

PCI Express® Device Security

Enhancements

September 2018

Version 0.71

 2

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING

ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY

WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

INTEL CORPORATION AND THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY,

INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO

IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT AND THE SPECIFICATION. INTEL

CORPORATION AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR

REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

INTEL CORPORATION MAY MAKE CHANGES TO SPECIFICATIONS, PRODUCT DESCRIPTIONS,

AND PLANS AT ANY TIME, WITHOUT NOTICE.

A copyright license is hereby granted to reproduce and distribute this specification for internal

use only. No other license, express or implied, by estoppel or otherwise, to any other intellectual

property rights is granted or intended hereby.

Intel Corporation and its subsidiaries (collectively, “Intel”) would like to receive input, comments,

suggestions and other feedback (collectively, “Feedback”) on this specification. To be

considered for incorporation into the specification, Feedback must be submitted by e-mail to:

authenticationspecification@intel.com. To the extent that You provide Intel with Feedback, You

grant to Intel a worldwide, non-exclusive, perpetual, irrevocable, royalty-free, fully paid,

transferable license, with the right to sublicense, under Your Intellectual Property Rights, to

make, use, sell, offer for sale, import, disclose, reproduce, make derivative works, distribute, or

otherwise exploit Your Feedback without any accounting. As used in this paragraph,

“Intellectual Property Rights” means, all worldwide copyrights, patents, trade secrets, and any

other intellectual or industrial property rights, but excluding any trademarks or similar

rights. By submitting Feedback, you represent that you are authorized to submit Feedback on

behalf of your employer, if any, and that the Feedback is not confidential.

Notice: Implementations developed using the information provided in this specification may

infringe the patent rights of various parties including the parties involved in the development

of this specification. No license, express or implied, by estoppel or otherwise, to any intellectual

property rights (including without limitation rights under any party’s patents) are granted herein.

All product names are trademarks, registered trademarks, or service marks of their respective

owners.

mailto:authenticationspecification@intel.com?subject=Feedback%20for%20PCIe%20Device%20Security%20Enhancements%20Specification%20v0.5

 3

Abstract

PCI Express® (PCIe) Devices may be composed of hardware (immutable) and firmware

(immutable and mutable) components. Presently, Vendor ID/Device ID/Revision ID registers

convey the hardware identify of a PCIe Device and there is no defined mechanism to convey the

firmware identity of a PCIe Device. In addition to the Device identity, the PCIe specification

defines various types of Capability structures to convey PCIe Device feature capabilities. Both

the Device identity and capability can be spoofed and used maliciously by an adversary.

This specification introduces the notion of PCIe Device Measurement, a method of exposing the

identity of Device firmware. The Device Measurement mechanism used in isolation, however, is

subject to supply chain attacks such as counterfeiting and can also be spoofed by an advanced

adversary. Additionally, this specification introduces the notion of PCIe Device Authentication,

which uses public key cryptography to defend against such attacks and to provide higher

assurance about the hardware and firmware identities and capabilities. PCIe Device

Authentication adapts the existing USB Type-C Authentication mechanisms to PCIe---the new

elements are the specific PCIe register interface and the associated mechanisms, plus some

details that are necessarily specific to PCIe.

PCIe Device Measurement and Device Authentication results can be used in various scenarios,

such as: 1) a data center administrator can ensure all PCIe Devices are running appropriate

firmware versions, 2) system software can ensure a trusted Device is plugged in before enabling

the PCIe Address Translation Services (ATS) for the Device. PCIe Device Authentication provides

platforms a way to make trust decisions about specific Devices. This in turn provides value to

Device vendors because the Authentication feature is itself a valuable Device feature, and

supports the detection of counterfeit and potentially malicious Devices by platform verification

software.

This specification details the requirements, interface and protocol for PCIe Device Measurement

and PCIe Device Authentication. It also provides general guidelines for implementing these

technologies in practice.

 4

1 Introduction .. 7

1.1 Reference Documents .. 8

1.2 Terminology ... 8

1.3 Changelog ... 9

2 Background ... 10

2.1 Trust Relationships for PCIe Devices .. 10

2.2 Relationship to USB Type-C Authentication .. 12

3 PCIe Device Measurement Architecture ... 13

3.1 Threat Model ... 13

3.2 PCIe Device Measurement Requirements ... 13

3.2.1 DIGEST Register.. 13

3.2.2 PCIe Measurement Register Interface 14

3.2.3 Race Conditions .. 17

3.2.4 Device Configuration and Policy ... 18

3.2.5 Device Power Transition and Reset .. 18

3.2.6 Runtime Active Image Update Without System Reset ... 18

3.2.7 Debug Mode ... 19

3.3 PCIe Device Measurement Verification .. 19

4 PCIe Device Authentication Architecture ... 20

4.1 Architectural Overview ... 20

4.2 Architectural Assumptions .. 21

4.3 Threat Model ... 21

4.4 Trust Hierarchy ... 22

4.5 PCIe Configuration Space Authentication Mechanism Register Interface 22

4.5.1 PCI Express DVSEC Header 1 (Offset 00h) 23

4.5.2 PCI Express DVSEC Header 2 (Offset 04h) 24

4.5.3 PCI Express DVSEC Header 3 (Offset 08h) 25

4.5.4 Authentication Header (Offset 0Ch) 26

4.5.5 Authentication Capabilities (Offset 10h) 26

4.5.6 Authentication Status (Offset 14h) ... 27

4.5.7 Authentication Control (Offset 18h) 28

 5

4.5.8 Write Data Mailbox (Offset 1Ch) .. 29

4.5.9 Read Data Mailbox (Offset 20h) ... 29

4.6 Authentication Over Management Component Transport Protocol (MCTP)

 30

4.6.1 Intel Vendor Defined Message for Device Authentication30

4.6.2 Device Authentication Command Set 31

4.6.3 Implementation Requirements for MCTP............................ 33

4.6.4 Timing Requirements for MCTP .. 33

4.7 Certificates, Certificate Chains and Device Private Keys 33

4.8 Authentication Protocol ... 33

4.9 Authentication Messages ... 33

4.10 PCIe Adaptations of USB Type-C Authentication 34

4.10.1 Cryptographic Algorithms .. 34

4.10.2 Authentication Messages ... 34

4.10.3 Sending and Receiving of Authentication Messages 38

4.10.4 Timing Requirements for Message Exchanges on PCIe. 38

4.10.5 Context Hash for CHALLENGE_AUTH Response Messages 38

5 PCIe Device Authentication Implementation Requirements and

 6

Considerations .. 41

5.1 Roots-of-Trust Protection Requirements ... 41

5.1.1 Root Certificate Authority RoT Protection 41

5.1.2 Intermediate RoT Protections .. 42

5.1.3 Model RoT Protection .. 42

5.1.4 Device RoT Protection ... 42

5.1.5 Device Root-of-Trust for Measurement Protection 43

5.1.6 Device Root-of-Trust for Reporting Protection 43

5.1.7 Side-Channel Protection Requirements 43

5.2 Device Certification .. 43

5.2.1 Manufacturer/Vendor Process-Based................................... 44

5.2.2 External Certification .. 44

5.3 Certificate Revocation ... 44

5.4 Key and Certificate Generation, Distribution, Provisioning and Recovery 44

5.4.1 Device Public-Private Key Pair Generation 44

5.4.2 Device ownership claim using SET_CERTIFICATE 45

5.5 Device Implementation for Authentication Support 46

5.6 Host Implementation for Authentication Support 46

 7

1 Introduction
This specification describes the architecture of PCIe Device Measurement and PCIe Device

Authentication. This specification is intended to be used by the vendors of PCIe Devices to

implement support for these features in their Device, as well as by the Host software vendors

to implement the matching functionality in their software components.

A key first step in improving platform security is to check the identity of a Device and the

identity of the firmware components running on the Device. The PCIe specification provides a

mechanism for Host software to identify a Device, through the Vendor ID and Device ID in the

PCI Configuration Space Header, but this approach is not inherently secure. Additionally, many

PCIe Devices include one or more execution logics that operate independently of the Host, but

there is no defined mechanism for the Device to expose the firmware identity running on the

execution logics. PCIe Device Measurement, introduced in this specification, defines a method

by which the firmware images running on these execution logics are included in measurements

that are exposed to the Host. Today, enterprise client computing systems as well as datacenter

installations highly value the ability to validate that a given machine is running expected

software versions and has not been compromised. Various mechanisms exist to attest to the

validity of platform ingredients, such as the UEFI/BIOS, as well as other active/measureable

components built into modern motherboards. PCIe Device Measurement allows the firmware

identity of PCIe Devices to be included as part of the platform ingredients for enhanced

platform assurance.

Industry desire to cryptographically check the identities and capabilities of a particular

Device have grown considerably with the consolidation of computing resources in the cloud

and data center environment, where tens of thousands of computing Hosts along with several

PCIe-based Devices plugged into each of these Hosts are deployed. Oftentimes these PCIe

Devices are procured through a trusted supply chain to ensure genuine Devices are used on the

Hosts. However, there have been cases of counterfeit PCIe Devices slipping through the supply

chain. These counterfeit PCIe Devices could have their hardware components or firmware

components replaced with cheaper or less reliable parts, causing interruptions to the cloud or

data center operations. PCIe Device Authentication, introduced in this specification, can help

mitigate against such attacks. PCIe Device Authentication can be applied wherever higher

assurance about the PCIe Device behavior is needed. For example:

I. Remote system administrators that manage a large collection of systems, each containing

one or more Devices, can dynamically generate a manifest of cryptographic identities of all

Devices without physical examination of the systems. The manifest can also be stored for

auditing purposes.

II. Low-level system software, e.g., Virtual Machine Monitor (VMM), can establish the identities

of the Devices on the system before assigning the Devices to Virtual Machines.

III. When a Device implements the Address Translation Cache (ATC) to achieve the

performance benefits given by the Address Translation Services (ATS), the Device is given

the privilege to cache the address translation results on the Device. In order for the Host to

make the trust decision to grant the privilege to the Device, the Device can authenticate to

the Host its unique cryptographic identity.

IV. Runtime/hot-swap verification of PCIe Devices, without requiring host reboot, where the

identity of the PCIe Device is verified by OS drivers before assigning resources to the Device.

 8

In summary, PCIe Device Measurement and Device Authentication frameworks set up the

foundation where the Device identify and capability can be verified, with future expansions for

when 1) the identity of the Host can be verified by the Device or, 2) the identity of the Host and

the Device can be verified by each other or, 3) the Host and the Device can exchange secrets to

set up a secure channel between each other, as illustrated in Figure 1.

1.1 Reference Documents

Document Location

USB Type-C™

Authentication

Specification Rev. 1.0

http://www.usb.org/developers/docs/

MCTP Base

Specification

https://www.dmtf.org/standards/published_documents

MCTP PCIe VDM

Transport Binding

Specification

https://www.dmtf.org/standards/published_documents

MCTP SMBus/I2C

Transport Binding

Specification

https://www.dmtf.org/standards/published_documents

TCG DICE

Architectures

https://trustedcomputinggroup.org/work-groups/dice-architectures/

TCG Glossary https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-

V1.1-Rev-1.0.pdf

1.2 Terminology

Selected terms and acronyms used in this specification are defined below.

DICE Device Identifier Composition Engine

FW Firmware

GPA Guest Physical Address

HPA Host Physical Address

IOMMU Input / Output Memory Management Unit

MCTP Management Component Transport Protocol

Measurement Cryptographic hash (for example, SHA256)

PF Physical Function

PCIe PCI Express

ROM Read-only Memory

RoT Root of Trust

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

TCB Trusted Computing Base

TCG Trusted Computing Group

TPM Trusted Platform Module

USB Universal Serial Bus

VF Virtual Function

http://www.usb.org/developers/docs/
https://www.dmtf.org/standards/published_documents
https://www.dmtf.org/standards/published_documents
https://www.dmtf.org/standards/published_documents
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf

 9

The terms “shall” and “must” are used to describe mandatory requirements. The terms

“should” and “may” are used to identify optional requirements.

1.3 Changelog

Version Date Description

Version 0.5 March ‘18 First draft release in intel.com, describing device measurements and device

authentication architectures.

Version 0.7 June ‘18 Draft version with following major additions:

 Single digest register for exposing multiple firmware measurements

(Section 3.2.2).

 Authentication over MCTP (Section 4.6).

Version 0.71 September ‘18 Draft version with following major additions:

 Message definitions modified to be compatible with the out-of-band

mechanisms defined by the Cerberus specification (Section 4.10.2).

 Added device ownership transfer (Section 5.4.2).

 10

2 Background
This section provides the necessary background information for PCIe Device Measurement

and Device Authentication, including the overall trust relationships for PCIe Devices, as well as

the PCIe Device Authentication’s relationship to the USB Type-C Authentication Specification.

2.1 Trust Relationships for PCIe Devices

The motivating examples described in Section 1 can be summarized as a trust relationship

between the Host and the PCIe Devices in a system. The Host needs a certain mechanism to

determine the identity and capability of the PCIe Device to make a trust decision, to simply verify

that the Device is running approved firmware versions, to grant the Device certain privileges, or

to share a secret with the Device. There are established industry paradigms for identity and

capability mechanisms, and this specification focuses on the adaptation to PCIe of existing and

well-understood approaches, and avoids inventing new elements wherever possible.

Figure 1 depicts various Host-Device relationships for authentication purposes, where:

 The Host can query the Device’s firmware version that is not tied to the Device private

key, termed Device Measurement in this specification. This is covered under this

specification as part of the Device Measurement (Section 3).

 The Host can query a Device’s hardware and firmware identities tied to a Device private

key, termed Device Authentication in this specification. This is covered under this

specification as part of the Device Authentication (Section 4).

 The Device can challenge the Host (in-band) for proof of identity that is tied to the Host

private key, termed Host Authentication in this specification. The device could then

provide additional capabilities based on trust decisions coming from obtaining the proof

of the Host’s identity. The device should not restrict the basic functionality required by

the Host to complete the boot process. Such a mechanism may be covered by future

revisions of this specification.

 The Device and Host can exchange secrets after verifying the identity (and capability, if

needed), for link encryption or other security purposes, termed Key Exchange in this

specification. Such mechanisms may be covered by future revisions of this specification.

 11

 Show your Identity.

 I m from vendor A, running
firmware version X.

HostDevice

<<something>>

<<something>>

Now that we know who we both are talking to...

D
e

vi
ce

F
ir

m
w

ar
e

M
e

as
u

re
m

en
t

D
e

vi
ce

A

u
th

en
ti

ca
ti

o
n

C
o

vere
d

 b
y th

is v
ersio

n

M
u

tu
a

l A
u

th
en

ti
ca

ti
o

n

K
e

y
E

xc
h

an
ge

an

d
/o

r
L

in
k

E

n
cr

yp
ti

o
n

 I m genuine,
 running firmware

 version X, and
 I have proof Firmware measurement:

5905d7c360a ...

 Prove your
Identity.

 I m genuine,
 running software

 version X, and
 I have proof Software measurement:

a8f3be1d148 ...

 Prove your
Identity.

H
o

st

A
u

th
en

ti
ca

ti
o

n

 Firmware measurement:
5905d7c360a ...

Figure 1: Host-Device trust relationships.

Per Figure 1, an essential first step is to collect the measurements of the Device firmware.

This enables the Host to verify that the Device is executing the correct firmware. For verification

that the measurements have not been tampered with, Device Authentication is needed in order

for any trust decision to be made, so Device Measurement is a critical enabling component of

Device Authentication. This specification defines Device Measurement and Device

Authentication mechanisms for PCIe Devices, and defines the architecture to allow future

expansion to Host and/or mutual authentication as well as key exchange and/or link encryption.

 12

2.2 Relationship to USB Type-C Authentication

The PCIe Device Authentication follows the flow of the USB Type-C Authentication

Specification (see Section 1.1 for a link) for the Authentication Architecture, Authentication

Protocol and Authentication Messages defined by the USB Type-C Authentication Specification.

Specifically, the following sections of the USB Type-C Authentication Specification are used as-

is, unless otherwise noted in this specification in Section 4.

 Section 3 Authentication Architecture of USB Type-C Authentication Specification.

 Section 4 Authentication Protocol of USB Type-C Authentication Specification.

 Section 5 Authentication Messages of USB Type-C Authentication Specification.

The following sections of the USB Type-C Authentication Specification are USB-specific and

do not apply to PCIe Device Authentication.

 Section 6 Authentication of PD Products of USB Type-C Authentication Specification.

 Section 7 Authentication of USB Products of USB Type-C Authentication Specification.

The majority of the PCIe Device Authentication architecture outlined in Section 4 can be

seen as an equivalence to the above two USB-specific sections, to describe how the

Authentication Architecture, Authentication Protocol and Authentication Messages are mapped

to the PCIe architecture. This document assumes that the reader is familiar with the

Authentication Architecture, Authentication Protocol, and Authentication Messages defined in

the USB Type-C Authentication Specification.

There are multiple benefits of leveraging the existing USB Type-C Authentication definition:

 The same software implementation can be used for both USB and PCIe Device

Authentication.

 The same hardware implementation block can be used for both USB and PCIe

Devices for Authentication purposes.

 13

3 PCIe Device Measurement Architecture
PCIe Devices may be composed of immutable and mutable elements. Examples of

immutable elements are hardcoded logic, and ROM-based microcode or firmware. Examples of

mutable elements are reprogrammable logic (FPGA), and reprogrammable microcode,

firmware/software. It is common for implementations to include a CPU or a microcontroller or

other programmable element such as FPGA logic, which we will refer to as an “execution logic”,

whereas the mutable elements (e.g., programming information) will be referred to as “firmware”.

Examples of firmware components include (but not limited to) boot controller startup code,

microcontroller kernel, or bit files programmed on an FPGA device. Furthermore, firmware

components can include not only code and data segments, but also persistent data that makes

up the overall firmware identity.

For a PCI/PCIe Function, the Vendor ID/Device ID/Revision ID registers and other mechanisms

such as Class Code or Subsystem Vendor ID convey the hardware identify of a PCIe Device. PCIe

Device Measurement complements this by exposing the identity of Device firmware. This

section describes the architecture for PCIe Device Measurement, the first and necessary step to

establish a standard mechanism for the Host to query the firmware identity running on the

execution logics of PCIe Devices.

3.1 Threat Model

PCIe Device Measurement considers all immutable components of a Device to be trusted,

whereas any mutable firmware is not. Therefore, it is assumed that an would-be attacker can

access and/or modify mutable firmware and any associated values, parameters or saved

contexts along with the mutable firmware, but not ROM components. An attacker with physical

access to the Device that is able to replace or swap either the Device hardware or ROM

components is considered to be out-of-scope for the PCIe Device Measurement architecture.

3.2 PCIe Device Measurement Requirements

3.2.1 DIGEST Register

Each Device shall implement one or more DIGEST register(s) that expose the cryptographic

identities of all of its firmware components. Every mutable firmware component that the Device

executes must be measured in at least one DIGEST register. In this context, cryptographic

identity implies that a secure hash function is applied to the firmware images. The Device

manufacturers should select the algorithm based on the prevailing recommendations, such as

those from NIST (NIST's Policy on Hash Functions). The DIGEST register itself is considered part

of the Root-of-Trust for Measurement (RTM) and therefore the underlying implementation of

this register cannot have any dependency on mutable firmware. Additionally this register must

be implemented such that the mutable portion of the firmware cannot modify the register value

or intercept Host accesses to this register.

The Host software may make use of the DIGEST value in a variety of ways, and the specifics

are outside the scope of this specification.

Implementation options for the DIGEST register are described in the following subsections.

http://csrc.nist.gov/groups/ST/hash/policy.html

 14

3.2.1.1 Single DIGEST Per Execution Logic

One implementation option is to use a single DIGEST register to capture all firmware

components associated with an execution logic. As each component gets measured, the DIGEST

register is updated to reflect the component identity. The recommended way to do that is to

implement this register such that a write causes it to be extended using an appropriate secure

hash algorithm, instead of it being overwritten.

For example, a SHA256 EXTEND operation is defined as:

REGISTER = SHA256 (REGISTER || measurement)

where || represents the concatenation operation, and measurement is a SHA256 hash

computed over the firmware component image and SHA256 is defined in NIST FIPS PUB 180-

4. Effectively, the new measurement value, which is an output of the SHA256 operation, is

concatenated with the current register value and passed through the SHA256 operation. The

result is stored as a new value of the register.

Since this register is part of the RTM, the EXTEND operation above must be implemented

entirely in hardware or in immutable firmware. An implementation where mutable firmware

component reads the current value, concatenates the new measurement and computes

SHA256 over it, is considered non-compliant with this specification. This is because such an

implementation implicitly trusts the mutable firmware component and the host cannot tell,

through cryptographic means, if that component is correctly behaving or not. Nevertheless,

mutable firmware components can request extension of the measurements, to allow a chain of

measurements to be captured in a single DIGEST register.

Alternatively, as opposed to using the EXTEND operation defined above, multiple

measurement values can be reported via a single DIGEST register field by the Device reporting

the total number of measurement for one capability structure through the NUM_DIGEST field

and selecting specific measurement value by programming the DIGEST_SEL field.

After a reset that causes firmware reload, the DIGEST register shall default to 0. Some

Devices may reload firmware on a warm reset, whereas others may require a cold reset or PCIe

D3 transition.

If the boot flow consists of a single firmware stage, the EXTEND functionality is not needed.

ROM can compute the digest, hash it with the ROM version and write the resulting value to the

DIGEST register.

3.2.1.2 Multiple Registers Per Execution Logic

An alternate implementation option is to implement multiple DIGEST registers, one per

firmware stage or per hashing algorithm. In this case, multiple instances of the Device

Measurement PCIe capability register block (see Section 3.2.2) must be implemented.

3.2.2 PCIe Measurement Register Interface

The measurement(s) is/are exposed through the optional Digest PCIe extended capability

structure(s). Digest structures must appears in the Physical Function (PF) that is associated with

 15

the execution logics. It is permitted for a single PF to implement multiple instances of this

capability structure. There are several reasons why this might be appropriate:

 The PF, for Device-specific reasons, may be implemented to divide the firmware

components into multiple groups and report digest values for each group separately. In

this case, each instance of the Digest Capability structure (Table 2) must be associated

with a unique Firmware ID (byte offset 11, Bits 4:0). Below are some concrete examples

of why a Device may do this, but this is by no means an exhaustive list.

o The PF is associated with multiple independent execution logics. The Device

manufacturer prefers to report the measurement of each firmware image

separately. As a result, the PF instantiates one Digest Capability structure per

execution logic.

o The firmware load process may consist of n stages. The PF may choose to report

the measurement of each stage separately.

 The Device supports computing and reporting its measurement using more than one

secure hash algorithm (“cryptographic algorithmic agility”). In this case, the PF

instantiates one Digest Capability structure per supported algorithm for every firmware

ID.

Host software shall not draw any conclusions about the internal architecture of the Device

based on the number of such structures.

Virtual Function (VF) configuration space must not implement the Digest Capability

structure.

A Device shall complete all measurement process and assert DIGEST_VALID and

ALL_DIGESTS_VALID within one second after reset.
Table 1 provides the respective bit definitions of the register fields in the Digest Capability

Header; Table 2 provides the respective bit definitions of the registers fields in the Digest

Capability Structure.

Table 1: Digest Capability Header.

Bit

Locations

Register Description Register

Attribute

15:0 PCIe Capability ID -

Must be 023h (DVSEC).

RO

19:16 Capability version, must be 1. RO

31:20 Next Capability offset---See PCIe Base Specification for

definition.

RO

47:32 DVSEC Vendor ID---This field is the Vendor ID associated with

the vendor that defined the contents of this capability. Must

report 8086h, the Intel vendor ID assigned by PCISIG.

RO

51:48 DVSEC Revision---This field is a vendor-defined version

number that indicates the version of the DVSEC structure.

Implementations that comply with this version of the

specification must report 1.

RO

63:52 DVSEC Length---This field indicates the number of bytes in

the entire DVSEC structure.

RO

 16

Must return 16+N where N is the length of the digest field in

bytes.

79:64 DVSEC ID---This field is a vendor-defined ID that indicates the

nature and format of the DVSEC structure.

Implementations that comply with this version of the

specification must return 03Eh. This DVSEC ID is assigned by

Intel corporation.

RO

Table 2: Digest Capability Structure.

Byte

Offsets

Register Description Register

Attribute

9:0 PCIe Capability header including DVSEC header bytes– See

Table 1.

RO

10 Bit 7:2---Reserved for future use.

Bit 1 (ANY_DIGEST_MODIFIED). If NUM_DIGEST is non-zero, the

controller shall set this bit whenever it modifies the

measurement values of all values that can be pointed to by the

DIGEST_SEL field. Host software must not be able to set this bit.

Host software may clear this bit by writing one to it. This bit must

be set to 1 by hardware after a reset or power transition that

results in all measurements being cleared.

Bit 0 (DIGEST_MODIFIED). The controller shall set this bit

whenever it modifies the contents of the DIGEST register that is

pointed to by the DIGEST_SEL field. This bit must read 1 before

the change to the DIGEST field is made visible to the Host. Host

software must not be able to set this bit. Host software may clear

this bit by writing one to it. This bit must be set to 1 by hardware

after a reset or power transition that results in the DIGEST field

being cleared.

RW1C

11 Bit 7 (DIGEST_VALID) = 1 implies that the measurement process

is complete and the DIGEST field holds the final measurement

value that is pointed to by the DIGEST_SEL field. This field can

be set by the controller firmware, but is read-only to Host

software. This bit must be cleared by hardware after a reset or

power transition that results in the DIGEST field being cleared.

Bit 6: (ALL_DIGESTS_VALID) = 1 implies that the measurement

process is complete and all measurement values that can be

pointed to by the DIGEST_SEL field are final and valid. This field

can be set by the controller firmware, but is read-only to Host

software. This bit must be cleared by hardware after a reset or

power transition that results in the DIGEST field being cleared.

Bit 5---Reserved for future use.

Bits 4:0---Firmware ID. Each ID represents the logical grouping of

firmware components that are measured as a single unit. The

RO

 17

mapping between the Firmware ID field and the underlying

firmware component is Device-specific. It is recommended that

this field be implemented in hardware and controller firmware is

not able to modify it. Host software can assume that this field is

static. All possible 5-bit values are available except for 0x1F; the

Firmware ID value 0x1F is used to indicate a non-existent

firmware component. If the firmware component to be measured

cannot be found, the Device should assert DIGEST_VALID and

set Firmware ID to 0x1F at the same time.

13:12 TCG_ALG_ID---The algorithm used for computing DIGEST.

Enumeration is defined in the TCG Algorithm Registry. It is

recommended that this field be implemented in hardware and

controller firmware is not able to modify it. Host software can

assume that this field is static.

If the controller implements algorithmic agility, it will expose n

instances of this capability structure for each Firmware ID, where

n is the number of supported algorithms.

RO

14 NUM_DIGEST---This field indicates the number of firmware

component measurements reported by this capability structure.

A value of K in this field indicates that (K + 1) measurements are

reported.

RO

15 DIGEST_SEL---If NUM_DIGEST is non-zero, this field selects the

Firmware ID measurement reported in the DIGEST field. A value

of M in this field selects the measurement value for (Firmware ID

+ M). Default value for the DIGEST_SEL field is zero.

RW

15+N:16 DIGEST---Holds the digest of the firmware components that are

measured as a single unit per the rules in section 3.2.1. The

Firmware ID field identifies the logical group number of firmware

components that are measured as a single unit.

N is the length of the digest in bytes. For example, N = 32 if the

digest represents a SHA256 measurement of the firmware

image.

RO

3.2.3 Race Conditions

3.2.3.1 Race Condition with Host Boot

The execution logics and the Host may boot in parallel. For PCIe controllers, the Host must

poll for the DIGEST_VALID and ALL_DIGESTS_VALID flags prior to consuming the DIGEST value.

This will ensure that the pre-OS boot software does not consume an intermediate value.

3.2.3.2 Race Condition with Execution Logics Reset

The Digest register read operation is unlikely to be atomic from the Host’s perspective. A

controller may support reset of an execution logics or reload of execution logics firmware

 18

without Host interface reset (Sections 3.2.5 and 3.2.6). In addition, an execution logics reset can

happen due to a variety of other reasons that are not under the control of the Host software,

e.g., fatal error condition, out-of-band command, watchdog timer expiry, etc. If an execution

logic is reset without Host interface reset, it is possible that the DIGEST register content may

change while the Host software is in the middle of the read operation. DIGEST_MODIFIED and

ANY_DIGEST_MODIFIED flags help avoid this race condition.

Host software shall clear DIGEST_MODIFIED and ANY_DIGEST_MODIFIED flags before

reading the DIGEST. After software has read all the bytes in the DIGEST register, software must

consult DIGEST_MODIFIED. If DIGEST_MODIFIED=0, the software can assume the DIGEST value

is valid. If DIGEST_MODIFIED=1, the software must discard the previously read DIGEST value,

clear DIGEST_MODIFIED, wait for DIGEST_VALID to be set and re-read DIGEST.

3.2.4 Device Configuration and Policy

It is recommended that the dynamic variable portion of the Device configuration and policy

data not be included in the measurement. This is to prevent the measurement value from

becoming brittle and hence less useful. Security software can use Device-specific mechanisms

to access dynamic device configuration and policy data if needed. It is assumed that any

firmware code that is involved in returning the configuration and policy data is part of the

previous measurement, thus included in the measurement and hence considered trustworthy.

Any static configuration data/policy data that is set up by the Device/system vendor and not

under end user control may be considered as firmware components and be included in the

DIGEST. For example, debug modes can be incorporated into the Measurement. See Section

3.2.7 for more discussions on the debug modes.

3.2.5 Device Power Transition and Reset

The Device implementation must make sure that the DIGEST register accurately reflects the

firmware identity. For example, if the same firmware stack is reloaded after a D3Hot->D0

transition, the DIGEST register value, if read when DIGEST_VALID=1, must not change across

this transition. One way to achieve that is to reset the DIGEST register to 0 and the execution

logics re-executes from the immutable firmware so that it gets restored to the correct value

during firmware load.

3.2.6 Runtime Active Image Update without System Reset

Some Devices may allow a runtime update of the active image without a system reset. Some

Devices may support live patching, where part of the firmware may be patched without system

reset. In these scenarios, the value of at least one of the DIGEST registers must be reset and

updated to reflect the new firmware stack. In this case, the Device must re-execute the RTM in

conjunction with the reset of the DIGEST register in order to update the DIGEST register.

If and when the re-execution of the RTM is not possible or when a non-disruptive live update

is required, extra DIGEST registers and Firmware IDs can be assigned to capture the

measurement values for the live update images. For example, currently running firmware can

compute the digest of new live update firmware components and write the measurement values

and Firmware IDs to the extra DIGEST registers before transferring control to the live update

firmware components.

 19

3.2.7 Debug Mode

Some Devices allow an invasive debug mode whereby the debugger is granted low level

access to the hardware and may be able to influence the security properties of the Device. Such

an invasive debug mode should be contrasted with a general debug mode where, for example,

a software debugger can be run to collect debug traces. A general debug mode would allow

debug information to be exposed to debug a functional issue. On the other hand, an invasive

debug mode would allow both the functional features and security properties of a Device to be

altered, e.g., signature verification could be bypassed for firmware components in an invasive

debug mode. In other words, such a debug mode may allow the debugger the ability to influence

the measurement process itself. While entering such invasive debug modes, it is important that

the previous DIGEST values are invalidated and reset to 0. A Device should report that an

invasive debug mode is active on the Device. For example, similar to the mechanism employed

in the TCG PC Client Platform Firmware Profile Specification, a Device could use the EXTEND

operation defined in Section 3.2.1.1 to extend the Measurement with a generic string “DEBUG:

<Debug Mode Enabled>” (string between brackets can be product-specific). However, a general

reporting mechanism is out-of-scope for this specification.

3.3 PCIe Device Measurement Verification

The PCIe Device Measurements collected by the Host may be verified against a database

containing the whitelist measurement hashes for all PCIe devices. The Host itself or a remote

service may be pre-populated with such a database in a trusted manner. The pre-population

mechanism itself is considered out-of-scope of this specification.

Host
Remote Verification

Service

Measurements
DB

Secure
Channel

PCIe
Device

PCIe
Device

DIGEST

Shared Secret Shared Secret

DIGEST

Figure 2: PCIe Device Measurement Verification.

If a remote service is used for the expected measurement database (DB) as illustrated in

Figure 2, a secure channel based on shared secrets, shall be established for transfer of

measurements from the Host to the remote service. The security requirements for a remote

service are out-of-scope for this specification.

 20

4 PCIe Device Authentication Architecture
Having established the mechanism to query the Device’s firmware identity in Section 3, this

section describes the PCIe Device Authentication architecture to provide cryptographic

guarantees to the Device’s hardware and firmware identities as well as its capabilities. The

underlying architecture, protocol and messages are adapted from the USB Type-C

Authentication Specification. Therefore, this section focuses on the PCIe interface that is unique

to PCIe Device Authentication, as well as pointing out the differences to the USB Type-C

Authentication Specification. We also state the architectural scope and assumptions made by

this section and leave any implementation-specific considerations and requirements to Section

0.

PCIe Device Authentication defines an optional Extended Capability structure, to provide

software and/or firmware, running on the Host, a way to query the cryptographic identity of a

Device, such that the unique identity of the Device as well as the Device’s capability can be

determined in a cryptographically secure manner, allowing software and/or firmware to make a

trust decision (examples given in Section 1).

4.1 Architectural Overview

Authentication
Target

 (PCIe Device)
Authentication

Initiator/VerifierUnique challenge

Response/certificate

Root certificate
authority (CA)

Chain-of-Trust

RootCert

Provision

Runtime
Authentication ModelCert

Per-part
DevPrivKey

DevCert

Figure 3: High-level Device Authentication architecture. The architecture includes Provisioning and

Runtime Authentication.

Figure 3 depicts the high-level architecture for the PCIe Device Authentication, including the

Authentication Provisioning and the Runtime Authentication.

Authentication Provisioning is a process followed by the Device vendor as part of the

manufacturing flow, and may be extended through additional provisioning performed after

Device manufacturing. A trusted root certificate authority (CA) generates a root certificate

(RootCert) that is provisioned to the Authentication Initiator/Verifier to allow the Authentication

Initiator to verify the validity of the signatures generated by the Device during Runtime

 21

Authentication. The root CA also indirectly endorses (through a trust hierarchy, Section 4.4) a

per-part Device public/private key pair, where the Device private key is provisioned to the

Device or generated by the Device (Section 5.1.4.1) and the Device public key is contained in

the Device Certificate (DeviceCert) that is signed using a private key that can be verified using

the root CA’s public key in the RootCert.

Runtime Authentication is the process by which host software interacts with the Device in

a running system. After the Device public/private key and RootCert provisioning, the

Authentication Initiator can retrieve the certificate(s) from the Device, send a unique challenge,

in the form of a nonce---number used once---into the Device and the Device can authenticate

its identity and capability by signing the challenge along with other Authentication Data with

the Device private key. The Authentication Initiator verifies the signature using the public keys

of the Device and the root CA, as well as any intermediate public keys.

4.2 Architectural Assumptions

The Device Authentication architecture makes the following assumptions:

 The Device provides adequate protections for the per-part Device private key in-use

(secure signing) and at-rest (secure storage), where the per-part Device private key

is the Device Root of Trust (RoT). See Section 5.1 for the Device RoT protection

requirements in detail.

 The Device implements the measurement of its first mutable firmware using only

hardware or immutable firmware that is stored in Read-only Memory (ROM). This is

the Device Root of Trust for Measurement (RTM). For details on the Device

Measurement, refer to Section 3.

 The Device Root of Trust for Reporting (RTR) is the combination of the Device RoT

and the Device RTM in this specification.

 The Authentication Initiator has the genuine root certificate (RootCert), where the

RoT for Device Authentication is the root CA’s private key.

4.3 Threat Model

In addition to following the threat model employed by PCIe Device Measurement in

Section 3.1, PCIe Device Authentication considers any physical extraction of the Device

private key in-scope for the threat model. In other words, Device manufacturers shall

provide physical protection mechanisms for the Device RoT. For different protection

levels defined in this specification, please refer to Section 5.1.4. Furthermore, for the

Device private key, Device manufacturers shall employ adequate protections against

malicious insider attacks where adversary can gain access to the Device private key

generation and provisioning process to compromise the PCIe Device Authentication

architecture.

 22

4.4 Trust Hierarchy

RootCert
Ex: PCI-SIG

VendorCert1 VendorCert2 VendorCertn

IntermediateCert1

Optional
vendor-
specific

hierarchy

IntermediateCert2 IntermediateCertm

ModelCert1

DeviceCert1

Required for
the device

Required
root of trust

Figure 4: Trust hierarchy for the PCIe Device Authentication.

Figure 4 depicts the trust hierarchy for the PCIe Device Authentication, where a chain of trust

is established through the signing of certificates from the DeviceCert all the way up to the

RootCert. The entire certificate chain is required for the Authentication Initiator when verifying

the signature generated by the Device. At the minimum, the RootCert, ModelCert and the

DeviceCert are required to form a minimal certificate chain, while the intermediate certificates

form an expanded chain-of-trust. Requiring a unique per-part DeviceCert allows the Device

Authentication Host software to detect advanced Device-cloning attacks, as well as to revoke

an individual Device when necessary. A PCIe vendor can choose to have an arbitrary number of

intermediate certificates, as long as the total length of the certificate chain is within the

maximum length defined (See Section 3 in the USB Type-C Authentication specification).

4.5 PCIe Configuration Space Authentication Mechanism

Register Interface

This section defines a Designated Vendor-Specific Extended Capability (DVSEC) that

provides a register interface that can be used by Host software to retrieve the identity and

Device capability via cryptographically secure messages.

 23

If the Authentication Extended Capability is supported on a Device, the Device must

implement the Capability on Function 0 of the Device, and is permitted to implement the

capability on some or all other Physical Functions if needed.

Table 3 details allocation of register fields in the Authentication Extended Capability

structure.

Table 3: Device Authentication Designated Vendor-Specific Extended Capability

31 0

PCI Express DVSEC Header 1 00h

PCI Express DVSEC Header 2 04h

PCI Express DVSEC Header 3 08h

Authentication Header 0Ch

Authentication Capabilities 10h

Authentication Status 14h

Authentication Control 18h

Write Data Mailbox 1Ch

Read Data Mailbox 20h

4.5.1 PCI Express DVSEC Header 1 (Offset 00h)

Figure 5 details allocation of register fields in the PCI Express DVSEC Header 1; Table 4

provides the respective bit definitions.

31 20 19 16 15 0

Next Capability Offset
Capability

Version
PCI Express Extended Capability ID

Figure 5: PCIe DVSEC header 1.

Table 4: PCIe DVSEC header 1.

Bit Location Register Description Attributes

15:0 PCI Express Extended

Capability ID— Must

be 023h (DVSEC).

RO

 24

19:16 Capability Version—

Must be 1h for this

version of the

specification.

RO

31:20 Next Capability

Offset— See PCIe Base

Specification for

definition.

RO

4.5.2 PCI Express DVSEC Header 2 (Offset 04h)

Figure 6 details allocation of register fields in the PCI Express DVSEC Header 2; Table 5

provides the respective bit definitions.
31 20 19 16 15 0

DVSEC Length
DVSEC

Revision
DVSEC Vendor ID

Figure 6: PCIe DVSEC header 2.

Table 5: PCIe DVSEC header 2.

Bit Location Register Description Attributes

15:0 DVSEC Vendor ID---

This field is the

Vendor ID associated

with the vendor that

defined the contents

of this capability. Must

report Intel vendor ID

(8086h). Assigned by

PCI SIG.

RO

19:16 DVSEC Revision---This

field is a vendor-

defined version

number that indicates

the version of the

DVSEC structure.

Implementations that

comply with this

version of the

specification must

report 1. Defined by

this specification.

RO

 25

31:20 DVSEC Length---This

field indicates the

number of bytes in the

entire DVSEC

structure.

Implementations that

comply with this

version of the

specification must

return 40.

RO

4.5.3 PCI Express DVSEC Header 3 (Offset 08h)

Figure 7 details allocation of register fields in the PCI Express DVSEC header 3; Table 6

provides the respective bit definitions.
31 16 15 0

Reserved DVSEC ID

Figure 7: PCIe DVSEC header 3.

Table 6: PCIe DVSEC header 3.

Bit Location Register Description Attributes

15:0 DVSEC ID---This field

is a vendor-defined ID

that indicates the

nature and format of

the DVSEC structure.

Implementations that

comply with this

version of the

specification must

return 02Eh. This

DVSEC ID is assigned

by Intel corporation.

RO

31:16 Reserved RsvdZ

 26

4.5.4 Authentication Header (Offset 0Ch)

Figure 8 details allocation of register fields in the Authentication Header; Table 7 provides

the respective bit definitions.

31 16 15 8 7 1 0

Reserved
Authentication

Version

Reserved

AIS

Figure 8: Authentication Header. AIS: Authentication Interrupt Support.

Table 7: Authentication Header.

Bit

Location

Register Description Attributes

0 Authentication Interrupt Support—When Set, this bit

indicates Device support for using MSI/MSI-X to indicate

completion of an authentication message by the Device.

RO

7:1 Reserved RsvdZ

15:8 Authentication Version—This field indicates the highest

version of Authentication supported by the Device.

00h: Reserved

01h: Device Authentication Version 1.0

02h-FFh: Reserved

RO

31:16 Reserved RsvdZ

4.5.5 Authentication Capabilities (Offset 10h)

Figure 9 details allocation of register fields in the Authentication Capabilities; Table 8

provides the respective bit definitions.
31 24 23 16 15 0

Security Analysis

Identifier
FIPS/ISO Identifier Common Criteria Identifier

Figure 9: Authentication Capabilities.

Table 8: Authentication Capabilities.

Bit

Location

Register Description Attributes

15:0 Common Criteria Identifier—As defined in USB 3.1

Type C Authentication.

RO

 27

23:16 FIPS/ISO Identifier—As defined in USB 3.1 Type C

Authentication.

RO

31:24 Security Analysis Identifier—As defined in USB 3.1

Type C Authentication.

RO

4.5.6 Authentication Status (Offset 14h)

Figure 10 details allocation of register fields in the Authentication Status; Table 9 provides

the respective bit definitions.
 31 30 6 5 1 0

Response

Ready
Reserved IMN B

Figure 10: Authentication Status. B: Busy. IMN: Interrupt Message Number.

Table 9: Authentication Status.

Bit

Location

Register Description Attributes

0 Busy—When Set, this bit indicates the Device is

unable to start an authentication session.

See the Abort and Go bit in Authentication Control for

usages of the Busy bit.

RO

 28

5:1 Interrupt Message Number (IMN) —This field

indicates which MSI/MSI-X vector is used for the

Valid interrupt message.

For MSI this field indicates the offset between the

base Message Data and the interrupt message that is

generated. Hardware must update this field when

software Sets the Multiple Message Enable field in

the MSI Message Control register if the number of

MSI Messages assigned to the Function is less than

the value of this register.

For MSI-X this field indicates the index of the MSI-X

Table entry is used to generate the interrupt

message. For a given MSI-X implementation, the

entry must remain constant.

If both MSI and MSI-X are implemented, they are

permitted to use different vectors, though software

is permitted to enable only one mechanism at a

time. When MSI-X is enabled this register indicates

the vector for MSI-X. If MSI-X is disabled this register

indicates the vector for MSI.

If software enables both MSI and MSI-X at the same

time, the value in this register is undefined.

RO

30:6 Reserved RsvdZ

31 Response Ready—When Set, this bit indicates the

Device has a valid message to be read by the Host.

The Device must clear this bit only after the entire

message has been consumed.

RO

4.5.7 Authentication Control (Offset 18h)

Figure 11 details allocation of register fields in the Authentication Control; Table 10 provides

the respective bit definitions.
31 30 2 1 0

Go Reserved IE A

Figure 11: Authentication Control. A: Abort. AIE: Interrupt Enable. IMN: Interrupt Message Number.

Table 10: Authentication Control.

Bit

Location

Register Description Attributes

 29

0 Abort—When set, the current message sent by the

Host is aborted by the Device. The Device asserts

the Busy bit in Authentication Status when

processing the Abort and clears the Busy bit when

the Abort is completed.

Reads from this bit must always return 0b.

RW

1 Interrupt Enable—When set and MSI/MSI-X is

enabled, the Device must issue an MSI/MSI-X

interrupt to indicate the 0b to 1b transition of the

Response Ready bit.

Default value of this bit is 0b.

RW

30:2 Reserved RsvdZ

31 Go—A write of 1b to this bit indicates to the Device

that the Device can start consuming the message

sent in through the Write Data Mailbox. The Device

asserts the Busy bit in Authentication Status when

processing the message and clears the Busy bit

when the entire message is consumed.

WO

4.5.8 Write Data Mailbox (Offset 1Ch)

Table 11 provides the definition.

Table 11: Write Data Mailbox

Bit

Location

Register Description Attributes

31:0 Write Data Mailbox—The Device received data from

consecutive 32-bit data writes to this register.

Reads of this register must return all 0’s.

RW

4.5.9 Read Data Mailbox (Offset 20h)

Table 12 provides the definition.

Table 12: Read Data Mailbox.

Bit

Location

Register Description Attributes

 30

31:0 Read Data Mailbox—Response Ready is asserted

when the FIFO is populated with a complete

response message.

RO

4.6 Authentication Over Management Component Transport

Protocol (MCTP)

This section defines how PCIe Device Authentication messages can be exchanged over the

Management Component Transport Protocol (MCTP), in addition to exchanging the messages

over the PCIe Configuration Space registers defined in Section 4.5. Allowing the authentication

messages over the MCTP provides several benefits. MCTP is defined over several different

physical mediums, e.g., SMBus/I2C, serial links and PCIe; therefore, the Device Authentication

mechanism can easily be extended to accommodate devices not connected through PCIe, or

when a PCIe device is not powered by the main interface in inventory or during supply-chain

transportation. The definition of “Host” is greatly expanded in the Host-Device relationship

shown in Figure 1, as the “Host” becomes any MCTP endpoint; this allows the Device

Authentication mechanism to scale to peer-to-peer scenarios.

Specifically, we describe how the Authentication Messages defined in Section 4.9 are

encapsulated in the Intel Vendor Defined Messages that are exchanged between MCTP

endpoints.

4.6.1 Intel Vendor Defined Message for Device Authentication

Intel Vendor Defined Messages for Device Authentication utilize MCTP Message Type of

“Vendor Defined – PCI”, Message Type Code 0x7E. Please refer to the MCTP Base Specification

[DSP0236] for details (See Section 1.1 for a link to the MCTP Base Specification). Per MCTP Base

Specification, the Get Vendor Defined Message Support command enables endpoints to

discover whether the Target Endpoint supports vendor-defined messages, and, if so, the

vendors or organizations that defined those messages. All endpoints that implement Intel

Vendor Defined Messages for Device Authentication shall respond to Get Vendor Defined

Message Support and return data as shown in Table 13.

Table 13: Get Vendor Defined Message Support response packet. IC: Integrity Check bit.

+0 +1 +2 +3
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

I

C
Msg Type = 0 Rsvd Instance ID Command Code = 0x6 Completion Code = 0

Vendor ID Set Selector

= 0xFF

Vendor ID Format =

0x0

PCI Vendor ID[1] =

0x80

PCI Vendor ID[2] =

0x86

Command Set Type = 0x100

The Vendor ID Set Selector shall have a value of 0xFF if the endpoint does not support any

other vendor defined command sets (besides the one listed in the response). The Vendor ID

Format shall have a value of 0x0 to indicate that the format used to identify the vendor is the

 31

PCI Vendor ID format. The PCI Vendor ID field shall have a value 0x8086 to indicate that Intel

Corporation defined the Vendor Defined Message (VDM). The Command Set Type shall have a

value of 0x100 indicating it follows Sections 4.6.1 and Section 4.6.2 in this specification. The

Get Vendor Defined Message Support command is an MCTP control command and thus the

response packet shall set IC=0.

4.6.2 Device Authentication Command Set

Intel Vendor Defined Messages for Device Authentication can be referenced via its unique

1-byte handle, 0x07.

4.6.2.1 Completion Codes

For an endpoint supporting Device Authentication over MCTP, the endpoint shall send an

Authentication Response for each Authentication Request that requires a response. For all error

conditions encountered by the endpoint, the endpoint shall send the Authentication Error

Response message as defined in Section 4.9. Therefore, for all MCTP Device Authentication

command packets, no specific completion code is required.

4.6.2.2 Discovery of Device Authentication Command Set Support

Prior to issuing any Device Authentication commands, the source endpoint must ensure the

endpoint supports the command set by using the following algorithm.

1. Issue Get Message Type support to ensure Message Type 0x7E is supported.

2. Issue Get Vendor Defined Message Support command (Section 4.6.1) and make sure

the destination endpoint supports Intel Proprietary command set. If the endpoint

does not support Intel (0x8086) vendor defined commands, do not issue any

Authentication Request command.

4.6.2.3 Device Authentication Command Format

An example Device Authentication Request Command packet layout is shown in Table 14,

where the shaded fields in Table 14 are described in detail in Table 15. A Device Authentication

Response packet follows a similar format, except for the Completion Code field as well as

differences defined in the MCTP Transport Header, which includes the MCTP Header Version,

Destination Endpoint ID and other fields as defined by MCTP.

Table 14: Device Authentication Request Command packet layout.

+0 +1 +2 +3
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Physical transport header. For details on the PCIe VDM and SMBus transport header definitions,

please refer to the MCTP PCIe VDM Transport Binding Specification and the MCTP SMBus/I2C

Transport Binding Specification (Section 1.1), respectively.

MCTP

Rsvd

Header

Version

Destination Endpoint

ID
Source Endpoint ID

S

O

M

E

O

M

Pkt

Seq

T

O

Msg

Tag

Msg Type = 0x7E
MCTP PCI Vendor Defined Vendor ID = 0x8086 Rq D C

Sequence

Number

 32

Vendor Defined

Handle = 0x07
Authentication Request Message as defined in Section 4.9.

Continuation of the Authentication Request Message as defined in Section 4.9.

Table 15: Device Authentication Command format.

 Byte Description

Authentication

Request

1:2 0x8086, declares Intel as the vendor. MSB first.

3 Bit 7: Rq=1b.

Bit 6: D. Used to indicate whether the Sequence

Number is used for tracking and matching

requests and responses.

Bit 5: C (Crypt) . Used to indicate whether or not

the message body is encrypted, including the

Sequence Number.

Bits [4:0] : Sequence Number

Refer to the definition of MCTP Control Message

Fields MCTP Base Specification.

4 Handle. Set to 0x07.

(5:N) Additional Command-specific Request Bytes.

Byte 5 carries the opcode. The format is specified

for each Authentication Request Message defined

in Section 4.9, including the Authentication

Request Header and the Authentication Request

Payload, if there is any. Includes padding with

zeroes to ensure packet size is a multiple of

DWORD, if required by the physical transport

medium.

Authentication

Response

1:2 0x8086, declares Intel as the vendor. MSB first.

3 Bit 7: Rq=0b.

Bit 6: D

Bit 5: C (Crypt)

Bits [4:0] : Sequence Number

Refer to the definition of MCTP Control Message

Fields MCTP Base Specification.

4 Handle. Set to 0x07.

5 Completion code, see Section 4.6.2.1 for

definitions.

(6:M) Additional Command-specific Response Bytes.

The format is specified for each Authentication

Response Message defined in Section 4.9,

including the Authentication Response Header

and the Authentication Response Payload, if there

is any. Includes padding with zeroes to ensure

packet size is a multiple of DWORD, if required by

the physical transport medium.

 33

4.6.3 Implementation Requirements for MCTP

This section lists the requirements for implementing Intel Vendor Defined Message for

Device Authentication over MCTP.

 When the requestor receives a response with completion code ERR_NOT_READY, it

indicates the responder is busy and not ready to respond to an Authentication

Request. This behavior is different from the host software polling the “Busy” bit in

the Authentication Status register (Table 9).

 A requestor shall ensure in-order behavior; in other words, a requestor cannot issue

a new request before response from the last request is received. The only exception

to this requirement is when the requestor issues the abort command. An endpoint

shall return “ERR_NOT_READY” when this rule is violated.

4.6.4 Timing Requirements for MCTP

For the request response timing and time-out requirements, please refer to “Table 9 –

Timing Specifications for MCTP control messages on SMBus” in the MCTP SMBus/I2C Transport

Binding Specification (Section 1.1).

4.7 Certificates, Certificate Chains and Device Private Keys

A PCIe Device shall contain a certificate chain and implement the Device private key, as

defined in Section 3.2 of the USB Type-C Authentication Specification. For details regarding the

format of certificates, the certificate chains and the Device private keys, please refer to Section

3 Authentication Architecture of the USB Type-C Authentication Specification.

4.8 Authentication Protocol

A PCIe Device shall receive Authentication Messages and reply to Authentication Messages

using the PCIe Configuration Space Authentication Mechanism Registers defined in Section 4.5

or SMBus Authentication Mechanism Registers defined in Section 4.6. For example, in response

to a CHALLENGE Request (see USB Type-C Authentication Specification, Section 5.2.3), a PCIe

Device shall return a CHALLENGE_AUTH Response (see USB Type-C Authentication

Specification, Section 5.3.3) with the modifications defined in Section 4.10. For details regarding

the certificate digest query, reading of the certificate chain, the challenge-response protocol

and the error conditions, please refer to Section 4 Authentication Protocol of the USB Type-C

Authentication Specification.

4.9 Authentication Messages

For details regarding the authentication message header and payload format and definitions,

authentication request and response message types, please refer to Section 5 Authentication

Messages of the USB Type-C Authentication Specification. For any modification with respect to

PCIe, please refer to Section 4.10.

 34

4.10 PCIe Adaptations of USB Type-C Authentication

This section describes in detail all the PCIe adaptations of and differences with the USB

Type-C Authentication Specification.

4.10.1 Cryptographic Algorithms

PCIe Device Authentication requires a minimum level of 192-bit security. Table 16 lists the

cryptographic algorithm usage differences between PCIe Authentication and USB Type-C

Authentication.

Table 16: Cryptographic algorithm differences between PCIe Authentication and USB Type-C

Authentication.

Cryptographic Algorithm PCIe Authentication USB Type-C Authentication

Digital Signature
EC DSA NIST P-384 or

RSA 3072
EC DSA NIST P-256

Hash Algorithm SHA2-384 or SHA2-512

SHA3-384 or SHA3-512
SHA-256

4.10.2 Authentication Messages

In addition to the Authentication Messages defined by the USB Type-C Authentication

specification, PCIe Authentication expands the message definitions to include extra

Authentication Request and Authentication Response message types. Table 17 lists the

Authentication Request message types for PCIe Authentication and Table 18 lists the

Authentication Response message types for PCIe Authentication.

Table 17: PCIe Authentication Request message types. Gray rows highlight the differences from the

USB Type-C Authentication specification.

Value Description

00h – 7Fh Shall only be used for Authentication Responses

80h Reserved

81h GET_DIGESTS

82h GET_CERTIFICATE

83h CHALLENGE

84h – DFh Reserved

E0h GET_MEASUREMENT

E1h GET_CAPABILITY

E2h SET_CERTIFICATE

E3h – FFh Reserved

Table 18: PCIe Authentication Response message types. Gray rows highlight the differences from

the USB Type-C Authentication specification.

Value Description

00h Reserved

 35

01h DIGESTS

02h CERTIFICATE

03h CHALLENGE_AUTH

04h – 5Fh Reserved

60h MEASUREMENT

61h CAPABILITY

62h – 7Eh Reserved

7Fh ERROR

80h – FFh Shall only be used for Authentication Requests

4.10.2.1 GET_MEASUREMENT Authentication Request Message

PCIe Authentication expands the USB Type-C Authentication Request message type

definitions to include a GET_MEASUREMENT request message for the host software to request

for all of the measurement values reported by the Device, in accordance to the definitions given

in Section 3. The header for a GET_MEASUREMENT Request is defined in Table 19. The payload

for the GET_MEASUREMENT Request is defined in Table 20.

Table 19: GET_MEASUREMENT Request Header.

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 GET_MEASUREMENT

2 Param1 1 Reserved

3 Param2 1 Reserved

Table 20: GET_MEASUREMENT Request Payload

Offset Field Size Value

4 Reserved 2 Reserved to be compatible with the

Cerberus definition.

6 Nonce 32 Random 32-byte nonce chosen by the

Authentication Initiator.

This field is little endian.

4.10.2.2 MEASUREMENT Authentication Response Message

PCIe Authentication expands the USB Type-C Authentication Response message type

definitions to include a MEASUREMENT response message for the host software to receive all

of the measurement values reported by the Device, in accordance to the definitions given in

Section 3. The header for a MEASUREMENT Response is defined in Table 21. The payload for a

MEASUREMENT Response is defined in Table 22.

Table 21: MEASUREMENT Response Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 MEASUREMENT

 36

2 Param1 1 Reserved

3 Param2 1 Reserved

Table 22: MEASUREMENT Response Payload

Offset Field Size Value

4 Length 2 Length in bytes

6 NumberofMeasurements

(N)

1 Number of Measurement hashes

7 MeasurementLength (L) 1 Length in bytes for each Measurement hash

8 Measurements L*N Concatenation of all Measurement hashes

8 + (L*N) Signature * Signature of the GET_MEASUREMENT

Request and MEASUREMENT Response

messages, excluding the Signature field and

signed using the Device Private Key. The size

of the Signature field depends on the

asymmetric signing algorithm used.

4.10.2.3 GET_CAPABILITY Authentication Request Message

PCIe Authentication expands the USB Type-C Authentication Request message type

definitions to include a GET_CAPABILITY request message for the host software to request for

the supported cryptographic algorithms by the Device. The header for a GET_CAPABILITY

Request is defined in Table 23. A GET_CAPABILITY Request has no payload.

Table 23: GET_CAPABILITY Request Header.

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 GET_CAPABILITY

2 Param1 1 Reserved

3 Param2 1 Reserved

4.10.2.4 CAPABILITY Authentication Response Message

PCIe Authentication expands the USB Type-C Authentication Response message type

definitions to include a CAPABILITY response message for the host software to receive the

supported cryptographic algorithms supported by the Device. The header for a CAPABILITY

Response is defined in Table 24. The payload for a CAPABILITY Response is defined in Table

25.

Table 24: CAPABILITY Response Header.

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 CAPABILITY

2 Param1 1 Reserved

3 Param2 1 Reserved

 37

Table 25: CAPABILITY Response Payload

Offset Field Size Value

4 MaxPayloadSize 2 Maximum payload size

6 Reserved 2 Reserved to be compatible with the

Cerberus definition.

9 AsymmetricKeyLength 1 Asymmetric key strength:

[7] RSA

[6] ECDSA

[5:3] ECC

000: 256-bit

001: 384-bit

010: 512-bit

100: Reserved

[2:0] RSA

000: None

001: RSA 2048

010: RSA 3072

100: RSA 4096

10 SymmetricKeyLength 1 Symmetric key strength:

[7] Reserved

[6] Reserved

[5:3] AES

000: None

001: 128-bit

010: 256-bit

100: 384-bit

11 HashLength 1 Hash strength:

[7:6] SHA2

 00: None

 01: 384-bit

 10: 512-bit

[5:4] SHA3

 00: None

 01: 384-bit

 10: 512-bit

[3:0] Reserved

4.10.2.5 SET_CERTIFICATE Authentication Request Message

PCIe Authentication expand the USB Type-C Authentication Request message type

definitions to include a SET_CERTIFICATE request message for the host software to provision

new certificate chains onto the Device. Note that the SET_CERTIFICATE Request only allows

updating slot 1 through 7 of the 8 certificate chain slots on the Device. Slot 0 shall only be

 38

updatable in a manufacturing environment where the Device vendor provisions or updates the

slot 0 of the certificate chains. The header for a SET_CERTIFICATE Request is defined in Table

26. The payload for a SET_CERTIFICATE Request is one entire certificate chain defined in the

USB Type-C Authentication specification. There is no partial update to a certificate chain

allowed.

Table 26: SET_CERTIFICATE Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 SET_CERTIFICATE

2 Param1 1 Slot number of the target Certificate Chain to

read from. The value in this field shall be

between 1 and 7 inclusive. If 0 is used in this

parameter, the Device shall return an Error

Response message.

3 Param2 1 Reserved

4.10.3 Sending and Receiving of Authentication Messages

The sending and receiving of the Authentication Messages across the PCIe link are

performed through the mailboxes defined in Sections 4.5.8 and 4.5.9. The Authentication

Messages defined in Section 4.9 shall be broken down into 32-bit chunks to be repeatedly

populated into the mailboxes, starting from byte 0 of the message in little-endian manner, until

the last byte of the message is populated in the mailboxes. The Device should implement

adequate buffer and storage to account for the execution speed difference between the Host

and the Device to ensure proper sending and receiving of the entire Authentication Messages.

An example software flow is given below for illustration purposes.

1. Host discovers Device support for authentication on extended capability registers and

configures the authentication algorithms used.

2. Host checks the status register.

3. Host writes message into mailbox and asserts the “Go” bit.

4. Device consumes the message from mailbox.

5. Device generates a response message and asserts “Response Ready”.

6. Host polls on the “Response Ready” bit and reads data from mailbox.

7. Repeat steps 1-6 if needed.

4.10.4 Timing Requirements for Message Exchanges on PCIe

A Device shall complete processing the Authentication Request message, prepare the

Authentication Response message and assert Response Ready in the Authentication Status

register within one second after the Go bit is asserted in the Authentication Control register.

4.10.5 Context Hash for CHALLENGE_AUTH Response Messages

The Context Hash field in the CHALLENGE_AUTH Response Message is used for the Device

to sign over Device-specific information that is included in the Authentication. This allows the

 39

verifier to ensure the validity and authenticity of any Device-specific information. To expand the

usages of Authentication over different physical mediums and types of Devices, an

“Organizational Namespace” is defined and used to distinguish between different

CONTEXT_HASH definitions. For example, the USB Type-C Authentication specification defines

two CONTEXT_HASH definition, one for the PD and one for the USB device; whereas PCIe

Authentication defines PCIe-specific CONTEXT_HASH definitions.

To support the Organizational Namespace, the 7th byte (a reserved byte in the USB Type-C

Authentication specification version 1.0) of the CHALLENGE_AUTH Response Payload is used.

For completeness, Table 27 shows the CHALLENGE_AUTH Response Payload, including the

definition of the Organizational Namespace. A Device manufacture shall only use one

Organizational Namespace value for a Device supporting multiple interfaces defined by

different organizations. For example, a PCIe Device supporting both the PCIe interface as well

as an MCTP endpoint over SMBus interface shall return only one value for both the

Organizational Namespace and the CONTEXT_HASH, regardless of which interface is used to

Authenticate the Device. In other words, a Device manufacture shall determine the primary

Organizational Namespace a Device belongs to, irrespective of the total number of other

Organizational Namespaces that a Device could be assigned to. The only exception is for the

existing definitions given in USB Type-C Authentication, where two Organizational Namespace

values could be used.

Table 27: CHALLENGE_AUTH Response Payload

Offset Field Size Value

4 MinProtocolVersion 1 Minimum protocol version supported by

this Device

5 MaxProtocolVersion 1 Maximum protocol version supported by

this Device

6 Capabilities 1 Set to 01h for this specification. All other

values reserved

7 OrganizationalNamespace 1 00-07h: USB-IF

08h: PCI-SIG

09h: JEDEC

0Ah: DMTF

0Bh: MIPI

All other values reserved.

8 CertChainHash 32 32-byte SHA256 hash of the Certificate

Chain used for Authentication.

This field is big endian.

40 Salt 32 32-byte value chosen by the

Authentication Responder.

This field is little endian.

Note: the Salt can be random, fixed, or

any other value.

72 Context Hash 32 See the USB Type-C Authentication

specification for USB definitions. See the

rest of this section for PCIe definitions.

 40

104 Signature Length

of

signature

The length of this field depends on the

signing algorithms used.

This field is little endian. Signed using

the Device Private Key.

For PCIe Authentication, the Context Hash field captures the hash value calculated over the

concatenation of two data structures, DEV_IDENTITY and FW_IDENTITY, shown in Table 28 and

Table 29, respectively. The DEV_IDENTITY is a 3-DOWRD data structure, defined to capture

data PCIe-specific information for a Device. The FW_IDENTITY includes a list of all the Device

Measurement values, as well as their respective versions and Firmware IDs. Calculating the hash

value of this data structure and signing over this data structure using the Device private key

allow these measurement values to be verified as genuine according to the Device vendor’s

specification, as opposed to blindly trusting the values reported by the PCIe Device.

Table 28: DEV_IDENTITY data structure for the Context Hash field in the CHALLENGE_AUTH

Message for PCIe.

31 16 15 8 7 0

Device/Vendor ID

Class Code/Revision ID

Subsystem ID/Vendor ID

Table 29: FW_IDENTITY data structure for the Context Hash field in the CHALLENGE_AUTH

Message. Multiple FW_IDENTITY structures are concatenated if NUM_DIGEST is greater than zero. The

DIGEST field referred to in this table is the DIGEST register field defined in Section 3.2.1.

31 16 15 5 4 0

Firmware Version Reserved Firmware ID

DIGEST (bits 0 through 31)

DIGEST (bits 32 through 63)

… (Total DIGEST length determined by the hash algorithm used.)

 41

5 PCIe Device Authentication Implementation

Requirements and Considerations
This section describes the implementation-specific requirements and considerations to

achieve a full PCI Express Authentication solution. Specifically, this document describes the

following aspects---1) Roots of Trust and their protections, 2) certification of trust-worthy

Devices, 3) certificate revocation, and 4) key and certificate generation, distribution, provisioning

and recovery. This document does not cover any policy decision that the Authentication Verifier

makes based on the authentication result. This section discusses several practical

implementation considerations with respect to implementing the Device Authentication

support for both the Device and the Host software.

The PCI Express Authentication (Section 4) defines a mechanism for an Authentication

Verifier to query the identity and capability of a PCI Express Device, where the Device signs the

authentication report with a unique Device private key. Along with the Device certificate that

contains the trusted public key that can be used to verify the validity of the signature, the

Authentication Verifier can decide that only Devices with the correct identities and capabilities

are connected to the computing platform. In other words, Section 4 describes how the

Authentication Verifier performs the authentication and what data the Device and the Verifier

exchange during the authentication. However, Section 4 does not describe why the Verifier

should trust the Device certificate or the signature generated by the Device. For example, an

attacker could extract the Device private key from a genuine Device and use the private key to

sign the authentication for a counterfeit Device.

This section details the requirements for the following aspects of the authentication that are

required to allow the Verifier to determine why the authentication result should be trusted.

Specifically, these aspects are:

 Roots-of-Trust protection requirements

 Certification of a trust-worthy Device

 Certificate revocation

 Key and certificate generation, distribution, provisioning and recovery

5.1 Roots-of-Trust Protection Requirements

This section describes the protection requirements for the various Roots-of-Trust that are

essential to the overall security of the Device Authentication solution.

Each private key of the public/private key pair in the certificate chain is considered a Root-

of-Trust (RoT), as compromising each private key in the chain would break the security of the

overall authentication solution. We describe the protection requirements for each private key

in this section.

5.1.1 Root Certificate Authority RoT Protection

The root Certificate Authority’s (CA) private key is of the utmost importance of the entire

solution, as the CA is at the root of the trust chain. If an attacker can retrieve the root CA’s private

key, he/she can create an arbitrary trust hierarchy with an arbitrary amount of Devices with

 42

legitimate certificates, essentially breaking the entire authentication scheme. Therefore, it is the

root CA’s responsibility to ensure that the root CA’s private key is adequately protected and

only used when needed to minimize exposure. The protection adequacy needs to be evaluated

on a per-implementation basis and is not elaborated in this specification.

5.1.2 Intermediate RoT Protections

In the trust hierarchy of the Device Authentication, there can be an arbitrary number of

intermediate certificates between the root certificate and the model/Device certificates. Each of

these intermediate certificates contains the public key portion of the public/private key pair,

where the certificate is signed using the private key from the private key of the upper level in

the chain. Therefore, a compromised intermediate private key in any level of the chain would

lead to generation of trusted lower-level certificates that can be controlled by attackers. Since

the number and implementation of the intermediate certificates are determined by a particular

PCI Express Device vendor, it is the vendor’s responsibility to ensure that the intermediate

private keys are adequately protected and only used when needed to minimize exposure. The

protection adequacy needs to be evaluated on a per-implementation basis and is not

elaborated in this specification.

5.1.3 Model RoT Protection

Since the Model Certificate’s private key is not stored on the Device, it is the vendor’s

responsibility to ensure that the model private keys are adequately protected and only used

when needed to minimize exposure. The protection adequacy needs to be evaluated on a per-

implementation basis and is not elaborated in this specification.

5.1.4 Device RoT Protection

The Device RoT, the Device private key of the Device public/private key pair, uniquely

identifies a particular Device and is stored and used on the Device. Therefore, the Device private

key shall be adequately protected to prevent leakage of the Device private key when the Device

private key is stored (at-rest) or when in-use. We define the protection adequacy and levels of

the Device RoT in this section.

5.1.4.1 Device RoT Protection Levels

There are different levels of Device RoT protections that a Device can implement, depending

on the target usages of the Device as well as the target market segment of the Device, as well

as cost and business considerations. The Device RoT protection level is one of the capabilities

signed by Model Certificate’s private key and reported by the Device during the Device

Authentication.

The RoT, Device private key, shall never be exposed in plaintext form outside of the Device

after the Device private key is provisioned on the Device for all levels of protection. Furthermore,

the RoT shall never be modified after the Device private key is provisioned on the Device for all

levels of protection.

 43

 Level 1: the Device private key is stored in plaintext form inside the Device (e.g. fuse,

internal NVRAM) or stored externally in an encrypted form. The Device private key is

accessible to mutable Device component, such as firmware.

 Level 2: the Device private key is encrypted and stored on the Device. For example,

during manufacturing, the Device private key is encrypted using a key encryption key

(KEK) which is known only to the immutable Device hardware. The Device private key is

accessible only to Device hardware or immutable firmware. Mutable firmware does not

have access to plaintext Device private key.

 Level 3: The Device private key is generated in the Device (e.g., using physically

unclonable function circuitry) and accessible only to immutable components in the

Device. In this case, the Device private key is never exposed outside the Device, not

even during manufacturing.

5.1.5 Device Root-of-Trust for Measurement Protection

In order for the Authentication Verifier to make meaningful policy decisions based on the

authentication result, all of the measurements of the Device’s capability shall be done in a

secure manner. Therefore, the Root-of-Trust for Measurement (RTM) shall be implemented as

pure hardware components and/or immutable firmware components on the Device. In the

event that the device supports live firmware patching as mentioned in 3.2.6, the value of at least

one of the DIGEST registers must be reset and updated to reflect the new firmware stack. In this

case, the Device must re-execute the RTM in conjunction with the reset of the DIGEST register

in order to update the DIGEST register.

5.1.6 Device Root-of-Trust for Reporting Protection

Once the Device RoT and Device RTM protections are in-place in the Device, the reporting

of the measurements shall use the Device RoT to sign the measurements. Therefore, the Device

Root-of-Trust for Reporting (RTR) is a combination of the Device RoT and Device RTM where

the reporting mechanism shall be implemented as pure hardware components of immutable

firmware components on the Device.

5.1.7 Side-Channel Protection Requirements

Device private key should be protected against software side-channel attacks as well as

against hardware differential power analysis attacks, including all relevant keys and

cryptographic algorithms related to the usage of the Device private key.

5.2 Device Certification

This section describes the security certification requirements for a Device in order for the

Device to participate in Device Authentication. Two approaches can be taken for the security

certification of a trust-worthy Device---1) Manufacturer/vendor process-based, and 2) External

certification. For both 1) and 2), cost and business justifications as well as the expected privilege

given to a Device will determine which certification will be required.

 44

5.2.1 Manufacturer/Vendor Process-Based

Device manufactures or vendors can seek to establish a certification program to certify their

own Devices or Devices from other manufacturers. The certification can be issued by a central

authority such as the PCI-SIG, once the Devices pass certain implementation and validation

criteria to ensure the correctness as well as the security of their implementations, e.g., the

Device protecting the Device RoT at Level 3.

Furthermore, the Device vendor and Authentication Verifier can establish certification

programs where the Authentication Verifier participates in a set of checkpoint reviews to ensure

the Device’s implementation complies with this specification. For example, security architecture

reviews, source code reviews, and white-hat hacking and security validations can be embedded

into the Device’s product development cycles.

5.2.2 External Certification

In addition to the internal and cross-organizational certification approach, manufacturers or

vendors can also seek external or third-party certification of Devices. Existing governmental or

commercial certification programs exist to certify a Device’s implementation and design, such

as Common Criteria.

5.3 Certificate Revocation

If and when a compromised private key is detected, its associated certificate as well as any

lower-level certificates below the compromised certificate need to be revoked and the

revocation information needs to be communicated to the Authentication Verifier. Each

certificate shall include the location where the Certificate Revocation List (CRL) is maintained.

The CRL is signed with the root CA’s private key. It is the Verifier’s responsibility to ensure the

latest CRL is used to check against any certificate retrieved from the Device.

5.4 Key and Certificate Generation, Distribution, Provisioning

and Recovery

5.4.1 Device Public-Private Key Pair Generation

A unique per-part device public-private key pair can be generated by a Device vendor and

provisioned and stored securely on a Device, as outlined by the different protection levels in

Section 5.1.4; or the key pair can be generated by the Device on the Device itself. For example,

the Device Identifier Composition Engine (DICE) architectures specified by the Trusted

Computing Group (TCG) can be leveraged to generate a Device Certificate, which alleviates the

burden of secure key delivery during manufacturing. The Device-generated certificate needs to

be signed with the Model private key and provisioned back to the Device for the chain-of-trust

to be established.

 45

5.4.2 Device ownership claim using SET_CERTIFICATE

Each Device is capable of carrying 8 unique certificate chains in slots 0-7, with slot 0 being

dedicated to the Device vendor and provisioned at manufacturing time and protected by the

Device RoT against tampering. In some scenarios it may be useful to “claim ownership” of the

Device and simplify the authentication protocol by leveraging private certificate chain owned

by the Device owner/user. In such case, slots 1-7 can be used to carry non-vendor certificates

chains. Each certificate chain is required to sign the leaf DeviceCert which cannot be modified,

therefore any non-vendor chain simply endorses the DeviceCert. This model assumes that

Device owner authenticates the Device and Vendor certificate chain after obtaining the Device,

creates the certificate chain using local Certificate Authority and signing the leaf DeviceCert and

provisions the Owner certificate chain using the SET_CERTIFICATE command described in

Section 4.10.2.5. After the provisioning, the Device owner can implement the Device

authentication using only information about its own Root CA, which would simplify

authentication when multiple Devices from different vendors are present in the system.

Certificate chains in slots 1-7 are not required to be protected by the Device RoT against

tampering; instead, the platform in which the Device is being used should ensure the certificates

are not maliciously modified, as illustrated in Figure 12.

Vendor
RootCert

Vendor
IntermediateCert

Vendor
ModelCert

DeviceCert

Owner
RootCert

Owner
IntermediateCert

Owner
ModelCert

Provisioned by Device vendor;
protected against tampering by

device HW

Provisioned by device owner;
protected by platform through

SW means (VMM)

Slot 0 Slot 1 Slot x

Figure 12 Example use of certificate slots to claim ownership of the device.

 46

5.5 Device Implementation for Authentication Support

To implement the Device Authentication capability, a Device must provide a hardware

and/or firmware mechanisms to support the protocol and the mailbox-based messaging

interface, and adequate protections to secure the Device private key both when in-use or at-

rest, as described in Section 5.1.

5.6 Host Implementation for Authentication Support

For the Host, new firmware and/or software must be implemented to support the

authentication protocol and mailbox-based messaging interface, and adequate mechanisms to

ensure a valid root CA certificate (RootCert) is used when verifying the signature generated by a

Device.

