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Outline 

§  Introduction to sequencing data analysis & Bowtie 

§  Thread scaling improvements using TBB 

–  Choice of mutex 
–  Two-stage parsing 

§  AVX2, AVX512-KNC & AVX512-KNC improvements 

§  Impact on the field 

 



5 

Sequencing 
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Sequencing 



7 

Sequencing 
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Read alignment 
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Read alignment 

§  Needle in a haystack 

§  Billions of reads from 
a single week-long 
sequencing run 

§  Human reference 
genome is ~3B bases 
(letters) long 
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Bowtie and Bowtie 2 

§  Together cited by 
>12K other scientific 
studies since 2009 

§  Bundled with dozens 
of other tools & many 
Linux distros 
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HISAT 

§  Based on Bowtie 2 and a leading spliced aligner for RNA sequencing data 

§  Cited in >75 scientific studies since 2015 
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Design of Bowtie & Bowtie 2 

Bowtie 1 

Bowtie 2 
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Design of Bowtie & Bowtie 2 

Bowtie 1 

Bowtie 2 

Random access to large index 
data structure and minimal ILP 
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Design of Bowtie & Bowtie 2 

Bowtie 1 

Bowtie 2 

Dynamic programming, lots of ILP 
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Thread scaling 

§  Switching to analogous TBB lock could bring big improvement 

 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

Vertical axis is per-
thread running time; 
lower is better 

Bowtie 1 unpaired 
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Thread scaling 

§  Removing synchronization by “stubbing” input lock gives further improvement 

 

Bowtie 2 unpaired Ivy Bridge, 4 NUMA nodes, 
120 threads 

Vertical axis is per-thread 
running time; lower is better 
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Thread scaling 
§  Vtune investigation indicates synchronization itself (e.g. see __TBB_LockByte) 

is taking the time 
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Thread scaling 
Bowtie 2 unpaired 

How to close the 
gap between 
actual and ideal 
performance? 
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Thread scaling 
Bowtie 2 unpaired 

Why does mutex 
choice have outsize 
effect? 



 CMU 15-418/618, Spring 2015

Test-and-set lock performance

Benchmark&executes:&
lock(L);&
critical>section(c)&
unlock(L);

Tim
e (

us
)

Number of processors

Benchmark: total of N lock/unlock sequences (in aggregate) by P processors 
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of 
time to transfer lock (lock holder must 
wait to acquire bus to release) 

Not shown: bus contention also slows 
down execution of critical section 

Figure credit: Culler, Singh, and Gupta
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Thread scaling 

§  Mutex spinning on atomic op 
(compare-and-swap, test-and-
set), spurs exchange of cache 
coherence messages 

§  Image by Kayvon Fatahalian, 
Copyright 2015 Carnegie 
Mellon University 
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Thread scaling 

§  Even a standard pthreads mutex was outperforming the 
spin lock when running one thread per available core 

–  More evidence that cache coherence traffic is culprit 
 

§  Queue locks are known to have better cache properties 

–  Waiting thread spins on normal (non-atomic) read 
–  Cache line read belongs exclusively to that thread 

and can live in L1 
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Thread scaling 
§  We hypothesized a NUMA-aware “cohort lock” could help further 

 

Dice, David, Virendra J. Marathe, and Nir Shavit. "Lock cohorting: a general technique for 
designing NUMA locks." ACM SIGPLAN Notices. Vol. 47. No. 8. ACM, 2012. 
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Cohort locking 
class	
  CohortLock	
  {	
  
public:	
  
	
  	
  CohortLock()	
  :	
  lockers_numa_idx(-­‐1)	
  {	
  
	
  	
  	
  	
  starvation_counters	
  =	
  new	
  int[MAX_NODES]();	
  
	
  	
  	
  	
  own_global	
  =	
  new	
  bool[MAX_NODES]();	
  
	
  	
  	
  	
  local_locks	
  =	
  new	
  TKTLock[MAX_NODES];	
  
	
  	
  }	
  
	
  	
  ~CohortLock()	
  {	
  
	
  	
  	
  	
  delete[]	
  starvation_counters;	
  
	
  	
  	
  	
  delete[]	
  own_global;	
  
	
  	
  	
  	
  delete[]	
  local_locks;	
  
	
  	
  }	
  
	
  	
  void	
  lock();	
  
	
  	
  void	
  unlock();	
  
private:	
  
	
  	
  static	
  const	
  int	
  STARVATION_LIMIT	
  =	
  100;	
  
	
  	
  static	
  const	
  int	
  MAX_NODES	
  =	
  128;	
  
	
  	
  volatile	
  int*	
  	
  starvation_counters;	
  //	
  1	
  per	
  node	
  
	
  	
  volatile	
  bool*	
  own_global;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  1	
  per	
  node	
  
	
  	
  volatile	
  int	
  	
  	
  lockers_numa_idx;	
  	
  	
  	
  //	
  1	
  per	
  node	
  
	
  	
  TKTLock*	
  local_locks;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  1	
  per	
  node	
  
	
  	
  PTLLock	
  global_lock;	
  
};	
  

§  Each NUMA node has per-node ticket lock 

§  Other per-node information tracks when to 
pass lock to other threads on same node 

§  Single global partitioned ticket lock 
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Cohort locking 

void	
  CohortLock::lock()	
  {	
  
	
  	
  const	
  int	
  numa_idx	
  =	
  determine_numa_idx();	
  
	
  	
  local_locks[numa_idx].lock();	
  
	
  	
  if(!own_global[numa_idx])	
  {	
  
	
  	
  	
  	
  	
  	
  global_lock.lock();	
  
	
  	
  }	
  
	
  	
  starvation_counters[numa_idx]++;	
  
	
  	
  own_global[numa_idx]	
  =	
  true;	
  
	
  	
  lockers_numa_idx	
  =	
  numa_idx;	
  
}	
  
	
  
void	
  CohortLock::unlock()	
  {	
  
	
  	
  assert(lockers_numa_idx	
  !=	
  -­‐1);	
  
	
  	
  int	
  numa_idx	
  =	
  lockers_numa_idx;	
  
	
  	
  lockers_numa_idx	
  =	
  -­‐1;	
  
	
  	
  if(local_locks[numa_idx].q_length()	
  ==	
  1	
  ||	
  
	
  	
  	
  	
  	
  starvation_counters[numa_idx]	
  >	
  STARVATION_LIMIT)	
  
	
  	
  {	
  
	
  	
  	
  	
  global_lock.unlock();	
  
	
  	
  	
  	
  starvation_counters[numa_idx]	
  =	
  0;	
  
	
  	
  	
  	
  own_global[numa_idx]	
  =	
  false;	
  
	
  	
  }	
  
	
  	
  local_locks[numa_idx].unlock();	
  
}	
  

§  When locking: 
–  Grab local lock 

–  Once grabbed, grab global lock if not 
already owned by this node 

§  When unlocking: 
–  Is another thread on same node queued?  

If so, hand lock to next in queue 
–  Otherwise release global & local locks 

–  Override hand-off if others are starving 
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Cohort locking 

§  Another implementation of cohort locking available in ConcurrencyKit: 
http://concurrencykit.org 

–  https://github.com/concurrencykit/ck/blob/master/include/ck_cohort.h 
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Thread scaling 

§  Chris Wilks added TBB queue locks, JHU/TBB 
Cohort locks (2 flavors) to Bowtie 2, Bowtie & HISAT 

§  Available in public branches, with all but cohort locks 
available in master branch and in recent releases 
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Thread scaling 

§  Novel strategy splits input parsing into two “phases”  

§  First (“light parsing”) rapidly detects record 
boundaries, requiring synchronization but with very 
brief critical section 

§  Second (“full parsing”) fully parses each record 
(pictured, right) with no synchronization 

§  Minimizes time spent in crucial critical section 

 

@ABC_123_1
GCTATTATGCTAT
+
JJSYEGGU8233^
@ABC_424_1
GTGATATGCAT
+
SYEG!U8@233
@ABCD_9_1
GCTATTATGCTATAAAC
+
JJSYEGGU8233^32FR
@D_91231_1
GCTATTATGCTAT
+
JJSYEGGU8233^
…
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Thread scaling: Bowtie 2 unpaired 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  TBB queuing_mutex and TBB/JHU cohort lock perform best 
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Thread scaling: Bowtie 2 unpaired 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  Two-phase parsing yields substantial thread-scaling boost; close to perfect up 
to 120 threads, regardless of mutex 
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Thread scaling: Bowtie 2 paired-end 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  queuing_mutex and cohort lock again perform the best, near ideal 
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Thread scaling: Bowtie 2 paired-end 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  Two-phase parsing yields substantial thread-scaling boost; close to perfect up 
to 120 threads, with mutex having smaller impact 
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Thread scaling: Bowtie 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  As with Bowtie 2, near-ideal scaling with queuing and cohort locks 
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Thread scaling: HISAT unpaired 

Vertical axis is per-thread 
running time; lower is better 

Ivy Bridge, 4 NUMA nodes, 
120 threads 

§  Huge improvements with queuing_lock and two-phase parsing 
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Thread scaling 

§  Further gains possible with batch parsing, where the first phase “lightly” parses 
several reads at once, reducing # critical section entrances 
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Thread scaling: Bowtie 2 on Broadwell 

§  Experiment conducted by John Oneill at Intel 

§  TBB + optimized parsing yields speedups of 1.1x - 1.8x on 88 threads on 
Broadwell E5-2699 v4 part.  TBB/JHU Cohort lock outperforms other mutexes. 
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Thread scaling: Bowtie 2 on Knight’s Landing 

§  Experiment conducted by John Oneill at Intel 

§  TBB + optimized parsing yields speedups of 2x - 2.7x on 192 threads on KNL 
B0 bin3 part.  TBB/JHU Cohort lock outperforms other mutexes. 



37 

Thread scaling: summary 

§  Using a queue mutex / cohort lock can yield big improvement over spin / 
normal lock 

§  Achieved near-ideal scaling up to 120 threads with (a) queue/cohort locks and 
(b) cleaner parsing for Bowtie, Bowtie 2. 

§  Promising scaling results on KNC & KNL; more to do 

§  Cohort locks were best option in Broadwell & KNL experiments 

§  Cohort locks seem to put KNL in a better position to outperform Xeon on 
genomics workloads 
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Vectorization of Bowtie 2 inner loop 

§  Dynamic programming alignment not unique to Bowtie 2 

§  Common to many sequence alignment problems 
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Vectorization of Bowtie 2 inner loop 
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Vectorization of Bowtie 2 inner loop 

The wider the vector word, the more times the fixup loop iterates 

§  Mitigates the benefit of 
having wider words 
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Vectorization of Bowtie 2 inner loop 

…but in some situations, the fixup loop can be skipped with little or no downside 

§  Important future work is to 
determine whether selective 
suppression of fixup loop 
can remove most or all of 
the downside of having 
wider words 
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Impact on the field 

§  As of Bowtie 1.0.1 release / Bowtie 2 2.2.0 release, Intel improvements are “in 
the wild,” assisting life science researchers 



43 

Impact on the field 

§  Added TBB to Bowtie 1.1.2, Bowtie 2 2.2.6.  Also added to public branch of 
HISAT.  Plan to make TBB the default threading library in upcoming release.  
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Impact on the field 

§  Daehwan Kim of JHU IPCC team parallelized the index building process in 
Bowtie 2; TBB version of parallel index building available as of 2.2.7 
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Impact on the field 

§  With changes fully reflected in 
Bowtie 1.2.0 and Bowtie 2 2.3.0, 
JHU team drafting manuscript 
describing improvements and 
lessons learned 
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Future directions 

§  Where and why does the cohort lock help? 

§  Does cohort lock have a future in TBB? 

§  Can selective suppression of Bowtie 2 fixup loop 
unlock power of wider vector words? 

§  Can all of the above yield a big Knight’s Landing 
throughput win? 
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Other resources 

§  http://www.langmead-lab.org 

§  https://www.coursera.org/learn/dna-sequencing 

–  YouTube videos for above: http://bit.ly/ADS1_videos 
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Thank you 

§  John Oneill, Ram Ramanujam, Kevin O’leary, and many other great Intel 
engineers we spoke to and worked with 

§  Lisa Smith, Brian Napier and others in IPCC program 

§  Langmead lab team: Chris Wilks, Valentin Antonescu 

§  Salzberg lab team: Steven Salzberg, Daehwan Kim 

§  Intel 

 



Thank you for your time   
Ben Langmead 

langmea@cs.jhu.edu 

www.intel.com/hpcdevcon 


