REFERENCE ARCHITECTURE

Intel® Builders
Enterprise Data Center

A Secure, Unified Cloud Platform
to Host Both VM-based and
Container-based Applications

DALEMC
vmware

Authors

Krzysztof Cieptucha, Cloud Solutions
Architect, DCG, DSG, ESS, Intel

Patryk Wolsza, SDI Solutions
Architect and Engineer, DCG, DSG,
ESS, Intel

tukasz Redynk, Cloud Solutions
Engineer, DCG, DSG, ESS, Intel

Jennifer Lankford, Marketing
Manager, DCG, DSG, ESS, Intel

Joe Carvalho, Director, Ecosystem
Technology Strategy, RSD, Intel

T. Sridhar, Principal Engineer & Chief
Ecosystem Technologist, VMware

Kris Applegate, Solution Architect,
Customer Solution Centers, Dell EMC

EXECUTIVE SUMMARY

Developers today are driving businesses toward adopting containerized
applications as a way to accelerate software delivery. Containers help developers
quickly iterate applications through development cycles and improve business
competitiveness by enabling a quicker time to market for new services.

However, for businesses to put these quickly developed applications into production,
the applications need to meet advanced security requirements that containers do
not inherently meet on their own. Traditional applications that are hosted in virtual
machines (VMs), on the other hand, do provide a higher level of security through
operating system (OS)-level isolation and the reduced attack surface of a hypervisor.
This situation presents a problem: how can businesses provide the same level of
security offered by hypervisor-based workloads while also offering the advantages
of container-based applications in the development cycle? And how can a single
environment support both types of workloads in a simple way?

VMware Cloud Foundation™, based on VMware vSphere®, provides a cloud platform
that meets advanced security needs for VM-based workloads. By adding VMware
vSphere® Integrated Containers™ to this environment, businesses can deploy
containers, too, on the same hypervisor. This strategy extends the advanced
security features of VM-based workloads—such as role-based access control,
identity management, and OS-level isolation—to containerized applications.

This reference architecture presents configuration details for building a unified
cloud solution through which an organization can build and run applications
hosted on both VMs and containers in a more secure way. From a software
perspective, the solution consists of VMware Cloud Foundation with vSphere
Integrated Containers installed as an add-on component. The hardware for the
solution consists of a single rack of Dell EMC™ PowerEdge™ servers with Intel®
processors, Intel® Solid-State Drives (SSDs), and Intel® Ethernet Network Adapters,
along with switches from Cisco and Dell.

BUILDING A UNIFIED CLOUD PLATFORM FOR VIRTUAL
MACHINES AND CONTAINERS

Container technologies, such as Docker?*, are popular among developers today
for their ability to help speed application delivery and ensure the portability

of applications from one environment to another. The advantages offered

by containers are especially useful for applications developed as a set of
microservices—a robust architectural model that many consider to be the future
standard in global-scale applications.

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Contents
Executive Summaryooiiinnnnn 1

Building a Unified Cloud Platform for VMs
and Containers..............ccoiiieinnnen 1

What Is VMware Cloud Foundation™?...2

What Is VMware vSphere® Integrated

Containers™?covviininrnnnnennns 2
Solution Architecture............ccvvuuus 3
OVervVieW .. .oviiiiiein i ininnnnnnnnnns 3
Solution Architecture: Software 3
Solution Architecture: Hardware....... 4
Configuration Guidance.................. 6

Overview of the Configuration Steps .. .6

Installing and Configuring VMware
Cloud Foundation..................... 6

Installing and Configuring vSphere
Integrated Containers................. 9

Understanding the vSphere Integrated
Containers Workflow................ 11

Understanding Virtual Container Hosts. 11

Walkthrough: Containerizing and
Deploying an Application in vSphere
Integrated Containers 15

Overview of the Deployment
Procedurecciiiinnnt 16

Configuring Load Balancing and
Microsegmentation in VMware NSX .. 23

Configuring Microsegmentation...... 25
SUMMANY ittt iiianiiainnaraaans 28
Appendix/Additional Resources........ 28

However, a challenge arises for many DevOps engineers and IT ops teams as
containers continue to grow in popularity among developers: how can today’s
software-defined data centers (SDDCs) add support for containers in the most
frictionless way possible while also taking into consideration the security,
compliance, and monitoring that enterprise applications need?

VMware Cloud Foundation deployed with vSphere Integrated Containers
offers a simple and compelling solution for securing and supporting containers
within existing environments that already support VMs based on VMware
ESXi™, without requiring any retooling or rearchitecting of the network. Cloud
Foundation with vSphere Integrated Containers provides a unified, seamless
platform for managing both VMs and Docker containers in a way that builds

on a company'’s existing VMware® security infrastructure and administrators’
familiarity with vSphere.

What Is VMware Cloud Foundation™?

VMware Cloud Foundation is a suite of services, built on the vSphere cloud
computing platform, whose components work together to provide a managed,
hyper-converged, and highly secure cloud-software infrastructure for VM-
based workloads. The main components in the VMware Cloud Foundation suite
are vSphere, VMware NSX®, VMware vSAN™, and VMware SDDC Manager™.

What Is VMware vSphere® Integrated Containers™?

vSphere Integrated Containers is a Docker-compatible container engine that can

be installed on top of vSphere to extend the hosting and management capabilities
of that platform to include containers. Once vSphere Integrated Containers is
installed, both developers and administrators can provision and manage containers
through the VMware Cloud Foundation management tools and a command
prompt. vSphere Integrated Containers also extends the management functionality
of VMware Cloud Foundation by allowing developers to securely store and manage
both container images and running instances of containerized apps.

This document describes a specific do-it-yourself (DIY)-type implementation
of this cloud platform and provides details about the specific hardware and
software needed for deployment. The particular implementation described in
this reference architecture runs on qualified Dell EMC™ and Intel hardware and
has been validated as a fully functional solution by a team of Intel engineers.

Figure 1. The validated solution described in this paper consists of VMware
vSphere Integrated Containers and VMware Cloud Foundation running on Dell
EMC PowerEdge servers with Intel® SSDs

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

SOLUTION ARCHITECTURE

Overview

The solution described in this reference architecture consists
of a single rack composed of a specific set of software and
hardware components. The following sections review the
software components that make up the unified VMware
Cloud Foundation and vSphere Integrated Containers
solution, followed by the specific hardware components

in the rack. Finally, the document proceeds to describe the
steps needed to configure the solution out of the hardware
and software components.

Solution Architecture: Software

The software inventory of the solution includes VMware
Cloud Foundation, vSphere Integrated Containers, and
some optional software components that can extend the
functionality of the solution.

The following software components are described in
this section:

« VMware Cloud Foundation
» VMware vSphere
« VMware NSX
« VMware vSAN
» VMware SDDC Manager

» vSphere Integrated Containers
« vSphere Integrated Containers Engine
« vSphere Integrated Containers Registry
« vSphere Integrated Containers Management Portal

» Optional components
« VMware Horizon® Suite
« VMware vRealize® Suite

VMware Cloud Foundation

VMware Cloud Foundation is a unified SDDC platform for
both private and public clouds. VMware Cloud Foundation
brings together a hypervisor platform, software-defined
storage, and network virtualization into an integrated
stack whose resources are managed through a single
administrative tool.

Private cloud Public cloud

VMware Cloud Foundation™

—EH— S — 4=
 —— | — y
VMware vSphere® VMware vSAN™ VMware NSX®

VMware SDDC Manager™

Figure 2. VMware Cloud Foundation is a cloud solution
managed through VMware SDDC Manager and built on
VMware vSphere, VMware vSAN, and VMware NSX

VMware Cloud Foundation provides this unified management
interface across switches, servers, and server-based storage.
It presents an abstracted view of physical resources (CPU,
memory, storage, and network) as resource pools for
operations management, event reporting, and auditing.
VMware Cloud Foundation also introduces a new abstraction,
workload domains, for creating logical pools of combined
compute, storage, and networking resources.

Figure 3. Workload domains allow admins to allocate CPU,
memory, and storage resources to workloads and projects

VMware vSphere®

vSphere is VMware's cloud computing platform, consisting
of a type-1 hypervisor (ESXi), a virtual management server
(VMware vCenter Server®) for each workload or management
domain, and an administration interface (vSphere Web
Client) to manage VMs and other virtualized components

in the SDDC. vSphere also includes Platform Services
Controller™—a service that handles network-wide security
functions such as single sign-on (SSO), licensing, and
certificate management.

VMware NSX*®

VMware NSX is VMware's network virtualization software.
VMware NSX allows you to define network connectivity
among virtualized elements running on vSphere and to
harden network security through microsegmentation rules.
Virtual network functions (VNFs) defined by VMware NSX
include switching, routing, firewalling, load balancing, and
VPNs (IPsec and Secure Sockets Layer [SSL]).

VMware vSAN™

VMware vSAN provides high-performance, hyper-converged
storage for VMs in the vSphere environment. It serves as a
key building block of the hyper-converged infrastructure
that is integrated with vCenter Server. Through vSAN, flash
storage is pooled from multiple hosts, and virtual disks are
provisioned as needed from the available space.

VMware SDDC Manager™

SDDC Manager is the administration tool native to VMware
Cloud Foundation through which you can provision, manage,
and monitor both the logical and physical resources of a
VMware Cloud Foundation deployment. SDDC Manager helps
admins perform tasks in the following areas:

« Infrastructure services: Manage physical resources by
adding and removing racks or by adding and removing
hosts and switches on a rack.

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

» Workload domain management: Consolidate the
physical resources of an SDDC into one or more logical
entities. Orchestrate the shutdown and boot of logical
software and management components within a VMware
Cloud Foundation deployment.

« Lifecycle management: Configure automatic upgrades
and patching.

Figure 4. VMware SDDC Manager allows administrators to
manage physical resources and divide capacity into logical
workload domains

vSphere Integrated Containers

vSphere Integrated Containers is a runtime environment

for Docker containers in vSphere. A software extension

to vSphere, vSphere Integrated Containers allows
administrators to provision Docker containers in vSphere and
manage them in the same way as VMs.

vSphere Integrated Containers includes the vSphere
Integrated Containers Engine, the vSphere Integrated
Containers Registry, and the vSphere Integrated Containers
Management Portal.

vSphere Integrated Containers Engine

The vSphere Integrated Containers Engine is a Docker
remote APl-compatible engine that runs container images in
vSphere as VMs.

vSphere Integrated Containers Registry (“Harbor”)

The vSphere Integrated Containers registry, nicknamed
“Harbor," is a private registry for Docker images. It acts as

a private, secure alternative to the public Docker Hub*. The
vSphere Integrated Containers registry is intended to be
hosted on a private, internal network and, unlike Docker

Hub, it includes features and functionalities that are usually
required by private enterprises, such as security, identity, and
management capabilities.

vSphere Integrated Containers Management Portal
(“Admiral”)

The web-administration interface, nicknamed “Admiral,” is a
management portal that provides development teams with
a way to manage container registries, images, hosts, and
running instances.

Figure 5. The VMware vSphere Integrated Containers
management portal, or “Admiral,” presents a view of the
containers and container images available on the network

Optional Components

Two optional components, VMware Horizon Suite and
VMware vRealize Suite, can be added to extend the
functionality and management scope of a VMware Cloud
Foundation deployment. When these applications suites are
added, their functionality is fully integrated into VMware
Cloud Foundation management tools. They both require
additional licensing fees.

VMware Horizon® Suite

This optional software suite, which includes the components
VMware Horizon 7 and VMware App Volumes™, provides
support for the management of a virtual desktop
infrastructure (VDI) within VMware Cloud Foundation.

For more information about VMware Horizon Suite, visit
vmware.com/products/desktop-virtualization.html.

VMware vRealize® Suite

The VMware vRealize Suite includes VMware vRealize®
Operations™, VMware vRealize® Automation™, VMware vRealize®
Business™, and VMware vRealize® Log Insight™. Including this
suite as part of a VMware Cloud Foundation deployment can
extend the automation, monitoring, management, and analytics
capabilities of your cloud infrastructure.

For more information on vRealize Suite, visit vmware.com/

products/vrealize-suite.html.

Solution Architecture: Hardware

The hardware used to build this particular solution includes
12 servers and 4 switches in a single rack. (One switch was
used only for imaging and is not required by the solution. See
Table 2 for more information.)

What's in the Rack? Servers and Server Components

This reference architecture uses the server components
shown in Table 1.

Note that the network adapter includes two 10 Gb ports,
both of which are used. Note also that two different types of
Intel SSDs are used: the higher-performing SSDs are reserved
for the caching tier, whereas the lower-cost SSDs are used for
the data tier.

http://www.vmware.com/products/desktop-virtualization.html
http://www.vmware.com/products/vrealize-suite.html
http://www.vmware.com/products/vrealize-suite.html

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Table 1. Server and server components used in the reference architecture

Component Details Quantity
Server Dell EMC PowerEdge R630 rack server 12
CPU Intel® Xeon® processor E5-2660 v4 (2.0 GHz, 14 cores, 35M cache, 105 W) 2 per server
Memory 32 GB DDR4, 2400 MHz memory modules (256 GB total) 8 per server
Storage (caching tier) 800 GB, 2.5 in. Serial ATA (SATA) Intel® SSD DC S3710 Series 2 per server
Storage (data tier) 800 GB, 2.5 in. SATA Intel SSD DC S3520 Series 8 per server
Storage controller Dell EMC PowerEdge HBA330 Mini-Serial Attached SCSI (SAS), firmware version 1 per server
13.17.03.00
Network adapter Dual-port 10 gigabit (Gb) Intel® Ethernet Converged Network Adapter X520 DP 10Gb 1 per server
DA/SFP+ and dual-port 1 Gb Intel® Ethernet Server Adapter 1350 Network Daughter
Card
Boot device Dell™ Internal Dual SD Module (IDSDM), 2 x 16 GB SD cards 1 per server

What's in the Rack? Networking Components

For networking components, the reference architecture uses
the items shown in Table 2.

Note that the Dell Networking S3048-ON switch supports
the Open Network Operating System* (ONOS*). This
feature is key because open networking is what enables
the lifecycle management and provisioning of the switch
through SDDC Manager.

Note also that the Dell Networking S60 switch is not required
by VMware Cloud Foundation. It is used for the initial server
imaging process as a private managed switch.

VMware Cloud Foundation Deployments

VMware Cloud Foundation deployments can scale
from a single rack up to eight racks. In a multiple-rack
deployment, you also need a pair of spine switches,
usually located in the second rack. For single-rack

deployments, such as this one, you don’t need any
spine switches. For more information, see the VMware
Cloud Foundation Overview and Bring-Up Guide,
available at http://docs.vmware.com/en/
VMware-Cloud-Foundation/2.2/
vcf-22-ovdeploy-guide.pdf.

Table 2. Networking components used in the reference architecture

Role Switch Details Quantity
Top-of-rack switch Cisco Nexus 93180YC-EX 48 x 1/10/25 gigabit per second (Gbps) SFP+ ports* 2
NX-0S 7.0(3)14(2)* and 6 x 40/100 Gbps QSFP+ uplink ports*
Management switch Dell Networking S3048-ON 48 x 1-Gbps T000BASE-T ports* and 4 x 10-Gbps 1
Cumulus Linux 2.5.8* SFP+ uplink ports
Private managed switch** Dell Networking S60 44 x 10/100/1000BASE-T and 4 x 1 GbE SFP 1
FTOS 8.3.3.10

Although other hardware components can be used for this
solution, only the listed components have been validated and
tested for this reference architecture. Unsupported hardware
components might cause issues that prevent proper installation
or that impact the stability or usability of the solution.

For a complete list of supported hardware, please refer to the
VMware Compatibility Guide for VMware Cloud Foundation,
located at vmware.com/resources/compatibility/
search.php?deviceCategory=vcf.

**Optional; used only for the server imaging process

Other Hardware Requirements

After acquiring certified hardware components, you also need
to ensure that certain BIOS options are enabled, and that

the network and switch cabling is configured properly. Both
of these configuration steps are described in the “VMware
Cloud Foundation Overview and Bring-Up Guide” document,
available at https://docs.vmware.com/en/

VMware-Cl -Foundation/2.1.

vcf-21-ovdeploy-guide.pdf.

http://docs.vmware.com/en/VMware-Cloud-Foundation/2.2/vcf-22-ovdeploy-guide.pdf
http://docs.vmware.com/en/VMware-Cloud-Foundation/2.2/vcf-22-ovdeploy-guide.pdf
http://docs.vmware.com/en/VMware-Cloud-Foundation/2.2/vcf-22-ovdeploy-guide.pdf
http://www.vmware.com/resources/compatibility/search.php?deviceCategory=vcf
http://www.vmware.com/resources/compatibility/search.php?deviceCategory=vcf
https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf
https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf
https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

1 x Dell EMC Networking S3048-ON—Management Switch
2 x Cisco Nexus 93180YC-EX—Top-of-Rack Switches

12 x Dell EMC PowerEdge R630 (10x 2.5" SFF Hot-Plug
Disks)—Compute Resources

2 x 14-core Intel® Xeon® processor E5-2660 v4, 2.0 GHz
256 GB RAM (8 x 32 GB DIMMs)

Dell EMC PowerEdge RAID Controller HBA330

2 x Intel® SSD DC S3710 Series (Cache)

8 x Intel SSD DC S3520 Series (Capacity)

Dual-port 10 gigabit Ethernet (GbE) Intel® Ethernet Converged
Network Adapter X520 + 1 GbE Intel® Ethernet Server Adapter 1350
Network Daughter Card (1 x 10 GbE in use)

Dual-port 10 GbE Intel Ethernet Converged Network Adapter X520
PCle* Networking Card (1 x 10 GbE in use)

Dual redundant SD modules with 2 x 16 GB SD card (hypervisor)
Integrated Dell™ Remote Access Controller (iDRAC) Enterprise

Dell EMC™ OpenManage™ Essentials Server Configuration Management
Dual Redundant Hot-Plug Power Supplies (1+1) 750 W

Figure 6. A physical view of the components that make up the solution

Rack Diagram

Figure 6 illustrates the placement in the rack of the hardware
components that are required for this reference architecture.

CONFIGURATION GUIDANCE

The following sections describe the steps you need to take
in order to build the solution after you have assembled the
proper hardware in the rack, configured the cabling, and
configured all required BIOS settings. Additionally, all disks
should be empty and should not contain any partitions or
user data.

Overview of the Configuration Steps
The configuration and deployment of the software stack
involves three steps:

1. Installing and configuring VMware Cloud Foundation
(including the workload domains)

2. Installing and configuring vSphere Integrated Containers

3. Containerizing applications

Installing and Configuring VMware
Cloud Foundation

Two steps are required to install and configure VMware
Cloud Foundation:

1. Image the hardware through the VMware Cloud Foundation
imaging appliance (VIA). During this step, the appropriate
software components and their initial configuration
settings are loaded onto each server and switch, and a
complete inventory of the hardware is built and saved.

2. Perform the bring-up process for VMware Cloud
Foundation. During this step, the system is initialized,
configured, and connected to the existing data
center network.

Imaging the Hardware through the VMware Cloud
Foundation Imaging Appliance (VIA)

To complete this step, read the preparatory steps below,
and then follow the instructions described in the “VIA User’s
Guide” document, which you can find at
https://docs.vmware.com/en/VMware-Cloud-Foundation/
2.1.3/via-21-guide.pdf. As the document indicates, it is

recommended that you install VIA on a desktop or laptop
when you want to image a single rack.

To prepare for the procedure, ensure that the first network
interface in each server has PXE support enabled. The
boot sequence should also be configured in a way that

the server first tries to boot from PXE, then from local SD
card (IDSDM). The management switch must be in Open
Network Install Environment* (ONIE*) install mode, ready
for installation of the Cumulus Linux* operating system. The
Cisco switches should contain no configuration and should
be in the PowerOn Auto Provisioning (POAP) mode. Finally,
all SD cards and SSDs should be empty. If the servers were
previously used, these drives should be cleared of all data,
because it could interfere with the imaging process.

During the imaging process, you can observe the progress
of imaging each component and view detailed logs through
the same web interface. In case of failure, you can restart
the whole process for any specific device. Properly imaged
devices will be marked with a green check mark.

https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/via-21-guide.pdf
https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/via-21-guide.pdf

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Figure 7. The imaging process after completion

When the imaging process completes, VIA performs
additional verification and uploads to the appropriate servers
Secure Shell (SSH) keys, certificates, and the inventory
database built during the imaging process.

The last step in the imaging process is to obtain the
bootstrap passwords, including the password for the

SDDC Manager VM (also called the VRM virtual machine),
which will be needed later on during the bring-up process.
The passwords are provided by VIA under the URL
http://192.168.100.2:8080/via/ipsecThumbprint/runld,
where runld is the run number. (VIA can be used for imaging
multiple racks, in which case each imaging process is a
separate run. You can find the run number or run ID in the
top-left corner of Figure 7.)

Bring Up VMware Cloud Foundation

Once the imaging process is complete, you can move on to
the second phase—bringing up VMware Cloud Foundation.
The bring-up process is handled by SDDC Manager. A detailed
explanation of this procedure is described in the “VMware
Cloud Foundation Overview and Bring-Up Guide” document
available at https://docs.vmware.com/en/

VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf.
As with the VIA appliance, SDDC Manager is accessed through

a standard web browser.

Before you start the bring-up process, first collect all the
information needed to configure network connectivity,
including a list of VLANs, network addresses, and uplinks.

When you access the SDDC Manager interface for the first time,
the system automatically sets the proper time and time zone on
all components. It also performs several basic checks to verify
that all components are accessible and in the expected state.

Figure 8. A running log of the bring-up process

The next step of the bring-up process is to supply a new
account name and password for the administrator account,
in addition to some general information like a physical rack
name, a root Domain Name System (DNS) domain name, the
VMware Cloud Foundation subdomain, the SSO domain, and
finally the VMware Cloud Foundation license key.

Figure 9. Entering basic information as part of the bring-up process

https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf
https://docs.vmware.com/en/VMware-Cloud-Foundation/2.1.3/vcf-21-ovdeploy-guide.pdf

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Next is network configuration, where you provide VLAN and
IP addresses for management, VMware vSphere® vMotion®,
vSAN, a Virtual Extensible LAN (VXLAN) overlay, an external
data center network, and data center uplinks.

Finally, there is a short summary page that displays all the
information you have provided. This is followed by the
Component IP Allocation page, which shows the names and
IP addresses assigned to specific components.

Figure 10. Important IP address assignments are displayed at
the end of the bring-up process

The Component IP Allocation page is important. Be sure to
record the names and IP addresses listed for “vCenter” and
“VRM VIP,” where SDDC Manager is running. These are

the two main interfaces that you will use to manage the
whole infrastructure.

The VRM VM also hosts the DNS server for the VMware Cloud
Foundation sub-domain provided in an earlier step (in this
example, vcf.example.com), so you should configure your
enterprise DNS servers to forward all queries for that domain
to the VRM VIP IP address.

After you click Confirm, SDDC Manager begins the
configuration and bring-up process. This process can

take up to an hour or two, depending on the number and
configuration of servers. You can follow the progress of the
bring-up process by using the same web interface.

One of the last steps in the bring-up process is to generate
new passwords for all the components. To perform this

step, you have to use SSH to connect to the VRM VM, and
then run the following command: /fhome/vrack/bin/
vrm-cli.sh rotate-all. Next, use the same tool with the
lookup-passwords argument to retrieve the newly generated
passwords. This step will retrieve the passwords for all
physical and logical components, including switches, servers,
vCenter Server, and VMware NSX.

Creating Workload Domains

When the bring-up process completes, the infrastructure
is ready for the creation of workload domains. In the
current version of VMware Cloud Foundation, the first four

nodes are reserved for management purposes, and they
contain all the components needed to manage the whole
infrastructure. You should not deploy any user applications
on this management cluster. Instead, you should create
one or more workload domains that comprise a separate
vSphere cluster with vSAN and VMware NSX pre-installed
and configured along with a dedicated instance of vCenter
Server for management purposes.

In addition to management domains, there are two other types
of workload domains that can be created in SDDC Manager:

« Virtual infrastructure (VI): General purpose domain

» VDI: Dedicated to virtual desktop environments. These
workload domains rely on VMware Horizon Suite, which
is not part of this reference architecture.

The VI workload domain type represents a cluster of
resources that can contain up to 64 servers with its own
vCenter Server appliance, integrated vSAN, and VMware
NSX. A VI workload domain can span multiple racks, so if you
later add more racks to this single-rack implementation, you
can scale any existing VI workload domains to the additional
racks as needed.

All the tasks related to the workload domains are performed
using the SDDC Manager web interface. This includes the
creation, expansion, and deletion of workload domains, along
with physical infrastructure monitoring and management.

Figure 11. SDDC Manager allows you to assign CPU, memory,
and storage resources into workload domains

Creating a new workload domain is simple. After you provide the
name, you need only to specify the required performance (low,
balanced, or high), the desired availability level (none, normal,
or high), and the minimum resources needed (for CPU, memory,
and storage space). These settings are shown in Figure 12.

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Figure 12. Creating a workload domain

The last step is selecting which data center connection (uplink)
should be used for your workload domains. You can share a
single connection for all workload domains or have separate
connections for each of them. SDDC Manager then determines
how many servers are needed to satisfy those requirements
and presents a suggested configuration for review.

When you click Finish, the provisioning process starts in
the background. This provisioning process installs and
configures all the needed components (including vCenter
Server, vSAN, and VMware NSX). It then performs all the
steps needed to integrate these components, including
creating new VLANs on the switches and reconfiguring the
ports leading to selected servers.

The time needed to create a workload domain depends on
the server configuration and the requested infrastructure
size. In the example environment, the process took our
engineering team 55 minutes to provision the complete
infrastructure of a workload domain with three servers. So,
in less than an hour, you can achieve what used to require
weeks before the automation provided by SDDC Manager in
VMware Cloud Foundation was available.

Moreover, because the whole process is automated, there is a
much lower risk of the kind of misconfiguration that can often
occur during manual installation. Such configuration errors
could historically lead to serious issues or additional delays
in infrastructure provisioning.

Later, you can use SDDC Manager to add new servers to
an existing workload domain as needed. And when you
no longer need the infrastructure used previously by the
workload domain, you can remove it and return unused
servers to the pool of available resources.

Installing and Configuring vSphere
Integrated Containers

About vSphere Integrated Containers

vSphere Integrated Containers is composed of three
main components:

» VMware vSphere Integrated Containers Engine
« VMware vSphere Integrated Containers Registry (Harbor)

« VMware vSphere Integrated Containers Management
Portal (Admiral)

vSphere Integrated Containers Engine supports a

subset of the Docker APl as a way to allow developers

and administrators to provision and run containerized
applications alongside traditional VM-based workloads.
vSphere Integrated Containers Engine allows administrators
to easily manage these workloads through the familiar
vSphere user interface (Ul).

Harbor is an enterprise-class container registry used for storing
and distributing container images with applications. It extends
the standard open-source registry with security, identity, and
management functions often required by enterprises.

Admiral is a container-management portal that provides a
convenient Ul for DevOps teams and admins to provision
and manage containers. It can be further integrated with
vRealize Automation to provide more advanced capabilities,
like deployment blueprints, allowing the construction of
enterprise-grade containers as a service (CaaS).

All components are available as open-source projects on

GitHub* at https://vmware.github.io/vic-product/.

To obtain the latest official, fully supported releases, you
need a vSphere Enterprise Plus license.

Installing vSphere Integrated Containers

For the latest official release of vSphere Integrated
Containers, you need to download the vSphere Integrated
Containers OVA-format image from the VMware portal at

vmware.com/go/download-vic. The 1.1.1 version used in this

reference architecture is about 2.7 GB.

You install vSphere Integrated Containers by deploying

the virtual appliance you downloaded in the previous

step. During the deployment process, you need to specify
several parameters, such as the appliance IP address and
the administrator passwords for several components. You
also need to specify whether you want to deploy Harbor and
Admiral. If this is your first vSphere Integrated Containers
deployment, you should deploy both.

https://vmware.github.io/vic-product/
http://www.vmware.com/go/download-vic

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

4. Management Portal Configuration

4.1. Deploy Management Portal
Specifies whether Management Portal is enabled on the appliance.
v

4.2. Management Portal Port
Specifies the port on which Management Portal will be published.
3252

4.3. 551 Cert

Paste in the content of a certificate file, Leave blank for a generated self-signed
certificate.

4.4. 551 Cert Key

Paste in the content of certificate key file in PKCS#8 format. Leave blank for a generated
key.

=

Fileserver Configuration

5.1. Fileserver Port

Specifies the port on which fileserver will be published.
9443

5.2. 551 Cert

Paste in the content of a certificate file, Leave blank for a generated self-signed
certificate.

Figure 13. Configuration options for installing vSphere
Integrated Containers

To complete the procedure for installing vSphere Integrated
Containers, follow the detailed instructions found in the
product documentation at the following address:
https://vmware.github.io/vic-product/assets/files/html/1.1

Because vSphere Integrated Containers is tightly coupled

with vCenter Server, you need to deploy the appliance to the
same workload domain where you want to run your workloads.
Note that it doesn’t have to be a workload domain dedicated
entirely to vSphere Integrated Containers; you can run
traditional VMs and containers in the same workload domain
next to each other with dedicated resources assigned to them.

This is a key feature of vSphere Integrated Containers: to enable
admins and developers to create and manage containersin a
way that is fully integrated into their VM infrastructure. Running
both workloads together, in fact, allows deployment of hybrid
multi-tier applications where some components run as VMs
and others run in easily scalable containers.

Unpacking vSphere Integrated Containers Binaries

The next step in installing vSphere Integrated Containers is
to download and unpack the vSphere Integrated Containers
Engine binaries from https://vic_appliance_address:9443
to an administrator’s workstation. This package contains
the vic-machine utility, which is used to deploy virtual
container hosts (VCHSs). You can also use the vSphere Web
Client Integration Plugin to enable unified management of
containers and vSphere resources, including VMs.

To unpack the vSphere Integrated Containers Engine
binaries, enter the command on the first line to the right
(which is followed by output):

admin@localhost ~ $ curl -O -k https://172.16.0.100:9443/vic _1.1.l.tar.gz

% Total % Received % Xferd Average Speed Time Time
Dload Upload Total Spent
100 223M 100 223M 0 0 193M 0 0:00:01 0:00:01

admin@localhost ~ $ 1ls -1
total 229076
-rw-r--r——. 1 admin admin 234566550 Aug
admin@localhost ~ $ tar zxvf vic _1l.1.l.tar.gz
vic/

vic/vic-machine-windows.exe
vic/vic-ui-darwin

vic/appliance.iso

vic/README

vic/bootstrap.iso
vic/vic-machine-darwin

vic/vic-ui-linux

vic/ui/

vic/ui/plugin-manifest

vic/ui/VCSA/

vic/ui/VCSA/configs
vic/ui/VCSA/install.sh
vic/ui/VCSA/upgrade.sh
vic/ui/VCSA/uninstall.sh
vic/ui/plugin-packages/
vic/ui/plugin-packages/com.vmware.vic-vl.1l.1l.zip

.1/
.1/plugins/

vic/ui/plugin-packages/com.vmware.vic-vl.
vic/ui/plugin-packages/com.vmware.vic-vl.
vic/ui/plugin-packages/com.vmware.vic-vl.

vic/ui/plugin-packages/com.vmware.vic-vl.
vic/ui/plugin-packages/com.vmware.vic-vl.
vic/ui/plugin-packages/com.vmware.vic-vl.1l.1/plugins/vic.war

1

1

1

1
vic/ui/plugin-packages/com.vmware.vic-vl.1.1/plugins/vim25.jar

1

1

1

1.1/plugin-package.xml

vic/ui/plugin-packages/com.vmware.vic-vl.
vic/ui/vCenterForWindows/

.1/plugins/vlsiCore.jar

Time Current
Left Speed
——————— 193M

8 13:48 vic 1.l.l.tar.gz

.1/plugins/gson-2.3.1.jar
.1/plugins/vic-service.jar

(continued on next page)

10

https://vmware.github.io/vic-product/assets/files/html/1.1/

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

vic/ui/vCenterForWindows/upgrade.bat
vic/ui/vCenterForWindows/uninstall.bat
vic/ui/vCenterForWindows/configs
vic/ui/vCenterForWindows/install.bat
vic/ui/vsphere-client-serenity/
vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.
vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.

.l.zip
.1/
vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.

vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.
vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.

.1/plugins/

.1/plugins/vim25.jar
.1/plugins/vic-ui-war.war

1

1

1
vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.1.1/plugins/vic-ui-service.jar

1

1

1

vic/ui/vsphere-client-serenity/com.vmware.vic.ui-vl.
vic/LICENSE

vic/vic-machine-linux

vic/vic-ui-windows.exe

admin@localhost ~ § ed vic
admin@localhost ~/vic $ 1ln vic-machine-linux vic-machine

admin@localhost ~/vic ./vic-machine
NAME:
vic-machine - Create and manage Virtual Container Hosts

USAGE:
vic-machine [global options] command [command options]

VERSION:
v1.1.1-10711-56a309f

COMMANDS:
create Deploy VCH
delete Delete VCH and associated resources
1s List VCHs
inspect Inspect VCH
upgrade Upgrade VCH to latest version
version Show VIC version information
debug Debug VCH
update Modify configuration
help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
—--help, -h
--version, -v

show help
print the version

Understanding the vSphere Integrated
Containers Workflow

vSphere Integrated Containers Engine is an enterprise

deployment target for portable Docker containers. The
following steps make up the typical workflow for using
vSphere Integrated Containers:

1. Developers build containers in their development
environments by using either a local Docker host
or aremote Docker endpoint provided by vSphere
Integrated Containers.

2. Abuilt container image is then pushed to the private
enterprise registry, provided by Harbor.

3. The application can be deployed from the registry to test
separate environments.

4. Finally, the application is deployed from the registry to
a production environment that is also running vSphere
Integrated Containers Engine on top of vSphere.

Understanding Virtual Container Hosts

A VCH is a resource pool that is mapped to an endpoint

VM and that acts as a Docker host in vSphere Integrated
Containers. From a management perspective, a VCH looks very
similar to a VM that hosts Docker containers, and containers

.1/plugin-package.xml

[arguments...]

appear to run within specific VCHs. More specifically, a VCH is
deployed as a virtual application (vVApp) in a vSphere cluster,
and all VMs running containers are represented as children of
a specific VCH in the user interface.

From a technical perspective, however, VCHs do not truly
host containers by providing a shared kernel or OS upon
which containers run. Instead, an endpoint VM representing
a VCH runs side by side with containers, which all run within
their own VMs called “container VMs."” Each container VM—
and the endpoint VM itself—runs a minimal, quick-booting
0S, called Photon OS™.

The Docker APl endpoint that runs in the VCH translates
Docker commands to the vSphere environment. For example,
when the Docker endpoint receives Docker commands such
as “run” and “build,” the VCH instructs the vCenter Server to
create a VM running the Photon OS kernel and to unpack the
Docker image into that VM. Other commands are translated
and executed against the containers of the VCH.

A VCH is easy to scale as a resource pool. To do so, just add
an ESXi host to the workload vSphere cluster to increase
the capacity without disrupting the existing containers.
You can also deploy multiple VCHs in the same cluster.
Doing so allows you to easily provide fully separated and
secure environments for multiple tenants sharing the same
underlying infrastructure.

To create and configure a VCH, use the vic-machine
command-line utility.

11

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Figure 14 depicts the relationship between the various
vSphere Integrated Containers components. In the figure, A1
and A2 represent Docker endpoints, and C1, C2,and C3
represent container VMs.

VMware

Docker*
vCenter®

Client

Client

Manages Admin
Containers Manage|s VCHs Monitoring

VMware ESXi™ VMware ESXi™ VMware ESXi™
VMware vCenter®
VIC Appliance
VICAdmin Docker - Docker*
Browser (logs, debug) personality Client
Port Layer Services
(exec, net, storage, event, interact)
To VMware vCenter® SDK

\

Figure 14. Relationship between VMware vSphere Integrated
Containers Engine components’

Network Types

The vSphere Integrated Containers Engine uses different
network types for different purposes:

1. Management network: This network is dedicated to
communication between the VCH, vCenter Server, and
ESXi hosts. You define the management network by
using the --management-network option when you
create the VCH with vic-machine create.

2. Public network: This network, which is mandatory,
connects containers to the Internet. You specify the
public network with the --public-network option.

3. Client network: This network connects Docker clients
to Docker endpoints and isolates the endpoints from
the public network. You define the Docker management
endpoint network by setting the --client-network option.

4. Bridge network: This network allows the containers
and the VCH to communicate with each other. Each VCH
requires a unique bridge network. To specify the bridge
network, use the --bridge-network option when you run
vic-machine create.

5. Container network: This type of network is used to
connect containers directly to vSphere networks without
routing through the VCH endpoint VM using NAT.

Figure 15 illustrates the roles of these different network types.

VMware vSphere® Integrated Containers™ Appliance

Management
Portal

VCH vApp

g Container-VM Container-VM
Container-VM

Registry

Developer

Client
Network

Management

Network el

Endpoint
VMware vSphere®/ M
VMware ESXi™

Public
Network

docker

Container
Network

00e
P7 S

User

Figure 15. Network types and roles’

When you define a network for vSphere Integrated
Containers, you must specify a port group to associate with
the networks you define. Most of the needed port groups for
the VMware Cloud Foundation networks that we will define in
this reference architecture have been created as part of the
imaging process.

For this reference architecture, we will specify a
management, public, bridge, and container network when we
create the VCH, but we will not define any client networks.
(When no client networks are defined, the default network
used for this purpose is the same as the public network.)

For more information about virtual networks used with
vSphere Integrated Containers, visit
https://vmware.github.io/vic-product/assets/files/html/1.1

vic_vsphere_admin/networks.html.

Preparing for VCH Deployment

Before we create the VCH by using the vic-machine utility, we
need to perform some preparatory steps, such as creating

a logical switch in VMware NSX for the bridge network and
modifying firewall rules.

Creating a Logical Switch for the Bridge Network

The four networks we define when we create the VCH must all
be assigned port groups. Of the port groups we will assign, only
the port group for the bridge network has not yet been created.
(The vRack-DPortGroup-External and vRack-DPortGroup-Mgmt
port groups are created and configured automatically during
workload domain creation by SDDC Manager.)

However, instead of creating that new port group in vSphere,
we will create a logical switch in VMware NSX to assign to the
bridge network. We specifically use the Logical Switch feature
of VMware NSX (instead of vSphere port groups) in order to
take advantage of overlay networking and avoid having to
configure any VLANs on the physical switches.

12

https://vmware.github.io/vic-product/assets/files/html/1.1/vic_vsphere_admin/networks.html
https://vmware.github.io/vic-product/assets/files/html/1.1/vic_vsphere_admin/networks.html

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

To create the new logical switch in the vSphere Web Client
interface, navigate to Networking & Security, and then
Logical Switches. To begin the process of creating a new
logical switch, click the green plus (+) icon. This step opens
the New Logical Switch window shown in Figure 16.

Figure 16. Creating a new logical switch

From the vSphere perspective, the new logical switch “VCH1-
BRIDGE,” created in VMware NSX, is visible as a distributed
port group with a name like vxw-dvs-9-virtualwire-2-100017-
VCH1-BRIDGE. For simplicity, you might prefer to rename the
port group to the name used for the associated logical switch
in VMware NSX (as shown in Figure 17).

Although we have now created the port group to assign to
the bridge network, we will create that bridge network later,
when we create the VCH. At that time we will specify this port
group by its new name, VCH1-BRIDGE.

Figure 17. Renaming the port group in VMware vSphere to
match the VMware NSX logical switch name (optional)

Determining VCH Storage and Compute Resources

When you use the vic-machine utility to create the VCH, you
will need to specify a volume store, image store, and compute
resource. For the volume store, we will use vsanDatastore/
vic-containers:default. For the image store, we will specify
vsanDatastore/vic-images. The compute resource can be a
host, cluster, or resource pool. In our case, we will specify the
compute resource as VCH.

Setting Up the PKI

In production environments, you should deploy valid
public-key infrastructure (PKI) certificates to infrastructure
components. (For instructions on how to perform this step,
use the documentation accompanying your chosen PKI
solution.) As a workaround, you can skip certificate validation
by using the --no-tlsverify and --force options. In this case,
however, you must specify the Secure Hash Algorithm 1
(SHA-1) thumbprint of the vCenter Server certificate with
the --thumbprint option. (This thumbprint can be obtained
by inspecting the certificate in a web browser or by first
attempting to run the command without the --thumbprint
option. Failing to provide this option will generate an error
message that includes the retrieved thumbprint of your
vCenter Server).

For other, more advanced deployment scenarios, please refer
to vSphere Integrated Containers documentation at
https://vmware.github.io/vic-product/assets/files/html/1.1/.

Modifying Firewall Rules

The next step required is modifying firewall rules on all ESXi
hosts in the cluster to enable outgoing traffic from each host
to the VCH. To perform this step, run the following command
(which appears on the first three lines below, followed by
output), substituting the SHA-1 thumbprint of your own
vCenter Server certificate:

admin@localhost ~/vic $./vic-machine update firewall --allow --target rack-1-vc-2.vcf.example.com \

--user superadmin@vsphere.local --password P@sswOrd \
--thumbprint 59:73:5A:C7:BB:B6:02:57:35:D9:4A:9A:6B:9F:51:68:DD:A8:31:BC
Aug 9 2017 14:18:34.000Z INFO ### Updating Firewall ####

This command modifies the host firewall on the target machine or cluster

2017 14:18:34.151Z INFO Ruleset “vSPC” enabled on host “HostSystem:host-20 @ /vRack-Datacenter/host/WD1-0-cluster/172.17.0.25”
2017 14:18:34.185Z INFO Ruleset “vSPC” enabled on host “HostSystem:host-26 @ /vRack-Datacenter/host/WD1-0-cluster/172.17.0.26"
2017 14:18:34.217Z INFO Ruleset “vSPC” enabled on host “HostSystem:host-30 @ /vRack-Datacenter/host/WD1-0-cluster/172.17.0.27"
2017 14:18:34.2487 INFO Ruleset “vSPC” enabled on host “HostSystem:host-72 @ /vRack-Datacenter/host/WD1-0-cluster/172.17.0.42"

Aug 9 2017 14:18:34.112Z INFO Validating target

Aug 9 2017 14:18:34.112Z INFO Validating compute resource

Aug 9 2017 14:18:34.112Z INFO

Aug 9 2017 14:18:34.1127 WARN ### WARNING ###

Aug 9 2017 14:18:34.112Z WARN

Aug 9 2017 14:18:34.112Z WARN The ruleset “vSPC” will be enabled
Aug 9 2017 14:18:34.112Z WARN This allows all outbound TCP traffic from the target
Aug 9 2017 14:18:34.112Z WARN To undo this modification use --deny
Aug 9 2017 14:18:34.112Z INFO

Aug 9

Aug 9

Aug 9

Aug 9

Aug 9 2017 14:18:34.2487Z INFO

Aug 9 2017 14:18:34.2487Z INFO Firewall changes complete

Aug 9 2017 14:18:34.249Z INFO Command completed successfully

13

https://vmware.github.io/vic-product/assets/files/html/1.1/

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

In addition, because we are going to secure the internal
container registry (Harbor), we need to obtain the certificate
authority (CA) certificate used to sign the default self-signed
certificate used by Harbor and then provide it as a parameter
to the VCH. To complete this step, enter the command on the
first line below (which appears followed by output):

admin@localhost ~/vic § scp root@vic.example.com:/data/
harbor/cert/ca.crt ca.crt

The authenticity of host ‘vic.example.com (172.16.0.100)"
can’t be established.

ECDSA key fingerprint is SHA256:CRG5Y1PQVu9UVwWD8IOXrWFOniUA
QJh6BRjXIeFKCMRO.

Are you sure you want to continue connecting (yes/no)?
yes

Warning: Permanently added ‘vic.example.com,172.16.0.100"
(ECDSA) to the list of known hosts.

Password:

CEEEE

admin@localhost ~/vic $./vic-machine create
--user superadmin@vsphere.local --password P@sswOrd \

--thumbprint 59:73:5A:C7:BB:B6:02:57:35:D9:4A:9A:6B:9F:51:68:DD:A8:31:BC
--compute-resource VCH --image-store vsanDatastore/vic-images \

--volume-store vsanDatastore/vic-containers:default

Increasing the Memory Reserved for the VCH

The current version (1.1.1) of vSphere Integrated Containers
has a particular limitation: in the process of pulling container
images from the registry, a service on the VCH extracts its
contents to a temporary file system held in memory (tmpfs).
For large containers, this process might fail if there is not
enough free space. To handle large images properly in
version 1.1.1, we need to increase the memory reservation for
VCH by adding special parameter --endpoint-memory 8192
to the vic-machine create command.

Creating a VCH

Finally, you can deploy a new VCH by using the vic-machine
create command. Remember, in production environments
you should deploy valid PKI certificates to infrastructure
components. Again, as a workaround, you can skip certificate
validation by using the --no-tlsverify and --force options and
specifying a thumbprint instead with the --thumbprint option.

Run the following command (which appears on the first 15
lines below, followed by output) to create the VCH:

--target rack-l-vc-2.vcf.example.com \
--name VCH1 \

--bridge-network VCH1-BRIDGE \

--bridge-network-range 192.168.0.0/16 --public-network vRack-DPortGroup-External \
--management-network vRack-DPortGroup-Mgmt --container-network vRack-DPortGroup-External \

--registry-ca=ca.crt --no-tlsverify --force --endpoint-memory 8192

Using administrative user for VCH operation - use --ops-user to improve security (see -x for advanced help)

Aug 9 2017 15:07:21.055Z INFO ### Installing VCH ####

Aug 9 2017 15:07:21.055Z WARN

Aug 9 2017 15:07:21.057Z INFO Loaded server certificate VCHl/server-cert.pem

Aug 9 2017 15:07:21.057Z WARN Configuring without TLS verify - certificate-based authentication disabled
Aug 9 2017 15:07:21.057Z INFO Loaded registry CA from ca.crt

Aug 9 2017 15:07:21.155Z INFO Validating supplied configuration

Aug 9 2017 15:07:21.260Z INFO vDS configuration OK on “VCH1-BRIDGE”

Aug 9 2017 15:07:21.266Z INFO vDS configuration OK on “vRack-DPortGroup-External”

Aug 9 2017 15:07:21.292%Z INFO Firewall status: ENABLED on “/vRack-Datacenter/host/WDl-0O-cluster/172.17.0.25”
Aug 9 2017 15:07:21.309Z INFO Firewall status: ENABLED on “/vRack-Datacenter/host/WD1-0-cluster/172.17.0.26”
Aug 9 2017 15:07:21.327Z INFO Firewall status: ENABLED on “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.27”
Aug 9 2017 15:07:21.344Z INFO Firewall status: ENABLED on “/vRack-Datacenter/host/WD1-0-cluster/172.17.0.42”
Aug 9 2017 15:07:21.352Z INFO Firewall configuration OK on hosts:

Aug 9 2017 15:07:21.352Z INFO “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.25"

Aug 9 2017 15:07:21.352Z INFO “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.26"

Aug 9 2017 15:07:21.352%Z INFO “/vRack-Datacenter/host/WD1-0-cluster/172.17.0.27"

Aug 9 2017 15:07:21.352Z INFO “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.42"

Aug 9 2017 15:07:21.403Z INFO License check OK on hosts:

Aug 9 2017 15:07:21.403Z INFO “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.25”

Aug 9 2017 15:07:21.403Z INFO “/vRack-Datacenter/host/WDl1-0-cluster/172.17.0.26"

Aug 9 2017 15:07:21.403Z INFO “/vRack-Datacenter/host/WDl-0-cluster/172.17.0.27"

Aug 9 2017 15:07:21.403Z INFO “/vRack-Datacenter/host/WD1-0-cluster/172.17.0.42"

Aug 9 2017 15:07:21.4217Z INFO DRS check OK on:

Aug 9 2017 15:07:21.421Z INFO “/vRack-Datacenter/host/WD1-0-cluster”

Aug 9 2017 15:07:21.454z INFO

Aug 9 2017 15:07:21.593Z INFO Creating virtual app “VCH1”

Aug 9 2017 15:07:21.635Z INFO Creating directory [vsanDatastore] vic-containers

Aug 9 2017 15:07:21.726Z INFO Datastore path is [vsanDatastore] vic-containers

Aug 9 2017 15:07:21.726Z INFO Creating appliance on target

Aug 9 2017 15:07:21.731Z INFO Network role “client” is sharing NIC with “public”

Aug 9 2017 15:07:25.922Z INFO Uploading images for container

Aug 9 2017 15:07:25.9227Z INFO “bootstrap.iso”

Aug 9 2017 15:07:25.9227Z INFO “appliance.iso”

Aug 9 2017 15:07:31.4227 INFO Waiting for IP information

Aug 9 2017 15:07:46.594Z INFO Waiting for major appliance components to launch

Aug 9 2017 15:07:46.635Z INFO Obtained IP address for client interface: “172.16.50.28”

Aug 9 2017 15:07:46.635Z INFO Checking VCH connectivity with vSphere target

Aug 9 2017 15:07:46.731Z INFO vSphere API Test: https://rack-l-vc-2.vcf.example.com vSphere API target responds as expected
Aug 9 2017 15:07:48.751Z INFO Initialization of appliance successful

Aug 9 2017 15:07:48.751Z INFO

Aug 9 2017 15:07:48.751Z INFO VCH Admin Portal:

(continued on next page)

14

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Aug 9 2017 15:07:48.751Z INFO https://172.16.50.28:2378

Aug 9 2017 15:07:48.751Z INFO

Aug 9 2017 15:07:48.751Z INFO Published ports can be reached at:
Aug 9 2017 15:07:48.751Z INFO 172.16.50.28

Aug 9 2017 15:07:48.751Z INFO

Aug 9 2017 15:07:48.751Z INFO Docker environment variables:

Aug 9 2017 15:07:48.751Z INFO DOCKER _ HOST=172.16.50.28:2376

Aug 9 2017 15:07:48.752Z INFO

Aug 9 2017 15:07:48.752Z INFO Environment saved in VCH1/VCHl.env
Aug 9 2017 15:07:48.752Z INFO

Aug 9 2017 15:07:48.752Z INFO Connect to docker:

Aug 9 2017 15:07:48.752Z INFO docker -H 172.16.50.28:2376 --tls info
Aug 9 2017 15:07:48.752Z INFO Installer completed successfully

During the VCH deployment process, the vic-machine tool
first runs various checks. It then creates a vApp with VCH
under the specified compute resource and uploads any ISO
images needed for running containers as VMs. After successful
deployment, the tool returns information about how to

access the VCH admin portal, along with Docker environment
variables for DevOps and container application developers.

The VCH admin portal—whose address you can find in
the output for vic-machine create—shows the status of
all components and allows you to view and obtain various
logs. It also shows the Docker endpoint variable used with
the Docker client, allowing end users to run and manage
containers on a specific VCH.

Next, you can verify the results of the VCH deployment from
a Docker client. The VCH endpoint IP and the exact command
to use is provided in the second-to-last line of the vic-
machine create output above.

Run the following command to verify the results of the
deployment (which appears on the first line below, followed
by output):

$ docker -H 100.64.48.221:2376 --tls info
Containers: 0

Running: 0

Paused: 0

Stopped: 0

Images: 0

Server Version: v1.1.1-10711-56a309f
Storage Driver: vSphere Integrated Containers v1.1.1-10711-56a309f
Backend Engine

VolumeStores:

vSphere Integrated Containers vl1.1.1-10711-56a309f Backend Engine:
RUNNING

VCH CPU limit: 194720 MHz

VCH memory limit: 1.387 TiB

VCH CPU usage: 641 MHz

VCH memory usage: 15.31 GiB

VMware Product: VMware vCenter Server
VMware 0S: linux-x64

VMware OS version: 6.0.0

Plugins:

Volume:

Network: bridge vRack-DPortGroup-External
Swarm: inactive

Security Options:

Operating System: linux-x64

OSType: linux-x64

Architecture: x86 64

CPUs: 194720

Total Memory: 1.387 TiB

ID: vSphere Integrated Containers
Docker Root Dir:

Debug Mode (client): false

Debug Mode (server): false

Registry: registry-l.docker.io

WALKTHROUGH: CONTAINERIZING
AND DEPLOYING AN APPLICATION IN
VSPHERE INTEGRATED CONTAINERS

The following section provides guidance on how to
containerize an example application and deploy itin a VCH.
The example application we will be containerizing and
deploying on vSphere Integrated Containers is dotCMS*, a
content management system (CMS).

The dotCMS application will be packaged in a container
together with Oracle WebLogic Server* web server. The
dotCMS application also requires a separate database
server, which we will be deploying on the “public” network
(port group vRack-DPortGroup-External) in a traditional VM
running Oracle Database Express Edition 11g*.

A final requirement for the dotCMS application is a Network
File System (NFS) server, which we will we be hosting on a VM
on the same network as the database server.

Application Components

« dotCMS is a well-known open source CMS solution.

For information, visit https://dotcms.com/
ms-platform/enterprise-cms/.

Oracle Database Express Edition 11gis a
free, lightweight database based on the
Oracle Database 11g Release 2 code base. For
information, visit oracle.com/technetwork/
t t technologi xpress-edition

overview/index.html.

Oracle WebLogic Server is a platform for
developing and deploying Java Enterprise Edition*
applications. For more detailed information visit
oracle.com/technetwork/middleware/weblogic/
overview/index.html.

Figure 18 displays the network architecture that supports
the containerized application. Note that our solution includes
one VCH with three containers. Each container is running

the dotCMS app with a web server (WebLogic). The identical
containers in this solution are used as a three-node load
balancing cluster for the application.

15

https://dotcms.com/cms-platform/enterprise-cms/
https://dotcms.com/cms-platform/enterprise-cms/
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Load Balancer
(VMware NSX® Edge™)

External network

DHCP DNS
(external) (external)

with internet access

L/ Distributed firewall-microsegmentation
T\ (VMware NSX®)

| | | | |

APP and
Oracle
WebLogic
Server*

APPand
Oracle
WebLogic
Server*

APP and

Database Oracle
(VM) WebLogic
Server*

Figure 18. The network architecture supporting the
containerized application

Outside of the VCH, a database server and an NFS server,
which are both needed by dotCMS, are running separately
on their own VMs. The solution also includes a load balancer
(VMware NSX® Edge™) to split requests among all three
container-VMs hosting dotCMS. Finally, a distributed firewall
is deployed through NSX.

Overview of the Deployment Procedure

To deploy the containerized application, we will first
deploy the supporting database and NFS servers on the
network. Next, we'll build and upload the container image.
Finally, we'll deploy the dotCMS cluster and configure the
dotCMS application.

The deployment procedure can be divided into the
following steps:

Deploy and configure the database server.

Set up the NFS server for the application.

Build the WebLogic and dotCMS container image.
Upload the image to the container registry.
Deploy the dotCMS cluster.

Configure the dotCMS application.

oOUAWN =

To perform the deployment steps described below,

you need access to an Internet-connected GNU/Linux
workstation with a Bash* shell. In addition, you need to
make the following applications available on your Linux
workstation before you begin:

« Git* for downloading Oracle’s GitHub* repository

« Docker for building Docker images and for
communication with VIC

« Java Development Kit* (JDK*) for building dotCMS

« Atext editor

The following conventions are used in our presentation of
command-line commands:

$: Run the command as an unprivileged user in Bash
#: Run the command as the user “root” in Bash
>: Run the command as the user “system” in SQL*Plus*

Deploy and Configure the Database Server

1. Create a new VM on VMware Cloud Foundation and
install a Red Hat* Enterprise Linux 7.x* OS. You should
assign the VM at least two virtual CPUs, 4 GB RAM, and
200 GB of hard-disk space, as shown in Figure 19. For
more detailed information about the requirements for
the database server, refer to the official Oracle
documentation at http://docs.oracle.com/cd/E17781 01/
install.112/e18802/toc.htm#XEINL102

Figure 19. Creating a new VM in vSphere Web Client

2. Assign astatic IP address to the VM and provide a
full DNS name. For example, we set the IP address to
172.16.200.200 and the full DNS name to oracledb1.
example.com. After setting the DNS name, we also need
to configure a hostname in the VM: # echo oracledb1.
example.com > /etc/hostname

3. Restartthe VM.

4. Download Oracle Database Express Edition 11g

from oracle.com/technetwork/database/database-
technologies/express-edition/downloads/index.html.

Note that you will have to create an Oracle account first.

5. Install the Oracle Database dependencies:
$ sudo yum install -y bc libaio

6. Unpackand install the rpm file:
$ sudo rpm -i Diskl/oracle-xe-11.2.0-1.0.x86 64.rpm

7. Configure the database instance:
$ sudo /etc/init.d/oracle-xe configure
You will be asked about database-related options.
Default values will suffice. You need to set only the
administrator’s password.

8. Export environment variables for use with database
management tools:
$. /u0l/app/oracle/product/11.2.0/xe/bin/
oracle env.sh

9. Once the database instance has started successfully, run
following commands in terminal:
$ sqglplus system
After you type the password chosen in step 7, the SQL
console should be available.

16

http://docs.oracle.com/cd/E17781_01/install.112/e18802/toc.htm#XEINL102
http://docs.oracle.com/cd/E17781_01/install.112/e18802/toc.htm#XEINL102
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

10. (Optional) Enter the following commands to configure
web interface:

cd /u0l/app/oracle/product/11.2.0/xe/apex
sglplus system

@apxconf

alter user anonymous account unlock;

vV vV » »

Running the “@apxconf” script will result in a query for
the web interface parameters. The default values are
sufficient; only the “ADMIN" password needs to be set
explicitly. After completing these steps, the web interface
will be available over HTTP at the VM's static IP address
at port 8080, followed by “/apex.” For example, the web
interface address for the IP address of 172.16.200.200 is

http://172.16.200.200:8080/apex.

Figure 20. The database server web
administration interface

11. Create a new user and give the user appropriate
permissions for dotCMS. In sqlplus, type the following
(where “XXXXXXXX" is the password in quotations you
want to set for new user):

CREATE USER “DOTCMS _ SENDER” PROFILE “DEFAULT”
IDENTIFIED BY “XXXXXXXX” ACCOUNT UNLOCK;

GRANT “CONNECT” TO “DOTCMS _ SENDER”;

GRANT “EXP _FULL _ DATABASE” TO “DOTCMS _ SENDER";
GRANT “GATHER _ SYSTEM _STATISTICS” TO “DOTCMS _
SENDER”;

GRANT “IMP FULL DATABASE” TO “DOTCMS _SENDER”;
GRANT “OEM _ ADVISOR” TO “DOTCMS _ SENDER”;

GRANT “OEM MONITOR” TO “DOTCMS SENDER”;

GRANT “RESOURCE” TO “DOTCMS _ SENDER”;

ALTER USER “DOTCMS _ SENDER” DEFAULT ROLE ALL;
EXIT

12. Open ports on the firewall:

$ sudo firewall-cmd --get-active-zones
public
interfaces: ensl92
$ sudo firewall-cmd --zone=public --add-port=1521/tcp
--add-port=8080/tcp \
——permanent
success
$ sudo firewall-cmd --reload
success
$ sudo firewall-cmd --list-ports
1521/tcp 8080/tcp

For more information on installing Oracle Database Express
Edition 11g and configuring an account for dotCMS, please
refer to official documentation at the following addresses:

e http: .oracle.com E17781 _01/index.htm

¢ https://dotcms.com/docs/latest
database-configuration#Oracle

Setting Up the NFS Server

Our dotCMS implementation consists of a cluster of three
containers. Clustering dotCMS requires a network share
external to the cluster that shares out the contents of the
asset directory to all container nodes. The easiest way to
provide such a network share is to set up an NFS server
instance, export one directory, and then mount that directory
in each container running dotCMS.

For our NFS server, we are using a VM running CoreOS
Container Linux*, but you can use any Linux distribution of
your choice, and then follow the documentation describing
the process for setting up an NFS server.

At this point, we will proceed under the assumption that you
have already deployed CoreOS in a VM and that it already
has network connectivity properly configured (either using
Dynamic Host Configuration Protocol [DHCP] or a static IP
address assignment). You should also register your server in
DNS so you can use a domain name instead of an IP address
in a container image. In our environment, we will assign our
NFS server an IP address of 172.16.255.99 and a domain
name of nfs.example.com.

To set up an NFS server on CoreOS Container Linux, you need
to create a new directory named nfs, modify the fetc/exports
file to export that directory to the 172.16.0.0/16 network
with read-write permission, and finally enable and start the
nfsd daemon.

You perform those steps with the following commands:

core@nfs ~ $ sudo -i

nfs ~ # mkdir /nfs

nfs ~ # echo ”/nfs 172.16.0.0/16(rw)” >> /etc/exports
nfs ~ # systemctl enable nfsd

nfs ~ # systemctl start nfsd

You can verify the status of the daemon using the systemctl
status nfsd command, and you can list exported directories
using the exportfs -v command.

nfs ~ # exportfs -v

/nfs 172.16.0.0/16(rw,wdelay,root _ squash,no _
subtree check,sec=sys,rw,secure,root squash,no all
squash)

After the NFS server is running, you will later mount the
exported directory on the client by specifying the following
network path: nfs.example.com:/nfs

17

http://172.16.200.200:8080/apex
http://docs.oracle.com/cd/E17781_01/index.htm
https://dotcms.com/docs/latest/database-configuration#Oracle
https://dotcms.com/docs/latest/database-configuration#Oracle

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Building an Oracle WebLogic Server and dotCMS*
Container Image

1. Getthe Oracle Docker images from GitHub:

$ git clone https://github.com/oracle/docker-images
oracle-docker-images
$ git checkout 7db020b25ea9d603b2fa97ed850ef4b372c1821e

We are checking out a specific revision (available at the
time of this writing) to ensure that the following steps are
reproducible.

2. From oracle.com/technetwork/java/javase/downloads/
index-jsp-138363.html, download the latest Oracle
Server JRE* for GNU/Linux x64 to oracle-docker-
images/OracleJava/java-8/.

3. Inthe directory oracle-docker-images/OracleJava/
java-8 build an image with Server JRE: $./build.sh

4. Change the active directory to oracle-docker-images/
OracleWebLogic/dockerfiles/12.2.1.2.

5. Download fmw_12.2.1.2.0_wls_quick_Disk1_1of1.zip
from oracle.com/technetwork/middleware/weblogic/
downloads/wls-for-dev-1703574.html, and then put
the file into the directory oracle-docker-images/
OracleWeblLogic/dockerfiles/12.2.1.2.

6. Build the base WebLogic image. In the directory oracle-
docker-images/OracleWebLogic/dockerfiles/, run
the following command: $./buildDockerimage.sh -v
12.21.2-g

7. From the address https://dotcms.com/download/,
download the dotCMS package.

8. Decompress dotCMS*.tar.gz into a separate folder and
build the application:

cd

mkdir dotCMS && cd dotCMS

tar xf ~/<download location>/dotCMS*tar.gz
bin/buildwar.sh

» v v

9. Create the directory that will hold installation scripts and
the Docker file.

FROM oracle/weblogic:12.2.1.2-generic
WLS Configuration
ARG ADMIN _ PASSWORD
ARG DOMAIN _NAME
ARG ADMIN _ PORT

ARG CLUSTER _ NAME
ARG DEBUG _ FLAG

ARG PRODUCTION _ MODE

(editable during build time)

WLS Configuration (editable during runtime)
ENV ADMIN _HOST="wlsadmin” \

NM _ PORT="5556" \

MS _ PORT="7001" \

DEBUG _ PORT="8453" \

$ cd
$ mkdir wl _ dotCMS

10. Unpack dotCMS.war to wl_dotCMS:

11.

12.

13.

14.

$ unzip $HOME/dotCMS/WAR/dotcms.war -d wl _ dotCMS/
dotcms.war

At the end of the file wl_dotCMS/dotcms.war/WEB-INF/
classes/dotmarketing-config.properties, add the
following line:

QUARTZ _ DRIVER _CLASS=org.quartz.impl.jdbcjobstore.
oracle.weblogic.WebLogicOracleDelegate

This line enables support for WebLogic in dotCMS. It is not
required, but it is recommended by dotCMS developers.

In the file wl_dotCMS/dotcms.war/WEB-INF/classes/
dotcms-config-cluster.properties, change line 132
from “es.discovery.zen.fd.ping_timeout=600s" to “es.
discovery.zen.fd.ping_timeout=10s".

This change will reduce the time that dotCMS instances
will wait for each other in the cluster in case one of the
dotCMS hosts fails. Next, we will use sample scripts
prepared by Oracle in our deployment process. They
provide a good base for deployment and, with only a few
modifications, will perfectly suit our needs.

Copy the files from the directory oracle-docker-
images/OracleWebLogic/samples/12212-domain/
container-scripts to wl_dotCMS/container-scripts

and the file oracle-docker-images/OracleWebLogic/
samples/1221-appdeploy/container-scripts/app-
deploy.py to wl_dotCMS/container-scripts/.

The scripts from 12212-domain will simplify the process
of creating the domain, data source, and mail session.
The file app-deploy.py will be used to register the
application in WebLogic server and configure it so that it
starts automatically with the server.

Create Dockerfile in wl_dotCMS with the following content:

(continued on next page)

18

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/middleware/weblogic/downloads/wls-for-dev-1703574.html
http://www.oracle.com/technetwork/middleware/weblogic/downloads/wls-for-dev-1703574.html
https://dotcms.com/download/

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

CONFIG _ JVM _ ARGS="-Dweblogic.security.SSL.ignoreHostnameVerification=true”

Specifies the ports to be used by the dotCMS application for caching and elastic search services
ENV CACHE _ PORT="5701” \
ES _PORT="9309"

WLS Configuration (persisted. do not change during runtime)
ENV DOMAIN__NAME="$(DOMAIN__NAME:—base__domainr’\
DOMAIN _ HOME=/u0l/oracle/user _ projects/domains/${DOMAIN _NAME:-base _domain} \
ADMIN _ PORT="${ADMIN _ PORT:-7001}" \
CLUSTERAiNAME="${CLUSTERAiNAME:—DOCkerCluSter}" \
debugFlag="${DEBUG _ FLAG:-false}” \
PRODUCTIONAiMODE="${PRODUCTIONAiMODE:—prOd}" \
PATH=S$PATH:/u0l/oracle/oracle _ common/common/bin:/u0l/oracle/wlserver/common/bin:/ull/oracle/user _projects/
domains/${DOMAIN NAME:-base domain}/bin:/u0l/oracle

Add files required to build this image
USER oracle
COPY container-scripts/* /ul0l/oracle/

Configuration of WLS Domain
RUN /u0Ol/oracle/wlst /u0l/oracle/create-wls-domain.py /uOl/oracle/ds.properties && \

mkdir -p /u0l/oracle/user projects/domains/$DOMAIN NAME/servers/AdminServer/security && \

echo “username=weblogic” > /ull/oracle/user _projects/domains/SDOMAIN _NAME/servers/AdminServer/security/boot.
properties && \

echo “password=$ADMIN _ PASSWORD” >> /uOl/oracle/user _projects/domains/SDOMAIN _ NAME/servers/AdminServer/security/boot.
properties && \

echo “. /uOl/oracle/user _projects/domains/$DOMAIN _NAME/bin/setDomainEnv.sh” >> /u0l/oracle/.bashrc

Install nfs-utils for sharing directory with assests in cluster
USER root
RUN yum install -y nfs-utils sudo && \

sed -i “100i %oracle ALL=(ALL) NOPASSWD :ALL” /etc/sudoers

Copy and extract dotCMS
COPY dotcms.war /ull/oracle/dotcms.war
RUN chown -R oracle:oracle /ulOl/oracle/dotcms.war
USER oracle
RUN mkdir /uOl/oracle/user projects/domains/$DOMAIN NAME/servers/AdminServer/deploy && \
mv /u0l/oracle/dotcms.war /u0l/oracle/user _projects/domains/SDOMAIN _NAME/servers/AdminServer/deploy/dotcms.war && \
mkdir /u0l/oracle/user projects/domains/$DOMAIN NAME/servers/AdminServer/deploy/dotcms.war/assets && \
mv /ull/oracle/weblogic.xml /ull/oracle/user _projects/domains/$DOMAIN _NAME/servers/AdminServer/deploy/dotcms.war/WEB-
INE/ && \
sed -i “111i JAVA _ OPTIONS=\"\$JAVA _OPTIONS -javaagent:/ull/oracle/user _projects/domains/$DOMAIN _NAME/servers/
AdminServer/deploy/dotcms.war/WEB-INF/lib/dot.jamm-0.2.5 2.jar\”” /u0l/oracle/user projects/domains/$DOMAIN NAME/bin/
startWebLogic.sh && \
/u0l/oracle/wlst /uOl/oracle/app-deploy.py && \
mv /ull/oracle/entrypoint.sh $DOMAIN _HOME/bin

Expose Node Manager default port, and other default ports
EXPOSE SNMAiPORT $ADMIN47PORT SMSAiPORT SDEBUGgiPORT $CACHE47PORT SEsgiPORT

WORKDIR $DOMAIN HOME

Define default command to start bash.
CMD [“entrypoint.sh”

15. This Dockerfile packs our workload (dotCMS) with the « ds.properties with the connection details required to
application server (WebLogic), sets options required set up a data source pointing to our database:
for proper operation of WebLogic (ports, passwords,

and paths), runs the script create-wls-domain.py (which
ds.name=JDBC Oracle DS

creates WebLogic domain and workload requirements), ds.§ndi.name—jdbe/dotCMSPool
and lastly calls app-deploy.py (which prepares dotCMS ds.url=jdbcioracle:thin:\@oracledbl.example.com:1521/
to be available from server start). XE
ds.driver=oracle.jdbc.xa.client.OracleXADataSource
16. In the directory container-scripts, use a text editor ds.username=DOTCMS _ SENDER
such as vi* to create the following files with the ds.password=<DOTCMS _ SENDER password>

following contents:

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

« entrypoint.sh, which sets a shared NFS volume for
application data (needed for clustering) and starts the
WebLogic server with the web application.

(Substitute nfs.example.com with the full DNS name
of your NFS server.)

#!/bin/bash

DOTCMS _ DIR="/u0l/oracle/user _projects/
domains/$DOMAIN NAME/servers/AdminServer/deploy/
dotcms.war”

echo “Mount NFS share”

sudo mount -t nfs nfs.example.com:/nfs $DOTCMS _
DIR/assets

echo “Start WebLogic”

startWebLogic.sh

« weblogic.xml, which configures the application root
URL; without it, the application would start on address
<|P>:7001/dotcms/, which would cause troubles within
the application engine:

<?xml version="1.0” encoding="UTF-8"?2>
<weblogic-web-app xmlns="http://xmlns.oracle.
com/weblogic/weblogic-web-app” xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/
javaee http://java.sun.com/xml/ns/javaee/web-
app 2 5.xsd http://xmlns.oracle.com/weblogic/
weblogic-web-app http://xmlns.oracle.com/weblogic/
weblogic-web-app/l.8/weblogic-web-app.xsd”>
<jsp-descriptor>
<keepgenerated>true</keepgenerated>
</jsp-descriptor>
<context-root>/</context-root>
</weblogic-web-app>

print ‘dsName=’, dsName

print ‘dsJNDIName=’, dsJNDIName
print ‘dsURL=’, dsURL

print ‘dsDriver=’, dsDriver
print ‘dsUsername=’, dsUsername

cd(V/")

create(dsName, ‘JDBCSystemResource’)
cd(‘JDBCSystemResources/’ + dsName + ‘/JdbcResource/’
+ dsName)
create(‘myJdbcDriverParams’,’JDBCDriverParams’)
cd('JDBCDriverParams/NO NAME 0')

set (‘DriverName’,dsDriver)

set (‘URL’, dsURL)

set(‘PasswordEncrypted’, dsPassword)
set(‘UseXADataSourcelInterface’, ‘false’)
create(‘myProps’,’Properties’)
cd(‘Properties/NO _NAME _0')
create(‘user’, ‘Property’)
cd(‘Property/user’)
cmo.setValue(dsUsername)

cd (/")

cd('JDBCSystemResources/’ + dsName + ‘/JdbcResource/’
+ dsName)
create(‘myJddbcDataSourceParams’,’JDBCDataSourcePara
ms’)

cd(\JDBCDataSourceParams/NO _ NAME _ 0r)

set (*JNDIName’, dsJNDIName)

cd(V/")

cd('JDBCSystemResources/’ + dsName + ‘/JdbcResource/’
+ dsName)
create(‘myJdbcConnectionPoolParams’,’JDBCConnectionPo
olParams’)

cd(\JDBCConnectionPoolParams/NO _NAME _ 0")

set (‘TestTableName’,”SQL ISVALID’)

cd(V/")
assignAll(‘Services’, ‘Target’, ‘AdminServer’)

17. In container-scripts, use a text editor to modify the file 18. In the directory container-scripts, use a text editor to
create-wls-domain.py. Below the line cmo.setClusterM modify the file app-deply.py. Change the lines related to
essagingMode(‘unicast’), paste following lines. Here we application placement:

are setting up the mail session and data source. We are
also enabling them by default, making them available at

appname = os.environ.get(‘APP NAME’, ‘dotcms’)
server start. apppkg = os.environ.get (‘APP 77PKG7FILE’, ‘dotcms.
war’)
appdir = domain home + ‘/servers/’ + admin name +
Configure Mail Session ‘/deploy/’
#
cd (/")

create(‘dotcmsMailSession’, ‘MailSession’) .
cd("MailSession/dotcmsMailSession’) 19. After all those changes, directory wl_dotCMS should

set (\JNDIName’, ‘mail/MailSession’) have following structure:

Configure Data Source

f—— container-scripts
|——— add-machine.py
|-—— add-server.py
}— app-deploy.py
}—— commonfuncs.py

from java.io import FileInputStream

inputStream = FileInputStream(sys.argv[1l])
config = Properties()

config.load(inputStream) |——— createMachine.sh
dsName=config.get (“ds.name”) |-—— create-wls-domain.py

}—— ds.properties
|——— entrypoint.sh
|-—— waitForAdminServer.sh

dsJNDIName=config.get (“ds.jndi.name”)
dsURL=config.get (“ds.url”)
dsDriver=config.get(“ds.driver”)
dsUsername=config.get (“ds.username”) |——— weblogic.xml
dsPassword=config.get (“ds.password”) L— wist
dsTargetType=config.get (“ds.target.type”) |-—— Dockerfile
dsTargetName=config.get(“ds.target.name”) L dotcms.war

|
|
|
|
|
| }—— createserver.sh
I
|
|
|
|

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

20. Build the container with WebLogic and dotCMS in the
directory wl_dotCMS, substituting the appropriate
domain name for example.com in vic.example.com:

$ docker build --build-arg ADMIN _PASSWORD=<password
for WebLogic administrator account> -t vic.example.
com/library/weblogic _dotcms:latest

Note that the option and parameter -t vic.example.com/
library/weblogic_dotcms:latest sets the image tag to
<repository>/<path>/<application>:<version>.

When the build finishes, we will use this name to upload
the image to the registry.

Uploading the Image to the Registry

To upload the image to the registry, you first have to log

on to the vSphere Integrated Containers container image
repository on your workstation, substituting the name of your
domain for example.com in the commands below:

$ docker login vic.example.com

Upload the image to the registry:
$ docker push vic.example.com/library/weblogic_
dotcms:latest

Now the application is ready to be deployed on VCH.

Deploying the dotCMS Cluster

The final step in this container deployment scenario is the
deployment of the application cluster. In this scenario, we
will deploy three instances of the containerized dotCMS
application, which will all be connected in a single cluster.
Afterwards, we will verify the configuration and finally enter
licensing information.

Deploying Three Instances of dotCMS

The deployment process involves setting the environment
variable DOCKER_HOST to point to our VCH instance by using
the export command. Then we will deploy the three containers
by using the docker command.

Note the following options and parameters are used with the
docker command:

« The -net option is used to connect the container to the
external cluster network (vRack-DPortGroup-External).

« The -m 8g option and parameter are used to assign 8 GB
of RAM to the container (a dotCMS requirement).

e The -d option is used to run the application in
detached mode.

« The -name option is used to set the container name. We
will need these three names when we create VMware
NSX rules that will automatically assign security groups
to containers. Make sure you correctly record the three
names specified (dotcms1, dotcms2, and dotcms3).

To deploy the dotCMS cluster, enter the following commands,
substituting the IP address of your VCH for <VCH IP> and
substituting your domain name for example.com:

$ export DOCKER _ HOST=<VCH IP>:2376

$ docker --tls run -d --name dotcmsl --net vRack-
DPortGroup-External -m 8g vic.example.com/library/
weblogic dotcms:latest

$ docker --tls run -d --name dotcms2 --net vRack-
DPortGroup-External -m 8g vic.example.com/library/
weblogic dotcms:latest

$ docker --tls run -d --name dotcms3 --net vRack-
DPortGroup-External -m 8g vic.example.com/library/
weblogic dotcms:latest

Verify the Configuration

Now, enter the command on the following line to verify that
three containers are returned in the output, and that the
status for all three is “Up,"” as shown below:

[admin@localhost ~]$ docker --tls ps | grep dotcms

df5bb8c67158 vic.example.com/library/weblogic
dotcms:latest “entrypoint.sh” seconds ago Up 23 hours
dotcms3

47aca’378bdf vic.example.com/library/weblogic
dotcms:latest “entrypoint.sh” seconds ago Up 23 hours
dotcms2

9f8aela951bf vic.example.com/library/weblogic _

dotcms:latest “entrypoint.sh” seconds ago Up 23 hours

dotcmsl

Next, use the docker command to verify the IP addresses
assigned to your containers:

[admin@localhost ~]$ docker --tls inspect dotcmsl | grep
IPAddress
“SecondaryIPAddresses”: null,
“IPAddress”: “”,
“IPAddress”: “172.16.50.100”,
[admin@localhost ~]$ docker --tls inspect dotcms2 | grep
IPAddress
“SecondaryIPAddresses”: null,
“IPAddress”: “”,
“IPAddress”: “172.16.50.101”,
[admin@localhost ~]$ docker --tls inspect dotcms3 | grep
IPAddress
“SecondaryIPAddresses”: null,
“IPAddress”: “”,
“IPAddress”: “172.16.50.102”,

The output above reveals that the application is
available at the addresses 172.16.50.100, 172.16.50.101,
and 172.16.50.102.

Entering Licensing Information

To enter licensing information for your dotCMS deployment,
you will need to connect to the web administration interface
for dotCMS. In a web browser, navigate to the web address
for the first container, 172.16.50.100:7001/dotAdmin.
(Substitute your first container address for 172.16.50.100 if
its address is different.)

21

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Figure 21. The dotCMS web administration interface

Log on with the default user name and password for the
administrator account:

« Email address: admin@dotcms.com
» Password: admin

After logging on, you will see the main dotCMS
administration screen and a warning about licensing.

Figure 22. The main dotCMS administration screen

At this point, you will need to enter a dotCMS license to be
able to use dotCMS with WebLogic and Oracle Database. In
the left pane, click System and then Configuration.

Basic Config Licensing Network Publishing Environments

Basic Information

Portal URL = dotcms example com
Mail Domain | example.com
Email Address support@example.com
Color Picker

Background Color #508671 [

Background Image /himl/images/backgrounds/bg-6.Jpg Backgrounds

Figure 23. System configuration settings for dotCMS

Click the Licensing tab.

Figure 24. dotCMS licensing settings

For testing purposes, you can use a trial license. Doing so

allows testing of enterprise features for 30 days. To begin the

process of acquiring a trial license, click the Request a Trial
License button. This step will open a new browser tab with
a request form for a trial license. After you enter some basic
information, a link to the license key will be sent via email to
the address you entered in the request form.

Figure 25. A view of all three nodes in the dotCMS cluster after licensing information has been entered

22

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

In the Licensing tab, copy the license to the text box at the
bottom of the screen (in Figure 24), and then click Apply
License. Complete the same procedure for the two remaining
containers. After entering the licensing information for all
three containers, you can see that your cluster is up and
running on the Network tab, as shown in Figure 25.

Configuring Load Balancing and
Microsegmentation in VMware NSX

We have just demonstrated how to containerize and deploy a
sample enterprise application by using both traditional VMs
and containers on shared infrastructure. Because dotCMS
supports clustering, we deployed three instances from the
same previously prepared container image. The simplicity of
deploying multiple instances shows how easily you can scale
your application.

The last two pieces we need to configure are the load
balancer and the security policy.

Configuring Load Balancing

Load balancing is a critical component of many enterprise
applications. Load balancing enables scalability and high
availability by redirecting incoming connections from clients
to any one node in a pool of servers. Traditionally, enterprises
have had to use external third-party hardware network
devices, which can be expensive and difficult to integrate
with dynamic virtualized environments. Now, however,
VMware NSX provides virtual load balancer functionality
through its VMware NSX Edge services gateway functionality.
Through tight integration with vSphere, VMware NSX Edge
services gateway has full visibility into your environment and
allows for a flexible definition of resources to load-balance,
such as VM names, security tags, and other logical objects.
Containers built using vSphere Integrated Containers
function as special VMs, so the same functionality and load-
balancing rules can apply to them.

Load Balancing with VMware NSX® Edge™
Services Gateway

The load balancer can be deployed in two different
implementations: “in-line” (acting as a default gateway for
the backing server pool) and “one-arm” (parallel to the
application servers). Each mode has its own requirements
and ramifications. For simplicity, we will utilize one-arm
mode in our scenario.

Incoming connections are forwarded from the load balancer
to one of the backing servers in a manner based on the
configured algorithm. The algorithm choices include Round
Robin, Weighted Round Robin, Least Connections, Weighted
Least Connections, and computational hashes. VMware

NSX also supports various persistence (or “stickiness”)
methods that ensure connections from the same client

are always forwarded to the same server. Health checks,
server maintenance mode, and other advanced services are
supported as well.

Deploying VMware NSX Edge Services Gateway

To deploy a new VMware NSX Edge services gateway for
load balancing, navigate to Networking & Security in the
vSphere Web Client interface. Next, click NSX Edges, and
then select the NSX Manager for the workload domain where
your application is deployed. In our case, this is rack-1-
nsxmanager-2-WD1, with IP address 172.17.0.28.

When you click the green plus (+) icon, the New NSX Edge
wizard appears; in this wizard, you can configure options
such as install type, name, description, or whether you want
to enable high availability for VMware NSX Edge itself. We are
going to deploy simple load balancing to demonstrate basic
functionality, but more advanced scenarios are possible as
well. For more details, please refer to the official
documentation at https://docs.vmware.com/en/
VMware-NSX-for-vSphere/.

Figure 26. The Name and description page of the New NSX
Edge wizard

Stepping through the New NSX Edge Wizard

+ Name and description: After you specify a Name and a
Hostname for your load balancing server, select Deploy
NSX Edge, and then click Next.

» Settings: Provide a username and password for the
VMware NSX Edge command-line interface. Optionally,
you can enable SSH access to the VMware NSX Edge
appliance. You also can choose a logging level.

« Configure deployment: Specify an appliance size; the
larger size you select, the more connections and users
it will be able to handle, but at a cost of more cluster
resources reserved. The largest size is capable of handling
millions of concurrent sessions, a high throughput, and
a high new-connection rate. For small deployments, you
can choose the Compact appliance.

« On the same page, you can also select a cluster or
resource pool where the appliance will be deployed
(in our case: WD1-0-cluster), in addition to a data
store (vsanDatastore). Optionally, you can also
designate a specific host or put the appliance in an
existing VM folder.

https://docs.vmware.com/en/VMware-NSX-for-vSphere/
https://docs.vmware.com/en/VMware-NSX-for-vSphere/

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

« Configure interfaces: You need to configure the network
interfaces used by the VMware NSX Edge appliance. In
one-arm scenarios like ours, you only need to define
a single interface of type Uplink and connect it to the
port group with external network connectivity: vRack-

DPortGroup-External. You also have to provide a Primary

IP Address and a subnet prefix length, and optionally
a list of secondary IP addresses. For our purposes, we

assigned IP address 172.16.255.50 /16. We want to access

our application using domain name, so we also registered
that IP address in an external DNS server as
dotcms.example.com.

- Default gateway settings: Configure default gateway for
the VMware NSX Edge appliance.

« Firewall and HA: Configure the firewall default policy
and logging. If you selected the Enable High Availability
option on the Name and description page, you also have
to choose which interface will be used for synchronization
between the VMware NSX Edge instances and then
provide the management IP addresses. (Consult the
documentation for more details.)

« We want to strictly control the traffic that can pass
through our VMware NSX Edge gateway, so we set the
default firewall policy to Deny and enabled logging.

« Ready to complete: This page presents a summary of all
the chosen options. Verify that everything looks correct,
and then click Finish to initiate the VMware NSX Edge
deployment process.

Creating the VMware NSX Security Group for
the Application

You can create security rules in VMware NSX that apply to
security groups. These security groups can be based on
dynamic membership criteria. We will use this mechanism to
build a security group named dotCMS-Servers that contains
all the VMs and containers whose names start with “dotcms”
and that belongs to our vApp VCH1. This security group will
therefore represent all containers running on our virtual
Docker host VCH1.

To create the security group:

1. Navigate to the Service Composer section under
Networking & Security in vSphere Web Client.

2. Click the icon with a green plus (+) sign to create a new
security group.

3. Use the New Security Group wizard to assign a group
name of dotCMS-Servers and an optional description.

4. Inthe Membership criteria 1 section, specify the
following Membership criteria, as shown in Figure 27:

« Set match to All, so all criteria must be fulfilled to
qualify object membership.

o Select VM Name, Starts with, and then enter dotcms.

« Select Entity, Belongs to, and then enter VCH1 (use
the entity selection icon on the right, change type to
VApp, and then select VCH1).

Figure 27. Creating a new security group for the container
VMs hosting dotCMS

5. Because we don't need to manually include or exclude
any other object, you can click Finish.

6. On the Service Composer summary screen, you should
see the new security group with two VM members. Those
members should be the containers that contain our
dotCMS app. If you wish, you can click on the number 2
in the Virtual Machines column to see a list of security
group members.

Configuring the Load Balancer

Now that you have you deployed VMware NSX Edge services
gateway, the next step is the configuration of the load
balancer. In vSphere Web Client, double-click on the newly
created VMware NSX Edge in the NSX Edges section under
Network & Security. Then, change the view to the Manage
tab and finally the Load Balancer sub-tab. In the Global
Configuration section, you need to enable Load Balancer
functionality and enable logging for easier troubleshooting.
Then, you have to configure an application profile describing
the type of the application (TCP, HTTP, HTTPS, or UDP),
persistence mode, and optional SSL offload.

For our application, we created a simple HTTP profile named
dotCMS with persistence configured to Source IP mode. You
can also use Cookies mode and watch for a specific cookie
containing session information (like JSESSIONID).

You also need to define a backing servers pool. You can
name it dotCMS-Servers and use the default setting of
Round Robin as the connection-selection algorithm. You

can select default_http_monitor as the mechanism used for
monitoring whether the server is alive. You can also configure
more advanced custom monitors in the Service Monitoring
section if needed.

The last thing to configure is members, where you can

specify which servers will handle the traffic directed to your
application. Because you have already created a dynamic
security group named dotCMS-Servers, you can choose that
group as your pool member. The dotCMS application listens
on TCP port 7001, so you also have to provide that port
number in the member definition. Optionally, you can also
configure the minimum and maximum number of connections.

24

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Configuring the Virtual Server

Next, you have to configure a virtual server, which maps
the previously configured application profile to the backing
servers pool. Switch to the Virtual Servers section in
vSphere Web Client, and then click the green plus (+) icon.

In the New Virtual Server window, select the dotCMS
application profile. Give it a name of dotCMS, and select one
of the IP addresses assigned to the VMware NSX Edge services
gateway, such as 172.16.255.50. Then choose HTTP protocol
and port 80 and change Default Pool to dotCMS-Servers.

Configuring the Rule on the Firewall

The final step is to configure a proper rule on the VMware
NSX Edge firewall. We have previously decided to set the
default rule to Deny, so no traffic will be allowed unless we
explicitly allow it. To configure the rule, click the Firewall
sub-tab, and then click the green plus (+) icon. A new empty
rule should now appear before the last default deny rule. You
need to change the name of the rule, provide an IP address
for the virtual server in the Destination field, and specify
HTTP in the Service field. The action should be set to Allow.
When you finish configuration, you need to apply the new
rules by clicking Publish Changes.

VMware NSX Edge firewall rules apply only to the traffic
passed through the VMware NSX Edge appliance (in our case,
traffic from end-users to the load balancer that presents

our application to the outside world). These firewall rules

are unrelated to microsegmentation rules, which secure
communication among VMs and container-VMs. These
functions are handled by the distributed firewall.

Configuring Microsegmentation

One of the most important features of VMware NSX is the
ability to control and filter traffic on a granular level among
all VMs on the network (including container VMs). This level
of security is not practically possible in traditional network
security appliances, which can only control traffic between
separate network segments.

We are going to configure only a minimal security policy to
demonstrate how one can protect an example application
composed of VMs of any type, traditional or container-based.
We will filter only the incoming traffic to the VM hosting

the database server and the container VMs hosting our
application. For simplicity, outgoing traffic will not be filtered.
A complete security policy should, however, control outgoing
traffic along with incoming traffic. It should also secure any
other workloads deployed on the same workload domain
and any workloads deployed throughout the infrastructure.
Finally, a complete security policy mustimplement all the rules
and regulations that are in place in your particular enterprise.

To begin configuring microsegmentation rules, we need to
define network services that are used by our application.
Most of the standard services like HTTP (TCP/80) or Oracle
Database (TCP/1521) are pre-defined, but we also need

a couple of non-standard services. You can create a new
service on-the-fly during policy rule creation, or you can
prepare them in advance.

Creating New Services for Microsegmentation Rules

We will create the new services in advance. In vSphere Web
Client, navigate to Network & Security, then NSX Managers,
and then select the Manager for your workload domain—in our
case it's 172.17.0.28. Click the Manage tab, then the Grouping
Objects sub-tab, and then finally select the Service section.

To create a new service, click the green plus (+) icon, provide
a service name, select the TCP protocol, and provide
destination ports (you can provide multiple ports and port
ranges for single service).

For the dotCMS application, create the following three services:

o dotCMS-cache: Use TCP protocol and destination
port 5701.

+ dotCMS-ElasticSearch: Use TCP protocol and
destination port range 9300-9310.

« TCP/7001: Use TCP protocol and port 7001.

Now that these services are ready, you can configure the
firewall security policy.

Creating New Firewall Rules

In the vSphere Web Client, navigate to Network & Security,
and then Firewall. Select the Configuration tab and the
appropriate VMware NSX manager (172.17.0.28), and then
click the General sub-tab.

You should see three predefined rules: one explicitly allowing
NDP (IPv6 Neighbor Discovery Protocol), another allowing
DHCP traffic, and the Default Rule allowing all traffic. All rules
are evaluated sequentially from top to bottom, so to restrict
communication to our application, we need to create new
rules above the existing ones. To create the security policy
for this implementation, you will add five new rules above the
three predefined rules.

To create a new rule, click the green plus (+) icon. This step
will create an empty rule allowing all traffic. You can move
that rule up and down to a specific place in the policy by
using move rule up/down icons. When you click a specific
field in the rule, there will be a small edit icon in the top-right
corner of the field allowing you to edit that field. In some
fields, there is also second icon named IP allowing you to
manually enter an IP address instead of selecting objects like
VM or Security Group.

The first rule you create should allow traffic from our
application containers represented by the dotCMS-Servers
security group to the database server. You can specify the
VM hosting the database server by its IP address. We will
allow only the Oracle service, which is one of the
predefined services.

The second rule you create should be moved directly below
the first. This rule will block all other traffic directed to the
database server.

You should then create a third rule allowing traffic between
dotCMS servers for two services you have created
previously—dotCMS-cache and dotCMS-ElasticSearch.

25

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Figure 28. The order of firewall rules that define the security policy for this deployment

You also need to create a fourth rule to allow incoming traffic
from external clients (any) to your application server running

on port TCP/7001.

For the fifth and final rule, you should block all other traffic
directed to the dotCMS-Servers security group.

Your security policy should look like the one in Figure 28
when complete.

Publishing Rule Changes

When you add new rules or modify security policies, you

need to activate those changes by clicking Publish Changes.

You can also revert those changes or save a modified
policy and activate it later. When you publish a policy, it is
also automatically saved. You can access previously saved
configuration in the Saved Configurations tab.

Testing the Policy

To demonstrate the effects of our policy, we will run couple
of simple tests from our NFS server running as a VM on the
same cluster.

First, we try to ping the database server and then try to
connect to the Oracle server running on TCP port 1521.

admin@nfs ~ $ ping -c3 oracledbl.example.com
PING oracledbl.example.com (172.16.200.200) 56(84) bytes of
data.

-—- oracledbl.example.com ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time
2030ms

admin@nfs ~ $ ncat oracledbl.example.com 1521
Ncat: Connection timed out.
admin@nfs ~ $

As you can see, both tests fail.

Now we will try to connect to our application running on port
TCP/7001. To find the IP address of the container running
our application, we can use the Docker inspect command.
Next, we will use the curl - command to connect to the app
and grab the HTTP header from the server response. We also
know our application servers are running a caching service
on TCP port 5701, so we will try to connect to that port using
the ncat command.

admin@nfs ~ $ docker --tls -H 172.16.50.38:2376 inspect dotcmsl | grep IPAddress

“SecondaryIPAddresses”: null,
“IPAddress”: “”,
“IPAddress”: “172.16.50.100”,

admin@nfs ~ $ curl -I http://172.16.50.100:7001
HTTP/1.1 200 OK

Date: Wed, 23 Aug 2017 09:57:05 GMT
Transfer-Encoding: chunked

Content-Type: text/html;charset=UTF-8

Set-Cookie: JSESSIONID=RxkOhiUtl9RXZMH3CHnVpIhvi2oYFYdBntelvOmpf EJ9q6e6fpQ!726453550; path=/; HttpOnly

Set-Cookie: opvc=2802296e-d493-4b30-b173-dddf2b9d6372; path=/

Set-Cookie: sitevisitscookie=l; expires=Fri, 08-Jul-2022 09:57:05 GMT; path=/
Set-Cookie: dmid=2cbdda98-70a6-4536-al34-b03cae6adl2?2; expires=Fri, 08-Jul-2022 09:57:05 GMT; path=/

admin@nfs ~ $§ ncat 172.16.50.100 5701
Ncat: Connection timed out.

26

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

Connection to the port 7001 should succeed because it is
permitted in the security policy. However, connectivity to port
5701 is blocked. We have allowed connections to this port only
among members of our dotCMS-Servers security group, which
consists of only the container VMs hosting our application,

not the NFS server from which we are conducting our tests.
Please keep in mind that we aren't filtering any outgoing traffic
here, so our application containers can successfully mount and
access the NFS share running on the same NFS server used for
the above tests. The application can also access DNS servers
and public services on the Internet.

Monitoring Security Policies

VMware NSX also provides a set of tools that can be used

to monitor and troubleshoot network traffic and security
policies. One of these tools is Flow Monitoring, which can

be used to display all previously allowed and blocked flows
(network connections) in a specific time interval. Please

keep in mind that it presents historical data, so we need to
wait couple of minutes before new data will be available.

To access this tool, navigate to Network & Security > Flow
Monitoring. Next, select the Details By Service tab, and then
select the proper NSX Manager (172.17.0.28).

Under the Blocked Flows sub-tab, we can see our blocked
ping and connections to the Oracle service (TCP/1521) and TCP
port 5701. When you click a specific flow, you can see detailed
information about source and destination, number of blocked
packets, and the rule number that blocked that specific traffic.

Figure 29. Observing connections blocked as a result of
security policies

Table 3. Hardware components used in the reference architecture

In the Allowed Flows sub-tab, we can see that the traffic
between containers with the dotCMS application using port
TCP/5701 was allowed, as was the the traffic from the application
containers to the database server using the Oracle service.

The Live Flow tab in the same tool is used to monitor all
incoming and outgoing traffic on a specific virtualized network
interface card (vNIC) of a particular VM or container VM. You
can also use the Live Flow tool to discover which services are
exposed and used by particular application components.

Final Test of the Configuration

As a final test of the containerized application, we will try to
connect to our application from an external client web browser.
In your external web browser, connect to the URL http://dotcms.
example.com, the address that leads to our load balancer.

Figure 30. Connecting to the dotCMS application through a
load balancer

If you wish, you can experiment with the deployment by also
performing additional tests such as stopping and starting
containers or adding new containers to the application cluster.
You should find that the application works as expected by
providing high availability and by distributing requests to
different application servers running in containers.

Solution Components with Identifying Codes

Use Table 3 to identify the components used in the solution.

Function Details Identifying Code
Server Dell EMC PowerEdge R630 rack server Dell EMC SKU: 340-AKPR
CPU Intel® Xeon® processor E5-2660 v4 (2.0 GHz, 14 cores, 35M Intel ordering code: CM8066002031201
cache, 105 W) Dell EMC SKU for CPU1/CPU2: 338-BJCW/338-BJDQ
Memory 32 GB DDR4, 2400 MHz memory modules (256 GB total) N/A

Storage (caching tier)

800 GB, 2.5 in. SATA Intel® SSD DC S3710 Series

Intel ordering code: SSDSC2BA800G401

Storage (data tier)

800 GB, 2.5 in. SATA Intel SSD DC S3520 Series

Intel ordering code: SSDSC2BB800G701

Storage controller
(SAS), firmware version 13.17.03.00

Dell EMC PowerEdge HBA330 Mini-Serial Attached SCSI

Dell EMC SKU: 405-AAJU

Network adapter

Server Adapter 1350 Network Daughter Card

Dual-port 10 gigabit (Gb) Intel® Ethernet Converged Network
Adapter X520 DA/SFP+ and dual-port 1 Gb Intel® Ethernet

Manufacturer part #: 67XRW
Available through Dell EMC.
Dell SKU: 540-BBHJ

Boot device

Dell Internal Dual SD Module (IDSDM), 2 x 16 GB SD cards

Provided by Dell with the “Internal Dual SD Module with
2 x 16 GB Cards” configuration option

Cisco Nexus 93180YC-EX
NX-0S 7.0(3)14(2)*

Top-of-rack switch

Cisco product ID:
N9K-C93180YC-EX

Management switch Dell Networking S3048-ON

Cumulus Linux 2.5.8*

Dell SKU: 210-AEDM

27

Reference Architecture | A Secure, Unified Cloud Platform to Host Both VM-based and Container-based Applications

SUMMARY Appendix/Additional Resources
This reference architecture describes an integrated cloud + TheSolutions Library on the Intel® Builders home

page can help you find reference architectures, white
papers, and solution briefs like this one that can help
you build and enhance your data center infrastructure.

solution through which VMs and containers run side by side.
This solution allows an organization to securely develop,
host, and manage applications of all types, whether they are

hosted on VMs or containers. The reference architecture « Follow us on Twitter: #IntelBuilders

demonstrates that businesses can deploy containerized .
applications in their cloud environments as securely as * Learnmoreaboutthe Mw_or_fmm the
traditional applications deployed through VMs. Intel SSD Data Center Family, and the Intel Ethernet

Converged Network Adapter X520 on intel.com.

« Visit the VMware web site for more information on
VMware Cloud Foundation and vSphere Integrated

The software stack for the solution is based on VMware
Cloud Foundation, with vSphere Integrated Containers
installed on top as an extra feature. The hardware solution

consists of a single rack of 12 servers, 3 switches, and SSD Containers a_nd_ to learn CE about joint Delland
storage. Together, these components enable administrators YMware optimized solutions.

to manage containerized applications along with VMs in . Visit the Dell EMC web site for more information on
a unified way and to subject these containers to the same Dell EMC™ VxRack™ hyper-converged appliances.
security policies that can be applied to traditional VMs. These)

security policies can include microsegmentation rules in + Dell EMC Customer Solution Centers are a global
VMware NSX, which can control and filter traffic on a granular network of connected labs that allow Dell to help
level among all VMs on the network. The solution also customers architect, validate, and build solutions.
provides containerized applications with the same level of . GitHub*r ietmy vt OrmEeles Pedker e

security isolation enjoyed by applications in other VMs.

« Information on Oracle Webl ogic Server on
Docker Containers

« Information on Oracle Database Express Edition
Documentation 11g Release 2 (11.2)

« Information on Oracle Database software and
hardware requirements

« Information on deploying dotCMS on Webl ogic

« Information on Oracle Database configuration
for dotCMS

DEALLEMC intel.

' Source: VMware vSphere Integrated Containers product documentation at https:

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system
hardware, software or configuration may affect your actual performance.

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data
are accurate.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

Intel, the Intel logo, Intel Atom, and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

VMware, the VMware logo, Photon OS, Platform Services Controller, VMware App Volumes, VMware Cloud Foundation, VMware ESXi, VMware Horizon, VMware NSX, VMware NSX Edge, VMware
SDDC Manager, VMware vCenter Server, VMware vRealize, VMware vRealize Automation, VMware vRealize Business, VMware vRealize Log Insight, VMware vRealize Operations, VMware vSAN,
VMware vSphere, VMware vSphere Integrated Containers, and VMware vSphere vMotion are registered trademarks or trademarks of VMware, Inc. in the United States and other jurisdictions.

Dell, Dell EMC, the Dell EMC logo, PowerEdge, and VxRack are trademarks of Dell, Inc. or its subsidiaries.
*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

Printed in USA 0917/JM/PRW/PDF Please Recycle 336522-001US

28

https://vmware.github.io/vic-product/assets/files/html/0.8/vic_installation/introduction.html
http://www.intel.com
https://builders.intel.com/solutionslibrary
https://builders.intel.com/solutionslibrary
https://twitter.com/hashtag/IntelBuilders
http://www.intel.com/xeon
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds.html
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-x520-server-adapters-brief.html
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-x520-server-adapters-brief.html
http://www.intel.com
http://www.vmware.com/
https://www.vmware.com/products/cloud-foundation.html
https://www.vmware.com/products/vsphere/integrated-containers.html
https://www.vmware.com/products/vsphere/integrated-containers.html
https://www.vmware.com/partners/global-alliances/dell/dell-solutions.html
https://www.vmware.com/partners/global-alliances/dell/dell-solutions.html
http://www.dellemc.com/
https://www.dellemc.com/en-us/converged-infrastructure/vxrack-system/index.htm
http://www.dell.com/customersolutioncenters
http://github.com/oracle/docker-images
http://oracle.com/technetwork/middleware/weblogic/overview/weblogic-server-docker-containers-2491959.pdf
http://oracle.com/technetwork/middleware/weblogic/overview/weblogic-server-docker-containers-2491959.pdf
http://docs.oracle.com/cd/E17781_01/index.htm
http://docs.oracle.com/cd/E17781_01/index.htm
http://docs.oracle.com/cd/E17781_01/install.112/e18802/toc.htm#XEINL102
http://docs.oracle.com/cd/E17781_01/install.112/e18802/toc.htm#XEINL102
http://dotcms.com/docs/latest/deploy-as-a-war-in-weblogic-server-12-1-2
http://dotcms.com/docs/latest/database-configuration#Oracle
http://dotcms.com/docs/latest/database-configuration#Oracle

