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Utah IPCC/Intel Vis Center
• University of Utah, Salt Lake City  

The “birthplace of computer graphics” —  
Evans and Sutherland, Catmull, Kajiya, Blinn, Phong…  

• Scientific Computing and Imaging Institute: 
World leader in scientific visualization — “graphics for science” and more. 

• Intel centers at SCI: 6 faculty, 9 students

• Intel Vis Center  
PIs: Ingo Wald (Intel), Chris Johnson, Chuck Hansen 
- Large-scale vis and HPC technology on CPU/Phi hardware — especially OSPRay.  

• IPCC for “Applied Visualization, Computing and Analysis”:  
PIs: Aaron Knoll, Valerio Pascucci, Martin Berzins 
- Applying OSPRay to visualization and HPC production in practice (i.e., Uintah) 
- Visualization analysis research: IO, topology, multifield/multidimensional  
- Staging Intel resources for both the Vis Center and IPCC.  

• External partners: 

• Uintah: DOE PSAAP II efficient coal boiler simulation (Phil Smith, Utah ICSE) and DOE INCITE computational awards (Martin Berzins)  
350M hours for 2016 — the largest single open-science computational effort in the nation.  

• Nanoview collaboration with Argonne National Laboratory: 
Support materials science users at Argonne National Laboratory, US Dept of Energy (DOE) 
Mike Papka (director of ALCF), Joe Insley (ALCF vis lead), Silvio Rizzi (ALCF vis staff)  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Why vis?
• If computing is the third pillar, visualization is the fourth pillar of the scientific method. 

• Needed in: 

• Analysis 

• Debugging / Validation 

• Communication 

• “Scientific vis” is often overlooked in its own community… 

• “Production tools are good enough”? 
 
  

• “Just use the same GPU graphics we use for games”? 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• Needed in: 

• Analysis 

• Debugging / Validation 

• Communication 

• “Scientific vis” is often overlooked in its own community… 

• “Production tools are good enough”? 
Barely handle mid-gigascale data — 
2 orders of magnitude / 10 years  
behind simulation!

• “Just use the same GPU graphics we use for games”? 
Rasterization is designed for millions of polygons, really fast.  
Vis should support billions—trillions of elements, a bit slower. 



Visualization codes: general production, domain-specific, and research

Silicon bubble MD simulation in ParaView, Ken-ichi Nomura, USC.  
Vis: Joe Insley, ANL

Ribosome and Poliovirus in VMD. Vis: John Stone, UIUC
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Figure 1: Full-detail ray tracing of giga-particle data sets. From left to right: CosmicWeb early universe data set from a P3D simulation with
29 billion particles; a 100 million atom molecular dynamics Al2O3 � SiC materials fracture simulation; and a 1.3 billion particle Uintah MPM

detonation simulation. Using a quad-socket, 72-core 2.5 GHz Intel R�† Xeon R�E7-8890 v3 Processor with 3 TB RAM and path-tracing with
progressive refinement at 1 sample per pixel, these far and close images (above and below) are rendered at 1.6 (far) / 1.0 (close) fps (left), 2.0 /
1.2 fps (center), and 1.0 / 0.9 fps (right), respectively, at 4K (3840⇥2160) resolution. All examples use our balanced P-k-d tree, an acceleration
structure which requires little or no memory cost beyond the original data.

ABSTRACT

We present a novel approach to rendering large particle data sets
from molecular dynamics, astrophysics and other sources. We em-
ploy a new data structure adapted from the original balanced k-d
tree, which allows for representation of data with trivial or no over-
head. In the OSPRay visualization framework, we have developed
an efficient CPU algorithm for traversing, classifying and ray trac-
ing these data. Our approach is able to render up to billions of
particles on a typical workstation, purely on the CPU, without any
approximations or level-of-detail techniques, and optionally with
attribute-based color mapping, dynamic range query, and advanced
lighting models such as ambient occlusion and path tracing.
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1 INTRODUCTION

With ever increasing compute power, simulations produce increas-
ingly large quantities of data to be visualized. The largest com-
putational codes predominantly generate particle data: molecular
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
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directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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Silicon bubble MD simulation in ParaView, Ken-ichi Nomura, USC.  
Vis: Joe Insley, ANL

Ribosome and Poliovirus in VMD. Vis: John Stone, UIUC
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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Figure 1: Full-detail ray tracing of giga-particle data sets. From left to right: CosmicWeb early universe data set from a P3D simulation with
29 billion particles; a 100 million atom molecular dynamics Al2O3 � SiC materials fracture simulation; and a 1.3 billion particle Uintah MPM

detonation simulation. Using a quad-socket, 72-core 2.5 GHz Intel R�† Xeon R�E7-8890 v3 Processor with 3 TB RAM and path-tracing with
progressive refinement at 1 sample per pixel, these far and close images (above and below) are rendered at 1.6 (far) / 1.0 (close) fps (left), 2.0 /
1.2 fps (center), and 1.0 / 0.9 fps (right), respectively, at 4K (3840⇥2160) resolution. All examples use our balanced P-k-d tree, an acceleration
structure which requires little or no memory cost beyond the original data.
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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dynamics materials computations, mesoscale or macroscale atom-
istic simulations, and cosmology and astrophysics n-body codes.
The largest cosmology simulations now generate trillions of par-
ticles at scale; these petabytes of data are seldom even stored, let
alone visualized. Examples of such data are shown in Figure 1.

At such scale, traditional rasterization-based approaches to ren-
dering such data sets become problematic: simply rendering each
particle with a tessellated sphere becomes prohibitive, and even
splatting and impostor techniques are limited by rasterization per-
formance, GPU memory limitations and PCI bandwidth. This be-
comes more challenging if the user desires to interact with multiple
data time steps, apply different attribute color mappings, or per-
form interactive parameter range selection. State-of-the-art GPU
techniques [16] can render up to 10 billion particles on a single
GPU with level-of-detail (LOD). However, LOD approaches must
be specifically tuned to individual data and rendering modalities.
For extremely large datasets from cosmology, showing full-detail
data is challenging but crucial to understanding both structure and
scale of the simulation (Figure 2). Ideally, we wish to visualize data
at full-resolution without LOD. GPU visualization clusters can ren-
der on the order of hundreds of billions of particles with no LOD
in parallel [23]. However, repartitioning and compositing massive
point data can be costly, and requires data-parallel software archi-
tectures and significant compute resources.

With the right algorithms, large-scale visualization is achievable
on single-node CPU hardware. Visualization is a big data prob-
lem – the chief challenge is accessing large memory efficiently and
directly. CPU memory is cheap, plentiful and fast: a laptop CPU
has more memory (16 GB) than even a high-end GPU (12 GB),
and a large-memory workstation with 768 GB can be acquired for
less than $10,000. New vis clusters commonly feature nodes with
256 GB, and “fat” nodes are capable of 1–6 TB. Directly visual-
izing large data on a single resource is attractive, but requires fast
memory-efficient rendering techniques for the CPU. CPU ray trac-
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“Direct” vs “Indirect” visualization
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0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Data Filter + Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Indirect

- ex: marching cubes, rasterization 
- based on triangles 
- large memory overhead 
- heavy preprocess 
- pipeline workflow 
- good strong scaling (compute)

- ex: volume rendering, ray tracing 
- based on volumes, glyphs 
- low memory overhead 
- little or no preprocess 
- flat workflow 
- good weak scaling (memory)

Direct



Problems with indirect visualization



1. The visualization 
pipeline is complex.



2. Most visualization data 
are not triangles.



Re-envisioning scientific visualization
• Indirect methods and strong scaling solve IO challenges, but require resources 

• In situ and computational steering are useful, but will not fully replace storage for logistical reasons… 

• New memory/disk technologies (3DXPoint) are on the horizon 

• Directions: 

• Move from indirect techniques to more direct techniques (OSPRay, vl3). 

• Leverage large memory for large time-varying and multifield vis problems (CPU and KNL).  

• Use appropriate parallel data formats to avoid distributed fileserver inefficiency (PIDX).  
     - when disk == memory, writing to these formats becomes “in situ”.



Early “direct vis”: Nanovol on the GPU, 2010-2014

• Immediately visualize + analyze materials data with almost no preprocess pipeline 

• Used grid-based volume + glyph, ray casting on the GPU,  
view-dependent antialiasing and LOD 

• Volume rendering of molecular orbitals, approximate RBF volumes, volume analysis

Khairi Reda, Aaron Knoll, Ken-ichi Nomura, Michael E. Papka, Andrew E. Johnson, and Jason Leigh. 
Visualizing Large-Scale Atomistic Simulations in Ultra-Resolution Immersive Environments. Proc. IEEE LDAV, pp 59-65, 2013.

http://www.oldamascus.com/~lio/papers/Reda_LDAV13.pdf


Production vis with Nanovol



Where Nanovol broke

15M ANP3 aluminum oxidation dataset (~1 GB / timestep) — Ken-ichi Nomura, USC 
Could only fit a 0.5 voxel-per-Angstrom volume in memory on a 680 GTX! 
Coarse macrocell grid, lots of geometry, very slow performance (0.2 fps @ 1080p with sticks)  



• Problems:  

• Mismatch between glyph and volume data resolution 

• Slow PCI bus, lack of memory on GPU.

• Possible solutions: 

• engineer out-of-core solutions for ball-and-stick, particle + volume data 

• use compression to squeeze data into GPU memory. 

• Use CPUs.

Where Nanovol broke



Part II: CPU-based Visualization



Why would anyone use a CPU for visualization?!!!!

CPU 
(e.g., Von Neumann 1945)

GPU 
(e.g., NVIDIA G80, 2006)

Not to mention… vis is graphics, and GPUs are designed especially for graphics… right?



KNL vs Pascal

NVIDIA Tesla GP100 
56 SM's 

32 cores/SM (FP64) 
5.3 TF DP 

 

Intel Xeon Phi “KNL” 
72 physical “cores” 

Two 8-wide DP SIMD lanes / core 
3 TF DP 

 



KNL vs Pascal

NVIDIA Tesla GP100 
56 SM's 

32 cores/SM (FP64) 
5.3 TF DP 

Up to 16 GB NVRAM ***

Intel Xeon Phi “KNL” 
72 physical “cores” 

Two 8-wide DP SIMD lanes / core 
3 TF DP 

Up to 384 GB DRAM ***

(***Actual RAM size and speed may vary. KNL has 16 GB on-package MCDRAM used as cache, or in other very confusing ways. Pascal has NVLINK, possibly fast RMA.)



KNL (Intel Xeon Phi) vs CPU (Intel Xeon)
• KNL is more “CPU like” than its Xeon Phi predecessor KNC was, but still more GPU-like than Xeons.  

• Not a “coprocessor” — a full CPU running its own OS 

• >2x as energy efficient and ~2x the peak FLOPS of dual-socket Broadwell 

• ~1/2 as fast (or worse) for unvectorized code. 

72	core,	2.5	GHz	4-socket	Haswell-EX	E7-8890	v3,	3	TB	RAM	  
Roughly	$60K	(?)

64-core	1.3	GHz	Xeon	Phi	7210	DAP,	96	GB	RAM  
Roughly	$5K

KNL has 1/2 the performance of this 4-socket workstation… for ~1/12th the price. 
(it’s a lot quieter, too!) 



• In situ visualization.

• IO is very slow 

• We can’t throw away time steps forever.  

• We need to start doing vis at larger scales, and on the compute resource 

• ideally after some in situ analysis / filtering, but before data are archived to disk 

• 3D XPoint and parallel IO will help, but this problem isn’t going away.  
We need to be able to render at the same scale that we are computing at.  

• What if we do vis on the HPC resource itself?

Why else use CPUs?



top500.org Top 10

http://top500.org


top500.org CPU-based

http://top500.org


top500.org GPU-based

http://top500.org


• The right goals and algorithms (research), and usable software 
(production). 

• Before 2013: comprehensive CPU rendering solutions did not yet exist  
- OpenRT, Manta, targeted graphics — had major shortcomings.  
 
Strong evidence CPU-based visualization was possible, and desirable: 
- Knoll et al. Pacific Vis 2011:  
Volume rendering an 8 GB dataset on 8-core CPU workstation  
faster than a 128-node GPU cluster  
- Wald et al. Siggraph 2014:  
Embree: acceleration structure builds are no longer a major bottleneck.  

• 2013—2015: Experiments in IVL show that KNC Xeon Phi is competitive, 
and sometimes better than GPUs  
- Knoll et al. Eurovis 2014:  
RBF volume rendering shown to be 20x faster on KNC than on an NVIDIA 
K20 GPU 

• 2015 —: OSPRay, production-ready CPU ray tracing for visualization.     

How do we build vis solutions for CPU?



OSPRay
• Ray tracing system and API for visualization

• Frame buffers, cameras, scenes, data management 

• Polygonal surfaces, implicit surfaces (isosurfaces), glyphs, streamlines, volumes 

• Ray tracing (true AO, global illumination, hard shadows) 

• Uses the Intel SPMD program compiler (ISPC) for fast vectorization from kernel code 

• “GLSL / CUDA for CPUs” 

• Specifies an API for visualization 

• Similar to OpenGL (but simpler), with additional ray tracing and visualization semantics. 

• Integrated into main “indirect” production vis packages (ParaView, VisIt, VMD) 

• Open-source (BSD Clause 2 license) and free to use! 

• Often almost as fast (or faster) than GPU approaches — and (almost) never runs out of memory!

Ingo Wald, Gregory P Johnson, Jefferson Amstutz, Carson Brownlee, Aaron Knoll, James Jeffers, Paul Navratil. 
OSPRay: A CPU Ray Tracing Framework for Scientific Visualization. IEEE Vis 2016 (accepted for publication).

quality and data size/type related challenges using triangle rasterization
(e.g., using rasterized impostors, screen-space ambient occlusion, level-
of-detail methods, data-parallel GPU rendering, etc), but those have
proven challenging to combine in a unified way that integrates well
with existing visualization pipelines. Ray tracing promises to address
all those challenges in a unified manner: it can handle both polygonal
and non-polygonal surface data, can handle both surface and volume
data, scales well to large data, is synonymous with advanced shading
effects, and runs equally well on both GPUs and CPUs.

These advantages of ray tracing are generally well understood, and
are increasingly widely accepted even in the visualization community:
In the movie industry, products like RenderMan have already replaced
REYES-style rendering (the equivalent of rasterization that it was
originally built on) with ray tracing [46], and even in visualization the
advantages of ray tracing have been amply demonstrated in a multitude
of papers and systems (e.g., [5,7,39,47]). However, unlike in the movie
industry ray tracing is not yet widely established in visualization: it has
been shown to be a viable technology in academic papers and proof-
of-concept systems, but the next step in making it a reality—the step
from academic proof of concept to actual, widespread use in everyday
production visualization tasks—needs significant effort in making the
technology more accessible.

3.2 OSPRay: Goals

The main challenge with ray tracing as a visualization rendering back-
end is that it does not easily map to existing rasterization oriented
APIs—it requires new APIs that more generally target visualization
applications, and then integration work for those applications to utilize
the new APIs. Frameworks such as OptiX and Embree are excellent
starting places for building such solutions, but in themselves are on too
low an abstraction level: A visualization application like, for example,
VisIt or ParaView does not want to care about exactly which rays to
trace or how exactly to shade each individual ray; rather, such applica-
tions wants to specify the underlying data and appearance, but leave the
details of rendering to a dedicated renderer. This gap is exactly what
OSPRay is designed to fill. More specifically, OSPRay is:

A library, not a visualization tool. Rather than designing a brand new
visualization package, OSPRay is a library that many different visu-
alization tools can then leverage.

A rendering solution for visualization tools. Visualization tools are
complex, often relying on middleware libraries (such as VTK). OSP-
Ray does not replace or compete with such middleware, and focuses
exclusively on the visualization pipeline’s rendering component. By
broadening supported rendering primitives, shading models, data set
sizes, etc OSPRay gives existing visualization tools’ analysis stages
additional choices in what they can ask the rendering stage to do.

Focused on visualization rendering. OSPRay emphasizes the render-
ing features needed by production scientific visualization—simple
color-mapped geometry and palettes, and different renderers (pri-
mary, ambient occlusion and path tracing) that cater to a variety of
needs. It does not aim for the photo-realism of professional graphics,
nor for game performance.

Focused on HPC visualization rendering. Since “simple” problems
are successfully handled by Mesa or GPU-based approaches, we
explicitly focus on problems that remain challenging for visualiza-
tion applications, such as large data, volume rendering and advanced
shading. In particular, we strive to enable effective and performant
visualization across all kinds of HPC resources, even those that lack
GPUs. We do not discourage GPU use for all problems, but offer
an efficient alternative for platforms that do not have any, and, more
generally, wish to advance ray tracing solutions for those problems
that can benefit from its characteristics.

Focused on performance. Though we do not have to achieve game-
like frame rates, interactive data exploration requires performant
rendering. Our implementation makes efficient use of threading,
vectorization, and, if desired, node-parallelism; and leverages the
most efficient ray tracing technologies available.
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Fig. 3. (left) The OSPRay API in the context of the ubiquitous software stack
found in visualization applications. (right) The components that comprise our
CPU-based implementation. This paper primarily covers the dark shaded areas.

4 THE OSPRAY API

The OSPRay API exists as a layer between visualization applications
and low level hardware resources. Figure 3 shows the OSPRay API
in relation to other hardware and software components commonly
found in visualization applications, as well as the components of our
implementation discussed in Section 5. The API itself is designed to be
platform independent—our implementation targets CPUs, but the API
should equally map to GPUs, integrated graphics, etc. We deliberately
chose a low level of abstraction similar to that of OpenGL, which is
the abstraction level that current visualization tools already use for
rendering. Akin to familiar solutions in OpenGL and GPGPU uses,
our API focuses on the low-level data model, and on the syntax and
semantics of creating—and communicating with—specific actors.

4.1 Categories of Actors

Ray tracing naturally supports an object-oriented programming (OOP)
design in which different objects such as cameras, surfaces, etc, interact
in specifying the frame to be rendered. We expose this concept of
interacting objects through a small set of low-level, C-style functions
to create, configure, and connect these actors. Conceptually, our API
is heavily inspired by PBRT [40]: In PBRT, a scene file (the logical
equivalent of a sequence of API calls to set up a frame) specifies a
set of actors such as cameras, “shapes”, etc. Each of these actors is a
concrete type (e.g., a camera can be orthographic, perspective, etc) and
has parameters that specify its configuration.

The OSPRay API exposes the following categories of actors:

OSPFrameBuffers hold the final result of a rendered frame. Infor-
mation held can contain, but is not limited to, pixel colors, depth
values, and accumulation information.

OSPData are 1D data arrays, similar to “buffers” in a GPGPU context.
In addition to the typical scalar and 2-, 3-, or 4-dimensional vector
data, data arrays can also contain references to other actors (including
to other data arrays), in device-abstract fashion.

OSPGeometry contain geometric surface primitives such as trian-
gles, spheres, cylinders, etc.

OSPVolumes represent 3D scalar fields that can produce, for any 3D
position, a scalar value that a volume renderer can sample.

OSPTransferFunctions map scalars to RGBA colors.
OSPModels are collections of geometries and volumes – the parent

objects of the hierarchy. Time-varying data are vectors of OSP-
Models.

OSPCameras generate primary rays for renderers to compute on.
OSPRenderers use cameras, models, etc, to render pixels.
OSPLights, OSPTextures, and OSPMaterials specify

additional inputs for rendering, lighting, shading, etc.
OSPPixelOps are generic operations that can be used to post-process

readily-computed pixels (for blending, tone mapping, etc).

4.2 Object Categories, Types, and Instances

In OOP parlance, the above categories are abstract objects that describe
the role of objects, but not exactly how that role is filled. In practice,
object categories have several discrete types—for example, a triangle
mesh or set of spheres for geometry; perspective or orthographic cam-
era, etc. For each such category the user can create instances of specific
types through the use of factory methods.



Part III: OSPRay integration and related work



ViSUS and PIDX
• ViSUS: “Dynamic streams for visualization” — query/analyze scientific 

data at any resolution, from a remote disk resource.  

• Key technology, “PIDX”, a multi-resolution parallel disk storage format.  

• “Cloud computing for scientific vis”

• 2014-2015: testing using IVL(CVL)-based CPU volume renderer  

• 2016: OSPRay backend 

• OSPRay volume rendering is ~3x faster than IVL CPU backend on 4-
socket Xeon E7-8890 v3 (Broadwell) 

• Challenges:  
- Rendering not really a bottleneck!  
- Resident data are typically small (16 MB!)  
- Intel gen-core (Iris Pro) works great! (“real GPUs”, OSPRay are overkill) 
- Future work: combine IDX query with OSPRay block_bricked 
volume? 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Fig. 1. HZ encoding of resolution regions. (a)-(c) Because of hierarchical locality there is no wasted space when storing the entire domain at reduced
resolution. (d) Storing an ROI smaller than the domain introduces fragmentation that will be handled when writing to disk.

A. AMR

I/O in a block-structured AMR simulation environment is
a challenge with various existing approaches. One approach
is for each processor to write a single file, or N -N output,
where N is the number of processors. This is commonly called
file-per-process I/O. The approach is simple and efficient, but
data at different hierarchy levels is duplicated, there is no
mechanism for decoupling the data storage resolution from
AMR resolution, and a large number of files are produced,
causing a burden on downstream visualization and analysis
packages. An N -1 approach is one where all processors write
to a single file, such as the popular HDF5 format [2]. The
Chombo [5] and FLASH [6] multi-physics applications use
AMR for their simulation and these codes use HDF5 to
write their AMR data to storage. HDF5 is a self-describing
hierarchical representation with chunked storage and parallel
I/O using MPI-I/O. In this case, the metadata describing
the refinement level of the various blocks are written out
as a separate dataset. However, the data is written out such
that all the blocks associated with a process including the
various refinement levels are written out contiguously. This
proves to be a challenge for analysis and visualization tools
which expect blocks at the same refinement level from all the
processes, and typically requires an expensive I/O operation
and sorting of data blocks in order to perform any analysis
and visualization. Yu et al [7] target cell-based AMR rather
than block-based. Their algorithm bridges the gap between N -
1 and N -N by doing N -M where M is user-tunable number
of files. Space-filling curves are used for spatial locality.

B. Uniform simulations

Solutions from simulations that are uniformly gridded are
intuitively straightforward to store. Typical techniques used to
store the data range from a single shared file, N -1, as used
in PnetCDF [1], [8] and the HDF5 package [2] to a file-per-
process I/O, N -N . Subfiling [9] is mechanism between these
two extremes wherein the data is written out to a few files, N -
M wherein M << N , to overcome the locking and metadata
overheads associated with parallel filesystem. Another popular
library used to manage parallel I/O for scientific applications is
ADIOS [10], which decouples data description and transforms
from the application. An important feature utilized by I/O

(a) Row-major (b) Z ordering

(c) HZ level 2 (d) HZ level 4 (e) HZ level 6

Fig. 2. Different index orderings. (a) Row-major ordering has poor spatial
locality. (b) Z ordering shows good spatial locality but has no concept
of hierarchy or resolution adaptivity. (c)-(e) HZ ordering has both spatial
and hierarchical locality. For an example of hierarchical locality, note that
obtaining a 1/22 resolution version of the grid requires a single disk read of
elements 0-15 (best seen in (d)).

libraries is aggregation, which is a stage in the write pipeline
that passes data between nodes such that aggregator nodes can
do more efficient block-based writes. PIDX [11], [12], [13],
[14] is a parallel I/O API that stores data in the IDX format.
PIDX also uses aggregators, and recently added a restructuring
phase that increases efficiency on writes of data in grids that
are not powers of 2D in size.

This paper describes extensions to PIDX that not only make
PIDX a viable option for parallel AMR simulation I/O, but
also enable region of interest (ROI) reduced resolution, and
ROI/reduced resolution stores in a uniform setting.

III. ADAPTIVE RESOLUTION IDX

The IDX format [3], [4] was originally designed to support
fast, multi-resolution reads of uniform grids. In this section we
discuss the suitability of the IDX format to adaptive data and
also an extension to the IDX format to support such datasets.
The extension has little to no impact on read performance.
Section IV will discuss the necessary extensions to the PIDX
I/O framework to support fast writes of adaptive data.

Sidharth Kumar,∗ John Edwards,∗ Peer-Timo Bremer,∗‡ Aaron Knoll,∗ Cameron Christensen,∗ Venkatram Vishwanath,† Philip Carns,† John A. Schmidt,∗ Valerio Pascucci∗.  
Efficient I/O and storage of adaptive resolution data. Proc. Intl Conf for High Performance Computing, Networking, Storage and Analysis (Supercomputing 2014)     



VisIt + PIDX + OSPRay + Uintah and OSPRay

• VisIt and PIDX: used in production for the Uintah coal boiler efficiency computations, 350M hour 2016 DOE INCITE award (PI, Martin Berzins) 

• Leverage two branches of VisIt 2.10: VisIt-OSPRay (Alok Hota, Jian Huang, Hank Childs) and VisIt+PIDX (Steve Petruzza, Valerio Pascucci) 

• Visualizations currently performed on Cooley (GPUs): now possible on Theta KNL’s!

“	With	PIDX	I/O	-me	came	down	
from	50%	of	total	simula-on	-me	to	

7%,	thus	allowing	us	to	dump	more	
data	more	frequently	and	have	a	

much	beFer	understanding	of	the	
actual	science.”		

	

–	Ben	Isaac	(PhD,	PIDX	user	and	
Research	Associate	at	Ins-tute	for	

Clean	&	Secure	Energy)	

69.3		
Million	Compute	

Hours	

260,712		
Cores	 ~200	

Terabytes	

From Fall 2016 Uintah PSAAP TST meeting — Valerio Pascucci. 



vl3

 renderer = ospNewRenderer(”scivis");
 volume = ospNewVolume("shared_structured_volume");
 ospSetString(volume,"voxelType","float");
 ospSetVec3i(volume,"dimensions", (const osp::vec3i&)dimensions);
 OSPData data = ospNewData(nVoxels,OSP_FLOAT,fdata,OSP_DATA_SHARED_BUFFER);
 ospSetData(volume, "voxelData",data);
 ospSetVec3f(volume, "boundingBoxMin", bbox_min);                                                                                          
 ospSetVec3f(volume, "boundingBoxMax", bbox_max); 
…
 ospRenderFrame(framebuffer, renderer, OSP_FB_COLOR);
  

• Special-purpose, large-scale volume rendering API from Argonne National Laboratory  
- a data-parallel “direct visualization” framework 
- designed for large distributed data (particle, structured grid) 
- Rizzi et al. EGPGV 2015: 30 billion particle HACC data 

• Originally for GPU clusters (GLSL, CUDA) — now for CPU/Phi using OSPRay.  
- Function on Theta KNL cluster and upcoming Aurora supercomputer 

• OSPRay structured volume renderer backend using “scivis” renderer 
- similar to GLSL invocation 

• OpenSWR used for CPU-based compositing  
- future: OpenMP-based implementation, similar to Grosset et al. EGPGV15 



vl3-ospray KNL bakeoff
• Comparing vl3-ospray with vl3-GLSL backend, on KNL, 72-core Haswell, and GPU.   

- uses “raycast_volume_renderer”, early termination disabled for an “apples to apples” comparison  
- new “scivis" renderer uses more optimization 

• KNL does surprisingly well — “sweet” spot” around 1k^3 — 2k^3 volume data. 
- “cache mode” with DRAM—MCDRAM works! 

• Much slower than NVIDIA 1080 GTX GPU for small data, much faster than GPU when out-of-core.  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vl3-OSPRay vs vl3-GLSL 
800x600 image size 

vl3-GLSL, NVIDIA 1080 GTX 

vl3-OSPRay, Xeon Phi 7210 (KNL) 

vl3-OSPRay, Xeon E7-8890 v3 (72-core Haswell) 
NVIDIA Geforce 1080 GTX 8 GB in a dual Xeon E5-2650 with 64 GB DRAM 
Xeon E7-8890 v3 is a 72-core, 2.5 GHz 4-socket Brickland-EX platform with 3 TB DRAM 
Xeon Phi 7210 is a 64-core 1.3 GHz KNL with 16 GB MCDRAM and 96 GB DRAM 



vl3-ospray - with “scivis” renderer
• Noisy volume data require higher sampling rate.  

- new in OSPRay v1.1.0 — adaptive volume rendering  
- On one node:  
32 GB HACC dark matter density volume, resampled from 500 M particles (74 GB), ~7–10 fps at 1080p on a KNL  
- What about data parallel at large scale?



Part IV: OSPRay and CPU vis research



• OSPRay data-parallel rendering is great 

• Our results: consistently interactive compositing up to 4K 
resolution on 1K nodes, thanks to CPUs! 

• use a tree structure to decompose, and carefully overlap 
communication with computation 

• 2x faster than IceT using OpenGL 

• don’t bother sending frames across the PCI bus to the GPU! 

• Variant of OpenMP SIMD compositing base being integrated in 
vl3.

Faster parallel compositing on CPUs
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is the overlapping of tasks rather than raw computing power
that is the most important here. Also, we are not using any
compression as most image sizes used by users are small
enough that compression does not make a big difference. At
8192x8192 pixels, an image is now 1GB in size and having
compression would probably help.

Figure 6: Scaling for combustion data on Stampede.

Figure 5 shows the strong scaling results for artificial data
on Stampede. The TOD-Tree algorithm, performs better than
binary-swap and radix-k. The staircase like appearance can
be explained by the fact that we use the same value of r for
pairs of time steps; r=16 for 32 and 64 nodes, r=32 for 128
and 256 and, r=64 for 512 and 1024 and only 1 round was
used for the k-ary tree part of the algorithm. Thus with r=32,
for 256 nodes, there are 8 groups of direct send while there
are only 4 groups of direct send at 128 nodes. So the tree

stage must now gather from 7 instead of from 3 processes
and so the time taken increases. Also it means that instead
of waiting for 3 nodes to complete their grouped direct send,
now the wait is for 7 nodes. Increasing the value of r helps
balance the workload in stage 1 of the algorithm and reduces
the number of nodes that have to be involved in the tree com-
positing and hence decreases the sending.

Figure 7: Varying number of rounds for artificial dataset for
4096x4096

For images of size 2048x2048 pixels, compositing is
heavily communication bound. As we increase the number
of nodes, each node has very little data and so all the 3 al-
gorithms surveyed perform with some level of randomness
as they become more communication bound and so more
affected by load imbalance and networking issues. Commu-
nication is the main discriminating factor for small image
sizes. For 8192x8192 images, there is less variation as it is
more computation bound. Also, at that image size, IceT’s
radix-k comes close to matching the performance of our al-
gorithm. On analyzing the results for TOD-Tree, we saw
that the communication, especially in the gather stage, was
quite expensive. While a 2048x2048 image is only 64 MB,
a 8192x8192 image is 1GB and transferring such big sizes
cost a lot without compression. This is where IceT’s use of
compression for all communication becomes useful.

In the test case above, we used only 1 round for the tree
compositing. For large node counts, more rounds could be
used. Figure 7 shows the impact of having different number
of rounds for large node counts. For 256 nodes there is an
improvement of 0.018 s while it is slower by 0.003 s for 512
nodes and 0.007 seconds for 1024 nodes. So having several
rounds barely slows down the algorithm and can even speeds
up the results.

Figure 6 shows the results for the combustion dataset on
Stampede. One of the key characteristics of this dataset is
that at the bottom, there are empty regions. This creates load
imbalances. Also, the dataset is rectangular and not as uni-
form as the artificial dataset but it resembles more closely

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)
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icetCompositeImage which compared to icetDrawFrame,
takes in images directly and is subsequently faster when
provided with pre-rendered images. This function should be
available in future releases of IceT.

The two systems that have been used for testing are the
Stampede supercomputer at TACC and the Edison super-
computer at NERSC. Stampede uses the Infiniband FDR
network and has 6,400 compute nodes which are stored in
160 racks. Each compute node is an Intel SandyBridge pro-
cessor which has 16 cores per node for peak performance
of 346 GFLOPS/node [TAC15]. Since IceT has not been
built to take advantage of threads, we will not be building
with OpenMP on Stampede. Both IceT and our algorithm
will be compiled with g++ and O3 optimization. Edison is
a Cray X30 supercomputer which uses the dragonfly topol-
ogy for its interconnect network. The 5,576 nodes are ar-
ranged into 30 cabinets. Each node is an Intel IvyBridge pro-
cessor with 24 cores and has a peak performance of 460.8
GFLOPS/node [NER15]. To fully utilize a CPU and be as
close as possible to its peak performance, both threads and
vectorization should be used. Both SandyBridge and Ivy-
Bridge processors have 256 bit wide registers which can hold
up to eight 32 bit floating points; only when doing 8 floating
point operations on all cores can we attain peak performance
on one node. Crucially, IvyBridge processors offer the vec-
tor gather operation, which fetches data from memory and
packs them directly into SIMD lanes. With newer compilers,
this can improve performance dramatically. On Edison we
fully exploit IvyBridge processors using OpenMP [DM98]
and auto-vectorization with the Intel15 compiler.

The two datasets used for the tests are shown in figure 4.
The artificial dataset is a square block where each node is
assigned one sub block. The artificial dataset is a rectangu-
lar combustion dataset where the bottom right and left are
empty. The sizes for the artificial dataset are 2048x2048 pix-
els (64MB), 4096x4096 pixels (256) and 8192x8192 pixels
(1GB). For the combustion dataset, the values for the width
has been set to 2048, 4096 and 8192. The height are 2605,
5204 and 104188 pixels respectively.

Figure 4: Left: Synthetic dataset, Right: Combustion dataset

Figure 5: Scaling for artificial data on Stampede.

On Edison at NERSC, we were able to get access to up
to 4,096 nodes (98,304 cores) while on Stampede at TACC
we have only been granted access to a maximum of 1,024
nodes (16,384 cores). So in the next section, we will show
the performance for these two cases. Each experiment is run
10 times and the results is the average of these runs after
some outliers have been eliminated.

4.1. Scalability on Stampede

When running on Stampede, threads are not being used for
the TOD-Tree algorithm. Both IceT and our implementation
are compiled with g++ and O3 optimization. This is done to
keep the comparison fair and also to point to the fact that it

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2015)

P.	Grosset,	M.	Prasad,	C.	Christensen,	A.	Knoll,	C.D.	Hansen.	“TOD-Tree:	Task-Overlapped	Direct	send	Tree	Image	ComposiYng	
for	Hybrid	MPI	Parallelism”.	Proceedings	of	Eurographics	Symposium	on	Parallel	Graphics	and	VisualizaYon	(EGPGV)	2015
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is the overlapping of tasks rather than raw computing power
that is the most important here. Also, we are not using any
compression as most image sizes used by users are small
enough that compression does not make a big difference. At
8192x8192 pixels, an image is now 1GB in size and having
compression would probably help.

Figure 6: Scaling for combustion data on Stampede.

Figure 5 shows the strong scaling results for artificial data
on Stampede. The TOD-Tree algorithm, performs better than
binary-swap and radix-k. The staircase like appearance can
be explained by the fact that we use the same value of r for
pairs of time steps; r=16 for 32 and 64 nodes, r=32 for 128
and 256 and, r=64 for 512 and 1024 and only 1 round was
used for the k-ary tree part of the algorithm. Thus with r=32,
for 256 nodes, there are 8 groups of direct send while there
are only 4 groups of direct send at 128 nodes. So the tree

stage must now gather from 7 instead of from 3 processes
and so the time taken increases. Also it means that instead
of waiting for 3 nodes to complete their grouped direct send,
now the wait is for 7 nodes. Increasing the value of r helps
balance the workload in stage 1 of the algorithm and reduces
the number of nodes that have to be involved in the tree com-
positing and hence decreases the sending.

Figure 7: Varying number of rounds for artificial dataset for
4096x4096

For images of size 2048x2048 pixels, compositing is
heavily communication bound. As we increase the number
of nodes, each node has very little data and so all the 3 al-
gorithms surveyed perform with some level of randomness
as they become more communication bound and so more
affected by load imbalance and networking issues. Commu-
nication is the main discriminating factor for small image
sizes. For 8192x8192 images, there is less variation as it is
more computation bound. Also, at that image size, IceT’s
radix-k comes close to matching the performance of our al-
gorithm. On analyzing the results for TOD-Tree, we saw
that the communication, especially in the gather stage, was
quite expensive. While a 2048x2048 image is only 64 MB,
a 8192x8192 image is 1GB and transferring such big sizes
cost a lot without compression. This is where IceT’s use of
compression for all communication becomes useful.

In the test case above, we used only 1 round for the tree
compositing. For large node counts, more rounds could be
used. Figure 7 shows the impact of having different number
of rounds for large node counts. For 256 nodes there is an
improvement of 0.018 s while it is slower by 0.003 s for 512
nodes and 0.007 seconds for 1024 nodes. So having several
rounds barely slows down the algorithm and can even speeds
up the results.

Figure 6 shows the results for the combustion dataset on
Stampede. One of the key characteristics of this dataset is
that at the bottom, there are empty regions. This creates load
imbalances. Also, the dataset is rectangular and not as uni-
form as the artificial dataset but it resembles more closely
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• Faster large-scale compositing for unbalanced visualization 
workloads 

• Improves on previous TOD-Tree paper (EGPGV15) and 
GPUDirect extension (IEEE TVCG 2016) 

• scales up to 2K nodes on Edison 

• Simple OpenMP CPU compositing competitive with 
optimized GPU techniques! 

• Similar approaches could be used into OSPRay distributed 
data API.

Dynamically scheduled region-based compositing

Pascal Grosset, Aaron Knoll, Chuck Hansen. “Dynamically Scheduled  
Region-based Compositing.” Eurographics Symposium on Parallel Graphics and Visualization  2016.
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(ray tracing)

P-k-d Trees: low-footprint particle storage 

• OSPRay uses the Embree BVH by default to accelerate particle data 

• fast to build and traverse with Embree, but with a ~4x memory overhead! 

• A better solution: the balanced k-d tree, or “point” k-d tree 

• The data are the acceleration structure 

• zero (or little) memory overhead, fast to build 

• ~30% slower to render than state-of-the-art Embree BVH 

• Implemented in both OSPRay and IVL (paper written on OSPRay implementation)



P-k-d trees for materials

100M atom Al2-O3 SiC alumina-coated nanoparticle MD simulation (Aiichiro Nakano, Rajiv Kalia, USC) 
Rendered in OSPRay with path tracing (1 spp with progressive rendering), 2–4 fps at 4K resolution 

DOE INCITE allocation at Argonne National Laboratory, 2014

Ingo Wald, Aaron Knoll, Gregory P. Johnson, Will Usher, Valerio Pascucci and Michael E. Papka.  
CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees. IEEE Vis 2015

http://www.sci.utah.edu/~knolla/ospParticle.pdf


Dynamic filtering with P-k-d trees

Ingo Wald, Aaron Knoll, Gregory P. Johnson, Will Usher, Valerio Pascucci and Michael E. Papka.  
CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees. IEEE Vis 2015

3.4 Handling Particles With Different Radii
Though all our data sets use a fixed radii for all particles, it would
be possible to also support different radii (for example, by stor-
ing a radius per particle, or by deriving a particle from a mapped
attribute), and even non-spherical shapes such as balls-and-sticks,
triangles, etc. All the P-k-d tree needs to guarantee correctness is a
conservative Rmax value that, when used to shift a subtree’s planes,
properly bounds all primitives in that subtree. The tightness of the
bounding primitive (i.e., how tightly the sphere with radius Rmax
bounds the actual primitive) will impact traversal performance. In
cases where a handful of large particles are mixed with many tiny
particles, performance will suffer. There are ways of addressing
this (e.g., storing a maximum radius per sub-tree); we leave them
outside the scope of this paper.
3.5 Ray Tracing and Shading
By implementing the P-k-d traversal routine within OSPRay [19],
we are automatically able to use the material, rendering and shad-
ing pipeline of that ray tracing engine. When a ray terminates in
traversal, the OSPRay renderer is given a geometry ID (a pointer
to the particle), from which it can look up the material via the cho-
sen attribute and transfer function. This material is then passed
to the chosen OSPRay renderer (ray cast, ambient occlusion, path
tracing, etc.), which integrates the color accordingly and generates
secondary rays as necessary. Like Embree [27], OSPRay allows for
progressive refinement an option, ensuring consistent interactivity
and allowing path-traced images to converge to production-quality
renderings. Examples of diffuse-only ray casting, ambient occlu-
sion and path tracing are shown in Figure 5.

Figure 5: Rendering modalities, illustrated on a 3500-atom zeolite

structure. Left to right: ray casting (106 fps), ambient occlusion (5
fps at 16 spp; 45 fps at 1 spp with progressive refinement) and path
tracing (0.041 fps at 512 spp; 18 fps with progressive refinement).

3.6 Tree Construction
Generally, balanced k-d trees rely on a dimensional sort, and pick
the literal median element as the pivot point. Unlike spatial k-d
trees [11], they offer no flexibility in placing split planes: once the
split dimension has been chosen, the balance of the tree dictates
exactly which particle along that axis has to be the root node. Nev-
ertheless, there are a variety of choices in particular with respect to
data layout that we want to briefly discuss.
Round-Robin vs Maximum-Extent Partitioning
Traditional balanced k-d trees [2] chose the partitioning dimension
in a round-robin (RR) manner, in which case each node’s dimension
is implicit in the node’s depth in the tree. As shown by Jensen [12],
it is often advantageous to instead partition along the axis of the
current subtree’s maximum extent, and since such a maximum ex-
tent (ME) splitting scheme will minimize the surface area of the two
child nodes, this will also be advantageous for ray traversal. Gener-
ally, we found that ME splitting gave a 30% performance advantage
over round robin.

Maximum-extent partitioning also simplifies our algorithm, as
we no longer have to track the tree depth on the stack. However,
we now must store the chosen split axis. We currently squeeze this
two-bit information into the particle position, i.e. the lowest two
bits of the x, etc. Alternately, one could employ unused bits of the
min-max tree, or of the atom type attribute, etc. In the worse case,
one could store these bit explicitly in an separate array, requiring
two additional bits per particle.

Figure 6: Attribute-based query, based on atom type, in the Al2O3-
SiC fissure data set. Left to right: full data set; silica carbide particles
only; indentations in the alumina.
Range Trees, Queries and Multi-Attribute Data
The balanced P-k-d tree is different from standard balanced k-
d trees in that it is designed for volumetric particle data with
queryable attributes. Our goal is to efficiently traverse the tree and
cull unwanted branches based on a transfer function or other range
query. This is useful, for example, in materials science when iso-
lating atoms of one or more types, or in cosmology to filter out
low-density particles to better reveal structure (Figure 6).

In the P-k-d tree, each attribute is its own array of attribute val-
ues. Attributes are ordered in the same way as particles, i.e. for
given attributes M, D, and V, the V value for particle i is stored at
pkd.attribute[V].value[i]. Range trees are built on top of attributes,
and traversed alongside the P-k-d tree as in Algorithm 2. To build
the range tree, we first build the P-k-d tree, then simply compute
min-max information of the component attributes. To store the min-
max tree, we currently use one integer per inner node of the tree,
which gives us a 32-bit mask of which attribute values are present
in the given sub-tree. While this adds some overhead, it is typi-
cally small compared to the size of the attribute data in the inner
nodes; moreover one mask suffices for multi-attribute data. This
mask is computed as a pre-process every time the transfer func-
tion changes. While the added cost of the mask is relatively small
(13%), it is purely optional; the user can traverse all data without
culling sub-trees.
Construction Algorithm
For actual tree construction we use an in-place partitioning scheme
inspired by the well-known quick-sort algorithm. The method pro-
ceeds as follows: first, using either round-robin or maximum extent,
we pick the axis on which to sort. Then, using the current root par-
ticle as a pivot we iterate through left and right sub-trees (in heap
indexing), to find “wrong” particles in the left and right sub-tree;
i.e., a particle on the left that is larger than, and a particle on the
right that is smaller than, that pivot. If these exist (at, say, positions
i and j) we swap these two particles, and continue scanning at i+1
and j+1.

If a wrong particle could only be found on one side—say, i on the
left—then i becomes the new pivot by swapping with the root, and
we again search for wrong nodes in both subtrees (but noting that
from now on, we will no longer have to scan any earlier than i on
the left); the right-side case is analogous. If no wrong particle could
be found on either side, then the current root is the proper pivot, the
tree is properly partitioned in that node, and we can recursively
build its children.

For thread parallelization, we fork a new thread to handle the left
sub-tree when sub-trees contain more than a certain number of (cur-
rently, 16K) elements. Though this strategy does not achieve per-
fect scalability, it works reasonably well for larger data for which
scalability is needed most, e.g., delivering around 70% scalability
to 16 threads on a 16-core 2.7 GHz SandyBridge CPU (Table 4).

The P-k-d tree is currently built in a pre-processing step when
we convert from the external input file formats to OSPRay’s internal
XML-based binary data format; this saves re-building the tree every
time a model is loaded, and since our data structure is very compact
there was no obvious reason not to store readily built trees.
3.7 OSPRay Implementation
We implemented our P-k-d method in the OSPRay [19] framework.
With its object-oriented design, all ray-intersectable geometric ob-

http://www.sci.utah.edu/~knolla/ospParticle.pdf


Two different ways to visualize the early universe, ~30 billion particles

S. Rizzi, M. Hereld, J. Insley, M. Papka, V. Vishwanath. “Large-Scale Parallel Vis. of Particle-Based Simulations using Point Sprites and LOD”,  
EGPGV 2015. ~32 billion particle HACC dataset with LOD filtering. 

28 billion particles: ~20 megapixels/s 2.8 billion particles: ~200 megapixels/s

I Wald, A Knoll, G Johnson, W Usher, M E Papka, V Pascucci. “CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees”, IEEE Vis 2015 
30 billion particle (450 GB) subset of a PM3D simulation, ray traced with ambient occlusion  

6 FPS (72-core 2.5 GHz Xeon E7-8890 v3) at 4096x1920 = ~50 megapixels/s (MRays/s)  

1. Mostly opaque with ray tracing.  
One 72-core CPU workstation, 3 TB shared memory, P-k-d trees

2. Mostly transparent with rasterization:  
128-GPU cluster, 1 TB distributed memory, splatting



Ongoing research directions



Ingo Wald, Aaron Knoll, Gregory P. Johnson, Will Usher, Valerio Pascucci and Michael E. Papka.  
CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees. IEEE Vis 2015IXPUG 2016 Annual Meeting 

In Situ Exploration with P-k-d trees 
-  Loosely-coupled system; simulation connects directly to OSPRay 

-  CPU/Phi resources used for both compute and rendering 

-  OSPRay client connects/disconnects at will 

-  Low memory overhead compared to VTK-based approaches 

Will Usher, Ingo Wald, Aaron Knoll, Michael Papka, Valerio Pascucci 
“In Situ Exploration of Particle Simulations with CPU Ray Tracing” Workshop on In Situ Visualization, ISC 2016, 

Supercomputing Frontiers and Innovations (submitted)   

Figure 1. A coal particle combustion simulation in Uintah at three di↵erent timesteps with (left

to right): 34.61M, 48.46M and 55.39M particles, with attribute based culling showing the full

jet (top) and the front in detail (bottom). Using our in situ library to query and send data to

our rendering client in OSPRay these frames are rendered interactively with ambient occlusion

averaging around 13 FPS at 1920 ⇥ 1080. The renderer is run on 12 nodes of the Stampede

supercomputer and pulls data from a Uintah simulation running on 64 processes (4 nodes). Our

loosely-coupled in situ approach allows for live exploration at the full temporal fidelity of the

simulation, without prohibitive IO cost.

Our system employs a loosely-coupled or in-transit approach, but retains many of the ad-

vantages of tightly-coupled methods. Using the OSPRay ray tracing framework for visualization,

it can run natively on CPUs on either compute or visualization resources, requiring no dedicated

hardware for visualization. Leveraging memory-e�cient approaches for particle ray tracing [33],

our approach requires minimal overhead for geometry and acceleration structures. Moreover,

to the best of our knowledge, this system represents the first deployment of an interactive ray

tracer for in situ visualization. Our key contributions are:

• An interactive in situ rendering client that can connect and disconnect to the simulation at

the user’s discretion, minimizing the impact of the renderer on the simulation and enabling

live exploration of the simulation state.

• A flexible in situ layer integrated with OSPRay enabling the renderer to run on the same

nodes as the simulation or asynchronously on a di↵erent resource.

• Pairing in situ data query with memory-e�cient ray tracing data structures and mecha-

nisms for direct rendering and filtering of particle data.

• Support for ray tracing of distributed particle data with correct object-space ambient

occlusion, using a sort-last compositing approach.

We demonstrate the flexibility and performance of our system with two simulations,

LAMMPS [24, 28] and Uintah [1], deployed on a NUMA workstation, a visualization cluster

(Maverick) and compute resource (Stampede), studying the communication characteristics and

scalability of these configurations. Though exploratory in situ poses numerous human and lo-

gistical obstacles, it is ultimately desirable for users to be able to explore simulations as they

run.

2. Background and Previous Work

2.1. In Situ Analysis

As simulations grow in scale, in situ analysis and data reduction have become popular tools

in the computation-visualization workflow. Generally, these analyses are designed to operate

alongside computation in batch, as opposed to being interactive. Previous work has determined
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Figure 2. Overview of the in situ library, libIS. In our system, data are forwarded via MPI from

the simulation to a distributed renderer. When simulation and visualization run on di↵erent

resources (a), render nodes request data from multiple simulation nodes as necessary to fill

ghost regions. When running on the same resource (b), data are forwarded either locally from

one process to another on the same physical machine, or transferred over network to communicate

ghost regions.

scription of OSPRay’s data-parallel renderer is beyond the scope of this paper, in general its

implementation distributes “bricks” of volume data as well as “tiles” of the frame bu↵er among

the render nodes. Each node then iterates over all the bricks of volume data it owns, and renders

all the tiles required for this brick. Each such brick-specific tile is then sent to the node that

owns the corresponding region of the frame bu↵er, which composites it with the other bricks’

tiles computed by other nodes. Conceptually this rendering technique is similar to Hsu et al.’s

Segmented Ray Casting [12]. As a sort-last compositing approach, this technique is well suited

to large data bricks because it communicates neither data nor rays, but is inherently designed

for simple shading of primary rays, not ray tracing. In this work, we modify this compositing

method to support non-local shading e↵ects (specifically ambient occlusion).

3. System Overview

We describe a flexible system for interactive in situ visualization of particle data, built on

the OSPRay ray tracing framework. In this section we discuss:

• A data management layer which allows the renderer to pull the most recent timestep in a

layout suitable for distributed rendering (section 4)

• Implementation of this system in the form of a lightweight simulation-side and client-side

library (section 4.3).

• Leveraging the OSPRay ray tracing framework and our library to create an in situ ray

tracer for particle simulation data (section 5.1).

4. In Situ Data Handling and Live Connection

To access timesteps as they are produced by the simulation, a visualization client queries

data through a library linked into the simulation code. By exposing a lightweight, simple to use

API from these libraries we make it easy both to integrate into existing simulation and rendering

codes.

The loose coupling of the simulation-side and render-side libraries allows for a variety of

configurations of the in situ client processes. The client can be run on the simulation nodes,

a separate vis cluster or on a single workstation, as illustrated in Figure 2. As the client and

Evolving into the 
data-parallel API in 

core OSPRay…

http://www.sci.utah.edu/~knolla/ospParticle.pdf


Large multifield data

20	GB	/	Ymestep	LiAlH2O	DFT	simulaYon,	courtesy	Aiichiro	Nakano,	University	of	Southern	California	
CPU	volume	rendering	using	IVL	wrappers	in	Nanovol	
Load	and	visualize	all	780	mul2fields	at	once! 
5K	Ymesteps,	100	TB	total



Direct Multifield Volume Ray Casting of Fiber Surfaces
Kui Wu1, Aaron Knoll2,3. Benjamin J Isaac3, Hamish Carr4, and Valerio Pascucci1,2

1University of Utah 2SCI Institute, University of Utah 3Institute for Clean and Secure Energy, University of Utah
4University of Leeds

Fig. 1. Left: 2D (joint) histogram and three fiber surface control polygons (FSCPs), specified by red, blue and green annotations. Right:
Corresponding fiber surfaces. Let us compare residence time and oxygen across both data range and spatial domain, in a simulation of
coal combustion in GE-Alstom’s 15 MWth Boiler Simulation Facility (BSF). These surfaces let us show low and high regions of oxygen
as they occur over the entire course of the simulation, classified by annotating the 2D scatterplot (joint histogram) with FSCPs. Direct
ray casting allows users to explore and manipulate fiber surfaces interactively on larger datasets; in this case at 16 fps at 1024⇥1024
on an NVIDIA Geforce GT 650M mobile GPU.

Abstract— Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging
problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding
multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction.
We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed
distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data,
dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We
demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data.

Index Terms—Volume Rendering, Isosurface, Multidimensional Data

1 INTRODUCTION

Multifield volume data are ubiquitous in scientific computing. Simula-
tions frequently compute several variables, for the purposes of driving
the computation itself or understanding underlying physical phenom-
ena. However, most visualizations of 3D volume data consider only a
single field in a given image, using either isosurfaces or direct volume
rendering. This is due in equal parts to audiences’ familiarity with
single-field metaphors, and the relative lack of concise techniques for
defining and describing multifield data.

Fiber surfaces are multifield equivalents of isosurfaces for univariate
3D volume data. Just as isovalues define contours in single-field data,
fibers [34] define contours over tuples in multifield data. For bivariate
(two-field) volume data, fibers are defined as points in two-dimensional
range space. A curve composed of fibers in the range defines a fiber
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xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
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surface in the domain. These features classify spatial volume data as
a linear combination of two fields, and provide a powerful tool for
defining contours in terms of multiple attributes. As shown in Fig. 1,
fiber surfaces allow us to restrict our classification of contours to sub-
regions of bivariate range space. This not only reduces clutter, but
allows us to identify features that isosurfaces of these respective fields
could not. Fiber surfaces are a recent contribution to the visualization
literature [5], and were implemented as a straightforward extension to
Marching Cubes [28]. Though effective, surface extraction presents
two main limitations. First, the resulting mesh is a piecewise-linear
approximations of higher-order analytical implicit surfaces. Second,
the extraction process is costly and potentially non-interactive for larger
volume data. While methods exist for accelerating marching cubes,
for sufficiently large and complex data, direct rendering methods are
needed to enable interactive exploration.

Direct isosurface ray casting is a well-known alternative to mesh
extraction. Surface ray casting is attractive for its sublinear time com-
plexity – with the appropriate acceleration structure, small and large
volume data render at similar speed, constrained only by memory.
Moreover, ray casting of implicit surfaces can employ a wide range of
root-finding techniques. In this paper, we contribute a method for direct
ray casting of fiber surfaces by solving for the ray’s intersection point

Fiber surfaces: classifying and summarizing multifields

Kui	Wu,	Aaron	Knoll,	Ben	Isaac,	Hamish	Carr,	and	Valerio	Pascucci.	Direct	MulYfield	Volume	Ray	CasYng	of	
Fiber	Surfaces.	IEEE	VisualizaYon	2015.	

• Fiber surfaces: a multifield equivalent of isosurfaces (Carr et al. Eurovis 2015). 

• Allows a “clean division” of multifield data into interesting regions, based on a scatterplot.  

• Full Uintah BSF simulation: 130 fields! OSPRay and CPUs are needed for the memory! 

• New theory needed to extend the technique beyond 2-field data



• Porting GPU code to OSPRay requires effort — and often supports just one type of data (i.e., 
structured volume) 

• How can we simultaneously support multiple data types? 

• DV: a data model simplifying GPU-OSPRay ports, designed for direct visualization.  

• data model is defined by the user, vis or simulation code as needed.  

• just-in-time compilation creates data structures, algorithms on demand 

• bypasses classes vs template issues in ISPC, pointer issues on GPU 

• merge data formats for parallel IO and visualization (leverage PIDX, 3DXPoint!)

DV: a data model for direct visualization

struct _dvCell{
  float voxels[64];     //elements
  vec3f particles[16];  //vertices
}

dvCell cell;
cell.addField("voxels", DV_ELEMENTS, DV_FLOAT, 1, 64);
cell.addField("particles", DV_VERTICES, DV_FLOAT, 3, 16);
cell.writeBackend( "jit/_dvCell.h");

dvContainer container(DV_ARRAY, DV_GRID, 3);
container.writeBackend("jit/_dvContainer.h");

struct _dvContainer{
  static const int dimensionality = 3;
  ulong dimensions[dimensionality];
  _dvCell* cells;
}



• Visualization will remain crucial as long as we are doing computing. 

• CPU-based ray tracing methods are key to achieving long-term scalability — and represent the 
“bleeding edge” of scientific visualization. 

• With 3DXPoint, the line between “in situ” and “stored” data is blurry… 

• With Omnipath, the line between “in-memory” and “remote access” is blurry… 

• OSPRay opens up opportunities that did not exist before 

• extending the capabilities of existing “indirect” visualization systems (VMD, ParaView, VisIt) 

• new research in “direct” visualization (vl3, pkd trees) 

• multifield and time-varying visualization

Summary thoughts…
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