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HPE’s HPC Market and Share
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System Configuration and Tuning
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Typical BIOS Settings: Processor Options

– Hyperthreading Options Disabled :  Better scaling for HPC workloads
– Processor Core Disable  0 :  Enables all available cores
– Intel Turbo Boost Technology Enabled :  Increases clock frequency (increase affected by factors).
– ACPI SLIT Preferences Enabled :  OS can improve performance by efficient allocation of 

resources among processor, memory and I/O subsystems.
– QPI Snoop Configuration Home/Early/COD :  Experiment and set the right configuration for your workload.

Home: High Memory Bandwidth for average NUMA workloads.
COD: Cluster On Die, Increased Memory Bandwidth for 
optimized and aggressive NUMA workloads.
Early: Decreases latency but may also decrease memory 
bandwidth compared to other two modes.
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Typical BIOS Settings: Power Settings and Management
– HPE Power Profile  should be set to Maximum Performance to get best performance (idle and average power 

will increase significantly).

– Custom Power Profile will reduce idle and average power at the expense of 1-2% performance reduction.

– To get highest Turbo clock speeds (when partial cores are used), use Power Savings Settings.

– For Custom Power Profile, you will have to set the following additional settings:
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Best Practices for Building Applications
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-O2 enable optimizations ( = -O, Default)
-O1 optimize for maximum speed, but disable some optimizations which increases code 

size for small speed benefit
-O3 enable –O2 plus more aggressive optimizations that may or may not improve 

performance for all programs.
-fast enable –O3 –ipo –static 
-xHOST optimize code based on the native node used for compilation
-xAVX enable advanced vector instructions set (for Ivy Bridge performance)
-xCORE-AVX2 enable advanced vector instructions set 2 (key Haswell/Broadwell performance)
-xMIC-AVX512 enable advanced vector instructions set 512 (for future KNL/SkyLake based systems)
-mp maintain floating-point precision (disables some optimizations)
-parallel enable the auto parallelizer to generate multi-threaded code
-openmp generate multi-threaded parallel code based on OpenMP directives
-ftz enable/disable flushing denormalized results to zero
-opt-streaming-stores [always auto never] generates streaming stores
-mcmodel=[small medium large] controls the code and data memory allocation
-fp-model=[fast precise source strict] controls floating point model variation
-mkl=[parallel sequential cluster] link to Intel MKL Lib. to build optimized code.

Building Applications: Intel Compiler Flags
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Building Applications: Compiling Thread Parallel Codes

pgf90 –mp –O3 –Mextend –Mcache_align –k8-64 ftn.f
pathf90 –mp –O3 –extend_source –march=opteron ftn.f
ifort –openmp –O3 -132 –i_dynamic –ftz –IPF_fma ftn.f
pgcc –mp –O3  –Mcache_align –k8-64 code.c
opencc –mp –O3  –march=opteron code.c
icc –openmp –O3  –i_dynamic –ftz –IPF_fma code.c
Combination Flags
Intel: -fast   => -O3 –ipo –static
PGI: -fast => -O2 –Munroll –Mnoframe
Open64: -Ofast => -O3 -ipa -OPT:Ofast -fno-math-errno
Notes: 
• Must compile and link with –mp / –openmp 
• Aggressive optimizations may compromise accuracy
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mpicc C compiler wrapper to build parallel code

mpiCC C++ compiler wrapper

mpif77 Fortran77 compiler wrapper

mpif90 Fortran90 compiler wrapper   

mpirun command to launch mpi parallel job

Environment Variables to specify the Compilers to use:

export I_MPI_CC=icc

export I_MPI_CXX=icpc

export I_MPI_F90=ifort

export I_MPI_F77=ifort

Building Applications: Compiling MPI based Codes
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Building Applications: Compiling MPI based Codes (Contd…)

mpif90 –O3 –Mextend –Mcache_align –k8-64 ftn.f
mpif90  –O3 –extend_source –march=opteron ftn.f
mpif90 –O2 -xHOST –fp-model strict -openmp ftn.f
mpicc –O3  –Mcache_align –k8-64 code.c
mpicc  –O3  –march=opteron code.c
mpicc  –O3  -xAVX2 -openmp –ftz –IPF_fma code.c

Compilers and Interface chosen depend on:
what is defined in your PATH variable
what are defined by (for Intel MPI):
• I_MPI_CC, I_MPI_CXX
• I_MPI_F77, I_MPI_F90



Intel Xeon Processor
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Complete Specifications at:
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-spec-update.html

Intel Xeon Processors:  Turbo, AVX and more



Intel Xeon Processors:  Turbo, AVX and more (Contd …)

Complete Specifications at:
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-spec-update.html



Intel Xeon Processors:  Turbo, AVX and more (Contd…)

Complete Specifications at:
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-spec-update.html



Intel Xeon Processors:  Turbo, AVX and more (Contd …)

Intel publishes 4 different reference frequencies for every Xeon Processor: 
1. Base Frequency  2. Non-AVX Turbo  3. AVX Base Frequency  4. AVX Turbo
• Turbo clock for a given model can vary as much as 5% from one processor to another

• Four possible scenarios exist:
• Turbo=OFF and AVX=NO =>  Clock is set to Base frequency
• Turbo=ON and AVX=NO =>  Clock range will be from Base to Non-AVX Turbo
• Turbo=OFF and AVX=YES =>  Clock range will be from AVX Base to Base Frequency
• Turbo=ON and AVX=YES =>  Clock range will be from AVX Base to AVX Turbo



Efficient Methods in Executing Applications
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Running Parallel Programs in a Cluster:  Intel MPI

– Environments in General
– export PATH
– export LD_LIBRARY_PATH
– export MPI_ROOT
– export I_MPI_FABRICS= shm:dapl
– export I_MPI_DAPL_PROVIDER=ofa-v2-mlx5_0-1u
– export NPROCS=256
– export PPN=16
– export I_MPI_PIN_PROCESSOR_LIST 0-15
– export  OMP_NUM_THREADS=2
– export KMP_STACKSIZE=400M
– export KMP_SCHEDULE= static,balanced

– Example Command using Intel MPI
– time  mpirun  -np $NPROCS -hostfile ./hosts  -genvall –ppn $PPN –genv I_MPI_PIN_DOMAIN=omp 

./myprogram.exe
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Profiling a Parallel Program: Intel MPI
– Using Intel MPS (MPI Performance Snapshot)

– Set all env variables to run Intel MPI based application
– Source the following additionally:

source /opt/intel/16.0/itac/9.1.2.024/intel64/bin/mpsvars.sh –papi | vtune
– Run your application as: mpirun –mps -np $NPROCS -hostfile ./hosts ….
– Two files app_stat_xxx.txt and stats_xxx.txt  will be available at the end of the job.
– Analyze the these *.txt  using mps tool
– Sample data you can gather from:

– Computation Time: 174.54 sec            51.93%
– MPI Time:                  161.58 sec            48.07%
– MPI Imbalance:             147.27 sec            43.81%
– OpenMP Time:               155.79 sec            46.35%
– I/O wait time:       576.47 sec ( 0.08 %)

– Using Intel MPI built-in Profiling Capabilities
– Native mode: mpirun -env I_MPI_STATS 1-4 -env I_MPI_STATS_FILE native_1to4.txt …
– IPM mode: mpirun -env I_MPI_STATS ipm -env I_MPI_STATS_FILE ipm_full.txt 

20



Tools and Techniques for Boosting Performance
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Tools, Techniques and Commands
– Check Linux pseudo files and confirm the system details

– cat /proc/cpuinfo >> provides processor details (Intel’s tool cpuinfo.x)
– cat /proc/meminfo >> shows the memory details
– /usr/ sbin /ibstat >> shows the Interconnect IB fabric details
– /sbin/sysctl –a >> shows details of system (kernel, file system etc.)
– /usr/bin/lscpu >> shows cpu details including cache sizes
– /usr/bin/lstopo >> shows the hardware topology
– /bin/uname  -a >> shows the system information
– /bin/rpm –qa >> shows the list of installed products including versions
– cat /etc/redhat-release >> shows the redhat version
– /usr/sbin/dmidecode >> shows system hardware and other details (need to be root)
– /bin/ dmesg >> shows system boot-up messages
– /usr/bin/numactl >> checks or sets NUMA policy for processes or shared memory
– /usr/bin/taskset >> shows  cores and memory of numa nodes of a system



Top10 Practical Tips for Boosting Performance

– Check the system details thoroughly (Never assume !)

– Choose a compiler and MPI to build your application ( All are not same !)

– Start with some basic compiler flags and try additional flags one at a time (Optimization is incremental !)

– Use the built-in libraries and tools to save time and improve performance (Libs., Tools are your friends !)

– Change compiler and MPI if your code fails to compile or run correctly  (Trying to fix things is futile !)

– Test your application at every level to arrive at an optimized code (Remember the 80-20 rule !)

– Customize your runtime environment to achieve desired goals (process parallel, hybrid run etc.)

– Always place and bind the processes and threads appropriately (Life saver !)

– Gather, check and correct your runtime environment  (what you get may not be what you want !)

– Profile and adjust optimization and runtime environments accordingly (Exercise caution !)
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Application Performance Highlights
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Application: High Performance Linpack (HPL)
Description:  

Benchmark to measure floating point rates (and times)  by solving a random dense linear system of 
equations in double-precision.

• Originally developed by Jack Dongarra at Univ. of Tennessee.

• Used Intel optimized HPL binary for this study.

• Ran the code in hybrid mode, one MPI process per processor and each process launched threads equal to 
no. of cores on the processor.

• Used explicit placing and binding of threads.

• Attempted various choices of array sizes and other parameters to identify the best performance.

• The code provides a self-check to validate the results.

Additional details at: http://icl.eecs.utk.edu/hpl/

http://icl.eecs.utk.edu/hpl/
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Proc.Type Processor Clock (GHz) # cores/proc #cores/node TDP (Watts) L3 Cache (MB) Rpeak (GFLOPS) Rmax (GFLOPS) % Peak
IvyBridge E5-2695 v2 2.4 12 24 115 30 461 458 99.35
IvyBridge E5-2670 v2 2.5 10 20 115 25 400 389 97.25
Haswell E5-2697 v3 2.6 14 28 145 35 1160 934 80.52
Haswell E5-2698 v3 2.3 16 32 135 40 1180 943 79.92

Broadwell E5-2690 v4 2.6 14 28 135 35 1164 1073 92.18
Broadwell E5-2697 v4 2.3 18 36 145 45 1324 1186 89.58

HPL Performance from a Single Node
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HPL Performance from a Haswell Cluster
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Application: High Performance Conjugate Gradient (HPCG)
Description:  
Benchmark designed to create a new metric for ranking HPC systems, complementing the current HPL 
benchmark. HPCG is designed to exercise computational and data access patterns that more closely match a 
different and broad set of important HPC applications.
• Supports various operations in a standalone and an unified code.
• Reference implementation is written in C++ with MPI and OpenMP support.
• Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels on a nested set 

of coarse grids.
• Unlike the HPL, HPCG can be run for predetermined time (input).
• Local domain size (input) for a node is replicated to identify a global domain resulting in near-linear speed-up.
• Performance is measured by GFLOP/s rating reported by the code.
• An Intel optimized HPCG binary was used for this benchmark study.
• Ran the HPCG binary in hybrid mode, MPI processes + OpenMP threads.
Additional details at: http://hpcg-benchmark.org/

http://hpcg-benchmark.org/
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High Performance Conjugate Gradient (HPCG)
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Application: Graph500
Description:  

Benchmark designed to address performance of data intensive HPC applications using Graph Algorithms

• The code generates problem size with a scale (input) creating vertices equal to 10scale

• The performance is measured in TEPS (Traversed Edges Per Second).

• The median_TEPS, in either GTEPS (Giga TEPS) or MTEPS (Mega TEPS) are reported.

• Used a source code optimized for a scale-out (DMP) system by Kyushu University (Japan).

• Application is written in C language.

• Compiled using GNU compiler, gcc.

• Code automatically detects the no. of processors and cores and runs optimally.

• No external placement and binding by the user are needed.

• Needs large memory foot-print to run very large scale problem.

Additional details at: http://www.graph500.org/

http://www.graph500.org/
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Graph500 Performance from a Haswell Cluster
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Application: Weather Research and Forecasting (WRF)
Description:  
WRF is a Numerical Weather Prediction (NWP) model designed to serve both atmospheric research and 
operational forecasting needs. NWP refers to the simulation and prediction of the atmosphere with a computer 
model, and WRF is a set of software to accomplish this.
• The code was jointly developed by NCAR, NCEP, FSL , AFWA, NRL,  Univ. of Oklahoma and FAA.
• WRF is freely distributed and supported by NCAR.
• Offers two dynamical solvers: WRF-ARW (Advanced Research WRF) and WRF-NMM (Nonhydrostatic 

Mesoscale Model). 
• Capabilities to mix and match  modules to simulate various atmospheric conditions and couple with other 

NWP models (Ocean Modeling codes)
• Can accommodate simulation with nested data domains, coarse  to very fine grids in a single simulation.
• Popular data sets to port and optimize are:  CONUS12 and CONUS2.5 (available at NCAR).
• Options to use dedicated processors for I/O (quilting) and various layout of processors (tiling) exist.
Additional details at: http://www.wrf-model.org/index.php

http://www.wrf-model.org/index.php


WRF (v 3.8.1) Results with CONUS 2.5km Data Set
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Application: Clover Leaf
Description:  

Clover Leaf is an open-source Computational Fluid Dynamics (CFD) code developed and distributed by UK 
Mini-Application Consortium (UK-MAC).

• Solves compressible Euler equations on a Cartesian grid using explicit second-order accurate method.

• Uses a ‘kernel’ (low level building block) approach with minimal control logic to increase compiler 
optimization.

• Supports for accelerators (using both OpenACC and OpenCL) available.

• Scarifies memory (saving intermediate results and than re-computing) to improve performance.

• Available in two flavors, in 2-Dimenional (2D) and 3-Dimensional (3D) modeling.

• Rugged and easy to port and run and good candidate for evaluating and comparing systems.

• Available large no. of data sets for 2D and 3D models with control of run times, few seconds to hours.

Additional details at: http://uk-mac.github.io/CloverLeaf/

http://uk-mac.github.io/CloverLeaf/


Clover Leaf (3D) Results with bm256 Data Set 
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System:  XL230a Gen9, Intel E5-2697A v4, 2.6 GHz, 2P/32C, 128 GB (DDR4-2400 MHz) Memory, RHEL 7.2,  
IB/EDR 1:1,  Intel Composer XE and Intel MPI (2016.3.210), Turbo ON, Hyperthreading OFF



Conclusions
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Conclusions
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 HP is No. 1 vendor in HPC and Cluster Solutions
 Configure and tune the system first
 Check the system details (processor, clock, memory and BIOS settings)
 Investigate compiler and flags that best suit your application
 Profile the application and optimize further for boosting performance
 Explore and decide on the right interconnect and protocols
 Take advantage of tools and commands to improve performance
 Run the application the right way (environment, placement  etc.)
 Choose the right file system (local disk, NFS, Lustre, IBRIX etc.)
 Settle on an environment that is best for your application, time and value
 Never assume and always check the cluster before benchmarking



Thank you
logan.sankaran@hpe.com
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