
© 2016 Continuum Analytics - Confidential & Proprietary© 2016 Continuum Analytics - Confidential & Proprietary

Numba: A Python Compiler

Stan Seibert
Continuum Analytics

2016-11-12

© 2016 Continuum Analytics - Confidential & Proprietary 2

Numba: A JIT Compiler for Python Functions

▪ An open-source, function-at-a-time compiler library for Python

▪ Compiler toolbox for different targets and execution models:
– single-threaded CPU, multi-threaded CPU, GPU

– regular functions, “universal functions” (array functions), GPU kernels

▪ Speedup: 2x (compared to basic NumPy code) to 200x (compared to pure Python)

▪ Combine ease of writing Python with speeds approaching FORTRAN

▪ Empowers data scientists who make tools for themselves and other data scientists

© 2016 Continuum Analytics - Confidential & Proprietary 3

How does Numba work?

Python Function
(bytecode)

Bytecode
Analysis

Functions
Arguments

Numba IR

Machine
Code

Execute!

Type
Inference

LLVM/NVVM JIT LLVM IR

Lowering

Rewrite IR

Cache

@jit
def do_math(a, b):
 …
>>> do_math(x, y)

© 2016 Continuum Analytics - Confidential & Proprietary 4

Supported Platforms and Hardware

OS HW SW

Windows (7 and later) 32 and 64-bit x86
CPUs

Python 2 and 3

OS X (10.9 and later) CUDA & HSA Capable
GPUs

NumPy 1.7 through
1.11

Linux (RHEL 5 and later) Experimental support
for ARM, Xeon Phi,
AMD Fiji GPUs

© 2016 Continuum Analytics - Confidential & Proprietary 5

Tutorial Acknowledgements

▪ These Numba tutorial materials are adapted from the Numba Tutorial at SciPy
2016 by Gil Forsyth and Lorena Barba

▪ I’ve made some adjustments and additions, and also had to skip quite a bit of
material for time.

▪ Check out https://github.com/barbagroup/numba_tutorial_scipy2016 for more
details.

https://github.com/barbagroup/numba_tutorial_scipy2016

© 2016 Continuum Analytics - Confidential & Proprietary 6

Notebook 1: Numba Basics

© 2016 Continuum Analytics - Confidential & Proprietary 7

Notebook 2: How Numba Works

© 2016 Continuum Analytics - Confidential & Proprietary 8

Ex01: Intro to JIT

© 2016 Continuum Analytics - Confidential & Proprietary 9

That’s it?

▪ Mostly, yes.

▪ The Secret of Numba is:

▪ If it doesn’t need to be fast, leave it alone. (See the profiler section of this
tutorial.)

▪ Stick to the well-worn path: Numba works best on loop-heavy numerical
algorithms.

▪ Choose the right data structures: Numba works best on NumPy arrays and
scalars.

© 2016 Continuum Analytics - Confidential & Proprietary 10

Ex02: Direct Summation

© 2016 Continuum Analytics - Confidential & Proprietary 11

There is more, though.

▪ Numba can compile other kinds of functions:

▪ Universal function (ufuncs) apply a scalar function to elements of the input
arrays according to the broadcast rules:

numpy.add([1, 2, 3], 1) == [2, 3, 4]

numpy.add([1, 2, 3], [10, 20, 30]) == [11, 12, 13]

© 2016 Continuum Analytics - Confidential & Proprietary 12

Notebook 3: Ufuncs

© 2016 Continuum Analytics - Confidential & Proprietary 13

More Advanced Topics
▪ Generalized ufuncs:

▪ Instead of broadcasting all dimensions into a scalar function, you can control how input
dimensions are broadcast.

▪ Example: Writing a norm() function

▪ http://numba.pydata.org/numba-doc/0.29.0/user/vectorize.html#the-guvectorize-decorator

▪ Calling external code:

▪ Numba can call C code that has been wrapped with ctypes or CFFI

▪ http://numba.pydata.org/numba-doc/0.29.0/reference/pysupported.html#ctypes

▪ http://numba.pydata.org/numba-doc/0.29.0/reference/pysupported.html#cffi

▪ Ahead of time compilation:

▪ http://numba.pydata.org/numba-doc/dev/user/pycc.html

http://numba.pydata.org/numba-doc/0.29.0/user/vectorize.html#the-guvectorize-decorator
http://numba.pydata.org/numba-doc/0.29.0/reference/pysupported.html#ctypes
http://numba.pydata.org/numba-doc/0.29.0/reference/pysupported.html#cffi
http://numba.pydata.org/numba-doc/dev/user/pycc.html

