
Ray Tracing Goes Mainstream

Computer Vision Workload Analysis:
Case Study of Video Surveillance Systems

Learning-Based Computer Vision with Intel’s
Open Source Computer Vision Library

Parallel Computing for Large-Scale Optimization
Problems: Challenges and Solutions

Performance Scalability of Data-Mining
Workloads in Bioinformatics

Understanding the Platform Requirements
of Emerging Enterprise Solutions

Performance and Scalability Analysis
of Tree-Based Models in Large-Scale

Data-Mining Problems

Inside you’ll find the following articles:

Smarter computer technologies can rapidly and transparently analyze large complex datasets and explore different
outcomes, and ultimately help people do what they want to do more easily. RMS (recognition, mining and synthesis)
is the term used by Intel to describe this class of emerging applications. This issue of Intel Technology Journal
(Volume 9, Issue 2) discusses these new capabilities or “uses,” which are driving a whole new set of computer
and architecture requirements.

Compute-Intensive, Highly Parallel Applications and Uses

Intel®

Technology
Journal

Volume 09 Issue 02 Published, May 19, 2005 ISSN 1535-864X DOI: 10.1535/itj.0902

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Compute-Intensive, Highly Parallel Applications and Uses

Articles

Preface iii

Foreword v

Technical Reviewers vii

Ray Tracing Goes Mainstream 99

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 109

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 119

Performance Scalability of Data-Mining Workloads in Bioinformatics 131

Performance and Scalability Analysis of Tree-Based Models 143
in Large-Scale Data-Mining Problems

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 151

Understanding the Platform Requirements of Emerging Enterprise Solutions 165

Intel® Technology Journal

Volume 09 Issue 02 Published, May 19, 2005 ISSN 1535-864X DOI: 10.1535/itj.0902

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses ii

THIS PAGE INTENTIONALLY LEFT BLANK

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses iii

Preface

Compute-Intensive, Highly Parallel Applications and Uses
by Lin Chao
Publisher, Intel Technology Journal

“If a man can write a better book, preach a better sermon, or make a better mouse trap than his
neighbor, though he build his house in the woods, the world will make a beaten path to his door.”
The sentence, usually shortened to emphasize the better mouse trap, is by Ralph Waldo Emerson
(1803-1882), an American poet and philosopher. What Emerson said so long ago applies even today
as inventive people work to build a better computer mouse such as wireless or optical.

In the Research and Development Labs at Intel, we are applying Emerson’s philosophy to building
smarter computers which are more natural and easier to use—a lot less strict and a lot more adaptive
to humans. We’re building smarter computer technologies that can rapidly and transparently analyze
large complex datasets and explore different outcomes, and ultimately help people do what they want
to do more easily. These new capabilities or “uses” are driving a whole new set of computer and
architecture requirements.

The seven papers in this issue of Intel Technology Journal (Volume 9, Issue 2) focus on Compute-
Intensive, Highly Parallel Applications and Uses. They review the exploratory work into complex
and large “workloads” that can ultimately run efficiently on future computers. Generally, these are
characterized as compute-intensive, highly parallel workloads requiring new levels of intelligence,
performance, and sophistication in both hardware and software that does not exist today. And we look
at how the performance scalability and uses on parallel architectures of such applications can help to
best architect the next generation of computers.

The first paper is on ray tracing, a technique used in photo-realistic imagery such as in the creation of
computer games and special digital effects in movies. Ray tracing can be an important workload to
establish requirements for new architecture that will one day run efficiently on mainstream computers.

The second and third papers are on computer vision. The vast accumulation of digital data requires
new classes of applications. We are investigating computing platforms that can deliver enough
performance for these future workloads to enable their use in mass-market applications. Computer
Vision (CV) is one such workload. In the second paper we introduce and characterize some of the
most common CV algorithms and applications. We chose a complete video surveillance application as
a representative case study for a complex CV workload. The third paper looks at Intel’s Open Source
Computer Vision Library and describes using OpenCV for “learning-based vision,” where objects
such as faces, or patterns such as roads, are learned and recognized.

The fourth and fifth papers look at data mining, or the ability to extract knowledge, acquire models,
and draw meaningful conclusions from a dataset. The fourth paper examines data mining applied
to bioinformatics. Bioinformatics is the recording, annotation, storage, analysis, and search/retrieval
of gene sequences, protein sequences, and structural information. In this paper, we report on the

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses iv

performance scalability analysis of six bioinformatics applications on a 16-way Intel® Xeon™
multiprocessor system. The fifth paper looks at large-scale data-mining problems based on tree-based
models. Tree-based models, in the context of large-scale data-mining problems, provide many
challenges for a computing platform. The balance between complexity and accuracy is studied
for different parameter sets and its performance impact is discussed.

The sixth paper looks at optimization algorithms using the Interior Point Method (IPM). IPM has
become a dominant choice for solving large optimization problems for many scientific, engineering,
and commercial applications. In this paper we describe a parallel IPM for solving optimization
problems.

The seventh paper examines future IT enterprise platform requirements based on usages and
deployment models. We present the needs of various vertical industries (e.g., retail, manufacturing,
financial) and discuss the business usage and the technology deployment trends across these industries.
We describe how the emerging models are different in their characteristics from those prevalent today,
and, using several real-world examples, explain the platform implications.

These papers look at new, intelligent, large, and sophisticated workloads that can analyze large
complex datasets and explore different outcomes, and ultimately help people do what they want
to do more easily on computers. We also look at vertical industries and how their needs will steer
platform definitions. These capabilities or “uses” are driving a whole new set of computer and
architecture requirements. Let’s experiment together on future usage models impacting future
computer platforms to build tomorrow’s smarter computers.

 Intel and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses v

Foreword

Recognition, Mining and Synthesis

By:
Bob Liang
Director, Application Research Lab, Corporate Technology Group

Pradeep Dubey
Senior Principal Engineer and Manager, Innovative Platform Architecture,
Corporate Technology Group

Intel’s RMS (recognition, mining and synthesis) taxonomy1 offers a way to describe a class of
emerging applications. This issue of Intel Technology Journal (Vol 9, Issue 2) discusses a small
subset of RMS applications to help the reader understand the nature of such applications. In turn, the
reader will understand the high-level platform requirements for these workloads and the implications
for processor platforms of tomorrow.2 The technology underlying these applications is likely to have
broad applicability to a wide range of emerging applications with mass appeal in various market
segments including digital enterprise, digital home, and digital health.

The wave of digitization is all around us. While none of us has a crystal ball to predict the future
“killer app” (any new application with universal appeal), it is our belief that the next round of
applications will be about solving the data explosion problem for end-users, a problem of growing
concern for both enterprise and home users. Digital content continues to grow by leaps and bounds in
various forms, including unstructured text on the web; digital images from consumer cameras to high-
definition medical images; streams of network access logs or e-Commerce transactions; and digital
video data from consumer cameras and surveillance cameras. Add to this massive virtual reality
datasets and complex models capable of interactive and real-time rendering, and approaching photo-
realism and real-world animation.

Recognition is a type of machine learning which enables computers to model objects or events of
interest to the user or application. Given such a model, the computer must be able to search or mine
instances of the model in complex, often massive, static or streaming datasets. Synthesis is
discovering “what if” cases of a model. If an instance of the model doesn’t exist, a computer should
be able to create it in a virtual world.

Beyond its use as a taxonomy, RMS offers an integrated view of underlying technologies.
Traditionally we have treated “R,” “M,” and “S” components as independent application classes.
For example, graphics (a form of synthesis application), computer vision, and data mining are
traditionally considered independent, stand-alone applications. However, an integration of these
component technologies, if achieved real-time in an iRMS (interactive RMS) loop, may lead to
exciting new usages. For example, consider a virtual dressing room which lets you use an archive
of apparel and images, and create various synthetic combinations of these, or a further extension to

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses vi

richer forms of real-time reality augmentation. Processor platforms of today still have a long way to
go before the compute power reaches the required level for these applications, which in many cases
go well beyond teraflops. However, it is our belief that this dawn of tera-era3 has an unprecedented
value proposition to the end user in terms of significantly increased visual realism, and productivity in
the face of the digital data explosion.

1 Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and Synthesis Moves Computers to
the Era of Tera. Feb. 2005.
2 Borkar, S.; Dubey, P.; Kahn, K.; Kuck, D.; Mulder, H.; Pawlowski, S.; Rattner, J. Platform 2015:
Intel Processor and Platform Evolution for the Next Decade. 2005.
3 Gelsinger, Pat. Architecting the Era of Tera. IDF R&D Keynote Address, Feb. 2004.

ftp://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf
ftp://download.intel.com/technology/comms/nextnet/download/Tera_Era.pdf

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses vii

Technical Reviewers

Mark Chang, Sales and Marketing Group
Gideon Gerzon, Corporate Technology Group

Radek Grzeszczuk, Corporate Technology Group
Jackson He, Digital Enterprise Group

Igor V. Kozintsev, Corporate Technology Group
Valery Kuriakin, Technology and Manufacturing Group

Chu-cheow Lim, Software and Solutions Group
Joel Munter, Software and Solutions Group
Ara Nefian, Corporate Technology Group

Oscar Nestares, Corporate Technology Group
Dmitry Ragozin, Corporate Technology Group

Adam Seeger, Corporate Technology Group
Gordon Stoll, Corporate Technology Group

Rahul Sukthankar, Corporate Technology Group

Intel Technology Journal, Volume 9, Issue 2, 2005

Compute-Intensive, Highly Parallel Applications and Uses viii

THIS PAGE INTENTIONALLY LEFT BLANK

Ray Tracing Goes Mainstream 99

Ray Tracing Goes Mainstream

Jim Hurley, Corporate Technology Group, Intel Corporation

Index words: ray tracing, global illumination, ambient occlusion, immediate mode API, retained mode
API, photo-realistic rendering, physically correct photo realistic rendering, occlusion culling

ABSTRACT

We present an introduction to the rendering technique
known as “ray tracing.” We propose that its performance
has reached the stage where it is feasible that it will take
over from raster graphics in the near future for interactive
gaming and other application domains. We investigate
various aspects of ray tracing and compare and contrast
them with the raster equivalent. Finally, we analyze ray
tracing’s platform requirements and scalability potential.

INTRODUCTION
Ray tracing is the act of tracing the trajectory of a ray
from one point to another to determine if anything is hit
and the distance to the nearest hit point. Although for our
purposes ray tracing can be thought of as a “workload,” in
the larger graphics world, ray tracing is considered to be a
tool. Rendering systems use a variety of such tools to
achieve their goals. In almost all graphics workloads, the
rendering portion consumes >90% of the available
resources. Nowadays, more and more of the techniques
used in photo-realistic imagery are based on ray tracing.

HOW RAY TRACING IS USED
The following is a partial list of how ray tracing is used:

• Visibility testing is used to determine if there is an
unobstructed path from A to B. “Eye rays” are shot
from a camera to determine what can be seen. This is
known as inverse/reverse ray tracing.

• Illumination testing is used to determine if there is an
unobstructed path from A to a light source. This
enables us to determine very precise and accurate
shadows and illumination.

• Perfect reflection and refraction: subsequent ray
trajectory based on the properties of a material struck
by a visibility ray. (Very few real materials exhibit
such perfect properties.)

• Diffuse or anisotropic reflection and refraction gives
a more realistic determination of the consequences of
a ray intersecting with a realistic material. Typically,

a “shader” is invoked whenever a ray strikes a
surface. This shader then determines some
distribution and “weights” of subsequent reflected
and refracted rays in various directions.

• Light transport determines how light flows from the
various light sources in an environment to one or
more “cameras.” Recall that that we mentioned that
“eye rays” are shot from the camera into the scene to
determine what is visible. These “forward” rays travel
in the opposite direction. Some light will flow in such
a way that it does not impact the image seen by the
camera (i.e., may or may not bounce off various
surfaces in the scene, but nothing that the camera sees
is directly or indirectly effected); other light may
directly influence the image seen by the camera, and
some other light may indirectly influence the image
seen by the camera.

• Ambient occlusion is a “trick” used extensively by
Pixar and other movie-production studios. An
assumption is made that the lighting environment
consists of a horizon-to-horizon hemisphere of
uniform illumination intensity. Whenever an “eye
ray” intersects a surface, some number of visibility
rays are shot over a hemisphere sample space. The
rays are shot to determine how ”exposed” the
intersection point is to the “sky.” The farther more of
the rays travel before hitting anything, the more
exposed the intersection point. The “weight” of these
feeler rays is used to determine an ambient intensity
for the intersection point. Ambient occlusion
produces a pleasing look to the image because of its
soft intensity transitions. Note that no consideration
of material properties, or actual light placement etc. is
taken into account. Usually an ambient occlusion map
is produced as a result of this pass, and this map is
considered the base layer to which other lighting
layers are added; sometimes, this pass alone is
performed.

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 100

Figure 1: Image demonstrating Ambient Occlusion.
Copyright  2003 Pixar [1]

HOW RAY TRACING IS USED WITH
OTHER TOOLS
Photo-realistic rendering, the ultimate goal of all graphics,
is achieved by using a variety of tools, several of which
use ray tracing directly or indirectly. Ray tracing can
easily be used to determine the direct illumination of a
given scene. Indirect illumination is more difficult, as not
only light paths are important, material properties play a
significant role also. However, even in indirect
illumination, ray tracing techniques can be employed.
Some techniques effectively allocate a budget of rays
dedicated to forward tracing from light sources; the
remainder of the rays are used in the usual fashion of
inverse tracing from the camera. Forward ray tracing is
used to trace the path of light as it emanates from various
light sources, strikes various surfaces in the scene, and
reflects, refracts, etc. from surface to surface. As the rays
land on various surfaces, material shaders are invoked that
determine how the light energy is absorbed, reflected,
refracted, scattered, etc. from the surface, and at each such
spot the color at that point is stored in a cache.
Subsequently, during the inverse tracing phase, the cached
photons are effectively treated as a larger collection of
light sources. Ray tracing itself does not solve the problem
of creating photo-realistic images; however, it is an
important tool that is used extensively in conjunction with
a wide variety of other tools.

True photo-realistic rendering requires solving a “global
illumination” problem, namely that everything in a scene
affects everything else in the scene (to some degree), and
that indirect illumination is vitally important, even though
it might only have a subtle effect on the final image. It is
this subtle effect that makes the difference between a
false-looking image and one that looks “real.” (The goal is
to achieve the effect called “suspension of disbelief”; in

other words, the imagery created can be intended to be a
cartoon or “live action”).

Raster Graphics and Ray Tracing
Ray tracing and “raster graphics” can be used to attempt
to solve the above-mentioned global illumination
problem. In fact, ray-tracing techniques can achieve the
exact same results as raster-based techniques (including
all the approximations and tricks that raster solutions
typically require); however, it does not work the other way
around. Both of these approaches have their advantages
and disadvantages, and both work in very different ways
with very different system implications which we
summarize here.

Raster Graphics
The primary differentiating factor between raster- and ray-
tracing approaches is that a ray tracing approach enables
one to solve a global problem, while a raster-based
approach seeks to achieve similar results by solving a
local problem. Raster graphics attempts to render an
image efficiently by making certain convenient
assumptions. In particular, it treats triangles as if each
triangle is entirely independent of every other triangle.
Raster graphics hardware is capable of achieving
extremely high throughput. However, the triangles are not
independent, and in fact, this presumption places a lot of
restrictions on the rendering system. Modern raster
graphics APIs work in “immediate mode” where there is
an expectation that the raster engine renders each triangle
or command upon receipt. There is a concept of the
current state and the current triangle. This is the Graphics
Processing Unit’s (GPU) view of the entire world; it has
no idea if or what comes next. Modern raster systems are
extremely efficient, and some of the above-mentioned
limitations can be worked around some of the time: for
example, by rendering in multiple passes, or by employing
a variety of approximations, tricks, etc. to leverage the
tremendous performance of these devices. However, these
approximations and multi-pass approaches impose
limitations that Independent Software Vendors (ISVs)
either have to live with or learn to avoid.

Raster and ray-traced systems have different cost
functions and scaling characteristics, listed below. In
general, due to the way that raster systems work, they
process every pixel of every submitted triangle to
determine the final image that needs to be displayed.
Raster graphics performance scales strongly with the
number of triangles and pixels that have to be processed
for a given image, so cost scales roughly linearly with
viewport size and overall scene complexity, as follows:

• If a scene requires 100M triangles to be submitted for
rastering, and each has an average of 10 pixels, the

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 101

raster system has to process 1B pixels. That is if it
only takes one rendering pass.

• ISVs very carefully manage the complexity of their
content, and various occlusion-culling techniques are
used to minimize the quantity of submitted triangles.

• Because geometry must be grossly simplified to avoid
the above performance problems, various techniques
are used to create the illusion of more detail than
what actually exists.

• Texture mapping is used to simulate extra detail. In
fact, multiple layers of textures are often used.

• As mentioned earlier, part of the cost function is
related to the number of pixels that have to be
rendered. Often, multiple textures get applied per
pixel, and each layer of texture can require many
samples from the texture buffers; consequently, the
bandwidth requirements of raster-based solutions can
be astronomical.

Raster graphics assumes that the triangles in a scene are
independent of each other. This allows hardware to
process each triangle independently and even to process
multiple triangles and pixels simultaneously. But, in fact,
the triangles are not independent: triangles can cast
shadows on other objects or other triangles in the same
object, but also triangles can be translucent, and they can
reflect and refract light, and so on. Raster systems can get
around some of these limitations using a variety of tricks.
The tricks, such as those listed below, usually work under
certain circumstances, and those situations where they fail
must be avoided in order to preserve “suspension of
disbelief.”

• Complex lighting effects, caused by objects reflecting
and refracting light, can be simulated by running a
real offline global illumination solution and extracting
the results and storing them in maps. This can lead to
plausible images being generated. However, these
light maps are captured at a point in time, and with a
particular arrangement of all the lights and objects in
a scene, that they do not accommodate dynamic
lighting situations.

• The Z buffer is used to perform a binary test to decide
if a point on the screen covered by a new triangle is
closer to the camera than the same point on the screen
covered by a previous triangle. However, this makes
the assumption that all triangles are opaque. Where
translucency is involved, the translucent objects have
to be separated from the rest of the objects, and all
the objects need to be rendered in a particular order
to avoid artifacts.

• To compensate for lower triangle counts, various
bump maps and normal maps are used to create the
illusion of increased complexity. Texture maps were
originally intended to represent the micro-detailed

texture of a surface; however, raster solutions often
use texture maps to represent macro-level features.
Lower precision models cause lots of problems:
silhouette edges are blocky, and it is very difficult for
artists to get the look and feel of what they are
striving for. When the models are viewed from
shallow angles, it becomes apparent that the surface
details are not really there; the ISV has to work hard
to understand all the limitations and to avoid those
situations where these techniques break down.

• Shadows are another issue. Firstly, shadows are
critical; images without shadows appear to have
objects floating in space. Shadows are important
visual clues that help associate an object with the
surface that it is on or above, etc. Raster solutions
don’t really handle shadows because of the
independent triangles presumption; instead raster
techniques emulate shadows. There are a variety of
ways of doing this: some require rendering the scene
many times from the point of view of each light, and
some involve determining the silhouette edges of an
object from a particular light’s point of view and
casting rays through these silhouette edges to form
so-called shadow volumes, etc. Each of these
techniques works after a fashion, but all have various
artifacts and restrictions. In fact, in one raster-based
game we investigated recently, we found that there
were five different shadow algorithms in use, and the
ISV had to pick which one to use, on an object-by-
object basis.

RAY TRACING
Ray tracing, and by extension, global illumination does
not suffer from these limitations just outlined, but it has its
own set of problems that we discuss here. Firstly, there are
fundamental differences between raster and ray-tracing
approaches. Because ray tracing takes a global approach,
the natural interface to it is different than that used with
raster graphics. Recall that raster graphics use an
“immediate mode” interface, and is only aware of a
current state and a current primitive at any point in time.
Ray tracing, on the other hand, needs a “retained mode”
interface where random access to the whole scene is
required, and when a visible triangle is determined, a
specific shader needs to be invoked on demand.

Ray tracing relies on a so-called “acceleration structure”;
this is organized as a spatial partitioning or indexing
structure. Any given object or scene is decomposed into
regions of empty space and finer and finer partitioning of
filled space. This structure allows us to efficiently
determine the path a ray would take through space, and to
test it only against those triangles that would be in the
vicinity of the ray’s trajectory. Otherwise, we would need
to test every ray against every triangle to test for any

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 102

possible intersection. If the scene is composed of rigid
bodies, or articulated rigid bodies, the acceleration
structure can be constructed in advance and loaded into
the application along with the scene’s geometry. If the
scene is dynamic, then the acceleration structure may have
to be built on the fly, per frame, which can be very
expensive. We have found that kd-trees make the best
acceleration structures. If one needs to build an
acceleration structure, with a very large model, the
algorithm (greatly simplified) goes something like this:

• Read in all the vertices, think about them for a while,
then propose a (single) split based on some cost
function. This effectively gives you two sub-trees.

• Repeat the previous step for each and every sub-tree
you create until certain termination criteria are met.

• You will notice that, at the higher parts of the tree,
traditional caches won’t help much. However, once a
certain threshold is reached, where the entire sub-tree
fits, constructing the lower parts of the tree gets easier
and easier.

• Conversely, you can see that if you are given the
higher parts of the tree, building the rest of the tree is
relatively inexpensive. Unless the object literally
comes apart at the seams, the top-most parts of the
tree rarely ever change.

• Often, in a gaming scenario, for example, other parts
of the application require some sort of spatial
partitioning structure (such as the occlusion-culling
engine, the physics engine, the collision detection
engine, etc.). If all of these used the same structure
that the ray-tracing engine requires, even if at lower
precision, this would greatly facilitate those cases
where the tree needs to be built on the fly.

Figure 2: An example of a model, and how it is
decomposed into an acceleration structure

Building these trees, and building them well is a huge
topic all by itself. We have implemented algorithms that
result in incredibly good trees, but it would take a separate
white paper to describe the techniques used in detail.
Also, separate research has begun in areas related to lazily
building such trees (only build what’s needed, when it’s
needed) and building them to a sufficient (i.e., minimal)
level of detail. Finally, the very best acceleration
structures are built using a cost function that trades off a
given platform’s computation and memory system’s
characteristics: these structures need to be built on the
platform that they will get used on.

The next issue to tackle is the platform cost of tracing a
ray. This requires traversing the acceleration structure in a
serialized sequentially dependent fashion until the ray
finds a leaf node. Every time we traverse the structure it
will be for a different ray, but if you shoot rays in a
spatially coherent fashion, most likely the rays will take
the same path through the structure. The (simplified)
traversal algorithm is as follows:

• Test the ray against the split plane defined for the
current volume of space.
- Perform a simple test (a few simple ops and a

compare).

• Determine if the ray goes cleanly to one side or the
other of the split plane, or passes through it.
- Perform a data dependent unpredictable branch.

- Go to the “left,” “right” or both sub-node(s).

• Move onto the next node(s) and repeat.

Once a leaf node is encountered, we need to perform a
computationally intensive ray-triangle intersection test for
every triangle in the node. Even then, the ray might miss
all the triangles there (hence it is best that leaf nodes hug
the boundary of an object as tightly as possible). We have
optimized these algorithms extensively, and we have
optimized the acceleration structures to minimize the
number of traversal steps to a leaf node, greedily
accounting for as much empty space as possible, and we
have minimized the number of triangles in each leaf node,
for any given platform. Remember, it is cheaper to test a
ray against an empty space than to test it against a bunch
of triangles in a cell and find out that the ray misses them
all. We have figured out how to shoot arbitrary groups of
rays as a beam, performing most of the traversal using the
beam instead of all the rays in the beam. We use vector
approaches where they make sense: testing the four planes
that represent the limits of a beam against each split plane,
testing the triangles in a leaf node against each ray that
gets that far, etc.

The result of using beams is that a lot of the time, the
beam finds a very deep “entry point” in the kd-tree for all

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 103

the rays in the beam. Often, this entry point is at the leaf
node itself, meaning that the bulk of the work is now
computational. Also, as we report later, we find that we
get really excellent cache hit rates, which dramatically
lowers the external bandwidth cost of using ray tracing
(assuming traditional CPU-style cache hierarchies).

However, the really exciting news is how the ray tracing
workload scales. It is strongly effected by the number of
rays shot in a scene and weakly effected by the complexity
of the scene, which is different than raster graphics. Recall
its performance scales with the number of triangles and
pixels rendered, which is a function of the scene
complexity and the overall viewport size. In contrast, ray
tracing scales linearly with the number of rays shot and
only logarithmically with the complexity of the scene. For
a fixed resolution image, the cost of raster graphics
doubles (roughly) as the complexity of the scene doubles;
for ray tracing, you would have to increase the viewed
scene complexity by 10x to double the cost. We have
found that even with today’s hardware (HW) raster
accelerators, a single CPU running software (SW), ray
tracing will catch up with the HW raster engine around the
1M triangles per scene mark, and will always outperform
it above that. We have also discovered that the
performance of ray tracing scales linearly with the number
of CPUs. Another observation is that the performance of
ray tracing is not so much overall scene complexity
dependent, but dependent upon the visible complexity of
the scene. Imagine a world where there are millions of
triangles, but only 50K are visible at a time (such as a
building). Given the above mentioned beam concept, the
ray-tracing algorithm will quickly zero in on just those
parts of the overall structure where the visible triangles
are, effectively, shrinking the tree to just that part.
Therefore, ray tracing performance scales with the
observed complexity, rather than the overall complexity.
Effectively, the acceleration structure behaves like an
infinite level of detail occlusion-culling mechanism.

ISV Implications
ISVs can build complex models, without having to fake
details, or have harsh polyganized outlines, silhouettes,
etc. Moreover, they do not have to compromise by trading
off model and scene complexity against overall
performance. And finally, turning on more and more
features just results in more rays:

• Visibility is determined by shooting (1 - n) “eye” rays
per viewport pixel (depending on how much anti-
aliasing is needed).

• Infinitely precise shadows cost 1 ray per eye
ray/triangle hit point, per light.

• Exact reflections, refractions are 1 ray each (times the
number of subsequent bounces that are permitted).

• For translucency, keep refracting rays through
translucent surfaces until an opaque one is hit, or
some saturation point is reached.

• For anisotropic reflections/refractions. a budget of
subsequent sample rays per surface struck must be
allocated, which can be bound by the limits of new
rays per bounce, and the number of bounces, etc.

• For global illumination, use more rays: forward rays
and regular rays. In essence, everything boils down to
rays.

All of the above work exactly as expected: there are no
corner cases where they don’t. The cost of a scene can be
calculated very accurately and parameters can be tweaked
to hit frame rates. The platform implications boil down to
how coherent those rays are: eye rays can be engineered to
be highly coherent as can shadow rays. This is less so for
reflected and refracted rays. Not only can an ISV budget
exactly what he or she can (or cannot) afford given a
target platform and other application parameters such as
model complexity, etc., but an ISV can safely use these
features individually or in combination:

• For one thing, shadows are no longer an issue: they
are on all the time for everything. There is no need
for tricks, or hacks. Different algorithms don’t need
to be chosen selectively for individual objects, and
there is no need for multi-pass approaches. Moreover,
those shadows are exact, perfect, and always right,
and everything shadows everything else: a character’s
nose casts a shadow on its face, and dimples in the
nose have shadows inside them. If the ISV wants a
shadow to fall a particular way, he or she can
engineer that by selecting a mask to indicate which
lights to seek shadows from.

• There are no multiple passes of rendering from virtual
cameras behind reflective surfaces, and no need to
texture the result into the rendering pass. No
environmental maps are needed that only comprehend
infinitely distant scenery. And, multiple reflections
work–naturally.

• Translucency is no longer a problem. There is no
need for sorting of geometry or for careful ordering
of what gets rendered first. It all just works. Even if
the desire is to have everything be translucent and
there are sufficient rays available, this can also be
done.

• All of the above-mentioned techniques work together
in one pass without the need for complex sorting of
what needs to happen first, or for what limitations
exist.

Everything else that gets used in raster graphics, such as
multiple texture mapping for simulation of fine detail
surface texture, still works, and all the sampling and

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 104

filtering that goes with that. All the hacks and tricks used
to simulate complex lighting like pre-rendered global
illumination solutions etc. can still be used. In fact, you
can create exactly the same results as a raster platform
using ray tracing instead. However, unless all the hacks
and tricks that simulate complexity, shadows, and
complex lighting are used, then fine details will go
missing: triangles that appear to have surface detail and
shadows, when rastered, will actually appear flat and
featureless and have weird colors that don’t appear to
belong there when ray traced, if all the aforementioned
tricks are not used.

RAY TRACING PERFORMANCE
The basic core of a ray-tracing engine is the act of
shooting a ray, and that, in turn, depends heavily on three
key algorithms: acceleration structure traversal, ray
triangle intersection tests, and an arbitrarily complex
“shader,” invoked if there is a ray-triangle hit. We
determined that we needed to establish a “benchmark” by
which we could gauge performance: the number of ray-
segments per unit time. A ray segment is one leg of the
journey of a ray. Each “bounce,” if you will, also each ray
shot at a light to determine if the current spot is in
shadow, is also a ray segment. We determined that overall
performance could be characterized in terms of some
aggregate number of ray segments per second; there were
three main dimensions:

Figure 3: Diagram illustrating how a single pixel’s
rays decompose into eight ray segments

1. The number of rays shot per pixel–a quality metric.
More raysegs per pixel account for more and more
lights, bounces, sampling, etc.

2. The number of pixels per frame (grows in discrete
steps, 640x740 to 1024x768 …etc.).

3. The number of frames per second (30fps for movies,
75fps for games).

We determined that 450M raysegs/S was the threshold
where real-time ray tracing becomes interesting. We

assumed a frame rate of 30fps, an image size of 1M
pixels, and 15 raysegs per pixel. This could quickly
escalate (linearly) if 75fps, 3M pixel displays, and higher
quality is taken into account. We measured the
computation and raw and external bandwidth required for
a variety of scenes (recall that performance is viewport
and scene complexity dependant) and found that the per
ray segment cost was 1500-3000 FLOPS and 600-1400
raw bytes, with cache hit ratios of 300-1200:1. We were
able to achieve up to 100M raysegs/S for simple models
and large viewports on desktop machines (a 3.2 GHz
Pentium® 4 processor), and measured linear performance
scaling up to 128 CPUs in cluster configurations.

Scalability of the Ray Tracing Algorithm
Ray tracing scales strongly with the number of actual rays
that need to be traced and weakly with the overall
complexity of the scene being rendered. The number of
rays that need to be traced depends on the following
conditions:

• The raw dimensions of the viewport (i.e., the number
of pixels). Over sampling or anti-aliasing would
increase the number of rays per pixel shot into the
scene.

• The frame rate (24fps for movies, 72-75 Hz for game
content).

• The number of active lights. If a ray hits an object,
rays are shot from the hit point to all of the active
lights to determine if there is an unobstructed path.

• The number of bounces allowed per ray. Some
engines place a cap on the number of subsequent
bounces caused by reflection or refraction, as each
such bounce contributes less and less to the value
returned to the eye.

• The sophistication of the shaders invoked when a ray
hits a triangle. Most surfaces are not perfect reflectors
or refractors; instead a shader invoked at an initial hit
point may choose to shoot many secondary rays in a
non-uniform distribution, thereby integrating the
resulting returned values. Similarly, the first set of
secondary rays can spawn its own second set of
secondary rays, etc.

• Whether or not global illumination techniques are
employed. Some techniques take a budget of rays and
shoot them from the lights into the scene letting them
bounce around, thereby caching the light intensities of
the various hit points. A subsequent traditional ray
tracing pass might then consider these cached hit
points as additional light sources, for example.

® Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.

Light 1

Object 1

Object 2

Image plain

Light 2

Light n

Object 3

Eye ray
Reflection ray

Shadow rays

Pixel

Hit point

Hit point

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 105

Ray tracing scales weakly with the complexity of the
scene because of the acceleration structure. Due to the
structure’s hierarchical nature, ray tracing reduces the cost
of finding a ray triangle intersection to O Log N. As the
size of the model increases linearly, the overall size of the
acceleration structure can grow linearly also, but the cost
of finding an intersection doesn’t.

Scalability studies for raster graphics and ray tracing
graphics have been performed. In general, the cost of
raster graphics processing is linear with the number of
pixels to be processed. The cost of ray tracing scales
linearly with the number of rays shot, so roughly one can
claim that ray tracing performance scales linearly with
viewport size.

Figure 4: Frame complexity vs. performance of SW
ray tracing vs. HW raster

If the viewport size remains fixed, then the ray-tracing
performance scales logarithmically with the complexity of
the scene. This means that if you compare a HW raster
engine and a SW ray-tracing engine using the same input
for both engines, although the HW will initially beat the
SW, the SW will eventually catch up with the HW. In fact
we measured this and found that the intersection point is
in the vicinity of the 1M triangle range, i.e., when the
scene complexity exceeds 1M triangles, a SW ray-tracing
solution will always outperform a HW raster solution.

Figure 4 is a log/linear chart. We created many versions of
the same model at various resolutions from 10K to 10M
triangles, and we fed them into an nVidia GeForce FX
4200 (lower blue curve) and an nVidia GeForce FX 5900

Ultra (upper blue curve). A SW ray tracer running on the
same 3.2 GHz Pentium 4 processor (with a 512 KB L2
cache) was used to drive the HW cards (performance
above the 10M triangle mark is extrapolated from curves
fitted to the measured data). The curved blue lines show
the performance of the HW cards: performance declines at
1/X. The (almost) straight yellow/orange lines represent
SW ray-tracing engine performance on a single processor
and 2- and 4-way Symmetrical Multi-Processor (SMP)
systems. Performance declines at 1/Log(X).

Scene and Visibility Complexity Implications
Figure 5 shows the three scenes used in this analysis of the
ray-tracing algorithm. The scenes are carefully chosen to
span a wide range of visual complexity. One can see that
the level of detail as well as the quality of the images are
at least as good as those produced by the high-end raster
graphics engine today.

The first scene is a typical bar illuminated with one light.
The model consists of about 250K triangles with about
300K vertices. The size of the acceleration structure that
represents the spatial distribution of detail is 18 MB, and
the scene data itself is 29 MB. The model has 54 different
textures, and the texture maps to a total of 30 MB in size.
Given the camera placement in this scene, the majority of
the room’s details are visible. There are no reflections or
refractions in this scene. The second scene is a top view of
a VW Beetle illuminated with three lights. The model
consists of 1.87M triangles with about 4M vertices. The
size of the acceleration structure is 127 MB, and the scene
data itself is 224 MB. The image uses 20 texture maps
totaling 11 MB in size. This particular view of the car was
chosen because most of the geometric detail is in the
interior of the car. Reflections are enabled with a
maximum of two reflections per ray. The third scene is of
the inside of a room in UC Berkeley’s Soda Hall. The
model consists of 2.2M triangles with about 1.6M
vertices.

The size of the acceleration structure is 148 MB; the scene
data is 226 MB. The model has 20 texture maps totaling
17 MB in size. This model was chosen because despite the
fact that the whole model has 2.2M triangles, only a small
percentage is visible at any time. If the camera is outside,
we can see only the shell of the building; if it is inside the
building we can only see the details of that particular area.
In this particular room there are three lights. The full
model has 1300, but the rest are disabled. Reflections and
refractions are disabled.

 Frame Complexity Vs Performance

0

10

20

30

40

50

60

5E+5 1E+6 3E+6 7E+6

Triangles/Frame

FP
S

HW Raster Actual - nVidia FX5900 Ultra
SP SW Ray Traced Actual
HW Raster Actual - nVidia GFx4200
DP SW Ray Traced - Actual
4P SW Ray Traced - Actual
SP SW Ray Traced Trend (log)
HW Raster Trend - nVidia FX5900 Ultra
HW Raster Trend - nVidia GFx 4200
DP SW Ray Traced - Trend
4P SW Ray Traced Trend (log)

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 106

Figure 5: Scenes with different visual complexities used in this ray-tracing analysis

Table 1 shows the raw FLOPs and bandwidth required
per ray segment across the various models all rendered at
the same 1024x1024 resolution. As you can see, there is
some correlation between overall model complexity and
required performance as we go from the bar scene (250K
Triangles) to the beetle scene (~2M Triangles). Although
complexity increases 10x, the computational and
bandwidth costs only increase ~2x.

Table 1: Computation and memory requirements

Measured Data Room (Bar) Car (Beetle) Building (Soda Hall)

Flop / RaySeg 1518 2954 1488

Byte / RaySeg 586 1382 793

Byte / Flop 0.386 / 2.59:1 0.467 / 2.14:1 0.533 / 1.87:1

Table 2: Bandwidth at each level of memory
hierarchy

Measured Data Room (Bar) Car (Beetle) Building

Core to L1 BW 1,300.0 GB/s 920.0 GB/s 1,260.0 GB/s

L1 to L2 BW 66.5 GB/s 57.6 GB/s 49.5 GB/s

External BW 6.1 GB/s 12.7 GB/s 1.1 GB/s

Raw / Ext BW 216:1 72:1 1141:1

However, as we go from the Beetle to the soda hall, we
note that even though both models are about equally
complex, because only a fraction of the scene is visible
in any frame, the cost is dramatically lower for the soda
hall. Table 2 shows the raw and cache filtered
bandwidths required for the same scenes assuming each
is rendered at 30fps. Here we see that the cache hit rate
seems to correlate with the observed model complexity,
so the soda hall scene shows the best performance thanks
to the beam effect zeroing in on the portion of the
acceleration structure that is effectively used by the ray
tracing algorithm.

Performance Scalability Studies
Performance data was collected on 2-, 4- and 8-way
SMP machines and for large cluster configurations with
up to 128 nodes. As you can see from Figure 7,
performance scales linearly with the number of
processors for the SMP systems, and from Figure 8 you
can see a similar story for clusters of systems with up to
128 nodes. We also measured performance with and
without hyper-threading on the SMP systems. From
Figure 6, you can see that we get a >25% overall
performance improvement across the board when hyper
threading is turned on.

Geometry: 306K Vertices,
234K Triangles (30 MB)

Texture: 54 Textures
(30 MB)

1 light

Room (Bar)

Geometry: 1.6M Vertices,
2.2M Triangles (226 MB)

Texture: 20 Textures
(17 MB)

3 lights

Car (Beetle) Room (Soda Hall)

Geometry: 4M Vertices,
1.87M Triangles (224 MB)

Texture: 20 Textures
(11 MB)

3 lights

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 107

Figure 6: Hyper-threading effect on ray-tracing

performance for 1-, 2-, 4- and 8-CPU systems

Figure 7: Scaling of ray-tracing performance for
2-, 4- and 8-way SMP machines

(L = Lights, R = Reflections)

Figure 8: Scaling of ray-tracing performance for
cluster systems with 1-128 CPUs

CONCLUSION
Ray tracing has long been considered too expensive for
mainstream rendering purposes. Movie production
studios have only recently begun the transition to using
it; however, the true cost of ray tracing has been very
poorly understood until recently. It is now poised to
replace raster graphics for mainstream rendering
purposes. Its behavior is very well suited to CPU
processors, and scales well with hyper threading and
multi-processor configurations. The traditional cache
hierarchy associated CPUs is very effective at managing
the external memory bandwidth requirements. For ISVs,
a transition to ray tracing is a huge step forward freeing
them from all the limitations imposed on them by
today’s raster-based approaches. Ray tracing is one tool
that can enable ISVs to aspire to achieving high fidelity
photo (or cartoon) realistic imagery.

ACKNOWLEDGMENTS
Various people contributed to the materials that went
into this report including Gordon Stoll, Alex Reshetov,
Victor Lee, and Alexei Soupikov. If I left anyone out,
please accept my apologies in advance.

REFERENCE
[1] P.H. Christensen, D.M. Laur, J. Fong, W.L. Wooten,

D. Batali, “Ray Differentials and Multiresolution
Geometry Caching for Distribution Ray Tracing in
Complex Scenes,” Eurographics 2003 conference,
Computer Graphics Forum, Volume 22, Issue 3
(September 2003).

AUTHOR’S BIOGRAPHY
Jim Hurley is a principal engineer in the Application
Research Lab of the Corporate Technology Labs at Intel.
He has been working in the area of computer graphics
for over 20 years. His e-mail is jim.hurley at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

RT Scalaiblity with load imbalance resolved

0

16

32

48

64

80

96

112

128

0 16 32 48 64 80 96 112 128

Soda Hall
2.18M
triangles, Eye
Tracer

Soda Hall
2.18M
triangles, 3
lights, 1
reflection
Beetle 1.8M
triangles, 3
lights, 1

 R y T r a c in g S c a la b i l i ty V s H T

0 .0 0 %

5 .0 0 %

1 0 . 0 0 %

1 5 . 0 0 %

2 0 . 0 0 %

2 5 . 0 0 %

3 0 . 0 0 %

3 5 . 0 0 %

4 0 . 0 0 %

1 2 4 8

C P U s

P
e

r
fo

r
m

a
n

c
e

 I
n

B a r1
B a r2
B e e t le 1
B e e t le 2

Ray Tracing Speedup Vs SMP CPUs

0
1
2
3
4
5
6
7
8
9

1 2 4 8

CPUs

M
u

lt
ip

lie
r

Bar, L=69, R=1
Bar, L=69, R=2
Beetle, L=3, R=1
Beetle, L=3, R=2

http://developer.intel.com
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 9, Issue 2, 2005

Ray Tracing Goes Mainstream 108

THIS PAGE INTENTIONALLY LEFT BLANK

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 109

Computer Vision Workload Analysis:
Case Study of Video Surveillance Systems

Trista P. Chen, Corporate Technology Group, Intel Corporation
Horst Haussecker, Corporate Technology Group, Intel Corporation

Alexander Bovyrin, Corporate Technology Group, Intel Corporation
Roman Belenov, Corporate Technology Group, Intel Corporation

Konstantin Rodyushkin, Corporate Technology Group, Intel Corporation

Alexander Kuranov, Corporate Technology Group, Intel Corporation
Victor Eruhimov, Corporate Technology Group, Intel Corporation

Index words: computer vision, workload analysis, RMS, video surveillance, foreground detection, estimation-
maximization, Gaussian mixture, particle filter, condensation filter, Markov chain Monte Carlo, eigen
analysis, singular value decomposition, optical flow, motion estimation

ABSTRACT

The vast accumulation of digital data requires new classes
of applications that impact a computer user’s life. We are
investigating computing platforms that can deliver
enough performance for these future workloads to enable
their use in mass-market applications. Recognition,
Mining, and Synthesis (RMS) are three key classes of
workloads that distill enormous amounts of data. Among
these is Computer Vision (CV), an important workload
that will greatly benefit from future architecture and
algorithm innovations.

We illustrate these innovations by introducing and
characterizing some of the most common CV algorithms
and applications. We focus on (1) algorithms for Gaussian
mixture models, (2) particle filtering (condensation
filtering), and (3) optical flow/motion estimation, which
are key ingredients of many modern CV algorithms. We
also discuss computer vision applications, such as video
surveillance, autonomous (intelligent) vehicles and driver
assistance systems, entertainment and augmented reality,
and smart health care.

We chose a complete video surveillance application as a
representative case study for a complex CV workload.
Video surveillance is one of the most resource-demanding
CV applications that has wide-spread application. We
analyze an entire pipeline of a video surveillance system
to obtain computation and bandwidth characteristics.

Our characterization of individual CV algorithms as well
as complete CV systems can be used to guide algorithm
researchers to develop new algorithms that run faster on
existing and future computing platforms. Furthermore, we
hope that it will raise the awareness of the application
developers to optimize their programs. It will also provide
input data for architects to develop future computing
platforms that run these workloads more efficiently.

INTRODUCTION
The amount of data in the world is doubling every three
years. This includes data found on the Web, in our
personal albums, and digital music collections, etc.
However, these data are usually not organized efficiently
and not used to their full extent. For example, we might
spend hours opening images we have on our hard-drives
(assuming they are still stored in the hard-drive without
losses) to look for one image of ourselves with a
particular person. Looking forward, three fundamental
processing capabilities: Recognition, Mining, and
Synthesis (RMS), will be the key to future data
processing, and Computer Vision (CV) is one of its main
workloads.

This paper is organized as follows. In “Trends in
Computer Vision Workloads,” we discuss the key
algorithms and applications of CV workloads, as well as
current trends. In “Introduction to the Video Surveillance
System,” we study in more detail one of the most
representative CV workloads: video surveillance. We first

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 110

describe the complete pipeline of a video surveillance
system and its individual components, and then we present
results from workload analysis of the video surveillance
system. We conclude with a summary of our findings and
future research opportunities.

TRENDS IN COMPUTER VISION
WORKLOADS

Key Algorithms of Computer Vision
Workloads
Computer Vision (CV) algorithms can be categorized as
low-level image-processing techniques and high-level
analysis techniques. Image-processing techniques include
filtering, and feature extraction, which have been
extensively studied and are thus not elaborated on in this
paper. High-level analysis usually involves probability-
based approaches. We discuss the Gaussian mixture
model, and particle filters, since these are used extensively
in tracking and motion analysis.

We believe the trend in CV algorithms is moving towards
higher level analyses (such as semantics), which make
extensive use of probability-based techniques. Probability-
based algorithms are our main focus. We start with
discussing probability distribution models. We then
discuss multi-model data fusion from color images, the
integration of color video and range data, and the
integration of face images, fingerprint images, and iris
images.

Gaussian Mixture Model
In order to track an object in the scene, knowledge about
what the object looks like is needed. Such knowledge is
described by the statistical distribution of the region of
interest (which could be the foreground object or the
background). The Gaussian mixture model is used widely
to describe the region of interest [1]-[6], and has been
incorporated into a variety of algorithms for tracking and
recognition in CV.

A Gaussian mixture model with m components is
described as a sum over Gaussian probability
distributions:

() ()∑
=

=
M

m
mmm IxNObjxp

1

2,, σµπ

where mu is the mean of component m , mσ is the

variance of component m , and mπ is the weight of

component m . By applying the Estimation-
Maximization (EM) algorithm, the Gaussian mixture
model parameters can be trained.

Particle Filter/Condensation Filter
The particle filtering algorithm is a sequential Monte
Carlo method. The algorithm is powerful in
approximating non-Gaussian probability distributions,
and it has a wide range of applications including object
tracking in CV [7][8][9]. Particle filtering is based on
sequential importance sampling and Bayesian theory. It
models the data distribution by random sample measures
composed of particles, that are samples from the space of
the unknowns, and their associated weights.

There are two main steps in the algorithm:
selection/updating and mutation/prediction. The first step
selects the particles for reproduction. The particles
representing the most likely parameter candidates are the
ones most likely to be selected. During this step, heavy
particles generate new ones, while light particles are
eliminated. The second step allows each particle to evolve
according to a given transition probability kernel. The
pictorial description of the algorithm is shown in Figure 1.

Figure 1: A pictorial description of particle filtering

Similarly, in using random samples to estimate
distribution, Markov Chain Monte Carlo (MCMC) is also
often used. References can be found in [10][11].

Optical Flow/Motion Estimation
Optical flow estimation is a technique used to compute
the apparent image motion field of the scene. Besides
tracking objects, the motion field is useful for extracting
objects from video sequences. When there is discontinuity
in the motion field, it often means there are different
depths of pixels and the depth discontinuities may
correspond to the outlines of different objects. An
introduction to optical flow can be found in [12][13], and
its application to road detection can be found in [14].

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 111

Key Computer Vision Applications and
Opportunities
Digital video recording devices are now ubiquitous in our
daily lives. They are mounted indoors in offices,
hospitals, and outdoors in parking lots and intersections.
Some vehicles even have cameras recording passengers
and the surroundings of the car. Massive amounts of
video data are collected by these “digital eyes.” CV
technologies can add intelligence to these digital eyes,
adding “brains” to these imaging devices.

With both digital eyes and brains, CV can be a very
useful tool: it can be used for video surveillance,
entertainment/augmented reality applications,
autonomous vehicles and driver assistance systems,
robotics, and smart health care. With the rapid growth in
CV, we believe more innovation in this field is inevitable.
We now discuss these CV applications.

Video Surveillance/Security
Video surveillance addresses real-time observation of
humans or vehicles in some environment (indoor,
outdoor, or aerial), leading to a description about the
activities of the objects with the environment or among
the objects. It is used mostly for security monitoring, as
well as traffic flow measuring, accident detection on
highways, and routine maintenance in nuclear facilities,
etc. Interested readers can refer to [17][18].

From a workload analysis perspective, video surveillance
is one of the most interesting CV applications. The reason
is twofold. First, a complete video surveillance system
consists of foreground segmentation, object detection,
object tracking, human or object analysis, and activity
analysis. It touches many core topics of CV. By
understanding and analyzing a complete video
surveillance system, we can obtain insights on general CV
workloads. Second, video surveillance is currently
gaining increasing importance for security applications
worldwide. “Traditional” video surveillance systems have
been used pervasively in airports, banks, parking lots,
military sites, etc. However, to get any useful information
from these systems, humans either have to watch a
massive amount of video data in real-time with full
attention to detect any anomalies, or the video data can
only be used as evidence after an abnormal event has
occurred, due to the lack of real-time automatic tracking
and analysis. Automatic video surveillance, as opposed to
traditional video surveillance, adopts CV algorithms such
as those mentioned in the last section to alleviate the load
on humans and to enable preventative acts when an
anomaly is detected. We will use the term video
surveillance, instead of automatic video surveillance,

hereafter. A comprehensive introduction to video
surveillance systems can be found in the next section.

Autonomous Vehicles and Driver Assistance Systems
Driver safety is a very important issue in our lives. CV
can serve as a third eye for a driver to enhance the safety
of vehicles and of their occupants. Example uses of CV
for intelligent vehicles include (1) parking assistance; (2)
landmark detection to assist the car in following the road;
(3) traffic sign detection and recognition for route
planning and alerting the driver; (4) obstacle detection,
especially detecting the presence of pedestrians in a
driver’s blind spot; (5) driver condition monitor for
intelligent airbag deployment and to monitor a driver’s
distraction level [19][20][21].

Figure 2 (from [22]) shows a road detection example. The
detection result can be used for the later obstacle
detection in knowing the 3D location of the obstacle.
Figure 3 from [23] shows an example of how CV can help
in locating pedestrians/obstacles. Pedestrian/obstacle
detection and tracking is harder than conventional object
detection and tracking. Both the camera in the car and the
objects are moving. The background changes constantly.
Figure 4 (from [24]) shows different poses of a driver for
safe airbag deployment as shown in Figure 5 (from [24]
as well).

Figure 2: Road-detection result for highways and the
3-D projected model with different conditions. © 2005

IEEE, courtesy of [22]

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 112

Figure 3: Obstacle detection example: fusion of the
results from two resolutions. (a) Input image, (b)
results of low-resolution processing, (c) results of
original resolution processing, and (d) final fused

results. © 2005 IEEE, courtesy of [23]

Figure 4: Example images of occupant script poses.
From top left: sitting normally, leaning halfway,

leaning completely forward, leaning back, leaning
right, leaning left, moving hands about cabin, opening
glove box, hands on face, stretching, adjusting radio,
hat in lap, putting on hat, moving while wearing hat,

removing hat, feet on dashboard. © 2005 IEEE,
courtesy of [24]

Figure 5: Occupant position and posture-based safe
airbag deployment. © 2005 IEEE, courtesy of [24]

Entertainment/Augmented Reality
Another interesting application of CV techniques is
augmented reality, which combines real video content, a
real object extracted from the video, and rendered
graphical models. That is, three-dimensional virtual
objects are embedded in the real video scene. Augmented
reality applications can be seen in entertainment scenarios
such as games and movies. This technique is useful for
3D manipulation and maintenance tasks, and it is helpful
during surgical procedures as clinical data can be overlaid
on real video content.

CV techniques are needed to extract the 3D information
from the environment, so that the virtual objects can be
placed in the proper locations (an example is shown in
Figure 6 from [25]). Articulated body tracking can be
used to animate the character in the gaming environment
(an example is shown in Figure 7 from [26]).

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 113

Figure 6: Visible-surface rendering of texture-mapped
affine virtual objects. Affine basis points were defined

by the centers of the four green dots. The virtual
towers were defined with respect to those points: (a)
initial augmented view; (b) augmented view after a

clockwise rotation of the object containing the affine
basis points; (c) hidden-surface elimination occurs

only between virtual objects; correct occlusion
resolution between physical and virtual objects

requires information about the geometric relations
between them; (d) real-time visible surface rendering

with occlusion resolution between virtual and real
objects. © 2005 IEEE, courtesy of [25]

Figure 7: Virtual metamorphosis. The motion of the
person (P1) in the dancing area controlled the

movement of the tuxedo-wearing cartoon character
(C1). A person in another dancing area controlled the
movement of the sumo wrestler cartoon (C2). © 2005

IEEE, courtesy of [26]

Smart Health Care
CV can be used in health care for the elderly and the
disabled. Human body tracking and activity analysis can
help detect anomalies, such as a person falling. Human
subjects can also use their hand or body gestures to
control the home environment if hand or body tracking is

in place [27]. Similar ideas can be applied to smart offices
and smart homes.

We do not discuss CV for medical image-related
applications in this paper. Although CV has been studied
extensively, the techniques used are mostly lower-level
image processing. Interested readers can refer to [28].

INTRODUCTION TO VIDEO
SURVEILLANCE AND COMPUTER
VISION
Traditional video surveillance is labor intensive and
usually not very effective. Video surveillance with
computer vision techniques, however, saves on labor and
provides a consistent monitoring quality. The input to a
video surveillance system is video streams from a single
or multiple cameras. The system analyzes the video
content by separating the foreground from the
background, detecting and tracking the objects, and
performing a high-level analysis. The high-level analysis
provides results such as a scenario being normal or
abnormal. The human operator can then focus on the
abnormal scenarios and not have to stare at the video
trying to find any anomaly.

A general scheme of the video surveillance system is
shown in Figure 8, where

• A “Foreground/Background (FG/BG) Detection”
module performs FG/BG classification of each image
pixel.

• A “Blob Entering Detection” module uses the result
(FG mask) of the “FG/BG Detection” module to
detect that a new blob object enters the scene.

• A “Blob Tracking” module is initialized by the “Blob
Entering Detection” module. This module tracks each
blob from the tracked blob list.

• A “Trajectory Generation” module collects all blobs’
positions and saves each blob trajectory to hard disk
when the motion of the object is no longer presented
(for example, when the tracking is lost).

• A “Trajectory Post Processing” module executes a
smoothing function on a blob trajectory. This module
is optional and need not be included in a specific
pipeline.

• A “Trajectory Analysis” module performs a blob
trajectory analysis and detection of abnormal
trajectories.

We will discuss each module in later sessions.

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 114

FG/BG
Detection
Module

Blob
Tracking
Module

Trajectory Generation
Module

Frames
Blob Entering
Detection
Module

Trajectory
PostProcessing
Module

Blobs
(Id,Pos,Size)

Blob position correction

Trajectory
Analysis
Module

Abnormal
Tracks

Figure 8: Video surveillance system pipeline

Foreground and Background Estimation
Given a video sequence, extracting the FG from the BG is
an important step in the whole video surveillance pipeline.
FG estimation is the first stage in the pipeline. Its accuracy
affects the accuracy of the later stages. It could affect the
performance of the later stages as well. Note that in this
paper we use “accuracy” for algorithm accuracy, and
“performance” for computation performance such as the
speed of computation.

FG detection is generally easier in the indoor
environment. Ideally, we want FG/BG estimation to work
well in both indoor and outdoor environments. The
outdoor environment is more complex, as wavering tree
branches, flickering water surfaces, periodic opening and
closing of doors, etc. are occurring. We use the approach
proposed by Li et al. [29] in our video surveillance
system, for its capability in processing complex
backgrounds. This method is based on pixel color and
color co-occurrence statistics. The pixel color and color
co-occurrence distributions are represented by histograms.
Bayes decision rule is applied to classify the pixel to BG
or FG pixel. The BG is updated after the classification of
pixels. The algorithm can successfully handle gradual as
well as sudden BG changes, and stationary as well as
moving objects.

Figure 9: Foreground extraction in outdoor
environment

Blob Entering Detection
Our blob detection module is based on a connected
component tracker [30]. It does the following:

1. Calculates connected components of the FG mask
obtained by the FG/BG estimation module. Each
component is considered as a blob.

2. Tracks each blob by trying to find it in the current and
the previous frame.

3. Adds a new blob into the tracked blob list if it can be
tracked successfully across multiple successive
frames.

With the tracked blob list, we can apply object detectors
such as those proposed by [31][32] to determine the class
of the blob objects: “human,” “car,” or “unknown.”

Blob Tracking
The blob tracking module provides frame-by-frame
tracking of the blob position and size. We developed a
hybrid object tracker that consists of two components. The
first one is a connected-component tracker. It provides
reliable and fast tracking results when there is no overlap
of two human blobs. The second component is a tracker

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 115

that is based on mean-shift algorithms and particle
filtering [33][34]. A Kalman filter is used to predict the
position of the blob in the next frame, thus implying that
overlap will occur in the next frame. If overlap is to occur,
the second component, the particle filter-based tracker, is
used. Otherwise, the fast connected-component-based
tracker is used.

PF
tracker

Object collision detection

CC
tracker

yes no

Figure 10: Switching of trackers

Activity Analysis
To detect the anomaly of a scene, we classify the blob
trajectories. Trajectory analysis approaches can be found
in [35]-[38]. To detect abnormal trajectories, a histogram
approach is used. This method treats a trajectory as an
independent set of feature vectors. Each feature vector
includes such features as blob position, blob velocity, and
blob state duration. A 5D histogram of these features is
continuously collected and analyzed. Thus, if the current
blob has features that were never or rarely observed
before, then the blob and its trajectories are classified as
abnormal.

Figure 11: Abnormal trajectory

WORKLOAD ANALYSIS OF THE VIDEO
SURVEILLANCE SYSTEM
In this section, we profile the video surveillance system by
the Intel® VTune Performance Analyzer [39]. We

® Intel and VTune are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

identify hot spots for future performance improvement,
either in algorithm modification or in hardware
acceleration. Furthermore, we explore the distribution of
the operations.

Profiling our system shows that the most computationally
expensive modules of the whole video surveillance system
are FG detection (up to 95% of execution time) and object
tracking (about 5% when only the connected components
method is used, and up to 20% when mean shift
algorithms with particle filtering is employed). Histogram-
based trajectory analysis doesn’t take a significant portion
of the computational resources; although more
sophisticated techniques may potentially contribute more
to this workload. Note that the numbers given are not
universal to all kinds of scenarios including both indoor
and outdoor environments. In a scene where there are
more objects presented, object tracking may consume a
larger proportion of computational resources, whereas the
resources used by FG/BG estimation remain about the
same.

The most computationally expensive module of the
pipeline, FG/BG estimation, consumes 1 billion
microinstructions per frame of size 720x576. On a 3.2
GHz Intel® Pentium 4 processor, therefore, it takes 0.4
sec.

We further profile the FG/BG module as shown in Figure
12. The most expensive part of the algorithm is the
histogram update, which scans all histogram bins.
Classification uses only a subset of the histogram. Other
parts of the algorithm work only with frame pixels,
searching the place for the current pixel value.

10%

60%

25%

5%

Classification

Histogram Update

Change Detection

Noise removal

Figure 12: Foreground detection algorithm profile

 Intel and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Abnormal trajectory

Normal trajectories

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 116

The algorithm consumes a large amount of memory. Each
pixel keeps a set of color and color co-occurrence
histograms, which takes up about 1 kb per pixel. The
whole frame, of size 720x576, needs about 400 MB of
memory. However, according to the memory statistics (see
Table 1), accesses to the histogram are mostly cached, so
we don’t have to read the same histogram values from the
memory several times; we can get them from the cache.

Table 1: Memory characteristics of foreground
detection algorithm

L1 cache hit rate 90%

L2 cache hit rate 77%

Bus data traffic per frame 134 MB

Bus utilization 6%

We now look at the operation distribution (as shown in
Figure 13). Most of the arithmetic operations are from
integer operations. Operations done on pixel values and
histogram bins are mostly integer operations. We see
similar situations in many CV workloads where pixel
values, histograms, and array indices calculation, are often
involved. Floating-point operations in FG/BG estimation
are minimal, since the FG/BG algorithm accesses floating-
point data only for the histogram bin that is hit by the
pixel value. The branches portion is noticeable. However,
the branch prediction is good (about 90% correct).
Therefore, mis-predicted branches do not significantly
impact performance.

56%

23%

6%

9%
3% 3%

Integer ops

Loads

Stores

Branches

SIMD ops

FP ops

Figure 13: Operations distribution for foreground
detection algorithm

SUMMARY
RMS will be the key to future data processing. CV
workload is one important RMS workload. In this paper,

we talked about trends in CV algorithms and applications.
Understanding the trends in CV algorithms and identifying
trends in CV applications help Intel in developing future
computing platforms.

We then focused on video surveillance systems. A
complete video surveillance pipeline captures important
aspects of many CV workloads. Video surveillance is one
of the most important and resource-demanding CV
applications. We identified the hot spots and operation
distributions of the system using the Intel VTune
Performance Analyzer. Such performance analysis results
will be useful for future Intel architecture innovations.

ACKNOWLEDGMENTS
The authors thank Christopher J. Hughes, Yen-Kuang
Chen, and Sanjeev Kumar for providing insights into this
paper and for editing the technical content. We also thank
the paper referees for their valuable comments.

REFERENCES
[1] R. Hammond and R. Mohr, “Mixture densities for

video objects recognition,” 2000 IEEE International
Conference on Pattern Recognition, pp. 71-75.

[2] R. Wilson, “MGMM: multiresolution Gaussian
mixture models for computer vision,” 2000 IEEE
International Conference on Pattern Recognition, pp.
212-215.

[3] M. Harville, G. Gordon, and J. Woodfill,
“Foreground segmentation using adaptive mixture
models in color and depth,” 2001 IEEE Workshop on
Detection and Recognition of Events in Video, pp. 3-
11.

[4] Y. Zhu and K. Fujimura, “Driver face tracking using
Gaussian mixture model (GMM),” IEEE Intelligent
Vehicles Symposium, June 2003, pp. 587-592.

[5] Z. Zivkovic, “Improved adaptive Gaussian mixture
model for background subtraction,” ICPR 2004, pp.
28-31.

[6] C. Stauffer C, W.E.L. Grimson, “Adaptive
background mixture models for real-time tracking,”
1999 IEEE CVPR.

[7] M.S. Arulampalam, S. Maskell, N. Gordon, and T.
Clapp, “A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking,” IEEE
Trans. Signal Processing, 50(2), Feb. 2002, pp. 174-
188.

[8] F. Gustafsson, F. Gunnarsson, N. Bergman, U.
Forssell, J. Jansson, R. Karlsson, and P.-J. Nordlund,
“Particle filter for positioning, navigation, and

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 117

tracking,” IEEE Trans. On Signal Processing, 50(2),
Feb. 2002, pp. 425-437.

[9] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T.
Ghirmai, M.F. Bugallo, and J. Miguez, “Particle
filtering,” IEEE Signal Processing Magazine, Sept.
2003, pp. 19-38.

[10] Z. Tu and S.-C. Zhu, “Image Segmentation by Data-
Driven Markov Chain Monte,” IEEE Trans. On
PAMI, 24(5), May 2002, pp. 657-673.

[11] J.C. Spall, “Estimation via Markov Chain Monte
Carol,” IEEE Control Systems Magazine, April 2003,
pp. 34-45.

[12] J. Barron, D. Fleet, and S. Beauchemin,
“Performance of optical flow techniques,” Int. J.
Comput.Vis., vol. 12, no. 1, 1994, pp. 42-77.

[13] A. Verri and T. Poggio, “Motion field and optical
flow: qualitative properties,” IEEE Trans. On PAMI,
11(5), May 1999, pp. 490-498.

[14] A. Giachetti, M. Campani, and V. Torre, “The use of
optical flow for road navigation”, IEEE Trans. On
Robotics and Automation, 14(1), Feb. 1998, pp. 34-
48.

[15] H. Sakoe and S. Chiba, “Dynamic programming
optimization spoken word recognition,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-26,
Feb. 1978, pp. 43-49. (DTW).

[16] D. Berndt and J. Clifford, “Using dynamic time
warping to find patterns in time series,” AAAI-94
Workshop on Knowledge Discovery in Databases
(KDD-94), Seattle, WA, 1994. (DTW).

[17] IEEE Trans. On PAMI 22(8), August 2000, Special
Section on Video Surveillance, R.T. Collins, A.J.
Lipton, and T. Kanade, guest editors.

[18] A. Hampapur, L. Brown, J. Connell, A. Ekin, N.
Haas, M. Lu, H. Merkl, S. Pankanti, A. Senior, C.-F.
Shu, and Y.L. Tian, “Smart Video Surveillance:
exploring the concept of multiscale spatiotemporal
tracking,” IEEE Signal Processing Magazine, March
2005, pp. 38-51.

[19] J. Manigel and W. Leonard, “Vehicle control by
computer vision,” IEEE Trans. On Industrial
Electronics, 39(3), June 1992, pp. 181-188.

[20] IEEE Trans. On Vehicular Technology, 53(6), Nov.
2004, Special Section on In-Vehicle Computer
Vision Systems, R. Cucchiara, D. Lovell, A. Prati,
and M.M. Trivedi, guest editors.

[21] GM Collaborative Research Lab at Carnegie Mellon
University, http://gm.web.cmu.edu/*

[22] C. Demonceaux, A. Potelle, and D. Kachi-Akkouche,
“Obstacle detection in a road scene based on motion
analysis,” IEEE Trans. On Vehicular Technology,
53(6), Nov. 2004, pp. 1649-1656.

[23] M. Bertozzi, A. Broggi, A. Fascioli, T. Graf, and M.-
M. Meinecke, “Pedestrian detection for driver
assistance using multiresolution infrared vision,”
IEEE Trans. On Vehicular Technology, 53(6), Nov.
2004, pp. 1666-1678.

[24] Photo courtesy: Professor Mohan Trivedi, Laboratory
for Intelligent and Safe Automobiles, UCSD,
cvrr.ucsd.edu/LISA Ref: M.M. Trivedi, S.Y. Cheng,
E.M.C. Childers, and S.J. Krotosky, “Occupant
posture analysis with stereo and thermal infrared
video: algorithms and experimental evaluation,”
IEEE Trans. On Vehicular Technology, 53(6), Nov.
2004, pp. 1698-1712.

[25] K.N. Kutulakos and J.R. Vallino, “Calibration-free
augmented reality,” IEEE Trans. On Visualization
and Computer Graphics, 4(1), Jan.-March 1998, pp.
1-20.

[26] J. Ohya, J. Kurumisawa, R. Nakatsu, K. Ebihara, S.
Iwasawa, D. Iwasawa, and T. Horprasert, “Virtual
metamorphosis,” IEEE Multimedia, 6(2), April-June
1999, pp. 29-39.

[27] A. Mihailidia, B. Carmichael, and J. Boger, “The use
of computer vision in an intelligent environment to
support aging-in-place, safety, and independence in
the home,” IEEE Trans. On Information Technology
in Biomedicine, 8(3), Sept. 2004, pp. 238-247.

[28] J.S. Duncan and N. Ayache, “Medical image
analysis: progress over two decades and the
challenges ahead,” IEEE Trans. On PAMI, 22(1),
Jan. 2000, pp.85-106.

[29] L. Li, W. Huang, I.Y.H. Gu, Q. Tian, “Foreground
object detection from videos containing complex
background,” ACM Multimedia*, 2003.

[30] A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S.
Pankanti, R. Bolle, “Appearance Models for
Occlusion Handling,” in proceedings of Second
International workshop on Performance Evaluation
of Tracking and Surveillance systems in conjunction
with CVPR'01, December 2001.

[31] P. Viola, M.J. Jones, and D. Snow, “Detecting
Pedestrians Using Patterns of Motion and
Appearance,” IEEE International Conference on
Computer Vision (ICCV), vol. 2, pp. 734-741, 2003.

http://gm.web.cmu.edu

Intel Technology Journal, Volume 9, Issue 2, 2005

Computer Vision Workload Analysis: Case Study of Video Surveillance Systems 118

[32] H. Schneiderman and T. Kanade, “A statistical model
for 3d object detection applied to faces and cars,”
IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), June 2000.

[33] D. Comaniciu, V. Ramesh, P. Meer, “Real-time
tracking of non-rigid objects using mean shift,” IEEE
International Conference on Pattern Recognition,
vol. 2, pp. 142-149, 13-15 June, 2000.

[34] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “A
color based particle filter,” in First International
Workshop on Generative-Model-Based Vision,
A.E.C. Pece, Ed., 2002.

[35] N. Johnson and D.C. Hogg, “Learning the distribution
of object trajectories for event recognition,” Image
and Vision Computing, 14:609-615, 1996.

[36] N. Sumpter., A.J. Bulpitt, “Learning spatio-temporal
patterns for predicting object behaviour,” Image and
Vision Computing, 18(9), pages 697-704, 2000.

[37] J. Owens, A. Hunter, “Application of the Self-
Organising Map to Trajectory Classification,” Proc.
Third IEEE Visual Surveillance Workshop, 1 July
2000, Dublin, ISBN 0-7695-0698-4, pp. 77-83.

[38] J. Lou, Q. Liu, and T. Tan, W. Hu, “Semantic
interpretation of object activities in a surveillance
system,” Pattern Recognition, 2002, Volume 3, 11-15
Aug. 2002, pp. 777-780.

[39] Intel VTune Performance Analyzers.
http://www.intel.com/software/products/vtune/.

AUTHORS’ BIOGRAPHIES
Trista P. Chen is a staff research scientist at Intel’s
Application Research Lab. She received her Ph.D. degree
in Electrical and Computer Engineering from Carnegie
Mellon University and M.S. and B.S. degrees from
National Tsing Hua University, Taiwan. Her research
interests include bridging the gap between computer
vision and computer graphics, microprocessor
architecture, and multimedia communications. Prior to
joining Intel, she was with Nvidia, architecting the first
video processor for Nvidia graphic processor units. She
was with Sony Design Center and HP Cambridge
Research Center in the summers of 2000 and 2001,
respectively. Her e-mail is trista.p.chen at intel.com.

Alexander Bovyrin is a senior research scientist at Intel’s
Application Research Lab. He received his M.S. degree in
Applied Mathematics and Cybernetics from Nizhny
Novgorod State University in 1999 and his Ph.D. degree
in the Theory of Dynamic System Control from Nizhiny
Novgorod State University of Civil Engineering in 2003.
Before joining Intel Corp. in 2000, he worked on

computer vision industrial applications. He is interested in
computer vision and machine learning. His e-mail is
alexander.bovyrin at intel.com.

Roman Belenov is a research scientist in Intel’s
Application Research Lab. His research interests include
video compression and processing, multimedia software
architecture, microprocessor architecture, and wireless
networking. He received a Diploma in Physics from
Nizhny Novgorod State University. His e-mail is
roman.belenov at intel.com.

Konstantin Rodyushkin is a senior research scientist at
Intel’s Application Research Lab. He received his Ph.D
degree in 2002 from Nizhny Novgorod State University.
His research interests are in computer vision and machine
learning. His e-mail is Konstantin.Rodyushkin at
intel.com.

Alexander Kuranov has been a software engineer at the
Intel Russia Research Center since 2001. He graduated
from Nizhny Novgorod State University in 2002. His
main interests are computer vision and data-mining
algorithms. His e-mail is Alexander.Kuranov at intel.com.

Victor Eruhimov is a senior research scientist in the Intel
Russia Research Center. He is leading a team of
researches investigating the computational properties of
algorithms in the area of computer vision and machine
learning. He was a senior researcher in the Open
Computer Vision project, working on the development of
the OpenCV library and conducting research in computer
vision. Victor received a Masters degree from the
Advanced School of General and Applied Physics in the
Institute of Applied Physics, Russian Academy of
Sciences, in 1999. His e-mail is victor.eruhimov at
intel.com.

Horst Haussecker is a principal engineer in Intel’s
Corporate Technology Group and manager of the
Computational Nano-Vision research project. His research
interests include model-based computer vision and
application of digital image processing as a quantitative
instrument. Horst is co-editor and author of two textbooks
in Computer Vision, and he has authored more than 50
peer-reviewed technical articles. He received his M.S. and
Ph.D. degrees in Physics from Heidelberg University, and
prior to joining Intel in 2001, he was a researcher at the
Xerox Palo Alto Research Center (PARC), where he was
involved in image sequence analysis and information
processing in sensor networks. His e-mail is
horst.haussecker at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/software/products/vtune
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 119

Learning-Based Computer Vision with Intel’s Open Source
Computer Vision Library

Gary Bradski, Corporate Technology Group, Intel Corporation
Adrian Kaehler, Enterprise Platforms Group, Intel Corporation

Vadim Pisarevsky, Software and Solutions Group, Intel Corporation

Index words: computer vision, face recognition, road recognition, optimization, open source, OpenCV

ABSTRACT

The rapid expansion of computer processing power
combined with the rapid development of digital camera
capability has resulted in equally rapid advances in
computer vision capability and use. Intel has long been at
the forefront of enabling this advance on the computer
hardware and software side. Computer vision software is
supported by the free Open Source Computer Vision
Library (OpenCV) that optionally may be highly
optimized by loading the commercial Intel Integrated
Performance Primitives (IPP). IPP now automatically
supports OpenCV with no need to change or even
recompile the user’s source code. This functionality
enables development groups to deploy vision and provides
basic infrastructure to experts in vision.

OpenCV has long supported “geometric vision” from
camera calibration, motion tracking in 2D, finding the
camera location given a known 3D object, on up to
producing depth maps from stereo vision. This paper
describes using OpenCV for “learning-based vision,”
where objects such as faces, or patterns such as roads, are
learned for segmentation and recognition.

INTRODUCTION
The Open Source Computer Vision Library (OpenCV) [1]
is a free, open source collection of computer vision
routines geared mainly towards human-computer
interaction, robotics, security, and other vision
applications where the lighting and context of use cannot
be controlled. OpenCV is not geared towards factory
machine vision where the environmental conditions can be
controlled and one generally knows what one is looking
for, although there is a large overlap.

OpenCV was designed for enablement and infrastructure.
Many groups who could make use of vision were
prevented from doing so due to lack of expertise; OpenCV

enables these types of groups to add functionality such as
face finding and tracking in a few lines of code. Other
groups have vision expertise but were uselessly recreating
vision algorithms that were already standard; OpenCV
provides experts with a solid vision infrastructure and
thereby allows experts to work at a higher level rather than
have to worry about the basics. Because of the above,
OpenCV’s BSD type license is designed to promote free
commercial and research use. Optionally, users may install
the IPP libraries and benefit from highly optimized code
without needing to recompile via the use of automatically
selected optimized dynamic linked libraries.

OpenCV support for vision is extensive. It supports
routines for input, display, and storage of movies and
single images. Image-processing debug is supported by
drawing and text display functions. Image processing
itself is handled through convolution, thresholding,
morphological operations, floodfills, histogramming,
smoothing, pyramidal sub-sampling and a full suite of
image algebra and arithmetic. Geometry is supported by
Delaney triangulation, calibration, fundamental and
essential matrices computation, image alignment, and
stereo depth calculation. A full range of feature detection
algorithms exists from corner detectors, Canny edge
operators, blob finders, scale invariant features, and so on.
Shape descriptors such as Hu moments, contour
processing, Fourier descriptors, convex hulls, and
connected components exist. Motion is covered via
several types of optical flow, background learning and
differencing, motion templates, and motion gradients.
Learning-based vision is supported through feature
histogram comparison, image statistics, template-based
correlation, decision trees, and statistical boosting on up
to convolutional neural networks.

OpenCV was released in Alpha in 2000, Beta in 2003, and
will be released in official version 1.0 in Q4 2005. If the
Intel Integrated Performance Primitives (IPP) library [2] is

http://www.intel.com/research/mrl/research/opencv/
http://www.intel.com/software/products/perflib/
http://www.intel.com/software/products/perflib/

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 120

optionally installed, OpenCV will automatically take
advantage of and swap in the hand optimized routines in
IPP providing a substantial speed-up to many vision
routines.

In this paper, we describe computer vision routines based
on learning. Learning-based vision has applications to
image-based Web mining, image retrieval, video indexing,
security, etc. OpenCV has strong and growing support for
learning-based vision. We start out, however, by first
discussing a recent change to OpenCV, full IPP support,
and then move on to discuss two learning applications.
We begin by describing automatic optimization of
OpenCV using IPP and then we discuss using OpenCV for
learned object finding and tracking (face), and end with
abstract pattern segmentation (road finding).

AUTOMATIC OPTIMIZATION USING
INTEGRATED PERFORMANCE
PRIMITIVES

How to Make Use of IPP
Intel Integrated Performance Primitives (IPP) library is a
large collection of low-level computational kernels highly
optimized for Intel architectures, including the latest
Pentium®, Itanium®, and XScale® processors. It consists
of multiple domains that reside in separate dynamic
libraries: signal and image processing, matrix processing,
audio and video codecs, computer vision, speech
recognition, cryptography, data compression, text
processing, etc. It can be retrieved from
http://www.intel.com/software/products/ipp [2]; full
evaluation versions for Windows∗ and Linux∗ , and a free
non-commercial version for Linux are available.

OpenCV is able to automatically detect and use the IPP
library once the latter is installed; there is no need to
recompile it. On Windows, make sure that the bin
subdirectory of IPP is in the system path, for example, if
IPP is installed to “C:\Program
Files\Intel\IPP”, add “C:\Program
Files\Intel\IPP\bin” to the path. On Linux the
IPP dynamic libraries should be already in one of the
standard paths after installation.

To check whether OpenCV has found IPP or not, the user
application may call the cvGetModuleInfo()
function:

® Pentium, Itanium, and XScale are all registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
∗ All other brands and names are the property of their
respective owners.

const char* opencv_libraries = 0;

const char* addon_modules = 0;

cvGetModuleInfo(0, &opencv_libraries,

 &addon_modules);

printf(“OpenCV: %s\nAdd-on Modules: %s\n”,

 opencv_libraries, addon_modules);

When IPP is detected, it will print something like this:

OpenCV: cxcore: beta 4.1 (0.9.7), cv: beta 4.1
(0.9.7)

Add-on modules: ippcv20.dll, ippi20.dll,
ipps20.dll, ippvm20.dll

where ipp*.dll are names of IPP components, used by
OpenCV: ippcv – computer vision, ippi – image
processing, ipps – signal processing, ippvm – fast math
functions.

Note that the functions in ippi20.dll and the other ‘20’
libraries do not contain the processing functions
themselves. They are proxies for CPU-specific libraries
(ippia6.dll, ippiw7.dll etc. for IPPI) that are loaded by the
IPP dispatcher. The dispatcher mechanism and other
concepts behind IPP are explained in detail in the IPP
book [3].

How Automatic Use of Optimized IPP Works
The mechanism to swap in optimized code if found is
simple. It uses function pointers and dynamic library-
loading facilities provided by the operating system (OS).
For every IPP function that OpenCV can use there is a
pointer to a function that is initially set to null and which
is assigned to a valid address when the corresponding IPP
component is detected and loaded. So, while OpenCV can
benefit from using IPP, it does not depend on it; the
functionality is the same, regardless of whether IPP is
installed or not. That is, for every IPP function there is a
backup C code that is always included inside OpenCV
binaries. So, a higher-level external OpenCV function
loads a function pointer that calls either optimized IPP
code or embedded low-level OpenCV C code depending
on which is available.

Let’s consider an example. The function cvPyrDown
reduces image size down one level by employing
Gaussian smoothing and sub-sampling. Smoothing is
preformed prior to sub-sampling so that spurious
frequencies are not introduced due to violations of the
Nyquist sampling theorem. cvPyrDown supports multiple
image types via several lower-level functions. In
particular, 8-bit single-channel images are processed with
icvPyrDownG5x5_8u_CnR. The corresponding IPP
function for this type of images is
ippiPyrDown_Gauss5x5_8u_C1R.

http://www.intel.com/software/products/ipp

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 121

So we have the following code (simplified compared to
the actual implementation):

// --- cvpyramids.cpp: ---

// declaration of the function type.

// Matches to the declaration in IPP header
files

typedef int (CV_STDCALL *
icvPyrDown_Gauss5x5_8u_C1R_t)(const uchar* src,
int src_step, uchar* dst, int dst_step, CvSize
size, void* buffer);

// pointer to the IPP function

icvPyrDown_Gauss5x5_8u_C1R_t

icvPyrDown_Gauss5x5_8u_C1R_p = 0;

// C implementation, embedded in OpenCV

static int icvPyrDownG5x5_8u_CnR(

 const uchar* src, int src_step,

 uchar* dst, int dst_step, CvSize size,

 void* buffer, int cn)

{

 …

 return CV_OK;

}

// external high-level function

void cvPyrDown(const CvArr* src_arr,

 CvArr* dst_arr,

 int filter)

{

 …

 if(data_type == CV_8UC1) {

 if(icvPyrDown_Gauss5x5_8u_C1R_p)

 icvPyrDown_Gauss5x5_8u_C1R_p(…);

 else

 icvPyrDownG5x5_8u_CnR(…,1);

 }

 …

}

Also, the function pointer and the related information are
stored to the joint table that is used by the OpenCV
initialization procedure (a.k.a. switcher).

//cvswitcher.cpp:

…

{ (void**)&icvPyrDown_Gauss5x5_8u_C1R_p, 0,

 “ippiPyrDown_Gauss5x5_8u_C1R”,
CV_PLUGINS1(CV_PLUGIN_IPPI), 0 },

…

That is, each entry of the table contains a pointer to the
function pointer (so that the address could be changed by
the switcher), the real function name, and the id of the
module that contains the function (IPPI ~ “ippi20.dll” in
this case). On start-up, the OpenCV initialization
procedure tries to locate and load IPP modules:

…

plugins[CV_PLUGIN_IPPI].handle =

 LoadLibrary(“ippi20.dll”);

and retrieve the function pointers:

for(…;…;…) {

 void* handle =
plugins[func_table[i].plugin_id].handle;

 const char* fname=func_table[i].func_names;

 if(handle)

 *func_table[i].func_addr =

 GetProcAddress(handle, fname);

}

(on Linux dlopen is used instead of LoadLibrary
and dlsym instead of GetProcAddress).

Functionality Coverage
Currently, OpenCV knows of and can use over 300 IPP
functions. Below is a table of the major functions and the
approximate speed-up (on a Pentium 4 processor) that a
user could get by on using IPP. Note that the wide range
of speed-up numbers in the table results from different
potential image types. Byte images are faster to process
than integer images which are faster than floating, for
example. Another timing difference results from different
kernel sizes. Small kernels are faster than large kernels,
and some common kernels are “hard wired”–hand
optimized.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 122

Table 1: Approximate speed-ups using assembly
optimized IPP over the embedded optimized C in

OpenCV

Function Speed-up range
(OpenCV/IPP exec. time)

Gaussian Pyramids ~3

Morphology ~3-7

Median filter ~2.1-18

Linear convolution (with a
small kernel)

~2-8

Template Matching ~1.5-4

Color Conversion (RGB
to/from Grayscale, HSV,
Luv)

~1-3

Image moments ~1.5-3

Distance transform ~1.5-2

Image affine and
perspective
transformations

~1-4

Corner detection ~1.8

DFT/FFT/DCT ~1.5-3

Math functions (exp, log,
sin, cos …)

3-10

In OpenCV 1.0, support for more IPP functions, such as
face detection and optical flow, will be added.

FACE DETECTION

Introduction/Theory
Object detection, and in particular, face detection is an
important element of various computer vision areas, such
as image retrieval, shot detection, video surveillance, etc.
The goal is to find an object of a pre-defined class in a
static image or video frame. Sometimes this task can be
accomplished by extracting certain image features, such as
edges, color regions, textures, contours, etc. and then
using some heuristics to find configurations and/or
combinations of those features specific to the object of
interest. But for complex objects, such as human faces, it
is hard to find features and heuristics that will handle the
huge variety of instances of the object class (e.g., faces
may be slightly rotated in all three directions; some people
wear glasses; some have moustaches or beards; often one
half of the face is in the light and the other is shadow,

etc.). For such objects, a statistical model (classifier) may
be trained instead and then used to detect the objects.

Statistical model-based training takes multiple instances of
the object class of interest, or “positive” samples, and
multiple “negative” samples, i.e., images that do not
contain objects of interest. Positive and negative samples
together make a training set. During training, different
features are extracted from the training samples and
distinctive features that can be used to classify the object
are selected. This information is “compressed” into the
statistical model parameters. If the trained classifier does
not detect an object (misses the object) or mistakenly
detects the absent object (i.e., gives a false alarm), it is
easy to make an adjustment by adding the corresponding
positive or negative samples to the training set.

OpenCV uses such a statistical approach for object
detection, an approach originally developed by Viola and
Jones [4] and then analyzed and extended by Lienhart [5,
6]. This method uses simple Haar-like features (so called
because they are computed similar to the coefficients in
Haar wavelet transforms) and a cascade of boosted tree
classifiers as a statistical model. In [4] and in OpenCV
this method is tuned and primarily used for face detection.
Therefore, we discuss face detection below, but a
classifier for an arbitrary object class can be trained and
used in exactly the same way.

The classifier is trained on images of fixed size (Viola
uses 24x24 training images for face detection), and
detection is done by sliding a search window of that size
through the image and checking whether an image region
at a certain location “looks like a face” or not. To detect
faces of different size it is possible to scale the image, but
the classifier has the ability to “scale” as well.

Fundamental to the whole approach are Haar-like features
and a large set of very simple “weak” classifiers that use a
single feature to classify the image region as face or non-
face.

Each feature is described by the template (shape of the
feature), its coordinate relative to the search window
origin and the size (scale factor) of the feature. In [3],
eight different templates were used, and in [5, 6] the set
was extended to 14 templates, as shown in Figure 1.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 123

Figure 1: Extended set of Haar-like features

Each feature consists of two or three joined “black” and
“white” rectangles, either up-right or rotated by 45°. The
Haar feature’s value is calculated as a weighted sum of
two components: The pixel sum over the black rectangle
and the sum over the whole feature area (all black and
white rectangles). The weights of these two components
are of opposite signs and for normalization, their absolute
values are inversely proportional to the areas: for
example, the black feature 3(a) in Figure 1 has weightblack

= -9×weightwhole.

In real classifiers, hundreds of features are used, so direct
computation of pixel sums over multiple small rectangles
would make the detection very slow. But Viola [4]
introduced an elegant method to compute the sums very
fast. First, an integral image, Summed Area Table (SAT),
is computed over the whole image I, where

∑
<<

=
YyXx

yxIYXSAT
,

),(),(.

The pixel sum over a rectangle r={(x,y),x0≤x<x0+w,
y0≤y<y0+h} can then be computed using SAT by using just
the corners of the rectangle regardless of size:

RecSum(r)=SAT(x0+w, y0+h)−SAT(x0+w, y0)−

SAT(x0, y0+h)+SAT(x0, y0)

This is for up-right rectangles. For rotated rectangles, a
separate “rotated” integral image must be used.

The computed feature value xi=wi,0RecSum(ri,0)+
wi,1RecSum(ri,1) is then used as input to a very simple
decision tree classifier that usually has just two terminal
nodes, that is:





<−
≥+

=
ii

ii
i tx

tx
f

,1

,1

or three terminal nodes:





−
<≤+

=
else

txt
f iii

i 1

,1 1,0,

where the response +1 means the face, and −1 – means the
non-face. Every such classifier, called a weak classifier, is
not able to detect a face; rather, it reacts to some simple
feature in the image that may relate to the face. For
example, in many face images eyes are darker than the
surrounding regions, and so feature 3a in Figure 1,
centered at one of the eyes and properly scaled, will likely
give a large response (assuming that weightblack<0).

In the next step, a complex and robust classifier is built
out of multiple weak classifiers using a procedure called
boosting, introduced by Freund and Schapire [7].

The boosted classifier is built iteratively as a weighted
sum of weak classifiers:

)(2211 nn fcfcfcsignF +++= K

On each iteration, a new weak classifier fi is trained and
added to the sum. The smaller the error fi gives on the
training set, the larger is the coefficient ci that is assigned
to it. The weight of all the training samples is then
updated, so that on the next iteration the role of those
samples that are misclassified by the already built F are
emphasized. It is proven in [7] that if fi is even slightly
more selective than just a random guess, then F can
achieve an arbitrarily high (<1) hit rate and an arbitrarily
small (>0) false alarm rate, if the number of weak
classifiers in the sum (ensemble) is large enough.
However, in practice, that would require a very large
training set as well as a very large number of weak
classifiers, resulting in a slow processing speed.

Instead, Viola [4] suggests building several boosted
classifiers Fk with constantly increasing complexity and
chaining them into a cascade with the simpler classifiers
going first. During the detection stage, the current search
window is analyzed subsequently by each of the Fk
classifiers that may reject it or let it go through, as
depicted in Figure 2.

Figure 1: Object (face) detection cascade of classifiers
where rejection can happen at any stage

F1 FN F2

Search
Window

Not a Face

Face

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 124

That is, Fk (k=1..N)’s are subsequently applied to the face
candidate until it gets rejected by one of them or until it
passes them all. In experiments, about 70-80% of
candidates are rejected in the first two stages that use the
simplest features (about 10 weak classifiers each), so this
technique speeds up detection greatly. Most of the
detection time, therefore, is spent on real faces. Another
advantage is that each of the stages need not be perfect; in
fact, the stages are usually biased toward higher hit-rates
rather than towards small false-alarm rates. By choosing
the desired hit-rate and false-alarm rate at every stage and
by choosing the number of stages accurately, it is possible
to achieve very good detection performance. For example,
if each of the stages gives a 0.999 hit-rate and a 0.5 false-
alarm rate, then by stacking 20 stages into a cascade, we
will be able to get a hit-rate of 0.99920=0.98 and a false-
alarm rate of 0.520~10-6!

Face Detection with OpenCV
OpenCV provides low-level and high-level APIs for
face/object detection. A low-level API allows users to
check an individual location within the image by using the
classifier cascade to find whether it contains a face or not.
Helper functions calculate integral images and scale the
cascade to a different face size (by scaling the coordinates
of all rectangles of Haar-like features) etc. Alternatively,
the higher-level function cvDetectObjects does this
all automatically, and it is enough in most cases. Below is
a sample of how to use this function to detect faces in a
specified image:

// usage: facedetect –-cascade=<path> image_name
#include "cv.h"
#include "highgui.h"
#include <string.h>

int main(int argc, char** argv)
{
 CvHaarClassifierCascade* cascade;

 // face sequence will reside in the storage
 CvMemStorage* storage=cvCreateMemStorage(0);
 IplImage *image;
 CvSeq* faces;
 int optlen = strlen("--cascade=");
 int i;

 if(argc != 3 ||
 strncmp(argv[1], "--cascade=", optlen))
 return -1;

 // load classifier cascade from XML file
 cascade = (CvHaarClassifierCascade*)
 cvLoad(argv[1] + optlen);
 // load image from the specified file
 image = cvLoadImage(argv[2], 1);

 if(!cascade || !image)
 return -1;

// get the sequence of face rectangles
faces = cvHaarDetectObjects(image,
 cascade, storage,

 1.2, // scale the cascade
 // by 20% after each pass
 2, // groups of 3 (2+1) or more
neighbor face rectangles are joined into a
single “face”, smaller groups are rejected
 CV_HAAR_DO_CANNY_PRUNING, // use Canny
edge detector to reduce number of false alarms
 cvSize(0, 0) // start from the minimum
face size allowed by the particular classifier
);

 // for each face draw the bounding rectangle
 for(i=0;i<(faces ? faces->total:0); i++) {
 CvRect* r = (CvRect*)
 cvGetSeqElem(faces, i);
 CvPoint pt1 = { r->x, r->y };
 CvPoint pt2 = { r->x + r->width,
 r->y + r->height };
 cvRectangle(image, pt1, pt2,
 CV_RGB(255,0,0), 3, 8, 0);
 }

 // create window and show the image with
outlined faces
 cvNamedWindow("faces", 1);
 cvShowImage("faces", image);
 cvWaitKey();
 // after a key pressed, release data
 cvReleaseImage(&image);
 cvReleaseHaarClassifierCascade(&cascade);
 cvReleaseMemStorage(&storage);
 return 0;
}

If the above program is built as facedetect.exe, it may be
invoked as (type it in a single line):

facedetect.exe –-cascade=”c:\program
files\opencv\data\haarcascades\haarcascade_
frontalface_default.xml” ”c:\program
files\opencv\samples\c\lena.jpg”

assuming that OpenCV is installed in c:\program
files\opencv. Figure 3 shows example results of using a
trained face detection model that ships with OpenCV.

Figure 3: Results of a trained face detection model
that ships with OpenCV. All faces were detected, one

false positive detection resulted.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 125

A detailed description of object detection functions can be
found in the OpenCV reference manual
(opencvref_cv.htm, Object Detection section).

Training the Classifier Cascade
Once there is a trained classifier cascade stored in an
XML file, it can be easily loaded using the cvLoad
function and then used by cvHaarDetectObjects or
by low-level object detection functions. The question
remains as to how to create such a classifier, if/when the
standard cascades shipped with OpenCV fail on some
images or one wants to detect some different object
classes, like eyes, cars, etc. OpenCV includes a
haartraining application that creates a classifier
given a training set of positive and negative samples. The
usage scheme is the following (for more details, refer to
the haartraining reference manual supplied with OpenCV):

1. Collect a database of positive samples. Put them into
one or more directories and create an index file that
has the following format:

filename_1 count_1 x11 y11 w11 h11 x12 y12 …

filename_2 count_2 x21 y21 w21 h21 x22 y22 …

…

That is, each line starts with a file name (including
subdirectories) of an image followed by the number
of objects in it and bounding rectangles for every
object (x and y coordinates of top-left corner, width
and height in pixels). For example, if a database of
eyes resides in a directory eyes_base, the index file
eyes.idx may look like this:

eyes_base/eye_000.jpg 2 30 100 15 10
55 100 15 10

eyes_base/eye_001.jpg 4 15 20 10 6 30 20
10 6 …

…

Notice that the performance of a trained classifier
strongly depends on the quality of the database used.
For example, for face detection, faces need to be
aligned so that the relative locations of eyes–the most
distinctive features–are the same. The eyes need to be
on the same horizontal level (i.e., faces are properly
rotated) etc. Another example is the detection of
profile faces. These are non-symmetric, and it is
reasonable to train the classifier only on right profiles
(so that variance inside the object class is smaller)
and at the detection stage to run it twice–once on the
original images and a second time on the flipped
images.

2. Build a vec-file out of the positive samples using the
createsamples utility. While the training

procedure might be repeated many times with
different parameters, the same vec-file may be re-
used.

Example:

createsamples –vec eyes.vec \

–info eyes.idx –w 20 –h 15

The above builds eyes.vec out of the database,
described in eyes.idx (see above): all the positive
samples are extracted from images, normalized and
resized to the same size (20x15 in this case).
createsamples can also creates a vec file out of a
single positive sample (e.g., some company logo) by
applying different geometrical transformations,
adding noise, altering colors, etc. See haartraining in
the OpenCV reference html manual for details.

3. Collect a database of negative samples. Make sure the
database does not contain instances of the object class
of interest. You can make negative samples out of
arbitrary images, for example. They can be
downloaded from the Internet, bought on CD, or shot
by your digital camera. Put the images into one or
more directories, and make an index file: that is, a
plain list of image filenames, one per line. For
example, an image index file called
“backgrounds.idx” might contain:

backgrounds/img0001.jpg

backgrounds/my_img_02.bmp

backgrounds/the_sea_picture.jpg

…

4. Run haartraining. Below is an example (type it in
command-line prompt as a single line or create a
batch file):

haartraining

–data eyes_classifier_take_1

-vec eyes.vec –w 20 –h 15

-bg backgrounds.idx

-nstages 15

-nsplits 1

[-nonsym]

-minhitrate 0.995

-maxfalsealarm 0.5

In this example, a classifier will be stored in
eyes_classifier_take1.xml. eyes.vec is used as a set of
positive samples (of size 20x15), and random images from
background.idx are used as negative samples. The cascade
will consist of 15 (-nstages) stages; every stage is trained

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 126

to have the specified hit-rate (-minhitrate) or higher, and a
false-alarm rate (-maxfalsealarm) or lower. Every weak
classifier will have just 1 (-nsplits) non-terminal node (1
split trees are called “stumps”).

The training procedure may take several hours to
complete even on a fast machine. The main reason is that
there are quite a lot of different Haar features within the
search window that need to be tried. However, this is
essentially a parallel algorithm and it can benefit (and
does benefit) from SMP-aware implementations.
Haartraining supports OpenMP via the Intel Compiler and
this parallel version is shipped with OpenCV.

We discussed use of an object detection/recognition
algorithm built into OpenCV. In the next section, we
discuss using OpenCV functions to recognize abstract
objects such as roads.

ROAD SEGMENTATION
The Intel OpenCV library has been used for the vision
system of an autonomous robot. This robot is built from a
commercial off-road vehicle and the vision system is used
to detect and follow roads. In this system, the problem was
to use a close-by road, identified by scanning laser range
finders to initialize vision algorithms that can extend the
initial road segmentation out as far as possible. The roads
in question were not limited to marked and paved streets;
they were typically rocky trails, fire roads, and other poor
quality dirt trails. Figure 4 shows “easy” and “hard” roads.

Figure 4: Example roads: a less difficult power-line
access road (top) and a more difficult “off-road” trail

(bottom)

Based on laser scanner point clouds in the near field, it
was possible to estimate what sections of nearby visible
terrain might be road. In this case, “near” is approximately
ten meters (varying by terrain type and other ambient
conditions). Once projected into the visual camera images,
this region could then be used to train a classifier that
would extrapolate out beyond the range of the lasers into
the far visual field. In many cases the method is successful
at extrapolating the road all of the way to the horizon.
This amounts to a practical range of as much as one
hundred meters. The ability to see into the visual far field
is crucial for path planning for high-speed operation.

Figure 5: Overview of data flow

The core algorithm outlined in Figure 5 is as follows.
First, the flat terrain that the lasers find immediately in
front of the vehicle is converted to a single polygon and
projected into the camera co-ordinates. Shadow regions
are marked out of consideration as shown in Figure 6. The
projected polygon represents our best starting guess for
determining what pixels in the overall image contribute to
road. It is of course possible that there is no road at all.
The method is to extrapolate out to find the largest patch
to which we can extend what the lasers have given us, and
only thereafter to ask if that patch might be a road. This
final determination will be made based on the shape of the
area found. Only a relatively small set of shapes can
correspond to a physical road of approximately constant
width, disappearing into the distance.

Incoming Color Image Incoming Laser Data

Compute Candidate PolygonShadow Removal

Kmeans, Learn Gaussian Model

Categorize All Points

Adapting Threshold

Candidate Selection

Model Based Validation

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 127

Figure 6: Starting with the bottom image of Figure 4,
shadows are eliminated–blacked out– (top), and the
polygon is projected from the laser data (bottom)

The red, green, blue (RGB) values of the individual pixels
in the marked polygon are used as features to describe
individual pixels in the marked region (giving a total of
three dimensions). These pixels are kept in a FIFO
circular buffer of sufficient depth to hold pixels from
many frames. At every frame the OpenCV function
cvKMeans2 is called with settings to find three clusters.
These clusters are modeled with three multivariate
Gaussian models trained from the pixel density
distribution in the 3-dimensional color space. This
algorithm achieves the same results as fitting three
multivariate Gaussians using expectation maximization,
but is faster and takes advantage of the built in
cvKMeans2 in OpenCV. Three clusters are used because
empirically it was found that ruts and rocks in the road
tend to give dirt roads a tri-tonal color profile.

After generating the above model, we then use it to score
the remaining pixels in the scene by using the OpenCV
function cvMahalanobis to find the minimum
Mahalanobis distance Rm from the candidate pixel to the
means of the three learned multi-modal Gaussian
distributions. Pixels for which Rm is less than 1 are
assigned a score of 1.0; those for which Rm is greater than
1 are given a score of 1/Rm. The resulting “image”
contains a kind of confidence score for every pixel being

road or not. This scoring is essentially equivalent to a log-
likelihood score for a pixel being in the road distribution,
but again is fast and convenient to compute using
cvMahalanobis.

Figure 7: Probability map based on individual pixel’s
distance from the model mean (top), and image with

low probability pixels removed (bottom). In the
thresholded bottom image, the threshold is set so as to
keep constant the proportion of non-zero pixels in the

original

This method does not guarantee that all pixels in the
polygon training area will be scored as road. OpenCV
function cvThreshold is used adaptively such that no less
than 80% of the pixels in the training area are retained
after the threshold is applied, as shown in Figure 7. A
morphological function cvDilate is then applied with the
result that the identified pixels can be clustered into large
connected regions. As we are only interested in
extrapolating the already identified space found by the
lasers, clusters are next rejected if they do not connect
with the polygonal training area cluster. The retained
clusters are then used to mask the original confidence
image. This process is illustrated in Figure 8.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 128

Figure 8: Starting with the thresholded image (top),
the contiguous patch that intersects the training

polygon is identified (middle) and clipped from the
original probability map (bottom)

Finally, in Figure 9, the resulting clusters are compared
with the expected shape of a road projected into the
camera coordinates. This is done by fitting the right and
left sides of the cluster(s) to individual lines, and by
computing an effective horizon which is the location of
the highest identified road pixel. If these fits are
sufficiently good, the fit lines intersect at the horizon, and
the angles of the lines are consistent with the projection of
a road into the camera coordinates, then the system reports

the confidence image. This image, once projected into
ground-based coordinates, is used to mark the road ahead
for the subsequent path-planning operations.

By building this model, it is possible to reject anomalies
that might arise from dirt, facing into the sun, reflections,
and other sources. Such anomalies are not uncommon, and
the ability to build a geometrically possible model and
then score that model allows the system to report correctly
when the found pixels are something other than a road. In
some cases this occurs when no road is present at all, and
the lasers find only a smooth patch of ground that is not
part of an actual road. In three hours of test video varying
widely over many terrain types containing both road and
no road, the algorithm was not seen to give a false positive
signal.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 129

Figure 9: Starting with the clipped probability map
(one), the image is first blurred (two), and the edges

are fit to straight lines (three). Combining these lines
with the effective horizon, a model for the road is
constructed (four). A confidence score is assigned

based on the number of pixels correctly classified by
the implied road structure (four).

The algorithm presented has been tested against terrain
types of widely varying difficulty. All of the images
shown here were from a 320x240 camera image, and they
were capable of being generated at ten frames per second
on a computer based on the 1.7 GHz Mobile Intel Pentium
4 processor – M that was selected for its low-power
requirements in the robot. For roads that are well defined,
flat, and have a relatively uniform surface texture, the
method allows extrapolation of the entire road to the
horizon.

DISCUSSION
We started out describing recent developments with the
OpenCV library [1] that allow it to be automatically
optimized by using OpenCV with the IPP libraries [2],
and we described how automatic optimization works
through the cvswitcher function. To recap, the switcher is
given a table of function identifiers and pointers to those
functions. During launch, the switcher looks for the
appropriate optimized IPP code for the machine it is
running on and swaps in the address of those functions if
the correct IPP module is found. Otherwise it retains the
embedded optimized C functions. Because the source
code for the switcher is available in the file
cvswitcher.cpp, one may also override this functionality
with custom functionality–by pointing it to one’s own
functions or alternate functions, depending on the
processor used.

We then focused on a small part of OpenCV’s support for
learning-based vision. The Haar-feature-based boosted
classifier cascade, based on the work of Viola and others
[4, 5, 6] that is directly implemented in OpenCV, was
described. When you download OpenCV, this classifier
comes with a file that is trained to recognize faces and

may be run by building and running the facedetect.c code
that comes in the samples directory, which will normally
be placed in C:\Program Files\OpenCV\samples\c on
Windows machines when you install OpenCV. The
procedure for using your own data to train a classifier
cascade to recognize any object was then described. Using
this, one can create tree, car, cat, or person detectors.

Note that one may make the classifier more flexible by
using instead of, or in addition to, learning features from
raw images; image processing can be used to enhance or
pre-select images of features such as gradient magnitudes
to be learned. This can help reduce lighting sensitivity, for
example.

We then shifted gears to describe a project aimed at
detecting and segmenting an abstract object–a road. This
involved using laser range data to identify a polygon of a
nearby road to use as a seed for learning and modeling
clusters of road-colored pixels. This learned model was
then used to segment the road beyond the range of the
laser range finders. This is essentially a local model of
what pixels “look” like road. Global geometric constraints
are then used to only accept road segmentations that in
fact look like the shape of a road as in Figure 9 bottom.
The segmented road pixels are then projected along with
the laser data into a bird’s eye view 2D path planner.
Vision significantly extends the range of road detection
out from the lasers and so allows the robot to travel at
much higher speeds. Using the local and global constraints
together, false positive road identification was completely
eliminated.

In the above, we just touched on the learning-based vision
possibilities of OpenCV. Many other techniques are
supported. For example OpenCV contains methods for
gathering and matching histograms of image features;
learning the means and variances of pixels over a moving
window of time; Kalman and Particle (“Condensation”)
filters for tracking, and data that can be clustered or
tracked with the Meanshift or CAMShift [8] algorithms.
In Release version 1.0 several more machine-learning
algorithms for computer vision should become available
such as convolutional neural networks, general back
propagation, general decision trees, several methods of
statistical boosting, and random forests. These new
algorithms will enable powerful approaches to learning-
based vision.

CONCLUSION
Computer vision, unlike for example factory machine
vision, happens in unconstrained environments,
potentially with changing cameras and changing lighting
and camera views. Also, some “objects” such as roads,
rivers, bushes, etc. are just difficult to describe. In these
situations, engineering a model a-priori can be difficult.

Intel Technology Journal, Volume 9, Issue 2, 2005

Learning-Based Computer Vision with Intel’s Open Source Computer Vision Library 130

With learning-based vision, one just “points” the
algorithm at the data and useful models for detection,
segmentation, and identification can often be formed.
Learning can often easily fuse or incorporate other sensing
modalities such as sound, vibration, or heat. Since
cameras and sensors are becoming cheap and powerful
and learning algorithms have a vast appetite for
computational threads, Intel is very interested in enabling
geometric and learning-based vision routines in its
OpenCV library since such routines are vast consumers of
computational power.

REFERENCES
[1] Open Source Computer Vision Library:

http://www.intel.com/research/mrl/research/opencv

[2] Intel® Integrated Performance Primitives
http://www.intel.com/software/products/perflib

[3] Stewart Taylor, “Intel® Integrated Performance
Primitives,” in How to Optimize Software
Applications Using Intel® IPP”
http://www.intel.com/intelpress/sum_ipp.htm

[4] Paul Viola and Michael J. Jones, “Rapid Object
Detection using a Boosted Cascade of Simple
Features,” IEEE CVPR, 2001.

[5] Rainer Lienhart and Jochen Maydt, “An Extended Set
of Haar-like Features for Rapid Object Detection,”
Submitted to ICIP2002.

[6] Alexander Kuranov, Rainer Lienhart, and Vadim
Pisarevsky, “An Empirical Analysis of Boosting
Algorithms for Rapid Objects With an Extended Set
of Haar-like Features,” Intel Technical Report MRL-
TR-July02-01, 2002.

[7] Freund, Y. and Schapire, R. E. (1996b), “Experiments
with a new boosting algorithm,” in Machine
Learning: Proceedings of the Thirteenth
International Conference, Morgan Kauman, San
Francisco, pp. 148-156, 1996.

[8] Bradski, G., “Computer Vision Face Tracking For Use
in a Perceptual User Interface,” Intel Technology
Journal,http://developer.intel.com/technology/itj/q21
998/articles/art_2.htm, Q2 1998.

AUTHORS’ BIOGRAPHIES
Gary Rost Bradski is a principal engineer and manager
of the Machine Learning group for Intel Research. His
current interests are learning-based vision and sensor
fusion in world models. Gary received a B.S. degree from
U.C. Berkeley in May, 1981. He received his Ph.D.
degree in Cognitive and Neural Systems (mathematical
modeling of biological perception) in May, 1994 from

Boston University Center for Adaptive Systems. He
started and was the technical content director of OpenCV
working closely with Vadim. Currently, he consults on
OpenCV and machine learning content with the
performance primitives group. His e-mail is Garybradski
at gmail.com.

Adrian Kaehler is a senior software engineer working in
the Enterprise Platforms Group. His interests include
machine learning, statistical modeling, and computer
vision. Adrian received a B.A. degree in Physics from the
University of California at Santa Cruz in 1992 and his
Ph.D. degree in Theoretical Physics from Columbia
University in 1998. Currently, Adrian is involved with a
variety of vision-related projects in and outside of Intel.
His e-mail is Adrian.l.Kaehler at intel.com.

Vadim Pisarevsky is a software engineer in the
Computational Software Lab in Intel. His interests are in
image processing, computer vision, machine learning,
algorithm optimization, and programming languages.
Vadim received a Masters degree in Mathematics from the
Nizhny Novgorod State University, in 1998. He has been
involved in different software projects related to
multimedia processing since 1996. In 2000, he joined
Intel Russia Research Center where he led the OpenCV
development team for over four years. Currently, he is
working in the software department and continues to
improve OpenCV and its integration with Intel Integrated
Performance Primitives. His e-mail is Vadim.Pisarevsky
at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/research/mrl/research/opencv
http://www.intel.com/software/products/perflib
http://www.intel.com/software/products/perflib
http://developer.intel.com/technology/itj/q21998/articles/art_2.htm
http://developer.intel.com/technology/itj/q21998/articles/art_2.htm
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Performance Scalability of Data-Mining Workloads in Bioinformatics 131

Performance Scalability of Data-Mining Workloads in
Bioinformatics

Yurong Chen, Corporate Technology Group, Intel Corporation
Qian Diao, Corporate Technology Group, Intel Corporation

Carole Dulong, Corporate Technology Group, Intel Corporation
Chunrong Lai, Corporate Technology Group, Intel Corporation

Wei Hu, Corporate Technology Group, Intel Corporation
Eric Li, Corporate Technology Group, Intel Corporation

Wenlong Li, Corporate Technology Group, Intel Corporation
Tao Wang , Corporate Technology Group, Intel Corporation

Yimin Zhang, Corporate Technology Group, Intel Corporation

Index words: data mining, bioinformatics, performance scalability analysis

ABSTRACT

Data mining is the extraction of hidden predictive
information from large data bases. Emerging data-
mining applications are important factors to drive the
architecture of future microprocessors. This paper
analyzes the performance scalability on parallel
architectures of such applications to understand how to
best architect the next generation of microprocessors that
will have many CPU cores on chip.

Bioinformatics is one of the most active research areas in
computer science, and it relies heavily on many types of
data-mining techniques. In this paper, we report on the
performance scalability analysis of six bioinformatics
applications on a 16-way SMP based on Intel Xeon™
microprocessor system. These applications are very
compute intensive, and they manipulate very large data
sets; many of them are freely accessible. Bioinformatics
is a good proxy for workload analysis of general data-
mining applications. Our experiments show that these
applications exhibit good parallel behaviors after some
algorithm-level reformulations, or careful parallelism
selection. Most of them scale well with increased
numbers of processors, with a speed-up of up to 14.4X
on 16 processors.

 Intel and Xeon are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United
States and other countries.

We start with an introduction to data mining. The data-
mining techniques studied are briefly described, and the
selected workloads using these techniques are listed. We
then provide a brief description of the methodology used
for the studies. We present the scalability analysis of
three workloads related to Bayesian Network (BN)
structure, two workloads relevant to recognition, and one
workload related to optimization. We conclude with the
key lessons of the study. These workloads are compute
intensive and data parallel. They manipulate large
amounts of data that stress the cache hierarchy.
Techniques optimizing the use of caches are key to
ensure performance scalability of these workloads on
parallel architectures.

DATA MINING: A DEFINITION
Databases today can hold terabytes of data that hide a lot
of information. Data mining is the technology that draws
meaningful conclusions, extracts knowledge, and
acquires models from these data.

The potential returns of data mining are large. Innovative
organizations worldwide use it to locate and appeal to
higher-value customers, to reconfigure their product
offerings to increase sales, and to minimize losses due to
error or fraud. Data mining has been widely used in
various domains such as retail, telecommunication,
medical diagnosis, and financial services.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 132

Bioinformatics Application Classification
Broadly speaking, bioinformatics is the recording,
annotation, storage, analysis, and search/retrieval of
nucleic acid sequences (genes and RNAs), protein
sequences, and structural information. Currently,
bioinformatics mainly includes databases of sequences
and structural information, as well as methods to access,
search, analyze, visualize, and retrieve the information.
Bioinformatics applications can be categorized as
follows:

• Sequencing: gene sequence assembly

• Sequence alignment and search: pair-wise and
multiple sequence alignment, database search.

• Sequence analysis: gene finding, Single Nucleotide
Polymorphisms (SNP) pattern analysis, etc.

• Structure analysis and structural genomics: protein
secondary/tertiary structure prediction, protein
folding.

• Comparative genomics: whole genome alignment,
phylogenetic tree reconstruction.

• Functional genomics/proteomics and system
biology: function prediction of non-coding
sequences, gene expression clustering, and gene
regulatory networks.

• Clinical field (gene expression classification, etc.)

Bioinformatics relies heavily on many types of data-
mining techniques. For the purposes of our study, we
describe several categories of data-mining techniques,
and corresponding workloads.

DATA-MINING TECHNIQUES STUDIED
Data mining uses a variety of data analysis tools to
discover patterns and relationships in data that may be
used to make valid predictions. It takes advantage of
advances in the fields of Artificial Intelligence (AI) and
statistics. Algorithms that are employed in many areas
such as pattern recognition, machine learning, decision-
making support, and statistical modeling can be used in

data mining. Following, we briefly introduce some of the
techniques and algorithms.

Bayesian Networks
A Bayesian Network (BN) is a probabilistic model that
encodes probabilistic relationships between variables of
interest. Over the last decade or so, BNs have been
widely used in statistics, machine learning, pattern
recognition, engineering, diagnostics, decision making,
and so on.

Learning the structure of a BN from data is the most
important task of BN applications [1]. The goal is to
identify the statistic relationship between variables, and
usually at the same time the conditional probability
distribution of each variable can also be determined. BN
structure learning has become an active research area in
recent years [2, 3, 4].

The most popular approach to structure learning is to
turn it into an optimization exercise. We first introduced
a scoring function to evaluate the network with respect
to the training data and to output a value that reflects
how well the network scores, relative to the available
data. We then search through possible network structures
for the best scored network and take this as the network
learned from the data. In general, the search problem is
NP-hard [5]. Most algorithms use heuristic search
methods, such as the Markov Chain Monte Carlo
(MCMC) sampling [1, 6], K2 [1], simulated annealing
[2], etc., of which the greedy hill-climbing algorithm is
the most efficient and popular approach.

We have studied three applications using BNs: SNPs [7],
GeneNet [8], and SEMPHY [10]. All are a variation on
the hill-climbing concept. In SNPs and GeneNet
applications, all the training data are observed (i.e., there
are no missing data), and a standard hill-climbing search
algorithm is employed. In a SEMPHY application, only
a part of the data is observed (i.e., there are some
missing data), and the hill-climbing learning procedure is
used with an EM parameter-learning procedure. The
total algorithm is called a Structural EM Algorithm [11,
12]. We look at these three applications next.

Figure 1(a): An instance of the SNP sequences (the symbol * denotes the SNP site)

Workloads Studied Using Bayesian
Networks
SNPs are DNA sequence variations that occur when a
single nucleotide (A, T, C, or G) is altered at certain loci
in the genome sequence (shown in Figure 1(a)). These

variations are major sources of individual diversity.
Understanding the importance of the recently identified
SNPs in human genes has become a goal of human
genetics [13]. A common understanding of the cause of
SNPs is nucleotide substitution. A number of studies
have shown that the substitution process can be context

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 133

dependent, that is, neighboring base composition can
influence the substitution bias at a particular site.
Substitution patterns at polymorphic sites and bias
patterns in nucleotides neighboring polymorphic sites
are important for understanding molecular mechanisms
of mutation and genome evolution [14, 15].

This research suggests the existence of context
dependencies near SNP sites. However, by employing
BN structure learning, not only the dependencies around
the SNPs loci can be confirmed, but also the
dependencies model and influence strength for each loci
neighboring the SNPs, can be discovered. The task can
be formulated as follows: each locus on the sequence
segment is represented as a discrete random variable of
BN, with integer value ranges from 0 to 3 (each
corresponds to A, C, G, or T), so the possible relations
among these loci can be represented by the BN structure.

DNA microarray experiments measure all the genes of
an organism, providing a “genomic” viewpoint on gene
expression. Most of the analysis tools currently used are
based on clustering algorithms. These algorithms
attempt to locate groups of genes that have similar
expression patterns over a set of experiments. A more
ambitious goal for analysis is revealing the structure of
the transcriptional regulation process. Thus, BN
provides a natural approach to model the regulatory
relationship between genes.

By representing each gene as a variable of the BN, the
gene expression data analysis problem can be formulated
as a BN structure-learning problem. The GeneNet
application uses the same serial hill-climbing algorithm
as the SNPs problem, but its input set has different
characteristics: for SNPs, the BN contains only tens of
variables (<100), but a large number of training data
(typically 50K – 500K), while in GeneNet, there are

many variables (1K – 10K typically), but only hundreds
of training cases.

Unlike the previous applications on BN structure
learning, the SEMPHY application uses the Structural
Expectation Maximization (SEM) algorithm. SEMPHY
differs from traditional BN applications in two aspects: it
searches from a bifurcating tree space rather than the
DAG space; and it can find the optimal solution based
on missing data.

Classification and Prediction
To classify an object is to put it into a pre-defined class
or category, or to assign it a label. Prediction can be
viewed as the construction and use of a model to classify
an unlabeled sample. Classification and prediction have
numerous applications including credit approval,
medical diagnosis, performance prediction, and selective
marketing.

For example, the Support Vector Machine (SVM) has
been considered a state-of-the-art classification
technique since the 1990s, and we have used it in disease
gene finding, based on the Support Vector Machines
Recursive Feature Elimination (SVM-RFE) method.

Workloads Studied Using Classification
Techniques
SVM-RFE [17] is a feature selection method to refine
the optimum feature set by using SVM in a wrapper
approach (shown in Figure 1(b)). It selects or omits
dimensions of the data, depending on a performance
measurement of the SVM classifier. It is much more
robust to data overfitting than other methods, including
combinatorial search. (In SVM-RFE, the induction
algorithm used is SVM.)

Figure 1(b): Overview of wrapper method for feature selection

In bioinformatics, SVM-RFE has been used for the task of
microarray data analysis, particularly in disease gene
finding. It eliminates gene redundancy automatically and
yields better and more compact gene subsets. The

selection is obtained by a recursive feature elimination
process: at each RFE step, a gene is discarded from the
active variables of an SVM classification model. The
features are eliminated according to a criterion related to

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 134

their support for the discrimination function, and the SVM
is re-trained at each step.

We now describe the second workload studied in this
report using a classification technique: the Cocke-
Younger-Kasami (CYK) algorithm. This technique uses a
basic parsing algorithm for any context-free language, and
it is used in RSEARCH during an RNA secondary
structure homolog search. RSEARCH [13] uses Stochastic
Context-Free Grammar (SCFG) to take a single RNA
sequence with its secondary structure, and it utilizes the
CYK algorithm to search a database for homologous
RNAs through local alignment. RSEARCH has better
performance in accuracy for RNA homolog search than
other sequence search programs, such as BLAST and
SSEARCH, and it is also capable of finding significant
remote RNA structure homologies.

SCFG and its decoding algorithm CYK used in
RSEARCH can also be applied in other areas, such as
language modeling for speech recognition [14], language
parsing for natural language processing [15], multitasked
activities recognition for computer vision [16], and so on.

Optimization
Dynamic Programming (DP) is an approach developed to
solve sequential, or multi-stage, decision problems. This
approach is also applicable to decision problems where
sequential property is induced solely for computational
convenience. DP is widely used in combinatorial
optimization, speech recognition, sequence alignment,
time series data processing, etc. Even when it does not
solve a problem completely, it can be useful as part of an
overall approach. In particular, DP plays an important role
in solving similarity problems of some major data-mining
tasks, such as Association Rule Mining (ARM), similar
time sequence mining, similar image mining, and so on.
ARM is a matter of looking for association rules in data.
An association rule is an expression X IMPLIES Y, where
X and Y are sets of items. The intuitive meaning of such a
rule is that transactions of the database that contain X tend
to contain Y.

Workloads Studied Using Optimization
Techniques
Sequence alignment is an important tool in bioinformatics,
text, acoustic signal, and image processing. It is capable of
identifying the similar and diverged regions between two
sequences, e.g., biological DNA/protein sequences or text
strings. From a biological point of view, matches may turn
out to be similar functions, e.g., homology pairs and
conserved regions, while mismatches may detect
functional differences, e.g., SNP.

With DP, Needleman and Wunsch presented the first
global alignment algorithm in 1970 [18]. Smith and
Waterman improved this algorithm for the local alignment
to find the longest common substring [19] (shown in
Figure 2). In this paper, we study an efficient Parallel
Linear Space Alignment (PLSA) for large-scale sequence
alignment. By introducing the novel grid cache,
global/local start points, the algorithm reduces the re-
computations of the trace-back period dramatically, and it
provides more parallelism than other methods do. Besides
the algorithms mentioned above, there are many other
techniques or algorithms that have been widely used in
data mining, such as clustering, statistic modeling,
association rules mining, Naïve Bayes classifiers, neural
networks, memory-based reasoning, evolutionary
programming, regression, decision trees, etc.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 135

Figure 2: Smith Waterman sequence alignment

SUMMARY OF APPLICATIONS STUDIED
Table 1 summarizes the six applications studied in this
paper. We list the type of algorithm they use, how the
parallelism can be exploited, and we show what types of
applications they are representative of.

We have used applications developed in universities. For
example, we have used SEMPHY (from the Hebrew
University in Jerusalem) for reconstruction of
phylogenetic trees; and RSEARCH (from Washington
University in St. Louis) for RNA secondary structure
homolog search. We have also developed some
workloads. For instance, we have used a BN structured
learning to solve the discovering of patterns in SNPs, and
to analyze gene expression data in DNA microarrays in
GeneNet. In PLSA, we have developed a novel large-scale
alignment algorithm for the whole genome alignment.

This section describes the methodology used to
parallelize, optimize, and analyze the workloads. The first
step is to profile the workloads to identify the hot spots.
The Intel® VTune™ Performance Analyzer was used for
function-level profiling, and for correlation of the
hardware performance events with the source code.

® Intel and VTune are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Parallelization was done with the Open MP programming
model that is well suited to exploit the data parallelism of
these algorithms. For example, in RSEARCH, the whole
RNA sequence database is scanned with a three-
dimensional dynamic programming algorithm.

Generally, the query RNA sequence is far shorter than the
sequences in the database. RSEARCH first defines a value
“D_scale,” representing the largest ratio between the
match part of the sequence and the query sequence. The
database sequence is segmented into different subsets that
overlap so that the D_scale can be a multiplier of the
query length. The search through the different subsets can
be done in parallel by different processors.

The costs of synchronization, locks, and barriers were
measured using the Intel VTune Performance Analyzer
thread profiler for OMP applications. The experiments
show that for most studied applications these costs are
very low, which is expected for data-parallel applications
with very little synchronization between threads.

After having characterized the communication overhead,
synchronizations (explicit or implicit), and load-balancing
performance (dynamic or static partitioning methods), we
measured the performance increase on up to 16
processors, and we characterized the memory hierarchy
behavior.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 136

Table 1: Bioinformatics workloads, algorithms, applicability Workload Analysis Methodology

Category Workload

Algorithm Parallelism Applicability

SNPs (Single
Nucleotide
Polymorphisms)

GeneNet
(Gene
Expression
analysis in
microarrays)

Structure
learning
Hill-climbing

Bayesian
Network/Structure
Learning

SEMPHY

Structural EM

Data
parallelism

(instance data,
node, tree)

• Pattern
recognition

• Speech
recognition

• Optimization
• Text mining
• Game
• Decision

Making

RSEARCH
(homologous
RNA
sequence)

Stochastic
Context Free
Grammar:
CYK Local
alignment

Data base
Segmentation

• Recognition
• Classification
• Prediction
• Speech

recognition,
language
parsing

Classification
and Prediction

SVM-RFE
(Disease Gene
Finding in
Microarrays)

SVM based
feature
selection

Data blocking
matrix/
vector
multiply

• Pattern
recognition

• Classification
• optimization

Optimization PLSA
(Parallel
Linear Space
Alignment)

Dynamic
Programming

Data blocking
Wave-front
parallelism

• Pattern
recognition,

• Text mining
• Association

Rule Mining
• Combinatorial

optimization

To measure the performance of our workloads, we use a
16-way SMP based on Intel Xeon microprocessor
system interconnected with a crossbar. The configuration
of the 16-way system is described in Table 2. The
machine is running the SUSE ES Linux∗ operating system
environment for all the experiments. All applications were
compiled with the Intel Compiler v8.0, at the highest level
of optimization.

∗ Other brands and names are the property of their
respective owners.

PERFORMANCE SCALABILITY
ANALYSIS
All the workloads studied in this paper use data
parallelism, where all processors are executing the same
code on different data. Figure 3 shows most of the
workloads scale well with increased numbers of
processors, and two workloads exhibit linear speed-up
performance (SEMPHY, PLSA).

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 137

Table 2: Configuration of the 16-way SMP based on
Intel Xeon™ microprocessor system

Processor Speed 3.0 GHz

L1 Data Cache 8 KB, hit latency: 2
cycles

L2 Unified Cache 512 KB, hit latency:
~10 cycles

L3 Unified Cache 4 MB, hit latency: 30+
cycles

L4 on-board Unified
Cache

32 MB, hit latency:
300+ cycles

Interconnection Crossbar

System Bus Speed 400 MHz

Front Side Bus
Bandwidth

3.2 GB/s

Memory Size 8 GB, dual-channel
DDR 400

To understand the performance-limiting factors, we have
quantified the parallelism overhead such as
synchronizations penalties, load imbalance, and sequential
sections. They are not significant, especially for large data
sets typical in current, and future, data-mining workloads.
Figure 4 shows these metrics for two selected workloads,
where the sequential area and the load imbalance penalties
are diminishing when the data set size increases. These
results are typical of all the workloads studied in this
report. Very few synchronizations are needed between
threads, and load balancing between threads is not an
issue. In SEMPHY, for example, computations are
distributed in four kernels that are nested loops, with no
dependency between loop iterations. The basic “Parallel
For” pragma is used to parallelize these loops. In one of
the kernels, the data decomposition is constrained by the
relation between the number of leaves in the tree, and the
length of the DNA or protein sequence. This creates a
small load imbalance for small data sets. The balancing
issue goes away for large data sets, where the constraints
become insignificant.

To identify the performance bottlenecks, we characterize
the memory hierarchy behavior by measuring the cache
miss rates and the Front Side Bus (FSB) bandwidth. In
Figure 5, it is interesting to see that the L2 cache miss
rates vary very little with the number of processors. The
data sets are large enough not to fit in L2, even when
problems are divided among 16 processors. We can

observe SVM-RFE has very high L2 and L3 cache miss
rates. The function profile of SVM-RFE shows that the
SVM training is the most time-consuming kernel. It
consists of a large number of vector-vector
multiplications. We have used the Intel Math Kernel
Library (MKL) for these operations to take advantage of
its highly optimized routines. But there is no data reuse in
vector-vector multiply operations, and this explains the
high cache miss rates. With increasing numbers of
processors, the shared system bus sees high memory
traffic, resulting in high memory latencies. This limits the
speed-up performance for the SVM-RFE workload. In the
case of SNP, and GeneNet, the L3 miss rates are modest,
but they increase with the number of processors, when
there are more than four processors. These applications
have at least one large data structure shared between the
thread. This data structure is shared efficiently between
four processors in the L4 cache of the 16-way system. But
sharing is done through the main memory interconnect for
more than four processors, and this limits the scalability of
these workloads.

Figure 6 shows the cache miss per instruction in L2 and
L3 and the FSB bandwidth used by these workloads
running a single thread.

We have verified that these miss per instructions in L2
and L3 remain about constant per workload as the number
of threads increases from 1 to 16.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 138

Figure 3: Performance speed-up as a function of the number of processors

Figure 4: Distribution of time spent in parallel, and sequential, code

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Procs

S
pe

ed
up

GeneNet
SNP
SEMPHY

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Procs

S
pe

ed
up

Rsearch
PLSA
SVM-RFE

0%

20%

40%

60%

80%

100%

SEMPHY-
medium

SEMPHY-
large

SVM-
medium

SVM-large

Parallel Sequential Imbalance

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 139

Figure 5: L2/L3 cache miss rates as a function of the number of processors

Figure 6: L2 and L3 miss per instruction for the one processor case

Most of these workloads are integer workloads, and they
use very few floating-point operations. So the bandwidth
per instruction shown in Figure 6 is in byte-per-integer
operation. The three workloads that have the lowest L3
miss per instruction are the ones whose performance
scales almost linearly with the number of processors:
SEMPHY, RSEARCH, and PLSA. The high miss per

instruction in both L2, and L3 in SVM-RFE, has already
been explained by the vector-vector multiply operations
used most of the time in SVM-RFE, and the fact that there
is no data reuse. Note that the Intel Xeon processor
prefetchers are highly effective for such operations
working on contiguous data, and they explain why the L3
miss per instruction is not higher than it is. For SNP and

L3 cache miss rates

0%

5%

10%

15%

20%

25%

30%

35%

1P 2P 4P 8P 16P

Number of processors

L3-SNP

L3-Semphy

L3-SVM-RFE

L3-PLSA

L3-Gene

Miss Per Instruction

0.00%

0.50%

1.00%

1.50%

2.00%

Workloads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L3 miss/inst

L2 miss/Inst

FSB Bw (B/inst)

L3 miss/inst 0.08% 0.01% 0.02% 0.00% 1.17% 0.00%

L2 miss/Inst 0.34% 0.27% 0.20% 0.07% 13.20% 0.03%

FSB Bw (B/inst) 0.6 0.07 0.1 0 2 0.03

SNP GeneNet Semphy Rsearch SVM-RFE PLSA

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 140

GeneNet, the cache misses per instruction are higher than
for the workloads scaling very well, but much lower than
for SVM-RFE. Yet these two workloads do not scale as
well as SVM-RFE. Caches are not the limiting factors for
these workloads. Threads spend a significant part of the
time waiting for each other at the end of parallel sections,
because of load balancing. In SNP for example, parallel
threads perform the hill-climbing algorithm on different
input data. The number of computations depends on the
data structure, and the difference in computation
requirements between threads explains the load
imbalance.

Bus bandwidth utilization varies widely between these six
workloads. They go all the way from virtually 0 for

RSEARCH that is highly compute intensive, with very
high reuse of data in cache, to 2 Bytes per instruction for
SVM-RFE whose main computation is a vector-vector
multiply that has very little data reuse.

Figure 7 shows how the bus bandwidth utilization varies
with the number of processors. It uses a log scale on both
axis. The bandwidth used by the different workloads
varies widely between workloads, which is explained by
the very different miss rates the workloads get in the L2
and L3 caches. But for all workloads, the FSB bandwidth
varies linearly with the number of processors. This
indicates that the bus bandwidth is not a limiting factor on
this system.

Figure 7: FSB bandwidth as a function of the number of processors

CONCLUSION
The bioinformatics workloads studied in this paper are
representative of general-purpose data-mining techniques.
They use BNs, SVMs, and DP, among other methods.
They are data parallel workloads with large data sets and
are very compute intensive.

Performance scalability up to 16 processors is very good
for some workloads such as SEMPHY, RSEARCH, and
PLSA that exhibit almost linear speed-up. It is not as

good, but quite respectable, for SNP, GeneNet, and SVM-
RFE.

The FSB bandwidth is not a limiting factor for
performance scalability (for the system used in the study).
The FSB utilization grows linearly with the number of
active processors for all workloads. Caches are too small,
which leads to the high miss rates of 5% to 30% in the L3
cache. The large latencies to the L4 cache and to main
memory DRAM are limiting scaling for workloads like
SVM-RFE and SNP that access large and complex data
structures.

FSB Bandwidth

1

10

100

1000

10000

1 2 4 8 16

Number of Processor

M
B

/s

SNP

GeneNet

Semphy

PLSA

SVM-RFE

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 141

ACKNOWLEDGMENTS
We acknowledge the encouragement and help that we
have received from Bob Liang. Additional thanks go out
to individuals who have reviewed the paper and provided
valuable feedback: Chu-cheow Lim, Gideon Gerzon, and
Chuck Yount.

REFERENCES
[1] Kevin Murphy, “The Bayes Net Toolbox for Matlab,”

Computing Science and Statistics, vol. 33, 2001.

[2] D. Heckerman et al., “Learning Bayesian networks:
the combination of knowledge and statistical data,”
Technical Report MSR-TR-09-09, Microsoft
Research, 1994.

[3] D. Heckerman, “A Tutorial on Learning with Bayesian
Networks,” in Learning in Graphical Models, M.
Jordan, ed. MIT Press, Cambridge, MA, 1999.

[4] W. Buntine, “A guide to the literature on learning
probabilistic networks from data,” IEEE Trans. On
Knowledge and Data Engineering, 8:195-210, 1996.

[5] Chickering, D. M., “Learning Bayesian networks is
NP-Complete,” in D. Fisher and H. Lenz (Eds.),
Learning from data: Artificial intelligence and
statistics v, pp. 121–130.

[6] P. Guidici et al., “Markov Chain Monte Carlo methods
for probabilistic network model determination,”
Journal of the Italian Statistical Society, 7, pp. 171-
183.

[7] X. Ma et al., “Discovering Possible Context
Dependencies around SNP Sites in Human Genes
with Bayesian Network Learning,” Eighth
International Conference on Control, Automation,
Robotics and Vision (ICARCV), 2004.

[8] N. Friedman et al., “Using Bayesian Networks to
Analyze Expression Data,” Journal of Computational
Biology, 7:601--620, 2000.

[9] Bateman, A. et al., “The Pfam Protein Families
Database,” Nucleic Acids Research Database, Issue
32:D138-D141. 2004.

[10] N. Friedman, “A Structural EM algorithm for
Phylogenetic Inference,” Journal of Computational
Biology, 9:331-353, 2002.

[11] N. Friedman, “Learning belief networks in the
presence of missing values and hidden variables,”
Fisher, D. ed., Proceedings of the Fourteenth
International Conference on Machine Learning, pp.
125-133, Morgan Kaufman, San Francisco, (1997).

[12] “The Bayesian structure EM algorithm,” in
Fourteenth Conf. on Uncertainty in Artificial
Intelligence (UAI), 1998.

[13] Klein, R.J. and Eddy, S.R., “RSEARCH: Finding
homologs of single structured RNA sequences,”
BMC Bioinformatics, 2003, 4:44.

[14] Jurafsky, D., Wooters, C., Segal, J., Stolcke, A.,
Fosler, E., Tajchman, G., Morgan, N., “Using a
Stochastic Context-Free Grammar as a Language
Model for Speech Recognition,” in Proc. ICASSP’95,
189-192.

[15] Fujisaki, T.; Jelinek, F.; Cocke, J.; Black, E.; and
Nishino, T., “A probabilistic parsing method for
sentence disambiguation,” in Current Issues in
Parsing Technology, edited by Masaru Tomita,
Kluwer Academic Publishers, 1991, pp. 139–152.

[16] Darnell Moore, Irfan Essa, “Recognizing Multitasked
Activities using Stochastic Context-Free Grammar,”
in Proceedings of Workshop on Models versus
Exemplars in Computer Vision,” held in Conjunction
with IEEE CVPR 2001, Kauai, Hawaii, December
2001.

[17] E. Osuna, R. Freund, and F. Girosi, “Training support
vector machines: An application to face detection,” in
Proceedings of CVPR’97, pages 130–136, New York,
NY, 1997b.

[18] Saul B. Needleman and Christian D. Wunsch, “A
General Method Applicable to the Search for
Similarities in the amino acid Sequence of Two
Sequences,” Journal of Molecular Biology, 48:443–
453, 1970.

[19] Temple F. Smith and Michael S. Waterman,
“Identification of Common Molecular
Subsequences,” Journal of Molecular Biology,
147:195–197, 1981.

AUTHORS’ BIOGRAPHIES
Yurong Chen is a researcher at Microprocessor
Technology Lab, Beijing. Currently he conducts research
on emerging computing paradigms, parallel algorithms,
and scalable workload development and analysis. He
joined Intel in 2004. Before that he spent two years doing
postdoctoral research work in computer science in the
Institute of Software, Chinese Academy of Sciences. He
received his BS degree in Applied Mathematics in 1998
and MS and PhD degrees in computational mathematics in
2002, all from Tsinghua University, China. His e-mail is
yurong.chen at intel.com.

Qian Diao is a researcher in the Microprocessor
Technology Lab, Beijing. Currently she works on various

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance Scalability of Data-Mining Workloads in Bioinformatics 142

data-mining techniques. In Intel, she has been involved in
several projects related to information retrieval, speech
recognition, visual tracking, bioinformatics, and statistical
computing. She got her PhD. from Shanghai Jiao Tong
University in 2000 and joined Intel in 2000. Her e-mail is
qian.diao at intel.com.

Carole Dulong is a senior researcher and Computer
Architect in the Microprocessor Technology Lab. She
leads a team of researchers working on various data-
mining techniques. She joined Intel in 1990. She was a
member of the IPF architecture definition team and
contributed to the IPF compiler design. She graduated
from Institut Superieur d’Electronique de Paris (France).
Her e-mail is carole.dulong at intel.com.

Wei Hu is a researcher in the Microprocessor Technology
Lab, Beijing. Currently he works on various data-mining
techniques. At Intel, he has been involved in several
projects related to natural language processing and speech
recognition, and statistic computing. He got his Ph.D from
the Institute of Computing Technology, China Academy
of Sciences (CAS/ICT) in 1998, and he joined Intel in
2000. His e-mail is wei.hu at intel.com.

Chunrong Lai is a researcher in the Microprocessor
Technology Lab, Beijing. He is currently working
on data-mining workload scalability and related
architecture research within the Scalable Statistical
Computing Group. His projects in Intel include various
applications analysis, parallelization and optimization,
performance simulation, and compiler re-target.
He received his M.S. degree from the Chinese Academy
of Sciences in 2000 and joined Intel as his first job. His
e-mail is chunrong.lai at intel.com.

Eric Li is a researcher in the Microprocessor Technology
Lab, Beijing. Currently he is working on algorithmic and
workload analysis on data-mining applications. Prior to
this position, he worked on the workload optimization,
parallelization, analysis, and related algorithm
methodology development. He received his M.S. degree
from Tsinghua University in 2002, and joined Intel that
same year. His e-mail is eric.q.li at intel.com.

Wenlong Li is a researcher in the Microprocessor
Technology Lab, Beijing. Currently he is working on
algorithmic and workload analysis on data-mining
applications. Before this, he did research in loop
compilation techniques for IPF architecture. He received
his Ph.D degree from Tsinghua University in 2005 and
joined Intel that same year. His e-mail is wenlong.li at
intel.com.

Tao Wang is a researcher in the Microprocessor
Technology Lab, Beijing. Currently he conducts research
on data mining, machine learning, and computer vision

techniques. At Intel, he has been involved in several
projects related to visual tracking, bioinformatics, and
content-based image/video retrieval. He received his
Ph.D. degree from Tsinghua University in 2003 and
joined Intel that same year. His e-mail is tao.wang at
intel.com.

Yimin Zhang is a researcher in the Microprocessor
Technology Lab, Beijing. He leads a team of researchers
working on various statistical computing techniques and
their scalability analysis. He joined Intel in 2000. At Intel,
he has been involved in several projects related to natural
language processing and speech recognition, especially
focusing on Chinese-named entity extraction and DBN-
based speech recognition. He received his B.A. degree
from Fudan University in 1993, his M.S. degree from
Shanghai Maritime University in 1996, and his Ph.D.
degree from Shanghai Jiao Tong University in 1999, all in
Computer Science. His e-mail is yimin.zhang at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 143

Performance and Scalability Analysis of Tree-Based Models
in Large-Scale Data-Mining Problems

Alexander Borisov, Technology and Manufacturing Group, Intel Corporation
Igor Chikalov, Technology and Manufacturing Group, Intel Corporation

Victor Eruhimov, Corporate Technology Group, Intel Corporation
Eugene Tuv, Technology and Manufacturing Group, Intel Corporation

Index words: machine learning, data mining, decision trees

ABSTRACT

Statistical information processing is needed for many ap-
plications to extract patterns and unknown interdependen-
cies between factors. A wide variety of data mining algo-
rithms has been developed over the last decade, but active
human intervention is still required to drive an analysis.
The intention of expert work is to sequentially clarify
models, and to compare models to provide accurate pre-
dictions. The productivity of expert work is largely con-
strained by the amount of time that is needed to compute
model updates.

Recent modeling techniques such as classification and
regression trees, and ensembles of machine-learning clas-
sifiers, incur high computational loads. Building such
models in online interactive mode is a challenging task for
upcoming platforms.

Tree-based models are applicable to a wide range of prob-
lems that include medical expert systems, analysis of
manufacturing data, financial analysis, and market predic-
tion. Ensembles of trees are notable for their accuracy.
They can handle mixed-type data (consisting of both nu-
merical and categorical data) and missing values. Several
commercial packages implement these techniques.

In this paper we consider several data-mining methods
based on ensembles of trees. The balance between com-
plexity and accuracy is studied for different parameter
sets. We provide an analysis of the computational re-
sources required by the algorithms, and we discuss how
they scale for execution on multiprocessor systems with
shared memory.

INTRODUCTION
Fast growth and development of digital devices have re-
sulted in a constantly increasing volume of digital data.
According to the “How Much Information? 2003” survey

[1], the world’s total production of information content
during 2002 required about 5 million Terabytes to store.
More than 90% of this information is stored in electronic
form, mostly on hard drives. This enormous amount of
information creates a demand for fast and intelligent solu-
tions for data-processing tasks. Many of these tasks can be
approached using machine-learning techniques. Machine
learning focuses on detecting and recognizing complex
patterns in data. Examples are found in biometrics (finger-
print recognition, face recognition, machine vision), net-
work security (intrusion detection), manufacturing (excur-
sion analysis, statistical process control), financial analysis
(trend prediction), medical systems (MRI scan analysis
[2]), and forensic applications (genetic data analysis).
Although these problems belong to different domains, the
algorithms solving them have much in common. One of
the core concepts commonly used for learning multidi-
mensional patterns from data is a decision tree.

It is difficult to overestimate the influence of decision
trees in general and Classification and Regression Trees
(CART) [3] in particular on machine and statistical learn-
ing. CART has practically all the properties of a universal
learner: it is fast, supports both discrete and continuous
variables, elegantly handles missing data, and is invariant
to monotone transformations of the input variables (and
therefore resistant to outliers in input space). Another key
advantage of CART is its embedded ability to select im-
portant variables during tree construction.

The main limitation of CART is relatively low prediction
power. Intensive development of model averaging meth-
ods [4-8] over the last decade resulted in a series of very
accurate tree-based ensemble techniques. A tree ensemble
can be understood as a committee, where each member
has a vote and the final decision is made based on the ma-
jority vote. The two most recent advances in tree ensem-
ble techniques, gradient boosting tree (GBT) [9, 10] and
Random Forest (RF) [11], have been proven to be among

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 144

the most accurate and versatile state-of-the-art learning
machines. GBT serially builds tree ensembles where every
new expert construction relies on previously built trees.
RF builds trees independent of each other on a randomly
selected subset of the training data, and predicts by major-
ity vote (or average in regression).

In the next section we explain the details of the decision
tree construction, and various learning algorithms associ-
ated with it. We then discuss applications that use decision
trees, and we analyze their performance and scalability.

LEARNING WITH DECISION TREES
In supervised machine learning, we are given a dataset
with a set of variables or attributes, often called “inputs”
or “predictors,” and a corresponding target, often called
“response” or “output” values. The goal is to build a good
model or predictive function that predicts unknown, future
target values for given input values. When the response is
numeric, the learning problem is called “regression.”
When the response takes on a discrete set of non-ordered
categorical values, the learning problem is called
“classification.”

Single Tree
Decision trees are one of the most popular universal
methods in machine learning/data mining and are com-
monly used for data exploration and hypothesis genera-
tion. CART is a commonly used decision tree algorithm
[3]. It uses greedy, top-down recursive partitioning to di-
vide the domain of input variables into sets of rectangular
regions. These regions are as homogeneous as possible
with respect to the response variable, and they fit a simple
model in each region, either by majority vote for classifi-
cation, or as a constant value for regression. At every step,
a decision tree uses exhaustive search, by trying all com-
binations of variables, and split points to achieve the
maximum reduction in impurity. Each split selection re-
quires)log(nknO operations, where k is the number

of variables and n is the number of training samples.

A single decision tree can be visualized, interpreted, and
tuned by an expert. The main limitations of CART are low
accuracy and a high contribution to prediction error vari-
ance. High variances result from the use of piecewise,
constant approximations.

Case Study 1
Figure 1 shows an example of a decision tree constructed
to fit a functional dependency depicted in Figure 2a (re-
gression problem with one response and two numeric pre-
dictors). The resulting piecewise approximation is shown
in Figure 2b.

Figure 1: Example of a single regression decision tree

10000

20000

30000

40000

50000

60000

 50

100

150

200

250

1.5

2.0

2.5

3.0

mmax
cach

log(perf)

Figure 2(a): Example of a regression tree, original

10000

20000

30000

40000

50000

60000

 50

100

150

200

250

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

mmax
cach

log(perf)

Figure 2(b): Example of a regression tree, CART pre-
diction

Case Study 2
Figure 3 shows a decision tree learned from a car dataset
where the response is a country where a car was produced,
and predictors are reliability, horse power, mileage, and
price. The split (characterized by a variable and its split
value) at each node is chosen in order to maximize the
number of samples (cars) that correspond to one of the
countries. Note that the tree is built so that the presence of
a single country in each node (indicated both by the width
of the color bar and the text inside the node) grows from

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 145

the top of the tree to the bottom. Figure 4 illustrates the
properties of the top node of the tree from Figure 3 and
the properties of the corresponding split. The top part of
the figure shows the table that compares the best split (the
first row) to others. For each variable two numbers are
reported (left to right): how a split on this variable reduces
data impurity in comparison with the best split and how it
is similar to the best split in data separation. Similar (“sur-
rogate”) splits are used for treating missing values–
whenever the value of the variable corresponding to the
primary split is missing, the surrogate split is used. The
bottom part of Figure 4 shows the box plots of the vari-
able values corresponding to the primary split (Reliability)
for each of the response (Country) values. The red hori-
zontal line corresponds to the split value. Note that it cuts
off the high values of reliability corresponding to several
countries (“Japan” and “Japan/USA”).

Figure 3: Example of a classification tree

Ensembles of Trees
Ensembles of trees combine outputs from multiple trees
and can dramatically improve the performance of the re-
sulting committee. There are two primary approaches to
ensemble construction: parallel and serial. A parallel en-
semble combines independently constructed trees, and
therefore targets variance reduction.

In serial ensembles, every new constructed tree relies on
previously built trees so that the resulting weighted com-
bination of them forms an accurate learning engine. A
serial ensemble algorithm is often more complex, but it is

targeted to reduce both bias and variance, and usually
shows excellent performance.

Figure 4: Split competitors and surrogate weights (up-
per part) and boxplots of split variable (Reliability) vs.

response (Country)

APPLICATIONS
Decision tree-based learning is used in a wide range of
applications. This list includes experimental data analysis
in medicine and physics [3], market and customer analysis
[12], manufacturing data exploration [13], and automated
spam detection [14]. Single decision trees lack precision
in predicting the data but are easier to interpret. For ex-
ample, Figure 3 shows a tree for a cars dataset. It explains
the connection between predictor and response variables
using simple and interpretable rules. On the other hand,
ensembles of decision trees have much better prediction
accuracy, but they lack interpretability. Still, the model
can be interpreted with techniques as described in [13].

There are several usage models for tree-based ensembles.
For spam detection, the model is learned once and then
used to predict the response in real-time with infrequent
re-learning. For interactive data analysis, the model is
built and re-learned interactively so that an analyst can
experiment with parameters, and see the impact of the
changes.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 146

Figure 5: Serial ensemble complexity vs. error

Learning a decision tree ensemble from a large dataset is a
computational challenge. For example, GBT ensemble
learning on a manufacturing dataset that contains 200,000
samples, 129 predictors (mostly numeric), and binary re-
sponse takes about eight minutes on a machine with a
3.06 GHz Intel Xeon™ processor. The resulting ensem-
ble consists of about 70 trees. Figure 5 shows the predic-
tion error of the GBT ensemble depending on its complex-
ity, measured as the number of trees. The optimal size of
the ensemble corresponds to the minimum of the predic-
tion error. The time to learn the serial ensemble is roughly
proportional to the model complexity. Figure 6 shows the
dependence of the learning time on the number of samples
in the dataset. Both training data size and model complex-
ity can increase the prediction power of the ensemble but
the learning time will also increase.

In the next section, we investigate the computational
properties of the parallel ensemble learning algorithm and
explain how it can take advantage of the Symmetric Mul-
tiprocessor (SMP)-like architecture.

WORKLOAD ANALYSIS
In this section, we describe the requirements for resources
used by the algorithm to construct an ensemble of classifi-
cation trees. We give a description of data structures and
methods used to optimize computations. Firstly, hot op-
erations are identified that incur the main computational
load. Secondly, an interaction with the Arithmetic Logic
Unit (ALU), the memory subsystem, and the instruction
decoder are described on an example data set. Finally, we
present a scheme for parallelizing the algorithm for an
SMP system as a function of the number of threads.

 Intel and Xeon are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Figure 6: Block scheme of the Random Forest
algorithm

Computing Platform Model
A complexity analysis of an algorithm requires a computa-
tional model. We consider a simplified model of a modern
computer that consists of the following components:

• An ALU that executes logical, integer, and floating-
point operations.

• A memory subsystem that consists of the main mem-
ory, several caches, and a system bus.

• An instruction decoder that includes a branch predic-
tor.

0

100

200

300

400

500

600

0 50000 100000 150000 200000
Training data size, samples

T
im

es
,s

Figure 7: Learning time for a serial ensemble vs. the
training data size

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 147

In the analysis we investigate the following problems:

• Where is the bottleneck, i.e., which component slows
down the overall system performance?

• How many clock ticks are required to execute one
instruction?

• What is the traffic to the main memory and each level
of cache?

• Does the decoder manage to translate instructions in
time, and how do unpredicted branches impair the
performance.

• What is the expected performance improvement when
the algorithm is executed on an SMP system.

Experimental Results
The training data set consists of 80,000 samples in the
feature space that contains 127 numeric and 5 categorical
variables, unless stated otherwise. One of the categorical
variables is modeled by the Parallel Ensemble Learning
(PEL) algorithm.

The following characteristics were measured on a com-
puter with four 1.9 GHz Intel Xeon processors with hyper-
threading technology and 3.5 Gb of RAM. The data are
presented for a single thread (serial version), unless stated
otherwise.

Clockticks %

22

9.56

4.18

10.55

57.89

(1)

(2)

(3)

(4)

Other

Figure 8: Distribution of execution time by operations

Figure 9: Clock ticks per retired instruction for func-
tions (1)-(4) depending on the number of samples in

the training dataset

Hot operations were identified in the optimized code. The
main computational complexity is due to the following
operations (also see Figure 6):

(1) Sampling a subset of data for calculating the current
split. We randomly select both data samples and vari-
ables subset (the number of variables to be used in
split calculation is a square root of the total number of
variables in the dataset).

(2) Sorting training samples on each variable selected for
the split. The sorting takes place for each variable in-
dependently and thus operates with a relatively small
amount of data.

(3) Iterative calculation of data impurity reduction in
order to find the best split variable and value. The
calculation of the optimal split value is done using
exhaustive search that is performed with one pass
through the sorted array of values.

(4) Propagate the training samples through the split to the
bottom nodes of the tree.

Figures 8 and 9 show the distribution of execution time
measured in CPU clock ticks and the mean number of
clock ticks per instruction, respectively. One can see that
operations (1)-(4) add up to about 90% of the execution
time (see the above description of operations (1)-(4)).
Note a high CPI value for a sampling operation (1) and
the corresponding low clock ticks percentage.

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 148

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(1) (2) (3) (4)

In
st

ru
ct

io
n

s
re

ti
re

d

Memory
accesses

Branches

Integer ops

SIMD ops

x87 ops

Figure 10: Instruction mix count

One could divide all instructions into four main types:
integer and logic operations, floating-point operations,
branches, and memory reads/writes. Figure 10 shows the
number of retired instructions of each type for (1)-(4). The
procedure of sampling is characterized by intensive mem-
ory access; sorting requires a large number of compari-
sons (optimized using SIMD extensions), logical opera-
tions and branches, while a search for an optimal split
requires intensive FP computations.

Figure 11 illustrates levels of interaction with the memory
subsystem. It shows overall memory traffic and its distri-
bution between the caches hierarchy and the main memory
(the Xeon processor has 8 KB of L1, 512 KB of L2, and
1 MB of L3 cache). The data explain the high number of
clock ticks per retired instructions for (1). The cause is
high access rate to the main memory.

Table 1: Characteristics of instructions decoder

% of de-
coded
commands

Mispredicted
branches
per instruc-
tions retired

Branch predic-
tion rate

(1) 91.697 0.013 78.443
(2) 92.571 0.024 72.964
(3) 95.439 0.002 94.41
(4) 95.322 0.005 94.489

Table 1 characterizes the work of the instruction decoder.
It contains the percentage of instructions that did not
cause stalls due to the latency of decoding. As the main
cause, the number of branches per instructions retired and
the BP rate is shown too. As one can see, there is a large
number of mispredicted branches in subsampling and sort-
ing procedures that cause stalls of the instruction decoder.

Multithreading
Building a decision tree could be effectively parallelized
at the data level. Several algorithms of building tree en-
sembles (e.g., PEL [11]) assume that each tree is built

independently. Then, each sub tree in a decision tree could
be built independently, resulting in fine thread granularity.
The main thread could make a few first splits, and then
assign the building of each sub tree to auxiliary threads.
Finally, each of the operations (1)-(3) contains an outer
loop on input variables. Iterations are independent, but an
aggregation is required at the end (e.g., comparison of
split goodness and finding the best one).

0.00

1.00

2.00

3.00

4.00

5.00

(1) (2) (3) (4)

D
at

a
ra

te
, G

B
/s

Main
memory
L3

L2

L1

Figure 11: Interaction with memory subsystem

However, access to data structures could be a problem
when considering real system architecture. For the cluster-
based solution, a subset of training data should be passed
to each node, and partitioning is then determined by sev-
eral first splits. However, the algorithm could be modified
to allow effective distributed computations. For SMP sys-
tems, the bus becomes a limiting factor with increasing
numbers of processors. Figure 12 illustrates this. The ver-
tical axis shows a ratio of execution time per model, re-
lated to the execution time of the sequential version. One
can see that performance grows near-linearly for up to
three threads, and does not grow when the number of
threads exceeds six.

Figure 12: Speedup on the number of threads

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 149

Figure 13: Clock ticks for each function vs. the num-
ber of threads

DISCUSSION
The computation of a single tree in a PEL algorithm con-
sists of both intensive data exchange with memory subsys-
tem and CPU load. Function (1) that selects a subset of
samples from the original dataset copies a significant
amount of data from the source array residing mainly in
the main memory to the destination array that is smaller
and sits in cache. Figure 11 shows that function (1) causes
a significant amount of traffic into main memory. In fact, a
significant amount of interaction with cache is caused by a
hardware prefetch that reads local data into cache auto-
matically. Still, selecting a subset of samples and variables
generates a sparse memory access pattern, and prefetch is
not capable of loading all the data we need. The same
chart indicates that function (2) works with cache data
only. Function (4) divides the training table into right and
left according to the currently built split. It generates
about a half of the traffic to main memory compared to
function (1) but it works more than five times faster. This
is because of the difference in memory access patterns:
function (4) goes through samples one by one while func-
tion (1) jumps between samples and variables in a sparse
manner.

Performance gain in Figure 12 shows a sub-linear trend up
to three threads. Small gain in Thread 4 is caused by an
increased competition between threads for the bus to the
main memory. While we do not give a precise interpreta-
tion of this effect within this paper, we note that this is in
accordance with the data presented in Figure 7. Roughly
two-thirds of the execution time in one thread is occupied
by the function (2) that is supposed to have excellent scal-
ability. The remaining one-third relates mostly to opera-
tions with memory, and this explains the competition that
shows up when the number of processors is more than
three. The measurements of Figure 11 were taken on a 4-
way server with Hyper Threading (HT) enabled. Threads
5-8 share the physical processor with Threads 1-4. The
15-20% gain we get from HT is due to better resource

utilization: while one thread waits for the data from mem-
ory, executing, for instance, function (1), another thread
on the same processor runs calculations of function (2).

Figure 13 supports the hypothesis of poor scalability of
function (1): the percentage of time occupied by function
(1) grows with the number of threads. If threads have been
executed independently from each other, the percentage of
clock ticks for each function would have been constant.
The data locality issue is crucial here. Figure 8 illustrates
the CPI trends for different functions and training samples
number. One can see that for a larger dataset it takes more
time for function (1) to execute a single instruction, while
the CPI rate for function (2) is almost constant.

It is important to note that all data mentioned in the paper
have been obtained for the dataset that has sample-wise
memory layout. In other words, it is organized in memory
so that the data related to one sample occupy a continuous
block of memory. (The case of variable-wise representa-
tion when the data related to each variable are put into a
continuous block of memory lies outside the scope of this
paper.) We note, however, that using one representation or
another can improve locality and provide an additional
speed-up depending on the parameters of the training
dataset and PEL.

RESULTS
Learning of tree-based models in the context of large-
scale data-mining problems provides many challenges for
a computing platform. Often, the more computational
power we have the higher prediction power we can get
from the model.

The experiments show that an IA-32 system can handle
complex ensemble-based learning algorithms very effi-
ciently. The key limiting factor is latency to main memory.
A problem-specific data structure can improve data local-
ity and performance gains. For current bus and cache
sizes, the algorithm could be effectively parallelized up to
four processors. Having several threads per core can pro-
vide an additional speed-up.

ACKNOWLEDGMENTS
We thank Roman Belenov and Dmitry Budnikov from
Intel Russian Research Center for fruitful discussions.

REFERENCES
[1] Lyman, P. and Hal, R. V., How Much Information,

2003 retrieved from
http://www.sims.berkeley.edu/how-much-info-2003*.

[2] Spiegelhalter, D. J., Abrams, K., and Myles, J. P.,
Bayesian Approaches to Clinical Trials and Health

http://www.sims.berkeley.edu/how-much-info-2003
http://www.mrc-bsu.cam.ac.uk/cgi-bin/pub-xtra2002.cgi?index=1788

Intel Technology Journal, Volume 9, Issue 2, 2005

Performance and Scalability Analysis of Tree-Based Models in Large-Scale Data-Mining Problems 150

Care Evaluation*, Chichester: John Wiley & Sons,
2004.

[3] Breiman L., Friedman, J.H., Olshen, R.H., and Stone,
C.J., Classification and Regression Trees, Wadsworth,
Belmont, California, 1984.

[4] Breiman, L., Bagging Predictors, Machine Learning,
vol. 24, no. 2, pp. 123-140, 1996.

[5] Freund, Y. and Schapire, R.E., “Experiments with a
New Boosting Algorithm,” in Proceedings of the
Thirteenth International Conference on Machine
Learning, pp. 148-156, 1996.

[6] Ho, T. K. Y., “The random subspace method for con-
structing decision forests,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 20, no. 8,
pp. 832-844, 1998.

[7] Breiman, L., “Using adaptive bagging to debias re-
gressions,” Technical Report 547, Dept. of Statistics,
University of California, Berkeley, 1999.

[8] Dietterich, T.G., “Ensemble methods in machine learn-
ing,” in Multiple Classier Systems, Cagliari, Italy,
2000.

[9] Friedman, J. H., Stochastic gradient boosting, 1999.
http://www-stat.stanford.edu/~jhf/ftp/stobst.ps*

[10] Friedman, J.H., “Greedy Function Approximation: A
Gradient Boosting Machine,” Annals of Statistics, 29,
5, pp. 1189-1232, 2001.

[11] Breiman, L., “Random forests, random features,”
Technical Report, University of California, Berkeley,
1999.

[12] http://www.salford-systems.com/*

[13] Goodwin, R. et al., “Advancements and Applications
of Statistical Learning/Data Mining in Semiconductor
Manufacturing,” Intel Technology Journal, Volume 8,
Issue 4, 2004.

[14] Hastie T., Tibshrirani R., and Friedman J., The Ele-
ments of Statistical Learning, Springer, New York,
2001.

AUTHORS’ BIOGRAPHIES
Alexander Evgenyevich Borisov was born in Nizhny
Novgorod, Russia and received his Masters degree in
Mathematics (Lie algebras) at Lobachevsky Nizhny Nov-
gorod State University where he is currently working on a
Ph.D. degree in the area of context-free grammars. He
currently works at Intel (Nizhny Novgorod) as a software
engineer and researcher. His technical interests include
artificial intelligence and data mining, especially tree-

based classifiers. His e-mail is alexander.borisov at
intel.com.

Igor Chikalov is a team leader/research engineer in the
Analysis & Control Technology department at Intel. He
has been working at the R&D site in Nizhny Novgorod
(Russia) since 2000. His research interests include ma-
chine learning, test theory, statistical modeling. Igor re-
ceived his Ph.D. degree from Nizhny Novgorod State
University in 2002. His e-mail is igor.chikalov at
intel.com.

Victor Eruhimov is a senior research scientist in the Intel
Russia Research Center. He is leading a team of research-
ers investigating the computational properties of algo-
rithms in the area of computer vision and machine learn-
ing. He was a senior researcher in the Open Computer
Vision project, working on the development of the
OpenCV library and research in computer vision. Victor
received a Masters degree from the Advanced School of
General and Applied Physics in the Institute of Applied
Physics, Russian Academy of Sciences, in 1999. His
e-mail is victor.eruhimov at intel.com.

Eugene Tuv is a staff research scientist in the Analysis &
Control Technology department at Intel. His research in-
terests include supervised and unsupervised non-
parametric learning with massive heterogeneous data. He
holds postgraduate degrees in Mathematics and Applied
Statistics. His e-mail is eugene.tuv at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www-stat.stanford.edu/~jhf/ftp/stobst.ps
http://www.salford-systems.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://www.mrc-bsu.cam.ac.uk/cgi-bin/pub-xtra2002.cgi?index=1788

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 151

Parallel Computing for Large-Scale Optimization Problems:
Challenges and Solutions

Mikhail Smelyanskiy, Corporate Technology Group, Intel Corporation
Stephen Skedzielewski, Corporate Technology Group, Intel Corporation

Carole Dulong, Corporate Technology Group, Intel Corporation

Index words: optimization, linear programming, quadratic programming, interior point method, sparse
linear system of equations, Cholesky factorization, backward solver, forward solver, elimination tree,
supernode, parallel computing, multiprocessor system, shared-memory programming model, message-
passing programming model, problem structure, block-angular matrices, asset liability management

ABSTRACT

Optimization refers to the minimization (or
maximization) of an objective function of several
decision variables that have to satisfy specified
constraints. There are many applications of optimization.
One example is the portfolio optimization problem
where we seek the best way to invest some capital in a
set of n assets. The constraints might represent a limit on
the budget (i.e., a limit on the total amount to be
invested), the requirement that investments are
nonnegative (assuming short positions are not allowed),
and a minimum acceptable value of expected return for
the whole portfolio. The objective or cost function might
be a measure of the overall risk or variance of the
portfolio return. In this case, the optimization problem
corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet
the firm requirements. Another example is production
planning and inventory: the problem is to determine the
optimal amount to produce in each month so that
demand is met while the total cost of production and
inventory is maintained without shortages.

In recent years the Interior Point Method (IPM) has
became a dominant choice for solving large optimization
problems for many scientific, engineering, and
commercial applications. Two reasons for the success of
the IPM are its good scalability on existing
multiprocessor systems with a small number of
processors and its potential to deliver a scalable
performance on systems with a large number of
processors. IPM spends most of its runtime in several
important sparse linear algebra kernels. The scalability
of these kernels depends on several key factors such as
problem size, problem sparsity, and problem structure.

This paper describes the computational kernels that are
the building blocks of IPM, and we explain the different
sources of parallelism in sparse parallel linear solvers,
the dominant computation of IPM. We analyze the
scalability and performance of two important
optimization workloads for solving linear and quadratic
programming problems.

INTRODUCTION
Optimization refers to the minimization (or
maximization) of an objective function of several
decision variables that have to satisfy specified
constraints. It enables businesses to make better
decisions about how to commit resources, which include
equipment, capital, people, vehicles, raw materials, time,
and facilities.

While existing hardware performs well on problems with
tens of thousands of constraints and hundreds of
thousands of variables, it lacks the necessary
computational and bandwidth resources to target future
datasets whose solution will require teraflops of
computation and gigaflops of bandwidth. As an example,
consider the Asset Liability Management (ALM)
problem from computational finance, where the goal is
to coordinate the management of assets and liabilities
over several time periods to maximize the return at the
end of the final time periods. To hedge against risk
requires diversification of a portfolio with many assets;
considering more time periods means better planning.
Our simple back-of-the-envelope estimate shows that
modeling just three time periods and as few as seventy-
four assets creates an optimization problem that takes
about one hour to solve on today’s platforms, but only
ten seconds to solve on a teraflop platform of tomorrow.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 152

In order for an optimization workload to achieve high
performance on future parallel architectures, one needs
to understand (i) the source of parallelism, (ii) how the
parallelism changes for different optimization problems,
and (iii) how to extract this parallelism for a given
problem.

We focus on the Interior Point Method (IPM), a
dominant choice for solving large-scale optimization
problems in many scientific, engineering, and financial
applications. While complex mathematical analysis is the
driving force behind IPM, most of the algorithm’s
computation time is spent in a few sparse linear algebra
functions: sparse linear solvers, matrix-matrix
multiplication, matrix-vector multiplication, and a few
others. Developing parallel systems that efficiently
execute these few functions is paramount to high
performance for the IPM.

In this paper, we discuss IPM workloads as well as
several approaches to parallelizing IPM. First, we
discuss important computational kernels that are the
building blocks of IPM. Second, we explain several
sources of parallelism in sparse parallel linear solvers,
the dominant computation of IPM. We also describe
how additional parallelism within IPM can be discovered
by exploiting inherent problem structures. Thirdly, we
present the scalability results and performance analysis
of shared-memory IPM on several datasets from linear
programming. This workload utilizes highly optimized,
parallel routines from the Intel Math Kernel Library,
built using the PCx framework and parallelized by our
team. We also present scalability results and
performance analysis of a structure-exploiting quadratic
IPM workload, the Object-Oriented Parallel interior
point Solver (OOPS), on asset liability and management
problems.

OPTIMIZATION AND THEIR USAGE
MODELS
An optimization problem, has the form

 minimize f0(x)

subject to fi(x) bi, i = 1,…, m

Here the vector x = (x1,…,xn) is the optimization
decision variable of the problem, the function f0(x) is the
objective function, the functions fi , i = 1,…,m, are the
(inequality) constraint functions, and the constants
b1,…,bm are the limits, or bounds, for the constraints. A
vector x* is called optimal, or a solution of the
optimization problem if it has the smallest objective
value among all vectors that satisfy the constraints.

There are several important classes of optimization
problems, characterized by particular forms of the

objective and constraint functions. As an example, the
optimization problem is called a Linear Program (LP) if
the objective and constraint functions f0,…, fm are
linear functions of x. The LP optimization problem is of
the form

min cTx, subject to Ax=b, x 0

where A is m by n the matrix of linear constraints, and
vectors x, c, and b have appropriate dimensions.

Another important example, the convex quadratic
optimization problem (QP), is of the form

min cTx + ½ xTQx, subject to Ax=b, x 0

where Q is n by n positive semidefinite matrix, and A, x,
c, and b are the same as in LP.

LP and QP are important not only because many
problems encountered in practice can be formulated as
either LP and QP problems, but also because many
methods for solving general non-linear programming
problems (NLP) solve them by solving the sequence of
linear (sequential linear programming) or quadratic
(sequential quadratic programming) approximations of
the original NLP problem.

There are many applications of optimization. In the
radiation therapy planning optimization problem, when
choosing a plan for any individual patient, one seeks to
determine radiation beam directions and intensity with
the goals of maximizing the delivered dose to the tumor
while minimizing the dose in normal tissue and organs at
risk. There exist different formulations of this problem
as LP, QP, or NLP.

In production planning and inventory problems, the
problem is to determine the optimal amount to produce
in each month so that demand is met yet the total cost of
production and inventory is minimized and shortages are
not permitted. This problem has been traditionally
solved using the LP approach.

Another example is the famous portfolio optimization
problem where we seek the best way to invest some
capital in a set of n assets. The variable xi represents the
investment in the ith asset, so the vector x=(x1,…,xn)
describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the
budget (i.e., a limit on the total amount to be invested),
the requirement that investments are nonnegative
(assuming short positions are not allowed), and a
minimum acceptable value of expected return for the
whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio
return. In this case, the optimization problem
corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 153

the firm requirements. The problem is known as the
Markovitz mean-variance optimization problem and is
modeled using QP.

The last example is device sizing in electronic design,
which is the task of choosing the width and length of
each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The
constraints represent a variety of engineering
requirements, such as limits on the device sizes imposed
by the manufacturing process, timing requirements that
ensure that the circuit can operate reliably at a specified
speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total
power consumed by the circuit. The optimization
problem is to find the device sizes that satisfy the design
requirements (on manufacturability, timing, and area)
and are most power efficient. This problem can be
modeled using LP or QP.

INTERIOR-POINT METHOD (IPM)
In the past decade, the IPM has become a method of
choice for solving large convex optimization problems.
As parallel processing hardware continues to make its
way into mainstream computing, it becomes important to
investigate whether parallel computation can improve
the performance of this commercially vital application.

The IPM has a unified framework for LP, QP, and NLP.
The method starts with the initial guess to the solution of
the optimization problem, x. The core of the method is
the main optimization loop, which updates the vector x
at each iteration until the convergence to the optimal
solution vector x* is achieved. A key to efficient
implementation and parallelization of IPM is that all
three algorithms depend on four linear algebra kernels
listed below:

1. Form linear systems of equations, Mx=b, where M
is the symmetric matrix of the form








 Ζ−
=

0A

A
M

T

, where A is the original matrix

of constraints. The matrix of this form is called
augmented system. For linear programming
problems, where Z is a diagonal matrix, one uses
substitution of variables in the above linear system
of equations, so that matrix M is reduced to normal

equation form AZAM 1−= . This requires a

matrix-matrix multiplication operation.

2. Cholesky factorization of matrix M = L D LT in
order to solve the system of linear equations, Mx=b.
Here L is lower triangular, D is diagonal if M is
positive definite, and D contains 1 by 1 and 2 by 2

bocks if M is indefinite. This step is normally the
most time-consuming step of the IPM.

3. Triangular solver uses result of factorization to
solve a system of linear equations (L D LT)x=b,
using the following three steps

a. Forward solver, solves Ly=b

b. Diagonal solver solves Dz=y. Note that
when normal equations are used in the case
of LP, this step can be eliminated, because
the diagonal matrix D is positive and hence
M can be represented as M=(L’) (L’)T,
where L’ = L D1/2.

c. Backward solver solves LTx=z

4. Matrix vector multiply: Ax, ATx (transpose matrix
vector multiply), and Mx (symmetric matrix-vector
multiply).

Other operations, such as inner products, vector
additions, and vector norm computation contribute a
small amount compared to the above operations.

We see that the parallel efficiency of IPM depends on
the efficient parallel implementation of these four linear
algebra kernels. For the majority of realistic problems,
solving systems of equations (kernels 2 and 3) is the
most time-consuming portion of the IPM. For most
optimization dataset models, the underlying matrix M is
very sparse. As will be explained in later sections,
sparsity is important because it uncovers an additional
coarse-level parallelism, which is otherwise unavailable
in the dense problems.

PARALLELIZATION OF IPM
In this section we describe the serial and parallel
algorithm for solving sparse linear systems of equation.
We discuss different levels of parallelism that can be
explored for unstructured problems as well as additional
levels of parallelism that become available in structured
problems.

Sparse Unstructured Problems
This section deals with sparse unstructured matrices that
arise from general optimization LP, QP, and NLP
problems. Such matrices possess no distinct and
exploitable non-zero structure. In the rest of this paper,
we assume that the original symmetric matrix M is
scattered into the factor matrix L. Two fundamental
concepts behind solving sparse systems of linear
equations are supernode and elimination tree. A
supernode is a set of contiguous columns in the factor L
whose non-zero structure consists of a dense triangular
block on the diagonal and an identical set of non-zeroes

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 154

for each column below the diagonal. An example of
supernode is given in Figure 1(a).

Figure 1: Example of factor matrix L supernode and
its elimination tree

Figure 1(a) shows 13x13 sparse matrix L: empty entries
are assumed to have zero values. In this example there
are six supernodes. For example, columns 1 and 2 form
supernode sn1, columns 7 and 8 form supernode sn4,
and columns 11, 12, and 13 form supernode sn6. Since
all columns in the supernode have an identical non-zero
structure, in practice non-zero elements of supernodes
are compactly compressed into and stored as a dense
matrix.

The elimination tree is a task dependence graph that
characterizes the computation and data flow among the
supernodes of L during Cholesky and triangular solve,
and it is defined as follows: parent(snj) = min{sni | i > j
and at least one of the elements of snj which correspond
to the diagonal block of sni is non-zero}. In other words,
the parent of supernode j is determined by the first sub-
diagonal non-zero in supernode i. Figure 1(b) shows an
example of the elimination tree for the matrix in Figure

1(a). We see that there is an edge between sn1 and sn5,
because as the shaded portion of the figure shows, the
second row of the 2 by 2 diagonal block of sn5
corresponds to the non-zero row 10 in sn1. Similarly,
there is an edge between sn3 and sn6, because the first
two rows of sn6 correspond to non-zero elements in
rows 11 and 12 of supernode 3.

Given the elimination tree, the Cholesky factorization
forward and backward kernels can all be expressed using
the following generic formulation:

T = breadth-first traversal of ET (bottom-up or top-
down)
for each supernode sni in ET
 perform processing task on sni
endfor

The order of the tree traversal and the processing task
are different for each kernel. Cholesky and the forward
solver perform bottom-up traversal of the elimination
tree, whereas backward solver performs top-down
traversal of the elimination tree. The processing task for
forward and backward solver are very similar; however,
we do not discuss them here due to space limitations.
The details of a Cholesky processing task are discussed
next.

Cholesky Factorization
Cholesky factorization is the most time-consuming
operation among the four kernels. According to our
experiments (see our experimental section results for
unstructured problems) on average, IPM spends 70% of
the time in this kernel. The high-level pseudo-code of
Cholesky is given in Figure 2(a). Cholesky processing
task (Lines 3-7) is generally expressed in terms of two
primitive operations on the supernode, cdiv and cmod,
both of which are shown in Figure 2(b) and Figure 2(c),
respectively.

x****13

sn7

13

sn6sn5sn4sn3

x

10

x
x

11

x

12

x10

xxxx11

xx12

x9

xx8
x7

xx6
x5

4

3

2

1

98765

x****13

sn7

13

sn6sn5sn4sn3

x

10

x
x

11

x

12

x10

xxxx11

xx12

x9

xx8
x7

xx6
x5

4

3

2

1

98765

sn3 sn4

sn5 sn6

sn7

sn3sn3 sn4sn4

sn5sn5 sn6sn6

sn7sn7

(a) Factor matrix with supernodes

(b) Elimination Tree

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 155

Figure 2: Cholesky factorization

Given supernode sn1, cdiv(sn1), also known as
supernode factorization, requires multiplication of the
dense rectangular portion of the supernode below its
main diagonal by the inverse of the supernode’s dense
diagonal block. The inversion is not actually computed.
Rather, this computation is broken into two steps shown
in Figure 2(b) for supernode sn1. In the first step, we
perform dense Cholesky on the diagonal block of sn1. In
the second step, we solve a large number of triangular
systems for each nonzero row of the supernode below
the main diagonal.

The second and most time-consuming primitive
operation in Cholesky factorization is called cmod,
which is also known as supernode-supernode update.
cmod(sn2, sn1) operation adds into destination
supernode sn2 the multiple of the source supernode sn1
and, similar to cdiv, consists of two steps, shown in
Figure 2(c). The first step uses dense matrix-matrix
multiply, to multiply the sn1 by the transpose of its sub-
matrix C which corresponds to the dense triangular
block of the sn2. This results in the temporary supernode
tsn. In the second step, the temporary supernode tsn is
scatter-subtracted from the second supernode sn2. The
scatter operation is required because tsn and sn2 may
have different non-zero structures (which is the case in
Figure 2(c)).

The high-level pseudo-code of Cholesky, shown in
Figure 2(a), scatters original matrix M into the factor L
and performs a series of cdiv and cmod operations on
supernodes of L to factorize it. The algorithm performs
breadth-first bottom-up traversal of the elimination tree
(designated as ET in the figure) starting from the leaves
(Line 2). Each supernode sna, receives cmod updates
from its descendant supernodes snd (Lines 3-6). Upon
receiving all the updates, a cdiv operation is performed
on sna to complete factorization of the supernode. The
factorized supernode is now ready to update its own
ancestors. All ancestor supernodes that require an update
from the descendent supernode are known in advance;
the leave supernodes require no updates. Note that due
to the fact that each supernode is stored as a dense
matrix, one can use efficient implementations of dense
linear algebra subroutines (such as BLAS 2, BLAS 3,
and LINPACK) to perform cdiv and cmod operations.

Understanding Parallelism in Cholesky
Factorization
We now examine the opportunities for parallelism in the
above implementation of sparse Cholesky in Figure 2(a).
This implementation contains parallelism on several
different levels:

Level 1: Elimination tree parallelism, which corresponds
to the parallel execution of the outermost loop in Lines
2-7. Here several iterations of the loop, which

1. ET = breadh-first bottom-up traversal of ET
2. for each sna in ET
3. for each descendant snd that must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn

1. ET = breadh-first bottom-up traversal of ET
2. for each sna in ET
3. for each descendant snd that must update sna
4. cmod(sna, snd);
5. endfor
6. cdiv(sna)
7. endfor

Source supernode

Destination
supernodeC

D

2. scatter-
subtract

1. dense matrix-
matrix multiply

sn1 sn2

C

D

CT

×
-1

sn1 1. dense Cholesky 2. dense triangular
solve

(a) High-level pseudo-code

(b) cdiv(sn1) operation (c) cmod(sn2, sn1) operation
tsn

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 156

correspond to independent sub-trees of the elimination
tree, can be started in parallel on several processors. In
other words, if T1 and T2 are disjoint sub-trees of the
elimination tree, with neither root node a descendant of
the other, then all of the supernodes of T1 can be
factorized completely independently of the supernodes
corresponding to T2, and vice versa. Hence, these
computations can be done simultaneously by separate
processors with no communication between them.

Level 2: The second level of parallelism exists in the
innermost loop (Lines 3-5) and is essentially a parallel
reduction operation. For a given ancestor supernode sna,
all updates from its descendents (Line 4) can proceed in
parallel. Note, however, that it may happen (more often
than not) that two or more descendents will try to scatter-
subtract into the same elements of their ancestor. This
requires some locking mechanism to guarantee that only
one update happens at a time.

Level 3: The third level of parallelism exists within an
individual cmod update operation called from the
innermost loop (Line 4). Due to the fact that each cmod
operation is composed of dense Cholesky and dense
matrix-matrix product operation, each can be further
parallelized. The parallelism also exists within the cdiv
operation performed on a given supernode sn. As
explained earlier, the cdiv(sn) operation involves solving
a large independent set of dense triangular systems;
hence all such solves can be done in parallel.

To quantify the parallelism inherent to sparse Cholesky
factorization, we note that the number of operations
required to factorize a typical sparse matrix on a single

processor is roughly)(2/3nnzΘ , where nnz is a

number of non-zeros in the matrix. Assuming only one
column per supernode, unlimited hardware resource and
zero-communication cost, at each step of parallel
computation we will execute as many parallel
factorization operations as possible, constrained only by
the data-dependencies within the elimination tree, which
are inherent to a particular sparse dataset. Therefore the
number of parallel steps to factorize the sparse matrix is
a critical path through the elimination tree. The height of
a well-balanced elimination tree is approximately

))(ln(NΘ , where N is the number of row/columns of

M. Thus, the expected ideal speed-up of Cholesky is

approximately))ln((2/3 NnnzΘ .

Sparse Structured Problems
Of the four levels of parallelism described above, the
elimination-tree-level parallelism is the coarsest and
therefore is the most attractive to exploit with parallel
processing. However, to exploit this parallelism

efficiently requires a balanced elimination tree. Different
elimination trees can be constructed for a given
symmetric matrix M when the matrix is re-ordered using
symmetric row and column permutations. Obviously an
elimination tree where all sub-trees have a similar height
will result in better parallel speed-up than one where
most of the nodes are in one long branch. However,
finding a re-ordering of the matrix that leads to a more
balanced elimination tree is a non-trivial task (in fact it is
NP-complete).

In many situations, however, explicitly constructing a
balanced elimination tree is not necessary. Many truly
large-scale optimization problems are not only sparse but
also display some flavor of block structure that make
them highly amenable to parallelism [4]. By a block-
structured matrix we understand a matrix that is
composed of sub-matrices. A block-structured matrix
can be nested, where each sub-matrix is a block-
structured matrix itself. The example of the nested
block-angular matrix is given in Figure 3(a).

Figure 3: Nested block structured matrix and its tree
representation

The nested block-structure of a matrix can be thought of
as a tree. Its root is the whole matrix, and every block of
a particular sub-matrix is a child node of the node
representing this sub-matrix. Leaf nodes correspond to
the elementary sub-matrices that can no longer be
divided into blocks. Figure 3(b) shows an example of the

(a) Example of block-angular matrix

(b) Tree representation

C

E

F1

F2

M =

D1

D2

D3

A1

A2

A3

A4

G

M

F1 F2

D1

E

D2 D3 A1 A2 A3 C

A4 G

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 157

matrix M’s tree. We see that sub-matrix F1 of M has a
diagonal structure, whereas sub-matrix F2 of M has a
block-angular structure.

The existence of a well-defined structure is due to the
fact that many optimization problems are usually
generated by a process involving discretization of space
or time (such as control problems or other problems
involving differential equations), or of probability
distribution (such as stochastic programming). Other
sources of structure are possible such as in a network
survivability problem where slight variations of the core
network matrix are repeated many times. Note that a
block of a block-structured matrix can itself be a sparse
matrix. Therefore block structure offers the additional
coarse level of parallelism, which is coarser than the
elimination tree level of parallelism.

Structure-Oriented Cholesky Factorization
The efficient exploitation of matrix structure by linear
algebra routines is based on the fact that any method
supported by the linear algebra library can be performed
by working through the tree: at every node, evaluating
the required linear algebra operation for the matrix
corresponding to this node can be broken down into
child nodes in the tree. Different structures, however,
need their own linear algebra implementation.

In Figure 4(a), we show by means of a simple example
how Cholesky factorization can be implemented on
block-angular matrix M. This matrix consists of 4 by 4
blocks. It is easy to see that the factor matrix L shown in
Figure 4(b) is also block-angular. We partition L into 4-
column blocks: sci consists of sub-blocks Li and L4i for
i=1,2,3, and sc4 contains a single block LC. Note that the
column blocks are similar to supernodes for unstructured
matrices. The only difference is that a supernode, by
definition, must only contain sub-blocks of dense rows,
whereas column blocks of a block-structured matrix can
contain sub-blocks with an arbitrary sparsity pattern.

Despite this difference, the same concepts that applied to
supernodes equally apply to column blocks. Figure 4(c)
shows the elimination for matrix L, and Figure 4(d)
shows the application of Cholesky factorization from
Figure 2(a) to the column blocks of L. Step 1 is
composed of two sub-steps: (i) cdiv(sc1) performs the
required operations on sub-blocks L1 and L14,. and (ii)
cmod(sc4, sc1) updates LC of sc4 with the corresponding
product of L41 L41

T. Note that sc1 only has to update sc4,
since, as indicated by the elimination tree, sc4 is its only
parent. Similar operations are performed on sc2 and sc3
in steps 2 and 3, respectively. Finally, the cdiv operation
is performed on sc4 to factorize the sub-block LC and to
complete the Cholesky factorization of M.

Figure 4: Exploiting block-angular matrix structure

Understanding Parallelism in Structure-Oriented
Cholesky
The serial factorization algorithm in Figure 4(d) lends
itself naturally to parallelization as shown in Figure 5.
Steps 1, 2, and 3, which are completely independent, get
distributed among the three processors, P1, P2, and P3.

The resulting computation happens in Phase 1. Notice
that instead of simultaneously updating the same matrix
Ctmp, each processor Pi, stores the result of this update
into its private copy of Ctmp, Ci. In Phase 2, the global
reduction operation is performed, wherein each
processor adds its own contribution to Ctmp. Finally, in

sc4sc3sc2sc1

M=

CB3B2B1

M3

M2

M1

sc4sc3sc2sc1

M=

CB3B2B1

M3

M2

M1

sc4sc3sc2sc1

L=

LCL43L42L41

L3

L2

L1

sc4sc3sc2sc1

L=

LCL43L42L41

L3

L2

L1

sc4

sc1 sc2 sc3

sc4sc4

sc1sc1 sc2sc2 sc3sc3

cmod(sc4, sc3): Ctmp = Ctmp – L43 L43Tcdiv(sc3): L3=Cholesky(M3), L43 = B3 L3-T3.

-cdiv(sc4): LC=Cholesky(Ctmp)4.

2.

1.

Serial
Steps

cmod(sc4, sc1): Ctmp = C – L41 L41Tcdiv(sc1): L1=Cholesky(M1), L41 = B1 L1-T

cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

cmod(sc4, sc3): Ctmp = Ctmp – L43 L43Tcdiv(sc3): L3=Cholesky(M3), L43 = B3 L3-T3.

-cdiv(sc4): LC=Cholesky(Ctmp)4.

2.

1.

Serial
Steps

cmod(sc4, sc1): Ctmp = C – L41 L41Tcdiv(sc1): L1=Cholesky(M1), L41 = B1 L1-T

cmod(sc4, sc2): Ctmp = Ctmp – L42 L42Tcdiv(sc2): L2=Cholesky(M2), L42 = B2 L2-T

cmod(scj, sci)cdiv(sci)

(a) Block-angular matrix M (b) Factor L of M (c) Elimination Tree of L

(d) Serial computation to factorize M

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 158

Phase 3, matrix Ctmp is factorized and the result is stored
in LC, which completes parallel factorization of M. Note
that the reduction operation in Step 2 can be parallelized.
In addition, work performed in Phase 1 on each

processor, as well Cholesky factorization in Phase 3, can
also be parallelized. If M1, M2, M3, or Ctmp is
unstructured, the parallel algorithm described in the
previous section can be used.

Figure 5: Split of computations between processors in structure-oriented Cholesky

Hence we see that by exploiting the special structure of
the matrix, we are able to exploit the coarser level of
parallelism unlike in cases of unstructured matrices.

PERFORMANCE ANALYSIS OF LINEAR
AND QUADRATIC IPM WORKLOADS
In this section we present the scalability results and
performance analysis of two applications. The first
application is the shared-memory implementation of
IPM for solving arbitrary unstructured linear
programming problems. The second application is the
MPI implementation of a structure-exploiting quadratic
IPM workload (OOPS) for solving structured asset
liability management quadratic programming problems.
We performed both experiments on a 4-way 3.0 GHz
Intel® Xeon™ processor MP-based system, with 8 GB of
global shared memory and three levels of cache on each
processor: 16 KB L1, 512 KB L2, and 4 MB L3. The
four processors and memory are connected with a
ServerWorks GC-HE, capable of delivering the peak
bandwidth of 6.4 Gb/s.

Performance Characterization of IPM for
Unstructured Linear Programs
For these experiments we use an Interior Point Solver
(IPS) workload [3], which our team built for solving
linear programming problems. IPS is based on PCx, a
serial interior-point linear programming package
developed at Argonne National Laboratory in
collaboration with Northwestern University [5]. Our
implementation of the Cholesky factorization and the
solver routines uses a parallel sparse direct solver

® Intel and Xeon are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United
States and other countries.

package, called PARDISO, developed at the University
of Basel [6], which is now included as part of Intel’s
Math Kernel Library. In addition, we implemented and
parallelized the routines for sparse matrix-matrix
multiplication and sparse matrix-vector multiplication.
Note that both the PARDISO code and our routines are
parallelized using OpenMP.

Table 1 summarizes the statistics for the datasets used in
our experiments. They mostly come from the standard
NETLIB test set and represent realistic linear models
from several application domains. Columns 1 and 2
show the number of variables and constraints in the
constraint matrix for each problem. Column 3 shows the
size of M, and Column 4 shows the number of non-zeros
in its factor L. Note that the datasets are sorted in the
order of increasing number of non-zeros. The last
column shows the density of the factor matrix, computed
as 100%*non-zeros/(neqns2). We see that on average,
the problems are fairly large and most of them are very
sparse.

Phase 3Phase 2Phase 1

LC=Cholesky(Ctmp)

(Parallel) Cholesky(Parallel) ReductionIndependent Parallel Computation

Ctmp=C– C1–C2–C3

C3=L43 L43TL3=Cholesky(M3):L43 = B3 L3-TP3

P2

P1 C1= L41 L41TL1=Cholesky(M1):L41 = B1 L1-T

C2=L42 L42TL2=Cholesky(M2):L42 = B2 L2-T

Phase 3Phase 2Phase 1

LC=Cholesky(Ctmp)

(Parallel) Cholesky(Parallel) ReductionIndependent Parallel Computation

Ctmp=C– C1–C2–C3

C3=L43 L43TL3=Cholesky(M3):L43 = B3 L3-TP3

P2

P1 C1= L41 L41TL1=Cholesky(M1):L41 = B1 L1-T

C2=L42 L42TL2=Cholesky(M2):L42 = B2 L2-T

P
ar

al
le

l
S

te
p

s

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 159

Table 1: Characteristics of LP datasets

 nconstraints nvariables neqns nlns Density (%)
ken-18.dat 78862 128434 78862 2175306 0.034977
fleet12.dat 21616 67841 21616 4085152 0.874294
pds-20.dat 32287 106180 32287 6388010 0.612788
fome13.dat 47872 97144 47872 10668201 0.465509
snp30lp1 297998 953120 297998 20352321 0.022919

gismondy.dat 18262 23266 18262 30887926 9.261729
Figure 6(a) shows the breakdown of total execution time
spent in the main optimization loop into the four
important parallel regions and the remaining serial
region. The parallel regions are Cholesky factorization,
triangular solver (both forward and backward), matrix-
matrix multiply (mmm), and matrix-vector multiply
(mvm). For each dataset, we show four bars
corresponding to one (1P), two (2P), and four (4P)
processors, respectively. Each bar is broken into five
parts, one for each execution region. Note all the times
are relative to one processor runtime, and the number on
the top of one processor shows the total time spent in the
main optimization loop. We see that for many datasets
Cholesky is the most time-consuming kernel (main
optimization loop of IPM spends on average 70%
factorizing the matrix), and it also achieves good
scalability for these datasets. The solver, which is the
second most-time consuming kernel (17% of time on
average), scales worse compared to the Cholesky and
will require a considerable tuning effort in order for IPM
to scale well on larger numbers of processors. Another
4% of time is spent in parallel mmm, which scales very
well up to four processors. An additional 4% of the time
is spent in different flavors of parallel mvm. The
remaining 5% of the time is spent in the serial region.

Figure 6(b) reports the speed-up of IPS on one, two, and
four processors. The highest speed-up (2.7x on four
processors) is attained for the gismondi dataset, which is
also the largest dataset in terms of the number of non-
zero elements. Comparing Table 1 and Figure 6(b), we
see that both the run-time and scalability of IMS are
almost perfectly correlated with the number of non-zeros
in the factor matrix that represents the problem size. This
is encouraging as it suggests that parallel computation
improves the performance on harder problems.

We used the Intel Thread Profiler, a parallel
performance analysis tool, to identify and locate
bottlenecks that are limiting the parallel speed-up of IPS.
In this paper we only present the results for Cholesky

factorization. The Thread Profiler identifies three
important factors that adversely impact speed-up:

1. Load imbalance is the time the threads that
completed execution wait at a barrier at the end of
the parallel region until all remaining threads have
completed the assigned work of the region. When
unequal amounts of computation are assigned to
threads, threads with less work to execute sit idle at
the region barrier until those threads with more
work have finished.

2. Locks is the time a thread spends waiting to acquire
a lock.

3. OpenMP overhead is the time spent inside the
OpenMP Runtime Engine that implements
OpenMP.

For all datasets, Figure 7 shows the total Cholesky
factorization time (summed over all processors) spent
executing instructions (busy time), waiting on acquiring
the locks (locks time), waiting on barriers due to load
imbalance (imbalance time), and the time spent inside
the OpenMP engine (OpenMP overhead time). Note that
all results on one, two, and four processors are
normalized to the one processor time. Perfect speed-up
is possible only when the total time does not increase as
the processors increase. As expected from Figure 6(b),
ken-18 has the worst speed-up because the busy, wait,
and OpenMP times increase by 150% for two processors
and by as much as 350% for four processors. We can
also observe a 30-60% increase in busy time on two and
four processors for the other five datasets. By looking at
the source code we identified the cause of these
increases: they are due to the busy waiting loop inside
the PARDISO implementation of Cholesky, wherein
several processors try to acquire a shared lock in order to
enter a critical region. The modest scalability of the
triangular solver is due to the same reasons. The future
implementation of the sparse linear solver within
PARDISO is likely to address this issue.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 160

Figure 6: Parallel performance of main optimization loop of IPS

Figure 7: Concurrency and load balance in the parallel Cholesky factorization

Performance Characterization of IPM for
the Structured Quadratic Program
For these experiments we used the OOPS workload [7],
which we obtained from researchers at the University of
Edinburgh. This uses a quadratic programming variant
of IPM to solve the ALM problem. ALM is the process
of finding an optimal solution to the problem of
minimizing the risk of investments whose returns are
uncertain. The method associates a risk probability to
each asset and uses discrete random events observed at
times t = 0, …, T to create a branching scenario tree
rooted at the initial time. At each time step the
probability of reaching a given node is computed by
looking at its predecessor nodes. At the end of the
process (time T+1) we can assign a probability to each
outcome and compute the asset value at that time. The
probability at the leaves of this branching tree will sum
to one and we can assess the risk by looking at the asset
value vs. the probability graph. The above steps are

formulated as a structured quadratic problem with a
block-angular structure, which is solved using OOPS.

The research team at the University of Edinburgh also
provided problem sets that are summarized in Table 2.
Columns 1, 2, and 3 show the number of time steps, the
blocked matrices that compose the problem, and the
number of assets. The last five columns are the same as
given in the linear optimization. Again, we see that these
problems are fairly large and very sparse.

0

50

100

150

200

250

300

350

400

450

500

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

fleet12 fome13 gismondi ken-18 pds-20 snp30lp1

Datasets and Number of Processors

P
er

ce
n

ta
g

e

Busy Imbalance Locks OpenMP Overhead

0

100

200

300

400

500

600

700

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

fleet12 fome13 gismondi ken-18 pds-20 snp30lp1

Datasets

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)
Cholesky Solver mmm mvm Serial

x6

x6

x6

0.5

1

1.5

2

2.5

3

1P 2P 4P
Number of Processors

Sp
ee

du
p

fleet12.dat

fome13.dat

gismondy.dat

ken-18.dat

pds-20.dat

snp30lp1

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 161

Table 2: Characteristics of ALM datasets

 steps blocks assets nconstraints nvariables neqns non-zeros Density (%)

ALM8b 3 33 50 57,274 168,451 57,274 1,009,800 0.03%

ALM8c 3 50 50 130,102 382,651 130,102 3.378,750 0.02%

ALM8d 3 70 50 253,522 745,651 253,522 9,070,250 0.01%

ALM2 6 10 5 666,667 1,666,666 666,667 3,611,075 0.08%

ALM9 5 24 4 2,077,207 5,193,016 2,077,207 23,368,500 0.01%

UNS2 109 40 40 2,160,919 5,402,296 2,160,919 27,071,115 0.00%

These inputs were run on the same 4-way 3.0 GHz Intel
Xeon processor MP-based system that we described
earlier. Figure 8(a) shows the breakdown of total
execution time for OOPS. The regions appear to be
slightly different than in the case of unstructured LP. As
explained in the Interior Point Method section, OOPS
builds an augmented matrix in each iteration of the
optimization loop, whereas IPS performs mmm to form
the normal matrix. This matrix is factorized using
structure-exploiting Cholesky. Triangular solvers are
similar to IPS, but many calls to operations on vectors
and matrices are combined into the “Mat, Vect” region.
For each dataset, we show four bars corresponding to
one (1P), two (2P), and four (4P) processors,
respectively. The time shown in this graph is relative to
the time taken on the one-processor run. The total time
(in seconds) for a one-processor run is given above its
bar. The factorization routine has a large parallel section,
followed by a global reduction (serial), followed by the
redundant Cholesky factorization, which is duplicated in
each processor (as described above). This duplication
minimizes the communication, but causes the
factorization step to exhibit less than linear scalability, as
shown in our measurements. A similar pattern (parallel,
serial, duplicate-parallel) occurs in the forward and
backward solver routines, and we see a similar speed-up
as in the factorization step. Since the solver takes a
larger fraction of time in OOPS than in IPS, we broke it

down into its components. The Mat, Vect section scales
in a similar manner to the other routines. These routines
have not been heavily optimized and have headroom for
additional improvement. We also see a significant
amount of overhead (11-13%) on the one-processor run
on the larger data sets when compared with a serial
version of OOPS. We speculate that this overhead is due
to shared memory implementation of MPI, and we plan
to investigate the cause of this overhead in our future
work.

Figure 8(b) reports the speed-up of IPS for the test
datasets on one, two, and four processors. The scalability
appears to be correlated with the amount of work
required to factor the constraint matrix M. The scaling of
OOPS does not yet exploit all of the parallelism that is
present in the algorithm.

To understand the performance overhead of the MPI
calls, Figure 9 shows the results from running the Intel
trace analysis tools on this workload. It instruments the
code and measures the time waiting for messages. The
instrumented runs show that a relatively small amount of
time is spent in the MPI libraries and that almost all of
that time is in the MPI reduction routine. It corresponds
most closely to the “imbalance” portion of the OMP
breakdowns. The rest of the additional time is spent in
the OOPS code. We are investigating the source of this
extra time.

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 162

Figure 8: Parallel performance of main optimization loop of OOPS

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

ALM8b ALM8c ALM8d ALM2 ALM9 UNS2

P
er

ce
n

ta
g

e

MPI

App

Figure 9: Concurrency and load balance in OOPS

CONCLUSION
In this paper we described a parallel IPM for solving
optimization problems. The performance of IPM
depends on several key sparse linear algebra kernels.
The most important kernel is the solution of the sparse
linear system of equations. We described serial and
parallel implementations of the sparse linear solver for
both unstructured and structured optimization problems.

We have done performance and scalability analysis of
IPS–a linear optimization workload for solving
unstructured linear programs. We reported up to 2.7x
speed-up on the 4-way 3.0 GHz Intel Xeon processor
MP-based system for a diverse set of linear problems.

We also presented the performance and scalability
analysis of OOPS–a structure-exploiting quadratic
optimization workload for solving structured quadratic
problems. OOPS exposes parallelism by passing
structure information from the high-level optimization
problems into the linear algebra layer. We achieved up
to a 2.7x speed-up on the number of datasets from
important asset liability management problems.

Overall, we observed that the scalability of IPM depends
on several key factors such as problem size, problem
sparsity, as well as problem structure. Although we
observed similar performance scalability for the linear
unstructured problems and the quadratic structured
problems, the structured problems exhibit multiple levels

(a) Execution time breakdown (b) Speedup

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1P 2P 4P

Number of Processors

S
pe

ed
up

ALM8a

ALM8b

ALM8c

ALM2

ALM9

UNS2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

ALM8b ALM8c ALM8d ALM2 ALM9 UNS2

R
u

n
ti

m
e

(r
el

at
iv

e
to

 1
P

)
Cholesky Augment Fw d Solver Diag Solver Bkw d Solver Mat, Vect Other

59s 135s 280s 566s 1049s 1711s

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 163

of parallelism that are not all exploited in the current
OOPS implementation. This leaves headroom for
performance scalability on systems with large numbers
of processors, which we are going to explore in our
future work.

One expects the optimization problem size to grow in the
future. For example, an increased number of assets in an
investor’s portfolio will lead to better risk diversification
and hence higher return on investment. Many truly large-
scale optimization problems are not only sparse but also
display block-structure, because these problems are
usually generated by discretizations of space or time.
These large optimization problems will clearly benefit
from a system capable of exploiting multiple levels of
parallelism from fine grain to coarse grain.

ACKNOWLEDGMENTS
We acknowledge Radek Grzeszczuk for the key role that
he played in the effort to identify and understand Interior
Point Method as an important optimization workload.
Our thanks go to Jacek Gondzio and Andreas Grothey
from the University of Edinburgh for providing the
OOPS code and assisting us in understanding its
functionality. We also acknowledge Bruce Greer for
helping us to acquire and understand the PARDISO
solver source code. Finally, we thank Dmitry Ragozin
from Intel for his help in understanding the performance
bottlenecks of the PARDISO solver.

REFERENCES
[1] J. Nocedal and S.J. Wright, Numerical Optimization,

Springer-Verlag, New York, Inc, 1999.

[2] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2003.

[3] Pranay Koka, Taeweon Suh, Mikhail Smelyanskiy,
Radek Grzeszczuk, and Carole Dulong,
“Construction and Performance Characterization of
Parallel Interior Point Solver on 4-way Intel Itanium
Multiprocessor System,” IEEE 7th Annual Workshop
on Workload Characterization (WWC-7*), October
2004.

 [4] Gondzio, J. and A. Grothey, “Exploiting Structure in
Parallel Implementation of Interior Point Methods
for Optimization,” Technical Report MS-04-004,
School of Mathematics, The University of
Edinburgh, December 18, 2004.

[5] J. Czyzyk, S. Mehrotra, and S. J. Wright, “PCx User
Guide,” Technical Report OTC 96/01, Optimization
Technology Center at Argonne National Lab and
Northwestern University, May 1996.

[6] University of Basel, PARDISO Direct Sparse Solver.
http://www.computational.unibas.ch/cs/scicomp*.

[7] Gondzio, J. and A. Grothey, “Parallel Interior Point
Solver for Structured Quadratic Programs:
Application to Financial Planning Problems,”
Technical Report MS-03-001, School of
Mathematics, The University of Edinburgh, April 16,
2003, revised in December 12, 2003.

AUTHORS’ BIOGRAPHIES
Mikhail Smelyanskiy is a member of the Research Staff
in the Corporate Technology Group. He received his
B.Sc., M.Sc., and Ph.D. degrees in Electrical
Engineering and Computer Science from the University
of Michigan, Ann Arbor in 1996, 1999, and 2004,
respectively. Since he joined Intel in September 2003, he
has worked on future multi-core computer architecture to
efficiently execute applications from the area of
optimization and finance. His graduate work was on
VLIW compiler scheduling algorithms for efficient
resource utilization. His e-mail is Mikhail.Smelyanskiy
at intel.com.

Stephen Skedzielewski is a senior researcher in the
Workload Analysis Dept. in the Corporate Technology
Group. He recently joined this group after spending nine
years analyzing IPF compiler performance. His main
technical interests are in performance analysis and
parallel computing. He has a B.S. degree from Caltech
and M.S. and Ph.D. degrees from the University of
Wisconsin, Madison. His e-mail is
Stephen.Skedzielewski at intel.com.

Carole Dulong is a senior researcher and computer
architect in the Microprocessor Technology Lab. She
leads a team of researchers working on various data-
mining techniques. She joined Intel in 1990. She was a
member of the IPF architecture definition team and
contributed to the IPF compiler design. She graduated
from Institut Superieur d’Electronique de Paris (France).
Her e-mail is Carole.Dulong at intel.com.

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm

http://www.computational.unibas.ch/cs/scicomp
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 9, Issue 2, 2005

Parallel Computing for Large-Scale Optimization Problems: Challenges and Solutions 164

THIS PAGE INTENTIONALLY LEFT BLANK

Understanding the Platform Requirements of Emerging Enterprise Solutions 165

Understanding the Platform Requirements of
Emerging Enterprise Solutions

Krishnamurthy Srinivasan, Digital Enterprise Group, Intel Corporation
Raj Ramanujan, Digital Enterprise Group, Intel Corporation

Michael Amirfathi, Enterprise Platforms Group, Intel Corporation
Enrique Castro-Leon, Information Services and Technology Group, Intel Corporation

Index words: emerging solutions, platform pathfinding, platform architecture, usage models,
deployment models, performance characteristics

ABSTRACT

Given the long lead time to put an entire platform solution
together, enterprise platform architects must be able to
predict the intersection of evolving usage models,
deployment models, and platform technology trends in
order to meet platform requirements several years into the
future. Platform architects and technologists are generally
very familiar and comfortable with predicting platform
technology trends but the same is not true for deployment
and usage models. Hence, we find that most platform
architecture development is primarily incremental and
evolutionary until one comes up against a wall of some
sort along one or more of the vectors. Being able to
articulate the intersection upfront has the advantage of
influencing all three vectors, thus resulting in an optimum
solution. Due to this potential for inter-dependency, the
process for developing the intersection is inevitably
iterative and complex. In this paper we concentrate
primarily on the two vectors that are least understood by
platform architects: usage and deployment models. We
present a list of key solutions being adopted in different
vertical industries based on an extensive interaction with
industry leaders. We discuss the business usage model
trends and the technology deployment model trends across
the industries. We describe how the emerging models are
different in their characteristics from those prevalent
today, and using several real-world examples, explain the
platform implications. Two key trends in the data centers
of large enterprises are “scale-out” and grid computing.
Scale-out allows application solutions to be deployed over
a multiple independent set of resources that are networked
together, while grid computing allows flexible and
dynamic provisioning of these resources to scaled-out
applications. Both these trends are driven by usage and
deployment vectors focusing on lowering initial costs as
well as improving utilization, scalability, and availability

of data center resources. As enterprise compute and
communication needs become increasingly complex,
platform solutions from Intel have a crucial role to play in
determining the optimum solution for these emerging
models.

INTRODUCTION
As a general rule, it takes about four years to design,
produce, validate, and take to market computer platforms
with the microprocessor development taking the longest
lead time. Hence, it is critical for platform architects to
gain an understanding of the requirements of the solutions
that need to be deployed that far into the future. In this
paper we focus on the emerging enterprise IT solutions
that are expected to have significant market adoption in
2009-2011 and discuss their expected performance
characteristics.

There are two forces driving the rapid evolution of IT in
the enterprise. The first is the challenge of continuous and
rapid introduction of new or improved business processes
to gain and retain an advantage in an extremely
competitive market. This in turn translates into a need for
accelerated deployment of new information systems
capabilities (e.g., real-time decision support). The second
driver, motivated by the prevailing trend of flat or
dropping IT budgets, is to either cut or at least contain IT
costs. Enterprise IT departments, faced with the challenge
to provide new business capabilities at lower costs, are
adopting various software and hardware technologies to
develop, deploy, and maintain a larger portfolio of
solutions at a reduced cost. Among these technologies are
eXtensible Markup Language (XML), automated data
center management, and server virtualization that uses an
abstraction layer that decouples a consistent logical view
of the server to the application from the actual physical
resources that are utilized.

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 166

In this paper, we present the key new business solutions
emerging in different vertical industries such as
manufacturing and retail (e.g., intelligent inventory
management in retail and collaborative product
development in manufacturing) based on an extensive
survey by Intel of key players in those industries. We
identify key usage model categories that are common to
these solutions (e.g., real-time supply chain management,
collaboration, and image processing). We also briefly
discuss some of the emerging deployment models such as
XML and grids in the context of the usage models for
which they are relevant. We discuss the significant new
characteristics of these usage model categories. For
example, real-time supply chain management often
requires running of both transactional and decision
support operations in the same environment, and
synchronizing the databases underlying disparate business
solutions more frequently. The key difference from the
prevalent solutions of today is that all these operations
will be running concurrently in order to enable a business
to react very quickly to a rapidly changing environment.

These new characteristics of the emerging usage models
are changing how enterprise IT departments do capacity
planning. We present several specific examples based on
real-world solutions adopted by leading enterprises in
different industries.

KEY EMERGING ENTERPRISE
SOLUTIONS
Physicist Niles Bohr said, “Prediction is very difficult,
especially about the future!” This is particularly true about
IT solutions where high expectations of new technology
are often replaced by disillusionment and practical
compromise. Significant time and costs are involved in
optimizing large solutions and obtaining repeatable
performance characteristics. The penalties of optimizing a
general-purpose platform for the wrong requirements are
even larger. Hence, we need to balance the prediction
horizon with the accuracy to ensure that we look far
enough ahead to accommodate the platform design lead
times while being accurate enough with our predictions.
To achieve such a balance, we focus on the solutions that
have made it successfully past the phase where only the
“innovators” with an extraordinary tolerance for costs and
failure are interested in them; and are being adopted by
the mainstream early adopters who pragmatically balance
the technical risks with business benefits (Figure 1) [1].
For these solutions, mainstream adoption is expected in
2009-2011.

Intel’s Solutions Marketing Group works very closely
with the leaders in various vertical industries such as
manufacturing and retail to understand the key business
capabilities they are trying to enable. These leaders are the

early adopters in their industries (Figure 1) whose lead
would be followed by others in the next five to ten years.
Intel plays the role of a “trusted advisor” in helping these
businesses develop an IT roadmap to deploy these
capabilities, and it also acts as a catalyst to drive the IT
vendor ecosystem to remove any obstacles in the
roadmap.

Late
Majority

Early
MajorityInnovators Early

Adopters

FocusFocus
SolutionsSolutions

Laggards

Figure 1: Phases of solution market adoption

Figure 2 shows the list of key solutions emerging in
different industries Intel has identified. The list is based
on the value of the functionality provided by these
solutions to the businesses and their customers in the
industry and the IT investment expected in deploying
these solutions. While most solutions are industry specific,
the requirements for mobility solutions are shared across
industries.

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 167

Figure 2: Key industry-specific and cross-industry solutions

USAGE MODEL CATEGORIES AND
CHARACTERISTICS
Each solution shown in Figure 2 comprises two or more
usage models. For example, consider the Digital Supply
Chain solution in the retail industry (Figure 3). It consists
of two usage models: the operational side of real-time

inventory management and supply chain integration; and
the analysis and decision-support side of making pricing
and inventory decisions, and detecting trends and
anomalies. Figure 3 shows two other solutions from the
financial industry, their constituent usage models, and
their categories.

Communications and Media
• Consumer Applications & Services
• Mobile Applications & Services

• Content/Service Delivery Infrastructure

Commercial Sector
Manufacturing
• Collaborative Product Development

• Collaborative Value Chain

Energy
• Collaborative Exploration and Production

• Collaborative Energy Chain

Financial Services
• Branch/Agency Transformation
• Finance Enterprise Analytics

Retail
• Transformed Store

• Digital Supply Chain

Public Sector
Life Sciences
• Life Sciences Information Management

• Computational Biology

Healthcare
• Secure Patient Framework

• Mobile Point of Care

• Consumer Heath Technologies

Education
• eLearning

• Learning Management Systems

Digital Government
• Government Assisted PC Programs

• Digital City
• eGovernment

Mobility
• Mobile Field Workers
• Mobile On Location Workers

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 168

Figure 3: Identifying constituent usage models of solutions and categorizing them

Rationale for Usage Model Categorization
The usage models primarily help in identifying
commonality across the solutions used in different
industries. The solutions share a significant part of the
software stack used to build similar usage models. For
example, the eBiz/Web On-Line Transaction Processing
(OLTP) usage model category invariably consists of Web
servers, XML-based messaging, and links to enterprise
applications and databases. Industry-specific applications
(e.g., for on-line stock trading, student registration, or
trading in electricity) might access these stacks in different
patterns. These variations need to be comprehended in
characterizing the usage model categories.

The second reason is the ability to map to industry-
standard benchmarks from groups such as Transaction
Processing Council (TPC) and Standard Performance
Evaluation Corporation (SPEC). These benchmarks are
widely used by IT hardware and software vendors today to
evaluate the performance of the current enterprise
platforms. Hence, it would be beneficial to use these
benchmarks as the baseline and determine if and how the
usage models differ in their characteristics.

Common Usage Model Categories
The most common usage model categories (based on how
many solutions shown in Figure 2 they were part of) are
shown in Figure 4. For each model category, we have also
listed the forward-looking features that distinguish them
from today’s solutions. We have also selected specific
solutions as representative of the usage model categories
based on two criteria:

1. How aggressive a given industry is in pursuing the
solution (e.g., the retail industry is a leader in
adopting real-time inventory management while the
financial services industry has been pushing the
envelope in real-time analytics).

2. The IT market impact of the solution based on the IT
spending expected for the solution.

The above information is based on an extensive survey of
the industry leaders, conducted jointly by Intel and a
research firm.

Finance Enterprise
Analytics

Digital Supply Chain

Branch/Agency
Transformation

Solutions

Email, Web, Shared Files,
Threaded Discussions

Portfolio analysis,
MC Simulation,…

RT Inventory Tracking &
SCM Integration

Pricing, inventory &
marketing decisions;
anomaly detection

Analyst-Client
Web Conference.

Biz Opportunity
Discovery

Usage Models

On-Line Trade
Completion

Synchronous
Collaboration

Usage Model
Categories

Analysis/
Planning/
Optimization

eBiz/Web OLTP
(B2B)

Portals, Asynchronous
Collaboration

Finance Enterprise
Analytics

Digital Supply Chain

Branch/Agency
Transformation

Solutions

Email, Web, Shared Files,
Threaded Discussions

Portfolio analysis,
MC Simulation,…

RT Inventory Tracking &
SCM Integration

Pricing, inventory &
marketing decisions;
anomaly detection

Analyst-Client
Web Conference.

Biz Opportunity
Discovery

Usage Models

On-Line Trade
Completion

Synchronous
Collaboration

Usage Model
Categories

Analysis/
Planning/
Optimization

eBiz/Web OLTP
(B2B)

Portals, Asynchronous
Collaboration

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 169

Usage Model
Category

Vertical Industry Solution New Characteristics

Retail Digital Supply Chain eBiz/Web OLTP

 (B2B)

Manufacturing Collaborative Value
Chain

Real-time (Increased data volume,
processing)

Frequent DB syncs concurrent w/ OLTP

Complex queries; app-level security, routing

Channel Experience
Consistency

Financial Services

Wealth Management &
Compliance

Government Homeland Security

Analysis

Manufacturing Collaborative Value
Chain

Real-time DSS (Interactive,
frequent/continuous ETL)

Query across DB and XML

Data mining

Active data warehouse

Government e-Government Services,
Digital City

Financial
Services

Wealth Management

Collaboration/

Portals

Manufacturing Collaborative Value
Chain

Dynamic data gathering from DBs, Web
services

Rendering large content (>10s of MB) using
XSLT

Security to address privacy and trust
concerns

Voice interactions

Federated ID to allow single sign-on

Government Homeland Security

Health Care Secure Patient
Framework

Digital Content

Processing &

Delivery

 Comm/Media Content Delivery
Infrastructure

Real-time/interactive image analysis

Secure image storage & processing

Energy Collaborative
Exploration and
Production

Manufacturing Collaborative Product
Development

Technical

Computing

Life Sciences Computational Biology

Real-time analysis

Grids/Clusters

Increased data volume/XML

Figure 4: Common usage model categories

REAL-WORLD EXAMPLES
In this section, we describe real-world examples of
solutions that embody some of the new characteristics. We
also discuss their infrastructure needs and the software
and hardware capabilities that would help in meeting the
needs.

Real-Time Inventory Management in a Retail
Chain
SAP described the increase in communication and
computing needs of a retail enterprise with 1000 shops in
migrating from a batch-oriented inventory management
model using SAP’s proprietary application messaging
protocols to real-time inventory management using open,
XML-based protocols [2].

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 170

Assuming a total of 33 million sales with three items per
sale, the mySAP application communication from the
1000 retail shops to the central data center amounts to
2 GB per day, when the sales data are aggregated and
communicated, once every 24 hours, using SAP’s
proprietary interface protocol.

Still aggregating and sending the data once every 24
hours, if the retail chain moves to an open XML-based
interface, the data that need to be communicated and
processed increases to approximately 20 GB.

Let us say the retail chain wants to react to sales trends
faster. Aggregation delays the response. If information on
every sale is sent to the data center to enable immediate
response, about 200 GB of XML data has to be
communicated and processed every day.

Here are some of the potential hardware and software
capabilities apart from the increases in processing speed,
cache, memory capacity and speed, and networking
bandwidth that could help the retail chain implement the
real-time inventory management capability:

• XML acceleration appliances, separate from the
servers, may not help in all cases, particularly if large
XML documents need to be moved. On-chip
acceleration using special instructions or dedicated
cores in a multi-core chip avoids communication
latency overheads [3].

• Technologies such as InfiniBand Architecture (IBA)
and Intel I/O Acceleration Technology could reduce
the overhead in moving large amounts of data within
the data center [4].

• Software changes to minimize or accelerate data type
conversions or better leverage the hardware-specific
features for handling different data types; and
increased concurrency in XML processing could
accelerate the solution.

Near-Real-Time Planning in Logistics
A logistics software vendor recently assessed the
performance implications of supporting their customer’s
need to plan for filling orders on almost a continuous basis
while simultaneously providing sub-second responses to
the interactive RF terminals. This scenario exemplifies a
couple of the new characteristics of the emerging
eBiz/Web OLTP usage model:

1. Databases running more frequent synchronizations
concurrently with the operational queries to ensure
currency of data.

2. The same database also supporting complex, report-
generation queries to support decision-making based
on real-time data.

The minimum success criteria for this logistics software
were 2.5 records/sec. for data download, 2.0 lines/sec. for
order planning, and sub-second response time to the
interactive users. Data download consisted of deleting a
large number of rows in a database and inserting new
ones. It was observed that a significant amount of time
was being spent in deleting the rows. Using multiple
threads for data deletion provided a significant reduction
in time, particularly on Intel® Itanium®-based servers with
EPIC architecture.

Currently, platforms are optimized for either throughput in
transaction processing environments or for single job
completion in analysis and planning environments. The
industry benchmarks also emphasize one or the other.
With the increased need to support analysis and planning
in real- or near-real-time, such stove piping will not
provide the best results.

Interactive Wealth Management Services
Traditional investment brokerage firms are faced with
severe competition from Internet discount brokers who
can charge lower transaction fees. The traditional firms
are trying to leverage their strength in providing valuable
financial advice to gain an advantage.

Charles Schwab, a pioneer in this field, wanted to provide
a larger number of clients with objective financial advice
at a fair price over multiple channels. They were faced
with two requirements:

1. The wealth management solutions need to perform at
interactive speeds for the financial advisors to work
online with their clients.

2. The solutions need to be deployed on platforms based
on standard, high-volume building blocks to keep the
costs low.

A cluster of multiple IBM eServer xSeries 330∗ grid-
enabled servers (using Intel Xeon™ processors) using
the Globus Toolkit for Linux∗ , reduced the processing
time on the application of eight to ten minutes (and
sometimes hours) to just 15 seconds.

® Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
∗ Other brands and names are the property of their
respective owners.
 Intel and Xeon are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 171

The use of clusters of servers to solve complex problems,
where processing capacity can grow incrementally with
demand, is finding increasing application in various areas
including CAD/CAE and chemical analysis and search.
Such a scale-out model lends itself more easily to solving
some problems more than others (refer to section entitled
“Scale-Out Virtualization: HPC for Enterprises,” below
for details).

Secure Document Sharing for Global
Manufacturing
A large manufacturer with factories and customers across
the globe wanted to improve how it shared its product and
process-related documents both internally and with its
customers. It was faced with three challenges:

1. Delivering tailored documents to users instead of
drowning them in documentation.

2. Minimizing the costs in generating and continually
updating the documents with the rapid changes in
products and processes.

3. Increasing concern over intellectual property and
globalization demand a high level of security.
However, poor usability and performance of the
security solutions cause poor compliance by
employees.

All these challenges were exacerbated by globalization.
For example, this manufacturer dealt with a relatively
small number of customers in North America and Europe.
In Asia, they had to deal with a much larger number of
smaller customers (more than 1000X).

To meet the first two requirements, the manufacturer
moved towards a dynamic document-generation model.
The data were retrieved from databases and Web services
in XML format and rendered in HTML, PDF, or other
formats for users to view.

Disk access was the first bottleneck in such a dynamic
document delivery system. This was avoided by caching
the XML content in memory. Rendering XML to HTML,
etc., became the new bottleneck. These XML documents
were typically in the 1 MB to 5 MB range. The eXtensible
Style sheet Language Transformation (XSLT) scripts used
to convert XML into HTML, etc., were typically in the
50 KB to 100 KB range.

The overheads in using specialized XSLT acceleration
appliances prevented any improvements to them.
However, scaling the solution out by adding Web servers
to run the XSLT scripts was effective, as shown in Figure
5.

Figure 5: Response time improvement with the
number of Web servers

To meet the needs of all its product groups and rapidly
growing numbers of users across the world at a reasonable
cost, significant speed-up in XSLT processing is needed.
XSLT compilers and hardware support (without the
overheads in moving the data around) have the potential
to help.

The performance needs for security are equally
significant. Currently, about 3000 documents are in a
secure repository used by about 10,000 users. It is
expected to grow to 100,000 documents used by 80,000
users in the near future. The personnel responsible for the
solution think most of the users would use the secure
repository only if the document access times are not
excessive compared to non-secure access. Hence, they
believe crypto acceleration is key to the success.

Other key requirements relate to ensuring the
trustworthiness of the platform. They include securing
private keys on both the servers and clients and ensuring
that the client software stack is not compromised. The
Trusted Platform Module [5] and La Grande technology
[6] are expected to meet these requirements.

Scale-Out Virtualization: HPC for
Enterprises
Grid computing technology has undergone a significant
evolution over the past three or four years: the grid has
been gradually moving from its High-Performance
Computing (HPC) roots in university and government labs
to more “mainstream” enterprise applications such as
financial models and graphical rendering for motion
pictures. We call grids applied in this domain “enterprise
grids.” Most of the enterprise grids are run on server
clusters within the data center.

The concept of enterprise grids is literally server
virtualization turned inside out, and it represents the next

XSLT scaling with number of web servers

3
4
5
6
7
8
9

10
11
12
13
14
15
16

2 4 6 8 10 12 14 16
Virtual Users

P
ag

e
R

en
de

r
T

im
e

in
 S

ec
on

ds 3Grebe
2Grebe
1Grebe
Target

3 Servers
2 Servers
1 Server
Target

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 172

step in workload disintermediation (decoupling
applications from the physical platforms that run them):
server virtualization allows multiple logical servers to run
in one physical server. Each logical server runs one
application. Conversely, in an enterprise grid
environment, it is possible to apply more than one server,
a node in grid parlance, to an application. We call this
“Scale-Out Virtualization.”

Enterprise grids of various sizes are getting deployed in
different areas. Grids with 8-64 nodes are common for
Computer Aided Design (CAD) and Electronic Design
Automation (EDA) applications. Larger grids with up to
256 nodes are common in financial services, oil
exploration, and pharmaceuticals.

Some of these problems are characterized as
“embarrassingly parallel.” It is possible to partition these
problems so that computation and the associated data sets
for parts of the problem could be isolated to individual
nodes, and hence there is very little communication
between the nodes. Monte Carlo simulation for investment
portfolio analysis is an example of such a problem.
Today’s commercial servers and networks (100 MB or
Gigabit Ethernet) could be used to solve these problems
using large grids.

Other problems may not be so easily partitioned due to the
need to move data between nodes or from memory to the
CPU on a single node. EDA applications are examples of
such problems. Messages could be “bundled” to minimize
the penalty due to high network latency. This would
require rewriting some of the applications. Alternatively,
expensive interconnect technologies may be required.

Based on the data from several enterprise problems, we
have derived a heuristic we call the Rule of 10: the
degradation in latency and bandwidth between two
consecutive layers in the hierarchy should be no worse
than a factor of 10 for all layers in a grid. The on-CPU
cache, main memory, disks, and network are the layers.
For the “embarrassingly parallel” applications, this rule
may not apply. For applications with significant data
movement, the factor may have to be as low as 6.
However, the Rule of 10 seems applicable to many cases.

Let us consider a cluster of servers connected by a Gigabit
Ethernet as an example. The actual bandwidth for Gigabit
Ethernet is about 100 MB/s. At the next lower level in the
hierarchy, memory bandwidths of 3.2 to 6.4 GB/s are
typical today in commodity servers. Hence, the bandwidth
is degraded by a factor of 32 to 64. The degradation is
even higher for latency: with memory latencies in the
order of 100 to 150 nanoseconds, and the Ethernet
network latencies around microseconds, the degradation
factor is 700-1000. Hence, solutions with significant
network communication need to be rewritten to bundle the

messages, or the Ethernet has to be replaced by
networking technologies with lower latency, such as IBA.

There are ways to work around the Rule of 10. Intel future
platforms, for example, are expected to offer on-CPU
caches comparable to today’s memory in size, thus
reducing the need for memory access and hence the
importance of reducing the memory access latency for
many solutions [3].

CONCLUSION
Wayne Gretzky, the legendary hockey player, once said
that great hockey players go where the puck is going to be,
not where it is. Well, the same applies to computing
platforms. Great platforms meet what the solution
requirements are going to be. Intel Corporation has
identified the important solutions in vertical industries
through extensive interactions with the industry leaders.
These solutions were identified based on the significant
value they offer to both the businesses that deploy them
and their customers, as well as on the IT investments
expected to deploy these solutions. We narrowed the
solutions to those that are already being adopted by some
leading businesses and are expected to be adopted by the
majority of businesses in the 2009-2011 timeframe to
balance the needs to be forward-looking yet accurate. We
analyzed these solutions and identified the top usage
model categories that are common to these solutions.
These usage models differ significantly in their behaviors
from the current solutions. Here are some examples of the
differences:

• Competitive pressures to perform many operations in
real-time (e.g., supply chain management, oil well
analysis, medical imaging analysis, financial wealth
management, and so on).

• Intellectual property, privacy, and regulatory
compliance concerns, combined with globalization,
drive a tremendous increase in the need for securing
the platforms as well as the data that are being
exchanged.

• XML, managed runtime environments, server
virtualization, and autonomic management of the
platforms are adopted increasingly to reduce the costs
of developing and maintaining the solutions.

The above differences lead to new solution behaviors that
are not adequately captured by the current industry-
standard benchmarks. For example, the same database
installation is increasingly required to support OLTP,
decision support, and data synchronization concurrently.

We discussed several examples of real-world solutions
that provide insights into these behaviors and their
platform requirements. The current generation enterprise

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 173

platforms from Intel and its partners already meet some of
these emerging requirements. Various technologies to
support parallelism (e.g., Hyper Threading and EPIC),
improved data center I/O technologies, large on-chip
caches, and the technologies to improve the trust-
worthiness of the platforms are examples. Intel’s current
directions towards multi-core chips, LaGrande
technology, larger on-chip caches, and faster access to
larger amounts of data in memory are aligned with the
solution requirements trends we have discussed. These
platform technologies, the increasing ability to manage the
platforms and the solution stacks running on them, and
scale-out virtualization will make enterprise grids a viable
deployment model for a larger cross section of solutions.
The future platforms could potentially offer even greater
value to these solutions through features such as support
for accelerating XML processing and cryptographic
operations on the chip, native support for higher-
bandwidth-lower-latency I/O, and higher platform trust.

ACKNOWLEDGMENTS
The authors acknowledge contributions from Anne
Bartlett, Dave Dempsey, Heather Dixon, and Joel Munter,
their colleagues at Intel Corporation. Thanks are also due
to the valuable review and suggestions from Mark Chang,
Jackson He, and Joel Munter.

REFERENCES
[1] Crossing the Chasm: Marketing and Selling High-

Tech Products to Mainstream Customers, Geoffrey A.
Moore, July 1999, Harper Collins Publishers, New
York, NY.

[2] “SAP Position Paper,” W3C Workshop on Binary
Interchange of XML Information Item Sets, September
2003, Santa Clara, CA.
http://www.w3.org/2003/08/binary-interchange-
workshop/21a-W3CWorkshop-
SAPPositionPaper.pdf*.

 [3]Borkar, Dubey, et al., “Platform 2015: Intel Processor
and Platform Evolution for the Next Decade, 2005.”
ftp://download.intel.com/technology/computing/archin
nov/platform2015/download/Platform_2015.pdf.

 [4]Grun, Paul, “The Changing Nature of Data Center
I/O,” 2003,
http://www.intel.com/technology/pciexpress/devnet/do
cs/datacenterio.pdf.

[5] Meinschein, Robert, “Trusted Computing Group
Helping Intel Secure the PC,” Technology@Intel
Magazine, January 2004.
http://www.intel.com/technology/magazine/standards/s
t01041.pdf.

[6] “LaGrande Technology,”
http://www.intel.com/technology/security/.

AUTHORS’ BIOGRAPHIES
Krishnamurthy Srinivasan is an architect in the Digital
Enterprise Group in Intel Corporation. His current
interests include understanding the platform requirements
at various levels of the emerging enterprise solutions
through performance characterization. Earlier, he played a
key role in the evaluation and adoption of several software
technologies in Intel’s Planning & Logistics and
Corporate IT groups. He made significant technical
contributions to the development of Intel’s Third-
Generation e-Business vision. He managed Intel’s Web
service technology development and participated in
industry-standards groups. During his sabbatical in 2002,
he taught at the Indian Institute of Information
Technology, Bangalore. He has a Ph.D. degree in
Engineering from the Georgia Institute of Technology. His
e-mail is Krishnamurthy.Srinivasan at intel.com.

Raj Ramanujan is a senior principal engineer in the
Digital Enterprise Group in Intel Corporation and directs
the platform initiatives and pathfinding activities. Raj is
well recognized for his expertise and leadership in
platform architecture definition. He has extensive
experience in component (processor and chipset) micro-
architecture complemented with experience in detailed
performance analysis of architecture/micro-architecture
alternatives. His e-mail is Raj.K.Ramanujan at intel.com..

Michael Amirfathi is a security architect in the
Information Services and Technology Group in Intel
Corporation. His current interests include understanding
the enterprise security needs for protection of digital
information and developing enterprise rights management
solutions and services. He has extensive experience in
architecting and developing enterprise applications for
Aerospace, Finance, and High Technology industries. He
has an M.S. degree in Engineering from Utah State
University. His e-mail is Michael.Amirfathi at intel.com.

Enrique Castro-Leon is currently an enterprise architect
and technology strategist for Intel Solution Services with
22 years at Intel working in OS design and architecture,
software engineering, high-performance computing,
platform definition, and business development. He has
taught at the Oregon Graduate Institute, Portland State
University, and he has authored over 30 papers. He holds
Ph.D. and M.S. degrees in Electrical Engineering and
Computer Science from Purdue University. He is also the
founder of The Neighborhood Learning Center, a non-
profit educational organization. His e-mail is
Enrique.G.Castro-Leon at intel.com.

http://www.w3.org/2003/08/binary-interchange-workshop/21a-W3CWorkshop-SAPPositionPaper.pdf
ftp://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf
http://www.intel.com/technology/pciexpress/devnet/docs/datacenterio.pdf
http://www.intel.com/technology/magazine/standards/st01041.pdf
http://www.intel.com/technology/security/

Intel Technology Journal, Volume 9, Issue 2, 2005

Understanding the Platform Requirements of Emerging Enterprise Solutions 174

Copyright © Intel Corporation 2005. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2005 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

