intel

Intel® Platform Innovation Framework
for EFI
Status Codes Specification

Version 0.92
December 8, 2004

in
Status Code Specification tel

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

This document contains information on products in the design phase. The information here is subject to change without
notice. Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel Corporation to update or revise the
information or document. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

This document provides website addresses for certain third party websites. The referenced sites are not under the control of
Intel and Intel is not responsible for the content of any referenced site or any link contained in a referenced site. Intel does
not endorse companies or products for sites which it references. If you decide to access any of the third party sites
referenced in this document, you do this entirely at your own risk.

*Other names and brands may be claimed as the property of others.

Intel, the Intel logo, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Copyright © 2000-2005, Intel Corporation. All Rights Reserved.

December 2004 Version 0.92

intel

Revision History

Revision Revision History Date
0.9 First public release. 9/16/03
0.91 Added a new status code definition, 9/1/04
EFI_CU_HP_EC_NO_MICROCODE_UPDATE, to the following
topics:
e Computing Unit Class: Host Processor Subclass (in Design
Discussion)
e Computing Unit Class: Error Code Definitions (in Code
Definitions)
Updated the following code definitions:
e EFI_DEVICE PATH EXTENDED_DATA
e EFI_RESOURCE_ALLOC FAILURE ERROR_DATA
e EFI_STATUS_CODE_START_EXTENDED_DATA
0.92 Fixed the extended data structures that included the device path 12/8/04
pointers and other variable length structures. These now contain the
complete device path.

Version 0.92

December 2004

in
Status Code Specification tel

iv December 2004 Version 0.92

intel

Contents

O T oY [V o 1 o 1 T 11
(@ LY L=T Y1 11
Organization of the Status Codes Specification..............ooiii i 11
Conventions Used in ThiS DOCUMENTiiviiiiiieie et e e et e e e 12
Data Structure DeSCIIPLIONSceeiiei e e e e e e 12
[REY=T0 o (o B @00 [@Fo] g1V =T 1 1{0] o 1T 12
TypographiC CONVENTIONScooiiiieeeee e 13

2 SEAtUS COUES OVEIVIEW .euieniieiii i et e et e e e et e e st e e e et e e e e e e e e eaaens 15
1) Yo [T o1 o] T 15
B =1 1.1 15
TYPES Of STALUS COUESo eeiiiiiee e e et e e e e e e et e e e e e e e e e arat s e e eeaes 16
] = L0 E 00 1o [O F= 1YY 16
Sy ez L Lot N[0 [] oY= 16
L@ 01T = 110 1 17
3 StLALUS COUB ClaSS S o ittt e e e et e e e e e e eaas 21
] = L0 E 00 1o [O F= 1YY 21
HAIAWAE ClaSSES ... ccvuiiiiiiiie ettt et et e e e et e e et e st e e et e st esabeeeanss 21
(%0 g o] o101 1] To T] 1] A F= 1 PSSP 21
INSTANCE NUMDET et e e e e e e eaas 21

Progress Code OPerationNS...........cceevveeuiiiiiieeeeeeeie s e e e e e eeanas 22

Error Code OPErationSuuiiiieeeiiiiiii et e e e e eaaaas 22

S U] 013 £ TS < T 23

DefiNned SUDCIASSEScuieiie i 23

Unspecified SUDCIASScooviiiiiiiiiiiic e 23

HOSt Processor SUDCIASS.........cuuiiviiiieeeie e 24

Firmware Processor SUDCIASScouviuviieiiiiieeee e 27

1/O ProCesSOr SUDCIASScouiiiiiiiee e 28

CaChe SUDCIASS.......u i 28

MemOory SUDCIASSooovviiiiiiiiiiiieieeee 29

Chipset SUDCIASSoii e 31

User-Accessible Peripheral Class...........coovveviiiiiiiccci e 32
INSTANCE NUMDET et e e e e e e eaas 32

Progress Code OPerationS...........coevieeeuiiiiii e e e 32

Error Code OPErationSuuiiiieeeiiiiiii et e e e e eaaaas 33

SUDBCIASSES. ... 34

DefiNed SUDCIASSESuieiieeieiee e 34

Unspecified SUDCIASScooiiieiiiiiiicc e 35

Keyboard SUBDCIASS...........coiiiiiiiii e 35

MOUSE SUDCIASSiveiiiii e eas 37

Local Console SUDCIASSuoivniiiii e 38

Remote Console SUDCIASSciiveiiiiiicie e 38

Serial Port SUBCIASSuoieeee 39

Parallel Port SUDCIASS........couuiie e 39

Version 0.92 December 2004 5

Status Code Specification

Fixed Media SUDCIASS...........ooiiviiieee e 40
Removable Media SUDCIASSc.oviviiiiiceeee e 40

AUdiOo INput SUDBCIASS ... 41

Audio OULPULt SUBCIASSvvviiiiice e 42

LCD DEVICE SUDCIASScvviiiiieiie e 42
Network DEVICE SUDCIASScovniiiiieie e 43

T @ N =10 T O £ T 43
INSTANCE NUMIDETnieieieiee e e e et e e e 43
Progress Code OPerationS...........coevieeeuiiiiii e e e 44
Error Code OPErationSiiiieeieieiiiie e e e e e e e e e eeeeenns 45
SUDBCIASSES. ... 46
DefiNed SUDCIASSESuieiiieie e 46
Unspecified SUBDCIASScoovviiiiiiiiiiiiiiiiiee 47

PCl SUDCIASS ... 47

USB SUBCIASS......ouiiiiiiii e e 48
InfiniBand* Architecture SUubClassS........ccocovvieviiiiiiii e 49

AGP SUDCIASS ... e 49

PC Card SUBCIASScovviiiiieie e 50

LPC SUDCIASS ... e 50

SCSI SUBDCIASS. ..cuiieie e 51
ATA/ATAPI/SATA SUDCIASS......cuniieiieieee e 51

Fibre Channel (FC) SUbCIass..........cccooeiieeiiiiiice e 52

IP NetwWork SUDCIASS.......co i 52
SMBUS SUDCIASS . .cvniiiiiiie e 53

2 OB U o Tox F= 1T 53
S0 10T =T (SR O F= 1T T 53
HOSE SOfTWAIE ClASS .. .eniii it e e e e e e e e e e e aaas 53
INSTANCE NUMIDETn e e e et eeaaea e 54
Progress Code OPerationS...........couveeeeiiiiiiii e e e 54
Error Code OPErationsSiiiie e e e e e e e e e eeeeennes 55
SUDBCIASSES. ...t 56
Defined SUDCIASSESccevniiiieeee e 56
Unspecified SUBDCIASScooviiiiiiiiiiiiiiiiiiee 58

SEC SUDBCIASS.....u i 58

PEI Foundation SUBCIASSooiviiiiiiiii e 59

PEI Module SUDCIASS........oieiieeie e 60

DXE Foundation SUDCIASS.........oouviiiieiieeee e 61

DXE Boot Service Driver SUDCIASScocviviiiiiiiiiiieciee e 61

DXE Runtime Service Driver SUDCIASSoovvviiviiiiiiiiiecieceeee 63

SMM Driver SUDCIASSoeeiie e 63

EFI Application SUDCIASSccooveiiiiiiiiieeccec e 64

OS Loader SUDCIASS.......couuiiiiieie e 64
Runtime (RT) SUDCIASS.coiiiieiieiiiie e 64
Afterlife (AL) SUDCIASSccooiiiiiiiiii 65

PEI Services SUBCIASS..........cooiviiiiiie e 66

BOOt SErvices SUDCIASSc.uviviiii e 67
Runtime Services SUDCIASScouvieiiii i 70

DXE Services SUDCIASSocouuiiiiiiiie e 71

6 December 2004 Version 0.92

n
Intel Contents

i @ o Lo [T B IY {1 a1 110] 8 = 73
1) Yo 11 o1 T] T 73
Common Status Code DEfiNItIONS.c.uiieiiiiii e e r e e s e s e s eaeeas 73

Common Status Code DefinitioNs OVEIVIEWcivuniiiiiiiiie e 73
(D= 1=] £ U [(] (= 73
Status Code Common Data StrUCIUIESceuiiviiieieeeeeeee e 73
Extended Data HEAAE!t et e e e e e e e e 74
EFI_STATUS CODE _DATA ... oot 74
EFI_STATUS CODE_STRING DATA ..o, 75

Status Code-Specific Data GUIDoooiiiiiiiii e 78
EFI_STATUS CODE_SPECIFIC_DATA _GUID......ccccooiiieeiiiiiiiieeee e, 78
ENUMETAtION SCNEIMESceiieiii e e e e e e et e e e 79
Operation Code Enumeration SCheme............cooovvvviiiiiiiiiiiiiiiiiiiiie 79

Debug Code Enumeration SCheme.........cccooovvviiiiiiiii e, 80
LT[0 [STo [= (o T D= | = 81
EFI_DEVICE_PATH _EXTENDED DATA ..., 81
EFI_DEVICE_HANDLE EXTENDED DATA ..ot 82
EFI_RESOURCE_ALLOC_FAILURE_ERROR _DATA......ccooiiieii e, 83

(08 PSR B 1< 1 a1 (0] T 85
[E= L0 VY=Y (SR O F= 1T YT 86
Computing UNIt CIASS ...uvueei it 86
EFI_COMPUTING _UNIT ClaSSccuuuieeiiieeiiieiiiiiee e 86

SUbClass DEfINILIONSccuieiie e 86

Progress Code Definitionsouvvviiiiiiiiiiiice e 88

Error Code DefiNItiONScovvniiii e 90

Extended Error Data.......c.ooeveiieiiiiieeeeeeeee e 92
User-Accessible Peripherals Class.........ccooiieviiiiiiiiiiiiie e, 107
EFI_PERIPHERAL ClaSSccciieeiiiiei i 107

SubClass DEfINILIONSovuiieiii e 107

Progress Code DefinitionScouuuuiiiiieiiiiiiie e 108

Error Code DefiNitioNScovvniiiiiiie e 110

Extended Error Data......cccuoveniieniiii ittt 112

[/O BUS ClaSS .. iniiiiiiiit et e et s e s et s ea s b e e aens 113
EFI_ IO _BUS ClaSS....ccuuiiiiii et e e e aeaens 113

SUubClass DefiNItiONSoivvniiiieeie e 113

Progress Code DefinitionScouuuiiiiiiiiiiiiee e 114

Error Code DEfiNItIONSccuiieniieiieeeee e 117

Extended Error Data........ccocuuiiieniiiiicie e 118

Y0110 = (SR O F= 1T T 119
HOSt SOftWAIE ClaSS.....cuuiiiiii e e eaaeas 119
EFI_SOFTWARE ClaSS.....ccicieiiiiiiiiiiies e e e e 119

SUubClass DEefiNItiONScivuniiiiiiiee e 120

Progress Code DefinitioNScouuuuiiiiiieiiiiie e 120

Error Code DefiNitioNScovvniiiieeie e 125

Extended Error Data.........cocuuiviviiiiiicie e 129

Version 0.92 December 2004 7

in
Status Code Specification tel

Figures
2-1. Hierarchy of Status Code OPErationscoeeuuiuiiiie e 18

Tables
3-1. (O Fo TSR B L= {1 1110 1 21
3-2. Progress Code Operations: Computing Unit Class............cueiiiiiiiriiiiiiiiieeeeeeeeeeies 22
3-3. Error Code Operations: Computing Unit Classccovvviiiiiiiiiiieecee e, 22
3-4. Computing Unit Class: SUDCIASSES.........ccuuiiiiiii e 23
3-5. Progress and Error Code Operations: Computing Unit Unspecified Subclass 24
3-6. Progress and Error Code Operations: Host Processor Subclass................coooeee. 24
3-7. Progress and Error Code Operations: Service Processor Subclass 27
3-8. Progress and Error Code Operations: Cache Subclass.........cccooooevviiiiiiiiiiieneeeennes 28
3-9. Progress and Error Code Operations: Memory Subclassccccoeeii, 29
3-10. Progress and Error Code Operations: Chipset Subclasscccccceeeeveieveiiiiiinnnnnn. 31
3-11. Progress Code Operations: User-Accessible Peripheral Class...............ccccvvvvvvnnnn. 32
3-12. Error Code Operations: User-Accessible Peripheral Class.............cccccviiiiiiiinnnnnes 33
3-13. Defined Subclasses: User-Accessible Peripheral Classcccoovvvieiiiiiiviviiiiinnnnnn. 34
3-14. Progress and Error Code Operations: Peripheral Unspecified Subclass................. 35
3-15. Progress and Error Code Operations: Keyboard Subclass..........ccccccoeviiiiiiiiiinnn. 36
3-16. Progress and Error Code Operations: Mouse Subclasscooevvviiiiieiiiieiiinnnnnnn. 37
3-17. Progress and Error Code Operations: Local Console Subclass...............ccccevvvvennn. 38
3-18. Progress and Error Code Operations: Remote Console Subclass................cc....... 38
3-19. Progress and Error Code Operations: Serial Port Subclass..........cccccoovviiviiiiiinnnn. 39
3-20. Progress and Error Code Operations: Parallel Port Subclass...........cccocoevvvvviinnnnnn. 40
3-21. Progress and Error Code Operations: Fixed Media Subclass................cceevvvvvinnnnn.. 40
3-22. Progress and Error Code Operations: Removable Media Subclass........................ 41
3-23. Progress and Error Code Operations: Audio Input Subclasscccccviiiiiinnnns 41
3-24. Progress and Error Code Operations: Audio Output Subclasscccevvvvvvnnnnnn. 42
3-25. Progress and Error Code Operations: LCD Device Subclasscccoooeevvveiiiinnnnnn. 42
3-26. Progress and Error Code Operations: Network Device Subclassccccevveennn. 43
3-27. Progress Code Operations: I/O BUS ClasSccoiiieeiiiiiiiiiiiiieeeeeeeeee e 44
3-28. Error Code Operations: I/O BUS ClaSS.........ccuuiiiiiiiieeeiiiie e 45
3-29. Defined Subclasses: 1/O BUS ClaSScooviiieiiiiiai e 46
3-30. Progress and Error Code Operations: I/O Bus Unspecified Subclass..................... 47
3-31. Progress and Error Code Operations: PCI Subclassc..ovvviiiiiiiiiciveii. 47
3-32. Progress and Error Code Operations: USB Subclass................uuvuiiiiiiiiiiiiiiiiiiinnnns 48
3-33. Progress and Error Code Operations: IBA SUDCIASSouuviiiiiiiiiiiiiiiiiiiiiinnns 49
3-34. Progress and Error Code Operations: AGP SubClass............ccevvvvviiiiiieececeiiinn. 49
3-35. Progress and Error Code Operations: PC Card Subclasscccccviiiiiiiiinnnnnes 50
3-36. Progress and Error Code Operations: LPC Subclass ..., 50
3-37. Progress and Error Code Operations: SCSI Subclass...........ccoovvvviiiiiiiecvccciiinn, 51
3-38. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass...............ouueee... 51
3-39. Progress and Error Code Operations: FC Subclassccoooeeviiiiiiiiiiiieiiie 52
3-40. Progress and Error Code Operations: IP Network Subclass..........cccccooeieviviiiiinnnnnn. 52
3-41. Progress and Error Code Operations: SMBuUs Subclass...........ccccccceeiiiieevcviiiiinnnnnn. 53
3-42. Progress and Error Code Operations: 12C SUbCIass..........coooevvviiiiiiiiiiiieiieeei 53

8 December 2004 Version 0.92

3-43.
3-44.
3-45.
3-46.
3-47.
3-48.
3-49.
3-50.
3-51.
3-52.
3-53.
3-54.
3-55.
3-56.
3-57.
3-58.
3-59.
3-60.
3-61.
4-1.

4-2.

4-3.

4-4,

4-6.
4-7.

Version 0.92

Contents

Progress Code Operations: Host Software Class...........couuvveeiiieeiiiiiiiiiiiee e 54
Error Code Operations: Host Software Class ... 55
Defined Subclasses: Host Software Class...........coovioiiiiiiiiiiiiie e, 56
Progress and Error Code Operations: Host Software Unspecified Subclass 58
Progress and Error Code Operations: SEC Subclass..........cccoovveeviiiiiiiiiiiiiceeeeiin, 58
Progress and Error Code Operations: PEI Foundation Subclass............................ 59
Progress and Error Code Operations: PEI Module Subclass...........ccccccceeeiienninnnne. 60
Progress and Error Code Operations: DXE Foundation Subclass........................ 61
Progress and Error Code Operations: DXE Boot Service Driver Subclass 62
Progress and Error Code Operations: DXE Runtime Service Driver Subclass........ 63
Progress and Error Code Operations: SMM Driver Subclassccccccceeiiieniiiinnn, 63
Progress and Error Code Operations: EFI Application Subclass 64
Progress and Error Code Operations: OS Loader Subclass...............cccoeeeieeeeeen. 64
Progress and Error Code Operations: Runtime Subclass............cccvvvvvvieiiiiiencvennnn, 65
Progress and Error Code Operations: Afterlife (AL) Subclasscccccceeeviieeeinnnnn, 65
Progress and Error Code Operations: PEI Subclasscccoo 66
Progress and Error Code Operations: Boot Services Subclassccoooeee. 67
Progress and Error Code Operations: Runtime Services Subclass 70
Progress and Error Code Operations: DXE Services Subclasscccoeeeeeen. 71
Progress Code Enumeration SCNEMEcoooiiiiiiiiiiiiiiee 79
Debug Code Enumeration SChemMEcccovvviiiiiiii e 80
(O Fo TSR B =] (] 1110 1N 85
Defined Subclasses: Computing Unit Class ... 86
Defined Subclasses: User-Accessible Peripheral Classcccoooeevvviviiiiienneene, 107
Defined Subclasses: /0 BUS ClaSS ... 113
Defined Subclasses: Host Software Class.............ciiiiiiiiiiiiiiiieeieee e 119
December 2004 9

in
Status Code Specification tel

10 December 2004 Version 0.92

1
Introduction

Overview

This specification defines the status code architecture that is required for an implementation of the
Intel® Platform Innovation Framework for EFI (hereafter referred to as the “"Framework"). Status
codes enable system components to report information about their current state. This specification
does the following:

Describes the basic components of status codes

Defines the status code classes; their subclasses; and the progress, error, and debug code
operations for each

Provides code definitions for the data structures that are common to all status codes
Provides code definitions for the status code classes; subclasses; progress, error, and debug
code enumerations; and extended error data that are architecturally required by the Intel®
Platform Innovation Framework for EFI Architecture Specification

Organization of the Status Codes Specification

This specification is organized as listed below. Because status codes are just one component of a
Framework-based firmware solution, there are a number of additional specifications that are
referred to throughout this document:

For references to other Framework specifications, click on the hyperlink in the page or navigate
through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

Organization of This Specification

Book Description

Status Codes Overview Provides a high-level explanation of status codes and the status
code classes and subclasses that are defined in this specification.

Status Code Classes Provides detailed explanations of the defined status code classes.

Code Definitions Provides the code definitions for all status code classes; subclasses;

extended error data structures; and progress, error, and debug code
enumerations that are included in this specification.

Version 0.92 December 2004 11

in
Status Code Specification tel

Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions

Intel® processors based on 32-bit Intel® architecture (1A-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STR U CTU R E NA M E: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by

this data structure.

Pseudo-Code Conventions

12

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

December 2004 Version 0.92

intel

Introduction

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color. These
code listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

In the online help version of this specification, words in a

Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, words in 1talic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the

following URL:

http://www.intel.com/technology/framework/spec.htm

Version 0.92

December 2004 13

http://www.intel.com/technology/framework/spec.htm�

in
Status Code Specification tel

14 December 2004 Version 0.92

intel

2
Status Codes Overview

Introduction

This section provides a basic overview of status codes and describes the following:

o Basic terms that are used throughout this specification

e The different types of status codes

o Classes of status codes that are defined in this specification

e Instance numbers for class/subclass pairings

e The sets of operations that are available for each class/subclass pair

The basic definition of a status code is contained in the ReportStatusCode () definition in the

Intel® Platform Innovation Framework for EFI Architecture Specification Driver Execution
Environment Core Interface Specification (DXE CIS).

Terms
The following terms are used throughout this document:

debug code
Data produced by various software entities that contains information specifically intended to
assist in debugging. The format of the debug code data is governed by this specification.
error code
Data produced by various software entities that indicates an abnormal condition. The format
of the error code data is governed by this specification.
progress code
Data produced by various software entities that indicates forward progress. The format of the
progress code data is governed by this specification.
status code
Either of the three types of codes: progress code, error code, or debug code.

status code driver

The driver that produces the Status Code Architectural Protocol
(EF1_STATUS_CODE_ARCH_PROTOCOL) and hooks the Runtime Service
ReportStatusCode(). The status code driver can send the status code to the appropriate
listeners. The mechanism by which the status code driver locates appropriate listeners is not
architectural and is not described in this document. The data hub is a default listener. Status
codes that are reported to the Runtime Service ReportStatusCode() are different from
the EFI_STATUS returned by various functions. The term EF1_STATUS is defined in the
EFI 1.10 Specification.

Version 0.92 December 2004 15

in
Status Code Specification tel

Types of Status Codes

There are three types of status codes:
e Progress codes

e Error codes

o Debug codes

Progress codes describe the activity that is currently taking place. Error codes describe exceptions
to expected or desired behavior. Debug codes report information that is useful for debugging.

Status Code Classes

Status codes are organized into a high-level set of classes. These classes correspond to broad types
of system hardware or software entities. Each class is subdivided into a number of subclasses.
These subclasses may correspond to a variety of hardware devices comprising a class or software
component types.

The Framework architecture defines three status code classes for hardware and one class for
software:
e Hardware classes:
— Computing unit
— User-accessible peripheral
— 1/O bus
e Software class:
— Host software

Class/subclass pairing should be able to classify any system entity, whether software or hardware.
For example, the boot-strap processor (BSP) in a system would be a member of the computing unit
class and host processor subclass, while a graphics processor would also be a member of the
computing unit class, but a member of the 1/O processor subclass.

Instance Number

16

Because a system may contain multiple entities matching a class/subclass pairing, there is an
instance number. Instance numbers have different meanings for different classes. However, an
instance number of OXFFFFFFFF always indicates that instance information is unavailable, not
applicable, or not provided.

Valid instance numbers start from 0. So a 4-processor server would logically have four instances of
the class/subclass pairing, computing unit/host processor, instance numbers 0 to 3.

Due to the complexity of system design, it is outside of the scope of this specification how to pair
instance numbers with the actual component—for instance, determining which processor is

number 3. However, this specification mandates that the numbering be consistent with the other
agents in the system. For example, the processor numbering scheme that is followed by status codes
must be consistent with the one followed by the data hub.

December 2004 Version 0.92

intel
’ Status Codes Overview

Operations

For each entity classification (class/subclass pair) there are three sets of operations:

e Progress codes
e Error codes
o Debug codes

For progress codes, operations correspond to activities related to the component classification. For
error codes, operations correspond to exception conditions (errors). For debug codes, operations
correspond to the basic nature of the debug information.

The values 0x00-0xOFFF are common operations that are shared by all subclasses in a class. There
are also subclass-specific operations/error codes. Out of the subclass-specific operations, the values
0x1000-0x7FFF are reserved by this specification. The remaining values (0x8000-0xFFFF) are not
defined by this specification and OEMs can assign meaning to values in this range. The
combination of class and subclass operations provides the complete set of operations that may be
reported by an entity. The figure below demonstrates the hierarchy of class and subclass and
progress, error, and debug operations.

Version 0.92 December 2004 17

Status Code Specification

18

Status Code:
Progress, Error, Debug

Status Code Classes:

Class # 0x0-0x7f controlled
by this specification

Class:

Computing Unit

Class: Class:

User-Accessible ’

. 1/0 Bus
Peripheral

Class:
Host Software

l

Computing Unit Subclasses:

1/0 Processor
Subclass

Cache
Subclass

Memory
Subclass

v

Subclass 0x0-0x7f controlled
by this specification

Operations: 0x0-Ox7fff controlled by this specification

Computing Unit:
Class Progress Codes

Computing Unit:
Memory Subclass
Progress Codes

Computing Unit:
Class Error Codes

Computing Unit:
Memory Subclass
Error Codes

— Computing Unit:

Class Debug Codes

Computing Unit:
Memory Subclass
Debug Codes

:

Software Subclasses:

Subclass 0x0-0x7f controlled
by this specification

Figure 2-1. Hierarchy of Status Code Operations

December 2004

Version 0.92

intel
’ Status Codes Overview

The organization of status codes, progress versus error, class, subclass, and operation facilitate a
flexible reporting of status codes. In the simplest case, reporting the status code might only convey
that an event occurred. In a slightly more complex system, it might be possible to report the class
and if it is a progress, error, or debug Code. In such a case, it is at least possible to understand that
the system is executing a software activity or that an error occurred with a computing unit. If more
reporting capability is present, the error could be isolated to include the subclass—for example, an
error occurred related to memory, or the system is currently executing the PEI Foundation
software. If yet more capability is present, information about the type of error or activity is
available—for example, single-bit ECC error or PEIM dispatch in progress. If the reporting
capability is complete, it can provide the detailed error information about the single-bit ECC error,
including the location and a string describing the failure. A large spectrum of consumer capability
can be supported with a single interface for the producers of progress and error information.

Version 0.92 December 2004 19

in
Status Code Specification tel

20 December 2004 Version 0.92

3
Status Code Classes

Status Code Classes

The Framework architecture defines four classes of status codes—three classes for hardware and
one class for software. These classes are listed in the table below and described in detail in the rest
of this section. Each class is made up of several subclasses, which are also defined later in this
section.

See Code Definitions for all the definitions of all data types and enumerations listed in this section.

Table 3-1. Class Definitions

Type of Class Class Name Data Type Name
Hardware Computing Unit EFI_COMPUTING_UNIT
User-Accessible Peripheral EFI_PERIPHERAL
1/0 Bus EFI_IO_BUS
Software Host Software EFI_SOFTWARE

Hardware Classes

Computing Unit Class

The Computing Unit class covers components directly related to system computational
capabilities. Subclasses correspond to types of computational devices and resources. See the
following for the computing unit class:

e Instance Number

e Progress Code Operations

e Error Code Operations

o Defined Subclasses

Instance Number

The instance number refers to the computing unit's geographic location in some manner. An
instance number of OXFFFFFFFF means that the instance number information is not available or the
provider of the information is not interested in providing the instance number.

Version 0.92 December 2004 21

Status Code Specification

Progress Code Operations

intel

All computing unit subclasses share the operation codes listed in the table below. See Progress
Code Definitions in Code Definitions: Computing Unit Class for the definitions of these progress

codes.

Table 3-2. Progress Code Operations: Computing Unit Class

Operation Description

EFI_CU_PC_INIT_BEGIN | General computing unit initialization begins. No details
regarding operation are made available.

EFI_CU_PC_INIT_END General computing unit initialization ends. No details
regarding operation are made available.

0x0002—-0x0FFF Reserved for future use by this specification for
Computing Class progress codes.

0x1000-0x7FFF Reserved for subclass use. See the subclass
definitions within this specification for value definitions.

0x8000—-0xFFFF Reserved for OEM use.

Extended Data

See subclass.

See subclass.

NA

NA

OEM defined.

Error Code Operations

All computing unit subclasses share the error codes listed in the table below. See Error Code
Definitions in Code Definitions: Computing Unit Class for the definitions of these error codes.

Table 3-3. Error Code Operations: Computing Unit Class

Operation
EFI_CU_EC_NON_SPECIFIC
EFI_CU_EC_DISABLED
EFI_CU_EC_NOT_SUPPORTED
EFI_CU_EC_NOT_DETECTED

EFI_CU_EC_NOT_CONFIGURED

0x0005—-0x0FFF

0x1000-0x7FFF

0x8000—-0xFFFF

Description

No error details available.
Instance is disabled.
Instance is not supported.

Instance not detected when it was expected to
be present.

Instance could not be properly or completely
initialized or configured.

Reserved for future use by this specification for
Computing Class error codes.

Subclass defined: See the subclass definitions
within this specification.

Reserved for OEM use.

Extended Data
See subclass.
See subclass.
See subclass.

See subclass.

See subclass.

NA

NA

OEM defined.

22

December 2004

Version 0.92

intel
’ Status Code Classes

Subclasses

Defined Subclasses

The table below lists the subclasses in the Computing Unit class. The following topics describe
each subclass in more detail.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definitions of these
subclasses.

Table 3-4. Computing Unit Class: Subclasses

Subclass Code Name Description

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED The computing unit type is unknown,
undefined, or unspecified.

Host processor EFI_COMPUTING_UNIT_HOST _ The computing unit is a full-service

PROCESSOR central processing unit.
Firmware processor | EFI_COMPUTING_UNIT_FIRMWARE_ The computing unit is a limited
PROCESSOR service processor, typically designed
to handle tasks of limited scope.

1/O processor EFI_COMPUTING_UNIT_IO_PROCESSOR | The computing unit is a processor
designed specifically to handle 1/0
transactions.

Cache EFI_COMPUTING_UNIT_CACHE The computing unit is a cache. All
types of cache qualify.

Memory EFI_COMPUTING_UNIT_MEMORY The computing unitis memory.
Many types of memory qualify.

Chipset EFI_COMPUTING_UNIT_CHIPSET The computing unit is a chipset
component.

0x07-0x7F Reserved for future use by this specification.

0x80—0xFF Reserved for OEM use.

Unspecified Subclass

This subclass can be used for any computing unit type of component that does not belong in one of
the other subclasses.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Version 0.92 December 2004 23

in
Status Code Specification tel

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 3-5. Progress and Error Code Operations: Computing Unit Unspecified Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF Reserved for future use by this specification. = NA

Related Definitions
None.

Host Processor Subclass

This subclass is used for computing units that provide the system’s main processing power and
their associated hardware. These are general-purpose processors capable of a wide range of
functionality. The instance number matches the processor handle number that is assigned to the
processor by the Multiprocessor (MP) Services Protocol. They often contain multiple levels of
embedded cache.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-6. Progress and Error Code Operations: Host Processor Subclass

Type of
Code Operation Description Extended Data
Progress | EFI_CU_HP_PC_POWER_ON_INIT Power-on initialization = None

EFI_CU_HP_PC_CACHE_INIT Embedded cache EFI_CACHE INIT_DATA
initialization including
cache controller
hardware and cache
memory.

continued

24 December 2004 Version 0.92

tel

Status Code Classes

Table 3-6. Progress and Error Code Operations: Host Processor Subclass (continued)
Type of
Code Operation Description Extended Data
Progress | EFI_CU_HP_PC_RAM_INIT Embedded RAM None
(cont.) initialization
EFI_CU_HP_PC_MEMORY_ Embedded memory None
CONTROLLER_INIT controller initialization
EFI_CU_HP_PC_IO_INIT Embedded I/0 None
complex initialization
EFI_CU_HP_PC_BSP_SELECT BSP selection None
EFI_CU_HP_PC_BSP_RESELECT BSP reselection None
EFI_CU_HP_PC_AP_INIT AP initialization (this None
operation is performed
by the current BSP)
EFI_CU_HP_PC_SMM_INIT SMM initialization None
0x000B-0x7FFF Reserved for future NA
use by this
specification
Error EFI_CU_EC_DISABLED Instance is disabled. EFI_COMPUTING_UNIT

Version 0.92

EFI_CU_HP_EC_INVALID_TYPE

EFI_CU_HP_EC_INVALID_SPEED

EFI_CU_HP_EC_MISMATCH

EFI_CU_HP_EC_TIMER_EXPIRED

EFl_CU_HP_EC_SELF_TEST

EFI_CU_HP_EC_INTERNAL

EFI_CU_HP_EC_THERMAL

This is a standard
error code for this
class.

Instance is not a valid
type.

Instance is not a valid
speed.

Mismatch detected
between two
instances.

A watchdog timer
expired.

Instance detected an
error during BIST

Instance detected an
IERR.

An over temperature
condition was
detected with this
instance.

December 2004

CPU_DISABLED ERROR
DATA

None

None

EFI_HOST PROCESSOR
MISMATCH_ERROR_DATA

None

None

None

EFI_ COMPUTING_UNIT
THERMAL ERROR_DATA

continued

25

Status Code Specification

26

intel

Table 3-6. Progress and Error Code Operations: Host Processor Subclass (continued)

Type of

Code Operation

Error EFI_CU_HP_EC_LOW_VOLTAGE
(cont.)

EFI_CU_HP_EC_HIGH_VOLTAGE

EFI_CU_HP_EC_CACHE

EFI_CU_HP_EC_MICROCODE_
UPDATE

EFI_CU_HP_EC_CORRECTABLE

EFI_CU_HP_EC_UNCORRECTABLE

EFI_CU_HP_EC_NO_MICROCODE_
UPDATE

0x100D-0x7FFF

Description

Voltage for this
instance dropped
below the low voltage
threshold.

Voltage for this
instance surpassed
the high voltage
threshold

The instance suffered
a cache failure.

Instance microcode
update failed

Correctable error
detected

Uncorrectable ECC
error detected

No matching
microcode update is
found

Reserved for future
use by this
specification

Extended Data

EFI_COMPUTING_UNIT
VOLTAGE_ERROR_DATA

EFlI_COMPUTING_UNIT
VOLTAGE_ERROR_DATA

None

EFI_COMPUTING_UNIT
MICROCODE
UPDATE_ERROR_DATA

None

None

None

NA

Related Definitions

See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-

specific operations listed above:

e Progress Code Definitions
e Error Code Definitions

See Extended Error Data in Code Definitions: Computing Unit Class for definitions of the extended

error data listed above.

December 2004

Version 0.92

intel
’ Status Code Classes

Firmware Processor Subclass

This subclass applies to processors other than the Host Processors that provides services to the
system.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-7. Progress and Error Code Operations: Service Processor Subclass

Type of Extended
Code Operation Description Data
Progress 0x1000-0x7FFF Reserved for future use by this NA
specification.
Error EFI_CU_FP_EC_HARD_FAIL Firmware processor detected a hardware = None
error during initialization.
EFI_CU_FP_EC_SOFT_FAIL Firmware processor detected an error None

during initialization. E.g. Firmware
processor NVRAM contents are invalid.

EFI_CU_FP_EC_COMM_ERROR The host processor encountered an error | None
while communicating with the firmware
processor.

0x1004-0x7FFF Reserved for future use by this NA
specification.

Related Definitions

See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions
e Error Code Definitions

Version 0.92 December 2004 27

in
Status Code Specification tel

I/O Processor Subclass

This subclass applies to system 1/O processors and their associated hardware. These processors are
typically designed to offload I/O tasks from the central processors in the system. Examples would
include graphics or 120 processors. The subclass is identical to the host processor subclass. See
Host Processor Subclass for more information.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Cache Subclass

28

The cache subclass applies to any external/system level caches. Any cache embedded in a
computing unit would not be counted in this subclass, but would be considered a member of that
computing unit subclass.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-8. Progress and Error Code Operations: Cache Subclass

Type of Extended
Code Operation Description Data
Progress EFI_CU_CACHE_PC_PRESENCE_DETECT @ Detecting cache presence. None
EFI_CU_CACHE_PC_CONFIGURATION Configuring cache. None
0x1002-0x7FFF Reserved for future use by this NA
specification.

Error EFI_CU_CACHE_EC_INVALID_TYPE Instance is not a valid type. None
EFI_CU_CACHE_EC_INVALID_SPEED Instance is not a valid speed. None
EFI_CU_CACHE_EC_INVALID_SIZE Instance size is invalid. None
EFI_CU_CACHE_EC_MISMATCH Instance does not match other None

caches.
0x1004-0x7FFF Reserved for future use by this NA
specification.

Related Definitions

See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

e Error Code Definitions

December 2004 Version 0.92

intel
’ Status Code Classes

Memory Subclass

The memory subclass applies to any external/system level memory and associated hardware. Any
memory embedded in a computing unit would not be counted in this subclass, but would be
considered a member of that computing unit subclass.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

For all operations and errors, the instance number specifies the DIMM number unless stated
otherwise. Some of the operations may affect multiple memory devices and multiple memory
controllers. The specification provides mechanisms

(EF1_ MULTIPLE MEMORY DEVICE OPERATION and others) to describe such group
operations. See EF1 STATUS CODE DIMM NUMBER in Extended Error Data: Memory Subclass
(in chapter 3, "Code Definitions™) for details.

Table 3-9. Progress and Error Code Operations: Memory Subclass

Type of
Code Operation Description Extended Data
Progress EFI_CU_MEMORY_PC_SPD_READ Reading None

configuration data
(e.g. SPD) from
memory devices.

EFl_CU_MEMORY_PC_PRESENCE_DETECT | Detecting None
presence of
memory devices
(e.g. DIMMs).

EFI_CU_MEMORY_PC_TIMING Determining None
optimum
configuration e.g.
timing for memory
devices.

EFI_CU_MEMORY_PC_CONFIGURING Initial None
configuration of
memory device
and memory
controllers.

EFI_CU_MEMORY_PC_OPTIMIZING Programming the None
memory controller
and memory
devices with
optimized settings.

continued

Version 0.92 December 2004 29

Status Code Specification

intel

Table 3-9. Progress and Error Code Operations: Host Processor Subclass (continued)

Type of
Code

Progress
(cont.)

Error

30

Operation
EFI_CU_MEMORY_PC_INIT

EFI_CU_MEMORY_PC_TEST

0x1007-0x7FFF

EFI_CU_MEMORY_EC_INVALID_TYPE

EFI_CU_MEMORY_EC_INVALID_SPEED

EFI_CU_MEMORY_EC_CORRECTABLE

EFI_CU_MEMORY_EC_UNCORRECTABLE

EFI_CU_MEMORY_EC_SPD_FAIL

EFI_CU_MEMORY_EC_INVALID_SIZE

EFI_CU_MEMORY_EC_MISMATCH

EFI_CU_MEMORY_EC_S3_RESUME_FAIL

EFI_CU_MEMORY_EC_UPDATE_FAIL

EFI_CU_MEMORY_EC_NONE_DETECTED

December 2004

Description

Memory
initialization such
as ECC
initialization.
Performing
memory test.

Reserved for
future use by this
specification.

Instance is not a
valid type.

Instance is not a
valid speed.

Correctable error
detected.

Uncorrectable
error detected.
This included
memory
miscomparisions
during the
memory test.

Instance SPD
failure detected.

Instance size is
invalid.

Mismatch
detected between
two instances.

Resume from S3
failed.

Flash Memory
Update failed.

Memory was not
detected in the
system. Instance
field is ignored.

Extended Data

EFI_MEMORY
RANGE
EXTENDED_DATA

EFI_MEMORY
RANGE
EXTENDED_DATA

NA

None

None

EFI_MEMORY
EXTENDED
ERROR_DATA

EFI_MEMORY
EXTENDED
ERROR_DATA

None

None

EFI_MEMORY
MODULE
MISMATCH_ERROR

DATA
None

None

None

continued

Version 0.92

tel

Status Code Classes

Table 3-9. Progress and Error Code Operations: Host Processor Subclass (continued)

Type of

Code

Error (cont.)

Operation

0x1009-0x7FFF

EFI_CU_MEMORY_EC_NONE_USEFUL

Description

No useful memory | None

was detected in
the system. E.g.,
Memory was
detected, but
cannot be used
due to errors.
Instance field is
ignored.

Reserved for NA
future use by this
specification.

Extended Data

Related Definitions
See the following topics in Code Definitions: Computing Unit Class for definitions of the subclass-

specific operations listed above:
Progress Code Definitions

Error Code Definitions

See Extended Error Data in Code Definitions: Computing Unit Class for definitions of the extended
error data listed above.

Chipset Subclass
This subclass can be used for any chipset components and their related hardware.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definition of this
subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,

the table below lists the additional codes for this subclass.

Table 3-10. Progress and Error Code Operations: Chipset Subclass

Type of Extended
Code Operation Description Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. NA
Error 0x1000-0x7FFF Reserved for future use by this specification.
Related Definitions
None.
Version 0.92 December 2004 31

Status Code Specification

User-Accessible Peripheral Class

The User-Accessible Peripheral class refers to any peripheral with which the user interacts.
Subclass elements correspond to general classes of peripherals. See the following for the User-

Accessible Peripheral class:

e Instance Number

e Progress Code Operations
e Error Code Operations

e Defined Subclasses

Instance Number

intel

The instance number refers to the peripheral’s geographic location in some TBD manner. Instance
number of 0 means that instance number information is not available or the provider of the
information is not interested in providing the instance number.

Progress Code Operations

All peripheral subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: User-Accessible Peripheral Class for the definitions of these

progress codes.

Table 3-11. Progress Code Operations: User-Accessible Peripheral Class

Operation
EFl_P_PC_INIT

EFI_P_PC_RESET
EFI_P_PC_DISABLE
EFI_P_PC_PRESENCE_DETECT
EFI_P_PC_ENABLE
EFI_P_PC_RECONFIG
EFI_P_PC_DETECTED
0X0006—0XOFFF

0x1000-0x7FFF

0x8000-0xFFFF

Description

General Initialization. No details regarding
operation are made available.

Resetting the peripheral.
Disabling the peripheral.
Detecting the presence.
Enabling the peripheral.
Reconfiguration.
Peripheral was detected.

Reserved for future use by this specification for
Peripheral Class progress codes.

Reserved for subclass use. See the subclass
definitions within this specification for value
definitions.

Reserved for OEM use.

Extended Data

See subclass.

See subclass.
See subclass.
See subclass.
See subclass.
See subclass.
See subclass.
NA

See subclass.

NA

32

December 2004

Version 0.92

intel

Error Code Operations

Status Code Classes

All peripheral subclasses share the error codes listed in the table below. See Error Code Definitions
in Code Definitions: User-Accessible Peripheral Class for the definitions of these error codes.

Table 3-12. Error Code Operations: User-Accessible Peripheral Class

Operation
EFl_P_EC_NON_SPECIFIC
EFI_P_EC_DISABLED
EFl_P_EC_NOT_SUPPORTED
EFI_P_EC_NOT_DETECTED

EFI_P_EC_NOT_CONFIGURED

EFI_P_EC_INTERFACE_ERROR

EFI_P_EC_CONTROLLER_ERROR

EFI_P_EC_INPUT_ERROR

EFI_P_EC_OUTPUT_ERROR

EFI_P_EC_RESOURCE_CONFLICT

0x0006—-0x0FFF

0x1000-0x7FFF

0x8000-0xFFFF

Description

No error details available.
Instance is disabled.
Instance is not supported.

Instance not detected when it was
expected to be present.

Instance could not be properly or
completely initialized or
configured.

An error occurred with the
peripheral interface.

An error occurred with the
peripheral controller.

An error occurred getting input
from the peripheral.

An error occurred putting output to
the peripheral.

A resource conflict exists with this
instance’s resource requirements.

Reserved for future use by this
specification for User-Accessible
Peripheral class error codes.

See the subclass definitions within
this specification.

Reserved for OEM use.

Extended Data
See subclass
See subclass
See subclass

See subclass

See subclass

See subclass

See subclass

See subclass.

See subclass.

See
EFI RESOURCE ALLOC

FAILURE ERROR DATA
for all subclasses.

NA

See subclass

NA

Version 0.92

December 2004

33

intel

Status Code Specification

Subclasses

Defined Subclasses

The table below lists the subclasses in the User-Accessible Peripheral class. The following topics
describe each subclass in more detail.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definitions
of these subclasses.

Table 3-13. Defined Subclasses: User-Accessible Peripheral Class

Subclass

Unspecified

Keyboard

Mouse

Local console

Remote console

Serial port

Parallel port

Fixed media

Removable media

Audio input

Audio output

LCD device

Network device

0xOD-0x7F
0x80—0xFF

Code Name
EFI_PERIPHERAL_UNSPECIFIED

EFI_PERIPHERAL_KEYBOARD

EFI_PERIPHERAL_MOUSE
EFI_PERIPHERAL_LOCAL_CONSOLE

EFI_PERIPHERAL_REMOTE_CONSOLE

EFI_PERIPHERAL_SERIAL_PORT

EFI_PERIPHERAL_PARALLEL_PORT

EFI_PERIPHERAL_FIXED_MEDIA

EFI_PERIPHERAL_REMOVABLE_MEDIA

EFI_PERIPHERAL_AUDIO_INPUT

EFI_PERIPHERAL_AUDIO_OUTPUT

EFI_PERIPHERAL_LCD_DEVICE

EFI_PERIPHERAL_NETWORK

Reserved for future use by this specification.

Reserved for OEM use.

Description

The peripheral type is unknown,
undefined, or unspecified.

The peripheral referred to is a
keyboard.

The peripheral referred to is a mouse.

The peripheral referred to is a console
directly attached to the system.

The peripheral referred to is a console
that can be remotely accessed.

The peripheral referred to is a serial
port.

The peripheral referred to is a parallel
port.

The peripheral referred to is a fixed
media device—e.g., an IDE hard disk
drive.

The peripheral referred to is a
removable media device—e.g.,
a DVD-ROM drive.

The peripheral referred to is an audio
input device—e.g., a microphone.

The peripheral referred to is an audio
output device—e.qg., speakers or
headphones.

The peripheral referred to is an LCD
device.

The peripheral referred to is a network
device—e.qg., a network card.

December 2004

Version 0.92

intel
’ Status Code Classes

Unspecified Subclass
This subclass applies to any user-accessible peripheral not belonging to any of the other subclasses.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-14. Progress and Error Code Operations: Peripheral Unspecified Subclass

Type of Extended
Code Operation Description Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. NA

Error 0x1000-0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Keyboard Subclass

This subclass applies to any keyboard style interfaces. ExtendedData contains the device path to
the keyboard device as defined in EF1 DEVICE PATH EXTENDED DATA and the instance is
ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Version 0.92 December 2004 35

Status Code Specification

Progress and Error Code Operations

intel

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-15. Progress and Error Code Operations: Keyboard Subclass

Type of

Code Operation

Progress EFI_P_KEYBOARD_PC_CLEAR_BUFFER
EFI_P_KEYBOARD_PC_SELF_TEST
0x1002-0x7FFF

Error EFI_P_KEYBOARD_EC_LOCKED

EFI_P_KEYBOARD _EC_STUCK_KEY

0x1002-0x7FFF

Description

Clearing the input keys
from keyboard.

Keyboard self-test.

Reserved for future use
by this specification.

The keyboard input is
locked.

A stuck key was
detected.

Reserved for future use
by this specification.

Extended Data

The device path to the
keyboard device. See
EFlI_DEVICE PATH
EXTENDED_DATA

The device path to the
keyboard device. See
EFI_DEVICE PATH
EXTENDED_ DATA.

NA

The device path to the
keyboard device. See
EFlI_DEVICE PATH
EXTENDED DATA

The device path to the
keyboard device. See
EFI_DEVICE PATH
EXTENDED DATA

NA

Related Definitions

See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of

the subclass-specific operations listed above:

e Progress Code Definitions
e Error Code Definitions

See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of

the extended error data listed above.

36 December 2004

Version 0.92

intel
’ Status Code Classes

Mouse Subclass

This subclass applies to any mouse or pointer peripherals. ExtendedData contains the device
path to the mouse device as defined in EF1 DEVICE PATH EXTENDED DATA and the instance
is ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-16. Progress and Error Code Operations: Mouse Subclass

Type of Code Operation Description Extended Data

Progress EFI_P_MOUSE_PC_SELF_TEST | Mouse self-test. The device path to the
mouse device. See
EFI_DEVICE PATH
EXTENDED_ DATA.

0x1001-0x7FFF Reserved for future use NA
by this specification.
Error EFI_P_MOUSE_EC_LOCKED The mouse input is The device path to the
locked. mouse device. See

EFI_DEVICE _PATH
EXTENDED_DATA

0x1001-0x7FFF Reserved for future use NA
by this specification.

Related Definitions

See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of
the subclass-specific operations listed above:

e Progress Code Definitions

e Error Code Definitions

See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of
the extended error data listed above.

Version 0.92 December 2004 37

in
Status Code Specification tel

Local Console Subclass

This subclass applies to all console devices directly connected to the system. This would include
VGA/UGA devices. ExtendedData contains the device path to the console device as defined in
EF1 DEVICE PATH EXTENDED DATA and the instance is ignored. LCD devices have their
own subclass.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-17. Progress and Error Code Operations: Local Console Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. | NA
Error 0x1000-0x7FFF Reserved for future use by this specification. | NA

Related Definitions
None.

Remote Console Subclass

This subclass applies to any console not directly connected to the system. This would include
consoles displayed via serial or LAN connections. ExtendedData contains the device path to the
console device as defined in EFI_DEVICE PATH EXTENDED DATA and the instance is
ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-18. Progress and Error Code Operations: Remote Console Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

38 December 2004 Version 0.92

intel
’ Status Code Classes

Serial Port Subclass

This subclass applies to devices attached to a system serial port, such as a modem.
ExtendedData contains the device path to the device as defined in
EFI _DEVICE PATH EXTENDED DATA and the instance is ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-19. Progress and Error Code Operations: Serial Port Subclass

Type of
Code Operation Description Extended Data
Progress EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER | Clearing the serial The device
port input buffer. handle. See
EFI_DEVICE PATH
EXTENDED_ DATA.
0x1001-0x7FFF Reserved for future NA
use by this
specification.
Error 0x1000-0x7FFF Reserved for future NA
use by this
specification.

Related Definitions

See the following topics in Code Definitions: User-Accessible Peripheral Class for definitions of
the subclass-specific operations listed above:

e Progress Code Definitions

e Error Code Definitions

See Extended Error Data in Code Definitions: User-Accessible Peripheral Class for definitions of
the extended error data listed above.

Parallel Port Subclass

This subclass applies to devices attached to a system parallel port, such as a printer.
ExtendedData contains the device path to the device as defined in
EF1 DEVICE PATH EXTENDED DATA and the instance is ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Version 0.92 December 2004 39

in
Status Code Specification tel

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-20. Progress and Error Code Operations: Parallel Port Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Fixed Media Subclass

This subclass applies to fixed media peripherals such as hard drives. These peripherals are capable
of producing the EFI_BLOCK 10 Protocol. ExtendedData contains the device path to the
device as defined in EF1_DEVICE PATH EXTENDED DATA and the instance is ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-21. Progress and Error Code Operations: Fixed Media Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Removable Media Subclass

This subclass applies to removable media peripherals such as floppy disk drives or LS-120 drives.
These peripherals are capable of producing the EF1_BLOCK 10 Protocol. ExtendedData
contains the device path to the device as defined in EFI_DEVICE PATH EXTENDED DATA and
the instance is ignored.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

40 December 2004 Version 0.92

intel
’ Status Code Classes

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-22. Progress and Error Code Operations: Removable Media Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Audio Input Subclass
This subclass applies to audio input devices such as microphones.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of

this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-23. Progress and Error Code Operations: Audio Input Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Version 0.92 December 2004

in
Status Code Specification tel

Audio Output Subclass
This subclass applies to audio output devices like speakers or headphones.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-24. Progress and Error Code Operations: Audio Output Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. ' NA

Related Definitions
None.

LCD Device Subclass
This subclass applies to LCD display devices attached to the system.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-25. Progress and Error Code Operations: LCD Device Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. ' NA

Related Definitions
None.

42 December 2004 Version 0.92

intel
’ Status Code Classes

Network Device Subclass

This subclass applies to network adapters attached to the system. These devices are capable of
producing standard EFI networking protocols such as the EFI_SIMPLE_NETWORK Protocol.

See Subclass Definitions in Code Definitions: User-Accessible Peripheral Class for the definition of
this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 3-26. Progress and Error Code Operations: Network Device Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. ' NA

Related Definitions
None.

I/0O Bus Class

The I/O bus class covers hardware buses irrespective of any software protocols that are used. Ata
broad level, everything that connects the computing unit to the user peripheral can be covered by
this class. Subclass elements correspond to industry-standard hardware buses. See the following
for the 1/0 Bus class:

e Instance Number

e Progress Code Operations

e Error Code Operations

o Defined Subclasses

Instance Number

The instance number is ignored and the ExtendedData describes the device path to the
controller or the device as defined in EFl_DEVICE PATH EXTENDED DATA.

Version 0.92 December 2004 43

Status Code Specification

Progress Code Operations

All 1/0 bus subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: 1/0 Bus Class for the definitions of these progress codes.

44

Table 3-27. Progress Code Operations: I/O Bus Class

intel

Operation
EFI_IOB_PC_INIT

EFI_IOB_PC_RESET

EFI_IOB_PC_DISABLE

EFI_IOB_PC_DETECT

EFI_IOB_PC_ENABLE

EFI_IOB_PC_RECONFIG

EFI_IOB_PC_HOTPLUG

0x0007—-0x0FFF

0x1000-0x7FFF

0x8000-0xFFFF

Description

General initialization. No
details regarding operation are
made available.

Resetting the bus. Generally,
this operation resets all the
devices on the bus as well.

Disabling all the devices on the
bus prior to enumeration.

Detecting devices on the bus.

Configuring the bus and
enabling device on the bus.

Bus reconfiguration including
resource re-enumeration.

A hot-plug event was detected
on the bus and the hot-
plugged device was initialized.

Reserved for future use by this
specification for /0 Bus class
progress codes.

Reserved for subclass use.
See the subclass definitions
within this specification for
value definitions.

Reserved for OEM use.

Extended Data

The device path corresponding to the host
bus controller (the controller that produces
this bus). For the PCI bus, it is the PCI root
bridge. The format of the device path
extended data is defined in

EFlI_ DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFI_DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFlI_ DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFI_DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFI_DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFlI_ DEVICE PATH EXTENDED DATA.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in

EFI_DEVICE PATH EXTENDED DATA.

NA

NA

OEM defined.

December 2004

Version 0.92

intel

Error Code Operations

All 1/0 bus subclasses share the error codes listed in the table below. See Error Code Definitions in
Code Definitions: 1/0 Bus Class for the definitions of these error codes.

Status Code Classes

Table 3-28. Error Code Operations: I/O Bus Class

Operation
EFI_IOB_EC_NON_SPECIFIC
EFI_IOB_EC_DISABLED

EFI_IOB_EC_NOT_SUPPORTED

EFI_IOB_EC_NOT_DETECTED

EFI_IOB_EC_NOT_CONFIGURED

EFI_IOB_EC_INTERFACE_ERROR

EFI_IOB_EC_CONTROLLER_ERROR

EFI_IOB_EC_READ_ERROR

EFI_IOB_EC_WRITE_ERROR

Description
No error details available

A device is disabled due to bus-
level errors.

A device is not supported on this
bus.

Instance not detected when it was
expected to be present.

Instance could not be properly or
completely initialized/configured.

An error occurred with the bus
interface.

An error occurred with the host
bus controller (the controller that
produces this bus).

A bus specific error occurred
getting input from a device on the
bus.

An error occurred putting output to
the bus.

Extended Data
None.

The device path
corresponding to the device.
See EFI_DEVICE PATH
EXTENDED_ DATA.

The device path
corresponding to the device.
See EFI_DEVICE PATH
EXTENDED_DATA.

The device path
corresponding to the device.
See EFI_DEVICE PATH
EXTENDED_ DATA.

The device path
corresponding to the device.
See EFI_DEVICE PATH
EXTENDED_ DATA.

The device path
corresponding to the failing
device. See

EFI_DEVICE PATH
EXTENDED_DATA.

The device path
corresponding to the bus
controller. See
EFI_DEVICE PATH
EXTENDED_ DATA.

The device path
corresponding to the failing
device or the closest device
path. See

EFI_DEVICE PATH

The device path
corresponding to the failing
device or the closest device
path. See

EFI_DEVICE PATH
EXTENDED_DATA.

Version 0.92

December 2004

continued

45

Status Code Specification

intel

Table 3-28. Error Code Operations: 1/0 Bus Class (continued)

Operation

EFI_IOB_EC_RESOURCE_CONFLICT

0x000A—-0xOFFF

0x1000-0x7FFF

0x8000-0xFFFF

Description

Extended Data

A resource conflict exists with this = See
instance’s resource requirements.

EFlI_ RESOURCE _ALLOC
FAILURE ERROR_DATA.

Reserved for future use by this NA
specification for 1/0 Bus class

error codes.

See the subclass definitions within = NA

this specification.

Reserved for OEM use. NA

Subclasses

Defined Subclasses

The table below lists the subclasses in the I/O Bus class. The following topics describe each

subclass in more detail.

See Subclass Definitions in Code Definitions: 1/0 Bus Class for the definitions of these subclasses.

Table 3-29. Defined Subclasses: I/O Bus Class

Subclass

Unspecified

PCI
SB

C

InfiniBand* architecture
AGP

PC card

Low pin count (LPC)
SCSI
ATA/ATAPI/SATA
Fibre Channel

IP network

SMBus

12C

0xOD-0x7F

0x80—0xFF

Code Name
EFI_IO_BUS_UNSPECIFIED

EFI_IO_BUS_PClI
EFI_IO_BUS_USB
EFI_IO_BUS_IBA
EFI_IO_BUS_AGP
EFI_IO_BUS_PC_CARD
EFI_IO_BUS_LPC
EFI_IO_BUS_SCSI
EFI_IO_BUS_ATA_ATAPI
EFI_IO_BUS_FC
EFI_IO_BUS_IP_NETWORK
EFI_IO_BUS_SMBUS
EFI_IO_BUS_I2C

Reserved for future use by this
specification.

Reserved for OEM use.

Description

The bus type is unknown, undefined, or
unspecified.

The bus is a PCI bus.

The bus is a USB bus.

The bus is an IBA bus.

The bus is an AGP bus.

The bus is a PC Card bus.
The bus is a LPC bus.

The bus is a SCSI bus.

The bus is a ATA/ATAPI bus.
The bus is an EC bus.

The bus is an IP network bus.
The bus is a SMBUS bus.
The bus is an 12C bus.

46

December 2004

Version 0.92

intel
’ Status Code Classes

Unspecified Subclass
This subclass applies to any 1/0 bus not belonging to any of the other 1/O bus subclasses.
See Subclass Definitions in Code Definitions: 1/0 Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-30. Progress and Error Code Operations: I/O Bus Unspecified Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

PCIl Subclass

This subclass applies to PCI buses and devices. It also includes different variations of PCI bus
including PCI-X and PCI Express.

See Subclass Definitions in Code Definitions: 1/0 Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-31. Progress and Error Code Operations: PCl Subclass

Type of
Code Operation Description Extended Data
Progress EFI_IOB_PCI_BUS_ENUM Enumerating buses The device path corresponding to

under a root bridge. the PCI root bridge. See
EFI_DEVICE PATH
EXTENDED_ DATA.

EFI_IOB_PCI_RES_ALLOC | Allocating resources to The host bridge handle as defined in

devices under a host EFI_DEVICE HANDLE
bridge. EXTENDED_DATA.
EFI_IOB_PCI_HPC_INIT Initializing a PCI hot- The device path to the controller as
plug controller. defined in EFI_DEVICE_PATH
EXTENDED_ DATA.
0x1003-0x7FFF Reserved for future use | NA

by this specification.

continued

Version 0.92 December 2004 47

in
Status Code Specification tel

Table 3-31. Progress and Error Code Operations: PCl Subclass (continued)

Type of
Code Operation Description Extended Data
Error EFI_IOB_PCI_EC_PERR Parity error; see PCI The device path to the controller that

Specification. generated the PERR. The data
format is defined in
EFI_DEVICE PATH
EXTENDED_ DATA.

EFI_IOB_PCI_EC_SERR System error; see PCI The device path to the controller that
Specification. generated the SERR. The data
format is defined in
EFlI_DEVICE PATH
EXTENDED_DATA.

0x1002-0x7FFF Reserved for future use | NA
by this specification.

Related Definitions

See the following topics in Code Definitions: I/O Bus Class for definitions of the subclass-specific
operations listed above:

e Progress Code Definitions
e Error Code Definitions

See Extended Error Data in Code Definitions: 1/0 Bus Class for definitions of the extended error
data listed above.

USB Subclass
This subclass applies to USB buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

Table 3-32. Progress and Error Code Operations: USB Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

48 December 2004 Version 0.92

intel
’ Status Code Classes

InfiniBand* Architecture Subclass
This subclass applies to InfiniBand* (IBA) buses and devices.
See Subclass Definitions in Code Definitions: 1/0 Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-33. Progress and Error Code Operations: IBA Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

AGP Subclass
This subclass applies to AGP buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

Table 3-34. Progress and Error Code Operations: AGP Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Version 0.92 December 2004 49

intel

Status Code Specification

PC Card Subclass
This subclass applies to PC Card buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-35. Progress and Error Code Operations: PC Card Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

LPC Subclass
This subclass applies to LPC buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

Table 3-36. Progress and Error Code Operations: LPC Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. ' NA

Related Definitions
None.

50 December 2004 Version 0.92

intel
’ Status Code Classes

SCSI Subclass
This subclass applies to SCSI buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-37. Progress and Error Code Operations: SCSI Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

ATA/ATAPI/SATA Subclass
This subclass applies to ATA and ATAPI buses and devices. It also includes Serial ATA (SATA)
buses.
See Subclass Definitions in Code Definitions: 1/0 Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

Table 3-38. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Version 0.92 December 2004 51

intel

Status Code Specification

Fibre Channel (FC) Subclass
This subclass applies to Fibre Channel buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-39. Progress and Error Code Operations: FC Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

IP Network Subclass
This subclass applies to IP network buses and devices.
See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0O Bus class, the
table below lists the additional codes for this subclass.

Table 3-40. Progress and Error Code Operations: IP Network Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

52 December 2004 Version 0.92

In

tel

SMBus Subclass

This subclass applies to SMBus buses and devices.

See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/0 Bus class, the
table below lists the additional codes for this subclass.

Table 3-41. Progress and Error Code Operations: SMBus Subclass

Status Code Classes

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

I2C Subclass

This subclass applies to 12C buses and devices.

See Subclass Definitions in Code Definitions: 1/0O Bus Class for the definition of this subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the 1/O Bus class, the
table below lists the additional codes for this subclass.

Table 3-42. Progress and Error Code Operations: 12C Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. = NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

Software Classes

Host Software Class

The Host Software class covers any software-generated codes. Subclass elements correspond to

common software types in an EFI system. See the following for the Host Software class:

e Instance Number

e Progress Code Operations
e Error Code Operations

e Defined Subclasses

Version 0.92 December 2004

53

Status Code Specification

Instance Number
The instance number is not used for software subclasses unless otherwise stated.

Progress Code Operations

All host software subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: Host Software Class for the definitions of these progress codes.

Table 3-43. Progress Code Operations: Host Software Class

Operation
EFI_SW_PC_INIT

EFI_SW_PC_LOAD

EFI_SW_PC_INIT_BEGIN

EFI_SW_PC_INIT_END

EFI_SW_PC_
AUTHENTICATE_BEGIN

EFI_SW_PC_
AUTHENTICATE_END

EFI_SW_PC_INPUT_WAIT
EFI_SW_PC_USER_SETUP
0X0008—OXOFFF

0x1000-0x7FFF

0x8000-0xFFFF

Description

General initialization. No details
regarding operation are made
available.

Loading a software module in the
preboot phase by using
LoadImage() or an equivalent
PEI service. May include a PEIM,
DXE drivers, EFI application, etc.

Initializing software module by
using Startlmage() or an

equivalent PEI service.

Software module returned control
back after initialization.

Performing authentication
(passwords, biometrics, etc.).

Authentication completed.

Waiting for user input.
Executing user setup.

Reserved for future use by this
specification for Host Software
class progress codes.

Reserved for subclass use. See
the subclass definitions within
this specification for value
definitions.

Reserved for OEM use.

Extended Data

None.

Handle identifying the module. There will
be an instance of
EFI_LOADED_IMAGE_PROTOCOL on this
handle. See EFI_DEVICE HANDLE
EXTENDED_ DATA.

Handle identifying the module. There will
be an instance of

EF1_LOADED IMAGE_PROTOCOL on this
handle. See EFI_DEVICE_HANDLE
EXTENDED_DATA.

Handle identifying the module. There will
be an instance of

EF1_LOADED IMAGE_PROTOCOL on this
handle. See EFI_DEVICE_HANDLE
EXTENDED_DATA.

None.

None.

None.
None.
NA

NA

NA

December 2004

Version 0.92

intel

Error Code Operations

Status Code Classes

All host software subclasses share the error codes listed in the table below. See Error Code
Definitions in Code Definitions: Host Software Class for the definitions of these progress codes.

Table 3-44. Error Code Operations: Host Software Class

Operation
EFI_SW_EC_NON_SPECIFIC
EFI_SW_EC_LOAD_ERROR

EFI_SW_EC_INVALID_
PARAMETER

EFI_SW_EC_UNSUPPORTED

EFI_SW_EC_INVALID_BUFFER

EFI_SW_EC_OUT_OF_
RESOURCES

EFI_SW_EC_ABORTED

EFI_SW_EC_ILLEGAL_
SOFTWARE_STATE

EFI_SW_EC_ILLEGAL_
HARDWARE_STATE

EFI_SW_EC_START_ERROR

EFI_SW_EC_BAD_DATE_TIME
EFI_SW_EC_CFG_INVALID

EFI_SW_EC_CFG_CLR_
REQUEST

EFI_SW_EC_CFG_DEFAULT
EFI_SW_EC_PWD_INVALID

Version 0.92

Description
No error details are available.

The software module load failed.

An invalid parameter was passed to
the instance.

An unsupported operation was
requested.

The instance encountered an invalid
buffer (too large, small, or
nonexistent).

Insufficient resources exist.

The instance was aborted.

The instance detected an illegal
software state.

The instance detected an illegal
hardware state.

The software module returned an error
when started via StartiImage() or
equivalent.

The system date/time is invalid

Invalid configuration settings were
detected.

User requested that configuration
defaults be loaded (via a physical
jumper, for example).

Configuration defaults were loaded.

Invalid password settings were
detected.

December 2004

Extended Data
None

Handle identifying the module. There will be
an instance of

EFI_LOADED_ IMAGE_PROTOCOL on this
handle. See

EFI DEVICE HANDLE EXTENDED
DATA.

None.

None.

None.

None.

None.

See EFI DEBUG ASSERT_DATA

None.

Handle identifying the module. There will be
an instance of

EFI_LOADED_ IMAGE_PROTOCOL on this
handle. See

EFI DEVICE HANDLE EXTENDED
DATA.

None.

None.

None.

None.

None.

continued

55

in
Status Code Specification tel

Table 3-44. Error Code Operations: Host Software Class (continued)

Operation Description Extended Data
EFI_SW_EC PWD_CLR_ User requested that the passwords be = None.
REQUEST cleared (via a physical jumper, for
example).
EFI_SW_EC_PWD_CLEARED Passwords were cleared. None.
EFI_SW_EC EVENT_LOG_ System event log is full. None.
FULL
0x0012—-0x00FF Reserved for future use by this None.

specification for Host Software class
error codes.

0x0100-0x01FF Unexpected EBC exceptions. See EFI_STATUS CODE_EXCEP
EXTENDED DATA.
0x0200—-0x02FF Unexpected IA-32 processor See EFI_STATUS CODE_EXCEP
exceptions. EXTENDED DATA.
0x0300-0x03FF Unexpected Itanium® processor family = See EFlI STATUS CODE EXCEP
exceptions. EXTENDED DATA.
0x0400-0x7FFF See the subclass definitions within this
specification.
0x8000—-OxFFFF Reserved for OEM use.
Subclasses

Defined Subclasses

The table below lists the subclasses in the Host Software class. The following topics describe each
subclass in more detail.

See Subclass Definitions in Code Definitions: Host Software Class for the definitions of these
subclasses.

Table 3-45. Defined Subclasses: Host Software Class

Subclass Code Name Description

Unspecified EFI_SOFTWARE_UNSPECIFIED The software type is unknown,
undefined, or unspecified.

Security (SEC EFI_SOFTWARE_SEC The software is a part of the SEC
phase.

PEI Foundation EFI_SOFTWARE_PEI_CORE The software is the PEI Foundation
module.

PEI module EFI_SOFTWARE_PEI_MODULE The software is a PEIM.

DXE Foundation EFI_SOFTWARE_DXE_CORE The software is the DXE Foundation
module.

continued

56 December 2004 Version 0.92

tel

Status Code Classes

Table 3-45. Defined Subclasses: Host Software Class (continued)

Subclass

DXE Boot Service
driver

DXE Runtime Service

driver

SMM driver

EFI application
OS loader

Runtime (RT)
Afterlife (AL)
EBC exception
1A-32 exception

Itanium® processor
family exception

PEI Services

EFI Boot Services

EFI Runtime Services

DXE Services

0x13-0x7F
0x80—-0xFF

Code Name
EFI_SOFTWARE_DXE_BS_DRIVER

EFI_SOFTWARE_DXE_RT_DRIVER

EFI_SOFTWARE_SMM_DRIVER
EFI_SOFTWARE_EFI_APPLICATION
EFI_SOFTWARE_EFI_OS_LOADER
EFI_SOFTWARE_EFI_RT

EFI_SOFTWARE_EFI_AL

EFI_SOFTWARE_EBC_EXCEPTION

EFI_SOFTWARE_IA32_EXCEPTION

EFI_SOFTWARE_IPF_EXCEPTION

EFI_SOFTWARE_PEI_SERVICE

EFI_SOFTWARE_EFI_BOOT_SERVICE

EFI_SOFTWARE_EFI_RUNTIME_SERVICE

EFI_SOFTWARE_EFI_DXE_SERVICE

Reserved for future use by this specification.

Reserved for OEM use.

Description

The software is a DXE Boot Service
driver. Boot service drivers are not
available once
ExitBootServices()is

called.

The software is a DXE Runtime
Service driver. These drivers
execute during runtime phase.

The software is a SMM driver.
The software is an EFI application.
The software is an OS loader.

The software is a part of the RT
phase.

The software is a part of the AL
phase.

The status code is directly related to
an EBC exception.

The status code is directly related to
an 1A-32 exception.

The status code is directly related to
an Itanium processor family
exception.

The status code is directly related to
a PEI Services function.

The status code is directly related to
an EFI Boot Services function.

The status code is directly related to
an EFI Runtime Services function.

The status code is directly related to
a DXE Services function.

NA
NA

Version 0.92

December 2004

57

in
Status Code Specification tel

Unspecified Subclass

This subclass applies to any software entity not belonging to any of the other software subclasses. It
may also be used if the caller is unable to determine the exact subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-46. Progress and Error Code Operations: Host Software Unspecified Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. ' NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. = NA

Related Definitions
None.

SEC Subclass

This subclass applies to the Security (SEC) phase in software. The current scope of SEC software is
TBD.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. In most platforms, status code services may
be unavailable during the SEC phase.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-47. Progress and Error Code Operations: SEC Subclass

Type of

Code Operation Description Extended Data

Progress | EFI_SW_SEC_PC_ENTRY_POINT Entry point of the phase. None
EFI_SW_SEC_PC_HANDOFF_TO_NEXT | Handing off to the next phase None
0x1002—-0x7FFF Reserved for future use by this Reserved for

specification. future use by this
specification.
Error 0x1000-0x7FFF Reserved for future use by this NA

specification.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

58 December 2004 Version 0.92

intel
’ Status Code Classes

PEI Foundation Subclass

This subclass applies to the PEI Foundation. The PEI Foundation is responsible for starting and
ending the PEI phase as well as dispatching Pre-EFI Initialization Modules (PEIMS).

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-48. Progress and Error Code Operations: PEI Foundation Subclass

Type of
Code Operation Description Extended Data
Progress EFI_SW_PEI_CORE_PC_ENTRY_POINT Entry point of the phase. = None
EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT | Handing off to the next None
phase (DXE).
EFI_SW_PEI_CORE_PC_RETURN_TO_LAST Returning to the last None
phase.
0x1003-0x7FFF Reserved for future use | NA
by this specification.
Error EFI_SW_PEI_CORE_EC_DXE_CORRUPT Unable to hand off to NULL

DXE because the DXE
Foundation could not be
found.

0x1001-0x7FFF Reserved for future use NULL
by this specification.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

e Error Code Definitions

Version 0.92 December 2004 59

Status Code Specification

PEI Module Subclass

60

This subclass applies to Pre-EFI Initialization Modules (PEIMS).

Progress and Error Code Operations

intel

In addition to the standard progress and error codes that are defined for the Host Software class, the

table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-49. Progress and Error Code Operations: PEI Module Subclass

Type of
Code Operation

Progress EFI_SW_PEI_PC_RECOVERY_BEGIN

EFI_SW_PEI_PC_CAPSULE_LOAD

EFI_SW_PEI_PC_CAPSULE_START

EFI_SW_PEI_PC_RECOVERY_USER

EFI_SW_PEI_PC_RECOVERY_AUTO

0x1002-0x7FFF

Error EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE

EFI_SW_PEIM_EC_INVALID_CAPSULE_DESCRIPTOR

0x1001-0x7FFF

Description

Crisis recovery has
been initiated.

Found a recovery
capsule. About to load
the recovery capsule.

Loaded the recovery
capsule. About to hand
off control to the
capsule.

Recovery was forced by
the user via a jumper,
for example. Reported
by the PEIM that detects
the jumpers and
updates the boot mode.

Recovery was forced by
the software based on
some policy. Reported
by the PEIM that
updates the boot mode
to force recovery.

Reserved for future use
by this specification.

Unable to continue with
the crisis recovery
because no recovery
capsule was found.

An invalid or corrupt
capsule descriptor was
detected.

Reserved for future use
by this specification.

Extended
Data

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

December 2004

Version 0.92

intel

Related Definitions

Status Code Classes

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-

specific operations listed above:

e Progress Code Definitions
e Error Code Definitions

DXE Foundation Subclass

This subclass applies to DXE Foundation software. The DXE Foundation is responsible for
providing core services, dispatching DXE drivers, and calling the Boot Device Selection (BDS)

phase.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-50. Progress and Error Code Operations: DXE Foundation Subclass

Type of
Code Operation

Progress EFI_SW_DXE_CORE_PC_ENTRY_POINT

EFI_SW_DXE_CORE_PC_HANDOFF
_TO_NEXT

EFI_SW_DXE_CORE_PC_RETURN_
TO_LAST

EFI_SW_DXE_CORE_PC_START DRIVER

0x1002-0x7FFF

Error 0x1000-0x7FFF

Description
Entry point of the phase.

Handing off to the next phase
(Runtime).

Returning to the last phase.

Calling the Start() function of the
EFI1_DRIVER_BINDING Protocol.

Reserved for future use by this
specification.

Reserved for future use by this
specification.

Extended Data
None

None

None

See

EFI_STATUS
CODE_START
EXTENDED DATA

NA

NA

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-

specific operations listed above:
e Progress Code Definitions

See Extended Error Data in Code Definitions: Host Software Class for definitions of the extended

error data listed above.

DXE Boot Service Driver Subclass

This subclass applies to DXE boot service drivers. If a driver provides both boot services and
runtime services, it is considered a runtime service driver.

Version 0.92 December 2004

61

Status Code Specification

62

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

intel

Table 3-51. Progress and Error Code Operations: DXE Boot Service Driver Subclass

Type of
Code

Progress

Error

Operation

EFI_SW_DXE_BS_PC_LEGACY_
OPROM_INIT

EFI_SW_DXE_BS_PC_READY_TO_
BOOT_EVENT

EFI_SW_DXE_BS_PC_LEGACY_
BOOT_EVENT

EFI_SW_DXE_BS_PC_EXIT_BOOT_
SERVICES_EVENT

EFI_SW_DXE_BS_PC_VIRTUAL_
ADDRESS_CHANGE_EVENT

0x1000-0x7FFF

EFI_SW_DXE_BS_EC_LEGACY_
OPROM_NO_SPACE

Description

Initializing a legacy Option ROM
(OpROM).

The EFI_EVENT_SIGNAL_READY_
TO_BOOT event was signaled. See the
DXE CIS.

The
EFI1_EVENT_SIGNAL_LEGACY_BOOT
event was signaled. See the DXE CIS.
The EFI_EVENT_SIGNAL_EXIT_
BOOT_SERVICES event was signaled.
See the DXE CIS.

The EFI_EVENT_SIGNAL_VIRTUAL_

ADDRESS_CHANGE event was signaled.

See the DXE CIS.

Reserved for future use by this
specification.

Not enough memory available to
shadow a legacy option ROM.

Extended Data

See
EFI_LEGACY_OPROM

EXTENDED_DATA.

None

None

None

None

NA

See

EFl_ LEGACY_OPROM
EXTENDED DATA.
RomlImageBase
corresponds to the ROM
image in the regular
memory as opposed to

shadow RAM.
0x1001-0x7FFF Reserved for future use by this NA
specification.
December 2004 Version 0.92

intel
’ Status Code Classes

Related Definitions
See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:
e Progress Code Definitions
e Error Code Definitions

See Extended Error Data in Code Definitions: Host Software Class for definitions of the extended
error data listed above.

DXE Runtime Service Driver Subclass
This subclass applies to DXE runtime service drivers.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-52. Progress and Error Code Operations: DXE Runtime Service Driver Subclass

Type of Code | Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. NA

Related Definitions
None.

SMM Driver Subclass
This subclass applies to SMM code.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-53. Progress and Error Code Operations: SMM Driver Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF | Reserved for future use by this specification. NA
Error 0x1000-0x7FFF | Reserved for future use by this specification. NA

Related Definitions
None.

Version 0.92 December 2004 63

in
Status Code Specification tel

EFI Application Subclass
This subclass applies to EFI applications.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-54. Progress and Error Code Operations: EFI Application Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. NA
Error 0x1000-0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

OS Loader Subclass

This subclass applies to any OS loader application. Although OS loaders are EFI applications, they
are very special cases and merit a separate subclass.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 3-55. Progress and Error Code Operations: OS Loader Subclass

Type of Code Operation Description Extended Data
Progress 0x1000-0x7FFF Reserved for future use by this specification. NA
Error 0x1000-0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Runtime (RT) Subclass

This subclass applies to runtime software. Runtime software is made up of the EFl-aware operating

system and the non-EFI software running under the operating system environment. Other firmware

components, such as SAL code or ASL code, are also executing during this phase but cannot call an
EFI runtime service. Hence no codes are reserved for them.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

64 December 2004 Version 0.92

intel
’ Status Code Classes

Table 3-56. Progress and Error Code Operations: Runtime Subclass

Type of Extended
Code Operation Description Data
Progress EFI_SW_RT_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_RT_PC_HANDOFF_TO_NEXT Handing off to the next phase None
(Afterlife [AL]).

EFI_SW_RT_PC_RETURN_TO_LAST Returning to the last phase. None
0x1003-0x7FFF Reserved for future use by this NA
specification.
Error 0x1000-0x7FFF Reserved for future use by this NA

specification.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

Afterlife (AL) Subclass

This subclass applies to afterlife code. Afterlife code is the firmware code that executes after the
operating system calls the EFI Runtime Service ResetSystem().

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the

table below lists the additional codes for this subclass.
See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-57. Progress and Error Code Operations: Afterlife (AL) Subclass

Extended
Type of Code Operation Description Data
Progress EFI_SW_AL_PC_ENTRY_POINT Entry point of the phase. NA
EFI_SW_AL_PC_RETURN_TO_LAST | Returning to the last phase. None
0x1002-0x7FFF Reserved for future use by this NA
specification.
Error 0x1000-0x7FFF Reserved for future use by this NA

specification.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

Version 0.92 December 2004

65

Status Code Specification

PEI Services Subclass
This subclass applies to any PEI Service present in the PEI Services Table.

66

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the
code that provides the specified boot service and not by the module that invokes the given boot

service.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-58. Progress and Error Code Operations: PEI Subclass

intel

Type of
Code

Progress

Operation
EFI_SW_PS_PC_INSTALL_PPI
EFI_SW_PS_PC_REINSTALL_PPI

EFI_SW_PS_PC_LOCATE_PPI

EFI_SW_PS_PC_NOTIFY_PPI

EFI_SW_PS_PC_GET BOOT_MODE

EFI_SW_PS_PC_SET_BOOT_MODE

EFI_SW_PS_PC_GET_HOB_LIST

EFI_SW_PS_PC_CREATE_HOB

EFI_SW_PS_PC_FFS_FIND_
NEXT_VOLUME

EFI_SW_PS_PC_FFS_FIND_NEXT

FILE

EFI_SW_PS_PC_FFS_FIND_
SECTION_DATA

EFI_SW_PS_PC_INSTALL_PEI_ MEMORY

EFI_SW_PS_PC_ALLOCATE_PAGES

EFI_SW_PS_PC_ALLOCATE_POOL

December 2004

Description
Install a PPI. See the PEI CIS.

Reinstall a PPI. See the PEI
CIS.

Locate an existing PPI. See the
PEI CIS.

Install a notification callback.
See the PEI CIS.

Get the current boot mode. See
the PEI CIS.

Set the current boot mode. See
the PEI CIS.

Get the HOB list. See the PEI
ClIS.

Create a HOB. See the PEI
CIS.

Find the next FFS formatted
firmware volume. See the PEI
ClS.

Find the next FFS file. See the
PEI CIS.

Find a section in an FFS file.
See the PEI CIS.

Install the PEI memory. See
the PEI CIS.

Allocate pages from the
memory heap. See the PEI
CIs.

Allocate from the memory
heap. See the PEI CIS.

Extended
Data

None.

None.

None.

None.

None.

None.

None.

None.

None.

None

None.

None.

None.

None.

continued

Version 0.92

intel
’ Status Code Classes

Table 3-58 Progress and Error Code Operations: PEI Subclass (continued)

Type of Extended
Code Operation Description Data
Progress @ EFI_SW_PS_PC_COPY_MEM Copy memory. See the PEI None
(cont.) CIs.
EFI_SW_PS_PC_SET_MEM Set a memory range to a None.
specific value. See the PEI
CIs.
0x1010-0x7FFF Reserved for future use by this NA
specification.
Error 0x1000-0x7FFF Reserved for future use by this NA

specification.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-
specific operations listed above:

e Progress Code Definitions

Boot Services Subclass
This subclass applies to any boot service present in the EFI Boot Services Table.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the
code that provides the specified boot service and not by the module that invokes the given boot
service.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-59. Progress and Error Code Operations: Boot Services Subclass

Type of Extended
Code Operation Description Data
Progress = EFI_SW_BS PC_RAISE_TPL Raise the task priority level service; None.

see EFI Specification. This code is an
invalid operation because the status
code driver uses this boot service. The
status code driver cannot report its
own status codes.

EFI_SW_BS_PC_RESTORE_TPL Restore the task priority level service; None.
see EFIl Specification. This code is an
invalid operation because the status
code driver uses this boot service. The
status code driver cannot report its
own status codes.

continued

Version 0.92 December 2004 67

Status Code Specification

intel

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)

Type of
Code

Progress
(cont.)

68

Operation
EFI_SW_BS_PC_ALLOCATE_PAGE

EFI_SW_BS_PC_FREE_PAGES

EFI_SW_BS_PC_GET_MEMORY_MAP

EFI_SW_BS_PC_ALLOCATE_POOL

EFI_SW_BS_PC_FREE_POOL

EFI_SW_BS_PC_CREATE_EVENT

EFI_SW_BS_PC_SET_TIMER

EFI_SW_BS_PC_WAIT_FOR_EVENT

EFI_SW_BS_PC_SIGNAL_EVENT

EFI_SW_BS_PC_CLOSE_EVENT

EFI_SW_BS_PC_CHECK_EVENT

EFI_SW_BS_PC_INSTALL
PROTOCOL_INTERFACE

EFI_SW_BS_PC_REINSTALL_
PROTOCOL_INTERFACE

EFI_SW_BS_PC_UNINSTALL
PROTOCOL_INTERFACE

EFI_SW_BS_PC_HANDLE_
PROTOCOL

EFI_SW_BS_PC_PC_HANDLE_
PROTOCOL

EFI_SW_BS_PC_REGISTER
PROTOCOL_ NOTIFY

EFI_SW_BS_PC_LOCATE_HANDLE

Description

Allocate page service; see EFI
Specification.

Free page service; see EFI
Specification.

Get memory map service; see EFI
Specification.

Allocate pool service; see EFI
Specification.

Free pool service; see EFI
Specification.

CreateeEvent service; see EFI
Specification.

Set timer service; see EFI
Specification.

Wait for event service; see EFI
Specification.

Signal event service; see EFI
Specification. This code is an invalid
operation because the status code
driver uses this boot service. The
status code driver cannot report its
own status codes.

Close event service; see EFI
Specification.

Check event service; see EFI
Specification.

Install protocol interface service; see
EFI Specification.

Reinstall protocol interface service;
see EFI Specification.

Uninstall protocol interface service;
see EFI Specification.

Handle protocol service; see EFI
Specification.

PC handle protocol service; see EFI
Specification.

Register protocol notify service; see
EFI Specification.

Locate handle service; see EFI
Specification.

December 2004

Extended

Data

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

continued

Version 0.92

tel

Status Code Classes

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)

Type of
Code

Progress
(cont.)

Version 0.92

Operation

EFI_SW_BS_PC_INSTALL
CONFIGURATION_TABLE

EFI_SW_BS_PC_LOAD_IMAGE

EFI_SW_BS_PC_START IMAGE

EFI_SW_BS_PC_EXIT
EFI_SW_BS_PC_UNLOAD_IMAGE

EFI_SW_BS_PC_EXIT_BOOT_
SERVICES

EFI_SW_BS_PC_GET_NEXT_
MONOTONIC_COUNT

EFI_SW_BS_PC_STALL

EFI_SW_BS_PC_SET _WATCHDOG_
TIMER

EFI_SW_BS_PC_CONNECT_
CONTROLLER

EFI_SW_BS_PC_DISCONNECT _
CONTROLLER

EFI_SW_BS_PC_OPEN_PROTOCOL

EFI_SW_BS_PC_CLOSE_PROTOCOL

EFI_SW_BS_PC_OPEN_PROTOCOL _
INFORMATION

EFI_SW_BS_PC_PROTOCOLS_PER_
HANDLE

EFI_SW_BS_PC_LOCATE_HANDLE_
BUFFER

EFI_SW_BS_PC_LOCATE_PROTOCOL

EFI_SW_BS_PC_INSTALL_MULTIPLE_

PROTOCOL_INTERFACES

EFI_SW_BS_PC_UNINSTALL
MULTIPLE_PROTOCOL_INTERFACES

EFI_SW_BS_PC_CALCULATE_
CRC_32

EFI_SW_BS_PC_COPY_MEM

Description

Install configuration table service; see
EFI Specification.

Load image service; see EFI
Specification.

Start image service; see EFI
Specification.

Exit service; see EFI Specification.

Unload image service; see EFI
Specification.

Exit boot services service; see EFI
Specification.

Get next monotonic count service; see
EFI Specification.

Stall service; see EFI Specification.

Set watchdog timer service; see EFI
Specification.

Connect controller service; see EFI
Specification.

Disconnect controller service; see EFI
Specification.

Open protocol service; see EFI
Specification.

Close protocol service; see EFI
Specification.

Open protocol Information service; see
EFI Specification.

Protocols per handle service; see EFI
Specification.

Locate handle buffer service; see EFI
Specification.

Locate protocol service; see EFI
Specification.

Install multiple protocol interfaces
service; see EFI Specification.

Uninstall multiple protocol interfaces
service; see EFI Specification.

Calculate CRC32 service; see EFI
Specification.

Copy memory; see EFI Specification.

December 2004

Extended

Data

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

None.

continued

69

Status Code Specification

intel

Table 3-59 Progress and Error Code Operations: Boot Services Subclass (continued)

Type of
Code Operation Description
Progress = EFI_SW_BS PC_SET_MEM Set memory to a specific value; see
(cont.) EFI Specification.
0x102A - OX7FFF Reserved for future use by this
specification.
Error 0x1000 — Ox7FFF Reserved for future use by this

specification.

Extended
Data
None.

NA.

NA.

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-

specific operations listed above:
e Progress Code Definitions

Runtime Services Subclass

70

This subclass applies to any runtime service present in the EFI Runtime Services Table.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. For obvious reasons, the runtime service
ReportStatusCode() cannot report status codes related to the progress of the

ReportStatusCode() function.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-60. Progress and Error Code Operations: Runtime Services Subclass

Type of

Code Operation

Progress = EFI_SW_RS_PC_GET_TIME
EFI_SW_RS_PC_SET_TIME
EFI_SW_RS_PC_GET_WAKEUP_TIME
EFI_SW_RS_PC_SET_WAKEUP_TIME
EFI_SW_RS_PC_SET_VIRTUAL_
ADDRESS_MAP

EFI_SW_RS_PC_CONVERT_POINTER

EFI_SW_RS_PC_GET_VARIABLE

December 2004

Description

Get time service; see EFI
Specification.

Set time service; see EFI
Specification.

Get wakeup time service; see EFI
Specification.

Set wakeup time service; see EFI
Specification.

Set virtual address map service;
see EFI Specification.

Convert pointer service; see EFI
Specification.

Get variable service; see EFI
Specification.

Extended

Data

None.

None

None

None

None

None

None

continued

Version 0.92

intel

Status Code Classes

Table 3-60 Progress and Error Code Operations: Runtime Services Subclass (continued)

Type of
Code Operation

Progress EFI_SW_RS_PC_GET_NEXT_
(cont.) VARIABLE_NAME

EFI_SW_RS_PC_SET_VARIABLE
EFI_SW_RS_PC_GET _NEXT HIGH_
MONOTONIC_COUNT
EFI_SW_RS_PC_RESET _SYSTEM

0x100B-0x7FFF

Error 0x1000-0x7FFF

Description

Get next variable name service;
see EFI Specification.

Set variable service; see EFI
Specification.

Get next high monotonic count
service; see EFI| Specification.
Reset system service; see EFI
Specification.

Reserved for future use by this
specification.

Reserved for future use by this
specification.

Extended

Data

None

None

None

None

NA

NA

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-

specific operations listed above:
e Progress Code Definitions

DXE Services Subclass

This subclass applies to any DXE Service that present in the EFI DXE Services Table.

Progress and Error Code Operations

In addition to the standard progress and error codes that are defined for the Host Software class, the

table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 3-61. Progress and Error Code Operations: DXE Services Subclass

Type of
Code Operation

Progress EFI_SW_DS_PC_ADD_
MEMORY_SPACE

EFI_SW_DS_PC_ALLOCATE_MEMORY_
SPACE

EFI_SW_DS_PC_FREE_MEMORY_SPACE

EFI_SW_DS_PC_REMOVE_MEMORY_
SPACE

EFI_SW_DS_PC_GET_MEMORY_SPACE_
DESCRIPTOR

Version 0.92 December 2004

Description

Add memory to GCD. See DXE
CIS.

Allocate memory from GCD. See
DXE CIS.

Free memory from GCD. See
DXE CIS.

Remove memory from GCD. See
DXE CIS.

Get memory descriptor from
GCD. See DXE CIS.

Extended

Data

None

None

None

None

None

continued

71

Status Code Specification

72

intel

Table 3-61 Progress and Error Code Operations: DXE Services Subclass (continued)

Type of
Code

Progress
(cont.)

Error

Operation

EFI_SW_DS_PC_SET _MEMORY_SPACE_
ATTRIBUTES

EFI_SW_DS_PC_GET_MEMORY_SPACE_
MAP

EFI_SW_DS_PC_ADD_IO_SPACE
EFI_SW_DS_PC_ALLOCATE_IO_SPACE

EFI_SW_DS_PC_FREE_IO_SPACE
EFI_SW_DS_PC_REMOVE_IO_SPACE
EFI_SW_DS_PC_GET_IO_SPACE_
DESCRIPTOR
EFI_SW_DS_PC_GET_IO_SPACE_MAP
EFI_SW_DS_PC_DISPATCH
EFI_SW_DS_PC_SCHEDULE
EFI_SW_DS_PC_TRUST
EFI_SW_DS_PC_PROCESS_FIRMWARE_
VOLUME

0x1011-0x7FFF

0x1000-0x7FFF

Description

Set attributes of memory in GCD.
See DXE CIS.

Get map of memory space from
GCD. See DXE CIS.

Add I/O to GCD. See DXE CIS.

Allocate 1/O from GCD. See DXE
CIS.

Free 1/0 from GCD. See DXE
ClIs.

Remove I/O space from GCD.
See DXE CIS.

Get I/O space descriptor from
GCD. See DXE CIS.

Get map of 1/0 space from the
GCD. See DXE CIS.

Dispatch DXE drivers from a
firmware volume. See DXE CIS.

Clear the schedule on request flag
for a driver. See DXE CIS.

Promote a file to trusted state.
See DXE CIS.

Dispatch all drivers in a firmware
volume. See DXE CIS.

Reserved for future use by this
specification.

Reserved for future use by this
specification.

Extended
Data
None

None

None

None

None

None

None

None

None

None

None

None

Related Definitions

See the following topic in Code Definitions: Host Software Class for definitions of the subclass-

specific operations listed above:

Progress Code Definitions

December 2004

Version 0.92

4
Code Definitions

Introduction

This section provides the code definitions for the following data types and structures for status
codes:

e Data structures and types that are common to all status codes

e Progress, error, and debug codes that are common to all classes

e Class definitions

e Subclass definitions for each status code class

e Extended error data

Common Status Code Definitions

Common Status Code Definitions Overview

This section defines the data structures that are common to all status codes. For class- and
subclass-specific information, see Class Definitions.

Data Structures

Status Code Common Data Structures

See the ReportStatusCode () declaration in the DXE CIS for definitions and details on the
following basic data structures:

e EFI_STATUS_CODE_TYPE and defined severities

e EFI_PROGRESS_CODE

e EFI_ERROR_CODE

e EFI_DEBUG_CODE

e EFI_STATUS_CODE_VALUE

Version 0.92 December 2004 73

in
Status Code Specification tel

Extended Data Header
EFI_STATUS CODE_DATA

Summary

The definition of the status code extended data header. The data will follow HeaderSize bytes
from the beginning of the structure and is Size bytes long.

Related Definitions

typedef struct {
UINT16 HeaderSize;
UINT16 Size;
EF1_GUID Type;

} EFI_STATUS _CODE_DATA;

Parameters
HeaderSize
The size of the structure. This is specified to enable future expansion.
Size
The size of the data in bytes. This does not include the size of the header structure.
Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in this specification.

Description

The status code information may be accompanied by optional extended data. The extended data
begins with a header. The header contains a Type field that represents the format of the extended
data following the header. This specification defines two GUIDs and their meaning. If these GUIDs
are used, the extended data contents must follow this specification. Extended data formats that are
not compliant with this specification are permitted, but they must use different GUIDs. The format
of the extended data header is defined in the DXE CIS, but it is duplicated here for convenience.

74 December 2004 Version 0.92

n
Intel Code Definitions

EFI_STATUS_CODE_STRING_DATA

Summary
Defines a string type of extended data.

GUID

#define EFI1_STATUS_CODE_DATA TYPE_STRING_GUID \
{ 0x92D11080, O0x496F, 0x4D95, OxBE, Ox7E, Ox03, 0x74, 0x88, 0x38,
0x2B, OxOA }

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader;
EFlI _STRING TYPE StringType;
EFlI STATUS CODE STRING String;

} EFI1_STATUS_CODE_STRING_DATA;

Parameters

DataHeader
The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_STATUS_CODE_STRING_DATA) — HeaderSize, and
DataHeader . Type should be
EFlI STATUS CODE DATA TYPE STRING GUID.

StringType
Specifies if the string is ASCII or Unicode. Type EF1 STRING TYPE is defined in
"Related Definitions" below.

String
A pointer to a null-terminated ASCII or Unicode string. Type EFlI_STRING TYPE
is defined in "Related Definitions™ below.

Description

This data type defines a string type of extended data. A string can accompany any status code. The
string can provide additional information about the status code. The string can be ASCII, Unicode,
or an HII token/GUID pair.

Version 0.92 December 2004 75

in
Status Code Specification tel

76

Related Definitions

//**

// EFI1_STRING_TYPE

//**

typedef enum {
EfiStringAscii,
EfiStringUnicode,
EfiStringToken

} EFI_STRING_TYPE;

EfiStringAscii
A NULL-terminated ASCII string.
EfiStringUnicode

A double NULL-terminated Unicode string.
EfiStringToken

AnEFI STATUS CODE STRING TOKEN representing the string. The actual
string can be obtained by querying the HII database.

//**

// EF1_STATUS_CODE_STRING_TOKEN

//**

//

// Hl1l string token

//

typedef struct {
EFI_HI1_HANDLE Handle;
STRING_REF Token;

} EFI1_STATUS_CODE_STRING_TOKEN;

Handle

The HII handle of the string pack, which can be used to retrieve the string. Itis a
dynamic value that may not be the same for different boots. Type
EF1_HI1_HANDLE is defined in EFI_HI11_PROTOCOL .NewPack() in the
Intel® Platform Innovation Framework for EFI Architecture Human Interface
Infrastructure Specification.

Token

When combined with the HII handle, the string token can be used to retrieve the
string. Type STRING_REF is defined in EFI_HI1_STRING_PACK in the Intel®
Platform Innovation Framework for EFI Architecture Human Interface
Infrastructure Specification.

December 2004 Version 0.92

n
Intel Code Definitions

//**

// EF1_STATUS_CODE_STRING

//**

//

// String structure

//

typedef union {
CHARS8 Ascii[];
CHAR16 Unicode[];

EFI_STATUS CODE STRING TOKEN Hii;
} EFI_STATUS_CODE_STRING;

Ascii
ASCII formatted string.
Unicode
Unicode formatted string.

HII handle/token pair. Type EF1_STATUS CODE_STRING TOKEN is defined
above.

Version 0.92 December 2004 77

in
Status Code Specification tel

Status Code-Specific Data GUID

EFI_STATUS_CODE_SPECIFIC_DATA_GUID

78

Summary

Indicates that the format of the accompanying data depends upon the status code value but follows
this specification.

GUID

#define EFI_STATUS CODE _SPECIFIC _DATA GUID \
{0x335984bd,0xe805,0x409a,0xb8,0x¥f8,0xd2,0x7e,
Oxce,0x5f,0xf7,0xa6}

Description

This GUID indicates that the format of the accompanying data depends upon the status code value
but follows this specification. This specification defines the format of the extended data for several
status code values. For example, EF1 DEBUG ASSERT DATA defines the extended error data
for the error code EFI SW EC ILLEGAL SOFTWARE STATE. The agent reporting this error
condition can use this GUID if the extended data follows the format defined in
EFI_DEBUG_ASSERT_ DATA.

If the consumer of the status code detects this GUID, it must look up the status code value to
correctly interpret the contents of the extended data.

This specification declares certain ranges of status code values as OEM specific. Because this
specification does not define the meaning of status codes in these ranges, the extended data for
these cannot use this GUID. The OEM defining the meaning of the status codes is responsible for
defining the GUID that is to be used for associated extended data.

December 2004 Version 0.92

n
Intel Code Definitions

Enumeration Schemes
Operation Code Enumeration Scheme

Summary

All operation codes (regardless of class and subclass) use the progress code partitioning scheme
listed in the table below.

Table 4-1. Progress Code Enumeration Scheme

Operation Description

0x0000-0x0FFF These operation codes are common to all the subclasses in a given class.
These values are used to represent operations that are common to all
subclasses in a given class. For example, all the I/O buses in the I/O Bus
subclasses share an operation code that represents the reset operation,
which is a common operation for most buses. It is possible that certain
operation codes in this range will not be applicable to certain subclasses.
It is also possible that the format of the extended data will vary from one
subclass to another. If the subclass does not define the format of the
extended data, extended data is not required.

These codes are reserved by this specification.

0x1000-0x7FFF These operation codes are specific to the subclass and represent
operations that are specific to the subclass. These codes are reserved by
this specification.

0x8000-0xFFFF Reserved for OEM use.

Prototype

//

// General partitioning scheme for Progress and Error Codes
// 0x0000-0OxOFFF - Shared by all subclasses in a given class
// 0x1000-0x7FFF - Subclass Specific

// 0x8000-OxFFFF - OEM specific

//
#define EFI1_SUBCLASS_SPECIFIC 0x1000
#define EFI1_OEM_SPECIFIC 0x8000

Version 0.92 December 2004 79

in
Status Code Specification tel

Debug Code Enumeration Scheme

Summary

All classes share these debug operation codes. It is not currently expected that operation codes
have a lot of meaning for debug information. Only one debug code is currently defined by this
specification and it is shared by all classes and subclasses.

Table 4-2. Debug Code Enumeration Scheme

Debug Code Description
0x0000-0x7FFF Reserved for future use by this specification.
0x8000-0xFFFF Reserved for OEM use.
Prototype
//

// Debug Code definitions for all classes and subclass

// Only one debug code is defined at this point and should
// be used for anything that gets sent to debug stream.

//

#define EFI_DC_UNSPECIFIED 0x0

80 December 2004 Version 0.92

n
Intel Code Definitions

Extended Error Data
EFlI_DEVICE_PATH_EXTENDED_ DATA

Summary

Extended data about the device path, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
EFI STATUS CODE DATA DataHeader;

UINTS DevicePath[];
} EFI1_DEVICE_PATH_EXTENDED_DATA;

Parameters
DataHeader
The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EFI STATUS CODE DATA).DataHeader.Size should be the size
of variable-length DevicePath, and DataHeader .Size is zero for a virtual

device that does not have a device path. DataHeader . Type should be
EFI STATUS CODE SPECIFIC DATA GUID.

DevicePath

The device path to the controller or the hardware device. Note that this parameter is a
variable-length device path structure and not a pointer to such a structure. This
structure is populated only if it is a physical device. For virtual devices, the Size
field in DataHeader is set to zero and this field is not populated.

Description

The device path is used to point to the physical device in case there is more than one device
belonging to the same subclass. For example, the system may contain two USB keyboards and one
PS/2* keyboard. The driver that parses the status code can use the device path extended data to
differentiate between the three. The index field is not useful in this case because there is no
standard numbering convention. Device paths are preferred over using device handles because
device handles for a given device can change from one boot to another and do not mean anything
beyond Boot Services time. In certain cases, the bus driver may not create a device handle for a
given device if it detects a critical error. In these cases, the device path extended data can be used to
refer to the device, but there may not be any device handles with an instance of
EF1_DEVICE_PATH_PROTOCOL that matches DevicePath. The variable device path structure
is included in this structure to make it self sufficient. This property is important for consumers that
may read this data from a data repository such as the data hub.

Version 0.92 December 2004 81

in
Status Code Specification tel

EFI_DEVICE_HANDLE_EXTENDED_DATA

Summary

Extended data about the device handle, which is used for many errors and progress codes to point to
the device.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader;
EFI_HANDLE Handle;

} EFI_DEVICE_HANDLE EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_DEVICE_HANDLE_EXTENDED DATA) - HeaderSize, and
DataHeader . Type should be EF1 STATUS CODE SPECIFIC DATA GUID.

Handle
The device handle.

Description

The handle of the device with which the progress or error code is associated. The handle is
guaranteed to be accurate only at the time the status code is reported. Handles are dynamic entities
between boots, so handles cannot be considered to be valid if the system has reset subsequent to the
status code being reported. Handles may be used to determine a wide variety of useful information
about the source of the status code.

82 December 2004 Version 0.92

n
Intel Code Definitions

EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Summary
This structure defines extended data describing a PCI resource allocation error.

Prototype

® noTE
The following structure contains variable-length fields and cannot be defined as a C-style structure.

typedef struct.{

EF1 STATUS CODE DATA DataHeader;

UINT32 Bar;

UINT16 DevicePathSize;

UINT16 RegResSize;

UINT16 Al locResSize;

UINTS DevicePath[];

UINTS ReqRes[]:

UINTS AllocRes|[];

) EF1_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Parameters

DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader.Size should be
(DevicePathSize + DevicePathSize + DevicePathSize +
sizeof(UINT32) + 3 * sizeof (UINT16)), and DataHeader.Type
should be EF1 _STATUS CODE SPECIFIC DATA GUID.

Bar
The PCI BAR. Applicable only for PCI devices. Ignored for all other devices.
DevicePathSize
DevicePathSize should be zero if it is a virtual device that is not associated with
a device path. Otherwise, this parameter is the length of the variable-length
DevicePath.
RegResSize

Represents the size the ReqRes parameter. ReqResSi ze should be zero if the
requested resources are not provided as a part of extended data.

AllocResSize

Represents the size the Al locRes parameter. Al locResSi ze should be zero if
the allocated resources are not provided as a part of extended data.

Version 0.92 December 2004 83

in
Status Code Specification tel

DevicePath

The device path to the controller or the hardware device that did not get the requested
resources. Note that this parameter is the variable-length device path structure and
not a pointer to this structure.

ReqgRes
The requested resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

Al locRes

The allocated resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

Description

This extended data conveys details for a PCI resource allocation failure error. See the PCI
specification and the ACPI specification for details on PCI resource allocations and the format for
resource descriptors. This error does not detail why the resource allocation failed. It may be due to
a bad resource request or a lack of available resources to satisfy a valid request. The variable device
path structure and the resource structures are included in this structure to make it self sufficient.
This property is important for consumers that may read this data from a data repository such as the
data hub.

84 December 2004 Version 0.92

n
Intel Code Definitions

Class Definitions

Summary

Classes correspond to broad types of system pieces. These types are chosen to provide a reasonable
initial classification of the system entity whose status is represented. There are three classes of
hardware and one class for software. These classes are listed in the table below. Each class is made
up of several subclasses. See Status Code Classes for descriptions of each of these classes.

Table 4-3. Class Definitions

Type of Class = Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT
User-Accessible EFI_PERIPHERAL
Peripherals
1/0 Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Prototype
//

// Class definitions

// Values of 4-127 are reserved for future use by this
// specification.

// Values iIn the range 127-255 are reserved for OEM use.

//

#define EFI_COMPUTING_UNIT 0x00000000
#define EFI_PERIPHERAL 0x01000000
#define EF1_10 BUS 0x02000000
#define EF1_SOFTWARE 0x03000000

Version 0.92 December 2004 85

in
Status Code Specification tel

Hardware Classes
Computing Unit Class

EFI_COMPUTING_UNIT Class

The table below lists the subclasses defined in the Computing Unit class. See Subclass Definitions
for their code definitions.

Table 4-4. Defined Subclasses: Computing Unit Class

Subclass Code Name

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED

Host processor EFI_COMPUTING_UNIT_HOST_PROCESSOR
Firmware processor EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR
Service processor EFI_COMPUTING_UNIT_SERVICE_PROCESSOR
I/0O processor EFI_COMPUTING_UNIT_IO_PROCESSOR

Cache EFI_COMPUTING_UNIT_CACHE

Memory EFl_COMPUTING_UNIT_MEMORY

Chipset EFlI_COMPUTING_UNIT_CHIPSET

Subclass Definitions

Summary

Definitions for the Computing Unit subclasses. See Subclasses in Status Code Classes: Computing
Unit Class for descriptions of these subclasses.

86 December 2004 Version 0.92

n
Intel Code Definitions

Prototype

//

// Computing Unit Subclass definitions.

// Values of 8-127 are reserved for future use by this
// specification.

// Values of 128-255 are reserved for OEM use.

//

#define EFI_COMPUTING_UNIT_UNSPECIFIED (EF1_COMPUTING_UNIT |
0x00000000)

#define EFI_COMPUTING_UNIT_HOST_PROCESSOR (EFI_COMPUTING_UNIT |
0x00010000)

#define EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR
(EF1_COMPUTING_UNIT |

0x00020000)

#define EFI_COMPUTING_UNIT_10_PROCESSOR (EFI_COMPUTING_UNIT |

0x00030000)

#define EFI_COMPUTING_UNIT_CACHE (EF1_COMPUTING_UNIT |

0x00040000)

#define EFI_COMPUTING_UNIT_MEMORY (EF1_COMPUTING_UNIT |

0x00050000)

#define EFI_COMPUTING_UNIT_CHIPSET (EF1_COMPUTING_UNIT |

0x00060000)

Version 0.92 December 2004 87

in
Status Code Specification tel

Progress Code Definitions

Summary

Progress code definitions for the Computing Unit class and all subclasses. See Progress Code
Operations in Status Code Classes: Computing Unit Class for descriptions of these progress codes.
The following subclasses define additional subclass-specific progress code operations, which are
included below

e Host processor

e Cache

e Memory

Prototype

//
// Computing Unit Class Progress Code definitions.
// These are shared by all subclasses.

//

#define EFI_CU_PC_INIT_BEGIN 0x00000000

#define EF1_CU_PC_INIT_END 0x00000001

//

// Computing Unit Unspecified Subclass Progress Code definitions.

//

//

// Computing Unit Host Processor Subclass Progress Code definitions.

//

#define EFI_CU_HP_PC_POWER_ON_INIT (EF1_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI1_CU_HP_PC_CACHE_INIT (EF1_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_PC_RAM_INIT (EFI_SUBCLASS_SPECIFIC | 0x00000002)

#define EF1_CU_HP_PC_MEMORY_CONTROLLER_INIT
(EF1_SUBCLASS_SPECIFIC | 0x00000003)

88 December 2004 Version 0.92

intel

#define
#define
#define
#define
#define

//

EF1_CU_HP_PC_I0_INIT
EF1_CU_HP_PC_BSP_SELECT

EF1_CU_HP_PC_BSP_RESELECT

EF1_CU_HP_PC_AP_INIT
EF1_CU_HP_PC_SMM_INIT

(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC

Code Definitions

0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)

// Computing Unit Firmware Processor Subclass Progress Code definitions.

//

//

// Computing Unit 10 Processor Subclass Progress Code definitions.

//

//

// Computing Unit Cache Subclass Progress Code definitions.

//

#define EF1_CU_CACHE_PC_PRESENCE_DETECT

(EFI1_SUBCLASS_SPECIFIC

#define EFI_CU_CACHE_PC_CONFIGURATION (EFI_SUBCLASS_SPECIFIC

//

// Computing Unit Memory Subclass Progress Code definitions.

//
#define
#define

#define
#define
#define
#define
#define

//

EF1_CU_MEMORY_PC_SPD_READ

(EF1_SUBCLASS_SPECIFIC

EF1_CU_MEMORY_PC_PRESENCE_DETECT

EF1_CU_MEMORY_PC_TIMING

EFI_CU_MEMORY_PC_CONFIGURING
EF1_CU_MEMORY_PC_OPTIMIZING

EFI_CU_MEMORY_PC_INIT
EF1_CU_MEMORY_PC_TEST

(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC

// Computing Unit Chipset Subclass Progress Code definitions.

//

Version 0.92

December 2004

0x00000000)
0x00000001)

0x00000000)

0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)

89

intel

Status Code Specification

Error Code Definitions

Summary
Error code definitions for the Computing Unit class and all subclasses. See Error Code Operations
in Status Code Classes: Computing Unit Class for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

e Host processor
e Firmware processor
e Cache

e Memory

Prototype
//
// Computing Unit Class Error Code definitions.

// These are shared by all subclasses.
//

#define EF1_CU_EC _NON_SPECIFIC 0x00000000

#define EFI_CU_EC_DISABLED 0x00000001

#define EF1_CU_EC_NOT_SUPPORTED 0x00000002

#define EF1_CU_EC _NOT_DETECTED 0x00000003

#define EFI_CU_EC_NOT_CONFIGURED 0x00000004

//

// Computing Unit Unspecified Subclass Error Code definitions.

//

//

// Computing Unit Host Processor Subclass Error Code definitions.

//

#define EF1_CU_HP_EC_INVALID_TYPE (EF1_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI1_CU_HP_EC MISMATCH (EF1_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_EC_TIMER_EXPIRED (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI1_CU_HP_EC_SELF_TEST (EF1_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_EC_INTERNAL (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EF1_CU_HP_EC_THERMAL (EF1_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_EC_LOW_VOLTAGE (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EF1_CU_HP_EC HIGH_VOLTAGE (EF1_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_HP_EC_CACHE (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI1_CU_HP_EC_MICROCODE_UPDATE (EF1_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_CU_HP_EC_CORRECTABLE (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI1_CU_HP_EC_UNCORRECTABLE (EF1_SUBCLASS_SPECIFIC | 0x0000000C)
#define EF1_CU_HP_EC_NO_MICROCODE_UPDATE (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
//

// Computing Unit Firmware Processor Subclass Error Code definitions.

//

#define EF1_CU_FP_EC_HARD_FAIL
#define EF1_CU_FP_EC_SOFT FAIL
#define EF1_CU_FP_EC_COMM_ERROR

(EF1_SUBCLASS_SPECIFIC | 0x00000000)
(EF1_SUBCLASS_SPECIFIC | 0x00000001)
(EF1_SUBCLASS_SPECIFIC | 0x00000002)

90 December 2004 Version 0.92

intel

//

// Computing Unit 10 Processor Subclass Error Code definitions.

//

//

// Computing Unit Cache Subclass Error Code definitions.

//

#define
#define
#define
#define

//

EF1_CU_CACHE_EC_INVALID _TYPE (EFI_SUBCLASS_SPECIFIC
EF1_CU_CACHE_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC
EF1_CU_CACHE_EC_INVALID_SIZE (EFI_SUBCLASS_SPECIFIC
EF1_CU_CACHE_EC_MISMATCH (EF1_SUBCLASS_SPECIFIC

// Computing Unit Memory Subclass Error Code definitions.

//

#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define

//

EF1_CU_MEMORY_EC_INVALID_TYPE (EFI_SUBCLASS_SPECIFIC
EF1_CU_MEMORY_EC_INVALID_SPEED (EFI_SUBCLASS_SPECIFIC
EF1_CU_MEMORY_EC_CORRECTABLE (EFI_SUBCLASS_SPECIFIC
EF1_CU_MEMORY_EC_UNCORRECTABLE (EFI_SUBCLASS_SPECIFIC

EF1_CU_MEMORY_EC_SPD_FAIL (EF1_SUBCLASS_SPECIFIC
EFI_CU_MEMORY_EC_INVALID_SIZE (EFI_SUBCLASS_SPECIFIC
EF1_CU_MEMORY_EC_MISMATCH (EF1_SUBCLASS_SPECIFIC

EF1_CU_MEMORY_EC_S3_RESUME_FAIL

(EF1_SUBCLASS_SPECIFIC
EFI_CU_MEMORY_EC_UPDATE_FAIL (EFI_SUBCLASS_SPECIFIC
EF1_CU_MEMORY_EC_NONE_DETECTED (EFI_SUBCLASS_SPECIFIC
EFI_CU_MEMORY_EC_NONE_USEFUL (EFI_SUBCLASS_SPECIFIC

// Computing Unit Chipset Subclass Error Code definitions.

//

Version 0.92

December 2004

Code Definitions

0x00000000)
0x00000001)
0x00000002)
0x00000003)

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)

0x00000007)
0x00000008)
0x00000009)
0x0000000A)

91

in
Status Code Specification tel

Extended Error Data

Host Processor Subclass

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA

92

Summary
This structure provides details about the computing unit voltage error.

Prototype
typedef struct {
EF1 STATUS CODE DATA DataHeader ;
EF1 EXP BASE10 DATA Voltage;
EF1_EXP_BASE10 DATA Threshold;
} EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA;
Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Voltage

The voltage value at the time of the error.
Threshold

The voltage threshold.

Description

This structure provides the voltage at the time of error. It also provides the threshold value
indicating the minimum or maximum voltage that is considered an error. If the voltage is less then
the threshold, the error indicates that the voltage fell below the minimum acceptable value. If the
voltage is greater then the threshold, the error indicates that the voltage rose above the maximum
acceptable value.

December 2004 Version 0.92

intel

EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA

Code Definitions

Summary
This structure provides details about the microcode update error.

Prototype

typedef struct {
EF1 STATUS CODE DATA DataHeader;
UINT32 Version;

} EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID

Version

The version of the microcode update from the header.

Version 0.92 December 2004 93

in
Status Code Specification tel

EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA

Summary
This structure provides details about the computing unit timer expiration error.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader ;
EFI_EXP_BASE10_DATA TimerLimit;
} EF1_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

TimerLimit

The number of seconds that the computing unit timer was configured to expire.

Description
The timer limit provides the timeout value of the timer prior to expiration.

94 December 2004 Version 0.92

intel

EFl_HOST_PROCESSOR_MISMATCH_ERROR_DATA

Code Definitions

Summary
This structure defines extended data for processor mismatch errors.

Prototype

typedef struct {
EF1 STATUS CODE DATA DataHeader ;
UINT32 Instance;
UINT16 Attributes;
} EF1_HOST_PROCESSOR_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_ HOST_PROCESSOR_MISMATCH_ERROR_DATA) -
HeaderSize , and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Instance

The unit number of the computing unit that does not match.
Attributes

The attributes describing the failure. See “Related Definitions” below for the type
declarations.

Description

This provides information to indicate which processors mismatch, and how they mismatch. The
status code contains the instance number of the processor that is in error. This structure's
Instance indicates the second processor that does not match. This differentiation allows the
consumer to determine which two processors do not match. The Attributes indicate what
mismatch is being reported. Because Attributes is a bit field, more than one mismatch can be
reported with one error code.

Version 0.92 December 2004 95

Status Code Specification

96

Related Definitions

//***

// EFI_COMPUTING_UNIT_MISMATCH_ATTRIBUTES

//***

//

// All other attributes are reserved for future use and

// must
//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

be initialized to O.

EFI_COMPUTING_UNIT_MISMATCH_SPEED
EF1_COMPUTING_UNIT_MISMATCH_FSB_SPEED
EF1_COMPUTING_UNIT_MISMATCH_FAMILY
EF1_COMPUTING_UNIT_MISMATCH_MODEL
EF1_COMPUTING_UNIT_MISMATCH_STEPPING
EF1_COMPUTING_UNIT_MISMATCH_CACHE_SIZE
EF1_COMPUTING_UNIT_MISMATCH_OEM1
EF1_COMPUTING_UNIT_MISMATCH_OEM2
EF1_COMPUTING_UNIT_MISMATCH_OEM3
EF1_COMPUTING_UNIT_MISMATCH_OEM4

December 2004

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x1000
0x2000
0x4000
0x8000

intel

Version 0.92

intel

EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA

Code Definitions

Summary
This structure provides details about the computing unit thermal failure.

Prototype
typedef struct {
EFI STATUS CODE DATA DataHeader ;
EFI_EXP_BASE10 DATA Temperature;
EFI_EXP_BASE10 DATA Threshold;
} EF1_COMPUTING_UNIT_THERMAL_ERROR_DATA;
Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA) -
HeaderSize , and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Temperature

The thermal value at the time of the error.
Threshold

The thermal threshold.

Description

This structure provides the temperature at the time of error. It also provides the threshold value
indicating the minimum temperature that is considered an error.

Version 0.92 December 2004 97

Status Code Specification

EFI_CACHE_INIT_DATA

Summary

This structure provides cache initialization data.

Prototype

typedef struct {
EFI _STATUS CODE DATA
UINT32
EFI _INIT CACHE TYPE
} EFI_CACHE_INIT_DATA;

Parameters
DataHeader

DataHeader ;
Level;

Type;

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be

sizeof (EFI_CACHE INIT_DATA) - HeaderSize,and
DataHeader . Type should be EFI STATUS CODE SPECIFIC DATA GUID.

Level

The cache level. Starts with 1 for level 1 cache.

Type

The type of cache. Type EF1_INIT CACHE TYPE is defined in "Related

Definitions" below.

Description

This structure contains the cache level and type information.

Related Definitions

//***

// EF1_INIT_CACHE_TYPE

//***

// Valid cache types

typedef enum {
EfilnitCacheDatalOnly,
EfilnitCachelnstrOnly,
EfilnitCacheBoth,
EfiInitCacheUnspecified
} EFI1_INIT_CACHE_TYPE;

98 December 2004

Version 0.92

n
Intel Code Definitions

EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA

Summary
This structure provides information about the disabled computing unit.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader ;

UINT32 Cause;
BOOLEAN SoftwareDisabled;
} EF1_COMPUTING_UNIT_CPU_DISABLED ERROR_DATA;
Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_COMPUTING_UNIT_CPU_DISABLED ERROR_DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Cause

The reason for disabling the processor. See "Related Definitions™ below for defined
values.

SoftwareDisabled

TRUE if the processor is disabled via software means such as not listing it in the
ACPI tables. Such a processor will respond to Interprocessor Interrupts (IPIs).
FALSE if the processor is hardware disabled, which means it is invisible to software
and will not respond to IPIs.

Description

This structure provides details as to why and how the computing unit was disabled. The causes
should cover the typical reasons a processor would be disabled. How the processor was disabled is
important because there are distinct differences between hardware and software disabling.

Version 0.92 December 2004 99

Status Code Specification

100

Related Definitions

intel

//**

// EF1_CPU_STATE_CHANGE_CAUSE

//**

typedef UINT32 EFI_CPU_STATE_CHANGE_CAUSE;

//

// The reason a processor was disabled

//

#define EFI_CPU_CAUSE_ INTERNAL_ERROR 0x0001
#define EFI_CPU_CAUSE_ THERMAL_ERROR 0x0002
#define EFI_CPU_CAUSE_SELFTEST_FAILURE 0x0004
#define EFI_CPU_CAUSE_PREBOOT_TIMEOUT 0x0008
#define EFI_CPU_CAUSE_FAILED TO_ START 0x0010
#define EFI_CPU_CAUSE_CONFIG_ERROR 0x0020
#define EF1_CPU_CAUSE_USER_SELECTION 0x0080
#define EF1_CPU_CAUSE_BY_ASSOCIATION 0x0100
#define EFI1_CPU_CAUSE_UNSPECIFIED 0x8000

Following is a description of the fields in the above definition.

EFI_CPU_CAUSE_INTERNAL_ERROR

EFI_CPU_CAUSE_THERMAL_ERROR
EFI_CPU_CAUSE_SELFTEST_FAILURE
EFI_CPU_CAUSE_PREBOOT_TIMEOUT

EFI_CPU_CAUSE_FAILED_TO_START

EFI_CPU_CAUSE_CONFIG_ERROR
EFI_CPU_CAUSE_USER_SELECTION

EFI_CPU_CAUSE_BY_ASSOCIATION

EFI_CPU_CAUSE_UNSPECIFIED

The processor was disabled because it signaled an internal
error (IERR).

The processor was disabled because of a thermal error.
The processor was disabled because it failed BIST.

The processor started execution, but it timed out during a
particular task and was therefore disabled.

The processor was disabled because it failed to start
execution (FRB-3 timeout).

The processor was disabled due to a configuration error.

The processor state was changed due to user selection.
Applicable to enabling and disabling of processors.

The processor state was changed due because it shared
the state with another processor and the state of the other
processor was changed.

The CPU state was changed due to unspecified reason.
Applicable to enabling and disabling of processors.

December 2004 Version 0.92

n
Intel Code Definitions

Memory Subclass

EFI_MEMORY_EXTENDED_ERROR_DATA

Summary
This structure defines extended data describing a memory error.

Prototype
typedef struct {
EF1 STATUS CODE DATA DataHeader;
EFI MEMORY ERROR GRANULARITY Granularity;
EFI MEMORY ERROR OPERATION Operation;
UINT32 Syndrome;
EFI_PHYSICAL_ADDRESS Address;
UINTN Resolution;
} EFI_MEMORY_EXTENDED ERROR_DATA;
Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_EXTENDED ERROR_DATA) - HeaderSize, and
DataHeader . Type should be EFI STATUS CODE SPECIFIC DATA GUID.

Granularity

The error granularity type. Type EFI MEMORY ERROR GRANULARITY is defined
in "Related Definitions™ below.

Operation

The operation that resulted in the error being detected. Type
EFI_MEMORY ERROR OPERATION is defined in "Related Definitions™ below.

Syndrome

The error syndrome, vendor-specific ECC syndrome, or CRC data associated with
the error. If unknown, should be initialized to 0.

Address

The physical address of the error. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

Resolution
The range, in bytes, within which the error address can be determined.

Description

This structure provides specific details about the memory error that was detected. It provides
enough information so that consumers can identify the exact failure and provides enough
information to enable corrective action if necessary.

Version 0.92 December 2004 101

Status Code Specification

102

Related Definitions

intel

//***

// EFI_MEMORY_ERROR_GRANULARITY

//***

typedef UINT8 EFI_MEMORY_ERROR_GRANULARITY;

//

// Memory Error Granularities

//

#define EFI1_MEMORY_ERROR_OTHER
#define EFI1_MEMORY_ERROR_UNKNOWN
#define EFI1_MEMORY_ERROR_DEVICE
#define EF1_MEMORY_ERROR_PARTITION

0x01
0x02
0x03
0x04

//***

// EFI_MEMORY_ERROR_OPERATION

//***

typedef UINT8 EFI_MEMORY_ERROR_OPERATION;

//

// Memory Error Operations

//

#define EFI_MEMORY_OPERATION_OTHER

#define EFI_MEMORY_OPERATION_UNKNOWN
#define EFI_MEMORY_OPERATION_READ

#define EFI_MEMORY_OPERATION_WRITE

#define EFI1_MEMORY_OPERATION_PARTIAL_WRITE

December 2004

0x01
0x02
0x03
0x04
0x05

Version 0.92

n
Intel Code Definitions

EFI_STATUS_CODE_DIMM_NUMBER

Summary
This structure defines extended data describing a DIMM.

Prototype

typedef struct {
EF1 STATUS CODE DATA DataHeader;
UINT16 Array;
UINT16 Device;

} EFI1_STATUS_CODE_DIMM_NUMBER;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_STATUS CODE_DIMM_NUMBER) - HeaderSize, and
DataHeader . Type should be EFI STATUS CODE SPECIFIC DATA GUID.

Array

The memory array number.
Device
The device number within that Array.

Description

This extended data provides some context that consumers can use to locate a DIMM within the
overall memory scheme. The Array and Device numbers may indicate a specific DIMM, or
they may be populated with the group definitions in "Related Definitions" below.

Related Definitions
//
// Definitions to describe Group Operations
// Many memory init operations are essentially group
// operations.

//

#define EFI_MULTIPLE_MEMORY_DEVICE_OPERATION Oxfffe
#define EFI_ALL_MEMORY_DEVICE_OPERATION OXFFff
#define EFI_MULTIPLE_MEMORY_ARRAY_OPERATION Oxfffe
#define EFI_ALL_MEMORY_ARRAY_OPERATION OXFFff

Version 0.92 December 2004 103

in
Status Code Specification tel

Following is a description of the fields in the above definition:

EFI_MULTIPLE_MEMORY_DEVICE_OPERATION | A definition to describe that the operation is
performed on multiple devices within the array.

EFI_ALL_MEMORY_DEVICE_OPERATION A definition to describe that the operation is
performed on all devices within the array.

EFI_MULTIPLE_MEMORY_ARRAY_OPERATION A definition to describe that the operation is
performed on multiple arrays.

EFI_ALL_MEMORY_ARRAY_OPERATION A definition to describe that the operation is
performed on all the arrays

104 December 2004 Version 0.92

intel

EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA

Code Definitions

Summary
This structure defines extended data describing memory modules that do not match.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader ;
EFlI STATUS CODE DIMM NUMBER Instance;
} EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Instance

The instance number of the memory module that does not match. See the definition
for type EF1 _STATUS CODE DIMM NUMBER.

Description

This extended data may be used to convey the specifics of memory modules that do not match.

Version 0.92 December 2004 105

in
Status Code Specification tel

EFI_MEMORY_RANGE_EXTENDED DATA

Summary
This structure defines extended data describing a memory range.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader;
EFI_PHYSICAL_ADDRESS Start;
EFI_PHYSICAL_ADDRESS Length;

} EF1_MEMORY_RANGE_EXTENDED DATA;

Parameters
DataHeader
The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be

sizeof (EFI_MEMORY_RANGE_EXTENDED_ DATA) - HeaderSize, and
DataHeader . Type should be EFI STATUS CODE SPECIFIC DATA GUID.

Start

The starting address of the memory range. Type EFI_PHYSICAL_ADDRESS is
defined in Al locatePages() in the EFI 1.10 Specification.

Length
The length in bytes of the memory range.

Description

This extended data may be used to convey the specifics of a memory range. Ranges are specified
with a start address and a length.

106 December 2004 Version 0.92

intel

User-Accessible Peripherals Class

Code Definitions

EFI_PERIPHERAL Class

The table below lists the subclasses defined in the User-Accessible Peripheral class. See Subclass
Definitions in for their code definitions.

Subclass Definitions

Table 4-5. Defined Subclasses: User-Accessible Peripheral Class

Subclass Code Name

Unspecified EFI_PERIPHERAL_UNSPECIFIED
Keyboard EFI_PERIPHERAL_KEYBOARD
Mouse EFI_PERIPHERAL_MOUSE

Local console

Remote console

EFI_PERIPHERAL_LOCAL_CONSOLE
EFI_PERIPHERAL_REMOTE_CONSOLE

Serial port EFI_PERIPHERAL_SERIAL_PORT
Parallel port EFI_PERIPHERAL_PARALLEL_PORT
Fixed media EFI_PERIPHERAL_FIXED_MEDIA

Removable media
Audio input

Audio output

LCD device
Network device
0xOD-0x7F
0x80—0xFF

EFI_PERIPHERAL_REMOVABLE_MEDIA
EFI_PERIPHERAL_AUDIO_INPUT
EFI_PERIPHERAL_AUDIO_OUTPUT
EFI_PERIPHERAL_LCD_DEVICE
EFI_PERIPHERAL_NETWORK

Reserved for future use by this specification.
Reserved for OEM use.

Summary

Definitions for the User-Accessible Peripheral subclasses. See Subclasses in Status Code Classes:
User-Accessible Peripheral Class for descriptions of these subclasses.

Version 0.92

December 2004 107

Status Code Specification

Progress Code Definitions

108

Prototype

//

// Peripheral Subclass definitions.

// Values of 12-127 are reserved for future use by this
// specification.

// Values of 128-255 are reserved for OEM use.

//

#define EFI_PERIPHERAL_UNSPECIFIED
#define EFI_PERIPHERAL_KEYBOARD
#define EFI_PERIPHERAL_MOUSE

#define EFI_PERIPHERAL_LOCAL_CONSOLE
#define EFI_PERIPHERAL_REMOTE_CONSOLE
#define EFI_PERIPHERAL_SERIAL_PORT
#define EFI_PERIPHERAL_PARALLEL_PORT
#define EFI_PERIPHERAL_FIXED_MEDIA
#define EFI_PERIPHERAL_REMOVABLE_MEDIA
#define EFI_PERIPHERAL_AUDIO_INPUT
#define EFI_PERIPHERAL_AUDIO_OUTPUT
#define EFI_PERIPHERAL_LCD_DEVICE
#define EFI_PERIPHERAL_NETWORK

Summary

(EFI_PERIPHERAL
(EF1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL
(EFI1_PERIPHERAL

0x00000000)
0x00010000)
0x00020000)
0x00030000)
0x00040000)
0x00050000)
0x00060000)
0x00070000)
0x00080000)
0x00090000)
0x000A0000)
0x000B0000)
0x000C0000)

Progress code definitions for the User-Accessible Peripheral class and all subclasses. See Progress
Code Operations in Status Code Classes: User-Accessible Peripheral Class for descriptions of these

progress codes.

The following subclasses define additional subclass-specific progress code operations, which are

included below:

o Keyboard
e Mouse

e Serial port

December 2004

Version 0.92

In

Version 0.92

tel

Prototype

//

// Peripheral Class Progress Code definitions.
// These are shared by all subclasses.

//

#define EF1_P_PC_INIT 0x00000000
#define EFI_P_PC_RESET 0x00000001
#define EF1_P_PC DISABLE 0x00000002
#define EF1_P_PC_PRESENCE_DETECT 0x00000003
#define EF1_P_PC_ENABLE 0x00000004
#define EF1_P_PC_RECONFIG 0x00000005
#define EFI_P_PC_DETECTED 0x00000006

//
// Peripheral Class Unspecified Subclass Progress Code definitions.
//

//

// Peripheral Class Keyboard Subclass Progress Code definitions.

//

#define EFI_P_KEYBOARD _PC_CLEAR_BUFFER (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD PC _SELF TEST (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Progress Code definitions.
//

#define EFI_P_MOUSE_PC_SELF_TEST (EF1_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Progress Code definitions.
//

//
// Peripheral Class Remote Console Subclass Progress Code definitions.
//

//
// Peripheral Class Serial Port Subclass Progress Code definitions.
//
#define EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER
(EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Parallel Port Subclass Progress Code definitions.
//

//
// Peripheral Class Fixed Media Subclass Progress Code definitions.
//

December 2004

Code Definitions

109

Status Code Specification

//
// Peripheral
//

//
// Peripheral
//

//
// Peripheral
//

//
// Peripheral
//

//
// Peripheral
//

Class

Class

Class

Class

Class

Error Code Definitions

110

Summary

Removable Media Subclass Progress Code definitions.

Audio Input Subclass Progress Code definitions.

Audio Output Subclass Progress Code definitions.

LCD Device Subclass Progress Code definitions.

Network Subclass Progress Code definitions.

intel

Error code definitions for the User-Accessible Peripheral class and all subclasses. See Error Code
Operations in Status Code Classes: User-Accessible Peripheral Class for descriptions of these error

codes.

The following subclasses define additional subclass-specific error code operations, which are

included below:

o Keyboard
e Mouse

December 2004

Version 0.92

intel

Prototype

//
// Peripheral Class
// These are shared

Code Definitions

Error Code definitions.
by all subclasses.

//

#define EFI_P_EC_NON_SPECIFIC 0x00000000

#define EFI_P_EC_DISABLED 0x00000001

#define EFI_P_EC_NOT_SUPPORTED 0x00000002

#define EFI_P_EC NOT_DETECTED 0x00000003

#define EFI_P_EC_NOT_CONFIGURED 0x00000004

#define EFI_P_EC INTERFACE_ERROR 0x00000005

#define EFI_P_EC_CONTROLLER_ERROR 0x00000006

#define EFI_P_EC_INPUT_ERROR 0x00000007

#define EFI_P_EC_OUTPUT_ERROR 0x00000008

#define EFI_P_EC_RESOURCE_CONFLICT 0x00000009

//

// Peripheral Class Unspecified Subclass Error Code definitions.
//

//

// Peripheral Class Keyboard Subclass Error Code definitions.
//

#define EFI_P_KEYBOARD_EC_LOCKED (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_EC_STUCK_KEY (EFI_SUBCLASS_SPECIFIC | 0x00000001)
/7/

// Peripheral Class Mouse Subclass Error Code definitions.

//

#define EF1_P_MOUSE_

//
// Peripheral Class
//

//
// Peripheral Class
//

//
// Peripheral Class
//

//
// Peripheral Class
//

//
// Peripheral Class
//

Version 0.92

EC_LOCKED (EF1_SUBCLASS_SPECIFIC | 0x00000000)

Local Console Subclass Error Code definitions.

Remote Console Subclass Error Code definitions.

Serial Port Subclass Error Code definitions.

Parallel Port Subclass Error Code definitions.

Fixed Media Subclass Error Code definitions.

December 2004

111

in
Status Code Specification tel

//
// Peripheral Class Removable Media Subclass Error Code definitions.
//

//
// Peripheral Class Audio Input Subclass Error Code definitions.
//

//
// Peripheral Class Audio Output Subclass Error Code definitions.
//

//
// Peripheral Class LCD Device Subclass Error Code definitions.
//

//
// Peripheral Class Network Subclass Error Code definitions.
//

Extended Error Data

The User-Accessible Peripheral class uses the following extended error data definitions:
e EFI DEVICE PATH EXTENDED DATA
e EFI RESOURCE ALLOC FAILURE ERROR DATA

See Common Status Code Definitions: Extended Error Data for definitions.

112 December 2004 Version 0.92

intel

I/0O Bus Class

EFl_IO_BUS Class

Code Definitions

The table below lists the subclasses defined in the I/0 Bus class. See Subclass Definitions for their

code definitions.

Table 4-6. Defined Subclasses: I/O Bus Class

Subclass
Unspecified

PCI

uSB

InfiniBand* architecture
AGP

PC card

Low pin count (LPC)
SCSI
ATA/ATAPI/SATA
Fibre Channel

IP network

SMBus

12C

0xOD—-Ox7F
0x80—-0xFF

Code Name
EFI_IO_BUS_UNSPECIFIED
EFI_IO_BUS_PCI
EFI_IO_BUS_USB
EFl_IO_BUS_IBA
EFI_IO_BUS_AGP
EFI_IO_BUS_PC_CARD
EFI_IO_BUS_LPC
EFI_IO_BUS_SCSI
EFI_IO_BUS_ATA_ATAPI
EFI_IO_BUS_FC
EFI_IO_BUS_IP_NETWORK
EFI_IO_BUS_SMBUS
EFI_IO_BUS_I2C

Reserved for future use by this specification.

Reserved for OEM use.

Subclass Definitions

Summary

Definitions for the 1/0 Bus subclasses. See Subclasses in Status Code Classes: 1/0 Bus Class for

descriptions of these subclasses.

Version 0.92

December 2004

113

Status Code Specification

Prototype
1/

// 10 Bus Subclass definitions.
// Values of 14-127 are reserved for future use

// specification.

// Values of 128-255 are reserved for OEM use.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EF1_10_BUS_UNSPECIFIED
EF1_10_BUS_PCI
EF1_10_BUS_USB
EF1_10_BUS_IBA
EF1_10_BUS_AGP
EF1_10_BUS_PC_CARD
EF1_10_BUS_LPC
EF1_10_BUS_SCSI
EF1_10_BUS_ATA_ATAPI
EF1_10_BUS_FC
EF1_10_BUS_IP_NETWORK
EF1_10_BUS_SMBUS
EF1_10_BUS_I2C

Progress Code Definitions

114

Summary

by this

(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS
(EF1_10_BUS

0x00000000)
0x00010000)
0x00020000)
0x00030000)
0x00040000)
0x00050000)
0x00060000)
0x00070000)
0x00080000)
0x00090000)
0x000A0000)
0x000B0000)
0x000C0000)

tel

Progress code definitions for the 1/0 Bus class and all subclasses. See Progress Code Operations in

Status Code Classes: 1/0 Bus Class for descriptions of these progress codes.
The following subclasses define additional subclass-specific progress code operations, which are

included be
e PCI

low:

December 2004

Version 0.92

intel

Prototype

//

Code Definitions

// 10 Bus Class Progress Code definitions.
// These are shared by all subclasses.

//

#define EFI_IOB_PC_INIT 0x00000000
#define EFI_I0B_PC_RESET 0x00000001
#define EFI_I0B_PC_DISABLE 0x00000002
#define EFI1_I0B_PC_DETECT 0x00000003
#define EFI_I0B_PC_ENABLE 0x00000004
#define EFI1_I0B_PC_RECONFIG 0x00000005
#define EFI_I0B_PC_HOTPLUG 0x00000006
//

// 10 Bus Class Unspecified Subclass Progress Code definitions.
//

//

// 10 Bus Class PCI Subclass Progress Code definitions.

//

#define EF1_I0B_PCI_PC_BUS_ENUM
#define EF1_IOB_PCI_PC_RES_ALLOC
#define EF1_I0B_PCI_PC_HPC_INIT

//
//
//

//
//
//

Version 0.92

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Class

Class

Class

Class

Class

Class

Class

(EF1_SUBCLASS_SPECIFIC | 0x00000000)

(EF1_SUBCLASS_SPECIFIC | 0x00000001)

(EF1_SUBCLASS_SPECIFIC | 0x00000002)

USB Subclass Progress Code definitions.

IBA Subclass Progress Code definitions.

AGP Subclass Progress Code definitions.

PC Card Subclass Progress Code definitions.

LPC Subclass Progress Code definitions.

SCS1 Subclass Progress Code definitions.

ATA/ATAPI1 Subclass Progress Code definitions.

December 2004

115

Status Code Specification

116

//

//
//
//

//
//
//

//
//
//

/7/
//
//

10 Bus

10 Bus

10 Bus

10 Bus

Class

Class

Class

Class

FC Subclass Progress Code definitions.

IP Network Subclass Progress Code definitions.

SMBUS Subclass Progress Code definitions.

12C Subclass Progress Code definitions.

December 2004

Version 0.92

intel

Error Code Definitions

Summary

Code Definitions

Error code definitions for the 1/0 Bus class and all subclasses. See Error Code Operations in Status
Code Classes: 1/0 Bus Class for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below

» PCI

Prototype

// 10 Bus Class Error Code definitions.
// These are shared by all subclasses.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//

EF1_10B_EC_NON_SPECIFIC
EF1_I0B_EC_DISABLED
EF1_I0B_EC_NOT_SUPPORTED
EF1_I0B_EC_NOT_DETECTED
EF1_I0B_EC_NOT_CONFIGURED
EF1_I0B_EC_INTERFACE_ERROR
EF1_I0B_EC_CONTROLLER_ERROR
EF1_I0B_EC_READ_ERROR
EF1_I0B_EC_WRITE_ERROR
EF1_I0B_EC_RESOURCE_CONFLICT

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

// 10 Bus Class Unspecified Subclass Error Code definitions.

//

//

// 10 Bus Class PCI

//
#define
#define

//

EF1_I10B_PCI_EC_PERR
EFI_I0B_PCI_EC_SERR

Subclass Error Code definitions.

(EF1_SUBCLASS_SPECIFIC | 0x00000000)
(EF1_SUBCLASS_SPECIFIC | 0x00000001)

// 10 Bus Class USB Subclass Error Code definitions.

//

Version 0.92

December 2004

117

Status Code Specification

//
//
//

//
//
//

//
//
//

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Class

Class

Class

Class

Class

Class

Class

Class

Class

Class

Extended Error Data

The I/O Bus class uses the following extended error data definitions:
DEVICE PATH EXTENDED DATA

DEVICE HANDLE EXTENDED DATA
RESOURCE_ALLOC FAILURE ERROR DATA

See Common Status Code Definitions: Extended Error Data for definitions.

118

IBA Subclass Error Code definitions.

AGP Subclass Error Code definitions.

PC Card Subclass Error Code definitions.

LPC Subclass Error Code definitions.

SCSI1 Subclass Error Code definitions.

ATA/ATAPI Subclass Error Code definitions.

FC Subclass Error Code definitions.

IP Network Subclass Error Code definitions.

SMBUS Subclass Error Code definitions.

12C Subclass Error Code definitions.

e EFI
e EFI
e EFI

December 2004 Version 0.92

In

tel

Software Classes

Host Software Class

EFI_SOFTWARE Class
The table below lists the subclasses defined in the Host Software class. See Subclass Definitions for

their code definitions.

Code Definitions

Table 4-7. Defined Subclasses: Host Software Class

Subclass

Unspecified

Security (SEC)

PEI Foundation

PEI module

DXE Foundation

DXE Boot Service driver
DXE Runtime Service driver
SMM driver

EFI application

OS loader

Runtime (RT)

Afterlife (AL)

EBC exception

1A-32 exception

Itanium® processor family exception
PEI Services

EFI Boot Service

EFI Runtime Service

Code Name
EFI_SOFTWARE_UNSPECIFIED
EFl_SOFTWARE_SEC
EFI_SOFTWARE_PEI_CORE
EFI_SOFTWARE_PEI_MODULE
EFl_SOFTWARE_DXE_CORE
EFI_SOFTWARE_DXE_BS_DRIVER
EFl_SOFTWARE_DXE_RT_DRIVER
EFl_SOFTWARE_SMM_DRIVER
EFI_SOFTWARE_EFI_APPLICATION
EFl_SOFTWARE_EFI_OS_LOADER
EFI_SOFTWARE_EFI_RT
EFI_SOFTWARE_EFI_AL
EFl_SOFTWARE_EBC_EXCEPTION
EFI_SOFTWARE_IA32_EXCEPTION
EFl_SOFTWARE_IPF_EXCEPTION
EFl_SOFTWARE_PE|_SERVICE
EFI_SOFTWARE_EFI_BOOT_SERVICE
EFl_SOFTWARE_EFI_RUNTIME_SERVICE

DXE Service EFI_SOFTWARE_EFI_DXE_SERVICE
0x13-0x7F Reserved for future use by this specification.
0x80-0xFF Reserved for OEM use.
Version 0.92 December 2004 119

Status Code Specification

Subclass Definitions

Summary

Definitions for the Host Software subclasses. See Subclasses in Status Code Classes: Host Software
Class for descriptions of these subclasses.

In

tel

Prototype

//
// Software Subclass definitions.

// Values of 14-127 are reserved for future use by this

// specification.

// Values of 128-255 are reserved for OEM use.
//
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EF1_SOFTWARE_UNSPECIFIED
EF1_SOFTWARE_SEC
EFI1_SOFTWARE_PEI_CORE
EFI_SOFTWARE_PEI_MODULE
EF1_SOFTWARE_DXE_CORE
EFI_SOFTWARE_DXE_BS DRIVER
EF1_SOFTWARE_DXE_RT_DRIVER
EF1_SOFTWARE_SMM_DRIVER
EF1_SOFTWARE_EFI_APPLICATION
EFI_SOFTWARE_EFI_0S_LOADER
EF1_SOFTWARE_RT

EF1_SOFTWARE_AL
EF1_SOFTWARE_EBC_EXCEPTION
EF1_SOFTWARE_IA32_EXCEPTION
EF1_SOFTWARE_IPF_EXCEPTION
EF1_SOFTWARE_PEI_SERVICE
EF1_SOFTWARE_EFI_BOOT_SERVICE
EFI_SOFTWARE_EFI_RUNTIME_SERVICE
EF1_SOFTWARE_EFI_DXE_SERVICE

Progress Code Definitions

120

Summary

Progress code definitions for the Host Software class and all subclasses. See Progress Code
Operations in Status Code Classes: Host Software Class for descriptions of these progress codes.

(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EFI_SOFTWARE
(EF1_SOFTWARE
(EFI_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE
(EF1_SOFTWARE

0x00000000)
0x00010000)
0x00020000)
0x00030000)
0x00040000)
0x00050000)
0x00060000)
0x00070000)
0x00080000)
0x00090000)
0x000A0000)
0x000B0000)
0x000C0000)
0x000D0000)
0x000E0000)
0x000F0000

0x00100000)
0x00110000)
0x00120000)

The following subclasses define additional subclass-specific progress code operations, which are
included below:

SEC

PEI Foundation

PEI Module

DXE Foundation

DXE Boot Service Driver

Runtime (RT)
Afterlife (AL)

PEI Services

December 2004

Version 0.92

n
Intel Code Definitions

e Boot Services
e Runtime Services
e DXE Services

Prototype

//
// Software Class Progress Code definitions.
// These are shared by all subclasses.

//

#define EFI_SW_PC_INIT 0x00000000

#define EF1_SW_PC_LOAD 0x00000001

#define EFI_SW_PC_INIT_BEGIN 0x00000002

#define EF1_SW_PC_INIT_END 0x00000003

#define EFI_SW_PC_AUTHENTICATE_BEGIN 0x00000004

#define EF1_SW_PC_AUTHENTICATE_END 0x00000005

#define EFI1_SW_PC_INPUT_WAIT 0x00000006

#define EFI_SW_PC_USER_SETUP 0x00000007

//

// Software Class Unspecified Subclass Progress Code definitions.

//

//

// Software Class SEC Subclass Progress Code definitions.

//

#define EFI1_SW_SEC PC_ENTRY_POINT (EF1_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_SEC_PC_HANDOFF_TO_NEXT (EFI_SUBCLASS_SPECIFIC | 0x00000001)
//

// Software Class PEl Foundation Subclass Progress Code definitions.

//

#define EF1_SW_PEI_CORE_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EF1_SW_PEI_CORE_PC_HANDOFF_TO_NEXT

(EF1_SUBCLASS_SPECIFIC | 0x00000001)
#define EF1_SW_PEI_CORE_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//

// Software Class PEl Module Subclass Progress Code definitions.

//

#define EFI_SW_PEIM_PC_RECOVERY_BEGIN (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEIM_PC_CAPSULE_LOAD (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEIM_PC_CAPSULE_START (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEIM_PC_RECOVERY_USER (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEIM_PC_RECOVERY_AUTO (EFI_SUBCLASS_SPECIFIC | 0x00000004)
//

// Software Class DXE Foundation Subclass Progress Code definitions.

//

#define EFI_SW_DXE_CORE_PC_ENTRY_POINT (EF1_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT
(EF1_SUBCLASS_SPECIFIC | 0x00000001)

Version 0.92 December 2004 121

in
Status Code Specification tel

#define EF1_SW_DXE_CORE_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EF1_SW_DXE_CORE_PC_START DRIVER (EFI_SUBCLASS_SPECIFIC | 0x00000003)

//
// Software Class DXE BS Driver Subclass Progress Code definitions.
//
#define EFI_SW_DXE_BS_PC_LEGACY_OPROM_INIT

(EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT

(EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT

(EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_PC_EXIT_BOOT_SERVICES_EVENT

(EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_PC_VIRTUAL_ADDRESS_CHANGE_EVENT

(EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE RT Driver Subclass Progress Code definitions.
//

//
// Software Class SMM Driver Subclass Progress Code definitions.
//

//
// Software Class EFI Application Subclass Progress Code definitions.
//

//
// Software Class EFl 0S Loader Subclass Progress Code definitions.
//

//

// Software Class EFI RT Subclass Progress Code definitions.

//

#define EFI_SW_RT_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RT_PC_HANDOFF_TO_NEXT (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RT_PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//

// Software Class EFI AL Subclass Progress Code definitions.

//

#define EFI_SW_AL_PC_ENTRY_POINT (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_AL PC_RETURN_TO_LAST (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class EBC Exception Subclass Progress Code definitions.
//

//

122 December 2004 Version 0.92

intel

Code Definitions

// Software Class 1A32 Exception Subclass Progress Code definitions.

//

//

// Software Class IPF Exception Subclass Progress Code definitions.

//

//

// Software Class PEIl Services Subclass Progress Code definitions.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

//

EF1_SW_PS_PC_INSTALL_PPI
EF1_SW_PS_PC_REINSTALL_PPI
EF1_SW_PS_PC_LOCATE_PPI
EF1_SW_PS_PC_NOTIFY_PPI
EF1_SW_PS_PC_GET_BOOT_MODE
EF1_SW_PS_PC_SET_BOOT_MODE
EF1_SW_PS_PC_GET _HOB_LIST
EF1_SW_PS_PC_CREATE_HOB
EF1_SW_PS_PC_FFS_FIND_NEXT_VOLUME
EF1_SW_PS_PC_FFS_FIND_NEXT_FILE

EF1_SW_PS_PC_FFS_FIND_SECTION_DATA

EF1_SW_PS_PC_INSTALL_PEI_MEMORY
EF1_SW_PS_PC_ALLOCATE_PAGES
EF1_SW_PS_PC_ALLOCATE_POOL
EF1_SW_PS_PC_COPY_MEM
EF1_SW_PS_PC_SET_MEM

(EFI_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC

(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)

0x0000000A)
0x0000000B)
0x0000000C)
0x0000000D)
0x0000000E)
0x0000000F)

// Software Class EFI Boot Services Subclass Progress Code definitions.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define

Version 0.92

EF1_SW_BS_PC_RAISE_TPL
EF1_SW_BS_PC_RESTORE_TPL
EF1_SW_BS_PC_ALLOCATE_PAGES
EF1_SW_BS_PC_FREE_PAGES
EF1_SW_BS_PC_GET_MEMORY_MAP
EF1_SW_BS_PC_ALLOCATE_POOL
EF1_SW_BS_PC_FREE_POOL
EF1_SW_BS_PC_CREATE_EVENT
EF1_SW_BS_PC_SET_TIMER
EFI1_SW_BS_PC_WAIT_FOR_EVENT
EF1_SW_BS_PC_SIGNAL_EVENT
EF1_SW_BS_PC_CLOSE_EVENT
EF1_SW_BS_PC_CHECK_EVENT

(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC

EFI_SW_BS_PC_INSTALL_PROTOCOL_INTERFACE

(EFI1_SUBCLASS_SPECIFIC

EFI_SW_BS_PC_REINSTALL_PROTOCOL_ INTERFACE

(EF1_SUBCLASS_SPECIFIC

EFI_SW_BS_PC_UNINSTALL_PROTOCOL_ INTERFACE

EF1_SW_BS_PC_HANDLE_PROTOCOL
EF1_SW_BS_PC_PC_HANDLE_PROTOCOL

(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC
(EF1_SUBCLASS_SPECIFIC

EF1_SW_BS_PC_REGISTER_PROTOCOL_NOTIFY

EF1_SW_BS_PC_LOCATE_HANDLE

(EF1_SUBCLASS_SPECIFIC
(EFI_SUBCLASS_SPECIFIC

EF1_SW_BS_PC_INSTALL_CONFIGURATION_TABLE

(EFI_SUBCLASS_SPECIFIC

December 2004

0x00000000)
0x00000001)
0x00000002)
0x00000003)
0x00000004)
0x00000005)
0x00000006)
0x00000007)
0x00000008)
0x00000009)
0x0000000A)
0x0000000B)
0x0000000C)

0x0000000D)
0x0000000E)
0x0000000F)
0x00000010)
0x00000011)

0x00000012)
0x00000013)

0x00000014)

123

Status Code Specification

intel

#define EFI_SW_BS_PC_LOAD_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000015)
#define EFI_SW_BS_PC_START_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000016)
#define EFI_SW_BS_PC_EXIT (EFI_SUBCLASS_SPECIFIC | 0x00000017)
#define EFI_SW_BS_PC_UNLOAD_IMAGE (EFI_SUBCLASS_SPECIFIC | 0x00000018)
#define EFI_SW_BS_PC_EXIT_BOOT_SERVICES (EFI_SUBCLASS_SPECIFIC | 0x00000019)
#define EFI_SW_BS_PC_GET_NEXT_MONOTONIC_COUNT

(EF1_SUBCLASS_SPECIFIC | 0x0000001A)
#define EFI_SW_BS_PC_STALL (EFI_SUBCLASS_SPECIFIC | 0x0000001B)
#define EFI_SW BS PC_SET WATCHDOG_TIMER (EFI_SUBCLASS SPECIFIC | 0x0000001C)
#define EFI_SW_BS_PC_CONNECT_CONTROLLER (EFI_SUBCLASS_SPECIFIC | 0x0000001D)
#define EFI_SW_BS PC_DISCONNECT_CONTROLLER

(EFI_SUBCLASS_SPECIFIC | 0x0000001E)
#define EFI_SW_BS_PC_OPEN_PROTOCOL (EF1_SUBCLASS_SPECIFIC | 0x0000001F)
#define EFI_SW_BS_PC_CLOSE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000020)
#define EFI_SW_BS_PC_OPEN_PROTOCOL_INFORMATION

(EF1_SUBCLASS_SPECIFIC | 0x00000021)
#define EFI_SW_BS_PC_PROTOCOLS_PER_HANDLE (EFI_SUBCLASS_SPECIFIC | 0x00000022)
#define EFI_SW_BS_PC_LOCATE_HANDLE_BUFFER (EFI_SUBCLASS_SPECIFIC | 0x00000023)
#define EFI_SW_BS_PC_LOCATE_PROTOCOL (EFI_SUBCLASS_SPECIFIC | 0x00000024)
#define EFI_SW_BS_PC_INSTALL_MULTIPLE_INTERFACES

(EFI_SUBCLASS_SPECIFIC | 0x00000025)
#define EFI_SW_BS_PC_UNINSTALL_MULTIPLE_INTERFACES

(EFI_SUBCLASS_SPECIFIC | 0x00000026)
#define EFI_SW_BS_PC_CALCULATE_CRC_32 (EF1_SUBCLASS_SPECIFIC | 0x00000027)
#define EFI_SW_BS_PC_COPY_MEM (EFI_SUBCLASS_SPECIFIC | 0x00000028)
#define EFI_SW_BS_PC_SET_MEM (EF1_SUBCLASS_SPECIFIC | 0x00000029)
//
// Software Class EFl Runtime Services Subclass Progress Code definitions.
//
#define EFI_SW_RS_PC_GET_TIME (EF1_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RS_PC_SET_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RS_PC_GET_WAKEUP_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_RS_PC_SET_WAKEUP_TIME (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_RS_PC_SET_VIRTUAL_ADDRESS_MAP

(EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_RS_PC_CONVERT_POINTER (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_RS_PC_GET_VARIABLE (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_RS_PC_GET_NEXT_VARIABLE_NAME

(EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_RS_PC_SET_VARIABLE (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_RS_PC_GET_NEXT_HIGH_MONOTONIC_COUNT

(EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_RS_PC_RESET_SYSTEM (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
//
// Software Class EFI DXE Services Subclass Progress Code definitions
//
#define EFI_SW_DS_PC_ADD_MEMORY_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW DS PC_ALLOCATE_MEMORY_SPACE

(EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DS_PC_FREE_MEMORY_SPACE (EF1_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DS_PC_REMOVE_MEMORY_SPACE (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_DESCRIPTOR

(EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DS_PC_SET_MEMORY_SPACE_ATTRIBUTES

(EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI1_SW_DS_PC_GET_MEMORY_SPACE_MAP (EFI_SUBCLASS_SPECIFIC | 0x00000006)

124 December 2004 Version 0.92

intel

#define EF1_SW_DS_PC_ADD_I0_SPACE (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_ALLOCATE_10_SPACE (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_FREE_I10_SPACE (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_REMOVE_10_SPACE (EF1_SUBCLASS_SPECIFIC

#define EF1_SW_DS_PC_GET_10_SPACE_DESCRIPTOR
(EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_GET_10_SPACE_MAP (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_DISPATCH (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_SCHEDULE (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_TRUST (EF1_SUBCLASS_SPECIFIC
#define EF1_SW_DS_PC_PROCESS_FIRMWARE_VOLUME
(EF1_SUBCLASS_SPECIFIC

Error Code Definitions

Summary

Error code definitions for the Host Software class and all subclasses. See Error Code Operations in
Status Code Classes: Host Software Class for descriptions of these error codes.

Code Definitions

0x00000007)
0x00000008)
0x00000009)
0x0000000A)

0x0000000B)
0x0000000C)
0x0000000D)
0x0000000E)
0x0000000F)

0x00000010)

The following subclasses define additional subclass-specific error code operations, which are
included below:

PEI Foundation

PEIM

DxeBootServiceDriver

EFI Byte Code (EBC) exception

1A-32 exception
Itanium® processor family exception

Version 0.92 December 2004

125

Status Code Specification

126

Prototype
1/

// Software Class Error Code definitions.

// These are shared by all subclasses.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//

// Software Class Unspecified Subclass Error Code definitions.

//

//

// Software Class SEC Subclass Error Code definitions.

//

//

// Software Class PEI

//
#define

//

// Software Class PEI

//

#define EF1_SW_PEIM_EC_NO_RECOVERY_CAPSULE
(EF1_SUBCLASS_SPECIFIC | 0x00000000)

EF1_SW_EC_NON_SPECIFIC
EF1_SW_EC_LOAD_ERROR
EF1_SW_EC_INVALID_PARAMETER
EF1_SW_EC_UNSUPPORTED
EF1_SW_EC_INVALID_BUFFER
EF1_SW_EC_OUT_OF RESOURCES
EF1_SW_EC_ABORTED
EF1_SW_EC_ILLEGAL_SOFTWARE_STATE
EF1_SW_EC_ILLEGAL_HARDWARE_STATE
EF1_SW_EC_START_ERROR
EF1_SW_EC_BAD_DATE_TIME
EF1_SW_EC_CFG_INVALID
EF1_SW_EC_CFG_CLR_REQUEST
EF1_SW_EC_CFG_DEFAULT
EF1_SW_EC_PWD_INVALID
EF1_SW_EC_PWD_CLR_REQUEST
EF1_SW_EC_PWD_CLEARED
EF1_SW_EC_EVENT_LOG_FULL

EF1_SW_PEI_CORE_EC_DXE_CORRUPT

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x0000000B
0x0000000C
0x0000000D
0x0000000E
0x0000000F
0x00000010
0x00000011

Foundation Subclass Error Code definitions.

(EF1_SUBCLASS_SPECIFIC | 0x00000000)

Module Subclass Error Code definitions.

#define EF1_SW_PEIM_EC_INVALID_CAPSULE_DESCRIPTOR

//

// Software Class DXE Foundation Subclass Error Code definitions.

//

//

(EF1_SUBCLASS_SPECIFIC | 0x00000001)

// Software Class DXE Boot Service Driver Subclass Error Code definitions.

//

December 2004

Version 0.92

Code Definitions

#define EF1_SW_DXE_BS_EC_LEGACY_OPROM_NO_SPACE

// Software

// Software

// Software

// Software

// Software

// Software

Class

Class

Class

Class

Class

Class

DXE

SMM

EFI

EFI

EFI

EFI

(EF1_SUBCLASS_SPECIFIC | 0x00000000)

Runtime Service Driver Subclass Error Code definitions.

Driver Subclass Error Code definitions.

Application Subclass Error Code definitions.

0S Loader Subclass Error Code definitions.

RT Subclass Error Code definitions.

AL Subclass Error Code definitions.

// Software Class EBC Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.

//

#define EFI_SW_EC_EBC_UNDEFINED 0x00000000

#define EFI_SW_EC_EBC_DIVIDE_ERROR EXCEPT_EBC_DIVIDE_ERROR
#define EFI_SW_EC_EBC_DEBUG EXCEPT_EBC_DEBUG
#define EF1_SW_EC_EBC_DEBUG EXCEPT_EBC_DEBUG

#define EF1_SW_EC_EBC_BREAKPOINT

EXCEPT_EBC_BREAKPOINT

#define EF1_SW_EC_EBC_OVERFLOW EXCEPT_EBC_OVERFLOW

#define EF1_SW_EC_EBC_INVALID_OPCODE
#define EF1_SW_EC_EBC_STACK_FAULT
#define EF1_SW_EC_EBC_ALIGNMENT CHECK

EXCEPT_EBC_INVALID_OPCODE
EXCEPT_EBC_STACK_FAULT
EXCEPT_EBC_ALIGNMENT_CHECK

#define EFI_SW_EC_EBC_INSTRUCTION_ENCODING EXCEPT_EBC_INSTRUCTION_ENCODING
#define EF1_SW_EC_EBC_BAD_BREAK EXCEPT_EBC_BAD_BREAK

#define EFI_SW_EC_EBC_STEP EXCEPT_EBC_STEP

7/

// Software Class 1A32 Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.

//

#define EF1_SW_EC_1A32_DIVIDE_ERROR

EXCEPT_I1A32_DIVIDE_ERROR

#define EFI_SW_EC_IA32_DEBUG EXCEPT_1A32_DEBUG

Version 0.92

December 2004 127

Status Code Specification

128

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//

EF1_SW_EC_I1A32_NMI
EF1_SW_EC_1A32_BREAKPOINT
EF1_SW_EC_I1A32_OVERFLOW
EF1_SW_EC_1A32_BOUND
EFI1_SW_EC_1A32_INVALID_OPCODE
EF1_SW_EC_1A32_DOUBLE_FAULT
EF1_SW_EC_1A32_INVALID_TSS
EF1_SW_EC_I1A32_SEG_NOT_PRESENT
EF1_SW_EC_1A32_STACK_FAULT
EF1_SW_EC_I1A32_GP_FAULT
EF1_SW_EC_1A32_PAGE_FAULT
EF1_SW_EC_I1A32_FP_ERROR
EF1_SW_EC_1A32_ALIGNMENT _CHECK
EF1_SW_EC_1A32_MACHINE_CHECK
EF1_SW_EC_1A32_SIMD

intel

EXCEPT_1A32_NMI
EXCEPT_1A32_BREAKPOINT
EXCEPT_1A32_OVERFLOW
EXCEPT_1A32_BOUND
EXCEPT_1A32_INVALID_OPCODE
EXCEPT_1A32_DOUBLE_FAULT
EXCEPT_IA32_INVALID_TSS
EXCEPT_IA32_SEG_NOT_PRESENT
EXCEPT_1A32_STACK_FAULT
EXCEPT_I1A32_GP_FAULT
EXCEPT_IA32_PAGE_FAULT
EXCEPT_I1A32_FP_ERROR
EXCEPT_1A32_ALIGNMENT_CHECK
EXCEPT_1A32_MACHINE_CHECK
EXCEPT_I1A32_SIMD

// Software Class IPF Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol definitions in the EFI
// specification.

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//

EFI_SW_EC_IPF_ALT_DTLB
EFI_SW_EC_IPF_DNESTED_TLB
EFI_SW_EC_IPF_BREAKPOINT
EF1_SW_EC_IPF_EXTERNAL_INTERRUPT
EFI_SW_EC_IPF_GEN_EXCEPT
EF1_SW_EC_IPF_NAT_CONSUMPTION
EFI_SW_EC_IPF_DEBUG_EXCEPT
EF1_SW_EC_IPF_UNALIGNED_ACCESS
EFI_SW_EC_IPF_FP_FAULT
EFI_SW_EC_IPF_FP_TRAP
EFI_SW_EC_IPF_TAKEN_BRANCH
EFI_SW_EC_IPF_SINGLE_STEP

EXCEPT_IPF_ALT_DTLB
EXCEPT_IPF_DNESTED_TLB
EXCEPT_IPF_BREAKPOINT
EXCEPT_IPF_EXTERNAL_INTERRUPT
EXCEPT_IPF_GEN_EXCEPT
EXCEPT_IPF_NAT_CONSUMPTION
EXCEPT_IPF_DEBUG_EXCEPT
EXCEPT_IPF_UNALIGNED_ACCESS
EXCEPT_IPF_FP_FAULT
EXCEPT_IPF_FP_TRAP
EXCEPT_IPF_TAKEN_BRANCH
EXCEPT_IPF_SINGLE_STEP

// Software Class PEl Service Subclass Error Code definitions.

//

//

// Software Class EFI Boot Service Subclass Error Code definitions.

//

//

// Software Class EFI Runtime Service Subclass Error Code definitions.

//
//

// Software Class EFl DXE Service Subclass Error Code definitions.

//

December 2004

Version 0.92

n
Intel Code Definitions

Extended Error Data

In addition to the other class-specific error definitions in this subsection, the Host Software class
uses the following extended error data definitions:

e EFI DEVICE HANDLE EXTENDED DATA
See Common Status Code Definitions: Extended Error Data for its definition.

EFl_DEBUG_ASSERT_DATA

Summary
This structure provides the assert information that is typically associated with a debug assertion
failing.
Prototype
struct {
EFlI STATUS CODE DATA DataHeader;
UINT32 LineNumber;
UINT32 FileNameSize;

EF1_STATUS CODE STRING DATA *FileName;
} EFI_DEBUG_ASSERT DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_DEBUG_ASSERT_DATA) — HeaderSize, and
DataHeader . Type should be EF1 STATUS CODE SPECIFIC DATA GUID.

LineNumber

The line number of the source file where the fault was generated.
FileNameSize

The size in bytes of Fi leName.
FileName

A pointer to a NULL-terminated ASCII or Unicode string that represents the file
name of the source file where the fault was generated. Type

EFI STATUS CODE STRING DATA is defined in Common Status Code
Definitions.

Description

The data indicates the location of the assertion that failed in the source code. This information
includes the file name and line number that are necessary to find the failing assertion in source
code.

Version 0.92 December 2004 129

in
Status Code Specification tel

EFI_STATUS_CODE_EXCEP_EXTENDED_DATA

Summary
This structure defines extended data describing a processor exception error.

Prototype

typedef struct {
EFI STATUS CODE DATA DataHeader;
EFlI STATUS CODE EXCEP SYSTEM CONTEXT Context;

} EFI_STATUS_CODE_EXCEP_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_STATUS CODE_EXCEP_EXTENDED_DATA) —
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

Context

The system context. Type EFI _STATUS CODE EXCEP SYSTEM CONTEXT is
defined in “Related Definitions” below.

Description

This extended data allows the processor context that is present at the time of the exception to be

reported with the exception. The format and contents of the context data varies depending on the
processor architecture.

130 December 2004 Version 0.92

n
Intel Code Definitions

Related Definitions

//**

// EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT

//**

typedef union {

EF1_SYSTEM_CONTEXT_EBC SystemContextEbc;
EF1_SYSTEM_CONTEXT_1A32 SystemContextla32;
EF1_SYSTEM_CONTEXT_IPF SystemContextlpf;

} EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT;

SystemContextEbc

The context of the EBC virtual machine when the exception was generated. Type
EFI_SYSTEM_CONTEXT_EBC is defined in EF1_DEBUG_SUPPORT_PROTOCOL
in the EFI 1.10 Specification.

SystemContextla32

The context of the 1A-32 processor when the exception was generated. Type
EF1_SYSTEM_CONTEXT__1A32 is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the EFI 1.10 Specification.

SystemContextlpf

The context of the Itanium® processor when the exception was generated. Type
EF1_SYSTEM_CONTEXT _IPF is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the EFI 1.10 Specification.

Version 0.92 December 2004 131

in
Status Code Specification tel

EFl_STATUS_CODE_START_EXTENDED_DATA

Summary
This structure defines extended data describing a call to a driver binding protocol start function.

Prototype
typedef struct {
EF1_STATUS CODE_DATA DataHeader;
EF1_HANDLE ControllerHandle;
EF1_HANDLE DriverBindingHandle;
UINT16 DevicePathSize;
UINT8 RemainingDevicePath[];
} EFI1_STATUS_CODE_START_EXTENDED_DATA;
Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_STATUS_CODE_START_EXTENDED DATA) -
HeaderSize, and DataHeader . Type should be

EFI STATUS CODE SPECIFIC DATA GUID.

ControllerHandle

The controller handle.
DriverBindingHandle

The driver binding handle.
DevicePathSize

The size of the RemainingDevicePath. It is zero if the Start() function is
called with RemainingDevicePath = NULL. The EFI 1.10 Specification
allows that the Start () function of bus drivers can be called in this way.

RemainingDevicePath

Matches the RemainingDevicePath parameter being passed to the Start()
function. Note that this parameter is the variable-length device path and not a pointer
to the device path.

Description

This extended data records information about a Start() function call. Start() is a member of
the EFI 1.10 Driver Binding Protocol.

132 December 2004 Version 0.92

n
Intel Code Definitions

EFl_LEGACY_OPROM_EXTENDED DATA

Summary
This structure defines extended data describing a legacy option ROM (OpROM).

Prototype

typedef struct {
EF1_STATUS CODE_DATA DataHeader ;
EFI_HANDLE DeviceHandle;
EF1_PHYSICAL_ADDRESS RomImageBase;
} EFI_LEGACY_OPROM_EXTENDED DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader .HeaderSize should be
sizeof (EF1 STATUS CODE DATA), DataHeader .Size should be
sizeof (EFI_LEGACY_OPROM_EXTENDED_ DATA) - HeaderSize, and
DataHeader . Type should be EFI STATUS CODE SPECIFIC DATA GUID.

DeviceHandle

The handle corresponding to the device that this legacy option ROM is being
invoked.

RomImageBase

The base address of the shadowed legacy ROM image. May or may not point to the
shadow RAM area. Type EF1_PHYSICAL_ADDRESS is defined in
Al locatePages() in the EFI 1.10 Specification.

Description

The device handle and ROM image base can be used by consumers to determine which option

ROM failed. Due to the black-box nature of legacy option ROMs, the amount of information that
can be obtained may be limited.

Version 0.92 December 2004 133

	1 Introduction
	Overview
	Organization of the Status Codes Specification
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Status Codes Overview
	Introduction
	Terms
	Types of Status Codes
	Status Code Classes
	Instance Number
	Operations

	3 Status Code Classes
	Status Code Classes
	Hardware Classes
	Computing Unit Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	Host Processor Subclass
	Firmware Processor Subclass
	I/O Processor Subclass
	Cache Subclass
	Memory Subclass
	Chipset Subclass

	User-Accessible Peripheral Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	Keyboard Subclass
	Mouse Subclass
	Local Console Subclass
	Remote Console Subclass
	Serial Port Subclass
	Parallel Port Subclass
	Fixed Media Subclass
	Removable Media Subclass
	Audio Input Subclass
	Audio Output Subclass
	LCD Device Subclass
	Network Device Subclass

	I/O Bus Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	PCI Subclass
	USB Subclass
	InfiniBand* Architecture Subclass
	AGP Subclass
	PC Card Subclass
	LPC Subclass
	SCSI Subclass
	ATA/ATAPI/SATA Subclass
	Fibre Channel (FC) Subclass
	IP Network Subclass
	SMBus Subclass
	I2C Subclass

	Software Classes
	Host Software Class
	Instance Number
	Progress Code Operations
	Error Code Operations
	Subclasses
	Defined Subclasses
	Unspecified Subclass
	SEC Subclass
	PEI Foundation Subclass
	PEI Module Subclass
	DXE Foundation Subclass
	DXE Boot Service Driver Subclass
	DXE Runtime Service Driver Subclass
	SMM Driver Subclass
	EFI Application Subclass
	OS Loader Subclass
	Runtime (RT) Subclass
	Afterlife (AL) Subclass
	PEI Services Subclass
	Boot Services Subclass
	Runtime Services Subclass
	DXE Services Subclass

	4 Code Definitions
	Introduction
	Common Status Code Definitions
	 Common Status Code Definitions Overview
	Data Structures
	Status Code Common Data Structures

	Extended Data Header
	EFI_STATUS_CODE_DATA
	EFI_STATUS_CODE_STRING_DATA

	Status Code-Specific Data GUID
	EFI_STATUS_CODE_SPECIFIC_DATA_GUID

	Enumeration Schemes
	Operation Code Enumeration Scheme
	Debug Code Enumeration Scheme

	Extended Error Data
	EFI_DEVICE_PATH_EXTENDED_DATA
	EFI_DEVICE_HANDLE_EXTENDED_DATA
	EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

	Class Definitions
	Hardware Classes
	Computing Unit Class
	EFI_COMPUTING_UNIT Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data
	Host Processor Subclass
	EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA
	EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA
	EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA
	EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA
	EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA
	EFI_CACHE_INIT_DATA
	EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA
	Memory Subclass
	EFI_MEMORY_EXTENDED_ERROR_DATA
	EFI_STATUS_CODE_DIMM_NUMBER
	EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA
	EFI_MEMORY_RANGE_EXTENDED_DATA

	User-Accessible Peripherals Class
	EFI_PERIPHERAL Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data

	I/O Bus Class
	EFI_IO_BUS Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data

	Software Classes
	Host Software Class
	EFI_SOFTWARE Class
	Subclass Definitions
	Progress Code Definitions
	Error Code Definitions
	Extended Error Data
	EFI_DEBUG_ASSERT_DATA
	EFI_STATUS_CODE_EXCEP_EXTENDED_DATA
	EFI_STATUS_CODE_START_EXTENDED_DATA
	EFI_LEGACY_OPROM_EXTENDED_DATA

