

Ben Langmead
Assistant Professor
Johns Hopkins University, Department of Computer Science
November 2016

Reshaping core genomics software
tools for the many-core era

3

The Intel Parallel Computing Center at

4

Outline

§  Introduction to sequencing data analysis & Bowtie

§  Thread scaling improvements using TBB

–  Choice of mutex
–  Two-stage parsing

§  AVX2, AVX512-KNC & AVX512-KNC improvements

§  Impact on the field

5

Sequencing

6

Sequencing

7

Sequencing

8

Read alignment

9

Read alignment

§  Needle in a haystack

§  Billions of reads from
a single week-long
sequencing run

§  Human reference
genome is ~3B bases
(letters) long

10

Bowtie and Bowtie 2

§  Together cited by
>12K other scientific
studies since 2009

§  Bundled with dozens
of other tools & many
Linux distros

11

HISAT

§  Based on Bowtie 2 and a leading spliced aligner for RNA sequencing data

§  Cited in >75 scientific studies since 2015

12

Design of Bowtie & Bowtie 2

Bowtie 1

Bowtie 2

13

Design of Bowtie & Bowtie 2

Bowtie 1

Bowtie 2

Random access to large index
data structure and minimal ILP

14

Design of Bowtie & Bowtie 2

Bowtie 1

Bowtie 2

Dynamic programming, lots of ILP

0

250

500

750

1000

0 25 50 75 100 125
threads (unpaired)

N
or

m
al

ize
d

ru
nn

in
g

tim
e

lock

TBB spin_mutex

tinythreads fast_mutex

15

Thread scaling

§  Switching to analogous TBB lock could bring big improvement

Ivy Bridge, 4 NUMA nodes,
120 threads

Vertical axis is per-
thread running time;
lower is better

Bowtie 1 unpaired

100

150

200

250

300

350

0 25 50 75 100 125
threads (unpaired)

No
rm

al
ize

d
ru

nn
in

g
tim

e

lock

None (stubbed I/O)

TBB spin_mutex

version

Original parsing

16

Thread scaling

§  Removing synchronization by “stubbing” input lock gives further improvement

Bowtie 2 unpaired Ivy Bridge, 4 NUMA nodes,
120 threads

Vertical axis is per-thread
running time; lower is better

17

Thread scaling
§  Vtune investigation indicates synchronization itself (e.g. see __TBB_LockByte)

is taking the time

18

Thread scaling
Bowtie 2 unpaired

How to close the
gap between
actual and ideal
performance?

19

Thread scaling
Bowtie 2 unpaired

Why does mutex
choice have outsize
effect?

 CMU 15-418/618, Spring 2015

Test-and-set lock performance

Benchmark&executes:&
lock(L);&
critical>section(c)&
unlock(L);

Tim
e (

us
)

Number of processors

Benchmark: total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

20

Thread scaling

§  Mutex spinning on atomic op
(compare-and-swap, test-and-
set), spurs exchange of cache
coherence messages

§  Image by Kayvon Fatahalian,
Copyright 2015 Carnegie
Mellon University

21

Thread scaling

§  Even a standard pthreads mutex was outperforming the
spin lock when running one thread per available core

–  More evidence that cache coherence traffic is culprit

§  Queue locks are known to have better cache properties

–  Waiting thread spins on normal (non-atomic) read
–  Cache line read belongs exclusively to that thread

and can live in L1

22

Thread scaling
§  We hypothesized a NUMA-aware “cohort lock” could help further

Dice, David, Virendra J. Marathe, and Nir Shavit. "Lock cohorting: a general technique for
designing NUMA locks." ACM SIGPLAN Notices. Vol. 47. No. 8. ACM, 2012.

23

Cohort locking
class	
 CohortLock	
 {	

public:	

	
 	
 CohortLock()	
 :	
 lockers_numa_idx(-­‐1)	
 {	

	
 	
 	
 	
 starvation_counters	
 =	
 new	
 int[MAX_NODES]();	

	
 	
 	
 	
 own_global	
 =	
 new	
 bool[MAX_NODES]();	

	
 	
 	
 	
 local_locks	
 =	
 new	
 TKTLock[MAX_NODES];	

	
 	
 }	

	
 	
 ~CohortLock()	
 {	

	
 	
 	
 	
 delete[]	
 starvation_counters;	

	
 	
 	
 	
 delete[]	
 own_global;	

	
 	
 	
 	
 delete[]	
 local_locks;	

	
 	
 }	

	
 	
 void	
 lock();	

	
 	
 void	
 unlock();	

private:	

	
 	
 static	
 const	
 int	
 STARVATION_LIMIT	
 =	
 100;	

	
 	
 static	
 const	
 int	
 MAX_NODES	
 =	
 128;	

	
 	
 volatile	
 int*	
 	
 starvation_counters;	
 //	
 1	
 per	
 node	

	
 	
 volatile	
 bool*	
 own_global;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 1	
 per	
 node	

	
 	
 volatile	
 int	
 	
 	
 lockers_numa_idx;	
 	
 	
 	
 //	
 1	
 per	
 node	

	
 	
 TKTLock*	
 local_locks;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 1	
 per	
 node	

	
 	
 PTLLock	
 global_lock;	

};	

§  Each NUMA node has per-node ticket lock

§  Other per-node information tracks when to
pass lock to other threads on same node

§  Single global partitioned ticket lock

24

Cohort locking

void	
 CohortLock::lock()	
 {	

	
 	
 const	
 int	
 numa_idx	
 =	
 determine_numa_idx();	

	
 	
 local_locks[numa_idx].lock();	

	
 	
 if(!own_global[numa_idx])	
 {	

	
 	
 	
 	
 	
 	
 global_lock.lock();	

	
 	
 }	

	
 	
 starvation_counters[numa_idx]++;	

	
 	
 own_global[numa_idx]	
 =	
 true;	

	
 	
 lockers_numa_idx	
 =	
 numa_idx;	

}	

	

void	
 CohortLock::unlock()	
 {	

	
 	
 assert(lockers_numa_idx	
 !=	
 -­‐1);	

	
 	
 int	
 numa_idx	
 =	
 lockers_numa_idx;	

	
 	
 lockers_numa_idx	
 =	
 -­‐1;	

	
 	
 if(local_locks[numa_idx].q_length()	
 ==	
 1	
 ||	

	
 	
 	
 	
 	
 starvation_counters[numa_idx]	
 >	
 STARVATION_LIMIT)	

	
 	
 {	

	
 	
 	
 	
 global_lock.unlock();	

	
 	
 	
 	
 starvation_counters[numa_idx]	
 =	
 0;	

	
 	
 	
 	
 own_global[numa_idx]	
 =	
 false;	

	
 	
 }	

	
 	
 local_locks[numa_idx].unlock();	

}	

§  When locking:
–  Grab local lock

–  Once grabbed, grab global lock if not
already owned by this node

§  When unlocking:
–  Is another thread on same node queued?

If so, hand lock to next in queue
–  Otherwise release global & local locks

–  Override hand-off if others are starving

25

Cohort locking

§  Another implementation of cohort locking available in ConcurrencyKit:
http://concurrencykit.org

–  https://github.com/concurrencykit/ck/blob/master/include/ck_cohort.h

26

Thread scaling

§  Chris Wilks added TBB queue locks, JHU/TBB
Cohort locks (2 flavors) to Bowtie 2, Bowtie & HISAT

§  Available in public branches, with all but cohort locks
available in master branch and in recent releases

27

Thread scaling

§  Novel strategy splits input parsing into two “phases”

§  First (“light parsing”) rapidly detects record
boundaries, requiring synchronization but with very
brief critical section

§  Second (“full parsing”) fully parses each record
(pictured, right) with no synchronization

§  Minimizes time spent in crucial critical section

@ABC_123_1
GCTATTATGCTAT
+
JJSYEGGU8233^
@ABC_424_1
GTGATATGCAT
+
SYEG!U8@233
@ABCD_9_1
GCTATTATGCTATAAAC
+
JJSYEGGU8233^32FR
@D_91231_1
GCTATTATGCTAT
+
JJSYEGGU8233^
…

100

200

300

0 25 50 75 100 125
threads (unpaired)

No
rm

al
ize

d
ru

nn
in

g
tim

e

lock
None (stubbed I/O)

TBB mutex

TBB queuing_mutex

TBB spin_mutex

TBB/JHU CohortLock

tinythreads fast_mutex

28

Thread scaling: Bowtie 2 unpaired

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  TBB queuing_mutex and TBB/JHU cohort lock perform best

100

200

300

0 25 50 75 100 125
threads (unpaired)

No
rm

al
ize

d
ru

nn
in

g
tim

e

None (stubbed I/O)

TBB mutex

TBB queuing_mutex

TBB spin_mutex

TBB/JHU CohortLock

tinythreads fast_mutex

version
Optimized parsing

Original parsing

29

Thread scaling: Bowtie 2 unpaired

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  Two-phase parsing yields substantial thread-scaling boost; close to perfect up
to 120 threads, regardless of mutex

100

200

300

0 25 50 75 100 125
threads (unpaired)

No
rm

al
ize

d
ru

nn
in

g
tim

e

lock
None (stubbed I/O)

TBB mutex

TBB queuing_mutex

TBB spin_mutex

TBB/JHU CohortLock

tinythreads fast_mutex

30

Thread scaling: Bowtie 2 paired-end

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  queuing_mutex and cohort lock again perform the best, near ideal

31

Thread scaling: Bowtie 2 paired-end

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  Two-phase parsing yields substantial thread-scaling boost; close to perfect up
to 120 threads, with mutex having smaller impact

0

100

200

300

0 25 50 75 100 125
threads (paired−end)

No
rm

al
ize

d
ru

nn
in

g
tim

e

lock

None (stubbed I/O)

TBB mutex

TBB queuing_mutex

TBB spin_mutex

TBB/JHU CohortLock

tinythreads fast_mutex

32

Thread scaling: Bowtie

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  As with Bowtie 2, near-ideal scaling with queuing and cohort locks

0

100

200

300

400

0 25 50 75 100 125
threads

No
rm

al
ize

d
ru

nn
in

g
tim

e version

Optimized parsing

Original parsing

lock

TBB queuing_mutex

tinythreads fast_mutex

33

Thread scaling: HISAT unpaired

Vertical axis is per-thread
running time; lower is better

Ivy Bridge, 4 NUMA nodes,
120 threads

§  Huge improvements with queuing_lock and two-phase parsing

34

Thread scaling

§  Further gains possible with batch parsing, where the first phase “lightly” parses
several reads at once, reducing # critical section entrances

●
● ●

● ● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●

●

●

●

●

●

●
●

10

15

20

25

30

0 10 20 30 40
bowtie # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●
● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

100

200

300

0 25 50 75 100 125
bowtie # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

●

●

●

●
● ●

●
●

●
●

● ●
●

●

●
●

● ●
● ● ●

● ●
●

●
●

●

●
●

● ● ● ● ● ● ●
● ●

●

●

●
●

● ● ●
● ● ● ●

●

●

●

14

16

18

0 10 20 30 40
bowtie2 # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●
●

● ● ● ● ●
● ● ● ●

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ●
●

●
●

●
●

● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
● ●

●
● ●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

30

40

50

60

70

0 25 50 75 100 125
bowtie2 # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

●
● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

10

15

20

25

0 10 20 30 40
hisat # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ●

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

50

100

150

200

250

0 25 50 75 100 125
hisat # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

lock MP tinythreads fast_mutex TBB queuing_mutex

version ● ● ●Batch parsing Original parsing Two−phase parsing

●
● ●

● ● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●

●

●

●

●

●

●
●

10

15

20

25

30

0 10 20 30 40
bowtie # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●
● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

100

200

300

0 25 50 75 100 125
bowtie # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

●

●

●

●
● ●

●
●

●
●

● ●
●

●

●
●

● ●
● ● ●

● ●
●

●
●

●

●
●

● ● ● ● ● ● ●
● ●

●

●

●
●

● ● ●
● ● ● ●

●

●

●

14

16

18

0 10 20 30 40
bowtie2 # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●
●

● ● ● ● ●
● ● ● ●

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ●
●

●
●

●
●

● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
● ●

●
● ●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

30

40

50

60

70

0 25 50 75 100 125
bowtie2 # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

●
● ●

● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

10

15

20

25

0 10 20 30 40
hisat # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ●

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

50

100

150

200

250

0 25 50 75 100 125
hisat # threads

N
or

m
al

ize
d

ru
nn

in
g

tim
e

lock MP tinythreads fast_mutex TBB queuing_mutex

version ● ● ●Batch parsing Original parsing Two−phase parsing

35

Thread scaling: Bowtie 2 on Broadwell

§  Experiment conducted by John Oneill at Intel

§  TBB + optimized parsing yields speedups of 1.1x - 1.8x on 88 threads on
Broadwell E5-2699 v4 part. TBB/JHU Cohort lock outperforms other mutexes.

36

Thread scaling: Bowtie 2 on Knight’s Landing

§  Experiment conducted by John Oneill at Intel

§  TBB + optimized parsing yields speedups of 2x - 2.7x on 192 threads on KNL
B0 bin3 part. TBB/JHU Cohort lock outperforms other mutexes.

37

Thread scaling: summary

§  Using a queue mutex / cohort lock can yield big improvement over spin /
normal lock

§  Achieved near-ideal scaling up to 120 threads with (a) queue/cohort locks and
(b) cleaner parsing for Bowtie, Bowtie 2.

§  Promising scaling results on KNC & KNL; more to do

§  Cohort locks were best option in Broadwell & KNL experiments

§  Cohort locks seem to put KNL in a better position to outperform Xeon on
genomics workloads

38

Vectorization of Bowtie 2 inner loop

§  Dynamic programming alignment not unique to Bowtie 2

§  Common to many sequence alignment problems

39

Vectorization of Bowtie 2 inner loop

40

Vectorization of Bowtie 2 inner loop

The wider the vector word, the more times the fixup loop iterates

§  Mitigates the benefit of
having wider words

41

Vectorization of Bowtie 2 inner loop

…but in some situations, the fixup loop can be skipped with little or no downside

§  Important future work is to
determine whether selective
suppression of fixup loop
can remove most or all of
the downside of having
wider words

42

Impact on the field

§  As of Bowtie 1.0.1 release / Bowtie 2 2.2.0 release, Intel improvements are “in
the wild,” assisting life science researchers

43

Impact on the field

§  Added TBB to Bowtie 1.1.2, Bowtie 2 2.2.6. Also added to public branch of
HISAT. Plan to make TBB the default threading library in upcoming release.

44

Impact on the field

§  Daehwan Kim of JHU IPCC team parallelized the index building process in
Bowtie 2; TBB version of parallel index building available as of 2.2.7

45

Impact on the field

§  With changes fully reflected in
Bowtie 1.2.0 and Bowtie 2 2.3.0,
JHU team drafting manuscript
describing improvements and
lessons learned

46

Future directions

§  Where and why does the cohort lock help?

§  Does cohort lock have a future in TBB?

§  Can selective suppression of Bowtie 2 fixup loop
unlock power of wider vector words?

§  Can all of the above yield a big Knight’s Landing
throughput win?

47

Other resources

§  http://www.langmead-lab.org

§  https://www.coursera.org/learn/dna-sequencing

–  YouTube videos for above: http://bit.ly/ADS1_videos

48

Thank you

§  John Oneill, Ram Ramanujam, Kevin O’leary, and many other great Intel
engineers we spoke to and worked with

§  Lisa Smith, Brian Napier and others in IPCC program

§  Langmead lab team: Chris Wilks, Valentin Antonescu

§  Salzberg lab team: Steven Salzberg, Daehwan Kim

§  Intel

Thank you for your time
Ben Langmead

langmea@cs.jhu.edu

www.intel.com/hpcdevcon

