Platform Management IPMI
Controllers, Sensors, and Tools

Tom Slaight
Server Management Architect
Enterprise Platforms Group
Intel Corporation

September 11, 2002
Introduction

• Audience: Architects, Technical Managers, Firmware Leads, and Hardware Designers
 – Involved in architecture, component selection, debug, test, or design of server baseboard and peripheral management subsystems

• Focus: IPMI-based implementations
 – Hardware components
 – Hardware and firmware development tools
Disclaimers

• A good starting point
 – … but not a comprehensive list of vendors or available technology
 – Listing of particular vendors and products does not constitute an endorsement by Intel or the IPMI Promoters

• No guarantees on accuracy of information provided
 – Contact vendors directly for complete specifications and availability information

“Architect’s Pick”
Agenda

- IPMI Update & Architecture Overview
- Baseboard Management & Enclosure/Peripheral Controllers
- Sensor Devices
- Putting it all together - design advice and tools
- Summary
IPMI

Intelligent Platform Management Interface

- Defines a standardized, abstracted, message-based interface to intelligent platform management hardware
- Defines standardized records for describing platform management devices and their characteristics

Promoters: Intel, HP, NEC, Dell

Adopters: Over 125 and growing

http://developer.intel.com/design/servers/ipmi
Updated Errata, Conformance Test Suite and 64- & 32-bit .NET/Windows* 2000 Drivers Available

developer.intel.com/design/servers/ipmi

* Other names and brands may be claimed as the property of others.
Other Initiative News

• ASF 2.0
 – Alert Standard Format specification from DMTF
 – Adds authentication to remote power and reset control over ASF 1.0

• PICMG 3.x / AdvancedTCA*
 – IPMI additions for PICMG 3.x support
 – Network function for “AdvancedTCA” commands
 – Slot/Connector type for “AdvancedTCA” boards
ASF/IPMI Typical Applications

IPMI and ASF are complementary and cooperating technologies
Platform Management Technologies

System Health & Security Alerts
- Health Alerts (Temperature, Voltage, Fan, etc. -- 128 definable alerts)
- Security Alerts (Chassis Intrusion, LAN Heartbeat, System Password Violation)
- BIOS Messages & Alerts
- OS Hung Watchdog Timer

Authenticated Remote Control**
- Processor Missing (startup Watchdog)
- Power up/down/cycle/reset
- Boot & Boot Path Options

Status Info
- System State
- System ASF Capabilities
- Presence Ping/Pong

Monitoring
- Abstracted Local and Remote Monitoring
- Health Sensor "Present Reading" Access (Temperature, Voltage, Fan, etc.)

Inventory and Logging
- FRU/Inventory Data Access
- Event Logging

Extended Out-of-Band Access
- Serial/Modem Access
- Text-based Access
- Inter-Chassis Access
- Multi-level, Multi-user Security

Extended Alerting
- Alerts to multiple destinations
- Paging via Modem

Automatic Actions
- Platform Event Filtering (PEF) - Configurable, Event-based automatic recovery & alerts

Scalability / Extensibility
- Utilizes independent BMC
- "Unlimited" Events & Sensors
- Extensible Sensor/Event Busses

** IPMI supports multi-user as well as multilevel authentication
Agenda

• IPMI Update & Architecture Overview
• Baseboard Management & Enclosure/Peripheral Controllers
• Sensor Devices
• Putting it all together – design advice and tools
• Summary
BMC Features to look for...

System Interface

- **Built-in System Interfaces**
 - For IPMI, three types possible:
 - KCS (Keyboard Controller Style) most popular.
 - BT (Block Transfer) is fastest.
 - SMIC (Server Mgmt. Interface Chip) for implementation via external ASIC or FPGA [not recommended for new designs]

- **“Low glue” connection to chip set**
 - LPC or ISA “X-bus” interfaces commonly used
 - IPMI specifications support memory mapped implementations as well as original I/O mapped

- **System Interface interrupt support**

- **Multiple Built-in System Interfaces**
 - KCS interface hardware can be used to implement an ACPI EC (Embedded Controller) interface
 - Additional interface can support OEM differentiation access, such as from an SMI Handler
BMC Features to look for...

I²C/SMBus Support

• Recommend three Master-Slave interfaces for general purpose server BMC:
 – 5V Master-slave for IPMB
 – 3.3V Master-slave for PCI Mgmt. Bus
 – 5V for Redundant IPMB in modular/blade server applications or M/S interface for LAN / Future

• Supports multiple slave addresses
 – One fixed for I²C broadcast (00h)
 – One programmable for device as IPMI target
 – Second programmable for snoop/SMBus host target

• SMBus and I²C compatibility
 – For PCI SMBus support and sensor device flexibility
BMC Features to look for...

I²C/SMBus Support

Multiple private management bus support

- Reduces need for external I²C bus multiplexing
- Hardware-based m/s or slave-only hardware-based interfaces are best
 - Important for LAN Controller interface performance
- ‘Open drain’ or ‘quasi- bi-directional’ I/O can be used to create ‘bit banged’ private busses
 - Mainly useful for sensor devices that do not require extensive polling
BMC Features to look for...

Flexible I/O

- **Selectable open-drain or driven outputs**
 - Reduces need for external pullups
 - Can implement ‘bit baged’ private I^2^C/SMBus

- **3.3V Standby operation with 5V tolerance**
 - 5V tolerance on I^2^C reduces cost of IPMB support
 - Supports 5V status and SEEPROMs (e.g. Power Supply FRU)

- **High current outputs (>12 mA)**
 - For direct LED drive
BMC Features to look for...

UARTs and Interrupts

- **UARTs with hardware handshake support**
 - For ICMB & IPMI-over-Modem support

- **Multiple UARTs**
 - To support redundant connections for modular server designs

- **Multiple External Interrupts**
 - For asynchronous event capture
BMC Features to look for...

FAN monitoring & control

- **Timers or Counters for Tach FAN Speed monitoring**
 - Tach FAN speed can be accumulated using a single counter with a digital multiplexer
 - FAN speed is calculated by accumulating counts per unit time, e.g. 1 second.
 - Time to accumulate FAN speeds scales with number of FANs. I.e. monitoring 8 fans takes 8 seconds.

- **Pulse-width Modulator (PWM) or D/A outputs for FAN Speed control**
BMC Features to look for...

Built-in Analog-to-Digital

- **Need for at least 7 voltages is common**
 - E.g. Processor 1 & 2, 3.3V, 3.3Vaux, 5V, 12V, -12V

- **Many server systems require more**
 - >2 processors, SCSI terminations, bus, cache/chipset, etc.
 - 19 or more is not uncommon!

- **Conversion rate usually not an issue...**
 - A single converter with analog multiplexing works well

- **But accuracy, tolerance, and resolution are**
 - Recommend at least 8-bit resolution, +/-1 bit tolerance, and +/-1% accuracy

Low accuracy paid for with system margins
BMC Features to look for...

Firmware support

- **Development and Debug Support**
 - Vendor-provided debug tools
 - Test port or emulator support
 - Commercial high-level language & code debugging tools
 - Commercial RTOS options

- **IPMI Firmware / SDK**
 - Typical SDKs support customer-developed extensions for ‘Value added’ features
 - Vendors may also offer customization services

Firmware and SDKs yield faster TTM for IPMI-based designs
BMC Features to look for...

Extensibility, Headroom, and Low Cost

- **Low Power Consumption**
 - <50 mA is a pretty good target

- **Scalability**
 - Can one controller fit multiple products?
 - ...Or is it part of a ‘family’ that can?

- **ROM/RAM Upgrade Path**

- **Performance Headroom**
 - Authentication & Encryption for potential future interfaces, e.g. Web, demands compute power

- **External Expansion Capability**

- **Package and Board Space**
 - BGA packaging can provide higher density
 - Watch tradeoffs between package size & overall solution cost

- **Low Unit Cost**
Management Controllers*

Other names and brands may be claimed as the property of others.

```
= new since last presentation

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>product</th>
<th>core</th>
<th>I/F</th>
<th>I²C</th>
<th>A/D serial</th>
<th>system</th>
<th>App</th>
<th>LED drv</th>
<th>special features</th>
<th>IPMI F/W</th>
<th>Avail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent</td>
<td>eRMC</td>
<td>Contact vendor…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas Semi.</td>
<td>DS80CH11</td>
<td>8032 compat.</td>
<td>3 KCS via ISA</td>
<td>2 m/s</td>
<td>Y</td>
<td>1</td>
<td>8051</td>
<td>BMC</td>
<td></td>
<td>no</td>
<td>now</td>
</tr>
<tr>
<td>Hitachi</td>
<td>H8/3337Y</td>
<td>H8 8-bit</td>
<td>1 KCS via ISA</td>
<td>1 m/s</td>
<td>Y</td>
<td>Y</td>
<td>SCI</td>
<td>BMC</td>
<td>D/A, PWM</td>
<td>no</td>
<td>now</td>
</tr>
<tr>
<td></td>
<td>H8S/2148</td>
<td>H8S 16-bit</td>
<td>4 KCS via ISA</td>
<td>2 m/s</td>
<td>Y</td>
<td>Y</td>
<td>SCI</td>
<td>BMC</td>
<td>D/A, PWM</td>
<td>no</td>
<td>now</td>
</tr>
<tr>
<td>National Semi.</td>
<td>87431</td>
<td>mini BMC</td>
<td>8032 compat.</td>
<td>1 m/s</td>
<td>no</td>
<td>1</td>
<td>8051</td>
<td>Sat / Bridge</td>
<td></td>
<td>no</td>
<td>now</td>
</tr>
<tr>
<td></td>
<td>80C552</td>
<td></td>
<td>external req'd</td>
<td>1 m/s</td>
<td></td>
<td>8 ch</td>
<td>1</td>
<td>8051</td>
<td>Sat / BMC</td>
<td>no</td>
<td>now</td>
</tr>
<tr>
<td>Philips</td>
<td>80C652</td>
<td></td>
<td>8032 compat.</td>
<td>1 m/s</td>
<td></td>
<td>2 m/s</td>
<td>6**</td>
<td>1</td>
<td>&quot;16550&quot;</td>
<td>yes</td>
<td>2 PWM, 2 fan tach, USP, yes</td>
</tr>
<tr>
<td>Qlogic</td>
<td>Zircon BL</td>
<td>ARM7/ TDMI</td>
<td>2 KCS via LPC</td>
<td>2 m/s</td>
<td></td>
<td>6**</td>
<td>1</td>
<td>&quot;16550&quot;</td>
<td>BMC</td>
<td>yes</td>
<td>4Q02</td>
</tr>
<tr>
<td>Qlogic</td>
<td>Zircon UL</td>
<td>ARM7/ TDMI</td>
<td>2 KCS via LPC</td>
<td>2 m/s</td>
<td></td>
<td>6**</td>
<td>1</td>
<td>&quot;16550&quot;</td>
<td>BMC</td>
<td>yes</td>
<td>4Q02</td>
</tr>
</tbody>
</table>
```

** Comparators

... Continued next page
Management Controllers*

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>product</th>
<th>core</th>
<th>system I/F</th>
<th>I²C</th>
<th>A/D</th>
<th>serial</th>
<th>type</th>
<th>App</th>
<th>LED drv</th>
<th>special features</th>
<th>IPMI F/W Avail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qlogic</td>
<td>Zircon CP 128 QFP</td>
<td>ARM7/TDMI</td>
<td>BT, 2 KCS LPC/ISA</td>
<td>2 m/s</td>
<td>6 ch</td>
<td>1</td>
<td>same</td>
<td>BMC / cPCI</td>
<td>yes</td>
<td>2 PWM, 4 fan tach</td>
<td>yes now</td>
</tr>
<tr>
<td>Qlogic</td>
<td>Zircon</td>
<td>ARM7/TDMI</td>
<td>3 KCS via LPC, ISA</td>
<td>3 m/s</td>
<td>10 ch</td>
<td>2</td>
<td>"16550"</td>
<td>BMC</td>
<td>yes</td>
<td>8 PWM, ICMB assist, 12 fan tach</td>
<td>yes now</td>
</tr>
<tr>
<td>Qlogic</td>
<td>Zircon Lite 160 PQFP</td>
<td>ARM7/TDMI</td>
<td>BT, 2 KCS LPC/ISA</td>
<td>2 m/s</td>
<td>8 ch</td>
<td>1</td>
<td>same</td>
<td>BMC / cPCI</td>
<td>yes</td>
<td>2 PWM, 4 fan tach</td>
<td>yes now</td>
</tr>
<tr>
<td>Vitesse Semi.</td>
<td>VSC210</td>
<td>R3000</td>
<td>3 KCS/SMIC/ BT via LPC</td>
<td>3 m/s</td>
<td>no</td>
<td>3</td>
<td>ICE/GP FIFO'd ICMB</td>
<td>BMC / Sat</td>
<td>12mA</td>
<td>fan tach, ICMB assist</td>
<td>yes now</td>
</tr>
<tr>
<td>Vitesse Semi.</td>
<td>VSC215</td>
<td>R3000</td>
<td>3 KCS/SMIC/ BT via LPC</td>
<td>4 m/s</td>
<td>Y</td>
<td>4</td>
<td>ICE/GP FIFO'd ICMB</td>
<td>BMC / Sat</td>
<td>12mA</td>
<td>fan tach, ICMB assist</td>
<td>yes now</td>
</tr>
<tr>
<td>Winbond</td>
<td>W83910F compat.</td>
<td>8032 compat.</td>
<td>3 KCS/SMIC/ BT via LPC</td>
<td>5 m/s</td>
<td>7</td>
<td>2</td>
<td>"16550"</td>
<td>BMC</td>
<td>yes</td>
<td>PWM, LCD Module I/F, 4 temp diode</td>
<td>yes now</td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
Baseboard Management Controllers

Qlogic* Zircon UL
– Target applications: 1P/2P Servers
– 32 GPIO (max), 4 Fan tach, 3 PWM
– 128-pin PQFP
– Virtual Storage Interface – supports ‘virtual floppy’
– Universal Serial Interface
 – for serial redirection / headless
– Samples: now, Production: 4Q02

Qlogic Zircon BL
– Target applications: server blades, high-end workstations
– 18 GPIO (max), 2 fan tach, 2 PWM
– 100-pin PQFP
– Virtual Storage Interface
– Universal Serial Interface
– Samples: now, Production: 4Q02

* Other names and brands may be claimed as the property of others.
Baseboard Management Controllers

National Semiconductor* PC87431M “mini-BMC”

- Targets IPMI-based LAN remote mgmt.
 - supports monitoring by local mgmt. s/w via SMBus
 - configurable polling of sensors similar to ASF
- Authenticated IPMI LAN support for:
 - System reset, SMI/NMI, and power control
 - settable ‘Boot Options’
 - FRU, System Event Log, and SDR access
 - Alerting via IPMI/PET SNMP Traps
- “PEF-like” configurable actions on events
 - power control, reset, fault light, NMI/SMI, and alert
- Internal FLASH, RAM, NVRAM
 - up to 512 bytes NV available for OEM use

* Other names and brands may be claimed as the property of others.
Enclosure/Peripheral Controllers

Example Block Diagram

- SAF-TE = SCSI Accessed Fault-Tolerant Enclosures
- SES = ANSI SCSI Enclosure Services
Enclosure Management Controllers

Features to look for...

- **SAF-TE and SES Firmware**
 - Extensible / customizable?
 - Configurable LED definitions?
- **IPMI Firmware / SDK**
 - IPMB Support?
- **Support for external sensors or FRU devices**
 - e.g. FAN & power monitoring

Firmware and SDKs yield faster TTM for Enclosure/Peripheral Controllers
Agenda

• IPMI Update & Architecture Overview
• Baseboard Management & Enclosure/Peripheral Controllers
• Sensor Devices
• Putting it all together – design advice and tools
• Summary
Sensor Devices

Sensors and Monitors with I²C/SMBus

- **Board Temperature Sensors**
 - Temperature sensor in package
 - May include digital outputs for fan control

- **Processor Temperature Sensors**
 - Thermal diode monitors plus built-in temperature
 - May include automatic fan control

- **Hardware Monitors**
 - Voltages for board and processors
 - Processor VID (voltage ID) monitor
 - Temperatures
 - built-in plus remote thermal diodes for processors
 - Fan speeds
 - Digital I/O or PWM for fan speed control

Focus on dual-processor monitoring
Sensor Devices

Sensors and Monitors with I²C/SMBus

• Other composite sensor devices
 – Focus on specific areas
 – Disk drive enclosure monitoring
 – Fan monitoring & control and voltage monitoring for processors
 – Fan and voltage monitoring for >2-way systems
 – See examples in backup slides

• Sensor Trend: Automatic Fan Control
 – Noise Reduction becomes more difficult for pedestal servers
 – Need to meet PC Design Guide recommendations and European specs such as “Blue Angel”
 – Need for more granular / gradual speed control
 – Audible FAN Speed Cycling disconcerting to user
 – Need for per-fan or per-zone control
 – Driving all fans to same speed usually produces higher than needed noise level
Agenda

• IPMI Update & Architecture Overview
• Baseboard Management & Enclosure/Peripheral Controllers
• Sensor Devices
• Putting it all together – design advice and tools
• Summary
I²C/SMBus Application

Design Pointers

- SMBus and I²C not directly compatible
 - Timing and Electricals are close, but not identical
 - But masters and slave devices can be designed to work with both
 - And I²C and SMBus slave devices can typically be used on same bus

- Slave Devices: Only use devices with data integrity checks on IPMB and PCI SMBus
 - Place other devices on ‘Private Management Busses’ behind management controllers or other integrity-checked device

- Masters: Include support for clearing the ‘Stuck 0’ condition

Design for SMBus and I²C compatibility
See IPMI Web Site for more info
I²C/SMBus Application

Bus Driving

- **Multiplexing** required when dealing with address option shortages or conflicts
- **Conversion** required when dealing with different bus voltage levels
- **Isolation** required when unpowered devices would ‘short out’ bus
- **Repeater** functionality when driving long busses or many loads (e.g. PCI SMBus)
I²C/SMBus Application

Bus Driving

Philips Semiconductor*

PCA9516 “5 channel I²C Hub”

- Allows *multiple* additional 400 pF bus segments
- Segments can be individually isolated
- Supports level translation (5V tolerant pins)
- Pins “Hi-Z” when device un-powered.
- Supports multi-master arbitration across the repeater

Possible applications:

Supporting PCI Management Bus on >8 PCI Slots, isolating SMBus to ‘hot-plug PCI’ slots, driving I2C to multiple system boards

PCA9515 single segment I²C Bus Repeater also available

* Other names and brands may be claimed as the property of others.
I²C/SMBus Testing

Testers & Monitors

• Generators and monitors available
 – Standalone and PC Hosted
 – Ready to run software
 – Software libraries and SDKs enable IPMI message parsing

• Some tool vendors our developers have used
 – Microcomputer Control Corporation
 http://www.mcc-us.com/
 – Calibre UK Ltd
 http://www.calibreuk.com/
 – Card also supported in IPMI conformance test suite
 – Telos EDV Systementwicklung GmbH
 http://www.lucit.de/
I²C/SMBus Testing

IPMI Messaging Testing

• **IPMITOOL**
 – simple messaging utility available from IPMI Web Site

• **Debug tools from component vendors**

• **Software from I²C tester vendors**
 – use SDKs to extend tool for IPMI message parsing

• **IPMI Conformance Test**
IPMI Conformance Test

- **Automated testing for IPMI v1.5 & v1.0**
 - generates command conformance reports

- **Performs System interface accessible testing**
 - KCS and SMIC interfaces, Watchdog Timer, BMC Sensors
 - System event log (SEL), sensor data record (SDR), and FRU access
 - IPMB, ICMB testing

- **KCS protocol test**

- **IPMI v1.5 LAN, Serial, IPMB, and PCI SMBus test support**

- **Platform Event Filtering (PEF) and alerting**

- **Also usable as debug and development aid**
 - TCL script-based testing is user extensible
 - Examples provided

Speeds development and conformance testing
Software and Firmware building blocks

OSA Technologies

- Platform Mgmt.
 S/W and F/W for IPMI & PICMG 3.x
- Modular Architecture
 - Extensible
 - Scaleable across product lines
Agenda

- IPMI Update & Architecture Overview
- Baseboard Management & Enclosure/Peripheral Controllers
- Sensor Devices
- Putting it all together - design advice and tools
- Summary
Summary

- New initiatives and specifications enable competitive server management features
- Management controllers and sensor devices available to fit your design and feature differentiation needs
- Tests & tools reduce system cost and design effort
- Help available today...
Component & Tool Vendors*

- **Agilent Technologies**
 contact.tm.agilent.com/tmo/datasheets/English/PRMC_ERMC.html, Niki Haines, niki_haines@agilent.com

- **Analog Devices, Inc.**
 www.analog.com/pc & /temp-sensors, Paul Errico - paul.errico@analog.com

- **Dallas Semiconductor**
 www.dalsemi.com

- **Hitachi Semiconductor (America), Inc.**
 semiconductor.hitachi.com

- **Micro Computer Control Corporation**
 www.mcc-us.com, Ed Thompson, ed.thompson@mcc-us.com

- **National Semiconductor Corporation**
 www.national.com/appinfo/tempsensors/ & /advancedio, Hezi Friedman, hezi.friedman@nsn.com

- **Philips Semiconductors**
 www.philipslogic.com/products/i2c, Joe Kochanski, joseph.kochanski@phlips.com

- **OSA Technologies**
 www.osatechnologies.com, Steve Rokov, steve.rokov@osatechnologies.com

- **Qlogic Corporation**
 www.qlogic.com, Mark Byrne-Quinn, mark.byrne-quinn@qlogic.com

- **Texas Instruments**
 www.ti.com

- **Vitesse Semiconductor Corporation**
 www.vitesse.com, Tom Brokaw, brokaw@vitesse.com

- **Winbond Electronics Corporation**
 www.winbond.com.tw, Chad M.C. Wu, mcwu0@winbond.com.tw

* Other names and brands may be claimed as the property of others.
Resource Information

Organizations / Specifications

- **IPMI (Intelligent Platform Management Interface) Specifications**
 - http://developer.intel.com/design/servers/ipmi

- **SMBus Specifications**
 - http://www.smbus.org

- **I²C Specifications**
 - The I²C-BUS Specification, Version 2.1, January 2000
 - http://semiconductors.philips.com/

- **DMTF Pre-OS Working Group / ASF Specifications**
 - http://www.dmtf.org

- **PICMG / AdvancedTCA – PCI Industrial Computers Working Group**
 - http://www.picmg.org

* Other names and brands may be claimed as the property of others.
Questions?

Please remember to turn in your session survey form.
This presentation will be posted September 26th

http://www.intel.com/idf

Attendee password will be sent two weeks after the conference via email.
Backup
<table>
<thead>
<tr>
<th>Mfr.</th>
<th>product</th>
<th>core</th>
<th>Periph. I/F</th>
<th>I²C</th>
<th>A/D</th>
<th>serial</th>
<th>type</th>
<th>LED driv</th>
<th>special features</th>
<th>IPMI F/W</th>
<th>Avail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLogic</td>
<td>GEM 359</td>
<td>8-bit</td>
<td>LVDS, 2 SFF-8067</td>
<td>2 m/s</td>
<td>1</td>
<td>16550</td>
<td>4 @ 12mA</td>
<td>4 tach fan, 3 PWM</td>
<td>yes</td>
<td>now</td>
<td></td>
</tr>
<tr>
<td>QLogic</td>
<td>Zircon PM</td>
<td>ARM7/ TDMI</td>
<td>n/a</td>
<td>3 m/s</td>
<td>6 ch</td>
<td>1 @ 12mA</td>
<td>2 PWM, 2 fan tach</td>
<td>yes</td>
<td>now</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitesse Semi.</td>
<td>SSC100</td>
<td>R3000</td>
<td>Fibre Channel</td>
<td>3 m/s</td>
<td>N</td>
<td>2</td>
<td>ICE/GP FIFO'd ICMB</td>
<td>12mA ICMB Arbitration</td>
<td>yes</td>
<td>now</td>
<td></td>
</tr>
<tr>
<td>Vitesse Semi.</td>
<td>VSC200</td>
<td>R3000</td>
<td>Fibre Channel, SFF-8067, ESI</td>
<td>3 m/s</td>
<td>N</td>
<td>2</td>
<td>ICE/GP FIFO'd ICMB</td>
<td>12mA ICMB Arbitration</td>
<td>yes</td>
<td>now</td>
<td></td>
</tr>
<tr>
<td>Vitesse Semi.</td>
<td>VSC205</td>
<td>R3000</td>
<td>SCSI</td>
<td>3 m/s</td>
<td>N</td>
<td>2</td>
<td>ICE/GP FIFO'd ICMB</td>
<td>12mA ICMB Arbitration</td>
<td>yes</td>
<td>now</td>
<td></td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
Example Board Temperature Sensors

<table>
<thead>
<tr>
<th></th>
<th>resol.</th>
<th>acc</th>
<th>addr.</th>
<th>dig. out</th>
<th>pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD7416</td>
<td>10</td>
<td>+/- 2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AD7417B</td>
<td>10</td>
<td>+/- 2</td>
<td>1</td>
<td>16</td>
<td>temp + 1ch A/D</td>
</tr>
<tr>
<td>AD7418</td>
<td>10</td>
<td>+/- 3</td>
<td>1</td>
<td>8</td>
<td>temp + 4ch A/D</td>
</tr>
<tr>
<td>Dallas Semiconductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS75</td>
<td>9</td>
<td>+/- 2</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>DS1621</td>
<td>9</td>
<td>+/- 0.5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>DS1624</td>
<td>13</td>
<td>+/- 0.5</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>DS1721</td>
<td>9</td>
<td>+/- 1</td>
<td>mask</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>DS1775</td>
<td>9</td>
<td>+/- 2</td>
<td>8</td>
<td>1</td>
<td>SOT23-5</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM75</td>
<td>9</td>
<td>+/- 3</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>LM77</td>
<td>9</td>
<td>+/- 3</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
Processor/ Remote Diode Temperature Sensors

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>acc.</th>
<th>Remote</th>
<th>Remote</th>
<th>acc.</th>
<th>pins</th>
<th>special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices AD1021</td>
<td>1</td>
<td>+/- 1</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Devices AD1028</td>
<td>1</td>
<td>+/- 2</td>
<td>2</td>
<td>+/- 3</td>
<td>16</td>
<td>FAN ctrl.</td>
<td></td>
</tr>
<tr>
<td>Maxim MAX1617A</td>
<td>#</td>
<td>+/- 2</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National LM83</td>
<td>#</td>
<td>+/- 3</td>
<td>3</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National LM84</td>
<td>#</td>
<td>+/- 1</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philips NE1617A</td>
<td>#</td>
<td>+/- 2</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Instr. THMC10</td>
<td>1</td>
<td>+/- 2.5</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Instr. THMC50</td>
<td>1</td>
<td>+/- 3</td>
<td>1</td>
<td>+/- 3</td>
<td>16</td>
<td>FAN ctrl., 2 A/D</td>
<td></td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
<table>
<thead>
<tr>
<th>Hardware Monitors*</th>
<th>volt. temp.</th>
<th>fan VID</th>
<th>chassis intr</th>
<th>POST RAM</th>
<th>add'l I/F</th>
<th>fan ctrl /special</th>
<th>data sheet</th>
<th>pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Devices</td>
<td>ADM9240</td>
<td>6</td>
<td>1 internal</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>Analog out</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>ADM1024</td>
<td>8</td>
<td>2 remt. diode, 1 internal</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>Analog out</td>
<td>24 prelim.</td>
</tr>
<tr>
<td></td>
<td>ADM1025</td>
<td>5</td>
<td>1 remote diode, 1 internal</td>
<td>0</td>
<td>1x5</td>
<td>0</td>
<td></td>
<td>16 prelim.</td>
</tr>
<tr>
<td>Dallas Semiconductor</td>
<td>DS1780</td>
<td>6</td>
<td>1 internal</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>Analog out</td>
<td>24</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>LM78/79</td>
<td>7</td>
<td>1 internal</td>
<td>3</td>
<td>1x4</td>
<td>1 yes ISA</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM80</td>
<td>7</td>
<td>1 remt. sensor, 1 internal</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LM81</td>
<td>6</td>
<td>1 internal</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>Analog out</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>LM87</td>
<td>8</td>
<td>2 remote diode, 1 internal</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>Analog out</td>
<td>24</td>
</tr>
<tr>
<td>Philips Semiconductor</td>
<td>Heceta-IV *</td>
<td>5</td>
<td>1 remt. diode, 1 internal</td>
<td>0</td>
<td>1x5</td>
<td>0</td>
<td></td>
<td>16 prelim.</td>
</tr>
<tr>
<td>Winbond</td>
<td>W83781D</td>
<td>7</td>
<td>3 remt. diode</td>
<td>3</td>
<td>1x5</td>
<td>1</td>
<td>ISA beep out</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>W83782D</td>
<td>9</td>
<td>3 remt. diode</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>yes ISA 3 PWM, beep</td>
<td>48 prelim.</td>
</tr>
<tr>
<td></td>
<td>W83783S</td>
<td>5</td>
<td>3 remt. diode</td>
<td>3</td>
<td>1x5</td>
<td>1</td>
<td>2 PWM, beep</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>W83L784R</td>
<td>5</td>
<td>2 remt. diode</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>FAN ctrl, beep</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>W83L785R</td>
<td>4</td>
<td>2 remt. diode</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>2 PWM, 9 GPIO</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>W83791D</td>
<td>9</td>
<td>3 remt. diode</td>
<td>2</td>
<td>1x5</td>
<td>1</td>
<td>FAN Ctrl & Speech</td>
<td>48</td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
Miscellaneous Sensors and Actuators

Analog Devices* ADM1026
- 3 Channel ±1°C Temp Sensor
- 19 voltage channels
- 8 x Fan Control and Monitoring
- 16 GPIO
- 8k EEPROM
- 48LQFP

Analog Devices ADM1029
- 3 Ch. ±1°C Temp Sensor
- 2 voltage channels
- **Automatic Fan Control** and Monitoring
- Supports Fan Hot Swap
- 24 QSOP

Analog Devices ADM1031
- 2 x Automatic Fan Control and Monitoring
- Fan Fault and Therm Fault indications
- 16TSSOP

* Other names and brands may be claimed as the property of others.
Vitesse Semiconductor* VSC055

I²C Enhanced Backplane Controller
- Designed as a companion component to enclosure management processors
 - I²C bus
 - 8 Fan-speed monitor inputs
 - 8 Programmable PWM outputs
 - 64 12mA, programmable, bi-directional I/O pins with individually selectable one of 7 LED flash rates
 - 32 GPIO pins can be uses as FC-AL port bypass control pins
 - Programmable interrupt control for 64 interrupt sources (I/O, bypass input transitions, and fan speed thresholds)
 - 100-pin PQFP pkg.
- SSC050 is a subset of the VSC055 (e.g. 4 fans & PWM, 40 GPIO, 52 interrupt sources)*

* Other names and brands may be claimed as the property of others.
I²C/SMBus Testing

Testers & Monitors

Microcomputer Control Corporation http://www.mcc-us.com/
 – MIIC-101K
 – I²C/SMBus Standalone Monitor and Software Analyzer Kit
 – MIIC-102 I²C/SMBus Bus Monitor Plus
 – I²C and SMBus 400 kbps monitoring
 – ISA, PCI, and PC Card interfaces available
 – MIIC-202 iPort/Al
 – RS-232 to I²C Host Adapters with serial port ASCII Interface.
– Software
 – I2C/SMBus Software Analyzer Package
 – iPort Software Development Kit for Windows, Professional Edition

Calibre UK Ltd http://www.calibreuk.com/
 – ICA90/93LV PICA90/93LV
 – ISA and PCI I2C-Bus adapters
 – desk-top (parallel port) I²C-Bus adapters
 – Software
 – ICADLL and PICADLL developers I2C-Bus windows programming libraries
 – WINI2C ready-to-run I²C-Bus software

Page 52
Telos EDV Systementwicklung GmbH
http://www.lucit.de/

TRACII

- **H/W based, 400 kbps I²C monitor/tracer**
 - Hardware and software filters for logged data
 - EPP parallel port interface
- **SDK supports adding protocol decode software**
- **Can inject as well as monitor**
 - Slow switching between master and slave operation limits use for management controller emulation, however