

Intel® Platform Innovation Framework
for EFI

Status Codes Specification

Version 0.92
December 8, 2004

Status Code Specification

ii December 2004 Version 0.92

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

This document contains information on products in the design phase. The information here is subject to change without
notice. Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel Corporation to update or revise the
information or document. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

This document provides website addresses for certain third party websites. The referenced sites are not under the control of
Intel and Intel is not responsible for the content of any referenced site or any link contained in a referenced site. Intel does
not endorse companies or products for sites which it references. If you decide to access any of the third party sites
referenced in this document, you do this entirely at your own risk.

*Other names and brands may be claimed as the property of others.

Intel, the Intel logo, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Copyright © 2000–2005, Intel Corporation. All Rights Reserved.

Version 0.92 December 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 9/16/03

0.91 Added a new status code definition,
EFI_CU_HP_EC_NO_MICROCODE_UPDATE, to the following
topics:

• Computing Unit Class: Host Processor Subclass (in Design
Discussion)

• Computing Unit Class: Error Code Definitions (in Code
Definitions)

Updated the following code definitions:
• EFI_DEVICE_PATH_EXTENDED_DATA
• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

• EFI_STATUS_CODE_START_EXTENDED_DATA

9/1/04

0.92 Fixed the extended data structures that included the device path
pointers and other variable length structures. These now contain the
complete device path.

12/8/04

Status Code Specification

iv December 2004 Version 0.92

Version 0.92 December 2004 5

Contents

1 Introduction .. 11
Overview ... 11
Organization of the Status Codes Specification ... 11
Conventions Used in This Document .. 12

Data Structure Descriptions .. 12
Pseudo-Code Conventions ... 12
Typographic Conventions ... 13

2 Status Codes Overview ... 15
Introduction ... 15
Terms .. 15
Types of Status Codes .. 16
Status Code Classes ... 16
Instance Number ... 16
Operations .. 17

3 Status Code Classes .. 21
Status Code Classes ... 21
Hardware Classes ... 21

Computing Unit Class ... 21
Instance Number .. 21
Progress Code Operations ... 22
Error Code Operations ... 22
Subclasses ... 23

Defined Subclasses .. 23
Unspecified Subclass ... 23
Host Processor Subclass .. 24
Firmware Processor Subclass .. 27
I/O Processor Subclass .. 28
Cache Subclass .. 28
Memory Subclass ... 29
Chipset Subclass .. 31

User-Accessible Peripheral Class ... 32
Instance Number .. 32
Progress Code Operations ... 32
Error Code Operations ... 33
Subclasses ... 34

Defined Subclasses .. 34
Unspecified Subclass ... 35
Keyboard Subclass ... 35
Mouse Subclass ... 37
Local Console Subclass ... 38
Remote Console Subclass ... 38
Serial Port Subclass ... 39
Parallel Port Subclass ... 39

Status Code Specification

6 December 2004 Version 0.92

Fixed Media Subclass ... 40
Removable Media Subclass ... 40
Audio Input Subclass .. 41
Audio Output Subclass ... 42
LCD Device Subclass ... 42
Network Device Subclass ... 43

I/O Bus Class ... 43
Instance Number .. 43
Progress Code Operations ... 44
Error Code Operations ... 45
Subclasses ... 46

Defined Subclasses .. 46
Unspecified Subclass ... 47
PCI Subclass .. 47
USB Subclass... 48
InfiniBand* Architecture Subclass ... 49
AGP Subclass .. 49
PC Card Subclass .. 50
LPC Subclass ... 50
SCSI Subclass .. 51
ATA/ATAPI/SATA Subclass .. 51
Fibre Channel (FC) Subclass .. 52
IP Network Subclass... 52
SMBus Subclass .. 53
I2C Subclass .. 53

Software Classes .. 53
Host Software Class ... 53

Instance Number .. 54
Progress Code Operations ... 54
Error Code Operations ... 55
Subclasses ... 56

Defined Subclasses .. 56
Unspecified Subclass ... 58
SEC Subclass... 58
PEI Foundation Subclass ... 59
PEI Module Subclass .. 60
DXE Foundation Subclass .. 61
DXE Boot Service Driver Subclass ... 61
DXE Runtime Service Driver Subclass ... 63
SMM Driver Subclass ... 63
EFI Application Subclass .. 64
OS Loader Subclass ... 64
Runtime (RT) Subclass ... 64
Afterlife (AL) Subclass .. 65
PEI Services Subclass .. 66
Boot Services Subclass .. 67
Runtime Services Subclass .. 70
DXE Services Subclass .. 71

 Contents

Version 0.92 December 2004 7

4 Code Definitions ... 73
Introduction ... 73
Common Status Code Definitions.. 73

Common Status Code Definitions Overview ... 73
Data Structures... 73

Status Code Common Data Structures .. 73
Extended Data Header ... 74

EFI_STATUS_CODE_DATA .. 74
EFI_STATUS_CODE_STRING_DATA .. 75

Status Code-Specific Data GUID .. 78
EFI_STATUS_CODE_SPECIFIC_DATA_GUID ... 78

Enumeration Schemes ... 79
Operation Code Enumeration Scheme ... 79
Debug Code Enumeration Scheme .. 80

Extended Error Data ... 81
EFI_DEVICE_PATH_EXTENDED_DATA .. 81
EFI_DEVICE_HANDLE_EXTENDED_DATA ... 82
EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA 83

Class Definitions ... 85
Hardware Classes .. 86

Computing Unit Class .. 86
EFI_COMPUTING_UNIT Class .. 86
Subclass Definitions ... 86
Progress Code Definitions .. 88
Error Code Definitions .. 90
Extended Error Data ... 92

User-Accessible Peripherals Class... 107
EFI_PERIPHERAL Class ... 107
Subclass Definitions ... 107
Progress Code Definitions .. 108
Error Code Definitions .. 110
Extended Error Data ... 112

I/O Bus Class ... 113
EFI_IO_BUS Class ... 113
Subclass Definitions ... 113
Progress Code Definitions .. 114
Error Code Definitions .. 117
Extended Error Data ... 118

Software Classes .. 119
Host Software Class ... 119

EFI_SOFTWARE Class .. 119
Subclass Definitions ... 120
Progress Code Definitions .. 120
Error Code Definitions .. 125
Extended Error Data ... 129

Status Code Specification

8 December 2004 Version 0.92

Figures
2-1. Hierarchy of Status Code Operations ... 18

Tables
3-1. Class Definitions .. 21
3-2. Progress Code Operations: Computing Unit Class ... 22
3-3. Error Code Operations: Computing Unit Class ... 22
3-4. Computing Unit Class: Subclasses ... 23
3-5. Progress and Error Code Operations: Computing Unit Unspecified Subclass 24
3-6. Progress and Error Code Operations: Host Processor Subclass 24
3-7. Progress and Error Code Operations: Service Processor Subclass 27
3-8. Progress and Error Code Operations: Cache Subclass .. 28
3-9. Progress and Error Code Operations: Memory Subclass 29
3-10. Progress and Error Code Operations: Chipset Subclass .. 31
3-11. Progress Code Operations: User-Accessible Peripheral Class 32
3-12. Error Code Operations: User-Accessible Peripheral Class 33
3-13. Defined Subclasses: User-Accessible Peripheral Class ... 34
3-14. Progress and Error Code Operations: Peripheral Unspecified Subclass 35
3-15. Progress and Error Code Operations: Keyboard Subclass 36
3-16. Progress and Error Code Operations: Mouse Subclass ... 37
3-17. Progress and Error Code Operations: Local Console Subclass 38
3-18. Progress and Error Code Operations: Remote Console Subclass 38
3-19. Progress and Error Code Operations: Serial Port Subclass 39
3-20. Progress and Error Code Operations: Parallel Port Subclass 40
3-21. Progress and Error Code Operations: Fixed Media Subclass 40
3-22. Progress and Error Code Operations: Removable Media Subclass 41
3-23. Progress and Error Code Operations: Audio Input Subclass 41
3-24. Progress and Error Code Operations: Audio Output Subclass 42
3-25. Progress and Error Code Operations: LCD Device Subclass 42
3-26. Progress and Error Code Operations: Network Device Subclass 43
3-27. Progress Code Operations: I/O Bus Class ... 44
3-28. Error Code Operations: I/O Bus Class .. 45
3-29. Defined Subclasses: I/O Bus Class .. 46
3-30. Progress and Error Code Operations: I/O Bus Unspecified Subclass 47
3-31. Progress and Error Code Operations: PCI Subclass .. 47
3-32. Progress and Error Code Operations: USB Subclass ... 48
3-33. Progress and Error Code Operations: IBA Subclass .. 49
3-34. Progress and Error Code Operations: AGP Subclass ... 49
3-35. Progress and Error Code Operations: PC Card Subclass 50
3-36. Progress and Error Code Operations: LPC Subclass ... 50
3-37. Progress and Error Code Operations: SCSI Subclass .. 51
3-38. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass 51
3-39. Progress and Error Code Operations: FC Subclass ... 52
3-40. Progress and Error Code Operations: IP Network Subclass 52
3-41. Progress and Error Code Operations: SMBus Subclass ... 53
3-42. Progress and Error Code Operations: I2C Subclass... 53

 Contents

Version 0.92 December 2004 9

3-43. Progress Code Operations: Host Software Class ... 54
3-44. Error Code Operations: Host Software Class ... 55
3-45. Defined Subclasses: Host Software Class .. 56
3-46. Progress and Error Code Operations: Host Software Unspecified Subclass 58
3-47. Progress and Error Code Operations: SEC Subclass ... 58
3-48. Progress and Error Code Operations: PEI Foundation Subclass 59
3-49. Progress and Error Code Operations: PEI Module Subclass 60
3-50. Progress and Error Code Operations: DXE Foundation Subclass 61
3-51. Progress and Error Code Operations: DXE Boot Service Driver Subclass 62
3-52. Progress and Error Code Operations: DXE Runtime Service Driver Subclass........ 63
3-53. Progress and Error Code Operations: SMM Driver Subclass 63
3-54. Progress and Error Code Operations: EFI Application Subclass 64
3-55. Progress and Error Code Operations: OS Loader Subclass 64
3-56. Progress and Error Code Operations: Runtime Subclass 65
3-57. Progress and Error Code Operations: Afterlife (AL) Subclass 65
3-58. Progress and Error Code Operations: PEI Subclass .. 66
3-59. Progress and Error Code Operations: Boot Services Subclass 67
3-60. Progress and Error Code Operations: Runtime Services Subclass 70
3-61. Progress and Error Code Operations: DXE Services Subclass 71
4-1. Progress Code Enumeration Scheme .. 79
4-2. Debug Code Enumeration Scheme .. 80
4-3. Class Definitions .. 85
4-4. Defined Subclasses: Computing Unit Class ... 86
4-5. Defined Subclasses: User-Accessible Peripheral Class 107
4-6. Defined Subclasses: I/O Bus Class .. 113
4-7. Defined Subclasses: Host Software Class .. 119

Status Code Specification

10 December 2004 Version 0.92

Version 0.92 December 2004 11

1
Introduction

Overview
This specification defines the status code architecture that is required for an implementation of the
Intel® Platform Innovation Framework for EFI (hereafter referred to as the "Framework"). Status
codes enable system components to report information about their current state. This specification
does the following:
• Describes the basic components of status codes
• Defines the status code classes; their subclasses; and the progress, error, and debug code

operations for each
• Provides code definitions for the data structures that are common to all status codes
• Provides code definitions for the status code classes; subclasses; progress, error, and debug

code enumerations; and extended error data that are architecturally required by the Intel®
Platform Innovation Framework for EFI Architecture Specification

Organization of the Status Codes Specification
This specification is organized as listed below. Because status codes are just one component of a
Framework-based firmware solution, there are a number of additional specifications that are
referred to throughout this document:
• For references to other Framework specifications, click on the hyperlink in the page or navigate

through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

• For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

Organization of This Specification

Book Description

Status Codes Overview Provides a high-level explanation of status codes and the status
code classes and subclasses that are defined in this specification.

Status Code Classes Provides detailed explanations of the defined status code classes.

Code Definitions

Provides the code definitions for all status code classes; subclasses;
extended error data structures; and progress, error, and debug code
enumerations that are included in this specification.

Status Code Specification

12 December 2004 Version 0.92

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

 Introduction

Version 0.92 December 2004 13

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color. These
code listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm�

Status Code Specification

14 December 2004 Version 0.92

Version 0.92 December 2004 15

2
Status Codes Overview

Introduction
This section provides a basic overview of status codes and describes the following:
• Basic terms that are used throughout this specification
• The different types of status codes
• Classes of status codes that are defined in this specification
• Instance numbers for class/subclass pairings
• The sets of operations that are available for each class/subclass pair
The basic definition of a status code is contained in the ReportStatusCode() definition in the
Intel® Platform Innovation Framework for EFI Architecture Specification Driver Execution
Environment Core Interface Specification (DXE CIS).

Terms
The following terms are used throughout this document:

debug code
Data produced by various software entities that contains information specifically intended to
assist in debugging. The format of the debug code data is governed by this specification.

error code
Data produced by various software entities that indicates an abnormal condition. The format
of the error code data is governed by this specification.

progress code
Data produced by various software entities that indicates forward progress. The format of the
progress code data is governed by this specification.

status code
Either of the three types of codes: progress code, error code, or debug code.

status code driver
The driver that produces the Status Code Architectural Protocol
(EFI_STATUS_CODE_ARCH_PROTOCOL) and hooks the Runtime Service
ReportStatusCode(). The status code driver can send the status code to the appropriate
listeners. The mechanism by which the status code driver locates appropriate listeners is not
architectural and is not described in this document. The data hub is a default listener. Status
codes that are reported to the Runtime Service ReportStatusCode() are different from
the EFI_STATUS returned by various functions. The term EFI_STATUS is defined in the
EFI 1.10 Specification.

Status Code Specification

16 December 2004 Version 0.92

Types of Status Codes
There are three types of status codes:
• Progress codes
• Error codes
• Debug codes
Progress codes describe the activity that is currently taking place. Error codes describe exceptions
to expected or desired behavior. Debug codes report information that is useful for debugging.

Status Code Classes
Status codes are organized into a high-level set of classes. These classes correspond to broad types
of system hardware or software entities. Each class is subdivided into a number of subclasses.
These subclasses may correspond to a variety of hardware devices comprising a class or software
component types.
The Framework architecture defines three status code classes for hardware and one class for
software:
• Hardware classes:

 Computing unit
 User-accessible peripheral
 I/O bus

• Software class:
 Host software

Class/subclass pairing should be able to classify any system entity, whether software or hardware.
For example, the boot-strap processor (BSP) in a system would be a member of the computing unit
class and host processor subclass, while a graphics processor would also be a member of the
computing unit class, but a member of the I/O processor subclass.

Instance Number
Because a system may contain multiple entities matching a class/subclass pairing, there is an
instance number. Instance numbers have different meanings for different classes. However, an
instance number of 0xFFFFFFFF always indicates that instance information is unavailable, not
applicable, or not provided.
Valid instance numbers start from 0. So a 4-processor server would logically have four instances of
the class/subclass pairing, computing unit/host processor, instance numbers 0 to 3.
Due to the complexity of system design, it is outside of the scope of this specification how to pair
instance numbers with the actual component—for instance, determining which processor is
number 3. However, this specification mandates that the numbering be consistent with the other
agents in the system. For example, the processor numbering scheme that is followed by status codes
must be consistent with the one followed by the data hub.

 Status Codes Overview

Version 0.92 December 2004 17

Operations
For each entity classification (class/subclass pair) there are three sets of operations:
• Progress codes
• Error codes
• Debug codes
For progress codes, operations correspond to activities related to the component classification. For
error codes, operations correspond to exception conditions (errors). For debug codes, operations
correspond to the basic nature of the debug information.
The values 0x00–0x0FFF are common operations that are shared by all subclasses in a class. There
are also subclass-specific operations/error codes. Out of the subclass-specific operations, the values
0x1000–0x7FFF are reserved by this specification. The remaining values (0x8000–0xFFFF) are not
defined by this specification and OEMs can assign meaning to values in this range. The
combination of class and subclass operations provides the complete set of operations that may be
reported by an entity. The figure below demonstrates the hierarchy of class and subclass and
progress, error, and debug operations.

Status Code Specification

18 December 2004 Version 0.92

Status Code:
Progress, Error, Debug

Class:
Computing Unit

Class:
User-Accessible

Peripheral

Class:
I/O Bus

Class:
Host Software

Status Code Classes: Class # 0x0-0x7f controlled
by this specification

Software Subclasses:

Subclass 0x0-0x7f controlled
by this specification

Computing Unit Subclasses:

Subclass 0x0-0x7f controlled
by this specificationI/O Processor

Subclass

Cache
Subclass

Memory
Subclass

Computing Unit:
Class Progress Codes

Computing Unit:
Class Error Codes

Computing Unit:
Memory Subclass
Progress Codes

Computing Unit:
Memory Subclass

Error Codes

Computing Unit:
Class Debug Codes

Computing Unit:
Memory Subclass

Debug Codes

Operations: 0x0-0x7fff controlled by this specification

Figure 2-1. Hierarchy of Status Code Operations

 Status Codes Overview

Version 0.92 December 2004 19

The organization of status codes, progress versus error, class, subclass, and operation facilitate a
flexible reporting of status codes. In the simplest case, reporting the status code might only convey
that an event occurred. In a slightly more complex system, it might be possible to report the class
and if it is a progress, error, or debug Code. In such a case, it is at least possible to understand that
the system is executing a software activity or that an error occurred with a computing unit. If more
reporting capability is present, the error could be isolated to include the subclass—for example, an
error occurred related to memory, or the system is currently executing the PEI Foundation
software. If yet more capability is present, information about the type of error or activity is
available—for example, single-bit ECC error or PEIM dispatch in progress. If the reporting
capability is complete, it can provide the detailed error information about the single-bit ECC error,
including the location and a string describing the failure. A large spectrum of consumer capability
can be supported with a single interface for the producers of progress and error information.

Status Code Specification

20 December 2004 Version 0.92

Version 0.92 December 2004 21

3
Status Code Classes

Status Code Classes
The Framework architecture defines four classes of status codes—three classes for hardware and
one class for software. These classes are listed in the table below and described in detail in the rest
of this section. Each class is made up of several subclasses, which are also defined later in this
section.
See Code Definitions for all the definitions of all data types and enumerations listed in this section.

Table 3-1. Class Definitions
Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible Peripheral EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Hardware Classes

Computing Unit Class
The Computing Unit class covers components directly related to system computational
capabilities. Subclasses correspond to types of computational devices and resources. See the
following for the computing unit class:
• Instance Number
• Progress Code Operations
• Error Code Operations
• Defined Subclasses

Instance Number
The instance number refers to the computing unit's geographic location in some manner. An
instance number of 0xFFFFFFFF means that the instance number information is not available or the
provider of the information is not interested in providing the instance number.

Status Code Specification

22 December 2004 Version 0.92

Progress Code Operations
All computing unit subclasses share the operation codes listed in the table below. See Progress
Code Definitions in Code Definitions: Computing Unit Class for the definitions of these progress
codes.

Table 3-2. Progress Code Operations: Computing Unit Class
Operation Description Extended Data

EFI_CU_PC_INIT_BEGIN General computing unit initialization begins. No details
regarding operation are made available.

See subclass.

EFI_CU_PC_INIT_END General computing unit initialization ends. No details
regarding operation are made available.

See subclass.

0x0002–0x0FFF Reserved for future use by this specification for
Computing Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass
definitions within this specification for value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Error Code Operations
All computing unit subclasses share the error codes listed in the table below. See Error Code
Definitions in Code Definitions: Computing Unit Class for the definitions of these error codes.

Table 3-3. Error Code Operations: Computing Unit Class
Operation Description Extended Data

EFI_CU_EC_NON_SPECIFIC No error details available. See subclass.

EFI_CU_EC_DISABLED Instance is disabled. See subclass.

EFI_CU_EC_NOT_SUPPORTED Instance is not supported. See subclass.

EFI_CU_EC_NOT_DETECTED Instance not detected when it was expected to
be present.

See subclass.

EFI_CU_EC_NOT_CONFIGURED Instance could not be properly or completely
initialized or configured.

See subclass.

0x0005–0x0FFF Reserved for future use by this specification for
Computing Class error codes.

NA

0x1000–0x7FFF Subclass defined: See the subclass definitions
within this specification.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

 Status Code Classes

Version 0.92 December 2004 23

Subclasses

Defined Subclasses
The table below lists the subclasses in the Computing Unit class. The following topics describe
each subclass in more detail.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definitions of these
subclasses.

Table 3-4. Computing Unit Class: Subclasses
Subclass Code Name Description

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED The computing unit type is unknown,
undefined, or unspecified.

Host processor EFI_COMPUTING_UNIT_HOST_
PROCESSOR

The computing unit is a full-service
central processing unit.

Firmware processor EFI_COMPUTING_UNIT_FIRMWARE_
PROCESSOR

The computing unit is a limited
service processor, typically designed
to handle tasks of limited scope.

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSOR The computing unit is a processor
designed specifically to handle I/O
transactions.

Cache EFI_COMPUTING_UNIT_CACHE The computing unit is a cache. All
types of cache qualify.

Memory EFI_COMPUTING_UNIT_MEMORY The computing unit is memory.
Many types of memory qualify.

Chipset EFI_COMPUTING_UNIT_CHIPSET The computing unit is a chipset
component.

0x07–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Unspecified Subclass
This subclass can be used for any computing unit type of component that does not belong in one of
the other subclasses.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Status Code Specification

24 December 2004 Version 0.92

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 3-5. Progress and Error Code Operations: Computing Unit Unspecified Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Host Processor Subclass
This subclass is used for computing units that provide the system’s main processing power and
their associated hardware. These are general-purpose processors capable of a wide range of
functionality. The instance number matches the processor handle number that is assigned to the
processor by the Multiprocessor (MP) Services Protocol. They often contain multiple levels of
embedded cache.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-6. Progress and Error Code Operations: Host Processor Subclass
Type of
Code Operation Description Extended Data

Progress EFI_CU_HP_PC_POWER_ON_INIT Power-on initialization None

 EFI_CU_HP_PC_CACHE_INIT Embedded cache
initialization including
cache controller
hardware and cache
memory.

EFI_CACHE_INIT_DATA

continued

 Status Code Classes

Version 0.92 December 2004 25

Table 3-6. Progress and Error Code Operations: Host Processor Subclass (continued)
Type of
Code Operation Description Extended Data

Progress
(cont.)

EFI_CU_HP_PC_RAM_INIT Embedded RAM
initialization

None

EFI_CU_HP_PC_MEMORY_
CONTROLLER_INIT

Embedded memory
controller initialization

None

EFI_CU_HP_PC_IO_INIT Embedded I/O
complex initialization

None

EFI_CU_HP_PC_BSP_SELECT BSP selection None

EFI_CU_HP_PC_BSP_RESELECT BSP reselection None

EFI_CU_HP_PC_AP_INIT AP initialization (this
operation is performed
by the current BSP)

None

EFI_CU_HP_PC_SMM_INIT SMM initialization None

0x000B–0x7FFF Reserved for future
use by this
specification

NA

Error EFI_CU_EC_DISABLED Instance is disabled.
This is a standard
error code for this
class.

EFI_COMPUTING_UNIT_
CPU_DISABLED_ERROR_
DATA

EFI_CU_HP_EC_INVALID_TYPE Instance is not a valid
type.

None

EFI_CU_HP_EC_INVALID_SPEED Instance is not a valid
speed.

None

EFI_CU_HP_EC_MISMATCH Mismatch detected
between two
instances.

EFI_HOST_PROCESSOR_
MISMATCH_ERROR_DATA

EFI_CU_HP_EC_TIMER_EXPIRED A watchdog timer
expired.

None

 EFI_CU_HP_EC_SELF_TEST Instance detected an
error during BIST

None

EFI_CU_HP_EC_INTERNAL Instance detected an
IERR.

None

EFI_CU_HP_EC_THERMAL An over temperature
condition was
detected with this
instance.

EFI_COMPUTING_UNIT_
THERMAL_ERROR_DATA

continued

Status Code Specification

26 December 2004 Version 0.92

Table 3-6. Progress and Error Code Operations: Host Processor Subclass (continued)
Type of
Code Operation Description Extended Data

Error
(cont.)

EFI_CU_HP_EC_LOW_VOLTAGE Voltage for this
instance dropped
below the low voltage
threshold.

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_HIGH_VOLTAGE Voltage for this
instance surpassed
the high voltage
threshold

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_CACHE The instance suffered
a cache failure.

None

EFI_CU_HP_EC_MICROCODE_
UPDATE

Instance microcode
update failed

EFI_COMPUTING_UNIT_
MICROCODE_
UPDATE_ERROR_DATA

EFI_CU_HP_EC_CORRECTABLE Correctable error
detected

None

EFI_CU_HP_EC_UNCORRECTABLE Uncorrectable ECC
error detected

None

EFI_CU_HP_EC_NO_MICROCODE_
UPDATE

No matching
microcode update is
found

None

0x100D–0x7FFF Reserved for future
use by this
specification

NA

Related Definitions
See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: Computing Unit Class for definitions of the extended
error data listed above.

 Status Code Classes

Version 0.92 December 2004 27

Firmware Processor Subclass
This subclass applies to processors other than the Host Processors that provides services to the
system.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-7. Progress and Error Code Operations: Service Processor Subclass
Type of
Code Operation Description

Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_FP_EC_HARD_FAIL Firmware processor detected a hardware
error during initialization.

None

 EFI_CU_FP_EC_SOFT_FAIL Firmware processor detected an error
during initialization. E.g. Firmware
processor NVRAM contents are invalid.

None

 EFI_CU_FP_EC_COMM_ERROR The host processor encountered an error
while communicating with the firmware
processor.

None

 0x1004–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions

Status Code Specification

28 December 2004 Version 0.92

I/O Processor Subclass
This subclass applies to system I/O processors and their associated hardware. These processors are
typically designed to offload I/O tasks from the central processors in the system. Examples would
include graphics or I20 processors. The subclass is identical to the host processor subclass. See
Host Processor Subclass for more information.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Cache Subclass
The cache subclass applies to any external/system level caches. Any cache embedded in a
computing unit would not be counted in this subclass, but would be considered a member of that
computing unit subclass.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-8. Progress and Error Code Operations: Cache Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_CU_CACHE_PC_PRESENCE_DETECT Detecting cache presence. None

 EFI_CU_CACHE_PC_CONFIGURATION Configuring cache. None

 0x1002–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_CACHE_EC_INVALID_TYPE Instance is not a valid type. None

 EFI_CU_CACHE_EC_INVALID_SPEED Instance is not a valid speed. None

 EFI_CU_CACHE_EC_INVALID_SIZE Instance size is invalid. None

 EFI_CU_CACHE_EC_MISMATCH Instance does not match other
caches.

None

 0x1004–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions

 Status Code Classes

Version 0.92 December 2004 29

Memory Subclass
The memory subclass applies to any external/system level memory and associated hardware. Any
memory embedded in a computing unit would not be counted in this subclass, but would be
considered a member of that computing unit subclass.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.
For all operations and errors, the instance number specifies the DIMM number unless stated
otherwise. Some of the operations may affect multiple memory devices and multiple memory
controllers. The specification provides mechanisms
(EFI_MULTIPLE_MEMORY_DEVICE_OPERATION and others) to describe such group
operations. See EFI_STATUS_CODE_DIMM_NUMBER in Extended Error Data: Memory Subclass
(in chapter 3, "Code Definitions") for details.

Table 3-9. Progress and Error Code Operations: Memory Subclass
Type of
Code Operation Description Extended Data

Progress EFI_CU_MEMORY_PC_SPD_READ Reading
configuration data
(e.g. SPD) from
memory devices.

None

 EFI_CU_MEMORY_PC_PRESENCE_DETECT Detecting
presence of
memory devices
(e.g. DIMMs).

None

 EFI_CU_MEMORY_PC_TIMING Determining
optimum
configuration e.g.
timing for memory
devices.

None

 EFI_CU_MEMORY_PC_CONFIGURING Initial
configuration of
memory device
and memory
controllers.

None

 EFI_CU_MEMORY_PC_OPTIMIZING Programming the
memory controller
and memory
devices with
optimized settings.

None

continued

Status Code Specification

30 December 2004 Version 0.92

Table 3-9. Progress and Error Code Operations: Host Processor Subclass (continued)
Type of
Code Operation Description Extended Data

Progress
(cont.)

EFI_CU_MEMORY_PC_INIT Memory
initialization such
as ECC
initialization.

EFI_MEMORY_
RANGE_
EXTENDED_DATA

 EFI_CU_MEMORY_PC_TEST Performing
memory test.

EFI_MEMORY_
RANGE_
EXTENDED_DATA

 0x1007–0x7FFF Reserved for
future use by this
specification.

NA

Error EFI_CU_MEMORY_EC_INVALID_TYPE Instance is not a
valid type.

None

 EFI_CU_MEMORY_EC_INVALID_SPEED Instance is not a
valid speed.

None

 EFI_CU_MEMORY_EC_CORRECTABLE Correctable error
detected.

EFI_MEMORY_
EXTENDED_
ERROR_DATA

 EFI_CU_MEMORY_EC_UNCORRECTABLE Uncorrectable
error detected.
This included
memory
miscomparisions
during the
memory test.

EFI_MEMORY_
EXTENDED_
ERROR_DATA

 EFI_CU_MEMORY_EC_SPD_FAIL Instance SPD
failure detected.

None

 EFI_CU_MEMORY_EC_INVALID_SIZE Instance size is
invalid.

None

 EFI_CU_MEMORY_EC_MISMATCH Mismatch
detected between
two instances.

EFI_MEMORY_
MODULE_
MISMATCH_ERROR_
DATA

 EFI_CU_MEMORY_EC_S3_RESUME_FAIL Resume from S3
failed.

None

 EFI_CU_MEMORY_EC_UPDATE_FAIL Flash Memory
Update failed.

None

 EFI_CU_MEMORY_EC_NONE_DETECTED Memory was not
detected in the
system. Instance
field is ignored.

None

continued

 Status Code Classes

Version 0.92 December 2004 31

Table 3-9. Progress and Error Code Operations: Host Processor Subclass (continued)
Type of
Code Operation Description Extended Data

Error (cont.) EFI_CU_MEMORY_EC_NONE_USEFUL No useful memory
was detected in
the system. E.g.,
Memory was
detected, but
cannot be used
due to errors.
Instance field is
ignored.

None

 0x1009–0x7FFF Reserved for
future use by this
specification.

NA

Related Definitions
See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: Computing Unit Class for definitions of the extended
error data listed above.

Chipset Subclass
This subclass can be used for any chipset components and their related hardware.
See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 3-10. Progress and Error Code Operations: Chipset Subclass
Type of
Code Operation Description

Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification.

Related Definitions
None.

Status Code Specification

32 December 2004 Version 0.92

User-Accessible Peripheral Class
The User-Accessible Peripheral class refers to any peripheral with which the user interacts.
Subclass elements correspond to general classes of peripherals. See the following for the User-
Accessible Peripheral class:
• Instance Number
• Progress Code Operations
• Error Code Operations
• Defined Subclasses

Instance Number
The instance number refers to the peripheral’s geographic location in some TBD manner. Instance
number of 0 means that instance number information is not available or the provider of the
information is not interested in providing the instance number.

Progress Code Operations
All peripheral subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: User-Accessible Peripheral Class for the definitions of these
progress codes.

Table 3-11. Progress Code Operations: User-Accessible Peripheral Class
Operation Description Extended Data

EFI_P_PC_INIT General Initialization. No details regarding
operation are made available.

See subclass.

EFI_P_PC_RESET Resetting the peripheral. See subclass.

EFI_P_PC_DISABLE Disabling the peripheral. See subclass.

EFI_P_PC_PRESENCE_DETECT Detecting the presence. See subclass.

EFI_P_PC_ENABLE Enabling the peripheral. See subclass.

EFI_P_PC_RECONFIG Reconfiguration. See subclass.

EFI_P_PC_DETECTED Peripheral was detected. See subclass.

0x0006–0x0FFF Reserved for future use by this specification for
Peripheral Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass
definitions within this specification for value
definitions.

See subclass.

0x8000–0xFFFF Reserved for OEM use. NA

 Status Code Classes

Version 0.92 December 2004 33

Error Code Operations
All peripheral subclasses share the error codes listed in the table below. See Error Code Definitions
in Code Definitions: User-Accessible Peripheral Class for the definitions of these error codes.

Table 3-12. Error Code Operations: User-Accessible Peripheral Class
Operation Description Extended Data

EFI_P_EC_NON_SPECIFIC No error details available. See subclass

EFI_P_EC_DISABLED Instance is disabled. See subclass

EFI_P_EC_NOT_SUPPORTED Instance is not supported. See subclass

EFI_P_EC_NOT_DETECTED Instance not detected when it was
expected to be present.

See subclass

EFI_P_EC_NOT_CONFIGURED Instance could not be properly or
completely initialized or
configured.

See subclass

EFI_P_EC_INTERFACE_ERROR An error occurred with the
peripheral interface.

See subclass

EFI_P_EC_CONTROLLER_ERROR An error occurred with the
peripheral controller.

See subclass

EFI_P_EC_INPUT_ERROR An error occurred getting input
from the peripheral.

See subclass.

EFI_P_EC_OUTPUT_ERROR An error occurred putting output to
the peripheral.

See subclass.

EFI_P_EC_RESOURCE_CONFLICT A resource conflict exists with this
instance’s resource requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE_ERROR_DATA
for all subclasses.

0x0006–0x0FFF Reserved for future use by this
specification for User-Accessible
Peripheral class error codes.

NA

0x1000–0x7FFF See the subclass definitions within
this specification.

See subclass

0x8000–0xFFFF Reserved for OEM use. NA

Status Code Specification

34 December 2004 Version 0.92

Subclasses

Defined Subclasses
The table below lists the subclasses in the User-Accessible Peripheral class. The following topics
describe each subclass in more detail.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definitions
of these subclasses.

Table 3-13. Defined Subclasses: User-Accessible Peripheral Class
Subclass Code Name Description

Unspecified EFI_PERIPHERAL_UNSPECIFIED The peripheral type is unknown,
undefined, or unspecified.

Keyboard EFI_PERIPHERAL_KEYBOARD The peripheral referred to is a
keyboard.

Mouse EFI_PERIPHERAL_MOUSE The peripheral referred to is a mouse.

Local console EFI_PERIPHERAL_LOCAL_CONSOLE The peripheral referred to is a console
directly attached to the system.

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE The peripheral referred to is a console
that can be remotely accessed.

Serial port EFI_PERIPHERAL_SERIAL_PORT The peripheral referred to is a serial
port.

Parallel port EFI_PERIPHERAL_PARALLEL_PORT The peripheral referred to is a parallel
port.

Fixed media EFI_PERIPHERAL_FIXED_MEDIA The peripheral referred to is a fixed
media device—e.g., an IDE hard disk
drive.

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA The peripheral referred to is a
removable media device—e.g.,
a DVD-ROM drive.

Audio input EFI_PERIPHERAL_AUDIO_INPUT The peripheral referred to is an audio
input device—e.g., a microphone.

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT The peripheral referred to is an audio
output device—e.g., speakers or
headphones.

LCD device EFI_PERIPHERAL_LCD_DEVICE The peripheral referred to is an LCD
device.

Network device EFI_PERIPHERAL_NETWORK The peripheral referred to is a network
device—e.g., a network card.

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

 Status Code Classes

Version 0.92 December 2004 35

Unspecified Subclass
This subclass applies to any user-accessible peripheral not belonging to any of the other subclasses.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-14. Progress and Error Code Operations: Peripheral Unspecified Subclass
Type of
Code Operation Description

Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Keyboard Subclass
This subclass applies to any keyboard style interfaces. ExtendedData contains the device path to
the keyboard device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is
ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Status Code Specification

36 December 2004 Version 0.92

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-15. Progress and Error Code Operations: Keyboard Subclass
Type of
Code Operation Description Extended Data

Progress EFI_P_KEYBOARD_PC_CLEAR_BUFFER Clearing the input keys
from keyboard.

The device path to the
keyboard device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

 EFI_P_KEYBOARD_PC_SELF_TEST Keyboard self-test. The device path to the
keyboard device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

 0x1002–0x7FFF Reserved for future use
by this specification.

NA

Error EFI_P_KEYBOARD_EC_LOCKED The keyboard input is
locked.

The device path to the
keyboard device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

 EFI_P_KEYBOARD_EC_STUCK_KEY A stuck key was
detected.

The device path to the
keyboard device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

 0x1002–0x7FFF Reserved for future use
by this specification.

NA

Related Definitions
See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of
the subclass-specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of
the extended error data listed above.

 Status Code Classes

Version 0.92 December 2004 37

Mouse Subclass
This subclass applies to any mouse or pointer peripherals. ExtendedData contains the device
path to the mouse device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance
is ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-16. Progress and Error Code Operations: Mouse Subclass
Type of Code Operation Description Extended Data

Progress EFI_P_MOUSE_PC_SELF_TEST Mouse self-test. The device path to the
mouse device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

 0x1001–0x7FFF Reserved for future use
by this specification.

NA

Error EFI_P_MOUSE_EC_LOCKED The mouse input is
locked.

The device path to the
mouse device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

 0x1001–0x7FFF Reserved for future use
by this specification.

NA

Related Definitions
See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of
the subclass-specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of
the extended error data listed above.

Status Code Specification

38 December 2004 Version 0.92

Local Console Subclass
This subclass applies to all console devices directly connected to the system. This would include
VGA/UGA devices. ExtendedData contains the device path to the console device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored. LCD devices have their
own subclass.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-17. Progress and Error Code Operations: Local Console Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Remote Console Subclass
This subclass applies to any console not directly connected to the system. This would include
consoles displayed via serial or LAN connections. ExtendedData contains the device path to the
console device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is
ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-18. Progress and Error Code Operations: Remote Console Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

 Status Code Classes

Version 0.92 December 2004 39

Serial Port Subclass
This subclass applies to devices attached to a system serial port, such as a modem.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-19. Progress and Error Code Operations: Serial Port Subclass
Type of
Code Operation Description Extended Data

Progress EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER Clearing the serial
port input buffer.

The device
handle. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

 0x1001–0x7FFF Reserved for future
use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future
use by this
specification.

NA

Related Definitions
See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of
the subclass-specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of
the extended error data listed above.

Parallel Port Subclass
This subclass applies to devices attached to a system parallel port, such as a printer.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Status Code Specification

40 December 2004 Version 0.92

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-20. Progress and Error Code Operations: Parallel Port Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Fixed Media Subclass
This subclass applies to fixed media peripherals such as hard drives. These peripherals are capable
of producing the EFI_BLOCK_IO Protocol. ExtendedData contains the device path to the
device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-21. Progress and Error Code Operations: Fixed Media Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Removable Media Subclass
This subclass applies to removable media peripherals such as floppy disk drives or LS-120 drives.
These peripherals are capable of producing the EFI_BLOCK_IO Protocol. ExtendedData
contains the device path to the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and
the instance is ignored.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

 Status Code Classes

Version 0.92 December 2004 41

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-22. Progress and Error Code Operations: Removable Media Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Audio Input Subclass
This subclass applies to audio input devices such as microphones.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-23. Progress and Error Code Operations: Audio Input Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Status Code Specification

42 December 2004 Version 0.92

Audio Output Subclass
This subclass applies to audio output devices like speakers or headphones.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-24. Progress and Error Code Operations: Audio Output Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

LCD Device Subclass
This subclass applies to LCD display devices attached to the system.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-25. Progress and Error Code Operations: LCD Device Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

 Status Code Classes

Version 0.92 December 2004 43

Network Device Subclass
This subclass applies to network adapters attached to the system. These devices are capable of
producing standard EFI networking protocols such as the EFI_SIMPLE_NETWORK Protocol.
See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-26. Progress and Error Code Operations: Network Device Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

I/O Bus Class
The I/O bus class covers hardware buses irrespective of any software protocols that are used. At a
broad level, everything that connects the computing unit to the user peripheral can be covered by
this class. Subclass elements correspond to industry-standard hardware buses. See the following
for the I/O Bus class:
• Instance Number
• Progress Code Operations
• Error Code Operations
• Defined Subclasses

Instance Number
The instance number is ignored and the ExtendedData describes the device path to the
controller or the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA.

Status Code Specification

44 December 2004 Version 0.92

Progress Code Operations
All I/O bus subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: I/O Bus Class for the definitions of these progress codes.

Table 3-27. Progress Code Operations: I/O Bus Class
Operation Description Extended Data

EFI_IOB_PC_INIT General initialization. No
details regarding operation are
made available.

The device path corresponding to the host
bus controller (the controller that produces
this bus). For the PCI bus, it is the PCI root
bridge. The format of the device path
extended data is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RESET Resetting the bus. Generally,
this operation resets all the
devices on the bus as well.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DISABLE Disabling all the devices on the
bus prior to enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DETECT Detecting devices on the bus. The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_ENABLE Configuring the bus and
enabling device on the bus.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RECONFIG Bus reconfiguration including
resource re-enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_HOTPLUG A hot-plug event was detected
on the bus and the hot-
plugged device was initialized.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

0x0007–0x0FFF Reserved for future use by this
specification for I/O Bus class
progress codes.

NA

0x1000–0x7FFF Reserved for subclass use.
See the subclass definitions
within this specification for
value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

 Status Code Classes

Version 0.92 December 2004 45

Error Code Operations
All I/O bus subclasses share the error codes listed in the table below. See Error Code Definitions in
Code Definitions: I/O Bus Class for the definitions of these error codes.

Table 3-28. Error Code Operations: I/O Bus Class
Operation Description Extended Data

EFI_IOB_EC_NON_SPECIFIC No error details available None.

EFI_IOB_EC_DISABLED A device is disabled due to bus-
level errors.

The device path
corresponding to the device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_SUPPORTED A device is not supported on this
bus.

The device path
corresponding to the device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_DETECTED Instance not detected when it was
expected to be present.

The device path
corresponding to the device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_CONFIGURED Instance could not be properly or
completely initialized/configured.

The device path
corresponding to the device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_INTERFACE_ERROR An error occurred with the bus
interface.

The device path
corresponding to the failing
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_CONTROLLER_ERROR An error occurred with the host
bus controller (the controller that
produces this bus).

The device path
corresponding to the bus
controller. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_READ_ERROR A bus specific error occurred
getting input from a device on the
bus.

The device path
corresponding to the failing
device or the closest device
path. See
EFI_DEVICE_PATH_

EFI_IOB_EC_WRITE_ERROR An error occurred putting output to
the bus.

The device path
corresponding to the failing
device or the closest device
path. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

continued

Status Code Specification

46 December 2004 Version 0.92

Table 3-28. Error Code Operations: I/O Bus Class (continued)
Operation Description Extended Data

EFI_IOB_EC_RESOURCE_CONFLICT A resource conflict exists with this
instance’s resource requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE ERROR_DATA.

0x000A–0x0FFF Reserved for future use by this
specification for I/O Bus class
error codes.

NA

0x1000–0x7FFF See the subclass definitions within
this specification.

NA

0x8000–0xFFFF Reserved for OEM use. NA

Subclasses

Defined Subclasses
The table below lists the subclasses in the I/O Bus class. The following topics describe each
subclass in more detail.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definitions of these subclasses.

Table 3-29. Defined Subclasses: I/O Bus Class
Subclass Code Name Description

Unspecified EFI_IO_BUS_UNSPECIFIED The bus type is unknown, undefined, or
unspecified.

PCI EFI_IO_BUS_PCI The bus is a PCI bus.

USB EFI_IO_BUS_USB The bus is a USB bus.

InfiniBand* architecture EFI_IO_BUS_IBA The bus is an IBA bus.

AGP EFI_IO_BUS_AGP The bus is an AGP bus.

PC card EFI_IO_BUS_PC_CARD The bus is a PC Card bus.

Low pin count (LPC) EFI_IO_BUS_LPC The bus is a LPC bus.

SCSI EFI_IO_BUS_SCSI The bus is a SCSI bus.

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI The bus is a ATA/ATAPI bus.

Fibre Channel EFI_IO_BUS_FC The bus is an EC bus.

IP network EFI_IO_BUS_IP_NETWORK The bus is an IP network bus.

SMBus EFI_IO_BUS_SMBUS The bus is a SMBUS bus.

I2C EFI_IO_BUS_I2C The bus is an I2C bus.

0x0D–0x7F Reserved for future use by this
specification.

0x80–0xFF Reserved for OEM use.

 Status Code Classes

Version 0.92 December 2004 47

Unspecified Subclass
This subclass applies to any I/O bus not belonging to any of the other I/O bus subclasses.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-30. Progress and Error Code Operations: I/O Bus Unspecified Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

PCI Subclass
This subclass applies to PCI buses and devices. It also includes different variations of PCI bus
including PCI-X and PCI Express.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-31. Progress and Error Code Operations: PCI Subclass
Type of
Code Operation Description Extended Data

Progress EFI_IOB_PCI_BUS_ENUM Enumerating buses
under a root bridge.

The device path corresponding to
the PCI root bridge. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

 EFI_IOB_PCI_RES_ALLOC Allocating resources to
devices under a host
bridge.

The host bridge handle as defined in
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

 EFI_IOB_PCI_HPC_INIT Initializing a PCI hot-
plug controller.

The device path to the controller as
defined in EFI_DEVICE_PATH_
EXTENDED_DATA.

 0x1003–0x7FFF Reserved for future use
by this specification.

NA

continued

Status Code Specification

48 December 2004 Version 0.92

Table 3-31. Progress and Error Code Operations: PCI Subclass (continued)
Type of
Code Operation Description Extended Data

Error EFI_IOB_PCI_EC_PERR Parity error; see PCI
Specification.

The device path to the controller that
generated the PERR. The data
format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

 EFI_IOB_PCI_EC_SERR System error; see PCI
Specification.

The device path to the controller that
generated the SERR. The data
format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

 0x1002–0x7FFF Reserved for future use
by this specification.

NA

Related Definitions
See the following topics in Code Definitions: I/O Bus Class for definitions of the subclass-specific
operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: I/O Bus Class for definitions of the extended error
data listed above.

USB Subclass
This subclass applies to USB buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-32. Progress and Error Code Operations: USB Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

 Status Code Classes

Version 0.92 December 2004 49

InfiniBand* Architecture Subclass
This subclass applies to InfiniBand* (IBA) buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-33. Progress and Error Code Operations: IBA Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

AGP Subclass
This subclass applies to AGP buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-34. Progress and Error Code Operations: AGP Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Status Code Specification

50 December 2004 Version 0.92

PC Card Subclass
This subclass applies to PC Card buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-35. Progress and Error Code Operations: PC Card Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

LPC Subclass
This subclass applies to LPC buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-36. Progress and Error Code Operations: LPC Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

 Status Code Classes

Version 0.92 December 2004 51

SCSI Subclass
This subclass applies to SCSI buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-37. Progress and Error Code Operations: SCSI Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

ATA/ATAPI/SATA Subclass
This subclass applies to ATA and ATAPI buses and devices. It also includes Serial ATA (SATA)
buses.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-38. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Status Code Specification

52 December 2004 Version 0.92

Fibre Channel (FC) Subclass
This subclass applies to Fibre Channel buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-39. Progress and Error Code Operations: FC Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

IP Network Subclass
This subclass applies to IP network buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-40. Progress and Error Code Operations: IP Network Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

 Status Code Classes

Version 0.92 December 2004 53

SMBus Subclass
This subclass applies to SMBus buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-41. Progress and Error Code Operations: SMBus Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

I2C Subclass
This subclass applies to I2C buses and devices.
See Subclass Definitions in Code Definitions: I/O Bus Class for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-42. Progress and Error Code Operations: I2C Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Software Classes
Host Software Class

The Host Software class covers any software-generated codes. Subclass elements correspond to
common software types in an EFI system. See the following for the Host Software class:
• Instance Number
• Progress Code Operations
• Error Code Operations
• Defined Subclasses

Status Code Specification

54 December 2004 Version 0.92

Instance Number
The instance number is not used for software subclasses unless otherwise stated.

Progress Code Operations
All host software subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: Host Software Class for the definitions of these progress codes.

Table 3-43. Progress Code Operations: Host Software Class
Operation Description Extended Data

EFI_SW_PC_INIT General initialization. No details
regarding operation are made
available.

None.

EFI_SW_PC_LOAD Loading a software module in the
preboot phase by using
LoadImage() or an equivalent
PEI service. May include a PEIM,
DXE drivers, EFI application, etc.

Handle identifying the module. There will
be an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_BEGIN Initializing software module by
using StartImage() or an
equivalent PEI service.

Handle identifying the module. There will
be an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_END Software module returned control
back after initialization.

Handle identifying the module. There will
be an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_
AUTHENTICATE_BEGIN

Performing authentication
(passwords, biometrics, etc.).

None.

EFI_SW_PC_
AUTHENTICATE_END

Authentication completed. None.

EFI_SW_PC_INPUT_WAIT Waiting for user input. None.

EFI_SW_PC_USER_SETUP Executing user setup. None.

0x0008–0x0FFF Reserved for future use by this
specification for Host Software
class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See
the subclass definitions within
this specification for value
definitions.

NA

0x8000–0xFFFF Reserved for OEM use. NA

 Status Code Classes

Version 0.92 December 2004 55

Error Code Operations
All host software subclasses share the error codes listed in the table below. See Error Code
Definitions in Code Definitions: Host Software Class for the definitions of these progress codes.

Table 3-44. Error Code Operations: Host Software Class
Operation Description Extended Data

EFI_SW_EC_NON_SPECIFIC No error details are available. None

EFI_SW_EC_LOAD_ERROR The software module load failed. Handle identifying the module. There will be
an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See
EFI_DEVICE_HANDLE_EXTENDED_
DATA.

EFI_SW_EC_INVALID_
PARAMETER

An invalid parameter was passed to
the instance.

None.

EFI_SW_EC_UNSUPPORTED An unsupported operation was
requested.

None.

EFI_SW_EC_INVALID_BUFFER The instance encountered an invalid
buffer (too large, small, or
nonexistent).

None.

EFI_SW_EC_OUT_OF_
RESOURCES

Insufficient resources exist. None.

EFI_SW_EC_ABORTED The instance was aborted. None.

EFI_SW_EC_ILLEGAL_
SOFTWARE_STATE

The instance detected an illegal
software state.

 See EFI_DEBUG_ ASSERT_DATA

EFI_SW_EC_ILLEGAL_
HARDWARE_STATE

The instance detected an illegal
hardware state.

None.

EFI_SW_EC_START_ERROR The software module returned an error
when started via StartImage() or
equivalent.

Handle identifying the module. There will be
an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See
EFI_DEVICE_HANDLE_EXTENDED_
DATA.

EFI_SW_EC_BAD_DATE_TIME The system date/time is invalid None.

EFI_SW_EC_CFG_INVALID Invalid configuration settings were
detected.

None.

EFI_SW_EC_CFG_CLR_
REQUEST

User requested that configuration
defaults be loaded (via a physical
jumper, for example).

None.

EFI_SW_EC_CFG_DEFAULT Configuration defaults were loaded. None.

EFI_SW_EC_PWD_INVALID Invalid password settings were
detected.

None.

continued

Status Code Specification

56 December 2004 Version 0.92

Table 3-44. Error Code Operations: Host Software Class (continued)
Operation Description Extended Data

EFI_SW_EC_PWD_CLR_
REQUEST

User requested that the passwords be
cleared (via a physical jumper, for
example).

None.

EFI_SW_EC_PWD_CLEARED Passwords were cleared. None.

EFI_SW_EC_EVENT_LOG_
FULL

System event log is full. None.

0x0012–0x00FF Reserved for future use by this
specification for Host Software class
error codes.

None.

0x0100–0x01FF Unexpected EBC exceptions. See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0200–0x02FF Unexpected IA-32 processor
exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0300–0x03FF Unexpected Itanium® processor family
exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0400–0x7FFF See the subclass definitions within this
specification.

0x8000–0xFFFF Reserved for OEM use.

Subclasses

Defined Subclasses
The table below lists the subclasses in the Host Software class. The following topics describe each
subclass in more detail.
See Subclass Definitions in Code Definitions: Host Software Class for the definitions of these
subclasses.

Table 3-45. Defined Subclasses: Host Software Class
Subclass Code Name Description

Unspecified EFI_SOFTWARE_UNSPECIFIED The software type is unknown,
undefined, or unspecified.

Security (SEC) EFI_SOFTWARE_SEC The software is a part of the SEC
phase.

PEI Foundation EFI_SOFTWARE_PEI_CORE The software is the PEI Foundation
module.

PEI module EFI_SOFTWARE_PEI_MODULE The software is a PEIM.

DXE EFI_SOFTWARE_DXE_CORE Foundation The software is the DXE Foundation
module.

continued

 Status Code Classes

Version 0.92 December 2004 57

Table 3-45. Defined Subclasses: Host Software Class (continued)
Subclass Code Name Description

DXE EFI_SOFTWARE_DXE_BS_DRIVER Boot Service
driver

The software is a DXE Boot Service
driver. Boot service drivers are not
available once
ExitBootServices() is
called.

DXE EFI_SOFTWARE_DXE_RT_DRIVER Runtime Service
driver

The software is a DXE Runtime
Service driver. These drivers
execute during runtime phase.

SMM driver EFI_SOFTWARE_SMM_DRIVER The software is a SMM driver.

EFI application EFI_SOFTWARE_EFI_APPLICATION The software is an EFI application.

OS loader EFI_SOFTWARE_EFI_OS_LOADER The software is an OS loader.

Runtime (RT) EFI_SOFTWARE_EFI_RT The software is a part of the RT
phase.

Afterlife (AL) EFI_SOFTWARE_EFI_AL The software is a part of the AL
phase.

EBC exception EFI_SOFTWARE_EBC_EXCEPTION The status code is directly related to
an EBC exception.

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION The status code is directly related to
an IA-32 exception.

Itanium® processor
family exception

EFI_SOFTWARE_IPF_EXCEPTION The status code is directly related to
an Itanium processor family
exception.

PEI Services EFI_SOFTWARE_PEI_SERVICE The status code is directly related to
a PEI Services function.

EFI Boot Services EFI_SOFTWARE_EFI_BOOT_SERVICE The status code is directly related to
an EFI Boot Services function.

EFI Runtime Services EFI_SOFTWARE_EFI_RUNTIME_SERVICE The status code is directly related to
an EFI Runtime Services function.

DXE EFI_SOFTWARE_EFI_DXE_SERVICE Services The status code is directly related to
a DXE Services function.

0x13–0x7F Reserved for future use by this specification. NA

0x80–0xFF Reserved for OEM use. NA

Status Code Specification

58 December 2004 Version 0.92

Unspecified Subclass
This subclass applies to any software entity not belonging to any of the other software subclasses. It
may also be used if the caller is unable to determine the exact subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-46. Progress and Error Code Operations: Host Software Unspecified Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

SEC Subclass
This subclass applies to the Security (SEC) phase in software. The current scope of SEC software is
TBD.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. In most platforms, status code services may
be unavailable during the SEC phase.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-47. Progress and Error Code Operations: SEC Subclass
Type of
Code Operation Description Extended Data

Progress EFI_SW_SEC_PC_ENTRY_POINT Entry point of the phase. None

 EFI_SW_SEC_PC_HANDOFF_TO_NEXT Handing off to the next phase None

 0x1002–0x7FFF Reserved for future use by this
specification.

Reserved for
future use by this
specification.

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

 Status Code Classes

Version 0.92 December 2004 59

PEI Foundation Subclass
This subclass applies to the PEI Foundation. The PEI Foundation is responsible for starting and
ending the PEI phase as well as dispatching Pre-EFI Initialization Modules (PEIMs).

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-48. Progress and Error Code Operations: PEI Foundation Subclass
Type of
Code Operation Description Extended Data

Progress EFI_SW_PEI_CORE_PC_ENTRY_POINT Entry point of the phase. None

 EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT Handing off to the next
phase (DXE).

None

 EFI_SW_PEI_CORE_PC_RETURN_TO_LAST Returning to the last
phase.

None

 0x1003–0x7FFF Reserved for future use
by this specification.

NA

Error EFI_SW_PEI_CORE_EC_DXE_CORRUPT Unable to hand off to
DXE because the DXE
Foundation could not be
found.

NULL

 0x1001–0x7FFF Reserved for future use
by this specification.

NULL

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions

Status Code Specification

60 December 2004 Version 0.92

PEI Module Subclass
This subclass applies to Pre-EFI Initialization Modules (PEIMs).

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-49. Progress and Error Code Operations: PEI Module Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_PEI_PC_RECOVERY_BEGIN Crisis recovery has
been initiated.

NULL

 EFI_SW_PEI_PC_CAPSULE_LOAD Found a recovery
capsule. About to load
the recovery capsule.

NULL

 EFI_SW_PEI_PC_CAPSULE_START Loaded the recovery
capsule. About to hand
off control to the
capsule.

NULL

 EFI_SW_PEI_PC_RECOVERY_USER Recovery was forced by
the user via a jumper,
for example. Reported
by the PEIM that detects
the jumpers and
updates the boot mode.

NULL

 EFI_SW_PEI_PC_RECOVERY_AUTO Recovery was forced by
the software based on
some policy. Reported
by the PEIM that
updates the boot mode
to force recovery.

NULL

 0x1002–0x7FFF Reserved for future use
by this specification.

NULL

Error EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE Unable to continue with
the crisis recovery
because no recovery
capsule was found.

NULL

 EFI_SW_PEIM_EC_INVALID_CAPSULE_DESCRIPTOR An invalid or corrupt
capsule descriptor was
detected.

NULL

 0x1001–0x7FFF Reserved for future use
by this specification.

 Status Code Classes

Version 0.92 December 2004 61

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions

DXE Foundation Subclass
This subclass applies to DXE Foundation software. The DXE Foundation is responsible for
providing core services, dispatching DXE drivers, and calling the Boot Device Selection (BDS)
phase.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-50. Progress and Error Code Operations: DXE Foundation Subclass
Type of
Code Operation Description Extended Data

Progress EFI_SW_DXE_CORE_PC_ENTRY_POINT Entry point of the phase. None

 EFI_SW_DXE_CORE_PC_HANDOFF
_TO_NEXT

Handing off to the next phase
(Runtime).

None

 EFI_SW_DXE_CORE_PC_RETURN_
TO_LAST

Returning to the last phase. None

 EFI_SW_DXE_CORE_PC_START_DRIVER Calling the Start() function of the
EFI_DRIVER_BINDING Protocol.

See
EFI_STATUS_
CODE_START_
EXTENDED_DATA

 0x1002–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
See Extended Error Data in Code Definitions: Host Software Class for definitions of the extended
error data listed above.

DXE Boot Service Driver Subclass
This subclass applies to DXE boot service drivers. If a driver provides both boot services and
runtime services, it is considered a runtime service driver.

Status Code Specification

62 December 2004 Version 0.92

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-51. Progress and Error Code Operations: DXE Boot Service Driver Subclass
Type of
Code Operation Description Extended Data

Progress EFI_SW_DXE_BS_PC_LEGACY_
OPROM_INIT

Initializing a legacy Option ROM
(OpROM).

See
EFI_LEGACY_OPROM_
EXTENDED_DATA.

 EFI_SW_DXE_BS_PC_READY_TO_
BOOT_EVENT

The EFI_EVENT_SIGNAL_READY_
TO_BOOT event was signaled. See the
DXE CIS.

None

 EFI_SW_DXE_BS_PC_LEGACY_
BOOT_EVENT

The
EFI_EVENT_SIGNAL_LEGACY_BOOT
event was signaled. See the DXE CIS.

None

 EFI_SW_DXE_BS_PC_EXIT_BOOT_
SERVICES_EVENT

The EFI_EVENT_SIGNAL_EXIT_
BOOT_SERVICES event was signaled.
See the DXE CIS.

None

 EFI_SW_DXE_BS_PC_VIRTUAL_
ADDRESS_CHANGE_EVENT

The EFI_EVENT_SIGNAL_VIRTUAL_
ADDRESS_CHANGE event was signaled.
See the DXE CIS.

None

 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_SW_DXE_BS_EC_LEGACY_
OPROM_NO_SPACE

Not enough memory available to
shadow a legacy option ROM.

See
EFI_LEGACY_OPROM_
EXTENDED_DATA.
RomImageBase
corresponds to the ROM
image in the regular
memory as opposed to
shadow RAM.

 0x1001–0x7FFF Reserved for future use by this
specification.

NA

 Status Code Classes

Version 0.92 December 2004 63

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions
• Error Code Definitions
See Extended Error Data in Code Definitions: Host Software Class for definitions of the extended
error data listed above.

DXE Runtime Service Driver Subclass
This subclass applies to DXE runtime service drivers.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-52. Progress and Error Code Operations: DXE Runtime Service Driver Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

SMM Driver Subclass
This subclass applies to SMM code.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-53. Progress and Error Code Operations: SMM Driver Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Status Code Specification

64 December 2004 Version 0.92

EFI Application Subclass
This subclass applies to EFI applications.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-54. Progress and Error Code Operations: EFI Application Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

OS Loader Subclass
This subclass applies to any OS loader application. Although OS loaders are EFI applications, they
are very special cases and merit a separate subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-55. Progress and Error Code Operations: OS Loader Subclass
Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Runtime (RT) Subclass
This subclass applies to runtime software. Runtime software is made up of the EFI-aware operating
system and the non-EFI software running under the operating system environment. Other firmware
components, such as SAL code or ASL code, are also executing during this phase but cannot call an
EFI runtime service. Hence no codes are reserved for them.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

 Status Code Classes

Version 0.92 December 2004 65

Table 3-56. Progress and Error Code Operations: Runtime Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_RT_PC_ENTRY_POINT Entry point of the phase. None

 EFI_SW_RT_PC_HANDOFF_TO_NEXT Handing off to the next phase
(Afterlife [AL]).

None

 EFI_SW_RT_PC_RETURN_TO_LAST Returning to the last phase. None

 0x1003–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

Afterlife (AL) Subclass
This subclass applies to afterlife code. Afterlife code is the firmware code that executes after the
operating system calls the EFI Runtime Service ResetSystem().

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-57. Progress and Error Code Operations: Afterlife (AL) Subclass

Type of Code Operation Description
Extended
Data

Progress EFI_SW_AL_PC_ENTRY_POINT Entry point of the phase. NA

 EFI_SW_AL_PC_RETURN_TO_LAST Returning to the last phase. None

 0x1002–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

Status Code Specification

66 December 2004 Version 0.92

PEI Services Subclass
This subclass applies to any PEI Service present in the PEI Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the
code that provides the specified boot service and not by the module that invokes the given boot
service.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-58. Progress and Error Code Operations: PEI Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_PS_PC_INSTALL_PPI Install a PPI. See the PEI CIS. None.

 EFI_SW_PS_PC_REINSTALL_PPI Reinstall a PPI. See the PEI
CIS.

None.

 EFI_SW_PS_PC_LOCATE_PPI Locate an existing PPI. See the
PEI CIS.

None.

 EFI_SW_PS_PC_NOTIFY_PPI Install a notification callback.
See the PEI CIS.

None.

 EFI_SW_PS_PC_GET_BOOT_MODE Get the current boot mode. See
the PEI CIS.

None.

 EFI_SW_PS_PC_SET_BOOT_MODE Set the current boot mode. See
the PEI CIS.

None.

 EFI_SW_PS_PC_GET_HOB_LIST Get the HOB list. See the PEI
CIS.

None.

 EFI_SW_PS_PC_CREATE_HOB Create a HOB. See the PEI
CIS.

None.

 EFI_SW_PS_PC_FFS_FIND_
NEXT_VOLUME

Find the next FFS formatted
firmware volume. See the PEI
CIS.

None.

 EFI_SW_PS_PC_FFS_FIND_NEXT_
FILE

Find the next FFS file. See the
PEI CIS.

None

 EFI_SW_PS_PC_FFS_FIND_
SECTION_DATA

Find a section in an FFS file.
See the PEI CIS.

None.

 EFI_SW_PS_PC_INSTALL_PEI_ MEMORY Install the PEI memory. See
the PEI CIS.

None.

 EFI_SW_PS_PC_ALLOCATE_PAGES Allocate pages from the
memory heap. See the PEI
CIS.

None.

 EFI_SW_PS_PC_ALLOCATE_POOL Allocate from the memory
heap. See the PEI CIS.

None.

continued

 Status Code Classes

Version 0.92 December 2004 67

Table 3-58 Progress and Error Code Operations: PEI Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress

(cont.)

EFI_SW_PS_PC_COPY_MEM Copy memory. See the PEI
CIS.

None

 EFI_SW_PS_PC_SET_MEM Set a memory range to a
specific value. See the PEI
CIS.

None.

 0x1010–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

Boot Services Subclass
This subclass applies to any boot service present in the EFI Boot Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the
code that provides the specified boot service and not by the module that invokes the given boot
service.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-59. Progress and Error Code Operations: Boot Services Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_BS_PC_RAISE_TPL Raise the task priority level service;
see EFI Specification. This code is an
invalid operation because the status
code driver uses this boot service. The
status code driver cannot report its
own status codes.

None.

 EFI_SW_BS_PC_RESTORE_TPL Restore the task priority level service;
see EFI Specification. This code is an
invalid operation because the status
code driver uses this boot service. The
status code driver cannot report its
own status codes.

None.

continued

Status Code Specification

68 December 2004 Version 0.92

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress
(cont.)

EFI_SW_BS_PC_ALLOCATE_PAGE Allocate page service; see EFI
Specification.

None.

 EFI_SW_BS_PC_FREE_PAGES Free page service; see EFI
Specification.

None.

 EFI_SW_BS_PC_GET_MEMORY_MAP Get memory map service; see EFI
Specification.

None.

 EFI_SW_BS_PC_ALLOCATE_POOL Allocate pool service; see EFI
Specification.

None.

 EFI_SW_BS_PC_FREE_POOL Free pool service; see EFI
Specification.

None.

 EFI_SW_BS_PC_CREATE_EVENT CreateeEvent service; see EFI
Specification.

None.

 EFI_SW_BS_PC_SET_TIMER Set timer service; see EFI
Specification.

None.

 EFI_SW_BS_PC_WAIT_FOR_EVENT Wait for event service; see EFI
Specification.

None.

 EFI_SW_BS_PC_SIGNAL_EVENT Signal event service; see EFI
Specification. This code is an invalid
operation because the status code
driver uses this boot service. The
status code driver cannot report its
own status codes.

None.

 EFI_SW_BS_PC_CLOSE_EVENT Close event service; see EFI
Specification.

None.

 EFI_SW_BS_PC_CHECK_EVENT Check event service; see EFI
Specification.

None.

 EFI_SW_BS_PC_INSTALL_
PROTOCOL_INTERFACE

Install protocol interface service; see
EFI Specification.

None.

 EFI_SW_BS_PC_REINSTALL_
PROTOCOL_INTERFACE

Reinstall protocol interface service;
see EFI Specification.

None.

 EFI_SW_BS_PC_UNINSTALL_
PROTOCOL_INTERFACE

Uninstall protocol interface service;
see EFI Specification.

None.

 EFI_SW_BS_PC_HANDLE_
PROTOCOL

Handle protocol service; see EFI
Specification.

None.

 EFI_SW_BS_PC_PC_HANDLE_
PROTOCOL

PC handle protocol service; see EFI
Specification.

None.

 EFI_SW_BS_PC_REGISTER_
PROTOCOL_ NOTIFY

Register protocol notify service; see
EFI Specification.

None.

 EFI_SW_BS_PC_LOCATE_HANDLE Locate handle service; see EFI
Specification.

None.

continued

 Status Code Classes

Version 0.92 December 2004 69

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress
(cont.)

EFI_SW_BS_PC_INSTALL_
CONFIGURATION_TABLE

Install configuration table service; see
EFI Specification.

None.

 EFI_SW_BS_PC_LOAD_IMAGE Load image service; see EFI
Specification.

None.

 EFI_SW_BS_PC_START_IMAGE Start image service; see EFI
Specification.

None.

 EFI_SW_BS_PC_EXIT Exit service; see EFI Specification. None.

 EFI_SW_BS_PC_UNLOAD_IMAGE Unload image service; see EFI
Specification.

None.

 EFI_SW_BS_PC_EXIT_BOOT_
SERVICES

Exit boot services service; see EFI
Specification.

None.

 EFI_SW_BS_PC_GET_NEXT_
MONOTONIC_COUNT

Get next monotonic count service; see
EFI Specification.

None.

 EFI_SW_BS_PC_STALL Stall service; see EFI Specification. None.

 EFI_SW_BS_PC_SET_WATCHDOG_
TIMER

Set watchdog timer service; see EFI
Specification.

None.

 EFI_SW_BS_PC_CONNECT_
CONTROLLER

Connect controller service; see EFI
Specification.

None.

 EFI_SW_BS_PC_DISCONNECT_
CONTROLLER

Disconnect controller service; see EFI
Specification.

None.

 EFI_SW_BS_PC_OPEN_PROTOCOL Open protocol service; see EFI
Specification.

None.

 EFI_SW_BS_PC_CLOSE_PROTOCOL Close protocol service; see EFI
Specification.

None.

 EFI_SW_BS_PC_OPEN_PROTOCOL_
INFORMATION

Open protocol Information service; see
EFI Specification.

None.

 EFI_SW_BS_PC_PROTOCOLS_PER_
HANDLE

Protocols per handle service; see EFI
Specification.

None.

 EFI_SW_BS_PC_LOCATE_HANDLE_
BUFFER

Locate handle buffer service; see EFI
Specification.

None.

 EFI_SW_BS_PC_LOCATE_PROTOCOL Locate protocol service; see EFI
Specification.

None.

 EFI_SW_BS_PC_INSTALL_MULTIPLE_
PROTOCOL_INTERFACES

Install multiple protocol interfaces
service; see EFI Specification.

None.

 EFI_SW_BS_PC_UNINSTALL_
MULTIPLE_PROTOCOL_INTERFACES

Uninstall multiple protocol interfaces
service; see EFI Specification.

None.

 EFI_SW_BS_PC_CALCULATE_
CRC_32

Calculate CRC32 service; see EFI
Specification.

None.

 EFI_SW_BS_PC_COPY_MEM Copy memory; see EFI Specification. None.

continued

Status Code Specification

70 December 2004 Version 0.92

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress
(cont.)

EFI_SW_BS_PC_SET_MEM Set memory to a specific value; see
EFI Specification.

None.

 0x102A - 0x7FFF Reserved for future use by this
specification.

NA.

Error 0x1000 – 0x7FFF Reserved for future use by this
specification.

NA.

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

Runtime Services Subclass
This subclass applies to any runtime service present in the EFI Runtime Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. For obvious reasons, the runtime service
ReportStatusCode() cannot report status codes related to the progress of the
ReportStatusCode() function.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-60. Progress and Error Code Operations: Runtime Services Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_RS_PC_GET_TIME Get time service; see EFI
Specification.

None.

 EFI_SW_RS_PC_SET_TIME Set time service; see EFI
Specification.

None

 EFI_SW_RS_PC_GET_WAKEUP_TIME Get wakeup time service; see EFI
Specification.

None

 EFI_SW_RS_PC_SET_WAKEUP_TIME Set wakeup time service; see EFI
Specification.

None

 EFI_SW_RS_PC_SET_VIRTUAL_
ADDRESS_MAP

Set virtual address map service;
see EFI Specification.

None

 EFI_SW_RS_PC_CONVERT_POINTER Convert pointer service; see EFI
Specification.

None

 EFI_SW_RS_PC_GET_ VARIABLE Get variable service; see EFI
Specification.

None

continued

 Status Code Classes

Version 0.92 December 2004 71

Table 3-60 Progress and Error Code Operations: Runtime Services Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress
(cont.)

EFI_SW_RS_PC_GET_NEXT_
VARIABLE_NAME

Get next variable name service;
see EFI Specification.

None

 EFI_SW_RS_PC_SET_VARIABLE Set variable service; see EFI
Specification.

None

 EFI_SW_RS_PC_GET_NEXT_HIGH_
MONOTONIC_COUNT

Get next high monotonic count
service; see EFI Specification.

None

 EFI_SW_RS_PC_RESET_SYSTEM Reset system service; see EFI
Specification.

None

 0x100B–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
• Progress Code Definitions

DXE Services Subclass
This subclass applies to any DXE Service that present in the EFI DXE Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-61. Progress and Error Code Operations: DXE Services Subclass
Type of
Code Operation Description

Extended
Data

Progress EFI_SW_DS_PC_ADD_
MEMORY_SPACE

Add memory to GCD. See DXE
CIS.

None

 EFI_SW_DS_PC_ALLOCATE_MEMORY_
SPACE

Allocate memory from GCD. See
DXE CIS.

None

 EFI_SW_DS_PC_FREE_MEMORY_SPACE Free memory from GCD. See
DXE CIS.

None

 EFI_SW_DS_PC_REMOVE_MEMORY_
SPACE

Remove memory from GCD. See
DXE CIS.

None

 EFI_SW_DS_PC_GET_MEMORY_SPACE_
DESCRIPTOR

Get memory descriptor from
GCD. See DXE CIS.

None

continued

Status Code Specification

72 December 2004 Version 0.92

Table 3-61 Progress and Error Code Operations: DXE Services Subclass (continued)
Type of
Code Operation Description

Extended
Data

Progress
(cont.)

EFI_SW_DS_PC_SET_MEMORY_SPACE_
ATTRIBUTES

Set attributes of memory in GCD.
See DXE CIS.

None

 EFI_SW_DS_PC_GET_MEMORY_SPACE_
MAP

Get map of memory space from
GCD. See DXE CIS.

None

 EFI_SW_DS_PC_ADD_IO_SPACE Add I/O to GCD. See DXE CIS. None

 EFI_SW_DS_PC_ALLOCATE_IO_SPACE Allocate I/O from GCD. See DXE
CIS.

None

 EFI_SW_DS_PC_FREE_IO_SPACE Free I/O from GCD. See DXE
CIS.

None

 EFI_SW_DS_PC_REMOVE_IO_SPACE Remove I/O space from GCD.
See DXE CIS.

None

 EFI_SW_DS_PC_GET_IO_SPACE_
DESCRIPTOR

Get I/O space descriptor from
GCD. See DXE CIS.

None

 EFI_SW_DS_PC_GET_IO_SPACE_MAP Get map of I/O space from the
GCD. See DXE CIS.

None

 EFI_SW_DS_PC_DISPATCH Dispatch DXE drivers from a
firmware volume. See DXE CIS.

None

 EFI_SW_DS_PC_SCHEDULE Clear the schedule on request flag
for a driver. See DXE CIS.

None

 EFI_SW_DS_PC_TRUST Promote a file to trusted state.
See DXE CIS.

None

 EFI_SW_DS_PC_PROCESS_FIRMWARE_
VOLUME

Dispatch all drivers in a firmware
volume. See DXE CIS.

None

 0x1011–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
Progress Code Definitions

Version 0.92 December 2004 73

4
Code Definitions

Introduction
This section provides the code definitions for the following data types and structures for status
codes:
• Data structures and types that are common to all status codes
• Progress, error, and debug codes that are common to all classes
• Class definitions
• Subclass definitions for each status code class
• Extended error data

Common Status Code Definitions

 Common Status Code Definitions Overview
This section defines the data structures that are common to all status codes. For class- and
subclass-specific information, see Class Definitions.

Data Structures

Status Code Common Data Structures
See the ReportStatusCode() declaration in the DXE CIS for definitions and details on the
following basic data structures:
• EFI_STATUS_CODE_TYPE and defined severities
• EFI_PROGRESS_CODE
• EFI_ERROR_CODE
• EFI_DEBUG_CODE
• EFI_STATUS_CODE_VALUE

Status Code Specification

74 December 2004 Version 0.92

Extended Data Header

EFI_STATUS_CODE_DATA

Summary
The definition of the status code extended data header. The data will follow HeaderSize bytes
from the beginning of the structure and is Size bytes long.

Related Definitions
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;
 EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.
Size

The size of the data in bytes. This does not include the size of the header structure.
Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in this specification.

Description
The status code information may be accompanied by optional extended data. The extended data
begins with a header. The header contains a Type field that represents the format of the extended
data following the header. This specification defines two GUIDs and their meaning. If these GUIDs
are used, the extended data contents must follow this specification. Extended data formats that are
not compliant with this specification are permitted, but they must use different GUIDs. The format
of the extended data header is defined in the DXE CIS, but it is duplicated here for convenience.

 Code Definitions

Version 0.92 December 2004 75

EFI_STATUS_CODE_STRING_DATA

Summary
Defines a string type of extended data.

GUID
#define EFI_STATUS_CODE_DATA_TYPE_STRING_GUID \

 { 0x92D11080, 0x496F, 0x4D95, 0xBE, 0x7E, 0x03, 0x74, 0x88, 0x38,
0x2B, 0x0A }

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STRING_TYPE StringType;
 EFI_STATUS_CODE_STRING String;
} EFI_STATUS_CODE_STRING_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_STRING_DATA) – HeaderSize, and
DataHeader.Type should be
EFI_STATUS_CODE_DATA_TYPE_STRING_GUID.

StringType

Specifies if the string is ASCII or Unicode. Type EFI_STRING_TYPE is defined in
"Related Definitions" below.

String

A pointer to a null-terminated ASCII or Unicode string. Type EFI_STRING_TYPE
is defined in "Related Definitions" below.

Description
This data type defines a string type of extended data. A string can accompany any status code. The
string can provide additional information about the status code. The string can be ASCII, Unicode,
or an HII token/GUID pair.

Status Code Specification

76 December 2004 Version 0.92

Related Definitions
//**
// EFI_STRING_TYPE
//**

typedef enum {
 EfiStringAscii,
 EfiStringUnicode,
 EfiStringToken
} EFI_STRING_TYPE;

EfiStringAscii

A NULL-terminated ASCII string.
EfiStringUnicode

A double NULL-terminated Unicode string.
EfiStringToken

An EFI_STATUS_CODE_STRING_TOKEN representing the string. The actual
string can be obtained by querying the HII database.

//**
// EFI_STATUS_CODE_STRING_TOKEN
//**

//
// HII string token
//
typedef struct {
 EFI_HII_HANDLE Handle;
 STRING_REF Token;
} EFI_STATUS_CODE_STRING_TOKEN;

Handle

The HII handle of the string pack, which can be used to retrieve the string. It is a
dynamic value that may not be the same for different boots. Type
EFI_HII_HANDLE is defined in EFI_HII_PROTOCOL.NewPack() in the
Intel® Platform Innovation Framework for EFI Architecture Human Interface
Infrastructure Specification.

Token

When combined with the HII handle, the string token can be used to retrieve the
string. Type STRING_REF is defined in EFI_HII_STRING_PACK in the Intel®
Platform Innovation Framework for EFI Architecture Human Interface
Infrastructure Specification.

 Code Definitions

Version 0.92 December 2004 77

//**
// EFI_STATUS_CODE_STRING
//**

//
// String structure
//
typedef union {
 CHAR8 Ascii[];
 CHAR16 Unicode[];
 EFI_STATUS_CODE_STRING_TOKEN Hii;
} EFI_STATUS_CODE_STRING;

Ascii

ASCII formatted string.
 Unicode

Unicode formatted string.
 Hii

HII handle/token pair. Type EFI_STATUS_CODE_STRING_TOKEN is defined
above.

Status Code Specification

78 December 2004 Version 0.92

Status Code-Specific Data GUID

EFI_STATUS_CODE_SPECIFIC_DATA_GUID

Summary
Indicates that the format of the accompanying data depends upon the status code value but follows
this specification.

GUID
#define EFI_STATUS_CODE_SPECIFIC_DATA_GUID \

{0x335984bd,0xe805,0x409a,0xb8,0xf8,0xd2,0x7e,
0xce,0x5f,0xf7,0xa6}

Description
This GUID indicates that the format of the accompanying data depends upon the status code value
but follows this specification. This specification defines the format of the extended data for several
status code values. For example, EFI_DEBUG_ASSERT_DATA defines the extended error data
for the error code EFI_SW_EC_ILLEGAL_SOFTWARE_STATE. The agent reporting this error
condition can use this GUID if the extended data follows the format defined in
EFI_DEBUG_ASSERT_DATA.
If the consumer of the status code detects this GUID, it must look up the status code value to
correctly interpret the contents of the extended data.
This specification declares certain ranges of status code values as OEM specific. Because this
specification does not define the meaning of status codes in these ranges, the extended data for
these cannot use this GUID. The OEM defining the meaning of the status codes is responsible for
defining the GUID that is to be used for associated extended data.

 Code Definitions

Version 0.92 December 2004 79

Enumeration Schemes

Operation Code Enumeration Scheme

Summary
All operation codes (regardless of class and subclass) use the progress code partitioning scheme
listed in the table below.

Table 4-1. Progress Code Enumeration Scheme
Operation Description

0x0000–0x0FFF These operation codes are common to all the subclasses in a given class.
These values are used to represent operations that are common to all
subclasses in a given class. For example, all the I/O buses in the I/O Bus
subclasses share an operation code that represents the reset operation,
which is a common operation for most buses. It is possible that certain
operation codes in this range will not be applicable to certain subclasses.
It is also possible that the format of the extended data will vary from one
subclass to another. If the subclass does not define the format of the
extended data, extended data is not required.

These codes are reserved by this specification.

0x1000–0x7FFF These operation codes are specific to the subclass and represent
operations that are specific to the subclass. These codes are reserved by
this specification.

0x8000–0xFFFF Reserved for OEM use.

Prototype
//
// General partitioning scheme for Progress and Error Codes
// 0x0000-0x0FFF - Shared by all subclasses in a given class
// 0x1000-0x7FFF - Subclass Specific
// 0x8000-0xFFFF - OEM specific
//
#define EFI_SUBCLASS_SPECIFIC 0x1000
#define EFI_OEM_SPECIFIC 0x8000

Status Code Specification

80 December 2004 Version 0.92

Debug Code Enumeration Scheme

Summary
All classes share these debug operation codes. It is not currently expected that operation codes
have a lot of meaning for debug information. Only one debug code is currently defined by this
specification and it is shared by all classes and subclasses.

Table 4-2. Debug Code Enumeration Scheme
Debug Code Description

0x0000–0x7FFF Reserved for future use by this specification.

0x8000–0xFFFF Reserved for OEM use.

Prototype
//
// Debug Code definitions for all classes and subclass
// Only one debug code is defined at this point and should
// be used for anything that gets sent to debug stream.
//
#define EFI_DC_UNSPECIFIED 0x0

 Code Definitions

Version 0.92 December 2004 81

Extended Error Data

EFI_DEVICE_PATH_EXTENDED_DATA

Summary
Extended data about the device path, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT8 DevicePath[];
} EFI_DEVICE_PATH_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA). DataHeader.Size should be the size
of variable-length DevicePath, and DataHeader.Size is zero for a virtual
device that does not have a device path. DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DevicePath

The device path to the controller or the hardware device. Note that this parameter is a
variable-length device path structure and not a pointer to such a structure. This
structure is populated only if it is a physical device. For virtual devices, the Size
field in DataHeader is set to zero and this field is not populated.

Description
The device path is used to point to the physical device in case there is more than one device
belonging to the same subclass. For example, the system may contain two USB keyboards and one
PS/2* keyboard. The driver that parses the status code can use the device path extended data to
differentiate between the three. The index field is not useful in this case because there is no
standard numbering convention. Device paths are preferred over using device handles because
device handles for a given device can change from one boot to another and do not mean anything
beyond Boot Services time. In certain cases, the bus driver may not create a device handle for a
given device if it detects a critical error. In these cases, the device path extended data can be used to
refer to the device, but there may not be any device handles with an instance of
EFI_DEVICE_PATH_PROTOCOL that matches DevicePath. The variable device path structure
is included in this structure to make it self sufficient. This property is important for consumers that
may read this data from a data repository such as the data hub.

Status Code Specification

82 December 2004 Version 0.92

EFI_DEVICE_HANDLE_EXTENDED_DATA

Summary
Extended data about the device handle, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE Handle;
} EFI_DEVICE_HANDLE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEVICE_HANDLE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Handle

The device handle.

Description
The handle of the device with which the progress or error code is associated. The handle is
guaranteed to be accurate only at the time the status code is reported. Handles are dynamic entities
between boots, so handles cannot be considered to be valid if the system has reset subsequent to the
status code being reported. Handles may be used to determine a wide variety of useful information
about the source of the status code.

 Code Definitions

Version 0.92 December 2004 83

EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Summary
This structure defines extended data describing a PCI resource allocation error.

Prototype

 NOTE
The following structure contains variable-length fields and cannot be defined as a C-style structure.

typedef struct.{
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Bar;
 UINT16 DevicePathSize;
 UINT16 ReqResSize;
 UINT16 AllocResSize;
 UINT8 DevicePath[];
 UINT8 ReqRes[];
 UINT8 AllocRes[];
) EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
(DevicePathSize + DevicePathSize + DevicePathSize +
sizeof(UINT32) + 3 * sizeof (UINT16)), and DataHeader.Type
should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Bar

The PCI BAR. Applicable only for PCI devices. Ignored for all other devices.
DevicePathSize

DevicePathSize should be zero if it is a virtual device that is not associated with
a device path. Otherwise, this parameter is the length of the variable-length
DevicePath.

ReqResSize

Represents the size the ReqRes parameter. ReqResSize should be zero if the
requested resources are not provided as a part of extended data.

AllocResSize

Represents the size the AllocRes parameter. AllocResSize should be zero if
the allocated resources are not provided as a part of extended data.

Status Code Specification

84 December 2004 Version 0.92

DevicePath

The device path to the controller or the hardware device that did not get the requested
resources. Note that this parameter is the variable-length device path structure and
not a pointer to this structure.

ReqRes

The requested resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

AllocRes

The allocated resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

Description
This extended data conveys details for a PCI resource allocation failure error. See the PCI
specification and the ACPI specification for details on PCI resource allocations and the format for
resource descriptors. This error does not detail why the resource allocation failed. It may be due to
a bad resource request or a lack of available resources to satisfy a valid request. The variable device
path structure and the resource structures are included in this structure to make it self sufficient.
This property is important for consumers that may read this data from a data repository such as the
data hub.

 Code Definitions

Version 0.92 December 2004 85

Class Definitions

Summary
Classes correspond to broad types of system pieces. These types are chosen to provide a reasonable
initial classification of the system entity whose status is represented. There are three classes of
hardware and one class for software. These classes are listed in the table below. Each class is made
up of several subclasses. See Status Code Classes for descriptions of each of these classes.

Table 4-3. Class Definitions
Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible
Peripherals

EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Prototype
//
// Class definitions
// Values of 4-127 are reserved for future use by this
// specification.
// Values in the range 127-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT 0x00000000
#define EFI_PERIPHERAL 0x01000000
#define EFI_IO_BUS 0x02000000
#define EFI_SOFTWARE 0x03000000

Status Code Specification

86 December 2004 Version 0.92

Hardware Classes

Computing Unit Class

EFI_COMPUTING_UNIT Class
The table below lists the subclasses defined in the Computing Unit class. See Subclass Definitions
for their code definitions.

Table 4-4. Defined Subclasses: Computing Unit Class
Subclass Code Name

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED

Host processor EFI_COMPUTING_UNIT_HOST_PROCESSOR

Firmware processor EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR

Service processor EFI_COMPUTING_UNIT_SERVICE_PROCESSOR

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSOR

Cache EFI_COMPUTING_UNIT_CACHE

Memory EFI_COMPUTING_UNIT_MEMORY

Chipset EFI_COMPUTING_UNIT_CHIPSET

Subclass Definitions

Summary
Definitions for the Computing Unit subclasses. See Subclasses in Status Code Classes: Computing
Unit Class for descriptions of these subclasses.

 Code Definitions

Version 0.92 December 2004 87

Prototype
//
// Computing Unit Subclass definitions.
// Values of 8-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT_UNSPECIFIED (EFI_COMPUTING_UNIT |
0x00000000)
#define EFI_COMPUTING_UNIT_HOST_PROCESSOR (EFI_COMPUTING_UNIT |
0x00010000)
#define EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR
 (EFI_COMPUTING_UNIT |
0x00020000)
#define EFI_COMPUTING_UNIT_IO_PROCESSOR (EFI_COMPUTING_UNIT |
0x00030000)
#define EFI_COMPUTING_UNIT_CACHE (EFI_COMPUTING_UNIT |
0x00040000)
#define EFI_COMPUTING_UNIT_MEMORY (EFI_COMPUTING_UNIT |
0x00050000)
#define EFI_COMPUTING_UNIT_CHIPSET (EFI_COMPUTING_UNIT |
0x00060000)

Status Code Specification

88 December 2004 Version 0.92

Progress Code Definitions

Summary
Progress code definitions for the Computing Unit class and all subclasses. See Progress Code
Operations in Status Code Classes: Computing Unit Class for descriptions of these progress codes.
The following subclasses define additional subclass-specific progress code operations, which are
included below:
• Host processor
• Cache
• Memory

Prototype
//
// Computing Unit Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_PC_INIT_BEGIN 0x00000000
#define EFI_CU_PC_INIT_END 0x00000001

//
// Computing Unit Unspecified Subclass Progress Code definitions.
//

//
// Computing Unit Host Processor Subclass Progress Code definitions.
//
#define EFI_CU_HP_PC_POWER_ON_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_PC_CACHE_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_PC_RAM_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_PC_MEMORY_CONTROLLER_INIT
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)

 Code Definitions

Version 0.92 December 2004 89

#define EFI_CU_HP_PC_IO_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_PC_BSP_SELECT (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_HP_PC_BSP_RESELECT (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_PC_AP_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_PC_SMM_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000008)

//
// Computing Unit Firmware Processor Subclass Progress Code definitions.
//

//
// Computing Unit IO Processor Subclass Progress Code definitions.
//

//
// Computing Unit Cache Subclass Progress Code definitions.
//
#define EFI_CU_CACHE_PC_PRESENCE_DETECT
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_PC_CONFIGURATION (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Computing Unit Memory Subclass Progress Code definitions.
//
#define EFI_CU_MEMORY_PC_SPD_READ (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_PC_PRESENCE_DETECT
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_PC_TIMING (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_PC_CONFIGURING (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_PC_OPTIMIZING (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_PC_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_PC_TEST (EFI_SUBCLASS_SPECIFIC | 0x00000006)

//
// Computing Unit Chipset Subclass Progress Code definitions.
//

Status Code Specification

90 December 2004 Version 0.92

Error Code Definitions
Summary

Error code definitions for the Computing Unit class and all subclasses. See Error Code Operations
in Status Code Classes: Computing Unit Class for descriptions of these error codes.
The following subclasses define additional subclass-specific error code operations, which are
included below:
• Host processor
• Firmware processor
• Cache
• Memory

Prototype
//
// Computing Unit Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_EC_NON_SPECIFIC 0x00000000
#define EFI_CU_EC_DISABLED 0x00000001
#define EFI_CU_EC_NOT_SUPPORTED 0x00000002
#define EFI_CU_EC_NOT_DETECTED 0x00000003
#define EFI_CU_EC_NOT_CONFIGURED 0x00000004

//
// Computing Unit Unspecified Subclass Error Code definitions.
//

//
// Computing Unit Host Processor Subclass Error Code definitions.
//
#define EFI_CU_HP_EC_INVALID_TYPE (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_EC_MISMATCH (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_EC_TIMER_EXPIRED (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_HP_EC_SELF_TEST (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_EC_INTERNAL (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_HP_EC_THERMAL (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_EC_LOW_VOLTAGE (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_EC_HIGH_VOLTAGE (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_HP_EC_CACHE (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_HP_EC_MICROCODE_UPDATE (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_CU_HP_EC_CORRECTABLE (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_CU_HP_EC_UNCORRECTABLE (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_CU_HP_EC_NO_MICROCODE_UPDATE (EFI_SUBCLASS_SPECIFIC | 0x0000000D)

//
// Computing Unit Firmware Processor Subclass Error Code definitions.
//
#define EFI_CU_FP_EC_HARD_FAIL (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_FP_EC_SOFT_FAIL (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_FP_EC_COMM_ERROR (EFI_SUBCLASS_SPECIFIC | 0x00000002)

 Code Definitions

Version 0.92 December 2004 91

//
// Computing Unit IO Processor Subclass Error Code definitions.
//

//
// Computing Unit Cache Subclass Error Code definitions.
//
#define EFI_CU_CACHE_EC_INVALID_TYPE (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_CACHE_EC_INVALID_SIZE (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_CACHE_EC_MISMATCH (EFI_SUBCLASS_SPECIFIC | 0x00000003)

//
// Computing Unit Memory Subclass Error Code definitions.
//
#define EFI_CU_MEMORY_EC_INVALID_TYPE (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_EC_CORRECTABLE (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_EC_UNCORRECTABLE (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_EC_SPD_FAIL (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_EC_INVALID_SIZE (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_EC_MISMATCH (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_MEMORY_EC_S3_RESUME_FAIL
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_MEMORY_EC_UPDATE_FAIL (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_MEMORY_EC_NONE_DETECTED (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_MEMORY_EC_NONE_USEFUL (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

//
// Computing Unit Chipset Subclass Error Code definitions.
//

Status Code Specification

92 December 2004 Version 0.92

Extended Error Data

Host Processor Subclass

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA

Summary
This structure provides details about the computing unit voltage error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Voltage;
 EFI_EXP_BASE10_DATA Threshold;
} EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Voltage

The voltage value at the time of the error.
Threshold

The voltage threshold.

Description
This structure provides the voltage at the time of error. It also provides the threshold value
indicating the minimum or maximum voltage that is considered an error. If the voltage is less then
the threshold, the error indicates that the voltage fell below the minimum acceptable value. If the
voltage is greater then the threshold, the error indicates that the voltage rose above the maximum
acceptable value.

 Code Definitions

Version 0.92 December 2004 93

EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA

Summary
This structure provides details about the microcode update error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Version;
} EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Version

The version of the microcode update from the header.

Status Code Specification

94 December 2004 Version 0.92

EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA

Summary
This structure provides details about the computing unit timer expiration error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA TimerLimit;
} EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

TimerLimit

The number of seconds that the computing unit timer was configured to expire.

Description
The timer limit provides the timeout value of the timer prior to expiration.

 Code Definitions

Version 0.92 December 2004 95

EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA

Summary
This structure defines extended data for processor mismatch errors.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Instance;
 UINT16 Attributes;
} EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_ HOST_PROCESSOR_MISMATCH_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The unit number of the computing unit that does not match.
Attributes

The attributes describing the failure. See “Related Definitions” below for the type
declarations.

Description
This provides information to indicate which processors mismatch, and how they mismatch. The
status code contains the instance number of the processor that is in error. This structure's
Instance indicates the second processor that does not match. This differentiation allows the
consumer to determine which two processors do not match. The Attributes indicate what
mismatch is being reported. Because Attributes is a bit field, more than one mismatch can be
reported with one error code.

Status Code Specification

96 December 2004 Version 0.92

Related Definitions
//***
// EFI_COMPUTING_UNIT_MISMATCH_ATTRIBUTES
//***
//
// All other attributes are reserved for future use and
// must be initialized to 0.
//
#define EFI_COMPUTING_UNIT_MISMATCH_SPEED 0x0001
#define EFI_COMPUTING_UNIT_MISMATCH_FSB_SPEED 0x0002
#define EFI_COMPUTING_UNIT_MISMATCH_FAMILY 0x0004
#define EFI_COMPUTING_UNIT_MISMATCH_MODEL 0x0008
#define EFI_COMPUTING_UNIT_MISMATCH_STEPPING 0x0010
#define EFI_COMPUTING_UNIT_MISMATCH_CACHE_SIZE 0x0020
#define EFI_COMPUTING_UNIT_MISMATCH_OEM1 0x1000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM2 0x2000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM3 0x4000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM4 0x8000

 Code Definitions

Version 0.92 December 2004 97

EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA

Summary
This structure provides details about the computing unit thermal failure.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Temperature;
 EFI_EXP_BASE10_DATA Threshold;
} EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Temperature

The thermal value at the time of the error.
Threshold

The thermal threshold.

Description
This structure provides the temperature at the time of error. It also provides the threshold value
indicating the minimum temperature that is considered an error.

Status Code Specification

98 December 2004 Version 0.92

EFI_CACHE_INIT_DATA

Summary
This structure provides cache initialization data.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Level;
 EFI_INIT_CACHE_TYPE Type;
} EFI_CACHE_INIT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_CACHE_INIT_DATA) - HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Level

The cache level. Starts with 1 for level 1 cache.
Type

The type of cache. Type EFI_INIT_CACHE_TYPE is defined in "Related
Definitions" below.

Description
This structure contains the cache level and type information.

Related Definitions
//***
// EFI_INIT_CACHE_TYPE
//***

// Valid cache types

typedef enum {
 EfiInitCacheDataOnly,
 EfiInitCacheInstrOnly,
 EfiInitCacheBoth,
 EfiInitCacheUnspecified
} EFI_INIT_CACHE_TYPE;

 Code Definitions

Version 0.92 December 2004 99

EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA

Summary
This structure provides information about the disabled computing unit.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Cause;
 BOOLEAN SoftwareDisabled;
} EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Cause

The reason for disabling the processor. See "Related Definitions" below for defined
values.

SoftwareDisabled

TRUE if the processor is disabled via software means such as not listing it in the
ACPI tables. Such a processor will respond to Interprocessor Interrupts (IPIs).
FALSE if the processor is hardware disabled, which means it is invisible to software
and will not respond to IPIs.

Description
This structure provides details as to why and how the computing unit was disabled. The causes
should cover the typical reasons a processor would be disabled. How the processor was disabled is
important because there are distinct differences between hardware and software disabling.

Status Code Specification

100 December 2004 Version 0.92

Related Definitions
//**
// EFI_CPU_STATE_CHANGE_CAUSE
//**
typedef UINT32 EFI_CPU_STATE_CHANGE_CAUSE;

//
// The reason a processor was disabled
//
#define EFI_CPU_CAUSE_INTERNAL_ERROR 0x0001
#define EFI_CPU_CAUSE_THERMAL_ERROR 0x0002
#define EFI_CPU_CAUSE_SELFTEST_FAILURE 0x0004
#define EFI_CPU_CAUSE_PREBOOT_TIMEOUT 0x0008
#define EFI_CPU_CAUSE_FAILED_TO_START 0x0010
#define EFI_CPU_CAUSE_CONFIG_ERROR 0x0020
#define EFI_CPU_CAUSE_USER_SELECTION 0x0080
#define EFI_CPU_CAUSE_BY_ASSOCIATION 0x0100
#define EFI_CPU_CAUSE_UNSPECIFIED 0x8000

Following is a description of the fields in the above definition.

EFI_CPU_CAUSE_INTERNAL_ERROR The processor was disabled because it signaled an internal

error (IERR).

EFI_CPU_CAUSE_THERMAL_ERROR The processor was disabled because of a thermal error.

EFI_CPU_CAUSE_SELFTEST_FAILURE The processor was disabled because it failed BIST.

EFI_CPU_CAUSE_PREBOOT_TIMEOUT The processor started execution, but it timed out during a
particular task and was therefore disabled.

EFI_CPU_CAUSE_FAILED_TO_START The processor was disabled because it failed to start
execution (FRB-3 timeout).

EFI_CPU_CAUSE_CONFIG_ERROR The processor was disabled due to a configuration error.

EFI_CPU_CAUSE_USER_SELECTION The processor state was changed due to user selection.
Applicable to enabling and disabling of processors.

EFI_CPU_CAUSE_BY_ASSOCIATION The processor state was changed due because it shared
the state with another processor and the state of the other
processor was changed.

EFI_CPU_CAUSE_UNSPECIFIED The CPU state was changed due to unspecified reason.
Applicable to enabling and disabling of processors.

 Code Definitions

Version 0.92 December 2004 101

Memory Subclass

EFI_MEMORY_EXTENDED_ERROR_DATA

Summary
This structure defines extended data describing a memory error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_MEMORY_ERROR_GRANULARITY Granularity;
 EFI_MEMORY_ERROR_OPERATION Operation;
 UINT32 Syndrome;
 EFI_PHYSICAL_ADDRESS Address;
 UINTN Resolution;
} EFI_MEMORY_EXTENDED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_EXTENDED_ERROR_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Granularity

The error granularity type. Type EFI_MEMORY_ERROR_GRANULARITY is defined
in "Related Definitions" below.

Operation

The operation that resulted in the error being detected. Type
EFI_MEMORY_ERROR_OPERATION is defined in "Related Definitions" below.

Syndrome

The error syndrome, vendor-specific ECC syndrome, or CRC data associated with
the error. If unknown, should be initialized to 0.

Address

The physical address of the error. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

Resolution

The range, in bytes, within which the error address can be determined.

Description
This structure provides specific details about the memory error that was detected. It provides
enough information so that consumers can identify the exact failure and provides enough
information to enable corrective action if necessary.

Status Code Specification

102 December 2004 Version 0.92

Related Definitions
//***
// EFI_MEMORY_ERROR_GRANULARITY
//***
typedef UINT8 EFI_MEMORY_ERROR_GRANULARITY;

//
// Memory Error Granularities
//
#define EFI_MEMORY_ERROR_OTHER 0x01
#define EFI_MEMORY_ERROR_UNKNOWN 0x02
#define EFI_MEMORY_ERROR_DEVICE 0x03
#define EFI_MEMORY_ERROR_PARTITION 0x04

//***
// EFI_MEMORY_ERROR_OPERATION
//***
typedef UINT8 EFI_MEMORY_ERROR_OPERATION;

//
// Memory Error Operations
//
#define EFI_MEMORY_OPERATION_OTHER 0x01
#define EFI_MEMORY_OPERATION_UNKNOWN 0x02
#define EFI_MEMORY_OPERATION_READ 0x03
#define EFI_MEMORY_OPERATION_WRITE 0x04
#define EFI_MEMORY_OPERATION_PARTIAL_WRITE 0x05

 Code Definitions

Version 0.92 December 2004 103

EFI_STATUS_CODE_DIMM_NUMBER

Summary
This structure defines extended data describing a DIMM.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT16 Array;
 UINT16 Device;
} EFI_STATUS_CODE_DIMM_NUMBER;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_DIMM_NUMBER) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Array

The memory array number.
Device

The device number within that Array.

Description
This extended data provides some context that consumers can use to locate a DIMM within the
overall memory scheme. The Array and Device numbers may indicate a specific DIMM, or
they may be populated with the group definitions in "Related Definitions" below.

Related Definitions
//
// Definitions to describe Group Operations
// Many memory init operations are essentially group
// operations.
//
#define EFI_MULTIPLE_MEMORY_DEVICE_OPERATION 0xfffe
#define EFI_ALL_MEMORY_DEVICE_OPERATION 0xffff
#define EFI_MULTIPLE_MEMORY_ARRAY_OPERATION 0xfffe
#define EFI_ALL_MEMORY_ARRAY_OPERATION 0xffff

Status Code Specification

104 December 2004 Version 0.92

Following is a description of the fields in the above definition:

EFI_MULTIPLE_MEMORY_DEVICE_OPERATION A definition to describe that the operation is
performed on multiple devices within the array.

EFI_ALL_MEMORY_DEVICE_OPERATION A definition to describe that the operation is
performed on all devices within the array.

EFI_MULTIPLE_MEMORY_ARRAY_OPERATION A definition to describe that the operation is
performed on multiple arrays.

EFI_ALL_MEMORY_ARRAY_OPERATION A definition to describe that the operation is
performed on all the arrays

 Code Definitions

Version 0.92 December 2004 105

EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA

Summary
This structure defines extended data describing memory modules that do not match.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_DIMM_NUMBER Instance;
} EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The instance number of the memory module that does not match. See the definition
for type EFI_STATUS_CODE_DIMM_NUMBER.

Description
This extended data may be used to convey the specifics of memory modules that do not match.

Status Code Specification

106 December 2004 Version 0.92

EFI_MEMORY_RANGE_EXTENDED_DATA

Summary
This structure defines extended data describing a memory range.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_PHYSICAL_ADDRESS Start;
 EFI_PHYSICAL_ADDRESS Length;
} EFI_MEMORY_RANGE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_RANGE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Start

The starting address of the memory range. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the EFI 1.10 Specification.

Length

The length in bytes of the memory range.

Description
This extended data may be used to convey the specifics of a memory range. Ranges are specified
with a start address and a length.

 Code Definitions

Version 0.92 December 2004 107

User-Accessible Peripherals Class

EFI_PERIPHERAL Class
The table below lists the subclasses defined in the User-Accessible Peripheral class. See Subclass
Definitions in for their code definitions.

Table 4-5. Defined Subclasses: User-Accessible Peripheral Class
Subclass Code Name

Unspecified EFI_PERIPHERAL_UNSPECIFIED

Keyboard EFI_PERIPHERAL_KEYBOARD

Mouse EFI_PERIPHERAL_MOUSE

Local console EFI_PERIPHERAL_LOCAL_CONSOLE

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE

Serial port EFI_PERIPHERAL_SERIAL_PORT

Parallel port EFI_PERIPHERAL_PARALLEL_PORT

Fixed media EFI_PERIPHERAL_FIXED_MEDIA

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA

Audio input EFI_PERIPHERAL_AUDIO_INPUT

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT

LCD device EFI_PERIPHERAL_LCD_DEVICE

Network device EFI_PERIPHERAL_NETWORK

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Subclass Definitions

Summary
Definitions for the User-Accessible Peripheral subclasses. See Subclasses in Status Code Classes:
User-Accessible Peripheral Class for descriptions of these subclasses.

Status Code Specification

108 December 2004 Version 0.92

Prototype
//
// Peripheral Subclass definitions.
// Values of 12-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_PERIPHERAL_UNSPECIFIED (EFI_PERIPHERAL | 0x00000000)
#define EFI_PERIPHERAL_KEYBOARD (EFI_PERIPHERAL | 0x00010000)
#define EFI_PERIPHERAL_MOUSE (EFI_PERIPHERAL | 0x00020000)
#define EFI_PERIPHERAL_LOCAL_CONSOLE (EFI_PERIPHERAL | 0x00030000)
#define EFI_PERIPHERAL_REMOTE_CONSOLE (EFI_PERIPHERAL | 0x00040000)
#define EFI_PERIPHERAL_SERIAL_PORT (EFI_PERIPHERAL | 0x00050000)
#define EFI_PERIPHERAL_PARALLEL_PORT (EFI_PERIPHERAL | 0x00060000)
#define EFI_PERIPHERAL_FIXED_MEDIA (EFI_PERIPHERAL | 0x00070000)
#define EFI_PERIPHERAL_REMOVABLE_MEDIA (EFI_PERIPHERAL | 0x00080000)
#define EFI_PERIPHERAL_AUDIO_INPUT (EFI_PERIPHERAL | 0x00090000)
#define EFI_PERIPHERAL_AUDIO_OUTPUT (EFI_PERIPHERAL | 0x000A0000)
#define EFI_PERIPHERAL_LCD_DEVICE (EFI_PERIPHERAL | 0x000B0000)
#define EFI_PERIPHERAL_NETWORK (EFI_PERIPHERAL | 0x000C0000)

Progress Code Definitions

Summary
Progress code definitions for the User-Accessible Peripheral class and all subclasses. See Progress
Code Operations in Status Code Classes: User-Accessible Peripheral Class for descriptions of these
progress codes.
The following subclasses define additional subclass-specific progress code operations, which are
included below:
• Keyboard
• Mouse
• Serial port

 Code Definitions

Version 0.92 December 2004 109

Prototype
//
// Peripheral Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_PC_INIT 0x00000000
#define EFI_P_PC_RESET 0x00000001
#define EFI_P_PC_DISABLE 0x00000002
#define EFI_P_PC_PRESENCE_DETECT 0x00000003
#define EFI_P_PC_ENABLE 0x00000004
#define EFI_P_PC_RECONFIG 0x00000005
#define EFI_P_PC_DETECTED 0x00000006

//
// Peripheral Class Unspecified Subclass Progress Code definitions.
//

//
// Peripheral Class Keyboard Subclass Progress Code definitions.
//
#define EFI_P_KEYBOARD_PC_CLEAR_BUFFER (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_PC_SELF_TEST (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Progress Code definitions.
//
#define EFI_P_MOUSE_PC_SELF_TEST (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Progress Code definitions.
//

//
// Peripheral Class Remote Console Subclass Progress Code definitions.
//

//
// Peripheral Class Serial Port Subclass Progress Code definitions.
//
#define EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Parallel Port Subclass Progress Code definitions.
//

//
// Peripheral Class Fixed Media Subclass Progress Code definitions.
//

Status Code Specification

110 December 2004 Version 0.92

//
// Peripheral Class Removable Media Subclass Progress Code definitions.
//

//
// Peripheral Class Audio Input Subclass Progress Code definitions.
//

//
// Peripheral Class Audio Output Subclass Progress Code definitions.
//

//
// Peripheral Class LCD Device Subclass Progress Code definitions.
//

//
// Peripheral Class Network Subclass Progress Code definitions.
//

Error Code Definitions

Summary
Error code definitions for the User-Accessible Peripheral class and all subclasses. See Error Code
Operations in Status Code Classes: User-Accessible Peripheral Class for descriptions of these error
codes.
The following subclasses define additional subclass-specific error code operations, which are
included below:
• Keyboard
• Mouse

 Code Definitions

Version 0.92 December 2004 111

Prototype
//
// Peripheral Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_EC_NON_SPECIFIC 0x00000000
#define EFI_P_EC_DISABLED 0x00000001
#define EFI_P_EC_NOT_SUPPORTED 0x00000002
#define EFI_P_EC_NOT_DETECTED 0x00000003
#define EFI_P_EC_NOT_CONFIGURED 0x00000004
#define EFI_P_EC_INTERFACE_ERROR 0x00000005
#define EFI_P_EC_CONTROLLER_ERROR 0x00000006
#define EFI_P_EC_INPUT_ERROR 0x00000007
#define EFI_P_EC_OUTPUT_ERROR 0x00000008
#define EFI_P_EC_RESOURCE_CONFLICT 0x00000009

//
// Peripheral Class Unspecified Subclass Error Code definitions.
//

//
// Peripheral Class Keyboard Subclass Error Code definitions.
//
#define EFI_P_KEYBOARD_EC_LOCKED (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_EC_STUCK_KEY (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Error Code definitions.
//
#define EFI_P_MOUSE_EC_LOCKED (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Error Code definitions.
//

//
// Peripheral Class Remote Console Subclass Error Code definitions.
//

//
// Peripheral Class Serial Port Subclass Error Code definitions.
//

//
// Peripheral Class Parallel Port Subclass Error Code definitions.
//

//
// Peripheral Class Fixed Media Subclass Error Code definitions.
//

Status Code Specification

112 December 2004 Version 0.92

//
// Peripheral Class Removable Media Subclass Error Code definitions.
//

//
// Peripheral Class Audio Input Subclass Error Code definitions.
//

//
// Peripheral Class Audio Output Subclass Error Code definitions.
//

//
// Peripheral Class LCD Device Subclass Error Code definitions.
//

//
// Peripheral Class Network Subclass Error Code definitions.
//

Extended Error Data
The User-Accessible Peripheral class uses the following extended error data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA
• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See Common Status Code Definitions: Extended Error Data for definitions.

 Code Definitions

Version 0.92 December 2004 113

I/O Bus Class

EFI_IO_BUS Class
The table below lists the subclasses defined in the I/O Bus class. See Subclass Definitions for their
code definitions.

Table 4-6. Defined Subclasses: I/O Bus Class
Subclass Code Name

Unspecified EFI_IO_BUS_UNSPECIFIED

PCI EFI_IO_BUS_PCI

USB EFI_IO_BUS_USB

InfiniBand* architecture EFI_IO_BUS_IBA

AGP EFI_IO_BUS_AGP

PC card EFI_IO_BUS_PC_CARD

Low pin count (LPC) EFI_IO_BUS_LPC

SCSI EFI_IO_BUS_SCSI

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI

Fibre Channel EFI_IO_BUS_FC

IP network EFI_IO_BUS_IP_NETWORK

SMBus EFI_IO_BUS_SMBUS

I2C EFI_IO_BUS_I2C

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Subclass Definitions

Summary
Definitions for the I/O Bus subclasses. See Subclasses in Status Code Classes: I/O Bus Class for
descriptions of these subclasses.

Status Code Specification

114 December 2004 Version 0.92

Prototype
//
// IO Bus Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_IO_BUS_UNSPECIFIED (EFI_IO_BUS | 0x00000000)
#define EFI_IO_BUS_PCI (EFI_IO_BUS | 0x00010000)
#define EFI_IO_BUS_USB (EFI_IO_BUS | 0x00020000)
#define EFI_IO_BUS_IBA (EFI_IO_BUS | 0x00030000)
#define EFI_IO_BUS_AGP (EFI_IO_BUS | 0x00040000)
#define EFI_IO_BUS_PC_CARD (EFI_IO_BUS | 0x00050000)
#define EFI_IO_BUS_LPC (EFI_IO_BUS | 0x00060000)
#define EFI_IO_BUS_SCSI (EFI_IO_BUS | 0x00070000)
#define EFI_IO_BUS_ATA_ATAPI (EFI_IO_BUS | 0x00080000)
#define EFI_IO_BUS_FC (EFI_IO_BUS | 0x00090000)
#define EFI_IO_BUS_IP_NETWORK (EFI_IO_BUS | 0x000A0000)
#define EFI_IO_BUS_SMBUS (EFI_IO_BUS | 0x000B0000)
#define EFI_IO_BUS_I2C (EFI_IO_BUS | 0x000C0000)

Progress Code Definitions

Summary
Progress code definitions for the I/O Bus class and all subclasses. See Progress Code Operations in
Status Code Classes: I/O Bus Class for descriptions of these progress codes.
The following subclasses define additional subclass-specific progress code operations, which are
included below:
• PCI

 Code Definitions

Version 0.92 December 2004 115

Prototype
//
// IO Bus Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_IOB_PC_INIT 0x00000000
#define EFI_IOB_PC_RESET 0x00000001
#define EFI_IOB_PC_DISABLE 0x00000002
#define EFI_IOB_PC_DETECT 0x00000003
#define EFI_IOB_PC_ENABLE 0x00000004
#define EFI_IOB_PC_RECONFIG 0x00000005
#define EFI_IOB_PC_HOTPLUG 0x00000006

//
// IO Bus Class Unspecified Subclass Progress Code definitions.
//

//
// IO Bus Class PCI Subclass Progress Code definitions.
//
#define EFI_IOB_PCI_PC_BUS_ENUM (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_PC_RES_ALLOC (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_IOB_PCI_PC_HPC_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// IO Bus Class USB Subclass Progress Code definitions.
//

//
// IO Bus Class IBA Subclass Progress Code definitions.
//

//
// IO Bus Class AGP Subclass Progress Code definitions.
//

//
// IO Bus Class PC Card Subclass Progress Code definitions.
//

//
// IO Bus Class LPC Subclass Progress Code definitions.
//

//
// IO Bus Class SCSI Subclass Progress Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Progress Code definitions.

Status Code Specification

116 December 2004 Version 0.92

//

//
// IO Bus Class FC Subclass Progress Code definitions.
//

//
// IO Bus Class IP Network Subclass Progress Code definitions.
//

//
// IO Bus Class SMBUS Subclass Progress Code definitions.
//

//
// IO Bus Class I2C Subclass Progress Code definitions.
//

 Code Definitions

Version 0.92 December 2004 117

Error Code Definitions

Summary
Error code definitions for the I/O Bus class and all subclasses. See Error Code Operations in Status
Code Classes: I/O Bus Class for descriptions of these error codes.
The following subclasses define additional subclass-specific error code operations, which are
included below:
• PCI

Prototype
// IO Bus Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_IOB_EC_NON_SPECIFIC 0x00000000
#define EFI_IOB_EC_DISABLED 0x00000001
#define EFI_IOB_EC_NOT_SUPPORTED 0x00000002
#define EFI_IOB_EC_NOT_DETECTED 0x00000003
#define EFI_IOB_EC_NOT_CONFIGURED 0x00000004
#define EFI_IOB_EC_INTERFACE_ERROR 0x00000005
#define EFI_IOB_EC_CONTROLLER_ERROR 0x00000006
#define EFI_IOB_EC_READ_ERROR 0x00000007
#define EFI_IOB_EC_WRITE_ERROR 0x00000008
#define EFI_IOB_EC_RESOURCE_CONFLICT 0x00000009

//
// IO Bus Class Unspecified Subclass Error Code definitions.
//

//
// IO Bus Class PCI Subclass Error Code definitions.
//
#define EFI_IOB_PCI_EC_PERR (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_EC_SERR (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// IO Bus Class USB Subclass Error Code definitions.
//

Status Code Specification

118 December 2004 Version 0.92

//
// IO Bus Class IBA Subclass Error Code definitions.
//

//
// IO Bus Class AGP Subclass Error Code definitions.
//

//
// IO Bus Class PC Card Subclass Error Code definitions.
//

//
// IO Bus Class LPC Subclass Error Code definitions.
//

//
// IO Bus Class SCSI Subclass Error Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Error Code definitions.
//

//
// IO Bus Class FC Subclass Error Code definitions.
//

//
// IO Bus Class IP Network Subclass Error Code definitions.
//

//
// IO Bus Class SMBUS Subclass Error Code definitions.
//

//
// IO Bus Class I2C Subclass Error Code definitions.
//

Extended Error Data
The I/O Bus class uses the following extended error data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA
• EFI_DEVICE_HANDLE_EXTENDED_DATA
• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See Common Status Code Definitions: Extended Error Data for definitions.

 Code Definitions

Version 0.92 December 2004 119

Software Classes

Host Software Class

EFI_SOFTWARE Class
The table below lists the subclasses defined in the Host Software class. See Subclass Definitions for
their code definitions.

Table 4-7. Defined Subclasses: Host Software Class
Subclass Code Name

Unspecified EFI_SOFTWARE_UNSPECIFIED

Security (SEC) EFI_SOFTWARE_SEC

PEI Foundation EFI_SOFTWARE_PEI_CORE

PEI module EFI_SOFTWARE_PEI_MODULE

DXE Foundation EFI_SOFTWARE_DXE_CORE

DXE Boot Service driver EFI_SOFTWARE_DXE_BS_DRIVER

DXE Runtime Service driver EFI_SOFTWARE_DXE_RT_DRIVER

SMM driver EFI_SOFTWARE_SMM_DRIVER

EFI application EFI_SOFTWARE_EFI_APPLICATION

OS loader EFI_SOFTWARE_EFI_OS_LOADER

Runtime (RT) EFI_SOFTWARE_EFI_RT

Afterlife (AL) EFI_SOFTWARE_EFI_AL

EBC exception EFI_SOFTWARE_EBC_EXCEPTION

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION

Itanium® processor family exception EFI_SOFTWARE_IPF_EXCEPTION

PEI Services EFI_SOFTWARE_PEI_SERVICE

EFI Boot Service EFI_SOFTWARE_EFI_BOOT_SERVICE

EFI Runtime Service EFI_SOFTWARE_EFI_RUNTIME_SERVICE

DXE Service EFI_SOFTWARE_EFI_DXE_SERVICE

0x13–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Status Code Specification

120 December 2004 Version 0.92

Subclass Definitions

Summary
Definitions for the Host Software subclasses. See Subclasses in Status Code Classes: Host Software
Class for descriptions of these subclasses.

Prototype
//
// Software Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_SOFTWARE_UNSPECIFIED (EFI_SOFTWARE | 0x00000000)
#define EFI_SOFTWARE_SEC (EFI_SOFTWARE | 0x00010000)
#define EFI_SOFTWARE_PEI_CORE (EFI_SOFTWARE | 0x00020000)
#define EFI_SOFTWARE_PEI_MODULE (EFI_SOFTWARE | 0x00030000)
#define EFI_SOFTWARE_DXE_CORE (EFI_SOFTWARE | 0x00040000)
#define EFI_SOFTWARE_DXE_BS_DRIVER (EFI_SOFTWARE | 0x00050000)
#define EFI_SOFTWARE_DXE_RT_DRIVER (EFI_SOFTWARE | 0x00060000)
#define EFI_SOFTWARE_SMM_DRIVER (EFI_SOFTWARE | 0x00070000)
#define EFI_SOFTWARE_EFI_APPLICATION (EFI_SOFTWARE | 0x00080000)
#define EFI_SOFTWARE_EFI_OS_LOADER (EFI_SOFTWARE | 0x00090000)
#define EFI_SOFTWARE_RT (EFI_SOFTWARE | 0x000A0000)
#define EFI_SOFTWARE_AL (EFI_SOFTWARE | 0x000B0000)
#define EFI_SOFTWARE_EBC_EXCEPTION (EFI_SOFTWARE | 0x000C0000)
#define EFI_SOFTWARE_IA32_EXCEPTION (EFI_SOFTWARE | 0x000D0000)
#define EFI_SOFTWARE_IPF_EXCEPTION (EFI_SOFTWARE | 0x000E0000)
#define EFI_SOFTWARE_PEI_SERVICE (EFI_SOFTWARE | 0x000F0000
#define EFI_SOFTWARE_EFI_BOOT_SERVICE (EFI_SOFTWARE | 0x00100000)
#define EFI_SOFTWARE_EFI_RUNTIME_SERVICE (EFI_SOFTWARE | 0x00110000)
#define EFI_SOFTWARE_EFI_DXE_SERVICE (EFI_SOFTWARE | 0x00120000)

Progress Code Definitions

Summary
Progress code definitions for the Host Software class and all subclasses. See Progress Code
Operations in Status Code Classes: Host Software Class for descriptions of these progress codes.
The following subclasses define additional subclass-specific progress code operations, which are
included below:
• SEC
• PEI Foundation
• PEI Module
• DXE
•

 Foundation
DXE

• Runtime (RT)
 Boot Service Driver

• Afterlife (AL)
• PEI Services

 Code Definitions

Version 0.92 December 2004 121

• Boot Services
• Runtime Services
• DXE

 Services

Prototype
//
// Software Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_PC_INIT 0x00000000
#define EFI_SW_PC_LOAD 0x00000001
#define EFI_SW_PC_INIT_BEGIN 0x00000002
#define EFI_SW_PC_INIT_END 0x00000003
#define EFI_SW_PC_AUTHENTICATE_BEGIN 0x00000004
#define EFI_SW_PC_AUTHENTICATE_END 0x00000005
#define EFI_SW_PC_INPUT_WAIT 0x00000006
#define EFI_SW_PC_USER_SETUP 0x00000007

//
// Software Class Unspecified Subclass Progress Code definitions.
//

//
// Software Class SEC Subclass Progress Code definitions.
//
#define EFI_SW_SEC_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_SEC_PC_HANDOFF_TO_NEXT (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class PEI Foundation Subclass Progress Code definitions.
//
#define EFI_SW_PEI_CORE_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_CORE_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class PEI Module Subclass Progress Code definitions.
//
#define EFI_SW_PEIM_PC_RECOVERY_BEGIN (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEIM_PC_CAPSULE_LOAD (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEIM_PC_CAPSULE_START (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEIM_PC_RECOVERY_USER (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEIM_PC_RECOVERY_AUTO (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE Foundation Subclass Progress Code definitions.
//
#define EFI_SW_DXE_CORE_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

Status Code Specification

122 December 2004 Version 0.92

#define EFI_SW_DXE_CORE_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_CORE_PC_START_DRIVER (EFI_SUBCLASS_SPECIFIC | 0x00000003)

//
// Software Class DXE BS Driver Subclass Progress Code definitions.
//
#define EFI_SW_DXE_BS_PC_LEGACY_OPROM_INIT
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_PC_EXIT_BOOT_SERVICES_EVENT
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_PC_VIRTUAL_ADDRESS_CHANGE_EVENT
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE RT Driver Subclass Progress Code definitions.
//

//
// Software Class SMM Driver Subclass Progress Code definitions.
//

//
// Software Class EFI Application Subclass Progress Code definitions.
//

//
// Software Class EFI OS Loader Subclass Progress Code definitions.
//

//
// Software Class EFI RT Subclass Progress Code definitions.
//
#define EFI_SW_RT_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RT_PC_HANDOFF_TO_NEXT (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RT_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class EFI AL Subclass Progress Code definitions.
//
#define EFI_SW_AL_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_AL_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class EBC Exception Subclass Progress Code definitions.
//

//

 Code Definitions

Version 0.92 December 2004 123

// Software Class IA32 Exception Subclass Progress Code definitions.
//

//
// Software Class IPF Exception Subclass Progress Code definitions.
//

//
// Software Class PEI Services Subclass Progress Code definitions.
//
#define EFI_SW_PS_PC_INSTALL_PPI (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PS_PC_REINSTALL_PPI (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PS_PC_LOCATE_PPI (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_PS_PC_NOTIFY_PPI (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PS_PC_GET_BOOT_MODE (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PS_PC_SET_BOOT_MODE (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PS_PC_GET_HOB_LIST (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_PS_PC_CREATE_HOB (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_VOLUME (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_FILE (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_PS_PC_FFS_FIND_SECTION_DATA
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_PS_PC_INSTALL_PEI_MEMORY (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_PS_PC_ALLOCATE_PAGES (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_PS_PC_ALLOCATE_POOL (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_PS_PC_COPY_MEM (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_PS_PC_SET_MEM (EFI_SUBCLASS_SPECIFIC | 0x0000000F)

//
// Software Class EFI Boot Services Subclass Progress Code definitions.
//
#define EFI_SW_BS_PC_RAISE_TPL (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_BS_PC_RESTORE_TPL (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_BS_PC_ALLOCATE_PAGES (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_BS_PC_FREE_PAGES (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_BS_PC_GET_MEMORY_MAP (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_BS_PC_ALLOCATE_POOL (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_BS_PC_FREE_POOL (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_BS_PC_CREATE_EVENT (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_BS_PC_SET_TIMER (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_BS_PC_WAIT_FOR_EVENT (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_BS_PC_SIGNAL_EVENT (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_BS_PC_CLOSE_EVENT (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_BS_PC_CHECK_EVENT (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_BS_PC_INSTALL_PROTOCOL_INTERFACE
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_BS_PC_REINSTALL_PROTOCOL_INTERFACE
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_BS_PC_UNINSTALL_PROTOCOL_INTERFACE
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_BS_PC_HANDLE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000010)
#define EFI_SW_BS_PC_PC_HANDLE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000011)
#define EFI_SW_BS_PC_REGISTER_PROTOCOL_NOTIFY
 (EFI_SUBCLASS_SPECIFIC | 0x00000012)
#define EFI_SW_BS_PC_LOCATE_HANDLE (EFI_SUBCLASS_SPECIFIC | 0x00000013)
#define EFI_SW_BS_PC_INSTALL_CONFIGURATION_TABLE
 (EFI_SUBCLASS_SPECIFIC | 0x00000014)

Status Code Specification

124 December 2004 Version 0.92

#define EFI_SW_BS_PC_LOAD_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000015)
#define EFI_SW_BS_PC_START_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000016)
#define EFI_SW_BS_PC_EXIT (EFI_SUBCLASS_SPECIFIC | 0x00000017)
#define EFI_SW_BS_PC_UNLOAD_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000018)
#define EFI_SW_BS_PC_EXIT_BOOT_SERVICES (EFI_SUBCLASS_SPECIFIC | 0x00000019)
#define EFI_SW_BS_PC_GET_NEXT_MONOTONIC_COUNT
 (EFI_SUBCLASS_SPECIFIC | 0x0000001A)
#define EFI_SW_BS_PC_STALL (EFI_SUBCLASS_SPECIFIC | 0x0000001B)
#define EFI_SW_BS_PC_SET_WATCHDOG_TIMER (EFI_SUBCLASS_SPECIFIC | 0x0000001C)
#define EFI_SW_BS_PC_CONNECT_CONTROLLER (EFI_SUBCLASS_SPECIFIC | 0x0000001D)
#define EFI_SW_BS_PC_DISCONNECT_CONTROLLER
 (EFI_SUBCLASS_SPECIFIC | 0x0000001E)
#define EFI_SW_BS_PC_OPEN_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x0000001F)
#define EFI_SW_BS_PC_CLOSE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000020)
#define EFI_SW_BS_PC_OPEN_PROTOCOL_INFORMATION
 (EFI_SUBCLASS_SPECIFIC | 0x00000021)
#define EFI_SW_BS_PC_PROTOCOLS_PER_HANDLE (EFI_SUBCLASS_SPECIFIC | 0x00000022)
#define EFI_SW_BS_PC_LOCATE_HANDLE_BUFFER (EFI_SUBCLASS_SPECIFIC | 0x00000023)
#define EFI_SW_BS_PC_LOCATE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000024)
#define EFI_SW_BS_PC_INSTALL_MULTIPLE_INTERFACES
 (EFI_SUBCLASS_SPECIFIC | 0x00000025)
#define EFI_SW_BS_PC_UNINSTALL_MULTIPLE_INTERFACES
 (EFI_SUBCLASS_SPECIFIC | 0x00000026)
#define EFI_SW_BS_PC_CALCULATE_CRC_32 (EFI_SUBCLASS_SPECIFIC | 0x00000027)
#define EFI_SW_BS_PC_COPY_MEM (EFI_SUBCLASS_SPECIFIC | 0x00000028)
#define EFI_SW_BS_PC_SET_MEM (EFI_SUBCLASS_SPECIFIC | 0x00000029)

//
// Software Class EFI Runtime Services Subclass Progress Code definitions.
//
#define EFI_SW_RS_PC_GET_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RS_PC_SET_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RS_PC_GET_WAKEUP_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_RS_PC_SET_WAKEUP_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_RS_PC_SET_VIRTUAL_ADDRESS_MAP
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_RS_PC_CONVERT_POINTER (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_RS_PC_GET_VARIABLE (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_RS_PC_GET_NEXT_VARIABLE_NAME
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_RS_PC_SET_VARIABLE (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_RS_PC_GET_NEXT_HIGH_MONOTONIC_COUNT
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_RS_PC_RESET_SYSTEM (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

//
// Software Class EFI DXE Services Subclass Progress Code definitions
//
#define EFI_SW_DS_PC_ADD_MEMORY_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DS_PC_ALLOCATE_MEMORY_SPACE
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DS_PC_FREE_MEMORY_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DS_PC_REMOVE_MEMORY_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_DESCRIPTOR
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DS_PC_SET_MEMORY_SPACE_ATTRIBUTES
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_MAP (EFI_SUBCLASS_SPECIFIC | 0x00000006)

 Code Definitions

Version 0.92 December 2004 125

#define EFI_SW_DS_PC_ADD_IO_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_DS_PC_ALLOCATE_IO_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_DS_PC_FREE_IO_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_DS_PC_REMOVE_IO_SPACE (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_DS_PC_GET_IO_SPACE_DESCRIPTOR
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_DS_PC_GET_IO_SPACE_MAP (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_DS_PC_DISPATCH (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_DS_PC_SCHEDULE (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_DS_PC_TRUST (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_DS_PC_PROCESS_FIRMWARE_VOLUME
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)

Error Code Definitions

Summary
Error code definitions for the Host Software class and all subclasses. See Error Code Operations in
Status Code Classes: Host Software Class for descriptions of these error codes.
The following subclasses define additional subclass-specific error code operations, which are
included below:
• PEI Foundation
• PEIM
• Dxe
• EFI Byte Code (EBC) exception

BootServiceDriver

• IA-32 exception
• Itanium® processor family exception

Status Code Specification

126 December 2004 Version 0.92

Prototype
//
// Software Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_EC_NON_SPECIFIC 0x00000000
#define EFI_SW_EC_LOAD_ERROR 0x00000001
#define EFI_SW_EC_INVALID_PARAMETER 0x00000002
#define EFI_SW_EC_UNSUPPORTED 0x00000003
#define EFI_SW_EC_INVALID_BUFFER 0x00000004
#define EFI_SW_EC_OUT_OF_RESOURCES 0x00000005
#define EFI_SW_EC_ABORTED 0x00000006
#define EFI_SW_EC_ILLEGAL_SOFTWARE_STATE 0x00000007
#define EFI_SW_EC_ILLEGAL_HARDWARE_STATE 0x00000008
#define EFI_SW_EC_START_ERROR 0x00000009
#define EFI_SW_EC_BAD_DATE_TIME 0x0000000A
#define EFI_SW_EC_CFG_INVALID 0x0000000B
#define EFI_SW_EC_CFG_CLR_REQUEST 0x0000000C
#define EFI_SW_EC_CFG_DEFAULT 0x0000000D
#define EFI_SW_EC_PWD_INVALID 0x0000000E
#define EFI_SW_EC_PWD_CLR_REQUEST 0x0000000F
#define EFI_SW_EC_PWD_CLEARED 0x00000010
#define EFI_SW_EC_EVENT_LOG_FULL 0x00000011

//
// Software Class Unspecified Subclass Error Code definitions.
//

//
// Software Class SEC Subclass Error Code definitions.
//

//
// Software Class PEI Foundation Subclass Error Code definitions.
//
#define EFI_SW_PEI_CORE_EC_DXE_CORRUPT (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Software Class PEI Module Subclass Error Code definitions.
//
#define EFI_SW_PEIM_EC_NO_RECOVERY_CAPSULE
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEIM_EC_INVALID_CAPSULE_DESCRIPTOR
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class DXE Foundation Subclass Error Code definitions.
//

//
// Software Class DXE Boot Service Driver Subclass Error Code definitions.
//

 Code Definitions

Version 0.92 December 2004 127

#define EFI_SW_DXE_BS_EC_LEGACY_OPROM_NO_SPACE
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Software Class DXE Runtime Service Driver Subclass Error Code definitions.
//

//
// Software Class SMM Driver Subclass Error Code definitions.
//

//
// Software Class EFI Application Subclass Error Code definitions.
//

//
// Software Class EFI OS Loader Subclass Error Code definitions.
//

//
// Software Class EFI RT Subclass Error Code definitions.
//

//
// Software Class EFI AL Subclass Error Code definitions.
//

//
// Software Class EBC Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.
//
#define EFI_SW_EC_EBC_UNDEFINED 0x00000000
#define EFI_SW_EC_EBC_DIVIDE_ERROR EXCEPT_EBC_DIVIDE_ERROR
#define EFI_SW_EC_EBC_DEBUG EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_DEBUG EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_BREAKPOINT EXCEPT_EBC_BREAKPOINT
#define EFI_SW_EC_EBC_OVERFLOW EXCEPT_EBC_OVERFLOW
#define EFI_SW_EC_EBC_INVALID_OPCODE EXCEPT_EBC_INVALID_OPCODE
#define EFI_SW_EC_EBC_STACK_FAULT EXCEPT_EBC_STACK_FAULT
#define EFI_SW_EC_EBC_ALIGNMENT_CHECK EXCEPT_EBC_ALIGNMENT_CHECK
#define EFI_SW_EC_EBC_INSTRUCTION_ENCODING EXCEPT_EBC_INSTRUCTION_ENCODING
#define EFI_SW_EC_EBC_BAD_BREAK EXCEPT_EBC_BAD_BREAK
#define EFI_SW_EC_EBC_STEP EXCEPT_EBC_STEP

//
// Software Class IA32 Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.
//
#define EFI_SW_EC_IA32_DIVIDE_ERROR EXCEPT_IA32_DIVIDE_ERROR
#define EFI_SW_EC_IA32_DEBUG EXCEPT_IA32_DEBUG

Status Code Specification

128 December 2004 Version 0.92

#define EFI_SW_EC_IA32_NMI EXCEPT_IA32_NMI
#define EFI_SW_EC_IA32_BREAKPOINT EXCEPT_IA32_BREAKPOINT
#define EFI_SW_EC_IA32_OVERFLOW EXCEPT_IA32_OVERFLOW
#define EFI_SW_EC_IA32_BOUND EXCEPT_IA32_BOUND
#define EFI_SW_EC_IA32_INVALID_OPCODE EXCEPT_IA32_INVALID_OPCODE
#define EFI_SW_EC_IA32_DOUBLE_FAULT EXCEPT_IA32_DOUBLE_FAULT
#define EFI_SW_EC_IA32_INVALID_TSS EXCEPT_IA32_INVALID_TSS
#define EFI_SW_EC_IA32_SEG_NOT_PRESENT EXCEPT_IA32_SEG_NOT_PRESENT
#define EFI_SW_EC_IA32_STACK_FAULT EXCEPT_IA32_STACK_FAULT
#define EFI_SW_EC_IA32_GP_FAULT EXCEPT_IA32_GP_FAULT
#define EFI_SW_EC_IA32_PAGE_FAULT EXCEPT_IA32_PAGE_FAULT
#define EFI_SW_EC_IA32_FP_ERROR EXCEPT_IA32_FP_ERROR
#define EFI_SW_EC_IA32_ALIGNMENT_CHECK EXCEPT_IA32_ALIGNMENT_CHECK
#define EFI_SW_EC_IA32_MACHINE_CHECK EXCEPT_IA32_MACHINE_CHECK
#define EFI_SW_EC_IA32_SIMD EXCEPT_IA32_SIMD

//
// Software Class IPF Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.
//
#define EFI_SW_EC_IPF_ALT_DTLB EXCEPT_IPF_ALT_DTLB
#define EFI_SW_EC_IPF_DNESTED_TLB EXCEPT_IPF_DNESTED_TLB
#define EFI_SW_EC_IPF_BREAKPOINT EXCEPT_IPF_BREAKPOINT
#define EFI_SW_EC_IPF_EXTERNAL_INTERRUPT EXCEPT_IPF_EXTERNAL_INTERRUPT
#define EFI_SW_EC_IPF_GEN_EXCEPT EXCEPT_IPF_GEN_EXCEPT
#define EFI_SW_EC_IPF_NAT_CONSUMPTION EXCEPT_IPF_NAT_CONSUMPTION
#define EFI_SW_EC_IPF_DEBUG_EXCEPT EXCEPT_IPF_DEBUG_EXCEPT
#define EFI_SW_EC_IPF_UNALIGNED_ACCESS EXCEPT_IPF_UNALIGNED_ACCESS
#define EFI_SW_EC_IPF_FP_FAULT EXCEPT_IPF_FP_FAULT
#define EFI_SW_EC_IPF_FP_TRAP EXCEPT_IPF_FP_TRAP
#define EFI_SW_EC_IPF_TAKEN_BRANCH EXCEPT_IPF_TAKEN_BRANCH
#define EFI_SW_EC_IPF_SINGLE_STEP EXCEPT_IPF_SINGLE_STEP

//
// Software Class PEI Service Subclass Error Code definitions.
//

//
// Software Class EFI Boot Service Subclass Error Code definitions.
//

//
// Software Class EFI Runtime Service Subclass Error Code definitions.

//
//
// Software Class EFI DXE Service Subclass Error Code definitions.
//

 Code Definitions

Version 0.92 December 2004 129

Extended Error Data
In addition to the other class-specific error definitions in this subsection, the Host Software class
uses the following extended error data definitions:
• EFI_DEVICE_HANDLE_EXTENDED_DATA
See Common Status Code Definitions: Extended Error Data for its definition.

EFI_DEBUG_ASSERT_DATA

Summary
This structure provides the assert information that is typically associated with a debug assertion
failing.

Prototype
struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 LineNumber;
 UINT32 FileNameSize;
 EFI_STATUS_CODE_STRING_DATA *FileName;
} EFI_DEBUG_ASSERT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEBUG_ASSERT_DATA) – HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

LineNumber

The line number of the source file where the fault was generated.
FileNameSize

The size in bytes of FileName.
FileName

A pointer to a NULL-terminated ASCII or Unicode string that represents the file
name of the source file where the fault was generated. Type
EFI_STATUS_CODE_STRING_DATA is defined in Common Status Code
Definitions.

Description
The data indicates the location of the assertion that failed in the source code. This information
includes the file name and line number that are necessary to find the failing assertion in source
code.

Status Code Specification

130 December 2004 Version 0.92

EFI_STATUS_CODE_EXCEP_EXTENDED_DATA

Summary
This structure defines extended data describing a processor exception error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT Context;
} EFI_STATUS_CODE_EXCEP_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_EXCEP_EXTENDED_DATA) –
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Context

The system context. Type EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT is
defined in “Related Definitions” below.

Description
This extended data allows the processor context that is present at the time of the exception to be
reported with the exception. The format and contents of the context data varies depending on the
processor architecture.

 Code Definitions

Version 0.92 December 2004 131

Related Definitions
//**
// EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT
//**
typedef union {
 EFI_SYSTEM_CONTEXT_EBC SystemContextEbc;
 EFI_SYSTEM_CONTEXT_IA32 SystemContextIa32;
 EFI_SYSTEM_CONTEXT_IPF SystemContextIpf;
} EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT;

SystemContextEbc

The context of the EBC virtual machine when the exception was generated. Type
EFI_SYSTEM_CONTEXT_EBC is defined in EFI_DEBUG_SUPPORT_PROTOCOL
in the EFI 1.10 Specification.

SystemContextIa32

The context of the IA-32 processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IA32 is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the EFI 1.10 Specification.

SystemContextIpf

The context of the Itanium® processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IPF is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the EFI 1.10 Specification.

Status Code Specification

132 December 2004 Version 0.92

EFI_STATUS_CODE_START_EXTENDED_DATA

Summary
This structure defines extended data describing a call to a driver binding protocol start function.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE ControllerHandle;
 EFI_HANDLE DriverBindingHandle;
 UINT16 DevicePathSize;
 UINT8 RemainingDevicePath[];
} EFI_STATUS_CODE_START_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_START_EXTENDED_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

ControllerHandle

The controller handle.
DriverBindingHandle

The driver binding handle.
DevicePathSize

The size of the RemainingDevicePath. It is zero if the Start() function is
called with RemainingDevicePath = NULL. The EFI 1.10 Specification
allows that the Start() function of bus drivers can be called in this way.

RemainingDevicePath

Matches the RemainingDevicePath parameter being passed to the Start()
function. Note that this parameter is the variable-length device path and not a pointer
to the device path.

Description
This extended data records information about a Start() function call. Start() is a member of
the EFI 1.10 Driver Binding Protocol.

 Code Definitions

Version 0.92 December 2004 133

EFI_LEGACY_OPROM_EXTENDED_DATA

Summary
This structure defines extended data describing a legacy option ROM (OpROM).

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE DeviceHandle;
 EFI_PHYSICAL_ADDRESS RomImageBase;
} EFI_LEGACY_OPROM_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_LEGACY_OPROM_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DeviceHandle

The handle corresponding to the device that this legacy option ROM is being
invoked.

RomImageBase

The base address of the shadowed legacy ROM image. May or may not point to the
shadow RAM area. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

Description
The device handle and ROM image base can be used by consumers to determine which option
ROM failed. Due to the black-box nature of legacy option ROMs, the amount of information that
can be obtained may be limited.

	1 Introduction
	Overview
	Organization of the Status Codes Specification
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Status Codes Overview
	Introduction
	Terms
	Types of Status Codes
	Status Code Classes
	Instance Number
	Operations

	3 Status Code Classes
	Status Code Classes
	Hardware Classes
	Computing Unit Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	Host Processor Subclass
	Firmware Processor Subclass
	I/O Processor Subclass
	Cache Subclass
	Memory Subclass
	Chipset Subclass

	User-Accessible Peripheral Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	Keyboard Subclass
	Mouse Subclass
	Local Console Subclass
	Remote Console Subclass
	Serial Port Subclass
	Parallel Port Subclass
	Fixed Media Subclass
	Removable Media Subclass
	Audio Input Subclass
	Audio Output Subclass
	LCD Device Subclass
	Network Device Subclass

	I/O Bus Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	PCI Subclass
	USB Subclass
	InfiniBand* Architecture Subclass
	AGP Subclass
	PC Card Subclass
	LPC Subclass
	SCSI Subclass
	ATA/ATAPI/SATA Subclass
	Fibre Channel (FC) Subclass
	IP Network Subclass
	SMBus Subclass
	I2C Subclass

	Software Classes
	Host Software Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	SEC Subclass
	PEI Foundation Subclass
	PEI Module Subclass
	DXE Foundation Subclass
	DXE Boot Service Driver Subclass
	DXE Runtime Service Driver Subclass
	SMM Driver Subclass
	EFI Application Subclass
	OS Loader Subclass
	Runtime (RT) Subclass
	Afterlife (AL) Subclass
	PEI Services Subclass
	Boot Services Subclass
	Runtime Services Subclass
	DXE Services Subclass

	4 Code Definitions
	Introduction
	Common Status Code Definitions
	 Common Status Code Definitions Overview
	Data Structures
	Status Code Common Data Structures

	Extended Data Header
	EFI_STATUS_CODE_DATA
	EFI_STATUS_CODE_STRING_DATA

	Status Code-Specific Data GUID
	EFI_STATUS_CODE_SPECIFIC_DATA_GUID

	Enumeration Schemes
	Operation Code Enumeration Scheme
	Debug Code Enumeration Scheme

	Extended Error Data
	EFI_DEVICE_PATH_EXTENDED_DATA
	EFI_DEVICE_HANDLE_EXTENDED_DATA
	EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

	Class Definitions
	Hardware Classes
	Computing Unit Class
	EFI_COMPUTING_UNIT Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data
	Host Processor Subclass
	EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA
	EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA
	EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA
	EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA
	EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA
	EFI_CACHE_INIT_DATA
	EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA
	Memory Subclass
	EFI_MEMORY_EXTENDED_ERROR_DATA
	EFI_STATUS_CODE_DIMM_NUMBER
	EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA
	EFI_MEMORY_RANGE_EXTENDED_DATA

	User-Accessible Peripherals Class
	EFI_PERIPHERAL Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data

	I/O Bus Class
	EFI_IO_BUS Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data

	Software Classes
	Host Software Class
	EFI_SOFTWARE Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data
	EFI_DEBUG_ASSERT_DATA
	EFI_STATUS_CODE_EXCEP_EXTENDED_DATA
	EFI_STATUS_CODE_START_EXTENDED_DATA
	EFI_LEGACY_OPROM_EXTENDED_DATA

