Dual-Core Intel® Xeon® Processor 7000 Sequence-based Platforms

Ideal Choice for Demanding Enterprise Applications and Consolidation
A New Level of Reliability and Scalable Performance

Intel® Architecture-based server platforms continue to drive the world’s data centers. For good reason. We keep innovating with new capabilities and technologies in our platforms that give you the tools to help your business stay competitive. And, with over 40 million Intel® processor-based servers shipped since 1996, and a 20-year track record of delivering industry-leading performance, you know you can count on Intel to deliver superior quality and reliability.

A scalable, reliable multi-processor platform

For critical data center services, new Dual-Core Intel® Xeon® processor 7100 series-based platforms deliver scalable performance for your demanding enterprise applications. These new platforms deliver up to twice the performance compared to our previous dual-core processor-based MP platforms, making them the best choice for business processing, databases, and e-commerce.

Enhanced reliability features built into the platform, including new Intel® Cache Safe Technology, help you improve availability, while new processor power efficiency with higher performance per watt reduces energy usage and heat generation.

Our new platforms are designed with virtualization in mind, with the performance, headroom, and reliability virtual environments require. Plus, Intel® Virtualization Technology built into the processor make our new server platforms ideal for consolidating applications and migrating to a more flexible, available infrastructure.
Architected for multiple dual-core processors to run intensive 32-bit and 64-bit workloads, Dual-Core Intel® Xeon® processor 7100 series-based systems help solve the toughest IT challenges with the scalability, flexibility, and reliability needed to make the most of any IT budget.
Ideal Platforms for Demanding Enterprise Workloads

Designed with the technologies and features enterprise workloads demand and the reliability your business needs, Dual-Core Intel Xeon processor 7100 series-based platforms can support your critical business operations into the future.

Support business growth
Dual-Core Intel Xeon processor 7100 series-based solutions give your data centers the scalable performance they need for sustainable business growth.

- Up to 60 percent performance improvement for enterprise resource planning (ERP), supply chain management (SCM), and customer relationship management (CRM); up to 70 percent performance improvement for transaction processing; over twice the performance for e-commerce applications.3
- Up to 2.8x performance per watt improvement compared to previous generation.3
- Up to 16 MB of shared, on-die cache, plus 64-bit, dual-core processing with Hyper-Threading Technology deliver both processing capacity and performance for today and headroom for the future.
- 4 to 32 dual-core processor solutions offer headroom for demanding enterprise applications and business growth.

Boost system utilization
Software-based virtualization helps IT managers consolidate applications to boost system utilization, enhance service availability, and improve IT operational efficiency. Dual-Core Intel Xeon processor 7100 series-based platforms are ideal for virtualization.

- Designed for virtualization, with built-in scalable performance, extended headroom, and enhanced reliability features, plus Intel Virtualization Technology hardware assistance for virtual environments.
- Broadest industry software support for virtual environments from leading virtualization software vendors.
- Intel is the first company to introduce hardware assistance for virtual environments.
- Dual-core processing and Hyper-Threading Technology provide more processing capacity for more threads in virtual environments.

Maintain critical services
Processor and chipset enhancements of our new server platforms deliver the reliability that enables IT departments to improve the security and integrity of business data and services.

- Intel Cache Safe Technology maintains processor availability in the event of cache errors.
- Intel® E8501 chipset reliability enhancements include advanced redundancy and error checking, memory (DIMM) sparing and mirroring, and hot plugging.
- Proven track record of the most widely deployed and industry-supported servers in the world.
With 16 MB of on-die, shared cache, Dual-Core Intel Xeon processor 7100 series-based platforms deliver the performance enterprise workloads demand for a new level of business processing, transaction processing, and e-commerce to help sustain business growth.
Intel-based servers support hardware-assisted virtualization, a wide range of operating systems, and thousands of applications, all validated and optimized for high-availability, performance, and reliability.
Dual-Core Intel Xeon Processor 7100 Series-based Platforms Overview

<table>
<thead>
<tr>
<th>Platform Feature</th>
<th>User Benefit</th>
</tr>
</thead>
</table>
| Dual-Core Intel® Xeon® processor 7100® series | - Up to 2 times the performance of previous-generation Dual-Core Intel® Xeon® processor 7000 series¹
- Based on Intel's 65 nm process with power-saving features for lower energy consumption and heat generation
- Up to 2.8x performance per watt improvement compared to previous generation¹
- Choice of performance-optimized versions at 150-watt and rack-optimized versions at 95-watt for data center optimization
- Dual front-side buses running at 667 MHz or 800 MHz for high throughput
- 64-bit processor, supporting 32-bit applications and enabling migration to 64-bit computing |
| Up to 16 MB, shared, on-die, L3 cache | - Keeps more needed data closer to the cores for access faster than off-chip memory
- Improves performance by up 60 percent for business processing (ERP, SCM, CRM), 70 percent for transaction processing, and over twice the performance for e-commerce applications¹ |
| Intel® Cache Safe Technology | - Improves processor reliability
- Allows processor and server to continue normal operation in the event of a rare L3 cache error; automatically detects and disables cache lines
- Helps reduce downtime and processor replacements, improving TCO |
| Intel® Virtualization Technology⁴ | - Processor enhancements supporting virtualization, enabling consolidation of more applications to virtual environments
- Enables 64-bit OSs and applications to run over today's popular virtualization software
- Enables running Linux® over Windows® and Windows over Xen®
- Developed with virtualization software providers to enable greater capabilities compared to non-hardware-assisted virtual environments
- Intel is first to offer hardware-assisted virtualization |
| Hyper-Threading Technology⁴ | - Allows each core to function as two logical processors
- 16 threads for a dual-core, 4 processor (8 cores) platform provide more headroom and throughput capacity for threaded applications
- Improves processor utilization and system responsiveness for better user experience⁶ |
| Intel® 64 Technology⁷ | - Enables extended memory addressability for server applications
- Run both 32-bit and 64-bit applications |
| Demand-Based Switching (DBS) with Enhanced Intel SpeedStep® technology⁸ | - Enables platform and software power-management features to help lower average power consumption and heat generation while helping to maintain application performance and acoustics |
| PCI Express® (PCIe®) serial I/O | - Industry-standard serial I/O capable of up to 8 GB/s peak bandwidth
- Improved RAS features compared to PCI-X⁹
- Lower latency compared to PCI-X to help improve I/O performance
- Software-compatible with PCI-X to simplify parallel-to-serial transition |
| DDR2-400 memory | - Up to 128 GB of memory capacity for demanding workloads
- Provides increased memory bandwidth over DDR1-333
- Lower power consumption than DDR1-333 on systems tested⁶
- Increased DIMMs per system for enhanced memory scalability |
| Enhanced reliability and manageability | - Many memory controller features, together with PCI Express reliability, availability, and serviceability (RAS) features combine to help improve platform reliability over previous-generation platforms
- Features include Error-Correcting Code (ECC) system bus, memory mirroring, and I/O and memory hot-plug |
| High-speed, 3-load, front-side system bus (800 MHz) | - 12.8 GB/s system throughput for demanding workloads |
Server Platform Performance and Performance Per Watt

Dual-Core Intel® Xeon® processor 7100 series compared to the prior-generation Dual-Core Intel® Xeon® processor 7000 series

Dual-Core Intel® Xeon® processor MP 7140M (3.40 GHz, 16 MB L3) vs. Dual-Core Intel® Xeon® processor MP 7041 (3.00 GHz, 2 x 2 MB L2)

Intel internal measurements as of August 1, 2006.
For latest performance information, please visit www.intel.com/performance/server/xeon/index.htm
Reliable Uptime

Intel® E8501 chipset RAS features

The Intel E8501 chipset builds in enhanced reliability with a high degree of memory error detection and correction, data protection, serviceability, and manageability.

<table>
<thead>
<tr>
<th>Reliability Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-plug I/O and memory</td>
<td>• Add I/O or memory after installation without service interruption</td>
</tr>
<tr>
<td>Memory mirroring</td>
<td>• Lets you split and duplicate system memory, protecting against uncorrectable errors or DRAM failure</td>
</tr>
<tr>
<td>Memory (DIMM) sparing</td>
<td>• Allows you to reserve spare memory capacity for use if current memory fails</td>
</tr>
<tr>
<td>Demand and patrol scrubbing</td>
<td>• The system proactively searches the system memory, repairing correctable errors or permanently marking the memory location as unreadable</td>
</tr>
<tr>
<td>X8 Single Device Data Correction (X8 SDDC)</td>
<td>• Allows you to remove a single DRAM from the memory map and recover its data into a new device</td>
</tr>
<tr>
<td>Error Correcting Code (ECC)</td>
<td>• The system detects single-bit and double-bit errors, automatically corrects single-bit errors on internal data paths, and retries transactions on double-bit errors</td>
</tr>
<tr>
<td>SMBus port</td>
<td>• Enables remote management operation and support for a variety of third-party BMC (baseboard management controller) and BIOS solutions</td>
</tr>
<tr>
<td>PIROM and thermal sensor</td>
<td>• Allows for scheduled service in the event of a system manufacturing defect or cooling device failure</td>
</tr>
</tbody>
</table>

PCI Express* RAS features

PCI Express (PCIe*) is rich in RAS capabilities critical to maintaining system uptime, including the following:

- Built-in clocking for data integrity checking.
- Advanced error logging and reporting through the Intelligent Platform Management Initiative-based (IPMI) interface.
- Hot-plug capability simplifies replacement of failed devices and helps reduce system downtime, while allowing mix and match of peripherals and systems or I/O chassis from different vendors.
- A high-performance, cost-effective RAID can be implemented on the server board using the Intel® IOP333 I/O processor, designed to connect directly to the chipset's memory controller via PCI Express.
Processor Numbering

At Intel, our processor series numbers help differentiate processor features beyond front-side bus speed and brand name. New advancements in our processors — other than bus speed — like architecture, cache, power dissipation, and embedded Intel® technologies, contribute significantly to performance, power efficiency, and other end-user benefits. Our processor sequences will help developers decide on the best processor for their platform designs, and help end-users understand all the characteristics that contribute to their overall experience.

Processor Sequence

<table>
<thead>
<tr>
<th>Processor Sequence</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Core Intel® Xeon® processor 3000 sequence</td>
<td>Small business, entry, or first server</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5000 sequence</td>
<td>Volume DP servers/workstations based on the Intel Xeon processor</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 7000 sequence</td>
<td>Greater scalability than DP platforms with multi-processor enterprise servers</td>
</tr>
<tr>
<td>Intel® Itanium® 2 processor 9000 sequence</td>
<td>Maximum performance and scalability for RISC replacement</td>
</tr>
</tbody>
</table>

Dual-Core Intel Xeon processor 7100 series

All processor packages are FCPGA Socket 604.

<table>
<thead>
<tr>
<th>FSB = 800 MHz</th>
<th>FSB = 667 MHz</th>
<th>Cache size</th>
<th>Power</th>
<th>Intel® Cache Safe Technology</th>
<th>Intel® HT</th>
<th>Intel® VT</th>
<th>Intel® 64</th>
<th>Cores/Threads (4P platform)</th>
<th>DBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Number</td>
<td>Speed</td>
<td>Processor Number</td>
<td>Speed</td>
<td>2x1M L2, 16M L3</td>
<td>150 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>7150N</td>
<td>3.5 GHz</td>
<td>2x1M L2, 16M L3</td>
<td>150 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
<tr>
<td>7140M</td>
<td>3.40 GHz</td>
<td>7140N</td>
<td>3.33 GHz</td>
<td>2x1M L2, 16M L3</td>
<td>150 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
<tr>
<td>7130M</td>
<td>3.20 GHz</td>
<td>7130N</td>
<td>3.16 GHz</td>
<td>2x1M L2, 8M L3</td>
<td>150 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
<tr>
<td>7120M</td>
<td>3.0 GHz</td>
<td>7120N</td>
<td>3.0 GHz</td>
<td>2x1M L2, 4M L3</td>
<td>95 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
<tr>
<td>7110M</td>
<td>2.60 GHz</td>
<td>7110N</td>
<td>2.50 GHz</td>
<td>2x1M L2, 4M L3</td>
<td>95 W</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>8C/16T</td>
</tr>
</tbody>
</table>
Benchmark notes:

Source: Intel* internally measured results as of August 1, 2006.

Dual-Core Intel® Xeon® Processor 7100 series: Performance and Performance Per Watt plus Server Platform Scaling

Basis for comparison: Performance measured using internal server-side Java* (“e-commerce”), internal database transaction processing, and internal enterprise resource planning workloads.

Intel internal measurement (1 August 2005) comparing system configurations of 4x Intel* processor 7140M platform, 3.40 GHz w/ 16M L3/ Intel® E8501 Chipset / 800 MHz FSB to 4x Intel® Xeon® Dual-Core processors 3.00 GHz w/ 2x2M L2 / Intel® E8501 Chipset/ 800 MHz FSB.

Scaling performance measuring performance gains of one to two to four Intel Xeon processor(s) MP 7140M configured in an 8P Intel E8501 chipset-based Server platform.

Actual performance may vary. For further information see: http://www.intel.com/performance/server/xeon_mp/index.htm

Server-Side Java Application. This workload evaluates the performance of Server-side Java application. Measured in Operations Per Second. Performance estimates based on Intel internal measurement recorded in TR#622.

Baseline Platform configuration: Intel* Server System pre-production hardware with four Dual-Core Intel® Xeon® Processors 7041, 3.0 GHz with 2x2MB L2 Cache, E8501 Chipset, 800 MHz FSB, 16 GB memory, Hyper Threading ON. Windows* 2003 Enterprise Edition x64, Microsoft* SQL Server* 2005 SP1(64-bit).

New Platform Configuration: Intel* Server System pre-production hardware with four Dual-Core Intel® Xeon® Processor MP 3.40 GHz with 16 MB L3 Cache, E8501 Chipset, 800 MHz FSB, 16 GB memory, Hyper Threading ON. Windows* 2003 Enterprise Edition x64 SP1, BEA* Internal JRockit* 5.0 64-bit, large page enabled, Hardware Prefetch = OFF, Adjacent Sector Prefetch = ON, 4 JVM instances.

Database. On-Line Transaction Processing: represents the transaction throughput of a database server in an OLTP client/server environment measuring the power and capacity of database software and server hardware in transactions per minute. Performance estimates based on Intel internal measurement recorded in TR#579.

Baseline Platform Configuration: Intel® SR8850HW4/M Server System using 4x Dual-Core Intel® Xeon® processor MP 7041 (3.00 GHz, 800 MHz FSB, 2x 2 MB L2 cache), Hyper/Adjacent Sector Prefetch=OFF, 64GB DDR2-400 (16x 4 GB PC2-3200R), Microsoft* Windows* Server 2003 Enterprise Edition SP1 x64, Microsoft* SQL Server* 2005 SP1(64-bit).

Storage Configuration

1. - 854 15K RPM Seagate SAS disks
2. - 4 QLE2622 PCIE Qlogic Dual-port adapters
- 1 QLA2362 PCI-X Qlogic Dual-port adapters

New Platform Configuration: Intel® SR8850HW4/M Server System (Harwich with 800MT/s) using 4x Dual-Core Intel® Xeon® processor MP 7140M (3.40 GHz, 800 MHz FSB, 16 MB L3 Cache), Hyper/Adjacent Sector Prefetch=OFF, 64GB DDR2-400 (16x6GB PC2-3200R-333), Microsoft* Windows* Server 2003 Enterprise Edition SP1 x64, Microsoft* SQL Server* 2005 SP1(64-bit).

Storage Configuration

- 994 15K RPM Seagate SAS disks
- 3 QLA 2342 PCI-X Qlogic Dual-port adapters
- 4 QLA 2362 PCI-X Qlogic Dual-port adapters

Enterprise Resource Planning. Workload emulates a SAP-based Sales and Distribution application and helps ERP. Measured in number of concurrent users supported. Performance estimates based on Intel internal measurement recorded in TR# 573.

Baseline Platform Configuration: Intel® S3E3134 Server System using 4x Dual-Core Intel® Xeon® processor MP 7041 (3.00 GHz, 800 MHz FSB, 16 MB L2 cache), Hyper/Adjacent Sector Prefetch=OFF, 8GB DDR2-400 (8x1GB PC2-3200R), SuSE® LINUX* Enterprise 9 x86_64 SP2 2.6.5-191-smp, SAP* R/3 Enterprise ECC 4.7 SR1 x86_64, Oracle9i* Enterprise Edition release 9.2.0.6 64-bit.

New Platform configuration: Intel® S3E3134 Server System using 4x Dual-Core Intel® Xeon® processor 7140M (3.40 GHz, 800 MHz FSB, 16 MB L3 cache), Hyper/Adjacent Sector Prefetch=OFF, 8GB DDR2-400 (8x1GB PC2-3200R), SuSE® LINUX* Enterprise 9 x86_64 SP2 2.6.5-191-smp, SAP* R/3 Enterprise ECC 5.0 SR1 x86_64, Oracle9i* Enterprise Edition release 9.2.0.6 64-bit.

Performance Per Watt is calculated as peak performance result divided by watts measured at the system level. All system watt measurements may vary based on system configuration and silicon-level differences.

Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit

All dates and products specified are for planning purposes only and are subject to change without notice.

Relative performance for each benchmark is calculated by taking the actual benchmark result for the first platform tested and assigning it a value of 1.0 as a baseline. Relative performance for the remaining platforms tested was calculated by dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms and assigning them a relative performance number that correlates with the performance improvements reported.