INTEL" HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGRT

INTEL” HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGHT

Reshaping core genomics software
tools for the many-core era

Ben Langmead

Assistant Professor

Johns Hopkins University, Department of Computer Science
November 2016

The Intel Parallel Computing Center at
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

L o 2
.

Ben Valentin Chris Steven Daehwan
Langmead Antonescu Wilks Salzberg Kim

INTEL" HPC DEVELOPER CONFERENCE

Outline

Introduction to sequencing data analysis & Bowtie

Thread scaling improvements using TBB
— Choice of mutex
— Two-stage parsing

AVX2, AVX512-KNC & AVX512-KNC improvements

Impact on the field

INTEL" HPC DEVELOPER CONFERENCE

Sequencing

INTEL" HPC DEVELOPER CONFERENCE

Sequencing

INTEL" HPC DEVELOPER CONFERENCE

Seq uenCi ng SRA database growth o

1Pbp s

Terabases

2009 2010 2011 2012 2013 2014 2015 2016

eeeeeeeeeeeeeee

INTEL" HPC DEVELOPER CONFERENCE

Read alignment

INTEL" HPC DEVELOPER CONFERENCE

. Read
Read al |g nme nt CTCAAACTCCTGACCTTTGGTGATCCACccaecTAeceTTe X Dillions

Reference

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT
CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC
GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT
ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA

u Need|e in a hayStaCk ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA
AACCCCCCCTCCCCCGCTTCTGGCCACAGEA™ JISTCTGCCAAACCCCAAAA
ACAAAGAACCCTAACACCAGCCTAACCA TGGCGGTATGCAC

T TTTTAACAGTCACCCCCCAACTAACA USCATACTACTAAT
= Billions of reads from CTCATCAATACAACCCCCGCCCATE 1 AC TAACCCCATA
) CCCCGAACCAACCAAACCCCAAAG CACCCCCL, CCTCCTCAAA -
- GCAATACACTGACCCGCTCAAAC, CTGGATTTTGGAT ¢ TGGCCTAAA ”
a Smgle week Iong CTAGCCTTTCTATTAGCTCTTAG AAGATTACACATGCAAGCA. CCAGTGAGT Xxmilion
. TCACCCTCTAAATCACCACGATC AAAGGAACAAGCATCAAGCACL ATGCAGCTC
sequencing run AAAACGCTTAGCCTAGCCACACCL §C " CGGGAAACAGCAGTGATTAA JITTAGCAATAA

ACGAAAGTTTAACTAAGCTATACT!
GGTCACACGATTAACCCAAGTCAA

TCCCCAATAAAGCTAAAACTCACCT " CAAAATAGAC

= Human reference TACGAAAGTGGCTTTAACATATCTGAA r GGATTAGA
) 3B b TACCCCACTATGCTTAGCCCTAAACCTCAA CCAGAA

~ CACTACGAGCCACAGCTTAAAACT CAAAGGACCTGGCGGTGCTTCA GAGG

genome IS ases AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTG ATA

(IEBttEErE;) I()r] CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTA
SJ ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTT
AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGT
AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCC
AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGAC
CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATG
AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA
GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA
AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG
AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA
TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT

INTEL" HPC DEVELOPER CONFERENCE

Bowtie and Bowtie 2

Software Open Access

Ultrafast and memory-efficient alignment of short DNA sequences
to the human genome
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

= Together cited by NATURE METHODS | BRIEF COMMUNICATION
>12K other scientific

studies since 2009 Fast gapped-read alignment with Bowtie 2
= Bundled with dozens

of other tools & many
Linux distros

Ben Langmead & Steven L Salzberg

INTEL" HPC DEVELOPER CONFERENCE

HISAT

NATURE METHODS | ARTICLE

HISAT: a fast spliced aligner with low memory
requirements

Daehwan Kim, Ben Langmead & Steven L Salzberg

= Based on Bowtie 2 and a leading spliced aligner for RNA sequencing data

= Cited in >75 scientific studies since 2015

INTEL" HPC DEVELOPER CONFERENCE

Design of Bowtie & Bowtie 2

]
P—
N

Bowtie 1

| Alignment

Alignment

Bowtie 2

INTEL" HPC DEVELOPER CONFERENCE

Design of Bowtie & Bowtie 2

s

.
o1 | IR
_ J

Random access to large index
data structure and minimal ILP

Referenc

Read
2

Alignment

Bowtie 2

\ 2 ?ead
B
e

INTEL" HPC DEVELOPER CONFERENCE

Design of Bowtie & Bowtie 2

e

Bowtie 1 e Alignment pu——
Dynamic programming, lots of ILP
4 A
§ oo"”’ I”I 1
Ref substring § memmmes 2= :°
Bowtie 2

BT [=

Read substring &

Ref substring |

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

10007 1yy Bridge, 4 NUMA nodes, Bowtie 1 unpaired

120 threads

N

a

o
|

Vertical axis is per-
thread running time;
lower is better

lock

—e— TBB spin_mutex

(o))

o

o
1

—e— tinythreads fast_mutex

250 -

Normalized running time

| | | | |
0 25 50 75 100 125
threads (unpaired)

= Switching to analogous TBB lock could bring big improvement

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

350 - - :
o | Ivy Bridge, 4 NUMA nodes, Bowtie 2 unpaired
E 3004 120 threads lock
2 ——
£ 5504 Vertical axis is per-thread None (stubbed /)
S running time; lower is better —e— TBB spin_mutex
2
= version
©
§ — Oiriginal parsing
o
pa

0 25 50 75 100 125
threads (unpaired)

= Removing synchronization by “stubbing” input lock gives further improvement

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

= Vtune investigation indicates synchronization itself (e.g. see TBB_LockByte)
is taking the time

I 2 P BB @ wekome sensitive_15 ... [ELUTTUIINR ' New Amplifi...

Grouping: Function / Call Stack

® @] Back-End Bound
Memory Bound =
Function / Call Stack Clockticks v Instructions Retired = CPI Rate Frgnt-End Sad 3] &=
ound Speculation u DRAM Store Core B
Bound L2 Bound | L3 Bound Bound Bound

TBB_LockByte | 77,761,096,642,820] 45.340,068.010 JERALAE] 0.011| 0.000 ICX T 0.000) 0.000 0.006
P [vmlinux] 13,292.819,939,200 5,223.747,835,610 2,545 0,103 0.003 0.603 0.000 0.017 0.021 0.000
b Swaligner::alignNucleotidesEnd2EndSseUs 13,209,439.814,130 22,785,554,178,280 0.580 0.038 0.023 0.124 0.000 0.009 0.011 0.000
P AlignmentCache::addOnTheFly 2,895,204,342,800 3,473,565,210,340 0.833 0.046 0.008 0.161 0.000 0.000 0.011 0.000
P Ebwt::countBt2SideEx 2.,181,803,272,700 822,241,233,360 2,653 0.046 0.035 0.115 0.000 0.036 0.576 0.000
P SeedAligner::searchSeedBi 2,006.483,009,720 1,222.381,833,570 1.641 0.088 0.044 0.105 0.000 0.075 0.314 0.000

b SeedAligner:.exactSweep 1,491,862,237,790 366,800,550,200 4.067 0.057 0.048 0.033 0.014 0.043 0.677
bEbwt::mapLFl 1,473,882,210,820 374,380,561,570 3.937 0.051 0.042 0.087 0.000 0.086 0.601 0.000
bSwAllgner::backtraceNucleotidesEnd2EndSseU8 ‘ 1.450,082,175,120 1,213,281,819,920 1.195 0.072 0.029 0.107 0.000 0.027 0.080 0.076
PGWSlate<PLnstSl|<e<unS|gned int, (int)16384>> 1,001,701.502.550 570.100,855,150 1.757 0.077 0.025 0.103 0.000 0.095 0.181 0.000
P [libc-2.17.50] 799,601,199,400 613,880,920,820 1.303 0.162 0.000 0.126 0.000 0.060 0.042 0.000

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

Bowtie 2 unpaired

400
|

N How to close the
Vg,@ gap between
actual and ideal
performance?

Avg thread running time
200 300
l L

100
l

0 20 40 60 80 100 120

simultaneous threads

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

Bowtie 2 unpaired

400
|

<+— TBB spin mutex

300
|

» 4 TBB normal mutex
® +&— TBB queue mutex

Avg thread running time
200
l

100
l

Why does mutex
o A choice have outsize

0 20 40 60 8 100 120 effect?

simultaneous threads

INTEL" HPC DEVELOPER CONFERENCE

Thread scalin
J Test-and-set lock performance

Benchmark: total of N lock/unlock sequences (in aggregate) by P processors
(ritical section time removed so graph plots only time acquiring/releasing the lock
20

Benchmark executes:

lock(L); [

= Mutex spinning on atomic op 7] eriticel-section(o
(compare-and-swap, test-and-

14
set), spurs exchange of cache /\/
S 12
COherence messages E 10 /\\V Bus contention increases amount of
; time to transfer lock (lock holder must
= Image by Kayvon Fatahallan, 8 wait to acquire bus to release)
Copyrlght 201 5 Carnegle ° Not shown: bus contention also slows
M el |On U n ive rs |ty 4r- down execution of critical section
2
/
Number of processors
Figure credit: Culler, Singh, and Gupta CMU 15-418/618, Spring 2015

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

» Even a standard pthreads mutex was outperforming the
spin lock when running one thread per available core

— More evidence that cache coherence traffic is culprit

= Queue locks are known to have better cache properties
— Waiting thread spins on normal (non-atomic) read

— Cache line read belongs exclusively to that thread
and can live in L1

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling
= We hypothesized a NUMA-aware “cohort lock” could help further

IW 3 T4 Ea

*T6 *T7 T8 | T9

| NUMA Node |

Time —»
(a) Naive NUMA-oblivious lock admission schedule

I|T1|T2|T5|T3|T4

*T6 [T9|T7 |78 |

| NUMA Node |

Time —»

(b) Cohort lock admission schedule

Dice, David, Virendra J. Marathe, and Nir Shavit. "Lock cohorting: a general technique for
designing NUMA locks." ACM SIGPLAN Notices. Vol. 47. No. 8. ACM, 2012.

INTEL" HPC DEVELOPER CONFERENCE

Cohort locking

class CohortLock {
public:

CohortLock() : lockers_numa_idx(-1) {
starvation_counters = new int[MAX_NODES]();
own_global = new bool[MAX_NODES]();
local_locks = new TKTLock[MAX_NODES];

}

~CohortLock() {
delete[] starvation_counters;
delete[] own_global;
delete[] local_locks;

}
void lock(); .

void untock(); = Each NUMA node has per-node ticket lock
stat%; const %nt STARVATION_LIMIT = 100; . .
1 e Sttt counteis: 1/ 1per note " Other per-node information tracks when to
volatile bool* own_| lobalz ’ // 1 per node
volatile int lockir‘s_numa_idx; // 1 zer‘ node paSS IOCk to Other threads on same nOde
TKTLock* local_locks; // 1 per node . . .

, THock globaltocls = Single global partitioned ticket lock

INTEL" HPC DEVELOPER CONFERENCE

Cohort locking

void Coh9r‘tLock::!.ock() {)) u When IOCk|ng
Tocal_locks numa. 1dx] TockQy; !
if(!o;n_global[n;ma_iéx]) { ’ - Grab |OC8| IOCk
global_lock.lock(); .
ita,.vation_count?ps[numa_idx]H; — Once grabbed, grab global lock if not
Tockare. muma, idx = numa. Sdx; already owned by this node
}
void CohortLock: :unlock() {
asser‘t(locl;er‘s_;umz_idx I= -12]; - When Un|OCkIng
int numa_idx = lockers_numa_idx; -
lockers_numa_idx = -1;
if(local_locks[numa_idx].q_length() == 1 || — Is another thread on same node queued?
starvation_counters[numa_idx] > STARVATION_LIMIT) .
C robal Tock.untock; If so, hand lock to next in queue
starvazion_counters[erma_idx] = 0; .
own_global[nuna_idx] = false; — Otherwise release global & local locks
}
, tocaitockstnumaidd.unlock(); — Override hand-off if others are starving

INTEL" HPC DEVELOPER CONFERENCE

Cohort locking

= Another implementation of cohort locking available in ConcurrencyKit:
http://concurrencykit.org

— https://github.com/concurrencykit/ck/blob/master/include/ck cohort.h

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling
= Chris Wilks added TBB queue locks, JHU/TBB
Cohort locks (2 flavors) to Bowtie 2, Bowtie & HISAT

= Available in public branches, with all but cohort locks
available in master branch and in recent releases

INTEL" HPC DEVELOPER CONFERENCE

: @ABC 123 1
Thread scallng GCTATTATGCTAT
+
» Novel strategy splits input parsing into two “phases” JJSYEGGU8233"
_ . _ . @ABC 424 1
= First (“light parsing”) rapidly detects record GTGATATCCAT
boundaries, requiring synchronization but with very +
brief critical section SYEG!U8@233
_ @ABCD 9 1
= Second (“full parsing”) fully parses each record GCTATTATGCTATAAAC
(pictured, right) with no synchronization +
S _ _ _ » _ JJISYEGGU8233"32FR
= Minimizes time spent in crucial critical section @D 91231 1
GCTATTATGCTAT
+
JJISYEGGU8233"

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 unpaired

lvy Bridge, 4 NUMA nodes, lock
° 120 threads oc
E 3007 —— None (stubbed I/0)
> Vertical axis is per-thread BB mut
E running time; lower is better mutex
2 —— TBB queuing_mutex
3 200 - .
N —— TBB spin_mutex
©
£ —— TBB/JHU CohortLock
(@]
< —— tinythreads fast_mutex
100 -
0 25 50 75 100 125

threads (unpaired)

= TBB queuing_mutex and TBB/JHU cohort lock perform best

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 unpaired

w

o

o
1

200 -

Normalized running time

100 -

lvy Bridge, 4 NUMA nodes,
120 threads

Vertical axis is per-thread ;
running time; lower is better ,;:'"

0 25 50 75 100

threads (unpaired)

—— None (stubbed 1/0)
—— TBB mutex

—— TBB queuing_mutex
—— TBB spin_mutex

—— TBB/JHU CohortLock

—— tinythreads fast_mutex

version
— Optimized parsing

----- Original parsing

= Two-phase parsing yields substantial thread-scaling boost; close to perfect up
to 120 threads, regardless of mutex

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 paired-end

I1v2yol3t[]|dged 4 NUMA nodes, lock

o reads

E 300 —— None (stubbed 1/0)
2 Vertical axis is per-thread — TBB mutex

= running time; lower is better

> —— TBB queuing_mutex
5 200 -

_qﬁ —— TBB spin_mutex

©

g —— TBB/JHU CohortLock
o

< 100 - —— tinythreads fast_mutex

0 25 50 75 100 125
threads (unpaired)

= queuing_mutex and cohort lock again perform the best, near ideal

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 paired-end

w

o

o
1

Normalized running time
S
o
1

100 -

lvy Bridge, 4 NUMA nodes,
120 threads

Vertical axis is per-thread o
running time; lower is better -

—— None (stubbed I/O)
—— TBB mutex

—— TBB queuing_mutex
—— TBB spin_mutex

—— TBB/JHU CohortLock

—— tinythreads fast_mutex

version

— Optimized parsing

25 50 75
threads (unpaired)

160 1é5 ----- Original parsing

= Two-phase parsing yields substantial thread-scaling boost; close to perfect up
to 120 threads, with mutex having smaller impact

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie

300 -

N
o
o

Normalized running time
S
o
|

_| running time; lower is better

Ivy Bridge, 4 NUMA nodes, lock

120 threads

—o— None (stubbed I/0)
Vertical axis is per-thread —e— TBB mutex

—e— TBB queuing_mutex
—e— TBB spin_mutex

—eo— TBB/JHU CohortLock

—o— tinythreads fast_mutex

i i i i
0 25 50 75 100 125

threads (paired—-end)

= As with Bowtie 2, near-ideal scaling with queuing and cohort locks

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: HISAT unpaired

400 - : B’
o lvy Bridge, 4 NUMA nodes, version
e 120 threads S
=300 — . | R — Optimized parsing
f= Vertical axis is per-thread)
= running time; lower is better »° |- Original parsing
>
= 200 - .
3 lock
s o’ .--®
© ’ e —e— TBB queuing_mutex
€ 100 - . .
2 —e— tinythreads fast_mutex

0= I I I I I
0 25 50 75 100 125

threads
= Huge improvements with queuing_lock and two-phase parsing

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling

N w
o o
o o

)

Normalized running time
S
o

I I I I I I
0 25 50 75 100 125

bowtie # threads

(0]

_g 250

2200

c

= 150

B 100

N

©

£ 50

2 1 1 1 1 1 1

0 25 50 75 100 125

hisat # threads

= Further gains possible with batch parsing, where the first phase “lightly” parses
several reads at once, reducing # critical section entrances

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 on Broadwell

Bowtie2: TBB ptl-tkt vs. TinyThreads (88T on 1M Reads)

Geomean 1.6x Speedup on 7 Workloads
Intel Confidential - BDW (E5-2699 v4)

1.1xSpeedup

m WITH_TBB_WITH_AFFINITY_WITH_COHORTLOCK ptl-tkt m 2.2.8 TinyThread
35
3
1.8x Speedup
1.6xSpeedup 1-6xSpeedup
1.4x Speedup 1.4xSpeedup
L i i . .
0 l

SRR002273 SRR390728 ERRO00589 SRR033552 SRR034966 ERR024139 ERR161544

o

N
w

Thread Scaling (higher is better)
& B

[
o

w

= Experiment conducted by John Oneill at Intel

= TBB + optimized parsing yields speedups of 1.1x - 1.8x on 88 threads on
Broadwell E5-2699 v4 part. TBB/JHU Cohort lock outperforms other mutexes.

INTEL" HPC DEVELOPER CONFERENCE

Thread scaling: Bowtie 2 on Knight's Landing

Bowtie2: TBB ptl-tkt vs. TinyThreads (192T on 1M Reads)

Geomean 2.5x Speedup on 7 Workloads
Intel Confidential - KNL BO bin3 part (64 cores), 28 March-2016

160 ®mTBB with ptl-tkt lock = 2.2.8 TinyThread
2.4xSpeedup 2.7xSpeedup

2.6x Speedup
2.6xSpeedup
2.7xSpeedup 2.7xSpeedup 2.0x Speedup
)
4
0
0

SRR002273 SRR390728 ERRO00589 SRRO33552 SRR034966 ERRO24139 ERR161544

Run Time (S, lower is better)
- - - - [
=] o o 8 8 8

N

= Experiment conducted by John Oneill at Intel

= TBB + optimized parsing yields speedups of 2x - 2.7x on 192 threads on KNL
BO bin3 part. TBB/JHU Cohort lock outperforms other mutexes.

INTEL" HPC DEVELOPER CONFERENCE [

Thread scaling: summary

» Using a queue mutex / cohort lock can yield big improvement over spin /
normal lock

= Achieved near-ideal scaling up to 120 threads with (a) queue/cohort locks and
(b) cleaner parsing for Bowtie, Bowtie 2.

= Promising scaling results on KNC & KNL; more to do
= Cohort locks were best option in Broadwell & KNL experiments

= Cohort locks seem to put KNL in a better position to outperform Xeon on
genomics workloads

INTEL" HPC DEVELOPER CONFERENCE

Vectorization of Bowtie 2 inner loop

Bowtie 2

Ref substring —

Read substring ! R QUi
ubstri

E1EI
[El=

J

= Dynamic programming alignment not unique to Bowtie 2

= Common to many sequence alignment problems

INTEL" HPC DEVELOPER CONFERENCE

Vectorization of Bowtie 2 inner loop
N\

/I Outer loop to process the database sequence /I --- Lazy-F Loop ---

fori:=0... dbLen // Shift the vF left so its values can be used to
// Initialize F value to zeros. Any errors to vH values I/ correct the next segment over.
I/ will be corrected in the Lazy-F loop. VF = vF<<1;
vF =<0, ..., 0>

/I Correct the vH values until there are no elements

/I Adjust the last H value to be used in the next /I in VF that could influence the vH values.

/I segment over

I) . j=0;

vH = vHStore[seglen - 1] << 1; while (AnyElement (vF > vHStore(j] — vGapOpen)
/I Swap the two H buffers vHStore[j] := max (vHSfore[;). VF),
swap (vHLoad, vHStore); :/fF(:j‘/f -_s:gfgf)x’end‘
1/ Inner loop to process the query sequence /I'If we processed the entire segment, we need
forj:=0... segLen // to carry the vF values to the next segment.

/I Add the scoring profile to vH vF = vF << 1;

vH := vH + vProfile[i][j]: j=0;

endif

/I Save any vH values greater than the max endwhile

vMax := max (vMax, vH); sndfor

/I Adjust vH with any greater VE or vH values .

v - max (v, vy Outer loop iterates over columns

vH = max (vH, vF);

/I Save the vH values off H

[Save the H Main loop fills

oo o e "¢ Fixup loop adjusts, taking intra-

vH := vH — vGapOpen; . .

V) < el ooy chunk dependencies into account
vF :='vF - ;/C;‘:apl’_z_’;';end:
vF = max (vF, vH),

Farrar M. Striped Smith-Waterman speeds database

J/Load the | e value to process searches six times over other SIMD implementations.
endfor ' Bioinformatics. 2007 Jan 15;23(2):156-61.

INTEL" HPC DEVELOPER CONFERENCE

Vectorization of Bowtie 2 inner loop

The wider the vector word, the more times the fixup loop iterates

= Mitigates the benefit of

o ERR229818}WGS) —— Main loop (same for all algorithms)
having wider words

o

~N

- A ERR250256 (exome) —— Rognes end-to-end fixup
o —— Farrar end-to-end fixup
o

- Rognes local fixup
Farrar local fixup

Loop iterations per column

Elements per word

INTEL" HPC DEVELOPER CONFERENCE

Vectorization of Bowtie 2 inner loop

...but in some situations, the fixup loop can be skipped with little or no downside

= |Important future work isto 2

determine whether selective £ 2= -

suppression of fixup loop g |

can remove most or all of 5 ° | og—e o o o o

the downside of having I "

wider words ® - N
£ 3- -
g O = = e o £\
3 S —— Rognes end-to-end
= —— Farrar end-to-end
o © ERR229818 (WGS) Rognes local
§ S - & ERR250256 (exome) Farrar local
© T T T T
s 10 20 30 40

Elements per word

INTEL" HPC DEVELOPER CONFERENCE

Impact on the field

* 1.1.0 - 7/19/2014

°

Added support for large and small indexes, removing 4-billion-nucleotide barrier.
Bowtie can now be used with reference genomes of any size.

No longer releasing 32-bit binaries. Simplified manual and Makefile accordingly.
Phased out CygWin support.

Improved efficiency of index files loading.

Fixed a bug that made bowtie-inspect fail in some situations.

(This release was briefly given version number 2.0.0, but we changed it to 1.1.0
to avoid confusion with Bowtie 2.)

* 1.0.1 release - 3/14/2014

°

Improved index querying efficiency using "population count" instructions available
since SSE4.2.

Credits to the Intel(r) enabling team for performance optimizations included in
this release. Thank you!

** Bowtie on GitHub - 4/11/13

°

Bowtie source now lives in a public GitHub repository.

** 1.0.0 release - 4/9/13

°

°

Finally, a 64-bit Windows binary!
Due to general performance improvements spinlocking is now used by default.
The EXTRA_FLAGS=-DNO_SPINLOCK may be used to reverse this during

Bowtie 2: Fast, accurate read alignment
Crossbow: Genotyping, cloud computing
Tophat: RNA-Seq splice junction mapper
Cufflinks: Isoform assembly, quantitation
Myrna: Cloud, differential gene expression
Lighter: Fast error correction

Other tools using Bowtie

Pre-built indexes

Consider using Illumina's iGenomes
collection. Each iGenomes archive contains
pre-built Bowtie and Bowtie 2 indexes.

H. sapiens, UCSC hg18 2.7GB
or: partl1-1.7GB, part 2 - 1.0 GB
colorspace: full, or part 1, part 2

H. sapiens, UCSC hg19 2.7GB
or: partl1-1.7GB, part2 - 1.0 GB
colorspace: full, or part 1, part 2

H. sapiens, NCBI v36 2.7GB
or: part1-1.7GB, part2 - 1.0 GB

= As of Bowtie 1.0.1 release / Bowtie 2 2.2.0 release, Intel improvements are “in

the wild,” assisting life science researchers

INTEL" HPC DEVELOPER CONFERENCE

colorspace: full or part 1 part 2

Impact on the field

** Recent news

*1.1.2 - 6/23/2015

o Fixed the building process for Mac OS X Yosemite.

o Added install target (make install) for Linux to better aid package
building process and the overall installation process.

o |Added support for Intel TBB threading, providing better thread scaling in

most situations. The default build still uses TinyThread but TBB is used with

make WITH TBB=1.

o Fixed minor issue related with managing the number of threads spawned.

o Fixed minor issue which may have caused a memory leak after an exception
was thrown.

o Fixed bug that caused bowtie to crash if a read was trimmed more than the
read's length on 5' end.

o Added minor corrections/addition to the manual.

o Fixed bug that caused the wrapper to incorrectly identify the bowtie binary.

= Added TBB to Bowtie 1.1.2, Bowtie 2 2.2.6. Also added to public branch of
HISAT. Plan to make TBB the default threading library in upcoming release.

INTEL" HPC DEVELOPER CONFERENCE | e

Impact on the field

** Version 2.2.7 - Feb 10, 2016

o |Added a parallel index build option: bowtie2-build --threads <# threads>.

o Fixed an issue whereby IUPAC codes (other than A/C/G/T/N) in reads were
converted to As. Now all non-A/C/G/T characters in reads become Ns.

o Fixed some compilation issues, including for the Intel C++ Compiler.

o Removed debugging code that could impede performance for many
alignment threads.

o Fixed a few typos in documentation.

» Daehwan Kim of JHU IPCC team parallelized the index building process in
Bowtie 2; TBB version of parallel index building available as of 2.2.7

INTEL" HPC DEVELOPER CONFERENCE

Impact on the field

Scaling genomics software to modern CPUs:
= With changes fully reflected in experiences and suggestions
Bowtie 1.2.0 and Bowtie 2 2.3.0,
JHU team drafting manuscript
describing improvements and
lessons learned Abstract

As computers evolve to include drastically more processors and mem-

March 30. 2016

ory sockets, developers of genomics software tools must increasingly nav-
igate subtle issues related to computer architecture and scalability. We
make several suggestions and observations on how developers can mea-
sure performance bottlenecks unique to modern CPUs. We present our
own experiences improving the thread scalability of key DNA sequencing
data analysis tools Bowtie and Bowtie 2. We show that these tools are
affected by issues such as non-uniform memory access, hyperthreading
and lock contention. We describe the improvements we made and lay out
principles, methods, and diagnostic plots that can help other developers
seeking to optimize scientific codes for many-core systems. In addition
we consider ways of dealing with the limitations of the common sequence
format, FASTQ, in the context of running concurrent threads.

INTEL" HPC DEVELOPER CONFERENCE

Future directions

Where and why does the cohort lock help?

Does cohort lock have a future in TBB?

Can selective suppression of Bowtie 2 fixup loop
unlock power of wider vector words?

Can all of the above yield a big Knight’s Landing
throughput win?

INTEL" HPC DEVELOPER CONFERENCE

Other resources

= http://www.langmead-lab.org

= https://www.coursera.org/learn/dna-sequencing
— YouTube videos for above: http://bit.ly/ADS1 videos

Algorithms for DNA
Sequencing

We will learn computational methods -- algorithms
and data structures -- for analyzing DNA sequencing
data. We will learn a little about DNA, genomics, and
how DNA sequencing is used. We will use Python to
implement key algorithms and data structures and to
analyze real genomes and DNA sequencing datasets.

Ben Langmead,
PhD

Johns Hopkins
University

Jacob Pritt
Johns Hopkins
University

INTEL" HPC DEVELOPER CONFERENCE

Thank you

John Oneill, Ram Ramanujam, Kevin O’leary, and many other great Intel
engineers we spoke to and worked with

Lisa Smith, Brian Napier and others in IPCC program

Langmead lab team: Chris Wilks, Valentin Antonescu

Salzberg lab team: Steven Salzberg, Daehwan Kim

=
Intel i.y
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

INTEL" HPC DEVELOPER CONFERENCE

INTEL” HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGHT

Thank you for your time

eeeeeeeeeee

