Breakout Session

Converged Edge:
An architectural foundation for end-to-end edge scale deployments

Francesc Guim, Intel
Chadie Ghadie, Lenovo
David Carrera, Nearby Computing
The Momentous Shift to the Edge

Drivers for Edge Computing
- Latency
- Bandwidth
- Security
- Connectivity

IT & OT Insights

Inference Media

Network Analytics

CT Insights

IoT & Devices

On-Premise Edge

Edge Computing

Network Hub or Regional Data Center

Core Network

Cloud Data Center
Common Framework to Address Different Verticals

Edge End-to-End Edge Architectural Foundation: Inter-Operable, Open and Self Managed

End Users and Device Location
- Street users
 - Telco Edge
- Vehicles
 - Street cameras
 - Street sensors
 - ...
 - IoT Edge
- Retail shops
 - Public locations (i.e.: libraries)
 - Private enterprise
 - ...
 - Enterprise Edge

Transport Type
- INFRASTRUCTURE (5G/LTE, Wireless, Lora, Wired...)

Multi-Service (NFV & Non-NFV) Common Service Taxonomy
- NFV
- Internet of Things
- Autonomous
- AR/VR & Gaming
- Data Caching & Storage GW
- Video/Video Analytics
- FaaS
- Speech Recognition
- Medical Applications
- Enterprise

Multi-Tier Common HW Edge Taxonomy
- On-prem/Far Edge
- Far Edge
- Near Edge
- Data Center Edge
Full Edge Lifecycle Management (SW/HW)

Dashboard
- MEC Controller
- Telemetry / KPIs
- Service Chains
- Registry
 - Applications & Workloads

DC Nodes
- VNFS
- MEC
- Video Analytics
- vFW
- ...
- AR/VR

Edge Nodes

Nearby One
- Measures latency, validate application compute requirements, dependencies, etc.
- Deploys application and service chains to DC or other edge nodes
- Continuously monitors telemetry & KPIs (networking and compute) and moves workloads if required

Lenovo Open Cloud Automation
- Lenovo ThinkShield authenticates nodes once powered up

LOC-A
- Auto-discovers node
- Adds to inventory
- Updates configuration including firmware, networking, and desired OS
- Validate and mark as production ready

Platform Management
- Inventory Service
- Discovery Service
- Management Service
- Configuration Service
- Repository Service

Platform Modules
- VMware
- Red Hat
- OpenStack for NFV
- OpenShift
- Bare metal

Lenovo

NBYCOMP Nearby Computing

Telemetry / KPIs
Service Chains
Registry

Applications & Workloads

Dashboard

DC Nodes

Edge Nodes

Lenovo ThinkShield

LOC-A integration into Nearby One
(3) Control Loop:
▪ Application provides current KPI (e.g. 8 fps per stream)
▪ Orch. Identify SLO is broken
▪ TMAM or Platform telemetry to find the bottleneck
▪ Increase resource or migrate

Pull/push={fps=10; latency=100 ms; 8 cameras}

(2) Static Resource Allocation
RDT Aware Orchestrator (telemetry & profile -> MBA)
Core Affinity (CMK)
Docker* (RDT high & low priority workloads - MBA)
NDF

CaaS Components & OpenNESS u-services

(1) Select location based on latency
(2) Resource selection based on
▪ SLO
▪ Fingerprint description of the application in terms of resources needed

(0) Deploy Service with SLO X
(e.g. 10 cameras for Surveillance)

Orchestration & Management Modules

Orchestration Logic
Service Monitoring
Resource Management

Prometheus
Derived Metrics
Collectd

Service Flavors to map # resources depending on the service requirements

<table>
<thead>
<tr>
<th>Use Cases</th>
<th>SLO</th>
<th>Core Count</th>
<th>Acceleration and Core Count if Acceleration</th>
<th>Memory BW Requirements</th>
<th>LLC Trashing (Noisy Neighbor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveillance (1080)</td>
<td>10 fps within 100 ms</td>
<td>4 cameras / core</td>
<td>10 cameras (/ HDDL + 2cores)</td>
<td>500MB/s per camera</td>
<td>High</td>
</tr>
<tr>
<td>Safety (1080)</td>
<td>8 fps within 500 ms</td>
<td>4 cameras / core</td>
<td>14 cameras (/ HDDL + 2cores)</td>
<td>400MB/s per camera</td>
<td>Med</td>
</tr>
<tr>
<td>Retail (1080)</td>
<td>1 fps within 500 ms</td>
<td>4 cameras / core</td>
<td>8 cameras (/ HDDL + 2cores)</td>
<td>300MB/s per camera</td>
<td>Med</td>
</tr>
</tbody>
</table>
Converged Edge for Smart Cities

- An E2E smart city deployment on a virtualized network infrastructure that scaled across all locations: near, access, and on-premise edge
- Catering to multiple use cases for smart city: tourism, crowd safety/detection, need to handle multiple access points (Cameras, POS) and access technologies

Scalable Architectural Approach

<table>
<thead>
<tr>
<th>Converged Edge architectural approach - flexible, scalable, modular</th>
<th>Intel enables two partners, Cellnex and several ISVs with deep technical engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform recipes to address all edge locations from street cabinets to central office</td>
<td>Right size platforms from extensive portfolio on IA to scale up and out</td>
</tr>
<tr>
<td>Platform design to fit constrained form factors inclusive of the Green Edge servers (solar powered)</td>
<td>Orchestrate and manage</td>
</tr>
<tr>
<td>Several ISVs on OpenVINO™</td>
<td></td>
</tr>
</tbody>
</table>

Ecosystem Pull-Through & Enabling

- **FlexRAN**
- **DPDK**
- **www.intel.com/edgesoftwarehub**
- **www.intel.com/converged-edge-insights**
Live Demo
Check out More Resources

- Converged Edge: www.intel.com/converged-edge-insights
- Intel® Edge Software Hub: www.intel.com/edgesoftwarehub/develop
- OpenNESS toolkit: www.openness.org
- OpenVINO™ toolkit: www.intel.com/openvino
Notices and Disclaimers

- Intel technologies may require enabled hardware, software or service activation.

- No product or component can be absolutely secure.

- Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

- Your costs and results may vary.

- © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
Thank you for watching!