
SINGULARITY P2
Containers for Science, Reproducibility and Mobility

Presented By:

Gregory M. Kurtzer
HPC Systems Architect
Lawrence Berkeley National Lab
gmkurtzer@lbl.gov
http://singularity.lbl.gov/

mailto:gmkurtzer@lbl.gov

CONTAINERS IN HPC: SINGULARITY

CONTAINERS
(YESTERDAY IN A NUTSHELL)

CONTAINERS IN HPC: SINGULARITY

SO… WHAT IS ALL THE COMMOTION ABOUT?

▸ Reproducibility and archival software and environment stacks

▸ Mobility of Compute (portable, sharable, distributable container images)

▸ User defined and controlled environments (BYOE)

▸ Integratable with existing shared infrastructures and scheduling subsystems

▸ Properly make use of the existing high performance physical hardware

▸ Must support running as the user to facilitate scheduling and MPI workflows

▸ Make use of all of the work that has been done in Docker so far

▸ We needed it yesterday (so it must be compatible with today’s technology)!

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: EXTREME MOBILITY AND PORTABILITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: WHO’S USING IT / NAME DROPS / BANDWAGON

▸ Texas Advanced Computing Center: 462,462 cores / Stampede

▸ GSI Helmholtz Center for Ion Research: 300,000 cores / GreenCube

▸ National Institute of Health: 54,000 cores / Biowulf

▸ UFIT Research Computing at University of Florida: 51,000 cores / HiPerGator

▸ San Diego Supercomputing Center: 50,000 cores / Comet and Gordon

▸ Lawrence Berkeley National Laboratory: 30,000 cores / Lawrencium

▸ Holland Computing Center at UNL/LHC: 14,000 cores / Crane and Tusker

CONTAINERS IN HPC: SINGULARITY

SINGULARITY ARCHITECTURE

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: ARCHITECTURE OVERVIEW

Applications which run in a container run
with the same “distance” to the host
kernel and hardware as natively running
applications.

Singularity launches the container as the
calling user in the appropriate process
context. There is no root daemon
process and no escalation of privileges
within the container.

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: THE CONTAINER PROCESS OVERVIEW

▸ Singularity application is invoked and shell code evaluates the commands, options, and variables

▸ The Singularity execution binary (sexec/sexec-suid) is executed via execv()

▸ Namespaces are created depending on configuration and process requirements

▸ The Singularity image is checked, parsed, and mounted in the ‘CLONE_NEWNS’ namespace

▸ Bind mount points, additional file systems, and hooks into host operating system are setup

▸ The ‘CLONE_FS’ namespace is used to virtualize the new root file system

▸ Singularity calls execv() and Singularity process itself is replaced by the process inside the container

▸ When the process inside the container exists, all namespaces collapse with that process, leaving a clean
system

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CONTAINERS SUPPORTED

▸ Singularity Image: The standard Singularity image format (built for HPC efficiency)

▸ Standard POSIX file system inside image with an offset

▸ Header contains an interpretative loader for launching images directly

▸ SquashFS: A kernel standard compressed loopback file system

▸ Directory: Standard Unix Directories containing a root container image

▸ Archive Formats: tar.gz, tar.bz2, tar, cpio, cpio.gz (inside directories)

▸ URI: http://, https://, docker://

CONTAINERS IN HPC: SINGULARITY

SECURITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CONTAINERS INSECURE?

Is Docker, runC, or RKT inherently insure?

NO!
Do their usage models translate securely into HPC?

NO!
Is this one of the reasons HPC has not adopted these container solutions?

YES!

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: PRIVILEGE ESCALATION MODELS

Containers all rely on the ability to use privileged system calls 
which can pose a problem when allowing users to run containers.

SUID

‣ Typical target for attack

‣ Code must be easily audit-able

‣ Allows users to run code with
escalated permission

‣ Easy to leverage with a
continuous workflow

Root Owned Process

‣ Risk of vulnerability in any root
owned daemon

‣ No ACLs or user limits

‣ Generally incompatible with
HPC resource managers

‣ Good for service virtualization

User Namespace

‣ This is the elusive pink
unicorn

‣ Allows users to access some
privileged system calls

‣ As of today, it is unstable

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: PRIVILEGE ACCESS MODELS

▸ Default run mode for Singularity is SUID

▸ Works on all systems, provides an auditing trace, supports all features

▸ Requires root to install and only obey’s config when owned by root

▸ Singularity also supports the User Namespace

▸ Singularity can be built and used completely unprivileged

▸ Some features are limited

▸ CAUTION: Not all kernels support this equally… Maybe a while.

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CONFIGURATION FILE

▸ Knowing that Singularity has some superuser abilities, final control is given to
the system administrator alone via the configuration file

▸ The configuration file defines what is allowed and what is not allowed

▸ Singularity only trusts the configuration file when owned by root

USER BIND CONTROL: [BOOL]
DEFAULT: yes
Allow users to influence and/or define bind points at runtime? This will allow
users to specify bind points, scratch and tmp locations. (note: User bind
control is only allowed if the host also supports PR_SET_NO_NEW_PRIVS)
user bind control = yes

CONTAINERS IN HPC: SINGULARITY

$ singularity --debug shell --bind /opt /tmp/Centos-7.img
 … snip …
VERBOSE [U=1000,P=126582] util/util.c:87:envar() : Obtained input from environment 'SINGULARITY_BINDPATH' = '/opt,'
DEBUG [U=1000,P=126582] userbinds.c:48:singularity_mount_userbinds(): Checking for 'user bind control' in config
DEBUG [U=1000,P=126582] config_parser.c:146:singularity_config_get_bool(): Called singularity_config_get_bool(user bind control, 1)
DEBUG [U=1000,P=126582] config_parser.c:111:singularity_config_get_value(): Called singularity_config_get_value(user bind control)
VERBOSE [U=1000,P=126582] config_parser.c:122:singularity_config_get_value(): Got config key user bind control (= 'yes')
DEBUG [U=1000,P=126582] config_parser.c:152:singularity_config_get_bool(): Return singularity_config_get_bool(user bind control, 1) = 1
DEBUG [U=1000,P=126582] userbinds.c:59:singularity_mount_userbinds(): Parsing SINGULARITY_BINDPATH for user-specified bind mounts.
DEBUG [U=1000,P=126582] userbinds.c:76:singularity_mount_userbinds(): Found bind: /opt -> container:/opt
DEBUG [U=1000,P=126582] userbinds.c:78:singularity_mount_userbinds(): Checking if bind point is already mounted: /opt
DEBUG [U=1000,P=126582] rootfs.c:64:singularity_rootfs_dir() : Returning singularity_rootfs_dir: /var/singularity/mnt/final
DEBUG [U=1000,P=126582] mount-util.c:42:check_mounted() : Opening /proc/mounts
DEBUG [U=1000,P=126582] mount-util.c:48:check_mounted() : Iterating through /proc/mounts
DEBUG [U=1000,P=126582] privilege.c:152:singularity_priv_escalate(): Temporarily escalating privileges (U=1000)
VERBOSE [U=0,P=126582] userbinds.c:136:singularity_mount_userbinds(): Binding '/opt' to '/var/singularity/mnt/final//opt'
DEBUG [U=0,P=126582] privilege.c:179:singularity_priv_drop() : Dropping privileges to UID=1000, GID=1000
DEBUG [U=1000,P=126582] privilege.c:191:singularity_priv_drop() : Confirming we have correct UID/GID
DEBUG [U=1000,P=126582] userbinds.c:145:singularity_mount_userbinds(): Unsetting environment variable 'SINGULARITY_BINDPATH'

SINGULARITY: DEBUG/AUDIT OUTPUT

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: A FINAL NOTE ON SECURITY

▸ I am not deluded…

▸ Well, sometimes I am. But.. I am open to feedback and criticism

▸ If you find bugs, issues, questions, concerns…

LET ME KNOW!

CONTAINERS IN HPC: SINGULARITY

SYSTEM INTEGRATION

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: FILE SYSTEMS

▸ File system agnostic

▸ Permissions are easy: user inside == user outside

▸ IO is passed directly through the container via bind’s to the real host mount

▸ Performance impact is unobserved

▸ System administrators can control what gets shared

▸ Limitations: bind points must exist, overlayFS unstable, no bind point checks

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: INFINIBAND

▸ To support InfiniBand, the container must support it!

▸ Device nodes are passed through into the container

▸ Kernel/Userspace API alignment required for container/host compatibility

▸ This is not as bad of a problem as it used to be, but it does exist

▸ We are interested in collaborating with others that are also interested in
investigating and possibly resolving some of these issues

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: GPUS

▸ Device nodes are passed through into container

▸ Cuda libraries must be aligned with kernel drivers (similar to OFED)

▸ Workarounds exists!

▸ The host installs Cuda/Nvidia libraries to a directory

▸ That directory is configured as a `bind point` within the global Singularity config

▸ The library path is added to all container’s environments (`/etc/singularity/init`)
using the environment variable `LD_LIBRARY_PATH`

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: MIC/KNL

▸ Singularity is installed into the KNL operating system

▸ Yeah… That’s it.

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: RESOURCE MANAGEMENT

▸ Scheduler/Resource manager agnostic

▸ No scheduler changes necessary

▸ Singularity has no daemon process and always runs as the calling user

▸ Runs contained applications directly in the user’s shell and properly handles IO

▸ Users run Singularity containers from their own batch scripts

▸ MPI support is trivial…

CONTAINERS IN HPC: SINGULARITY

SINGULARITY AND OPEN MPI

▸ Utilizes a hybrid MPI container approach (MPI exists both inside and outside)

▸ This solves many complexities with remote node addressing and RM
coordination

▸ High performance hardware and architecture can be easily utilized

▸ No additional issues for scheduling and resource management

▸ Logical and intuitive execution pathway

▸ Very little (if any) performance penalty has been observed

CONTAINERS IN HPC: SINGULARITY

QUESTIONS?

CONTAINERS IN HPC: SINGULARITY

HTTPS://GITHUB.COM/SINGULARITYWARE/INTEL-HPC-DEVCON

SINGULARITY: ADVANCED SINGULARITY WORKSHOP (2)

https://github.com/singularityware/intel-hpc-devcon

CONTAINERS IN HPC: SINGULARITY

HTTPS://LAB.PORTABLE-HPC.NET/

SINGULARITY: LOG INTO AWS COMPUTE INSTANCES

https://lab.portable-hpc.net/

CONTAINERS IN HPC: SINGULARITY

Required to build Singularity
$ sudo yum groupinstall “Development Tools”

Download and build Singularity from the GitHub master branch
$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/singularityware/singularity.git
$ cd singularity
$./autogen.sh
$./configure
$ make dist
$ rpmbuild -ta singularity-2.2.tar.gz

Install the newly build Singularity RPM package
$ sudo yum install $HOME/rpmbuild/RPMS/x86_64/singularity-2.2-0.1.el7.centos.x86_64.rpm

Install dependencies for bootstrapping a Debian container
$ sudo yum install epel-release
$ sudo yum install debootstrap

SINGULARITY: INSTALLATION

CONTAINERS IN HPC: SINGULARITY

$ cat examples/debian.def
Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.

"Singularity" Copyright (c) 2016, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

BootStrap: debootstrap
OSVersion: stable
MirrorURL: http://ftp.us.debian.org/debian/

%post
 echo "Hello from inside the container"
 apt-get update

SINGULARITY: BOOTSTRAP DEFINITION/RECIPE

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity create -F /tmp/Debian.img
Creating a new image with a maximum size of 768MiB...
Executing image create helper
Formatting image with ext3 file system
Done.
$ sudo singularity bootstrap /tmp/Debian.img examples/debian.def
Bootstrap initialization
Checking bootstrap definition
Executing Prebootstrap module
Executing Bootstrap 'debootstrap' module
… snip …
I: Base system installed successfully.
Executing Postbootstrap module
+ echo Hello from inside the container
Hello from inside the container
+ apt-get update
Ign http://ftp.us.debian.org stable InRelease
Get:1 http://ftp.us.debian.org stable Release.gpg [2373 B]
Hit http://ftp.us.debian.org stable Release
Get:2 http://ftp.us.debian.org stable/main amd64 Packages [6787 kB]
Get:3 http://ftp.us.debian.org stable/main Translation-en [4583 kB]
Fetched 11.4 MB in 3s (3432 kB/s)
Reading package lists... Done
Done.

SINGULARITY: BOOTSTRAP

CONTAINERS IN HPC: SINGULARITY

Some command example tests
$ singularity exec /tmp/Debian.img pwd
$ singularity exec /tmp/Debian.img whoami
$ singularity --debug exec /tmp/Debian.img true

Notice the PS output is now in a new process namespace
$ singularity exec -p /tmp/Debian.img ps auxf

What happens when Contained? Create some files in your home, are they persistent?
$ singularity shell --contain /tmp/Debian.img

Contain but define a new directory to use for your home
$ singularity shell --contain --home ~/git /tmp/Debian.img

User defined bind points. What happens if you specify a bind point that doesn’t exist? What
about if you bind ontop of a system location (e.g. /bin/)?
$ singularity shell --bind /tmp:/opt /tmp/Debian.img

How is the shell environment transposed into the container?
$ singularity exec /tmp/Debian.img env
$ singularity exec /tmp/Debian.img env | wc -l
$ env -i singularity exec /tmp/Debian.img env | wc -l
$ env -i FOO=BAR singularity exec /tmp/Debian.img env

SINGULARITY: USAGE AND OPTION EXAMPLES

CONTAINERS IN HPC: SINGULARITY

OPEN MPI

CONTAINERS IN HPC: SINGULARITY

$ mkdir ~/git
$ git clone https://github.com/open-mpi/ompi.git
$ cd ompi
$./autogen.pl
$./configure --prefix=/usr/local
$ make -j 10
$ sudo make install

SINGULARITY: INSTALL OPEN MPI ONTO THE HOST

▸ Open MPI must be newer or equal to the version inside the container

▸ We build Open MPI from the GitHub master branch on the host first

▸ Because we are pulling from the master branch,… Let’s hope everything works!

CONTAINERS IN HPC: SINGULARITY

‣ Starting with your Bash Shell or resource manager…

‣ MPI run gets executed which forks an Orted process

‣ Orted launches Singularity which starts the container
process

‣ The MPI application within the container is linked to the
Open MPI runtime libraries within the container

‣ The Open MPI runtime libraries then connect and
communicate back to the Orted process via a universal
PMI

$ mpirun -np 4 singularity exec /tmp/Centos-7.img /usr/bin/mpi_ring

SINGULARITY: BUILDING THE NEW CONTAINER

CONTAINERS IN HPC: SINGULARITY

$ cat examples/contrib/centos7-ompi_master.def
BootStrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include: yum

%post
 echo "Installing Development Tools YUM group"
 yum -y groupinstall "Development Tools"
 echo "Installing OpenMPI into container..."
 mkdir /tmp/git
 cd /tmp/git
 git clone https://github.com/open-mpi/ompi.git
 cd ompi
 ./autogen.pl
 ./configure --prefix=/usr/local
 make -j 10
 make install
 /usr/local/bin/mpicc examples/ring_c.c -o /usr/bin/mpi_ring
 cd /
 rm -rf /tmp/git
 exit 0

%test
 /usr/local/bin/mpirun --allow-run-as-root /usr/bin/mpi_ring

SINGULARITY: EXECUTING THE RUNSCRIPT

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity create -F —size 2048 /tmp/Centos7-ompi.img
Creating a new image with a maximum size of 768MiB...
Executing image create helper
Formatting image with ext3 file system
Done.
$ sudo singularity bootstrap /tmp/Centos7-ompi.img examples/contrib/centos7-ompi_master.def
Bootstrap initialization
Checking bootstrap definition
Executing Prebootstrap module
Executing Bootstrap 'yum' module
Found YUM at: /bin/yum
base | 3.6 kB 00:00:00
(1/2): base/x86_64/group_gz | 155 kB 00:00:00
(2/2): base/x86_64/primary_db | 5.3 MB 00:00:01
Resolving Dependencies
--> Running transaction check
---> Package centos-release.x86_64 0:7-2.1511.el7.centos.2.10 will be installed
---> Package coreutils.x86_64 0:8.22-15.el7 will be installed
--> Processing Dependency: rtld(GNU_HASH) for package: coreutils-8.22-15.el7.x86_64
--> Processing Dependency: ncurses for package: coreutils-8.22-15.el7.x86_64
 … snip …

SINGULARITY: BUILDING THE NEW CONTAINER

CONTAINERS IN HPC: SINGULARITY

THE SINGULARITY CONFIGURATION FILE

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CONFIGURATION

▸ The Singularity configuration must be owned by root if running in SUID mode

▸ System admins have control over the execution options when running
privileged (SUID)

▸ When running with user namespace, root ownership of config file isn’t
necessary

▸ The Location of the configuration file is hard coded into the binary

CONTAINERS IN HPC: SINGULARITY

ALLOW SETUID: [BOOL]
DEFAULT: yes
Should we allow users to utilize the setuid binary for launching singularity?
The majority of features require this to be set to yes, but newer Fedora and
Ubuntu kernels can provide limited functionality in unprivileged mode.
allow setuid = yes

SINGULARITY: CONFIGURATION

Allow SUID?

CONTAINERS IN HPC: SINGULARITY

ALLOW PID NS: [BOOL]
DEFAULT: yes
Should we allow users to request the PID namespace?
allow pid ns = yes

SINGULARITY: CONFIGURATION

Allow usage of the PID Namespace?

You may wish to disable the PID namespace as on some systems it confuses
the resource manager

CONTAINERS IN HPC: SINGULARITY

ENABLE OVERLAY: [BOOL]
DEFAULT: yes
Enabling this option will make it possible to specify bind paths to locations
that do not currently exist within the container. Some limitations still exist
when running in completely non-privileged mode. (note: this option is only
supported on hosts that support overlay file systems).
note: currently disabled because RHEL7 kernel crashes with it... :(
enable overlay = no

SINGULARITY: CONFIGURATION

Enable the OverlayFS

CONTAINERS IN HPC: SINGULARITY

CONFIG PASSWD: [BOOL]
DEFAULT: yes
If /etc/passwd exists within the container, this will automatically append
an entry for the calling user.
config passwd = yes

SINGULARITY: CONFIGURATION

Automatically adjust container files at runtime

‣ Automatically entries in `/etc/passwd` and `/etc/group` within the
container

‣ Add the master’s `/etc/resolv.conf` into the container

CONTAINERS IN HPC: SINGULARITY

MOUNT HOME: [BOOL]
DEFAULT: yes
Should we automatically determine the calling user's home directory and
attempt to mount it's base path into the container? If the --contain option
is used, the home directory will be created within the session directory or
can be overridden with the SINGULARITY_HOME or SINGULARITY_WORKDIR
environment variables (or their corresponding command line options).
mount home = yes

SINGULARITY: CONFIGURATION

Automatically Bind mount system file systems

CONTAINERS IN HPC: SINGULARITY

BIND PATH: [STRING]
DEFAULT: Undefined
Define a list of files/directories that should be made available from within
the container. The file or directory must exist within the container on
which to attach to. you can specify a different source and destination
path (respectively) with a colon; otherwise source and dest are the same.
#bind path = /etc/singularity/default-nsswitch.conf:/etc/nsswitch.conf
#bind path = /opt
bind path = /global
bind path = /etc/hosts

SINGULARITY: CONFIGURATION

Bind paths to always try to include into container

CONTAINERS IN HPC: SINGULARITY

USER BIND CONTROL: [BOOL]
DEFAULT: yes
Allow users to influence and/or define bind points at runtime? This will allow
users to specify bind points, scratch and tmp locations. (note: User bind
control is only allowed if the host also supports PR_SET_NO_NEW_PRIVS)
user bind control = yes

SINGULARITY: CONFIGURATION

Allow users to request arbitrary bind points

CONTAINERS IN HPC: SINGULARITY

… snip …
+ /usr/local/bin/mpicc examples/ring_c.c -o /usr/bin/mpi_ring
+ cd /
+ rm -rf /tmp/git
+ exit 0
+ /usr/local/bin/mpirun --allow-run-as-root /usr/bin/mpi_ring
Process 0 sending 10 to 1, tag 201 (4 processes in ring)
Process 0 sent to 1
Process 0 decremented value: 9
Process 0 decremented value: 8
Process 0 decremented value: 7
Process 0 decremented value: 6
Process 0 decremented value: 5
Process 0 decremented value: 4
Process 0 decremented value: 3
Process 0 decremented value: 2
Process 0 decremented value: 1
Process 0 decremented value: 0
Process 0 exiting
Process 1 exiting
Process 2 exiting
Process 3 exiting
Done.

SINGULARITY: WAITING FOR THE OMPI CONTAINER TO FINISH BUILDING…

CONTAINERS IN HPC: SINGULARITY

$ mpirun -np 4 singularity exec /tmp/Centos7-ompi.img /usr/bin/mpi_ring
Process 0 sending 10 to 1, tag 201 (4 processes in ring)
Process 0 sent to 1
Process 0 decremented value: 9
Process 0 decremented value: 8
Process 0 decremented value: 7
Process 0 decremented value: 6
Process 0 decremented value: 5
Process 0 decremented value: 4
Process 0 decremented value: 3
Process 0 decremented value: 2
Process 0 decremented value: 1
Process 0 decremented value: 0
Process 0 exiting
Process 1 exiting
Process 2 exiting
Process 3 exiting

SINGULARITY: OMPI TEST

CONTAINERS IN HPC: SINGULARITY

QUESTIONS?

SINGULARITY P2
Containers for Science, Reproducibility and Mobility

Presented By:

Gregory M. Kurtzer
HPC Systems Architect
Lawrence Berkeley National Lab
gmkurtzer@lbl.gov
http://singularity.lbl.gov/

mailto:gmkurtzer@lbl.gov

