That is, each entry of the table contains a pointer to the 
function pointer (so that the address could be changed by 
the switcher), the real function name, and the id of the 
module that contains the function (IPPI ~ “ippi20.dll” in 
this case). On start-up, the OpenCV initialization 
procedure tries to locate and load IPP modules: 

… 

plugins[CV_PLUGIN_IPPI].handle = 

    LoadLibrary(“ippi20.dll”); 

and retrieve the function pointers: 

for(…;…;…) { 

   void* handle = 
plugins[func_table[i].plugin_id].handle; 

   const char* fname=func_table[i].func_names; 

   if( handle ) 

      *func_table[i].func_addr = 

    GetProcAddress( handle, fname ); 

} 

(on Linux dlopen is used instead of LoadLibrary 
and dlsym instead of GetProcAddress). 

 

Functionality Coverage 
Currently, OpenCV knows of and can use over 300 IPP 
functions. Below is a table of the major functions and the 
approximate speed-up (on a Pentium 4 processor) that a 
user could get by on using IPP. Note that the wide range 
of speed-up numbers in the table results from different 
potential image types. Byte images are faster to process 
than integer images which are faster than floating, for 
example. Another timing difference results from different 
kernel sizes. Small kernels are faster than large kernels, 
and some common kernels are “hard wired”–hand 
optimized.  
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Table 1: Approximate speed-ups using assembly 
optimized IPP over the embedded optimized C in 

OpenCV 

Function Speed-up range 
(OpenCV/IPP exec. time) 

Gaussian Pyramids ~3 

Morphology ~3-7 

Median filter ~2.1-18 

Linear convolution (with a 
small kernel) 

~2-8 

Template Matching ~1.5-4 

Color Conversion (RGB 
to/from Grayscale, HSV, 
Luv) 

~1-3 

Image moments ~1.5-3 

Distance transform ~1.5-2 

Image affine and 
perspective 
transformations 

~1-4 

Corner detection ~1.8 

DFT/FFT/DCT ~1.5-3 

Math functions (exp, log, 
sin, cos …) 

3-10 

 

In OpenCV 1.0, support for more IPP functions, such as 
face detection and optical flow, will be added. 

FACE DETECTION 

Introduction/Theory 
Object detection, and in particular, face detection is an 
important element of various computer vision areas, such 
as image retrieval, shot detection, video surveillance, etc. 
The goal is to find an object of a pre-defined class in a 
static image or video frame. Sometimes this task can be 
accomplished by extracting certain image features, such as 
edges, color regions, textures, contours, etc. and then 
using some heuristics to find configurations and/or 
combinations of those features specific to the object of 
interest. But for complex objects, such as human faces, it 
is hard to find features and heuristics that will handle the 
huge variety of instances of the object class (e.g., faces 
may be slightly rotated in all three directions; some people 
wear glasses; some have moustaches or beards; often one 
half of the face is in the light and the other is shadow, 

etc.). For such objects, a statistical model (classifier) may 
be trained instead and then used to detect the objects.  

Statistical model-based training takes multiple instances of 
the object class of interest, or “positive” samples, and 
multiple “negative” samples, i.e., images that do not 
contain objects of interest. Positive and negative samples 
together make a training set. During training, different 
features are extracted from the training samples and 
distinctive features that can be used to classify the object 
are selected. This information is “compressed” into the 
statistical model parameters. If the trained classifier does 
not detect an object (misses the object) or mistakenly 
detects the absent object (i.e., gives a false alarm), it is 
easy to make an adjustment by adding the corresponding 
positive or negative samples to the training set. 

OpenCV uses such a statistical approach for object 
detection, an approach originally developed by Viola and 
Jones [4] and then analyzed and extended by Lienhart [5, 
6]. This method uses simple Haar-like features (so called 
because they are computed similar to the coefficients in 
Haar wavelet transforms) and a cascade of boosted tree 
classifiers as a statistical model. In [4] and in OpenCV 
this method is tuned and primarily used for face detection. 
Therefore, we discuss face detection below, but a 
classifier for an arbitrary object class can be trained and 
used in exactly the same way. 

The classifier is trained on images of fixed size (Viola 
uses 24x24 training images for face detection), and 
detection is done by sliding a search window of that size 
through the image and checking whether an image region 
at a certain location “looks like a face” or not. To detect 
faces of different size it is possible to scale the image, but 
the classifier has the ability to “scale” as well. 

Fundamental to the whole approach are Haar-like features 
and a large set of very simple “weak” classifiers that use a 
single feature to classify the image region as face or non-
face.  

Each feature is described by the template (shape of the 
feature), its coordinate relative to the search window 
origin and the size (scale factor) of the feature. In [3], 
eight different templates were used, and in [5, 6] the set 
was extended to 14 templates, as shown in Figure 1.  
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Figure 1: Extended set of Haar-like features 

Each feature consists of two or three joined “black” and 
“white” rectangles, either up-right or rotated by 45°. The 
Haar feature’s value is calculated as a weighted sum of 
two components: The pixel sum over the black rectangle 
and the sum over the whole feature area (all black and 
white rectangles). The weights of these two components 
are of opposite signs and for normalization, their absolute 
values are inversely proportional to the areas: for 
example, the black feature 3(a) in Figure 1 has weightblack 

= -9×weightwhole. 

In real classifiers, hundreds of features are used, so direct 
computation of pixel sums over multiple small rectangles 
would make the detection very slow. But Viola [4] 
introduced an elegant method to compute the sums very 
fast. First, an integral image, Summed Area Table (SAT), 
is computed over the whole image I, where 
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The pixel sum over a rectangle r={(x,y),x0≤x<x0+w, 
y0≤y<y0+h} can then be computed using SAT by using just 
the corners of the rectangle regardless of size: 

RecSum(r)=SAT(x0+w, y0+h)−SAT(x0+w, y0)− 

SAT(x0, y0+h)+SAT(x0, y0) 

This is for up-right rectangles. For rotated rectangles, a 
separate “rotated” integral image must be used. 

The computed feature value xi=wi,0RecSum(ri,0)+ 
wi,1RecSum(ri,1) is then used as input to a very simple 
decision tree classifier that usually has just two terminal 
nodes, that is: 
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where the response +1 means the face, and −1 – means the 
non-face. Every such classifier, called a weak classifier, is 
not able to detect a face; rather, it reacts to some simple 
feature in the image that may relate to the face. For 
example, in many face images eyes are darker than the 
surrounding regions, and so feature 3a in Figure 1, 
centered at one of the eyes and properly scaled, will likely 
give a large response (assuming that weightblack<0). 

In the next step, a complex and robust classifier is built 
out of multiple weak classifiers using a procedure called 
boosting, introduced by Freund and Schapire [7].  

The boosted classifier is built iteratively as a weighted 
sum of weak classifiers: 

)( 2211 nn fcfcfcsignF +++= K  

On each iteration, a new weak classifier fi is trained and 
added to the sum. The smaller the error fi gives on the 
training set, the larger is the coefficient ci that is assigned 
to it. The weight of all the training samples is then 
updated, so that on the next iteration the role of those 
samples that are misclassified by the already built F are 
emphasized. It is proven in [7] that if fi is even slightly 
more selective than just a random guess, then F can 
achieve an arbitrarily high (<1) hit rate and an arbitrarily 
small (>0) false alarm rate, if the number of weak 
classifiers in the sum (ensemble) is large enough. 
However, in practice, that would require a very large 
training set as well as a very large number of weak 
classifiers, resulting in a slow processing speed. 

Instead, Viola [4] suggests building several boosted 
classifiers Fk with constantly increasing complexity and 
chaining them into a cascade with the simpler classifiers 
going first. During the detection stage, the current search 
window is analyzed subsequently by each of the Fk 
classifiers that may reject it or let it go through, as 
depicted in Figure 2. 

 

Figure 1: Object (face) detection cascade of classifiers 
where rejection can happen at any stage 

F1 FN F2 

Search 
Window 

Not a Face 

Face
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That is, Fk (k=1..N)’s are subsequently applied to the face 
candidate until it gets rejected by one of them or until it 
passes them all. In experiments, about 70-80% of 
candidates are rejected in the first two stages that use the 
simplest features (about 10 weak classifiers each), so this 
technique speeds up detection greatly. Most of the 
detection time, therefore, is spent on real faces. Another 
advantage is that each of the stages need not be perfect; in 
fact, the stages are usually biased toward higher hit-rates 
rather than towards small false-alarm rates. By choosing 
the desired hit-rate and false-alarm rate at every stage and 
by choosing the number of stages accurately, it is possible 
to achieve very good detection performance. For example, 
if each of the stages gives a 0.999 hit-rate and a 0.5 false-
alarm rate, then by stacking 20 stages into a cascade, we 
will be able to get a hit-rate of 0.99920=0.98 and a false-
alarm rate of 0.520~10-6! 

Face Detection with OpenCV 
OpenCV provides low-level and high-level APIs for 
face/object detection. A low-level API allows users to 
check an individual location within the image by using the 
classifier cascade to find whether it contains a face or not. 
Helper functions calculate integral images and scale the 
cascade to a different face size (by scaling the coordinates 
of all rectangles of Haar-like features) etc. Alternatively, 
the higher-level function cvDetectObjects does this 
all automatically, and it is enough in most cases. Below is 
a sample of how to use this function to detect faces in a 
specified image: 

// usage: facedetect –-cascade=<path> image_name 
#include "cv.h" 
#include "highgui.h" 
#include <string.h> 
 
int main( int argc, char** argv ) 
{ 
    CvHaarClassifierCascade* cascade; 
     
    // face sequence will reside in the storage 
    CvMemStorage* storage=cvCreateMemStorage(0); 
    IplImage *image; 
    CvSeq* faces; 
    int optlen = strlen("--cascade="); 
    int i; 
 
    if( argc != 3 || 
        strncmp(argv[1], "--cascade=", optlen) ) 
        return -1; 
     
    // load classifier cascade from XML file 
    cascade = (CvHaarClassifierCascade*) 
        cvLoad( argv[1] + optlen ); 
    // load image from the specified file 
    image = cvLoadImage( argv[2], 1 ); 
 
    if( !cascade || !image ) 
        return -1; 
 
     
// get the sequence of face rectangles 
faces = cvHaarDetectObjects( image, 
          cascade, storage, 

          1.2, // scale the cascade 
               // by 20% after each pass 
          2, // groups of 3 (2+1) or more 
neighbor face rectangles are joined into a 
single “face”, smaller groups are rejected 
          CV_HAAR_DO_CANNY_PRUNING, // use Canny 
edge detector to reduce number of false alarms 
          cvSize(0, 0) // start from the minimum 
face size allowed by the particular classifier 
    ); 
     
    // for each face draw the bounding rectangle 
    for(i=0;i<(faces ? faces->total:0); i++ ) { 
        CvRect* r = (CvRect*) 
             cvGetSeqElem( faces, i ); 
        CvPoint pt1 = { r->x, r->y }; 
        CvPoint pt2 = { r->x + r->width, 
                        r->y + r->height }; 
        cvRectangle( image, pt1, pt2, 
                     CV_RGB(255,0,0), 3, 8, 0 ); 
    } 
     
    // create window and show the image with 
outlined faces 
    cvNamedWindow( "faces", 1 ); 
    cvShowImage( "faces", image ); 
    cvWaitKey(); 
    // after a key pressed, release data 
    cvReleaseImage( &image ); 
    cvReleaseHaarClassifierCascade( &cascade ); 
    cvReleaseMemStorage( &storage ); 
    return 0; 
} 

 

If the above program is built as facedetect.exe, it may be 
invoked as (type it in a single line): 

facedetect.exe –-cascade=”c:\program 
files\opencv\data\haarcascades\haarcascade_
frontalface_default.xml” ”c:\program 
files\opencv\samples\c\lena.jpg” 

assuming that OpenCV is installed in c:\program 
files\opencv. Figure 3 shows example results of using a 
trained face detection model that ships with OpenCV. 

 

Figure 3: Results of a trained face detection model 
that ships with OpenCV.  All faces were detected, one 

false positive detection resulted. 
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A detailed description of object detection functions can be 
found in the OpenCV reference manual 
(opencvref_cv.htm, Object Detection section).  

Training the Classifier Cascade 
Once there is a trained classifier cascade stored in an 
XML file, it can be easily loaded using the cvLoad 
function and then used by cvHaarDetectObjects or 
by low-level object detection functions. The question 
remains as to how to create such a classifier, if/when the 
standard cascades shipped with OpenCV fail on some 
images or one wants to detect some different object 
classes, like eyes, cars, etc. OpenCV includes a 
haartraining application that creates a classifier 
given a training set of positive and negative samples. The 
usage scheme is the following (for more details, refer to 
the haartraining reference manual supplied with OpenCV): 

1. Collect a database of positive samples. Put them into 
one or more directories and create an index file that 
has the following format: 

filename_1 count_1 x11 y11 w11 h11 x12 y12 … 

filename_2 count_2 x21 y21 w21 h21 x22 y22 … 

… 

That is, each line starts with a file name (including 
subdirectories) of an image followed by the number 
of objects in it and bounding rectangles for every 
object (x and y coordinates of top-left corner, width 
and height in pixels). For example, if a database of 
eyes resides in a directory eyes_base, the index file 
eyes.idx may look like this: 

eyes_base/eye_000.jpg 2 30 100 15 10 
55 100 15 10 

eyes_base/eye_001.jpg 4 15 20 10 6 30 20 
10 6 … 

… 

Notice that the performance of a trained classifier 
strongly depends on the quality of the database used. 
For example, for face detection, faces need to be 
aligned so that the relative locations of eyes–the most 
distinctive features–are the same. The eyes need to be 
on the same horizontal level (i.e., faces are properly 
rotated) etc. Another example is the detection of 
profile faces. These are non-symmetric, and it is 
reasonable to train the classifier only on right profiles 
(so that variance inside the object class is smaller) 
and at the detection stage to run it twice–once on the 
original images and a second time on the flipped 
images. 

2. Build a vec-file out of the positive samples using the 
createsamples utility. While the training 

procedure might be repeated many times with 
different parameters, the same vec-file may be re-
used. 

Example: 

createsamples –vec eyes.vec \ 

–info eyes.idx –w 20 –h 15 

The above builds eyes.vec out of the database, 
described in eyes.idx (see above): all the positive 
samples are extracted from images, normalized and 
resized to the same size (20x15 in this case).  
createsamples can also creates a vec file out of a 
single positive sample (e.g., some company logo) by 
applying different geometrical transformations, 
adding noise, altering colors, etc. See haartraining in 
the OpenCV reference html manual for details. 

3. Collect a database of negative samples. Make sure the 
database does not contain instances of the object class 
of interest. You can make negative samples out of 
arbitrary images, for example. They can be 
downloaded from the Internet, bought on CD, or shot 
by your digital camera. Put the images into one or 
more directories, and make an index file: that is, a 
plain list of image filenames, one per line. For 
example, an image index file called 
“backgrounds.idx” might contain: 

backgrounds/img0001.jpg 

backgrounds/my_img_02.bmp 

backgrounds/the_sea_picture.jpg 

… 

4. Run haartraining. Below is an example (type it in 
command-line prompt as a single line or create a 
batch file): 

haartraining 

–data eyes_classifier_take_1 

-vec eyes.vec –w 20 –h 15 

-bg backgrounds.idx 

-nstages 15 

-nsplits 1 

[-nonsym] 

-minhitrate 0.995 

-maxfalsealarm 0.5 

In this example, a classifier will be stored in 
eyes_classifier_take1.xml. eyes.vec is used as a set of 
positive samples (of size 20x15), and random images from 
background.idx are used as negative samples. The cascade 
will consist of 15 (-nstages) stages; every stage is trained 
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to have the specified hit-rate (-minhitrate) or higher, and a 
false-alarm rate (-maxfalsealarm) or lower. Every weak 
classifier will have just 1 (-nsplits) non-terminal node (1 
split trees are called “stumps”). 

The training procedure may take several hours to 
complete even on a fast machine. The main reason is that 
there are quite a lot of different Haar features within the 
search window that need to be tried. However, this is 
essentially a parallel algorithm and it can benefit (and 
does benefit) from SMP-aware implementations. 
Haartraining supports OpenMP via the Intel Compiler and 
this parallel version is shipped with OpenCV. 

We discussed use of an object detection/recognition 
algorithm built into OpenCV. In the next section, we 
discuss using OpenCV functions to recognize abstract 
objects such as roads. 

ROAD SEGMENTATION 
The Intel OpenCV library has been used for the vision 
system of an autonomous robot. This robot is built from a 
commercial off-road vehicle and the vision system is used 
to detect and follow roads. In this system, the problem was 
to use a close-by road, identified by scanning laser range 
finders to initialize vision algorithms that can extend the 
initial road segmentation out as far as possible. The roads 
in question were not limited to marked and paved streets; 
they were typically rocky trails, fire roads, and other poor 
quality dirt trails. Figure 4 shows “easy” and “hard” roads.  

 

 

Figure 4: Example roads: a less difficult power-line 
access road (top) and a more difficult “off-road” trail 

(bottom) 

Based on laser scanner point clouds in the near field, it 
was possible to estimate what sections of nearby visible 
terrain might be road. In this case, “near” is approximately 
ten meters (varying by terrain type and other ambient 
conditions). Once projected into the visual camera images, 
this region could then be used to train a classifier that 
would extrapolate out beyond the range of the lasers into 
the far visual field. In many cases the method is successful 
at extrapolating the road all of the way to the horizon. 
This amounts to a practical range of as much as one 
hundred meters. The ability to see into the visual far field 
is crucial for path planning for high-speed operation. 

 

Figure 5: Overview of data flow 

The core algorithm outlined in Figure 5 is as follows. 
First, the flat terrain that the lasers find immediately in 
front of the vehicle is converted to a single polygon and 
projected into the camera co-ordinates. Shadow regions 
are marked out of consideration as shown in Figure 6. The 
projected polygon represents our best starting guess for 
determining what pixels in the overall image contribute to 
road. It is of course possible that there is no road at all. 
The method is to extrapolate out to find the largest patch 
to which we can extend what the lasers have given us, and 
only thereafter to ask if that patch might be a road. This 
final determination will be made based on the shape of the 
area found. Only a relatively small set of shapes can 
correspond to a physical road of approximately constant 
width, disappearing into the distance. 

Incoming Color Image Incoming Laser Data

Compute Candidate PolygonShadow Removal

Kmeans, Learn Gaussian Model 

Categorize All Points 

Adapting Threshold 

Candidate Selection 

Model Based Validation 
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Figure 6: Starting with the bottom image of Figure 4, 
shadows are eliminated–blacked out– (top), and the 
polygon is projected from the laser data (bottom) 

The red, green, blue (RGB) values of the individual pixels 
in the marked polygon are used as features to describe 
individual pixels in the marked region (giving a total of 
three dimensions). These pixels are kept in a FIFO 
circular buffer of sufficient depth to hold pixels from 
many frames. At every frame the OpenCV function 
cvKMeans2 is called with settings to find three clusters. 
These clusters are modeled with three multivariate 
Gaussian models trained from the pixel density 
distribution in the 3-dimensional color space. This 
algorithm achieves the same results as fitting three 
multivariate Gaussians using expectation maximization, 
but is faster and takes advantage of the built in 
cvKMeans2 in OpenCV. Three clusters are used because 
empirically it was found that ruts and rocks in the road 
tend to give dirt roads a tri-tonal color profile.  

After generating the above model, we then use it to score 
the remaining pixels in the scene by using the OpenCV 
function cvMahalanobis to find the minimum 
Mahalanobis distance Rm from the candidate pixel to the 
means of the three learned multi-modal Gaussian 
distributions. Pixels for which Rm is less than 1 are 
assigned a score of 1.0; those for which Rm is greater than 
1 are given a score of 1/Rm. The resulting “image” 
contains a kind of confidence score for every pixel being 

road or not. This scoring is essentially equivalent to a log-
likelihood score for a pixel being in the road distribution, 
but again is fast and convenient to compute using 
cvMahalanobis.  

 

Figure 7: Probability map based on individual pixel’s 
distance from the model mean (top), and image with 

low probability pixels removed (bottom). In the 
thresholded bottom image, the threshold is set so as to 
keep constant the proportion of non-zero pixels in the 

original 

This method does not guarantee that all pixels in the 
polygon training area will be scored as road. OpenCV 
function cvThreshold is used adaptively such that no less 
than 80% of the pixels in the training area are retained 
after the threshold is applied, as shown in Figure 7. A 
morphological function cvDilate is then applied with the 
result that the identified pixels can be clustered into large 
connected regions. As we are only interested in 
extrapolating the already identified space found by the 
lasers, clusters are next rejected if they do not connect 
with the polygonal training area cluster. The retained 
clusters are then used to mask the original confidence 
image. This process is illustrated in Figure 8. 
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Figure 8: Starting with the thresholded image (top), 
the contiguous patch that intersects the training 

polygon is identified (middle) and clipped from the 
original probability map (bottom) 

Finally, in Figure 9, the resulting clusters are compared 
with the expected shape of a road projected into the 
camera coordinates. This is done by fitting the right and 
left sides of the cluster(s) to individual lines, and by 
computing an effective horizon which is the location of 
the highest identified road pixel. If these fits are 
sufficiently good, the fit lines intersect at the horizon, and 
the angles of the lines are consistent with the projection of 
a road into the camera coordinates, then the system reports 

the confidence image. This image, once projected into 
ground-based coordinates, is used to mark the road ahead 
for the subsequent path-planning operations. 

By building this model, it is possible to reject anomalies 
that might arise from dirt, facing into the sun, reflections, 
and other sources. Such anomalies are not uncommon, and 
the ability to build a geometrically possible model and 
then score that model allows the system to report correctly 
when the found pixels are something other than a road. In 
some cases this occurs when no road is present at all, and 
the lasers find only a smooth patch of ground that is not 
part of an actual road. In three hours of test video varying 
widely over many terrain types containing both road and 
no road, the algorithm was not seen to give a false positive 
signal. 
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Figure 9: Starting with the clipped probability map 
(one), the image is first blurred (two), and the edges 

are fit to straight lines (three).  Combining these lines 
with the effective horizon, a model for the road is 
constructed (four).  A confidence score is assigned 

based on the number of pixels correctly classified by 
the implied road structure (four). 

The algorithm presented has been tested against terrain 
types of widely varying difficulty. All of the images 
shown here were from a 320x240 camera image, and they 
were capable of being generated at ten frames per second 
on a computer based on the 1.7 GHz Mobile Intel Pentium 
4 processor – M that was selected for its low-power 
requirements in the robot. For roads that are well defined, 
flat, and have a relatively uniform surface texture, the 
method allows extrapolation of the entire road to the 
horizon. 

DISCUSSION 
We started out describing recent developments with the 
OpenCV library [1] that allow it to be automatically 
optimized by using OpenCV with the IPP libraries [2], 
and we described how automatic optimization works 
through the cvswitcher function. To recap, the switcher is 
given a table of function identifiers and pointers to those 
functions. During launch, the switcher looks for the 
appropriate optimized IPP code for the machine it is 
running on and swaps in the address of those functions if 
the correct IPP module is found. Otherwise it retains the 
embedded optimized C functions. Because the source 
code for the switcher is available in the file 
cvswitcher.cpp, one may also override this functionality 
with custom functionality–by pointing it to one’s own 
functions or alternate functions, depending on the 
processor used. 

We then focused on a small part of OpenCV’s support for 
learning-based vision. The Haar-feature-based boosted 
classifier cascade, based on the work of Viola and others 
[4, 5, 6] that is directly implemented in OpenCV, was 
described. When you download OpenCV, this classifier 
comes with a file that is trained to recognize faces and 

may be run by building and running the facedetect.c code 
that comes in the samples directory, which will normally 
be placed in C:\Program Files\OpenCV\samples\c on 
Windows machines when you install OpenCV. The 
procedure for using your own data to train a classifier 
cascade to recognize any object was then described. Using 
this, one can create tree, car, cat, or person detectors.   

Note that one may make the classifier more flexible by 
using instead of, or in addition to, learning features from 
raw images; image processing can be used to enhance or 
pre-select images of features such as gradient magnitudes 
to be learned. This can help reduce lighting sensitivity, for 
example.  

We then shifted gears to describe a project aimed at 
detecting and segmenting an abstract object–a road. This 
involved using laser range data to identify a polygon of a 
nearby road to use as a seed for learning and modeling 
clusters of road-colored pixels. This learned model was 
then used to segment the road beyond the range of the 
laser range finders. This is essentially a local model of 
what pixels “look” like road. Global geometric constraints 
are then used to only accept road segmentations that in 
fact look like the shape of a road as in Figure 9 bottom. 
The segmented road pixels are then projected along with 
the laser data into a bird’s eye view 2D path planner. 
Vision significantly extends the range of road detection 
out from the lasers and so allows the robot to travel at 
much higher speeds. Using the local and global constraints 
together, false positive road identification was completely 
eliminated. 

In the above, we just touched on the learning-based vision 
possibilities of OpenCV. Many other techniques are 
supported. For example OpenCV contains methods for 
gathering and matching histograms of image features; 
learning the means and variances of pixels over a moving 
window of time; Kalman and Particle (“Condensation”) 
filters for tracking, and data that can be clustered or 
tracked with the Meanshift or CAMShift [8] algorithms. 
In Release version 1.0 several more machine-learning 
algorithms for computer vision should become available 
such as convolutional neural networks, general back 
propagation, general decision trees, several methods of 
statistical boosting, and random forests. These new 
algorithms will enable powerful approaches to learning-
based vision. 

CONCLUSION 
Computer vision, unlike for example factory machine 
vision, happens in unconstrained environments, 
potentially with changing cameras and changing lighting 
and camera views. Also, some “objects” such as roads, 
rivers, bushes, etc. are just difficult to describe. In these 
situations, engineering a model a-priori can be difficult. 
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With learning-based vision, one just “points” the 
algorithm at the data and useful models for detection, 
segmentation, and identification can often be formed.  
Learning can often easily fuse or incorporate other sensing 
modalities such as sound, vibration, or heat.  Since 
cameras and sensors are becoming cheap and powerful 
and learning algorithms have a vast appetite for 
computational threads, Intel is very interested in enabling 
geometric and learning-based vision routines in its 
OpenCV library since such routines are vast consumers of 
computational power. 
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ABSTRACT 

Data mining is the extraction of hidden predictive 
information from large data bases. Emerging data-
mining applications are important factors to drive the 
architecture of future microprocessors. This paper 
analyzes the performance scalability on parallel 
architectures of such applications to understand how to 
best architect the next generation of microprocessors that 
will have many CPU cores on chip. 

Bioinformatics is one of the most active research areas in 
computer science, and it relies heavily on many types of 
data-mining techniques. In this paper, we report on the 
performance scalability analysis of six bioinformatics 
applications on a 16-way SMP based on Intel  Xeon™ 
microprocessor system. These applications are very 
compute intensive, and they manipulate very large data 
sets; many of them are freely accessible. Bioinformatics 
is a good proxy for workload analysis of general data-
mining applications. Our experiments show that these 
applications exhibit good parallel behaviors after some 
algorithm-level reformulations, or careful parallelism 
selection. Most of them scale well with increased 
numbers of processors, with a speed-up of up to 14.4X 
on 16 processors.  

                                                           
  Intel and Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United 
States and other countries. 

We start with an introduction to data mining. The data-
mining techniques studied are briefly described, and the 
selected workloads using these techniques are listed. We 
then provide a brief description of the methodology used 
for the studies. We present the scalability analysis of 
three workloads related to Bayesian Network (BN) 
structure, two workloads relevant to recognition, and one 
workload related to optimization. We conclude with the 
key lessons of the study. These workloads are compute 
intensive and data parallel. They manipulate large 
amounts of data that stress the cache hierarchy. 
Techniques optimizing the use of caches are key to 
ensure performance scalability of these workloads on 
parallel architectures. 

DATA MINING: A DEFINITION 
Databases today can hold terabytes of data that hide a lot 
of information. Data mining is the technology that draws 
meaningful conclusions, extracts knowledge, and 
acquires models from these data. 

The potential returns of data mining are large. Innovative 
organizations worldwide use it to locate and appeal to 
higher-value customers, to reconfigure their product 
offerings to increase sales, and to minimize losses due to 
error or fraud. Data mining has been widely used in 
various domains such as retail, telecommunication, 
medical diagnosis, and financial services.  
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Bioinformatics Application Classification 
Broadly speaking, bioinformatics is the recording, 
annotation, storage, analysis, and search/retrieval of 
nucleic acid sequences (genes and RNAs), protein 
sequences, and structural information. Currently, 
bioinformatics mainly includes databases of sequences 
and structural information, as well as methods to access, 
search, analyze, visualize, and retrieve the information. 
Bioinformatics applications can be categorized as 
follows:  

•  Sequencing: gene sequence assembly  

•  Sequence alignment and search: pair-wise and 
multiple sequence alignment, database search.  

•  Sequence analysis: gene finding, Single Nucleotide 
Polymorphisms (SNP) pattern analysis, etc.  

•  Structure analysis and structural genomics: protein 
secondary/tertiary structure prediction, protein 
folding. 

•  Comparative genomics: whole genome alignment, 
phylogenetic tree reconstruction.  

•  Functional genomics/proteomics and system 
biology: function prediction of non-coding 
sequences, gene expression clustering, and gene 
regulatory networks.   

•  Clinical field (gene expression classification, etc.) 

Bioinformatics relies heavily on many types of data-
mining techniques. For the purposes of our study, we 
describe several categories of data-mining techniques, 
and corresponding workloads. 

DATA-MINING TECHNIQUES STUDIED 
Data mining uses a variety of data analysis tools to 
discover patterns and relationships in data that may be 
used to make valid predictions. It takes advantage of 
advances in the fields of Artificial Intelligence (AI) and 
statistics. Algorithms that are employed in many areas 
such as pattern recognition, machine learning, decision-
making support, and statistical modeling can be used in 

data mining. Following, we briefly introduce some of the 
techniques and algorithms. 

Bayesian Networks 
A Bayesian Network (BN) is a probabilistic model that 
encodes probabilistic relationships between variables of 
interest. Over the last decade or so, BNs have been 
widely used in statistics, machine learning, pattern 
recognition, engineering, diagnostics, decision making, 
and so on.  

Learning the structure of a BN from data is the most 
important task of BN applications [1]. The goal is to 
identify the statistic relationship between variables, and 
usually at the same time the conditional probability 
distribution of each variable can also be determined. BN 
structure learning has become an active research area in 
recent years [2, 3, 4]. 

The most popular approach to structure learning is to 
turn it into an optimization exercise. We first introduced 
a scoring function to evaluate the network with respect 
to the training data and to output a value that reflects 
how well the network scores, relative to the available 
data. We then search through possible network structures 
for the best scored network and take this as the network 
learned from the data. In general, the search problem is 
NP-hard [5]. Most algorithms use heuristic search 
methods, such as the Markov Chain Monte Carlo 
(MCMC) sampling [1, 6], K2 [1], simulated annealing 
[2], etc., of which the greedy hill-climbing algorithm is 
the most efficient and popular approach.  

We have studied three applications using BNs: SNPs [7], 
GeneNet [8], and SEMPHY [10]. All are a variation on 
the hill-climbing concept. In SNPs and GeneNet 
applications, all the training data are observed (i.e., there 
are no missing data), and a standard hill-climbing search 
algorithm is employed. In a SEMPHY application, only 
a part of the data is observed (i.e., there are some 
missing data), and the hill-climbing learning procedure is 
used with an EM parameter-learning procedure. The 
total algorithm is called a Structural EM Algorithm [11, 
12]. We look at these three applications next. 

 

Figure 1(a): An instance of the SNP sequences (the symbol * denotes the SNP site)

Workloads Studied Using Bayesian 
Networks 
SNPs are DNA sequence variations that occur when a 
single nucleotide (A, T, C, or G) is altered at certain loci 
in the genome sequence (shown in Figure 1(a)). These 

variations are major sources of individual diversity. 
Understanding the importance of the recently identified 
SNPs in human genes has become a goal of human 
genetics [13]. A common understanding of the cause of 
SNPs is nucleotide substitution. A number of studies 
have shown that the substitution process can be context 
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dependent, that is, neighboring base composition can 
influence the substitution bias at a particular site. 
Substitution patterns at polymorphic sites and bias 
patterns in nucleotides neighboring polymorphic sites 
are important for understanding molecular mechanisms 
of mutation and genome evolution [14, 15]. 

This research suggests the existence of context 
dependencies near SNP sites. However, by employing 
BN structure learning, not only the dependencies around 
the SNPs loci can be confirmed, but also the 
dependencies model and influence strength for each loci 
neighboring the SNPs, can be discovered. The task can 
be formulated as follows: each locus on the sequence 
segment is represented as a discrete random variable of 
BN, with integer value ranges from 0 to 3 (each 
corresponds to A, C, G, or T), so the possible relations 
among these loci can be represented by the BN structure. 

DNA microarray experiments measure all the genes of 
an organism, providing a “genomic” viewpoint on gene 
expression. Most of the analysis tools currently used are 
based on clustering algorithms. These algorithms 
attempt to locate groups of genes that have similar 
expression patterns over a set of experiments. A more 
ambitious goal for analysis is revealing the structure of 
the transcriptional regulation process. Thus, BN 
provides a natural approach to model the regulatory 
relationship between genes. 

By representing each gene as a variable of the BN, the 
gene expression data analysis problem can be formulated 
as a BN structure-learning problem. The GeneNet 
application uses the same serial hill-climbing algorithm 
as the SNPs problem, but its input set has different 
characteristics: for SNPs, the BN contains only tens of 
variables (<100), but a large number of training data 
(typically 50K – 500K), while in GeneNet, there are 

many variables (1K – 10K typically), but only hundreds 
of training cases. 

Unlike the previous applications on BN structure 
learning, the SEMPHY application uses the Structural 
Expectation Maximization (SEM) algorithm. SEMPHY 
differs from traditional BN applications in two aspects: it 
searches from a bifurcating tree space rather than the 
DAG space; and it can find the optimal solution based 
on missing data. 

Classification and Prediction 
To classify an object is to put it into a pre-defined class 
or category, or to assign it a label. Prediction can be 
viewed as the construction and use of a model to classify 
an unlabeled sample. Classification and prediction have 
numerous applications including credit approval, 
medical diagnosis, performance prediction, and selective 
marketing. 

For example, the Support Vector Machine (SVM) has 
been considered a state-of-the-art classification 
technique since the 1990s, and we have used it in disease 
gene finding, based on the Support Vector Machines 
Recursive Feature Elimination (SVM-RFE) method.  

Workloads Studied Using Classification 
Techniques 
SVM-RFE [17] is a feature selection method to refine 
the optimum feature set by using SVM in a wrapper 
approach (shown in Figure 1(b)). It selects or omits 
dimensions of the data, depending on a performance 
measurement of the SVM classifier. It is much more 
robust to data overfitting than other methods, including 
combinatorial search. (In SVM-RFE, the induction 
algorithm used is SVM.) 

 

Figure 1(b): Overview of wrapper method for feature selection

In bioinformatics, SVM-RFE has been used for the task of 
microarray data analysis, particularly in disease gene 
finding. It eliminates gene redundancy automatically and 
yields better and more compact gene subsets. The 

selection is obtained by a recursive feature elimination 
process: at each RFE step, a gene is discarded from the 
active variables of an SVM classification model. The 
features are eliminated according to a criterion related to 
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their support for the discrimination function, and the SVM 
is re-trained at each step.  

We now describe the second workload studied in this 
report using a classification technique: the Cocke-
Younger-Kasami (CYK) algorithm. This technique uses a 
basic parsing algorithm for any context-free language, and 
it is used in RSEARCH during an RNA secondary 
structure homolog search. RSEARCH [13] uses Stochastic 
Context-Free Grammar (SCFG) to take a single RNA 
sequence with its secondary structure, and it utilizes the 
CYK algorithm to search a database for homologous 
RNAs through local alignment. RSEARCH has better 
performance in accuracy for RNA homolog search than 
other sequence search programs, such as BLAST and 
SSEARCH, and it is also capable of finding significant 
remote RNA structure homologies.  

SCFG and its decoding algorithm CYK used in 
RSEARCH can also be applied in other areas, such as 
language modeling for speech recognition [14], language 
parsing for natural language processing [15], multitasked 
activities recognition for computer vision [16], and so on. 

Optimization 
Dynamic Programming (DP) is an approach developed to 
solve sequential, or multi-stage, decision problems. This 
approach is also applicable to decision problems where 
sequential property is induced solely for computational 
convenience. DP is widely used in combinatorial 
optimization, speech recognition, sequence alignment, 
time series data processing, etc. Even when it does not 
solve a problem completely, it can be useful as part of an 
overall approach. In particular, DP plays an important role 
in solving similarity problems of some major data-mining 
tasks, such as Association Rule Mining (ARM), similar 
time sequence mining, similar image mining, and so on. 
ARM is a matter of looking for association rules in data. 
An association rule is an expression X IMPLIES Y, where 
X and Y are sets of items. The intuitive meaning of such a 
rule is that transactions of the database that contain X tend 
to contain Y. 

Workloads Studied Using Optimization 
Techniques 
Sequence alignment is an important tool in bioinformatics, 
text, acoustic signal, and image processing. It is capable of 
identifying the similar and diverged regions between two 
sequences, e.g., biological DNA/protein sequences or text 
strings. From a biological point of view, matches may turn 
out to be similar functions, e.g., homology pairs and 
conserved regions, while mismatches may detect 
functional differences, e.g., SNP.  

With DP, Needleman and Wunsch presented the first 
global alignment algorithm in 1970 [18]. Smith and 
Waterman improved this algorithm for the local alignment 
to find the longest common substring [19] (shown in 
Figure 2). In this paper, we study an efficient Parallel 
Linear Space Alignment (PLSA) for large-scale sequence 
alignment. By introducing the novel grid cache, 
global/local start points, the algorithm reduces the re-
computations of the trace-back period dramatically, and it 
provides more parallelism than other methods do. Besides 
the algorithms mentioned above, there are many other 
techniques or algorithms that have been widely used in 
data mining, such as clustering, statistic modeling, 
association rules mining, Naïve Bayes classifiers, neural 
networks, memory-based reasoning, evolutionary 
programming, regression, decision trees, etc. 
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Figure 2: Smith Waterman sequence alignment 

SUMMARY OF APPLICATIONS STUDIED 
Table 1 summarizes the six applications studied in this 
paper. We list the type of algorithm they use, how the 
parallelism can be exploited, and we show what types of 
applications they are representative of. 

We have used applications developed in universities. For 
example, we have used SEMPHY (from the Hebrew 
University in Jerusalem) for reconstruction of 
phylogenetic trees; and RSEARCH (from Washington 
University in St. Louis) for RNA secondary structure 
homolog search. We have also developed some 
workloads. For instance, we have used a BN structured 
learning to solve the discovering of patterns in SNPs, and 
to analyze gene expression data in DNA microarrays in 
GeneNet. In PLSA, we have developed a novel large-scale 
alignment algorithm for the whole genome alignment. 

This section describes the methodology used to 
parallelize, optimize, and analyze the workloads. The first 
step is to profile the workloads to identify the hot spots. 
The Intel® VTune™ Performance Analyzer was used for 
function-level profiling, and for correlation of the 
hardware performance events with the source code.  

                                                           
® Intel and VTune are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States 
and other countries. 

Parallelization was done with the Open MP programming 
model that is well suited to exploit the data parallelism of 
these algorithms. For example, in RSEARCH, the whole 
RNA sequence database is scanned with a three-
dimensional dynamic programming algorithm. 

Generally, the query RNA sequence is far shorter than the 
sequences in the database. RSEARCH first defines a value 
“D_scale,” representing the largest ratio between the 
match part of the sequence and the query sequence. The 
database sequence is segmented into different subsets that 
overlap so that the D_scale can be a multiplier of the 
query length. The search through the different subsets can 
be done in parallel by different processors.  

The costs of synchronization, locks, and barriers were 
measured using the Intel VTune Performance Analyzer 
thread profiler for OMP applications. The experiments 
show that for most studied applications these costs are 
very low, which is expected for data-parallel applications 
with very little synchronization between threads. 

After having characterized the communication overhead, 
synchronizations (explicit or implicit), and load-balancing 
performance (dynamic or static partitioning methods), we 
measured the performance increase on up to 16 
processors, and we characterized the memory hierarchy 
behavior.  
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Table 1: Bioinformatics workloads, algorithms, applicability Workload Analysis Methodology

  

Category Workload 
 

Algorithm Parallelism Applicability 

SNPs (Single 
Nucleotide 
Polymorphisms) 

GeneNet 
(Gene 
Expression 
analysis in 
microarrays) 

Structure 
learning 
Hill-climbing 
 

Bayesian 
Network/Structure 
Learning 

SEMPHY 
 

Structural EM 

Data 
parallelism 

(instance data, 
node, tree) 

 

•  Pattern 
recognition  

•  Speech 
recognition 

•  Optimization 
•  Text mining 
•  Game 
•  Decision 

Making 

RSEARCH 
(homologous 
RNA 
sequence) 

Stochastic 
Context Free 
Grammar: 
CYK Local 
alignment 

Data base 
Segmentation 

•  Recognition 
•  Classification 
•  Prediction  
•  Speech 

recognition, 
language 
parsing 

Classification  
and Prediction 

SVM-RFE 
(Disease Gene 
Finding in 
Microarrays) 
 

SVM based  
feature 
selection 

Data blocking 
matrix/ 
vector 
multiply 

•  Pattern 
recognition 

•  Classification 
•  optimization 

Optimization PLSA 
(Parallel 
Linear Space 
Alignment) 
 

Dynamic 
Programming 

Data blocking 
Wave-front 
parallelism 

•  Pattern 
recognition, 

•  Text mining 
•  Association 

Rule Mining 
•  Combinatorial 

optimization 

To measure the performance of our workloads, we use a 
16-way SMP based on Intel Xeon microprocessor 
system interconnected with a crossbar. The configuration 
of the 16-way system is described in Table 2. The 
machine is running the SUSE ES Linux∗  operating system 
environment for all the experiments. All applications were 
compiled with the Intel Compiler v8.0, at the highest level 
of optimization. 

 

 

                                                           
∗  Other brands and names are the property of their 
respective owners. 

PERFORMANCE SCALABILITY 
ANALYSIS 
All the workloads studied in this paper use data 
parallelism, where all processors are executing the same 
code on different data. Figure 3 shows most of the 
workloads scale well with increased numbers of 
processors, and two workloads exhibit linear speed-up 
performance (SEMPHY, PLSA). 
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Table 2: Configuration of the 16-way SMP based on 
Intel  Xeon™ microprocessor system 

Processor Speed 3.0 GHz 

L1 Data Cache 8 KB, hit latency: 2 
cycles 

L2 Unified Cache 512 KB, hit latency: 
~10 cycles 

L3 Unified Cache 4 MB, hit latency: 30+ 
cycles 

L4 on-board Unified 
Cache 

32 MB, hit latency: 
300+ cycles 

Interconnection Crossbar 

System Bus Speed 400 MHz 

Front Side Bus 
Bandwidth 

3.2 GB/s 

Memory Size 8 GB, dual-channel 
DDR 400 

 

To understand the performance-limiting factors, we have 
quantified the parallelism overhead such as 
synchronizations penalties, load imbalance, and sequential 
sections. They are not significant, especially for large data 
sets typical in current, and future, data-mining workloads. 
Figure 4 shows these metrics for two selected workloads, 
where the sequential area and the load imbalance penalties 
are diminishing when the data set size increases. These 
results are typical of all the workloads studied in this 
report. Very few synchronizations are needed between 
threads, and load balancing between threads is not an 
issue. In SEMPHY, for example, computations are 
distributed in four kernels that are nested loops, with no 
dependency between loop iterations. The basic “Parallel 
For” pragma is used to parallelize these loops. In one of 
the kernels, the data decomposition is constrained by the 
relation between the number of leaves in the tree, and the 
length of the DNA or protein sequence. This creates a 
small load imbalance for small data sets. The balancing 
issue goes away for large data sets, where the constraints 
become insignificant. 

To identify the performance bottlenecks, we characterize 
the memory hierarchy behavior by measuring the cache 
miss rates and the Front Side Bus (FSB) bandwidth. In 
Figure 5, it is interesting to see that the L2 cache miss 
rates vary very little with the number of processors. The 
data sets are large enough not to fit in L2, even when 
problems are divided among 16 processors. We can 

observe SVM-RFE has very high L2 and L3 cache miss 
rates. The function profile of SVM-RFE shows that the 
SVM training is the most time-consuming kernel. It 
consists of a large number of vector-vector 
multiplications. We have used the Intel Math Kernel 
Library (MKL) for these operations to take advantage of 
its highly optimized routines. But there is no data reuse in 
vector-vector multiply operations, and this explains the 
high cache miss rates. With increasing numbers of 
processors, the shared system bus sees high memory 
traffic, resulting in high memory latencies. This limits the 
speed-up performance for the SVM-RFE workload. In the 
case of SNP, and GeneNet, the L3 miss rates are modest, 
but they increase with the number of processors, when 
there are more than four processors. These applications 
have at least one large data structure shared between the 
thread. This data structure is shared efficiently between 
four processors in the L4 cache of the 16-way system. But 
sharing is done through the main memory interconnect for 
more than four processors, and this limits the scalability of 
these workloads. 

Figure 6 shows the cache miss per instruction in L2 and 
L3 and the FSB bandwidth used by these workloads 
running a single thread. 

We have verified that these miss per instructions in L2 
and L3 remain about constant per workload as the number 
of threads increases from 1 to 16. 
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Figure 3: Performance speed-up as a function of the number of processors 

 

Figure 4: Distribution of time spent in parallel, and sequential, code 
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Figure 5: L2/L3 cache miss rates as a function of the number of processors 

Figure 6: L2 and L3 miss per instruction for the one processor case 

 

Most of these workloads are integer workloads, and they 
use very few floating-point operations. So the bandwidth 
per instruction shown in Figure 6 is in byte-per-integer 
operation. The three workloads that have the lowest L3 
miss per instruction are the ones whose performance 
scales almost linearly with the number of processors: 
SEMPHY, RSEARCH, and PLSA. The high miss per 

instruction in both L2, and L3 in SVM-RFE, has already 
been explained by the vector-vector multiply operations 
used most of the time in SVM-RFE, and the fact that there 
is no data reuse. Note that the Intel Xeon processor 
prefetchers are highly effective for such operations 
working on contiguous data, and they explain why the L3 
miss per instruction is not higher than it is. For SNP and 

L3 cache miss rates

0%

5%

10%

15%

20%

25%

30%

35%

1P 2P 4P 8P 16P

Number of processors

L3-SNP

L3-Semphy

L3-SVM-RFE

L3-PLSA

L3-Gene

Miss Per Instruction

0.00%

0.50%

1.00%

1.50%

2.00%

Workloads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L3 miss/inst

L2 miss/Inst

FSB Bw  (B/inst)

L3 miss/inst 0.08% 0.01% 0.02% 0.00% 1.17% 0.00%

L2 miss/Inst 0.34% 0.27% 0.20% 0.07% 13.20% 0.03%

FSB Bw  (B/inst) 0.6 0.07 0.1 0 2 0.03

SNP GeneNet Semphy Rsearch SVM-RFE PLSA



Intel Technology Journal, Volume 9, Issue 2, 2005 

Performance Scalability of Data-Mining Workloads in Bioinformatics 140 

GeneNet, the cache misses per instruction are higher than 
for the workloads scaling very well, but much lower than 
for SVM-RFE. Yet these two workloads do not scale as 
well as SVM-RFE. Caches are not the limiting factors for 
these workloads. Threads spend a significant part of the 
time waiting for each other at the end of parallel sections, 
because of load balancing. In SNP for example, parallel 
threads perform the hill-climbing algorithm on different 
input data. The number of computations depends on the 
data structure, and the difference in computation 
requirements between threads explains the load 
imbalance. 

Bus bandwidth utilization varies widely between these six 
workloads. They go all the way from virtually 0 for 

RSEARCH that is highly compute intensive, with very 
high reuse of data in cache, to 2 Bytes per instruction for 
SVM-RFE whose main computation is a vector-vector 
multiply that has very little data reuse.  

Figure 7 shows how the bus bandwidth utilization varies 
with the number of processors. It uses a log scale on both 
axis. The bandwidth used by the different workloads 
varies widely between workloads, which is explained by 
the very different miss rates the workloads get in the L2 
and L3 caches. But for all workloads, the FSB bandwidth 
varies linearly with the number of processors. This 
indicates that the bus bandwidth is not a limiting factor on 
this system. 

 

Figure 7: FSB bandwidth as a function of the number of processors

CONCLUSION 
The bioinformatics workloads studied in this paper are 
representative of general-purpose data-mining techniques. 
They use BNs, SVMs, and DP, among other methods. 
They are data parallel workloads with large data sets and 
are very compute intensive.  

Performance scalability up to 16 processors is very good 
for some workloads such as SEMPHY, RSEARCH, and 
PLSA that exhibit almost linear speed-up. It is not as 

good, but quite respectable, for SNP, GeneNet, and SVM-
RFE. 

The FSB bandwidth is not a limiting factor for 
performance scalability (for the system used in the study). 
The FSB utilization grows linearly with the number of 
active processors for all workloads. Caches are too small, 
which leads to the high miss rates of 5% to 30% in the L3 
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SVM-RFE and SNP that access large and complex data 
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ABSTRACT 

Statistical information processing is needed for many ap-
plications to extract patterns and unknown interdependen-
cies between factors. A wide variety of data mining algo-
rithms has been developed over the last decade, but active 
human intervention is still required to drive an analysis. 
The intention of expert work is to sequentially clarify 
models, and to compare models to provide accurate pre-
dictions. The productivity of expert work is largely con-
strained by the amount of time that is needed to compute 
model updates.  

Recent modeling techniques such as classification and 
regression trees, and ensembles of machine-learning clas-
sifiers, incur high computational loads. Building such 
models in online interactive mode is a challenging task for 
upcoming platforms.  

Tree-based models are applicable to a wide range of prob-
lems that include medical expert systems, analysis of 
manufacturing data, financial analysis, and market predic-
tion. Ensembles of trees are notable for their accuracy. 
They can handle mixed-type data (consisting of both nu-
merical and categorical data) and missing values. Several 
commercial packages implement these techniques. 

In this paper we consider several data-mining methods 
based on ensembles of trees. The balance between com-
plexity and accuracy is studied for different parameter 
sets. We provide an analysis of the computational re-
sources required by the algorithms, and we discuss how 
they scale for execution on multiprocessor systems with 
shared memory. 

INTRODUCTION 
Fast growth and development of digital devices have re-
sulted in a constantly increasing volume of digital data. 
According to the “How Much Information? 2003” survey 

[1], the world’s total production of information content 
during 2002 required about 5 million Terabytes to store. 
More than 90% of this information is stored in electronic 
form, mostly on hard drives. This enormous amount of 
information creates a demand for fast and intelligent solu-
tions for data-processing tasks. Many of these tasks can be 
approached using machine-learning techniques. Machine 
learning focuses on detecting and recognizing complex 
patterns in data. Examples are found in biometrics (finger-
print recognition, face recognition, machine vision), net-
work security (intrusion detection), manufacturing (excur-
sion analysis, statistical process control), financial analysis 
(trend prediction), medical systems (MRI scan analysis 
[2]), and forensic applications (genetic data analysis). 
Although these problems belong to different domains, the 
algorithms solving them have much in common. One of 
the core concepts commonly used for learning multidi-
mensional patterns from data is a decision tree.  

It is difficult to overestimate the influence of decision 
trees in general and Classification and Regression Trees 
(CART) [3] in particular on machine and statistical learn-
ing. CART has practically all the properties of a universal 
learner: it is fast, supports both discrete and continuous 
variables, elegantly handles missing data, and is invariant 
to monotone transformations of the input variables (and 
therefore resistant to outliers in input space). Another key 
advantage of CART is its embedded ability to select im-
portant variables during tree construction. 

The main limitation of CART is relatively low prediction 
power. Intensive development of model averaging meth-
ods [4-8] over the last decade resulted in a series of very 
accurate tree-based ensemble techniques. A tree ensemble 
can be understood as a committee, where each member 
has a vote and the final decision is made based on the ma-
jority vote. The two most recent advances in tree ensem-
ble techniques, gradient boosting tree (GBT) [9, 10] and 
Random Forest (RF) [11], have been proven to be among 
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the most accurate and versatile state-of-the-art learning 
machines. GBT serially builds tree ensembles where every 
new expert construction relies on previously built trees. 
RF builds trees independent of each other on a randomly 
selected subset of the training data, and predicts by major-
ity vote (or average in regression).  

In the next section we explain the details of the decision 
tree construction, and various learning algorithms associ-
ated with it. We then discuss applications that use decision 
trees, and we analyze their performance and scalability. 

LEARNING WITH DECISION TREES 
In supervised machine learning, we are given a dataset 
with a set of variables or attributes, often called “inputs” 
or “predictors,” and a corresponding target, often called 
“response” or “output” values. The goal is to build a good 
model or predictive function that predicts unknown, future 
target values for given input values. When the response is 
numeric, the learning problem is called “regression.” 
When the response takes on a discrete set of non-ordered 
categorical values, the learning problem is called 
“classification.” 

Single Tree 
Decision trees are one of the most popular universal 
methods in machine learning/data mining and are com-
monly used for data exploration and hypothesis genera-
tion. CART is a commonly used decision tree algorithm 
[3]. It uses greedy, top-down recursive partitioning to di-
vide the domain of input variables into sets of rectangular 
regions. These regions are as homogeneous as possible 
with respect to the response variable, and they fit a simple 
model in each region, either by majority vote for classifi-
cation, or as a constant value for regression. At every step, 
a decision tree uses exhaustive search, by trying all com-
binations of variables, and split points to achieve the 
maximum reduction in impurity. Each split selection re-
quires )log( nknO  operations, where k  is the number 

of variables and n  is the number of training samples. 

A single decision tree can be visualized, interpreted, and 
tuned by an expert. The main limitations of CART are low 
accuracy and a high contribution to prediction error vari-
ance. High variances result from the use of piecewise, 
constant approximations. 

Case Study 1 
Figure 1 shows an example of a decision tree constructed 
to fit a functional dependency depicted in Figure 2a (re-
gression problem with one response and two numeric pre-
dictors). The resulting piecewise approximation is shown 
in Figure 2b.  

 

Figure 1: Example of a single regression decision tree 
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Figure 2(a): Example of a regression tree, original 
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Figure 2(b): Example of a regression tree, CART pre-
diction 

Case Study 2 
Figure 3 shows a decision tree learned from a car dataset 
where the response is a country where a car was produced, 
and predictors are reliability, horse power, mileage, and 
price. The split (characterized by a variable and its split 
value) at each node is chosen in order to maximize the 
number of samples (cars) that correspond to one of the 
countries. Note that the tree is built so that the presence of 
a single country in each node (indicated both by the width 
of the color bar and the text inside the node) grows from 
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the top of the tree to the bottom. Figure 4 illustrates the 
properties of the top node of the tree from Figure 3 and 
the properties of the corresponding split. The top part of 
the figure shows the table that compares the best split (the 
first row) to others. For each variable two numbers are 
reported (left to right): how a split on this variable reduces 
data impurity in comparison with the best split and how it 
is similar to the best split in data separation. Similar (“sur-
rogate”) splits are used for treating missing values–
whenever the value of the variable corresponding to the 
primary split is missing, the surrogate split is used. The 
bottom part of Figure 4 shows the box plots of the vari-
able values corresponding to the primary split (Reliability) 
for each of the response (Country) values. The red hori-
zontal line corresponds to the split value. Note that it cuts 
off the high values of reliability corresponding to several 
countries (“Japan” and “Japan/USA”). 

 

Figure 3: Example of a classification tree 

Ensembles of Trees 
Ensembles of trees combine outputs from multiple trees 
and can dramatically improve the performance of the re-
sulting committee. There are two primary approaches to 
ensemble construction: parallel and serial. A parallel en-
semble combines independently constructed trees, and 
therefore targets variance reduction.  

In serial ensembles, every new constructed tree relies on 
previously built trees so that the resulting weighted com-
bination of them forms an accurate learning engine. A 
serial ensemble algorithm is often more complex, but it is 

targeted to reduce both bias and variance, and usually 
shows excellent performance.  

 

Figure 4: Split competitors and surrogate weights (up-
per part) and boxplots of split variable (Reliability) vs. 

response (Country) 

APPLICATIONS 
Decision tree-based learning is used in a wide range of 
applications. This list includes experimental data analysis 
in medicine and physics [3], market and customer analysis 
[12], manufacturing data exploration [13], and automated 
spam detection [14]. Single decision trees lack precision 
in predicting the data but are easier to interpret. For ex-
ample, Figure 3 shows a tree for a cars dataset. It explains 
the connection between predictor and response variables 
using simple and interpretable rules. On the other hand, 
ensembles of decision trees have much better prediction 
accuracy, but they lack interpretability. Still, the model 
can be interpreted with techniques as described in [13]. 

There are several usage models for tree-based ensembles. 
For spam detection, the model is learned once and then 
used to predict the response in real-time with infrequent 
re-learning. For interactive data analysis, the model is 
built and re-learned interactively so that an analyst can 
experiment with parameters, and see the impact of the 
changes.  
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Figure 5: Serial ensemble complexity vs. error 

Learning a decision tree ensemble from a large dataset is a 
computational challenge. For example, GBT ensemble 
learning on a manufacturing dataset that contains 200,000 
samples, 129 predictors (mostly numeric), and binary re-
sponse takes about eight minutes on a machine with a 
3.06 GHz Intel  Xeon™ processor. The resulting ensem-
ble consists of about 70 trees. Figure 5 shows the predic-
tion error of the GBT ensemble depending on its complex-
ity, measured as the number of trees. The optimal size of 
the ensemble corresponds to the minimum of the predic-
tion error. The time to learn the serial ensemble is roughly 
proportional to the model complexity. Figure 6 shows the 
dependence of the learning time on the number of samples 
in the dataset. Both training data size and model complex-
ity can increase the prediction power of the ensemble but 
the learning time will also increase.  

In the next section, we investigate the computational 
properties of the parallel ensemble learning algorithm and 
explain how it can take advantage of the Symmetric Mul-
tiprocessor (SMP)-like architecture. 

WORKLOAD ANALYSIS 
In this section, we describe the requirements for resources 
used by the algorithm to construct an ensemble of classifi-
cation trees. We give a description of data structures and 
methods used to optimize computations. Firstly, hot op-
erations are identified that incur the main computational 
load. Secondly, an interaction with the Arithmetic Logic 
Unit (ALU), the memory subsystem, and the instruction 
decoder are described on an example data set. Finally, we 
present a scheme for parallelizing the algorithm for an 
SMP system as a function of the number of threads. 

 

                                                           
  Intel and Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States 
and other countries. 

 

Figure 6: Block scheme of the Random Forest 
algorithm 

Computing Platform Model 
A complexity analysis of an algorithm requires a computa-
tional model. We consider a simplified model of a modern 
computer that consists of the following components:  

•  An ALU that executes logical, integer, and floating-
point operations. 

•  A memory subsystem that consists of the main mem-
ory, several caches, and a system bus. 

•  An instruction decoder that includes a branch predic-
tor. 
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Figure 7: Learning time for a serial ensemble vs. the 
training data size 
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In the analysis we investigate the following problems: 

•  Where is the bottleneck, i.e., which component slows 
down the overall system performance? 

•  How many clock ticks are required to execute one 
instruction? 

•  What is the traffic to the main memory and each level 
of cache? 

•  Does the decoder manage to translate instructions in 
time, and how do unpredicted branches impair the 
performance. 

•  What is the expected performance improvement when 
the algorithm is executed on an SMP system. 

Experimental Results 
The training data set consists of 80,000 samples in the 
feature space that contains 127 numeric and 5 categorical 
variables, unless stated otherwise. One of the categorical 
variables is modeled by the Parallel Ensemble Learning 
(PEL) algorithm.  

The following characteristics were measured on a com-
puter with four 1.9 GHz Intel Xeon processors with hyper-
threading technology and 3.5 Gb of RAM. The data are 
presented for a single thread (serial version), unless stated 
otherwise. 

 

Clockticks %

22
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(4)

Other

 

Figure 8: Distribution of execution time by operations 

 

Figure 9: Clock ticks per retired instruction for func-
tions (1)-(4) depending on the number of samples in 

the training dataset 

Hot operations were identified in the optimized code. The 
main computational complexity is due to the following 
operations (also see Figure 6): 

(1) Sampling a subset of data for calculating the current 
split. We randomly select both data samples and vari-
ables subset (the number of variables to be used in 
split calculation is a square root of the total number of 
variables in the dataset). 

(2) Sorting training samples on each variable selected for 
the split. The sorting takes place for each variable in-
dependently and thus operates with a relatively small 
amount of data. 

(3) Iterative calculation of data impurity reduction in 
order to find the best split variable and value. The 
calculation of the optimal split value is done using 
exhaustive search that is performed with one pass 
through the sorted array of values. 

(4) Propagate the training samples through the split to the 
bottom nodes of the tree.  

Figures 8 and 9 show the distribution of execution time 
measured in CPU clock ticks and the mean number of 
clock ticks per instruction, respectively. One can see that 
operations (1)-(4) add up to about 90% of the execution 
time (see the above description of operations (1)-(4)). 
Note a high CPI value for a sampling operation (1) and 
the corresponding low clock ticks percentage. 
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Figure 10: Instruction mix count 

One could divide all instructions into four main types: 
integer and logic operations, floating-point operations, 
branches, and memory reads/writes. Figure 10 shows the 
number of retired instructions of each type for (1)-(4). The 
procedure of sampling is characterized by intensive mem-
ory access; sorting requires a large number of compari-
sons (optimized using SIMD extensions), logical opera-
tions and branches, while a search for an optimal split 
requires intensive FP computations.  

Figure 11 illustrates levels of interaction with the memory 
subsystem. It shows overall memory traffic and its distri-
bution between the caches hierarchy and the main memory 
(the Xeon processor has 8 KB of L1, 512 KB of L2, and 
1 MB of L3 cache). The data explain the high number of 
clock ticks per retired instructions for (1). The cause is 
high access rate to the main memory.  

Table 1: Characteristics of instructions decoder 

  

% of de-
coded 
commands  

Mispredicted 
branches 
per instruc-
tions retired   

Branch predic-
tion rate 

(1) 91.697 0.013 78.443 
(2) 92.571 0.024 72.964 
(3) 95.439 0.002 94.41 
(4) 95.322 0.005 94.489 

 

Table 1 characterizes the work of the instruction decoder. 
It contains the percentage of instructions that did not 
cause stalls due to the latency of decoding. As the main 
cause, the number of branches per instructions retired and 
the BP rate is shown too. As one can see, there is a large 
number of mispredicted branches in subsampling and sort-
ing procedures that cause stalls of the instruction decoder. 

Multithreading  
Building a decision tree could be effectively parallelized 
at the data level. Several algorithms of building tree en-
sembles (e.g., PEL [11]) assume that each tree is built 

independently. Then, each sub tree in a decision tree could 
be built independently, resulting in fine thread granularity. 
The main thread could make a few first splits, and then 
assign the building of each sub tree to auxiliary threads. 
Finally, each of the operations (1)-(3) contains an outer 
loop on input variables. Iterations are independent, but an 
aggregation is required at the end (e.g., comparison of 
split goodness and finding the best one).   
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Figure 11: Interaction with memory subsystem 

However, access to data structures could be a problem 
when considering real system architecture. For the cluster-
based solution, a subset of training data should be passed 
to each node, and partitioning is then determined by sev-
eral first splits. However, the algorithm could be modified 
to allow effective distributed computations. For SMP sys-
tems, the bus becomes a limiting factor with increasing 
numbers of processors. Figure 12 illustrates this. The ver-
tical axis shows a ratio of execution time per model, re-
lated to the execution time of the sequential version. One 
can see that performance grows near-linearly for up to 
three threads, and does not grow when the number of 
threads exceeds six. 

 

Figure 12: Speedup on the number of threads 
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Figure 13: Clock ticks for each function vs. the num-
ber of threads 

DISCUSSION 
The computation of a single tree in a PEL algorithm con-
sists of both intensive data exchange with memory subsys-
tem and CPU load. Function (1) that selects a subset of 
samples from the original dataset copies a significant 
amount of data from the source array residing mainly in 
the main memory to the destination array that is smaller 
and sits in cache. Figure 11 shows that function (1) causes 
a significant amount of traffic into main memory. In fact, a 
significant amount of interaction with cache is caused by a 
hardware prefetch that reads local data into cache auto-
matically. Still, selecting a subset of samples and variables 
generates a sparse memory access pattern, and prefetch is 
not capable of loading all the data we need. The same 
chart indicates that function (2) works with cache data 
only. Function (4) divides the training table into right and 
left according to the currently built split. It generates 
about a half of the traffic to main memory compared to 
function (1) but it works more than five times faster. This 
is because of the difference in memory access patterns: 
function (4) goes through samples one by one while func-
tion (1) jumps between samples and variables in a sparse 
manner.  

Performance gain in Figure 12 shows a sub-linear trend up 
to three threads. Small gain in Thread 4 is caused by an 
increased competition between threads for the bus to the 
main memory. While we do not give a precise interpreta-
tion of this effect within this paper, we note that this is in 
accordance with the data presented in Figure 7. Roughly 
two-thirds of the execution time in one thread is occupied 
by the function (2) that is supposed to have excellent scal-
ability. The remaining one-third relates mostly to opera-
tions with memory, and this explains the competition that 
shows up when the number of processors is more than 
three. The measurements of Figure 11 were taken on a 4-
way server with Hyper Threading (HT) enabled. Threads 
5-8 share the physical processor with Threads 1-4. The 
15-20% gain we get from HT is due to better resource 

utilization: while one thread waits for the data from mem-
ory, executing, for instance, function (1), another thread 
on the same processor runs calculations of function (2). 

Figure 13 supports the hypothesis of poor scalability of 
function (1): the percentage of time occupied by function 
(1) grows with the number of threads. If threads have been 
executed independently from each other, the percentage of 
clock ticks for each function would have been constant. 
The data locality issue is crucial here. Figure 8 illustrates 
the CPI trends for different functions and training samples 
number. One can see that for a larger dataset it takes more 
time for function (1) to execute a single instruction, while 
the CPI rate for function (2) is almost constant.  

It is important to note that all data mentioned in the paper 
have been obtained for the dataset that has sample-wise 
memory layout. In other words, it is organized in memory 
so that the data related to one sample occupy a continuous 
block of memory. (The case of variable-wise representa-
tion when the data related to each variable are put into a 
continuous block of memory lies outside the scope of this 
paper.) We note, however, that using one representation or 
another can improve locality and provide an additional 
speed-up depending on the parameters of the training 
dataset and PEL. 

RESULTS 
Learning of tree-based models in the context of large-
scale data-mining problems provides many challenges for 
a computing platform. Often, the more computational 
power we have the higher prediction power we can get 
from the model. 

The experiments show that an IA-32 system can handle 
complex ensemble-based learning algorithms very effi-
ciently. The key limiting factor is latency to main memory. 
A problem-specific data structure can improve data local-
ity and performance gains. For current bus and cache 
sizes, the algorithm could be effectively parallelized up to 
four processors. Having several threads per core can pro-
vide an additional speed-up.  
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ABSTRACT 

Optimization refers to the minimization (or 
maximization) of an objective function of several 
decision variables that have to satisfy specified 
constraints. There are many applications of optimization. 
One example is the portfolio optimization problem 
where we seek the best way to invest some capital in a 
set of n assets. The constraints might represent a limit on 
the budget (i.e., a limit on the total amount to be 
invested), the requirement that investments are 
nonnegative (assuming short positions are not allowed), 
and a minimum acceptable value of expected return for 
the whole portfolio. The objective or cost function might 
be a measure of the overall risk or variance of the 
portfolio return. In this case, the optimization problem 
corresponds to choosing a portfolio allocation that 
minimizes risk, among all possible allocations that meet 
the firm requirements. Another example is production 
planning and inventory: the problem is to determine the 
optimal amount to produce in each month so that 
demand is met while the total cost of production and 
inventory is maintained without shortages. 

In recent years the Interior Point Method (IPM) has 
became a dominant choice for solving large optimization 
problems for many scientific, engineering, and 
commercial applications. Two reasons for the success of 
the IPM are its good scalability on existing 
multiprocessor systems with a small number of 
processors and its potential to deliver a scalable 
performance on systems with a large number of 
processors. IPM spends most of its runtime in several 
important sparse linear algebra kernels. The scalability 
of these kernels depends on several key factors such as 
problem size, problem sparsity, and problem structure. 

This paper describes the computational kernels that are 
the building blocks of IPM, and we explain the different 
sources of parallelism in sparse parallel linear solvers, 
the dominant computation of IPM. We analyze the 
scalability and performance of two important 
optimization workloads for solving linear and quadratic 
programming problems.  

INTRODUCTION 
Optimization refers to the minimization (or 
maximization) of an objective function of several 
decision variables that have to satisfy specified 
constraints. It enables businesses to make better 
decisions about how to commit resources, which include 
equipment, capital, people, vehicles, raw materials, time, 
and facilities.   

While existing hardware performs well on problems with 
tens of thousands of constraints and hundreds of 
thousands of variables, it lacks the necessary 
computational and bandwidth resources to target future 
datasets whose solution will require teraflops of 
computation and gigaflops of bandwidth. As an example, 
consider the Asset Liability Management (ALM) 
problem from computational finance, where the goal is 
to coordinate the management of assets and liabilities 
over several time periods to maximize the return at the 
end of the final time periods. To hedge against risk 
requires diversification of a portfolio with many assets; 
considering more time periods means better planning. 
Our simple back-of-the-envelope estimate shows that 
modeling just three time periods and as few as seventy-
four assets creates an optimization problem that takes 
about one hour to solve on today’s platforms, but only 
ten seconds to solve on a teraflop platform of tomorrow.  
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In order for an optimization workload to achieve high 
performance on future parallel architectures, one needs 
to understand (i) the source of parallelism, (ii) how the 
parallelism changes for different optimization problems, 
and (iii) how to extract this parallelism for a given 
problem. 

We focus on the Interior Point Method (IPM), a 
dominant choice for solving large-scale optimization 
problems in many scientific, engineering, and financial 
applications. While complex mathematical analysis is the 
driving force behind IPM, most of the algorithm’s 
computation time is spent in a few sparse linear algebra 
functions: sparse linear solvers, matrix-matrix 
multiplication, matrix-vector multiplication, and a few 
others. Developing parallel systems that efficiently 
execute these few functions is paramount to high 
performance for the IPM. 

In this paper, we discuss IPM workloads as well as 
several approaches to parallelizing IPM. First, we 
discuss important computational kernels that are the 
building blocks of IPM. Second, we explain several 
sources of parallelism in sparse parallel linear solvers, 
the dominant computation of IPM. We also describe 
how additional parallelism within IPM can be discovered 
by exploiting inherent problem structures. Thirdly, we 
present the scalability results and performance analysis 
of shared-memory IPM on several datasets from linear 
programming. This workload utilizes highly optimized, 
parallel routines from the Intel Math Kernel Library, 
built using the PCx framework and parallelized by our 
team. We also present scalability results and 
performance analysis of a structure-exploiting quadratic 
IPM workload, the Object-Oriented Parallel interior 
point Solver (OOPS), on asset liability and management 
problems.  

OPTIMIZATION AND THEIR USAGE 
MODELS 
An optimization problem, has the form 

 minimize f0(x) 

subject to fi(x)  bi,  i = 1,…, m 

Here the vector x = (x1,…,xn) is the optimization 
decision variable of the problem, the function f0(x) is the 
objective function, the functions fi , i = 1,…,m, are the 
(inequality) constraint functions, and the constants 
b1,…,bm are the limits, or bounds, for the constraints. A 
vector x* is called optimal, or a solution of the 
optimization problem if it has the smallest objective 
value among all vectors that satisfy the constraints.  

There are several important classes of optimization 
problems, characterized by particular forms of the 

objective and constraint functions. As an example, the 
optimization problem is called a Linear Program (LP) if 
the objective and constraint functions f0,…, fm are 
linear functions of x. The LP optimization problem is of 
the form 

min cTx, subject to Ax=b, x  0 

where A is m by n the matrix of linear constraints, and 
vectors x, c, and b have appropriate dimensions.  

Another important example, the convex quadratic 
optimization problem (QP), is of the form  

min cTx + ½ xTQx, subject to Ax=b, x  0 

where Q is n by n positive semidefinite matrix, and A, x, 
c, and b are the same as in LP.  

LP and QP are important not only because many 
problems encountered in practice can be formulated as 
either LP and QP problems, but also because many 
methods for solving general non-linear programming 
problems (NLP) solve them by solving the sequence of 
linear (sequential linear programming) or quadratic 
(sequential quadratic programming) approximations of  
the original NLP  problem.  

There are many applications of optimization. In the 
radiation therapy planning optimization problem, when 
choosing a plan for any individual patient, one seeks to 
determine radiation beam directions and intensity with 
the goals of maximizing the delivered dose to the tumor 
while minimizing the dose in normal tissue and organs at 
risk. There exist different formulations of this problem 
as LP, QP, or NLP. 

In production planning and inventory problems, the 
problem is to determine the optimal amount to produce 
in each month so that demand is met yet the total cost of 
production and inventory is minimized and shortages are 
not permitted. This problem has been traditionally 
solved using the LP approach. 

Another example is the famous portfolio optimization 
problem where we seek the best way to invest some 
capital in a set of n assets. The variable xi represents the 
investment in the ith asset, so the vector x=(x1,…,xn) 
describes the overall portfolio allocation across the set of 
assets. The constraints might represent a limit on the 
budget (i.e., a limit on the total amount to be invested), 
the requirement that investments are nonnegative 
(assuming short positions are not allowed), and a 
minimum acceptable value of expected return for the 
whole portfolio. The objective or cost function might be 
a measure of the overall risk or variance of the portfolio 
return. In this case, the optimization problem 
corresponds to choosing a portfolio allocation that 
minimizes risk, among all possible allocations that meet 
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the firm requirements. The problem is known as the 
Markovitz mean-variance optimization problem and is 
modeled using QP. 

The last example is device sizing in electronic design, 
which is the task of choosing the width and length of 
each device in an electronic circuit. Here the variables 
represent the widths and lengths of the devices. The 
constraints represent a variety of engineering 
requirements, such as limits on the device sizes imposed 
by the manufacturing process, timing requirements that 
ensure that the circuit can operate reliably at a specified 
speed, and a limit on the total area of the circuit. A 
common objective in a device sizing problem is the total 
power consumed by the circuit. The optimization 
problem is to find the device sizes that satisfy the design 
requirements (on manufacturability, timing, and area) 
and are most power efficient. This problem can be 
modeled using LP or QP. 

INTERIOR-POINT METHOD (IPM) 
In the past decade, the IPM has become a method of 
choice for solving large convex optimization problems. 
As parallel processing hardware continues to make its 
way into mainstream computing, it becomes important to 
investigate whether parallel computation can improve 
the performance of this commercially vital application.  

The IPM has a unified framework for LP, QP, and NLP. 
The method starts with the initial guess to the solution of 
the optimization problem, x. The core of the method is 
the main optimization loop, which updates the vector x 
at each iteration until the convergence to the optimal 
solution vector x* is achieved. A key to efficient 
implementation and parallelization of IPM is that all 
three algorithms depend on four linear algebra kernels 
listed below:   

1. Form linear systems of equations, Mx=b, where M 
is the symmetric matrix of the form 








 Ζ−
=

0A

A
M

T

, where A is the original matrix 

of constraints. The matrix of this form is called 
augmented system. For linear programming 
problems, where Z is a diagonal matrix, one uses 
substitution of variables in the above linear system 
of equations, so that matrix M is reduced to normal 

equation form AZAM 1−= . This requires a 

matrix-matrix multiplication operation. 

2. Cholesky factorization of matrix M = L D LT in 
order to solve the system of linear equations, Mx=b. 
Here L is lower triangular, D is diagonal if M is 
positive definite, and D contains 1 by 1 and 2 by 2 

bocks if M is indefinite. This step is normally the 
most time-consuming step of the IPM. 

3. Triangular solver uses result of factorization to 
solve a system of linear equations (L D LT)x=b, 
using the following three steps 

a. Forward solver, solves Ly=b 

b. Diagonal solver solves Dz=y. Note that 
when normal equations are used in the case 
of LP, this step can be eliminated, because 
the diagonal matrix D is positive and hence 
M can be represented as M=(L’) (L’)T, 
where L’ = L D1/2. 

c. Backward solver solves LTx=z 

4. Matrix vector multiply: Ax, ATx (transpose matrix 
vector multiply), and Mx (symmetric matrix-vector 
multiply). 

Other operations, such as inner products, vector 
additions, and vector norm computation contribute a 
small amount compared to the above operations.  

We see that the parallel efficiency of IPM depends on 
the efficient parallel implementation of these four linear 
algebra kernels. For the majority of realistic problems, 
solving systems of equations (kernels 2 and 3) is the 
most time-consuming portion of the IPM. For most 
optimization dataset models, the underlying matrix M is 
very sparse. As will be explained in later sections, 
sparsity is important because it uncovers an additional 
coarse-level parallelism, which is otherwise unavailable 
in the dense problems. 

PARALLELIZATION OF IPM 
In this section we describe the serial and parallel 
algorithm for solving sparse linear systems of equation. 
We discuss different levels of parallelism that can be 
explored for unstructured problems as well as additional 
levels of parallelism that become available in structured 
problems.   

Sparse Unstructured Problems 
This section deals with sparse unstructured matrices that 
arise from general optimization LP, QP, and NLP 
problems. Such matrices possess no distinct and 
exploitable non-zero structure. In the rest of this paper, 
we assume that the original symmetric matrix M is 
scattered into the factor matrix L. Two fundamental 
concepts behind solving sparse systems of linear 
equations are supernode and elimination tree. A 
supernode is a set of contiguous columns in the factor L 
whose non-zero structure consists of a dense triangular 
block on the diagonal and an identical set of non-zeroes 
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for each column below the diagonal. An example of 
supernode is given in Figure 1(a). 

 

 

Figure 1: Example of factor matrix L supernode and 
its elimination tree  

Figure 1(a) shows 13x13 sparse matrix L: empty entries 
are assumed to have zero values. In this example there 
are six supernodes. For example, columns 1 and 2 form 
supernode sn1, columns 7 and 8 form supernode sn4, 
and columns 11, 12, and 13 form supernode sn6. Since 
all columns in the supernode have an identical non-zero 
structure, in practice non-zero elements of supernodes 
are compactly compressed into and stored as a dense 
matrix. 

The elimination tree is a task dependence graph that 
characterizes the computation and data flow among the 
supernodes of L during Cholesky and triangular solve, 
and it is defined as follows:  parent(snj) = min{sni | i > j 
and at least one of the elements of snj which correspond 
to the diagonal block of sni is non-zero}. In other words, 
the parent of supernode j is determined by the first sub-
diagonal non-zero in supernode i. Figure 1(b) shows an 
example of the elimination tree for the matrix in Figure 

1(a). We see that there is an edge between sn1 and sn5, 
because as the shaded portion of the figure shows, the 
second row of the 2 by 2 diagonal block of sn5 
corresponds to the non-zero row 10 in sn1. Similarly, 
there is an edge between sn3 and sn6, because the first 
two rows of sn6 correspond to non-zero elements in 
rows 11 and 12 of supernode 3.  

Given the elimination tree, the Cholesky factorization 
forward and backward kernels can all be expressed using 
the following generic formulation: 

T = breadth-first traversal of ET (bottom-up or top-
down) 
for each supernode sni in ET     
 perform processing task on sni 
endfor 

The order of the tree traversal and the processing task 
are different for each kernel. Cholesky and the forward 
solver perform bottom-up traversal of the elimination 
tree, whereas backward solver performs top-down 
traversal of the elimination tree. The processing task for 
forward and backward solver are very similar; however, 
we do not discuss them here due to space limitations. 
The details of a Cholesky processing task are discussed 
next. 

Cholesky Factorization 
Cholesky factorization is the most time-consuming 
operation among the four kernels. According to our 
experiments (see our experimental section results for 
unstructured problems) on average, IPM spends 70% of 
the time in this kernel. The high-level pseudo-code of 
Cholesky is given in Figure 2(a). Cholesky processing 
task (Lines 3-7) is generally expressed in terms of two 
primitive operations on the supernode, cdiv and cmod, 
both of which are shown in Figure 2(b) and Figure 2(c), 
respectively. 
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Figure 2: Cholesky factorization  

Given supernode sn1, cdiv(sn1), also known as 
supernode factorization, requires multiplication of the 
dense rectangular portion of the supernode below its 
main diagonal by the inverse of the supernode’s dense 
diagonal block. The inversion is not actually computed. 
Rather, this computation is broken into two steps shown 
in Figure 2(b) for supernode sn1. In the first step, we 
perform dense Cholesky on the diagonal block of sn1. In 
the second step, we solve a large number of triangular 
systems for each nonzero row of the supernode below 
the main diagonal.  

The second and most time-consuming primitive 
operation in Cholesky factorization is called cmod, 
which is also known as supernode-supernode update. 
cmod(sn2, sn1) operation adds into destination 
supernode sn2 the multiple of the source supernode sn1 
and, similar to cdiv, consists of two steps, shown in 
Figure 2(c). The first step uses dense matrix-matrix 
multiply, to multiply the sn1 by the transpose of its sub-
matrix C which corresponds to the dense triangular 
block of the sn2. This results in the temporary supernode 
tsn. In the second step, the temporary supernode tsn is 
scatter-subtracted from the second supernode sn2. The 
scatter operation is required because tsn and sn2 may 
have different non-zero structures (which is the case in 
Figure 2(c)).  

The high-level pseudo-code of Cholesky, shown in 
Figure 2(a), scatters original matrix M into the factor L 
and performs a series of cdiv and cmod operations on 
supernodes of L to factorize it. The algorithm performs 
breadth-first bottom-up traversal of the elimination tree 
(designated as ET in the figure) starting from the leaves 
(Line 2). Each supernode sna, receives cmod updates 
from its descendant supernodes snd (Lines 3-6). Upon 
receiving all the updates, a cdiv operation is performed 
on sna to complete factorization of the supernode. The 
factorized supernode is now ready to update its own 
ancestors. All ancestor supernodes that require an update 
from the descendent supernode are known in advance; 
the leave supernodes require no updates. Note that due 
to the fact that each supernode is stored as a dense 
matrix, one can use efficient implementations of dense 
linear algebra subroutines (such as BLAS 2, BLAS 3, 
and LINPACK) to perform cdiv and cmod operations. 

Understanding Parallelism in  Cholesky 
Factorization 
We now examine the opportunities for parallelism in the 
above implementation of sparse Cholesky in Figure 2(a). 
This implementation contains parallelism on several 
different levels:  

Level 1: Elimination tree parallelism, which corresponds 
to the parallel execution of the outermost loop in Lines 
2-7. Here several iterations of the loop, which 

1. ET = breadh-first  bottom-up traversal of ET 
2. for each sna in ET
3. for each descendant snd that  must update sna
4. cmod(sna, snd);
5. endfor
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7. endfor
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correspond to independent sub-trees of the elimination 
tree, can be started in parallel on several processors. In 
other words, if T1 and T2 are disjoint sub-trees of the 
elimination tree, with neither root node a descendant of 
the other, then all of the supernodes of T1 can be 
factorized completely independently of the supernodes 
corresponding to T2, and vice versa. Hence, these 
computations can be done simultaneously by separate 
processors with no communication between them. 

Level 2: The second level of parallelism exists in the 
innermost loop (Lines 3-5) and is essentially a parallel 
reduction operation. For a given ancestor supernode sna, 
all updates from its descendents (Line 4) can proceed in 
parallel. Note, however, that it may happen (more often 
than not) that two or more descendents will try to scatter-
subtract into the same elements of their ancestor. This 
requires some locking mechanism to guarantee that only 
one update happens at a time.  

Level 3: The third level of parallelism exists within an 
individual cmod update operation called from the 
innermost loop (Line 4). Due to the fact that each cmod 
operation is composed of dense Cholesky and dense 
matrix-matrix product operation, each can be further 
parallelized. The parallelism also exists within the cdiv 
operation performed on a given supernode sn. As 
explained earlier, the cdiv(sn) operation involves solving 
a large independent set of dense triangular systems; 
hence all such solves can be done in parallel. 

To quantify the parallelism inherent to sparse Cholesky 
factorization, we note that the number of operations 
required to factorize a typical sparse matrix on a single 

processor is roughly )( 2/3nnzΘ , where nnz is a 

number of non-zeros in the matrix. Assuming only one 
column per supernode, unlimited hardware resource and 
zero-communication cost, at each step of parallel 
computation we will execute as many parallel 
factorization operations as possible, constrained only by 
the data-dependencies within the elimination tree, which 
are inherent to a particular sparse dataset. Therefore the 
number of parallel steps to factorize the sparse matrix is 
a critical path through the elimination tree. The height of 
a well-balanced elimination tree is approximately 

))(ln(NΘ , where N is the number of row/columns of 

M. Thus, the expected ideal speed-up of Cholesky is 

approximately ))ln(( 2/3 NnnzΘ . 

Sparse Structured Problems 
Of the four levels of parallelism described above, the 
elimination-tree-level parallelism is the coarsest and 
therefore is the most attractive to exploit with parallel 
processing. However, to exploit this parallelism 

efficiently requires a balanced elimination tree. Different 
elimination trees can be constructed for a given 
symmetric matrix M when the matrix is re-ordered using 
symmetric row and column permutations.  Obviously an 
elimination tree where all sub-trees have a similar height 
will result in better parallel speed-up than one where 
most of the nodes are in one long branch. However, 
finding a re-ordering of the matrix that leads to a more 
balanced elimination tree is a non-trivial task (in fact it is 
NP-complete).  

In many situations, however, explicitly constructing a 
balanced elimination tree is not necessary. Many truly 
large-scale optimization problems are not only sparse but 
also display some flavor of block structure that make 
them highly amenable to parallelism [4]. By a block-
structured matrix we understand a matrix that is 
composed of sub-matrices. A block-structured matrix 
can be nested, where each sub-matrix is a block-
structured matrix itself. The example of the nested 
block-angular matrix is given in Figure 3(a).  

 

Figure 3: Nested block structured matrix and its tree 
representation 

The nested block-structure of a matrix can be thought of 
as a tree. Its root is the whole matrix, and every block of 
a particular sub-matrix is a child node of the node 
representing this sub-matrix. Leaf nodes correspond to 
the elementary sub-matrices that can no longer be 
divided into blocks. Figure 3(b) shows an example of the 
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matrix M’s tree. We see that sub-matrix F1 of M has a 
diagonal structure, whereas sub-matrix F2 of M has a 
block-angular structure. 

The existence of a well-defined structure is due to the 
fact that many optimization problems are usually 
generated by a process involving discretization of space 
or time (such as control problems or other problems 
involving differential equations), or of probability 
distribution (such as stochastic programming). Other 
sources of structure are possible such as in a network 
survivability problem where slight variations of the core 
network matrix are repeated many times. Note that a 
block of a block-structured matrix can itself be a sparse 
matrix. Therefore block structure offers the additional 
coarse level of parallelism, which is coarser than the 
elimination tree level of parallelism.  

Structure-Oriented Cholesky Factorization 
The efficient exploitation of matrix structure by linear 
algebra routines is based on the fact that any method 
supported by the linear algebra library can be performed 
by working through the tree: at every node, evaluating 
the required linear algebra operation for the matrix 
corresponding to this node can be broken down into 
child nodes in the tree. Different structures, however, 
need their own linear algebra implementation.  

In Figure 4(a), we show by means of a simple example 
how Cholesky factorization can be implemented on 
block-angular matrix M. This matrix consists of 4 by 4 
blocks. It is easy to see that the factor matrix L shown in 
Figure 4(b) is also block-angular. We partition L into 4-
column blocks: sci consists of sub-blocks Li and L4i for 
i=1,2,3, and sc4 contains a single block LC. Note that the 
column blocks are similar to supernodes for unstructured 
matrices. The only difference is that a supernode, by 
definition, must only contain sub-blocks of dense rows, 
whereas column blocks of a block-structured matrix can 
contain sub-blocks with an arbitrary sparsity pattern. 

Despite this difference, the same concepts that applied to 
supernodes equally apply to column blocks. Figure 4(c) 
shows the elimination for matrix L, and  Figure 4(d) 
shows the application of Cholesky factorization from 
Figure 2(a) to the column blocks of L. Step 1 is 
composed of two sub-steps: (i) cdiv(sc1) performs the 
required operations on sub-blocks L1 and L14,. and (ii) 
cmod(sc4, sc1) updates LC of sc4 with the corresponding 
product of L41 L41

T. Note that sc1 only has to update sc4, 
since, as indicated by the elimination tree, sc4 is its only 
parent. Similar operations are performed on sc2 and sc3 
in steps 2 and 3, respectively. Finally, the cdiv operation 
is performed on sc4 to factorize the sub-block LC and to 
complete the Cholesky factorization of M.  

 

Figure 4: Exploiting block-angular matrix structure

Understanding Parallelism in Structure-Oriented 
Cholesky 
The serial factorization algorithm in Figure 4(d) lends 
itself naturally to parallelization as shown in Figure 5. 
Steps 1, 2, and 3, which are completely independent, get 
distributed among the three processors, P1, P2, and P3. 

The resulting computation happens in Phase 1. Notice 
that instead of simultaneously updating the same matrix 
Ctmp, each processor Pi, stores the result of this update 
into its private copy of Ctmp, Ci. In Phase 2, the global 
reduction operation is performed, wherein each 
processor adds its own contribution to Ctmp. Finally, in 
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Phase 3, matrix Ctmp is factorized and the result is stored 
in LC, which completes parallel factorization of M. Note 
that the reduction operation in Step 2 can be parallelized. 
In addition, work performed in Phase 1 on each 

processor, as well Cholesky factorization in Phase 3, can 
also be parallelized. If M1, M2, M3, or Ctmp is 
unstructured, the parallel algorithm described in the 
previous section can be used.  

 

Figure 5: Split of computations between processors in structure-oriented Cholesky

Hence we see that by exploiting the special structure of 
the matrix, we are able to exploit the coarser level of 
parallelism unlike in cases of unstructured matrices.  

PERFORMANCE ANALYSIS OF LINEAR 
AND QUADRATIC IPM WORKLOADS 
In this section we present the scalability results and 
performance analysis of two applications. The first 
application is the shared-memory implementation of  
IPM for solving arbitrary unstructured linear 
programming problems. The second application is the 
MPI implementation of a structure-exploiting quadratic 
IPM workload (OOPS) for solving structured asset 
liability management quadratic programming problems. 
We performed both experiments on a 4-way 3.0 GHz 
Intel® Xeon™ processor MP-based system, with 8 GB of 
global shared memory and three levels of cache on each 
processor: 16 KB L1, 512 KB L2, and 4 MB L3. The 
four processors and memory are connected with a 
ServerWorks GC-HE, capable of delivering the peak 
bandwidth of 6.4 Gb/s. 

Performance Characterization of IPM for 
Unstructured Linear Programs 
For these experiments we use an Interior Point Solver 
(IPS) workload [3], which our team built for solving 
linear programming problems. IPS is based on PCx, a 
serial interior-point linear programming package 
developed at Argonne National Laboratory in 
collaboration with Northwestern University [5]. Our 
implementation of the Cholesky factorization and the 
solver routines uses a parallel sparse direct solver 
                                                           
® Intel and Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United 
States and other countries. 

 

package, called PARDISO, developed at the University 
of Basel [6], which is now included as part of Intel’s 
Math Kernel Library. In addition, we implemented and 
parallelized the routines for sparse matrix-matrix 
multiplication and sparse matrix-vector multiplication. 
Note that both the PARDISO code and our routines are 
parallelized using OpenMP. 

Table 1 summarizes the statistics for the datasets used in 
our experiments. They mostly come from the standard 
NETLIB test set and represent realistic linear models 
from several application domains. Columns 1 and 2 
show the number of variables and constraints in the 
constraint matrix for each problem. Column 3 shows the 
size of M, and Column 4 shows the number of non-zeros 
in its factor L. Note that the datasets are sorted in the 
order of increasing number of non-zeros. The last 
column shows the density of the factor matrix, computed 
as 100%*non-zeros/(neqns2). We see that on average, 
the problems are fairly large and most of them are very 
sparse. 
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Table 1: Characteristics of LP datasets 

 nconstraints nvariables neqns nlns Density (%) 
ken-18.dat 78862 128434 78862 2175306 0.034977 
fleet12.dat 21616 67841 21616 4085152 0.874294 
pds-20.dat 32287 106180 32287 6388010 0.612788 
fome13.dat 47872 97144 47872 10668201 0.465509 
snp30lp1 297998 953120 297998 20352321 0.022919 

gismondy.dat 18262 23266 18262 30887926 9.261729 
Figure 6(a) shows the breakdown of total execution time 
spent in the main optimization loop into the four 
important parallel regions and the remaining serial 
region. The parallel regions are Cholesky factorization, 
triangular solver (both forward and backward), matrix-
matrix multiply (mmm), and matrix-vector multiply 
(mvm). For each dataset, we show four bars 
corresponding to one (1P), two (2P), and four (4P) 
processors, respectively. Each bar is broken into five 
parts, one for each execution region. Note all the times 
are relative to one processor runtime, and the number on 
the top of one processor shows the total time spent in the 
main optimization loop. We see that for many datasets 
Cholesky is the most time-consuming kernel (main 
optimization loop of IPM spends on average 70% 
factorizing the matrix), and it also achieves good 
scalability for these datasets. The solver, which is the 
second most-time consuming kernel (17% of time on 
average), scales worse compared to the Cholesky and 
will require a considerable tuning effort in order for IPM 
to scale well on larger numbers of processors. Another 
4% of time is spent in parallel mmm, which scales very 
well up to four processors. An additional 4% of the time 
is spent in different flavors of parallel mvm. The 
remaining 5% of the time is spent in the serial region.  

Figure 6(b) reports the speed-up of IPS on one, two, and 
four processors. The highest speed-up (2.7x on four 
processors) is attained for the gismondi dataset, which is 
also the largest dataset in terms of the number of non-
zero elements. Comparing Table 1 and Figure 6(b), we 
see that both the run-time and scalability of IMS are 
almost perfectly correlated with the number of non-zeros 
in the factor matrix that represents the problem size. This 
is encouraging as it suggests that parallel computation 
improves the performance on harder problems.  

We used the Intel Thread Profiler, a parallel 
performance analysis tool, to identify and locate 
bottlenecks that are limiting the parallel speed-up of IPS. 
In this paper we only present the results for Cholesky 

factorization. The Thread Profiler identifies three 
important factors that adversely impact speed-up: 

1. Load imbalance is the time the threads that 
completed execution wait at a barrier at the end of 
the parallel region until all remaining threads have 
completed the assigned work of the region. When 
unequal amounts of computation are assigned to 
threads, threads with less work to execute sit idle at 
the region barrier until those threads with more 
work have finished. 

2. Locks is the time a thread spends waiting to acquire 
a lock. 

3. OpenMP overhead is the time spent inside the 
OpenMP Runtime Engine that implements 
OpenMP. 

For all datasets, Figure 7 shows the total Cholesky 
factorization time (summed over all processors) spent 
executing instructions (busy time), waiting on acquiring 
the locks (locks time), waiting on barriers due to load 
imbalance (imbalance time), and the time spent inside 
the OpenMP engine (OpenMP overhead time). Note that 
all results on one, two, and four processors are 
normalized to the one processor time. Perfect speed-up 
is possible only when the total time does not increase as 
the processors increase. As expected from Figure 6(b), 
ken-18 has the worst speed-up because the busy, wait, 
and OpenMP times increase by 150% for two processors 
and by as much as 350% for four processors. We can 
also observe a 30-60% increase in busy time on two and 
four processors for the other five datasets. By looking at 
the source code we identified the cause of these 
increases: they are due to the busy waiting loop inside 
the PARDISO implementation of Cholesky, wherein 
several processors try to acquire a shared lock in order to 
enter a critical region. The modest scalability of the 
triangular solver is due to the same reasons. The future 
implementation of the sparse linear solver within 
PARDISO is likely to address this issue. 
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Figure 6: Parallel performance of main optimization loop of IPS 

 

 

Figure 7: Concurrency and load balance in the parallel Cholesky factorization

Performance Characterization of  IPM for 
the Structured Quadratic Program 
For these experiments we used the OOPS workload [7], 
which we obtained from researchers at the University of 
Edinburgh. This uses a quadratic programming variant 
of IPM to solve the ALM problem. ALM is the process 
of finding an optimal solution to the problem of 
minimizing the risk of investments whose returns are 
uncertain. The method associates a risk probability to 
each asset and uses discrete random events observed at 
times t = 0, …, T to create a branching scenario tree 
rooted at the initial time. At each time step the 
probability of reaching a given node is computed by 
looking at its predecessor nodes. At the end of the 
process (time T+1) we can assign a probability to each 
outcome and compute the asset value at that time. The 
probability at the leaves of this branching tree will sum 
to one and we can assess the risk by looking at the asset 
value vs. the probability graph. The above steps are 

formulated as a structured quadratic problem with a 
block-angular structure, which is solved using OOPS. 

The research team at the University of Edinburgh also 
provided problem sets that  are summarized in Table 2. 
Columns 1, 2, and 3 show the number of time steps, the 
blocked matrices that compose the problem, and the 
number of assets. The last five columns are the same as 
given in the linear optimization. Again, we see that these 
problems are fairly large and very sparse. 
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Table 2: Characteristics of ALM datasets

 steps blocks assets nconstraints nvariables neqns non-zeros Density (%) 

ALM8b 3 33 50 57,274 168,451 57,274 1,009,800 0.03% 

ALM8c 3 50 50 130,102 382,651 130,102 3.378,750 0.02% 

ALM8d 3 70 50 253,522 745,651 253,522 9,070,250 0.01% 

ALM2 6 10 5 666,667 1,666,666 666,667 3,611,075 0.08% 

ALM9 5 24 4 2,077,207 5,193,016 2,077,207 23,368,500 0.01% 

UNS2 109 40 40 2,160,919 5,402,296 2,160,919 27,071,115 0.00% 

These inputs were run on the same 4-way 3.0 GHz Intel 
Xeon processor MP-based system that we described 
earlier. Figure 8(a) shows the breakdown of total 
execution time for OOPS. The regions appear to be 
slightly different than in the case of unstructured LP. As 
explained in the Interior Point Method section, OOPS 
builds an augmented matrix in each iteration of the 
optimization loop, whereas IPS performs mmm to form 
the normal matrix. This matrix is factorized using 
structure-exploiting Cholesky. Triangular solvers are 
similar to IPS, but many calls to operations on vectors 
and matrices are combined into the “Mat, Vect” region. 
For each dataset, we show four bars corresponding to 
one (1P), two (2P), and four (4P) processors, 
respectively. The time shown in this graph is relative to 
the time taken on the one-processor run. The total time 
(in seconds) for a one-processor run is given above its 
bar. The factorization routine has a large parallel section, 
followed by a global reduction (serial), followed by the 
redundant Cholesky factorization, which is duplicated in 
each processor (as described above). This duplication 
minimizes the communication, but causes the 
factorization step to exhibit less than linear scalability, as 
shown in our measurements. A similar pattern (parallel, 
serial, duplicate-parallel) occurs in the forward and 
backward solver routines, and we see a similar speed-up 
as in the factorization step. Since the solver takes a 
larger fraction of time in OOPS than in IPS, we broke it 

down into its components. The Mat, Vect section scales 
in a similar manner to the other routines. These routines 
have not been heavily optimized and have headroom for 
additional improvement. We also see a significant 
amount of overhead (11-13%) on the one-processor run 
on the larger data sets when compared with a serial 
version of OOPS. We speculate that this overhead is due 
to shared memory implementation of MPI, and we plan 
to investigate the cause of this overhead in our future 
work.  

Figure 8(b) reports the speed-up of IPS for the test 
datasets on one, two, and four processors. The scalability 
appears to be correlated with the amount of work 
required to factor the constraint matrix M. The scaling of 
OOPS does not yet exploit all of the parallelism that is 
present in the algorithm. 

To understand the performance overhead of the MPI 
calls, Figure 9 shows the results from running the Intel 
trace analysis tools on this workload. It instruments the 
code and measures the time waiting for messages. The 
instrumented runs show that a relatively small amount of 
time is spent in the MPI libraries and that almost all of 
that time is in the MPI reduction routine. It corresponds 
most closely to the “imbalance” portion of the OMP 
breakdowns. The rest of the additional time is spent in 
the OOPS code. We are investigating the source of this 
extra time. 
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Figure 8: Parallel performance of main optimization loop of OOPS 
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Figure 9: Concurrency and load balance in OOPS

CONCLUSION 
In this paper we described a parallel IPM for solving 
optimization problems. The performance of IPM 
depends on several key sparse linear algebra kernels. 
The most important kernel is the solution of the sparse 
linear system of equations. We described serial and 
parallel implementations of the sparse linear solver for 
both unstructured and structured optimization problems.   

We have done performance and scalability analysis of 
IPS–a linear optimization workload for solving 
unstructured linear programs. We reported up to 2.7x 
speed-up on the 4-way 3.0 GHz Intel Xeon processor 
MP-based system for a diverse set of linear problems. 

We also presented the performance and scalability 
analysis of OOPS–a structure-exploiting quadratic 
optimization workload for solving structured quadratic 
problems. OOPS exposes parallelism by passing 
structure information from the high-level optimization 
problems into the linear algebra layer. We achieved up 
to a 2.7x speed-up on the number of datasets from 
important asset liability management problems.   

Overall, we observed that the scalability of IPM depends 
on several key factors such as problem size, problem 
sparsity, as well as problem structure. Although we 
observed similar performance scalability for the linear 
unstructured problems and the quadratic structured 
problems, the structured problems exhibit multiple levels 
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of parallelism that are not all exploited in the current 
OOPS implementation. This leaves headroom for 
performance scalability on systems with large numbers 
of processors, which we are going to explore in our 
future work.  

One expects the optimization problem size to grow in the 
future. For example, an increased number of assets in an 
investor’s portfolio will lead to better risk diversification 
and hence higher return on investment. Many truly large-
scale optimization problems are not only sparse but also 
display block-structure, because these problems are 
usually generated by discretizations of space or time. 
These large optimization problems will clearly benefit 
from a system capable of exploiting multiple levels of 
parallelism from fine grain to coarse grain.  
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ABSTRACT 

Given the long lead time to put an entire platform solution 
together, enterprise platform architects must be able to 
predict the intersection of evolving usage models, 
deployment models, and platform technology trends in 
order to meet platform requirements several years into the 
future. Platform architects and technologists are generally 
very familiar and comfortable with predicting platform 
technology trends but the same is not true for deployment 
and usage models. Hence, we find that most platform 
architecture development is primarily incremental and 
evolutionary until one comes up against a wall of some 
sort along one or more of the vectors. Being able to 
articulate the intersection upfront has the advantage of 
influencing all three vectors, thus resulting in an optimum 
solution. Due to this potential for inter-dependency, the 
process for developing the intersection is inevitably 
iterative and complex. In this paper we concentrate 
primarily on the two vectors that are least understood by 
platform architects: usage and deployment models. We 
present a list of key solutions being adopted in different 
vertical industries based on an extensive interaction with 
industry leaders. We discuss the business usage model 
trends and the technology deployment model trends across 
the industries. We describe how the emerging models are 
different in their characteristics from those prevalent 
today, and using several real-world examples, explain the 
platform implications. Two key trends in the data centers 
of large enterprises are “scale-out” and grid computing. 
Scale-out allows application solutions to be deployed over 
a multiple independent set of resources that are networked 
together, while grid computing allows flexible and 
dynamic provisioning of these resources to scaled-out 
applications. Both these trends are driven by usage and 
deployment vectors focusing on lowering initial costs as 
well as improving utilization, scalability, and availability 

of data center resources. As enterprise compute and 
communication needs become increasingly complex, 
platform solutions from Intel have a crucial role to play in 
determining the optimum solution for these emerging 
models.   

INTRODUCTION 
As a general rule, it takes about four years to design, 
produce, validate, and take to market computer platforms 
with the microprocessor development taking the longest 
lead time. Hence, it is critical for platform architects to 
gain an understanding of the requirements of the solutions 
that need to be deployed that far into the future. In this 
paper we focus on the emerging enterprise IT solutions 
that are expected to have significant market adoption in 
2009-2011 and discuss their expected performance 
characteristics. 

There are two forces driving the rapid evolution of IT in 
the enterprise. The first is the challenge of continuous and 
rapid introduction of new or improved business processes 
to gain and retain an advantage in an extremely 
competitive market. This in turn translates into a need for 
accelerated deployment of new information systems 
capabilities (e.g., real-time decision support). The second 
driver, motivated by the prevailing trend of flat or 
dropping IT budgets, is to either cut or at least contain IT 
costs. Enterprise IT departments, faced with the challenge 
to provide new business capabilities at lower costs, are 
adopting various software and hardware technologies to 
develop, deploy, and maintain a larger portfolio of 
solutions at a reduced cost. Among these technologies are 
eXtensible Markup Language (XML), automated data 
center management, and server virtualization that uses an 
abstraction layer that decouples a consistent logical view 
of the server to the application from the actual physical 
resources that are utilized.  
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In this paper, we present the key new business solutions 
emerging in different vertical industries such as 
manufacturing and retail (e.g., intelligent inventory 
management in retail and collaborative product 
development in manufacturing) based on an extensive 
survey by Intel of key players in those industries. We 
identify key usage model categories that are common to 
these solutions (e.g., real-time supply chain management, 
collaboration, and image processing). We also briefly 
discuss some of the emerging deployment models such as 
XML and grids in the context of the usage models for 
which they are relevant. We discuss the significant new 
characteristics of these usage model categories. For 
example, real-time supply chain management often 
requires running of both transactional and decision 
support operations in the same environment, and 
synchronizing the databases underlying disparate business 
solutions more frequently. The key difference from the 
prevalent solutions of today is that all these operations 
will be running concurrently in order to enable a business 
to react very quickly to a rapidly changing environment. 

These new characteristics of the emerging usage models 
are changing how enterprise IT departments do capacity 
planning. We present several specific examples based on 
real-world solutions adopted by leading enterprises in 
different industries.   

KEY EMERGING ENTERPRISE 
SOLUTIONS 
Physicist Niles Bohr said, “Prediction is very difficult, 
especially about the future!” This is particularly true about 
IT solutions where high expectations of new technology 
are often replaced by disillusionment and practical 
compromise. Significant time and costs are involved in 
optimizing large solutions and obtaining repeatable 
performance characteristics. The penalties of optimizing a 
general-purpose platform for the wrong requirements are 
even larger. Hence, we need to balance the prediction 
horizon with the accuracy to ensure that we look far 
enough ahead to accommodate the platform design lead 
times while being accurate enough with our predictions. 
To achieve such a balance, we focus on the solutions that 
have made it successfully past the phase where only the 
“innovators” with an extraordinary tolerance for costs and 
failure are interested in them; and are being adopted by 
the mainstream early adopters who pragmatically balance 
the technical risks with business benefits (Figure 1) [1]. 
For these solutions, mainstream adoption is expected in 
2009-2011.  

Intel’s Solutions Marketing Group works very closely 
with the leaders in various vertical industries such as 
manufacturing and retail to understand the key business 
capabilities they are trying to enable. These leaders are the 

early adopters in their industries (Figure 1) whose lead 
would be followed by others in the next five to ten years. 
Intel plays the role of a “trusted advisor” in helping these 
businesses develop an IT roadmap to deploy these 
capabilities, and it also acts as a catalyst to drive the IT 
vendor ecosystem to remove any obstacles in the 
roadmap.  

Late
Majority

Early 
MajorityInnovators Early

Adopters

FocusFocus
SolutionsSolutions

Laggards

 

Figure 1: Phases of solution market adoption 

Figure 2 shows the list of key solutions emerging in 
different industries Intel has identified. The list is based 
on the value of the functionality provided by these 
solutions to the businesses and their customers in the 
industry and the IT investment expected in deploying 
these solutions. While most solutions are industry specific, 
the requirements for mobility solutions are shared across 
industries. 
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Figure 2: Key industry-specific and cross-industry solutions

USAGE MODEL CATEGORIES AND 
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Each solution shown in Figure 2 comprises two or more 
usage models. For example, consider the Digital Supply 
Chain solution in the retail industry (Figure 3). It consists 
of two usage models: the operational side of real-time 

inventory management and supply chain integration; and 
the analysis and decision-support side of making pricing 
and inventory decisions, and detecting trends and 
anomalies. Figure 3 shows two other solutions from the 
financial industry, their constituent usage models, and 
their categories. 
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Figure 3: Identifying constituent usage models of solutions and categorizing them

Rationale for Usage Model Categorization 
The usage models primarily help in identifying 
commonality across the solutions used in different 
industries. The solutions share a significant part of the 
software stack used to build similar usage models. For 
example, the eBiz/Web On-Line Transaction Processing 
(OLTP) usage model category invariably consists of Web 
servers, XML-based messaging, and links to enterprise 
applications and databases. Industry-specific applications 
(e.g., for on-line stock trading, student registration, or 
trading in electricity) might access these stacks in different 
patterns. These variations need to be comprehended in 
characterizing the usage model categories. 

The second reason is the ability to map to industry-
standard benchmarks from groups such as Transaction 
Processing Council (TPC) and Standard Performance 
Evaluation Corporation (SPEC). These benchmarks are 
widely used by IT hardware and software vendors today to 
evaluate the performance of the current enterprise 
platforms. Hence, it would be beneficial to use these 
benchmarks as the baseline and determine if and how the 
usage models differ in their characteristics. 

Common Usage Model Categories  
The most common usage model categories (based on how 
many solutions shown in Figure 2 they were part of) are 
shown in Figure 4. For each model category, we have also 
listed the forward-looking features that distinguish them 
from today’s solutions. We have also selected specific 
solutions as representative of the usage model categories 
based on two criteria: 

1. How aggressive a given industry is in pursuing the 
solution (e.g., the retail industry is a leader in 
adopting real-time inventory management while the 
financial services industry has been pushing the 
envelope in real-time analytics).  

2. The IT market impact of the solution based on the IT 
spending expected for the solution. 

The above information is based on an extensive survey of 
the industry leaders, conducted jointly by Intel and a 
research firm. 
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Usage Model 
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Figure 4: Common usage model categories

REAL-WORLD EXAMPLES 
In this section, we describe real-world examples of 
solutions that embody some of the new characteristics. We 
also discuss their infrastructure needs and the software 
and hardware capabilities that would help in meeting the 
needs.  

Real-Time Inventory Management in a Retail 
Chain 
SAP described the increase in communication and 
computing needs of a retail enterprise with 1000 shops in 
migrating from a batch-oriented inventory management 
model using SAP’s proprietary application messaging 
protocols to real-time inventory management using open, 
XML-based protocols [2].  
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Assuming a total of 33 million sales with three items per 
sale, the mySAP application communication from the 
1000 retail shops to the central data center amounts to 
2 GB per day, when the sales data are aggregated and 
communicated, once every 24 hours, using SAP’s 
proprietary interface protocol.  

Still aggregating and sending the data once every 24 
hours, if the retail chain moves to an open XML-based 
interface, the data that need to be communicated and 
processed increases to approximately 20 GB.  

Let us say the retail chain wants to react to sales trends 
faster. Aggregation delays the response. If information on 
every sale is sent to the data center to enable immediate 
response, about 200 GB of XML data has to be 
communicated and processed every day.   

Here are some of the potential hardware and software 
capabilities apart from the increases in processing speed, 
cache, memory capacity and speed, and networking 
bandwidth that could help the retail chain implement the 
real-time inventory management capability: 

•  XML acceleration appliances, separate from the 
servers, may not help in all cases, particularly if large 
XML documents need to be moved. On-chip 
acceleration using special instructions or dedicated 
cores in a multi-core chip avoids communication 
latency overheads [3].  

•  Technologies such as InfiniBand Architecture (IBA) 
and Intel I/O Acceleration Technology could reduce 
the overhead in moving large amounts of data within 
the data center [4].  

•  Software changes to minimize or accelerate data type 
conversions or better leverage the hardware-specific 
features for handling different data types; and 
increased concurrency in XML processing could 
accelerate the solution.   

Near-Real-Time Planning in Logistics 
A logistics software vendor recently assessed the 
performance implications of supporting their customer’s 
need to plan for filling orders on almost a continuous basis 
while simultaneously providing sub-second responses to 
the interactive RF terminals. This scenario exemplifies a 
couple of the new characteristics of the emerging 
eBiz/Web OLTP usage model: 

1. Databases running more frequent synchronizations 
concurrently with the operational queries to ensure 
currency of data. 

2. The same database also supporting complex, report-
generation queries to support decision-making based 
on real-time data. 

The minimum success criteria for this logistics software 
were 2.5 records/sec. for data download, 2.0 lines/sec. for 
order planning, and sub-second response time to the 
interactive users. Data download consisted of deleting a 
large number of rows in a database and inserting new 
ones. It was observed that a significant amount of time 
was being spent in deleting the rows. Using multiple 
threads for data deletion provided a significant reduction 
in time, particularly on Intel® Itanium®-based servers with 
EPIC architecture.  

Currently, platforms are optimized for either throughput in 
transaction processing environments or for single job 
completion in analysis and planning environments. The 
industry benchmarks also emphasize one or the other. 
With the increased need to support analysis and planning 
in real- or near-real-time, such stove piping will not 
provide the best results. 

Interactive Wealth Management Services 
Traditional investment brokerage firms are faced with 
severe competition from Internet discount brokers who 
can charge lower transaction fees. The traditional firms 
are trying to leverage their strength in providing valuable 
financial advice to gain an advantage.  

Charles Schwab, a pioneer in this field, wanted to provide 
a larger number of clients with objective financial advice 
at a fair price over multiple channels. They were faced 
with two requirements: 

1. The wealth management solutions need to perform at 
interactive speeds for the financial advisors to work 
online with their clients. 

2. The solutions need to be deployed on platforms based 
on standard, high-volume building blocks to keep the 
costs low. 

A cluster of multiple IBM eServer xSeries 330∗  grid-
enabled servers (using Intel  Xeon™ processors) using 
the Globus Toolkit for Linux∗ , reduced the processing 
time on the application of eight to ten minutes (and 
sometimes hours) to just 15 seconds. 

                                                           
® Itanium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
∗  Other brands and names are the property of their 
respective owners. 
  Intel and Xeon are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States 
and other countries. 
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The use of clusters of servers to solve complex problems, 
where processing capacity can grow incrementally with 
demand, is finding increasing application in various areas 
including CAD/CAE and chemical analysis and search. 
Such a scale-out model lends itself more easily to solving 
some problems more than others (refer to section entitled 
“Scale-Out Virtualization: HPC for Enterprises,” below 
for details).   

Secure Document Sharing for Global 
Manufacturing 
A large manufacturer with factories and customers across 
the globe wanted to improve how it shared its product and 
process-related documents both internally and with its 
customers. It was faced with three challenges: 

1. Delivering tailored documents to users instead of 
drowning them in documentation.  

2. Minimizing the costs in generating and continually 
updating the documents with the rapid changes in 
products and processes.  

3. Increasing concern over intellectual property and 
globalization demand a high level of security. 
However, poor usability and performance of the 
security solutions cause poor compliance by 
employees. 

All these challenges were exacerbated by globalization. 
For example, this manufacturer dealt with a relatively 
small number of customers in North America and Europe. 
In Asia, they had to deal with a much larger number of 
smaller customers (more than 1000X).  

To meet the first two requirements, the manufacturer 
moved towards a dynamic document-generation model. 
The data were retrieved from databases and Web services 
in XML format and rendered in HTML, PDF, or other 
formats for users to view.   

Disk access was the first bottleneck in such a dynamic 
document delivery system. This was avoided by caching 
the XML content in memory. Rendering XML to HTML, 
etc., became the new bottleneck. These XML documents 
were typically in the 1 MB to 5 MB range. The eXtensible 
Style sheet Language Transformation (XSLT) scripts used 
to convert XML into HTML, etc., were typically in the 
50 KB to 100 KB range.  

The overheads in using specialized XSLT acceleration 
appliances prevented any improvements to them. 
However, scaling the solution out by adding Web servers 
to run the XSLT scripts was effective, as shown in Figure 
5. 

 

Figure 5: Response time improvement with the 
number of Web servers 

To meet the needs of all its product groups and rapidly 
growing numbers of users across the world at a reasonable 
cost, significant speed-up in XSLT processing is needed. 
XSLT compilers and hardware support (without the 
overheads in moving the data around) have the potential 
to help. 

The performance needs for security are equally 
significant. Currently, about 3000 documents are in a 
secure repository used by about 10,000 users. It is 
expected to grow to 100,000 documents used by 80,000 
users in the near future. The personnel responsible for the 
solution think most of the users would use the secure 
repository only if the document access times are not 
excessive compared to non-secure access. Hence, they 
believe crypto acceleration is key to the success.  

Other key requirements relate to ensuring the 
trustworthiness of the platform. They include securing 
private keys on both the servers and clients and ensuring 
that the client software stack is not compromised. The 
Trusted Platform Module [5] and La Grande technology 
[6] are expected to meet these requirements.  

Scale-Out Virtualization: HPC for 
Enterprises 
Grid computing technology has undergone a significant 
evolution over the past three or four years: the grid has 
been gradually moving from its High-Performance 
Computing (HPC) roots in university and government labs 
to more “mainstream” enterprise applications such as 
financial models and graphical rendering for motion 
pictures. We call grids applied in this domain “enterprise 
grids.” Most of the enterprise grids are run on server 
clusters within the data center. 

The concept of enterprise grids is literally server 
virtualization turned inside out, and it represents the next 

XSLT scaling with number of web servers 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

2 4 6 8 10 12 14 16
Virtual Users

P
ag

e 
R

en
de

r 
T

im
e 

in
 S

ec
on

ds 3Grebe
2Grebe
1Grebe
Target

3 Servers
2 Servers
1 Server 
Target 



Intel Technology Journal, Volume 9, Issue 2, 2005 

Understanding the Platform Requirements of Emerging Enterprise Solutions 172 

step in workload disintermediation (decoupling 
applications from the physical platforms that run them): 
server virtualization allows multiple logical servers to run 
in one physical server. Each logical server runs one 
application. Conversely, in an enterprise grid 
environment, it is possible to apply more than one server, 
a node in grid parlance, to an application. We call this 
“Scale-Out Virtualization.”  

Enterprise grids of various sizes are getting deployed in 
different areas. Grids with 8-64 nodes are common for 
Computer Aided Design (CAD) and Electronic Design 
Automation (EDA) applications. Larger grids with up to 
256 nodes are common in financial services, oil 
exploration, and pharmaceuticals.  

Some of these problems are characterized as 
“embarrassingly parallel.” It is possible to partition these 
problems so that computation and the associated data sets 
for parts of the problem could be isolated to individual 
nodes, and hence there is very little communication 
between the nodes. Monte Carlo simulation for investment 
portfolio analysis is an example of such a problem. 
Today’s commercial servers and networks (100 MB or 
Gigabit Ethernet) could be used to solve these problems 
using large grids.  

Other problems may not be so easily partitioned due to the 
need to move data between nodes or from memory to the 
CPU on a single node. EDA applications are examples of 
such problems. Messages could be “bundled” to minimize 
the penalty due to high network latency. This would 
require rewriting some of the applications. Alternatively, 
expensive interconnect technologies may be required.  

Based on the data from several enterprise problems, we 
have derived a heuristic we call the Rule of 10: the 
degradation in latency and bandwidth between two 
consecutive layers in the hierarchy should be no worse 
than a factor of 10 for all layers in a grid. The on-CPU 
cache, main memory, disks, and network are the layers. 
For the “embarrassingly parallel” applications, this rule 
may not apply. For applications with significant data 
movement, the factor may have to be as low as 6. 
However, the Rule of 10 seems applicable to many cases. 

Let us consider a cluster of servers connected by a Gigabit 
Ethernet as an example. The actual bandwidth for Gigabit 
Ethernet is about 100 MB/s. At the next lower level in the 
hierarchy, memory bandwidths of 3.2 to 6.4 GB/s are 
typical today in commodity servers. Hence, the bandwidth 
is degraded by a factor of 32 to 64. The degradation is 
even higher for latency: with memory latencies in the 
order of 100 to 150 nanoseconds, and the Ethernet 
network latencies around microseconds, the degradation 
factor is 700-1000. Hence, solutions with significant 
network communication need to be rewritten to bundle the 

messages, or the Ethernet has to be replaced by 
networking technologies with lower latency, such as IBA. 

There are ways to work around the Rule of 10. Intel future 
platforms, for example, are expected to offer on-CPU 
caches comparable to today’s memory in size, thus 
reducing the need for memory access and hence the 
importance of reducing the memory access latency for 
many solutions [3]. 

CONCLUSION 
Wayne Gretzky, the legendary hockey player, once said 
that great hockey players go where the puck is going to be, 
not where it is. Well, the same applies to computing 
platforms. Great platforms meet what the solution 
requirements are going to be. Intel Corporation has 
identified the important solutions in vertical industries 
through extensive interactions with the industry leaders. 
These solutions were identified based on the significant 
value they offer to both the businesses that deploy them 
and their customers, as well as on the IT investments 
expected to deploy these solutions. We narrowed the 
solutions to those that are already being adopted by some 
leading businesses and are expected to be adopted by the 
majority of businesses in the 2009-2011 timeframe to 
balance the needs to be forward-looking yet accurate. We 
analyzed these solutions and identified the top usage 
model categories that are common to these solutions. 
These usage models differ significantly in their behaviors 
from the current solutions. Here are some examples of the 
differences: 

•  Competitive pressures to perform many operations in 
real-time (e.g., supply chain management, oil well 
analysis, medical imaging analysis, financial wealth 
management, and so on). 

•  Intellectual property, privacy, and regulatory 
compliance concerns, combined with globalization, 
drive a tremendous increase in the need for securing 
the platforms as well as the data that are being 
exchanged. 

•  XML, managed runtime environments, server 
virtualization, and autonomic management of the 
platforms are adopted increasingly to reduce the costs 
of developing and maintaining the solutions. 

The above differences lead to new solution behaviors that 
are not adequately captured by the current industry-
standard benchmarks. For example, the same database 
installation is increasingly required to support OLTP, 
decision support, and data synchronization concurrently.  

We discussed several examples of real-world solutions 
that provide insights into these behaviors and their 
platform requirements. The current generation enterprise 
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platforms from Intel and its partners already meet some of 
these emerging requirements. Various technologies to 
support parallelism (e.g., Hyper Threading and EPIC), 
improved data center I/O technologies, large on-chip 
caches, and the technologies to improve the trust-
worthiness of the platforms are examples. Intel’s current 
directions towards multi-core chips, LaGrande 
technology, larger on-chip caches, and faster access to 
larger amounts of data in memory are aligned with the 
solution requirements trends we have discussed. These 
platform technologies, the increasing ability to manage the 
platforms and the solution stacks running on them, and 
scale-out virtualization will make enterprise grids a viable 
deployment model for a larger cross section of solutions. 
The future platforms could potentially offer even greater 
value to these solutions through features such as support 
for accelerating XML processing and cryptographic 
operations on the chip, native support for higher-
bandwidth-lower-latency I/O, and higher platform trust.  
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