INTEL® HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

Legal Notices and Disclaimers

- Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
- No computer system can be absolutely secure.
- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance</u>.
- Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.
- No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
- Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.
- *Other names and brands may be claimed as the property of others.
- © 2016 Intel Corporation.

INTEL[®] HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

SIMPLIFIED SYSTEM SOFTWARE STACK DEVELOPMENT AND MAINTENANCE

Karl W. Schulz

Technical Project Lead Datacenter Group, OpenHPC

John Westlund

Systems SW Engineer Datacenter Group

November 2016

Agenda

- The HPC system software ecosystem problems we all deal with
- OpenHPC* community
- Intel[®] HPC Orchestrator
- How to make use of these system software solutions

Agenda

- The HPC system software ecosystem problems we all deal with
- OpenHPC* community
- Intel[®] HPC Orchestrator
- How to make use of these system software solutions

INTEL[®] HPC DEVELOPER CONFERENCE

State of System Software Efforts in HPC Ecosystem

Fragmented efforts across the ecosystem – "Everyone building their own solution." A desire to get exascale performance & speed up software adoption of hardware innovation

New complex workloads (ML¹, Big Data, etc.) drive more complexity into the software stack

THE REALITY: We will not be able to get where we want to go without a major change in system software development

¹Machine Learning (ML)

Community Effort to Realize Desired Future State

Stable HPC Platform Software that:

- Fuels a vibrant and efficient HPC software ecosystem
- Takes advantage of hardware innovation& drives revolutionary technologies
- Eases traditional HPC application development and testing at scale
- Extends to new workloads (ML, analytics, big data)
- Accommodates new environments (i.e., cloud)

Agenda

- Why a community system software stack?
- OpenHPC* community
- Intel[®] HPC Orchestrator
- How to make use of these system software solutions

A Brief History...

June 2015 ISC '15

> BoF¹ discussion on the merits/ interest in a Community Supported HPC Repository and Management Framework

July 2016

Linux Foundation

announces technical, leadership and member investment milestones with founding members and formal governance structure

Courtesy of Openhpc INTEL® HPC DEVELOPER CONFERENCE

Community Mission and Vision

- Mission: to provide a reference collection of open-source HPC software components and best practices, lowering barriers to deployment, advancement, and use of modern HPC methods and tools.
- Vision: OpenHPC components and best practices will enable and accelerate innovation and discoveries by broadening access to state-of-the-art, open-source HPC methods and tools in a consistent environment, supported by a collaborative, worldwide community of HPC users, developers, researchers, administrators, and vendors.

Courtesy of Openhpc INTEL® HPC DEVELOPER CONFERENCE

OpenHPC* Participation as of Nov 2016

OpenHPC is a Linux Foundation Project initiated by Intel and gained wide participation right away

INTEL[®] HPC DEVELOPER CONFERENCE

The goal is to collaboratively advance the state of the software ecosystem

Governing board is composed of Platinum members (Intel, Dell, HPE, SUSE) plus reps from Silver & Academic, Technical committees

29 Members

OpenHPC* Technical Steering Committee (TSC)

Role Overview

https://github.com/openhpc/ohpc/wiki/Governance-Overview

INTEL® HPC DEVELOPER CONFERENCE

Courtesy of OpenHPC

Stack Overview

We have assembled a variety of common ingredients required to deploy and manage an HPC Linux^{*} cluster including provisioning tools, resource management, I/O libs, development tools, and a variety of scientific libraries.

*Other names and brands may be claimed as the property of others.

Courtesy of Openhpc INTEL® HPC DEVELOPER CONFEREN

Stack Overview Continued

- Packaging efforts have <u>HPC in mind</u> and include compatible modules (for use with Lmod) with development libraries/tools
- Endeavoring to provide hierarchical development environment that is cognizant of different compiler and MPI families
- Include common conventions for env variables
- Development library install example:

yum install petsc-gnu-mvapich2-ohpc

 End user interaction example with above install: (assume we are a user wanting to build a PETSC hello world in C)

\$ module load petsc

\$ mpicc -I\$PETSC_INC petsc_hello.c -L\$PETSC_LIB -lpetsc

Courtesy of OpenHPC

Basic Cluster Install Example

- Starting install guide/recipe targeted for flat hierarchy
- Leverages image-based provisioner (Warewulf)
 - PXE¹ boot (stateless)
 - optionally connect external Lustre* file system
- Obviously need hardware-specific information to support (remote) bare-metal provisioning

Figure 1: Overview of physical cluster architecture.

- \${sms_name}
- \${sms_ip}
- \${sms_eth_internal}
- \${eth_provision}
- \${internal_netmask}
- \${ntp_server}
- \${bmc_username}
- \${bmc_password}
 \${c_ip[0]}, \${c_ip[1]}, ...
- \${c_bmc[0]}, \${c_bmc[1]}, ...
 \${c_bmc[0]}, \${c_bmc[1]}, ...
- \${c_mac[0]}, \${c_mac[1]}, ...
- \${compute_regex}

Optional:

- \${mgs_fs_name}
- \${sms_ipoib}
- \${ipoib_netmask}
- \${c_ipoib[0]}, \${c_ipoib[1]}, ...

- # Hostname for SMS server
- # Internal IP address on SMS server
- # Internal Ethernet interface on SMS
- # Provisioning interface for computes
- # Subnet netwask for internal network
- # Local ntp server for time synchronization
- # BMC username for use by IPMI
- # BMC password for use by IPMI
- # Desired compute node addresses
- # BMC addresses for computes
- # MAC addresses for computes
- # Regex for matching compute node names (e.g. c*)
- # Lustre MGS mount name # IPoIB address for SMS server # Subnet netmask for internal IPoIB # IPoIB addresses for computes

Courtesy of OpenHPC

INTEL[®] HPC DEVELOPER CONFERENCE

ínte

Hierarchical Overlay for OpenHPC^{*} Software

	Cen	tos 7	Distro Repo
General Tools and System Services	Imod slurm warewulf lustre client	mungelosfohpcprunpdsh	
	Developn	nent Environment	1
Compilers	gcc	Intel Composer	
Serial Apps/Libs	hdf5-gnu	hdf5-intel	
MPI Toolchains	MVAPICH2 IMPI OpenMPI	MVAPICH2 IMPI OpenMPI	OHPC Repo
	Boost pHDF5	Boost pHDF5	
Parallel Apps/Libs	boost-gnu-openmpi phdf5-gnu-openmpi boost-gnu-impi phdf5-gnu-impi boost-gnu-mvapich2 phdf5-gnu-openmpi	boost-intel-openmpi phdf5-intel-openmpi boost-intel-impi phdf5-intel-impi boost-intel-mvapich2 phdf5-intel-mvapich2	Standalone 3 rd party components
Courtesy of	open hpc		' J
ITFI® HPC NFVF	I OPER CONFERENCE		(intel) 16

OpenHPC* 1.1.1 – Current SW Components

Functional Areas	Components
Base OS	CentOS 7.2, SLES12 SP1
Administrativ e Tools	Conman, Ganglia, Lmod, LosF, Nagios, pdsh, prun, EasyBuild, ClusterShell, mrsh, Genders, Shine, Spack
Provisioning	Warewulf
Resource Mgmt.	SLURM, Munge
Runtimes	OpenMP, OCR
I/O Services	Lustre client (community version)

Functional Areas	Components
Numerical/ Scientific Libraries	Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist, Mumps, OpenBLAS, Scalapack
I/O Libraries	HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios
Compiler Families	GNU (gcc, g++, gfortran)
MPI Families	MVAPICH2, OpenMPI
Developme nt Tools	Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy
Performanc e Tools	PAPI, IMB, mpiP, pdtoolkit TAU

17

Courtesy of OpenHPC

INTEL[®] HPC DEVELOPER CONFERENCE

OpenHPC^{*} Development Infrastructure What are we using to get the job done?

The usual software engineering stuff:

- GitHub^{*} (SCM¹ and issue tracking/planning)
- Continuous Integration (CI) Testing (Jenkins)
- Documentation (Latex)

Capable build/packaging system

- At present: we target a common delivery/ access mechanism that adopts Linux sysadmin familiarity
- Require Flexible System to manage builds
- A system using Open Build Service (OBS) supported by back-end git

Courtesy of OpenHPC

INTEL[®] HPC DEVELOPER CONF

https://github.com/openhpc/ohpc

https://build.openhpc.community

¹ Software Configuration Management(SCM)

Build System - OBS

- Manages build process
- Drives builds for multiple repositories
- Generates binary and src rpms
- Publishes corresponding package repositories
- Client/server architecture supports distributed build slaves and multiple architectures

https://build.openhpc.community

19

Courtesy of OpenHPC

INTEL[®] HPC DEVELOPER CONFERENCE

Integration/Test/Validation

- Install Recipes
- Cross-package interaction
- Development environment
- Mimic use cases common in HPC deployments
- Upgrade mechanism

Integrated Cluster Testing

Courtesy of OpenHPC

HPC DEVELOPER CONFE

Integration/Test/Validation

- Standalone integration test infrastructure
- Families of tests that could be used during:
 - initial install process (can we build a system?)
 - post-install process (does it work?)
 - developing tests that touch all of the major components (can we compile against 3rd party libraries, will they execute under resource manager, etc.)
- Expectation is that each new component included will need corresponding integration test collateral
- These integration tests are included in GitHub* repo

Provisioning	OOB Mgmt	O/S	Config Mgmt.	Resource Manager	User Env	Fabric	Node-Level Perf	I/O	3rd Party Libs	Apps
	Root Leve	el						User	Space	

Courtesy of OpenHPC

HPC DEVELOPER CONFE

Post Install Integration Tests - Overview

- Global testing harness includes a number of embedded subcomponents:
 - major components have configuration options to enable/disable
 - end user tests need to touch all of the supported compiler and MPI families
 - we abstract this to repeat the tests with different compiler/MPI environments:
 - gcc/Intel compiler toolchains
 - Intel, OpenMPI, MPICH, MVAPICH2 MPI families

Package version..... : test-suite-1.0.0

Build user Build host	
Configure date Build architecture	
Test suite configuration	

Submodule Configuration:

	User Environment:	Libraries:	
	RMS test harness:	Adios:	enabled
	Munge:	Boost:	enabled
	Apps	Boost MPI:	enabled
	Compilers:	FFTW:	enabled
	MPI	GSL:	enabled
	HSN	HDF5:	enabled
	Modules	HYPRE:	enabled
	оом	IMB:	enabled
	Dev Tools:	Metis:	enabled
	Valgrind	MUMPS:	enabled
	R base package	NetCDF:	enabled
	TBB	Numpy:	enabled
	CIFK	OPENBLAS:	enabled
	Performance Tools:	PETSC:	enabled
	mpiP Profiler:	PHDF5:	enabled
	Papi	SCaLAPACK:	enabled
	PETSC	Scipy:	enabled
	TAU	Superlu:	enabled
		Superlu_dist:	enabled
		Trilinos:	enabled
Ì		Apps:	
		MiniFE:	enabled
		MiniDFT:	enabled
		HPCG:	enabled
		PRK:	enabled

Courtesy of OpenHPC

INTEL® HPC DEVELOPER CONFERENCE

Note: more than 1,000 jobs submitted to RM as part of the current test suite

New software additions?

- A common question posed to the project is how to request new software components? In response, the TSC has endeavored to formalize a simple submission/review process
- Submission site now exists for this purpose:

https://github.com/openhpc/submissions

- Expecting to do reviews every quarter (or more frequent if possible)
 - just completed first iteration of the process now
 - next submission deadline: December 4th , 2016

Courtesy of Openhpc INTEL® HPC DEVELOPER CONFER

Software Name	Subset of info requested during submis process	
Public URL		
Technical Overview		
Latest stable version	number	
Open-source license	type	
Relationship to comp	onent?	
contributing develo	per	
user		
userotherIf other, please describ	e:	
other	e:	
 other If other, please describ 	e:	
other If other, please describ Build system	e:	

How to contribute to OpenHPC*

- Use elements of the stack and provide feedback
- Suggest additional components for selection
- Make software of potential interest for inclusion available as open-source
- Participate in user/developer forums, TSC

http://openhpc.community (General info) https://github.com/openhpc/ohpc (GitHub site) https://github.com/openhpc/submissions (Submissions) https://build.openhpc.community (Build system/repos) http://www.openhpc.community/support/mail-lists/ (email lists) openhpc-announce, openhpc-users, openhpc-devel

24

Courtesy of OpenHPC INTEL® HPC DEVELOPER CONFEREN

Agenda

- Why a community system software stack?
- OpenHPC* community
- Intel[®] HPC Orchestrator
- How to make use of these system software solutions

OpenHPC* to Intel® HPC Orchestrator to Intel® Scalable System Framework

INTEL[®] HPC DEVELOPER CONFERENCE

(intel

Intel® HPC Orchestrator System Architecture

INTEL[®] HPC DEVELOPER CONFERENCE

Intel[®] HPC Orchestrator 16.01.004 - Components

Functional Areas	Components
Base OS Compatibility	RHEL 7.2, SLES12 SP1, CentOS 7.2
Administrative Tools	Conman, Powerman, Ganglia, Nagios, Lmod, pdsh, ClusterShell, EasyBuild, Spack, mrsh, Genders, Shine
Provisioning	Warewulf
Resource Management	Slurm, MUNGE
I/O Services	Lustre client (Intel [®] Enterprise Edition for Lustre)
Numerical/Scientific Libraries	Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist, MUMPS, OpenBLAS, Scalapack
I/O Libraries	HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), ADIOS
Compiler Families	GNU (gcc, g++, gfortran), Intel® Parallel Studio XE
MPI Families	MVAPICH2, OpenMPI, Intel® MPI
Developer Tools	Autotools (autoconf, automake, libtool), Valgrind, R, SciPy/NumPy
Performance Tools	PAP, IMB, mpiP, pdtoolkit, TAU

Intel[®] HPC Orchestrator Enhancements

- Advanced integration testing & extensive validation
- Professional support for
 - All Intel components
 - Components where Intel maintains a support contract
- Best Effort Support for all other components
- Enhanced Documentation
 - Components Description Guide
 - Troubleshooting Guide, including Knowledge Base
 - Readme, Release Notes
 - Technical Update
- Validated security patches & updates

Intel[®] HPC Orchestrator Enhancements

- Early new hardware integration with System Software
- Inclusion of proprietary Intel Software
 - Intel[®] Parallel Studio XE 2017 (Cluster Edition)¹
 - Intel[®] Solutions for Lustre^{*} (Client)¹
- Planned Additional components
 - Support for high availability
 - Visualization tools
- SLES 12 SP1 Base OS redistribution avaialble
- Integrated Test Suite
- Intel[®] Cluster Checker Supportability Extensions

INTEL[®] HPC DEVELOPER CONFERENCE

Intel[®] Cluster Checker Supportability Extensions

New set of extensions to Intel[®] Cluster Checker

Baseline: system data collected when it is in a good, dependable state

Collects baseline data for:

- RPMs
 - Head Node
 - Virtual Node File System
- Configuration files (along with whitelist/blacklist capabilities)
- Hardware/Firmware

Compare current state of system with baseline

Intel[®] HPC Orchestrator: Summary

- Integrated open source and proprietary components
- Modular build; Customizable; Validated updates
- Advanced integration testing, testing at scale
- Level 3 technical support provided by Intel
- Optimization for Intel[®] Scalable System Framework components
- Available through OEM & Channel Partners in Q4'16

INTEL[®] HPC DEVELOPER CONFERENCE

Benefits

OEMs – reduce R&D

ISVs/Developers – reduce time and man hours constantly retesting apps

IT Admins - reduce R&D to build and maintain a fully integrated SW stack

End Users - hardware innovation reflected in SW faster on path to exascale

Additional Sources of Information

OpenHPC* community – <u>www.openhpc.community</u>

Intel[®] HPC Orchestrator product page – <u>www.intel.com/hpcorchestrator</u>

Intel[®] Scalable System Framework – <u>www.intel.com/ssf</u>

THANK YOU!

Intel® Cluster Checker Supportability Extensions

Collecting **RPM** baseline data

- Create nodefile
 # cat nodefile
- Run rpm-baseline command
 # rpm-baseline –f <path-to-nodefile>
- Data captured in
 - /var/tmp/rpms-baseline.txt

Node name

[sms]# cat nodefile sms <mark>#role: head</mark> c1 c2

RPM name

Intel® Cluster Checker Supportability Extensions

Collecting Files baseline data

files-baseline -f <path-to-nodefile>

Data captured in /var/tmp/files-baseline.txt

Owner

[sms]# cat /var/tmp/files-baseline.txt sms, /etc/sysconfig/httpd, -rw-r--r--, root, root, 65947590cfc1df04aebc4df81983e1f5

```
c1, /etc/os-release, -rw-r--r--, root, root, 1359aa3db05a408808522a89913371f3
```

c2, /etc/sysconfig/munge, -rw-r--r-, root, root, e0505efde717144b039329a6d32a798f

Group

MD5 Sum

Permissions

NTEL[®] HPC DEVELOPER CONFERENC

File

Intel® Cluster Checker Supportability Extensions

Collecting Hardware baseline data

hw-baseline -f <path-to-nodefile>

Data captured in /var/tmp/hw-baseline.txt

[sms]# cat /var/tmp/hw-baseline.txt sms, 00:0d.0, Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode]

```
c1, 00:03.0, Intel Corporation 82540EM Gigabit Ethernet Controller c1, 00:07.0, Intel Corporation 82371AB/EB/MB PIIX4 ACPI
```

c2, 00:05.0, Intel Corporation 82801AA AC'97 Audio Controller

Bus:Device.Function

HPC DEVELOPER CONFE

Hardware description

Intel[®] Cluster Checker Supportability Extensions

Comparing/Analyzing:

Collect current system state

clck-collect -f <path-to-nodefile> -m uname -m files_head -m files_comp

Analyze current system state against baseline

clck-analyze -f <path-to-nodefile> -I files

```
1 undiagnosed sign:
```

The file /etc/pam.d/ppp has been added since the baseline was generated.

 Id: files-added]
 Severity: 25%; Confidence: 90%]
 Node: RHEL2]

This analysis took 0.388902 seconds.

FAIL: All checks did not pass in health mode.

INTEL® HPC DEVELOPER CONFERENCE

