Driving performance, integration, and versatility with Intel’s first Enhanced for IoT platform

Enhanced for IoT, Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series processors deliver next-generation CPU and graphics performance with integrated support for real-time computing and Ethernet, functional safety, and industrial-centric I/Os.¹ ²

Addressing the explosive growth of edge computing
The continued growth of computing at the edge is driving IoT devices to support more connectivity, more bandwidth, and higher levels of security—all while reducing latency. Up to 70 percent of enterprises will run varying levels of data processing at the IoT edge by 2023. ³

To support the next generation of IoT edge devices, Intel has developed a new line of processors enhanced for IoT: The Intel Atom® x6000E Series and Intel® Pentium® and Intel® Celeron® N and J Series processors. These processors build on new levels of CPU and graphics performance with integrated IoT features, real-time performance, manageability, security, and functional safety.¹ ²

Product overview
To enhance workload consolidation and meet IoT-centric requirements, Intel is introducing the Intel® Programmable Services Engine (Intel® PSE). It facilitates numerous new functions; supports real-time, ARM-based applications; and manages industrial I/Os. The integrated Intel® Safety Island supports functional safety, orchestrates Intel-on-chip diagnostics, reports errors, and monitors customer-safety applications.¹ ²

With a choice of 12 pin-compatible options, these Intel Atom, Pentium, and Celeron processors offer a broad range of dual- or quad-core options running up to 3.0 GHz with support for both DDR4 and LPDDR4/x memory in up to 64 GB configurations. TDP ranges between 4.5W and 12W allow for implementation into a variety of design form factors with passive or active thermal solutions.

Bring next-generation graphics to the edge
These processors take a huge leap forward in graphics capabilities with Intel® UHD Graphics. Supporting eDP, DP, HDMI 2.0b, and MIPI DSI interfaces, the platform can drive a maximum resolution of 4K progressive scan at 60fps on up to three simultaneous displays, a first for this family of processors.
Integration and flexibility for IoT: The Intel® Programmable Services Engine

The Intel Programmable Services Engine (Intel PSE) is a dedicated offload engine for IoT functions powered by an ARM Cortex-M7 microcontroller. It provides independent, low-DMIPS computing and low-speed I/Os for IoT applications, plus dedicated services for real-time computing and time-sensitive synchronization.

The Intel PSE hosts new functions, including remote out-of-band device management, network proxy, embedded controller lite, and sensor hub. Flexible programming, using open source code or prebuilt firmware binaries, lets you configure the Intel PSE to meet your application requirements and run real-time, ARM-based applications.

Meet strict functional safety (FuSa) requirements: Intel® Safety Island¹

Intel Atom® x6427FE and x6200FE processors meet IEC 61508 and ISO 13849 requirements (SIL2/Cat.3 PL d certified, SIL3/Cat.4 PL e capable) for functional safety. Functional safety capabilities and highly reliable performance are built into the silicon, along with a complete set of technical documentation—safety manual, safety analysis, and user guides—which makes the customer certification process faster and simpler.

Deploy real-time computing solutions for worst-case execution-time operations and ultrareliable low-latency communication²

Intel Atom® x6000RE and Intel Atom® x6000FE Series industrial processors support Intel® Time Coordinated Computing (Intel® TCC) and Time-Sensitive Networking (TSN). These technologies improve worst-case execution-time operation within individual processors and system-wide by synchronizing data, communications, and executions across networks of IoT devices.

Hardened security to help protect edge devices

Hardware-based security measures help mitigate firmware, code, and data attacks while dedicated cryptography accelerators speed up data encryption without impacting overall system performance.

Use-case possibilities

Practically any industry, sector, or application that needs higher-performance computing and graphics in a low-power design can benefit from this platform. Optional features for real-time computing and functional safety extend the platform’s capabilities to critical control systems and industrial automation.

Here are a few examples:

- Real-time control systems and devices that meet functional safety requirements for industrial robots and for chemical, oil field, and energy-grid control applications
- Vehicle controls, fleet monitoring, and management systems that synchronize inputs from multiple sensors and direct actions in semiautonomous buses, trains, ships, and trucks
- Medical displays, carts, service robots, entry-level ultrasound machines, gateways, and kiosks that require AI and computer vision with reduced energy consumption
- Fixed and mobile point-of-sale (POS) systems for retail and quick-service restaurants (QSR) with high-resolution graphics
- Multifunction print/scan/copy machines that deliver rich user experiences, hardware-based data security, and remote management

Meet strict functional safety (FuSa) requirements: Intel® Safety Island¹

Intel Atom® x6427FE and x6200FE processors meet IEC 61508 and ISO 13849 requirements (SIL2/Cat.3 PL d certified, SIL3/Cat.4 PL e capable) for functional safety. Functional safety capabilities and highly reliable performance are built into the silicon, along with a complete set of technical documentation—safety manual, safety analysis, and user guides—which makes the customer certification process faster and simpler.

Deploy real-time computing solutions for worst-case execution-time operations and ultrareliable low-latency communication²

Intel Atom® x6000RE and Intel Atom® x6000FE Series industrial processors support Intel® Time Coordinated Computing (Intel® TCC) and Time-Sensitive Networking (TSN). These technologies improve worst-case execution-time operation within individual processors and system-wide by synchronizing data, communications, and executions across networks of IoT devices.

Hardened security to help protect edge devices

Hardware-based security measures help mitigate firmware, code, and data attacks while dedicated cryptography accelerators speed up data encryption without impacting overall system performance.

Use-case possibilities

Practically any industry, sector, or application that needs higher-performance computing and graphics in a low-power design can benefit from this platform. Optional features for real-time computing and functional safety extend the platform’s capabilities to critical control systems and industrial automation.

Here are a few examples:

- Real-time control systems and devices that meet functional safety requirements for industrial robots and for chemical, oil field, and energy-grid control applications
- Vehicle controls, fleet monitoring, and management systems that synchronize inputs from multiple sensors and direct actions in semiautonomous buses, trains, ships, and trucks
- Medical displays, carts, service robots, entry-level ultrasound machines, gateways, and kiosks that require AI and computer vision with reduced energy consumption
- Fixed and mobile point-of-sale (POS) systems for retail and quick-service restaurants (QSR) with high-resolution graphics
- Multifunction print/scan/copy machines that deliver rich user experiences, hardware-based data security, and remote management

Get to market faster with Intel partners and solutions

Intel is part of a large and expanding ecosystem that is driving innovation at the edge. Intel and our IoT technology partners work together to help you build and deploy high-performance, embedded devices.

Intel® IoT Solutions Alliance can help you accelerate design and deployment of intelligent devices and analytics so you can deliver first-in-market IoT solutions.

Intel® Solutions Marketplace is a searchable directory where you can find ready-to-run solutions and connect with Intel partners that can help you develop your IoT products.

Simplify development

Save time and streamline your IoT and edge AI development with our open source toolkits, production-quality software and online prototyping sandboxes.

Intel® DevCloud for the Edge gives you online access to physical clusters of the latest Intel® hardware, plus a ready-to-run installation of the Intel® Distribution of OpenVINO™ toolkit with reference implementations and pretrained model. Use it to develop and test your own computer vision applications, compare hardware performance, and choose the right platforms for your applications.

Intel® Edge Software Hub is a one-stop resource for edge computing software that provides production-quality software data and image processing, edge AI analytics, and computer vision applications.

Intel® Developer Zone for IoT brings together training materials, software tools, and development kits that can help you build, optimize, and deploy your IoT solutions.
More performance, more capabilities for IoT

UP TO 1.7X
improvement in SINGLE-THREAD PERFORMANCE gen over gen

UP TO 1.5X
improvement in MULTI-THREAD PERFORMANCE gen over gen

UP TO 2X
performance improvement in GRAPHICS gen over gen

Integrated FUNCTIONAL SAFETY and REAL-TIME COMPUTING

OUT-OF-BAND and IN-BAND Remote Management

See backup for configuration details for more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

4. Source: Intel. Claims based on a) SPEC CPU 2006 metric estimates based on Pre-Si projections and b) 3DMark11 estimates based on Pre-Si projections, using Intel® Pentium® J4205 as prior generation.

KEY FEATURES

Performance
- **More choices for IoT**: Two- and four-core options ranging from 1.0 GHz to 1.9 GHz (high-frequency mode) with burst frequencies up to 3.0 GHz
- **Room for faster RAM**: 4x32 LPDDR4/x @4267 MT/s, max (8 GB, 16 GB, @3200 MT/s); 2x64 DDR4 @3200 MT/s, max 32 GB
- **Error correction with standard RAM**: In-band error-correcting code (IBECC) corrects single-bit memory errors in standard, non-ECC memory
- **Rich, 4K graphics**: Intel UHD Graphics drives up to three independent 4Kp60 displays via DisplayPort 1.3 and HDMI 2.0b
- **Improved GPU performance for AI and computer vision**: Up to 32 execution unit (EU) cores can double as deep learning inference and computer vision engines

Hardware-based security
- **Intel® Platform Trust Technology (Intel® PTT)**: Provides integrated TPM 2.0 capability, reducing bill of materials cost and board area.
- **Intel® AES New Instructions (Intel® AES-NI), Intel® SHA Extensions, Intel® Secure Key**: Supports hardware-accelerated cryptography operations without compromising on productivity.
- **Intel® Boot Guard**: Mitigates against platform tampering using hardware root of trust.

Integrated IoT-specific services
- **Dedicated ARM offload engine for IoT workloads**: The Intel PSE uses an ARM microcontroller with dedicated hardware resources for real-time computing, network synchronization, and low-DMIPS computing. The Intel PSE can also host functions like out-of-band management and network proxies.
- **Integrated, real-time computing**: Intel TCC and TSN support worst-case execution time (WCET) and ultra-reliable low-latency communication (URLLC) at the device level and across networks of devices.
- **Certified for FuSa**: Intel Atom x6427FE and x6200FE processors meet IEC 61508 and ISO 13849 requirements for functional safety and safety integrity levels (SIL2/Cat.3 PL d certified, SIL3/Cat.4 PL e capable).
- **Intel Safety Island**: Integrated, functional safety IP works with the CPU to check for errors, flag and report faults, and orchestrate diagnostic tests (available on Intel Atom x6427FE and x6200FE processors).
- **Remote device management**: Monitor and manage devices using OOB (through wired Ethernet) capability when the OS is unresponsive and INB management (through Wi-Fi or wired Ethernet) to perform remote firmware and software updates.

Connectivity
- **Integrated Ethernet**: 3x 2.5GbE time-sensitive networking–enabled MACs
- **High-speed lanes**: Eight lanes/six ports PCIe 3.0, up to four USB 3.1 ports, 10 USB 2.0 ports, and up to two UFS 2.0 ports
Reference platform
Intel Atom x6000E Series and Intel Pentium and Intel Celeron N and J Series Processors
PLATFORM LINEUP

<table>
<thead>
<tr>
<th>Processor</th>
<th>Cores</th>
<th>Cache</th>
<th>CPU High-Frequency Mode</th>
<th>CPU Burst (Turbo) Mode</th>
<th>Graphics High-Frequency Mode</th>
<th>Graphics Burst (Turbo) Mode</th>
<th>Max TDP</th>
<th>In-Band ECC</th>
<th>Intel® Time Coordinated Computing</th>
<th>Intel® Safety Island</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Celeron® Processor J6413</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.8 GHz</td>
<td>3.0 GHz</td>
<td>400 MHz</td>
<td>800 MHz</td>
<td>10W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel® Pentium® Processor J6425</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.8 GHz</td>
<td>3.0 GHz</td>
<td>400 MHz</td>
<td>850 MHz</td>
<td>10W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel® Celeron® Processor N6211</td>
<td>2</td>
<td>1.5 MB</td>
<td>1.2 GHz</td>
<td>3.0 GHz</td>
<td>250 MHz</td>
<td>750 MHz</td>
<td>6.5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel® Pentium® Processor N6415</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.2 GHz</td>
<td>3.0 GHz</td>
<td>350 MHz</td>
<td>800 MHz</td>
<td>6.5W</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6211E Processor</td>
<td>2</td>
<td>1.5 MB</td>
<td>1.2 GHz</td>
<td>3.0 GHz</td>
<td>350 MHz</td>
<td>750 MHz</td>
<td>6W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6413E Processor</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.5 GHz</td>
<td>3.0 GHz</td>
<td>500 MHz</td>
<td>750 MHz</td>
<td>9W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6425E Processor</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.8 GHz</td>
<td>3.0 GHz</td>
<td>500 MHz</td>
<td>750 MHz</td>
<td>12W</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6212RE Processor</td>
<td>2</td>
<td>1.5 MB</td>
<td>1.2 GHz</td>
<td>N/A</td>
<td>350 MHz</td>
<td>N/A</td>
<td>6W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6414RE Processor</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.5 GHz</td>
<td>N/A</td>
<td>400 MHz</td>
<td>N/A</td>
<td>9W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6425RE Processor</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.9 GHz</td>
<td>N/A</td>
<td>400 MHz</td>
<td>N/A</td>
<td>12W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6427FE Processor</td>
<td>4</td>
<td>1.5 MB</td>
<td>1.9 GHz</td>
<td>N/A</td>
<td>400 MHz</td>
<td>N/A</td>
<td>12W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>FCBGA1493</td>
</tr>
<tr>
<td>Intel Atom® x6200FE Processor</td>
<td>2</td>
<td>1 MB</td>
<td>1.0 GHz</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.5W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>FCBGA1493</td>
</tr>
</tbody>
</table>
SOFTWARE OVERVIEW

Enhanced for IoT, Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series Processors support these operating systems, bootloaders, and SDKs.³

<table>
<thead>
<tr>
<th>Category</th>
<th>Operating systems, bootloaders, and SDKs</th>
<th>Implementation</th>
<th>Distribution and Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems⁴</td>
<td>Windows 10 IoT Enterprise (64-bit)</td>
<td>Intel</td>
<td>Intel, Microsoft</td>
</tr>
<tr>
<td></td>
<td>Yocto Project BSP tool-based embedded Linux distribution (64-bit)</td>
<td>Intel</td>
<td>Intel, Yocto Project community, ISV partners</td>
</tr>
<tr>
<td></td>
<td>Linux Ubuntu (64-bit)</td>
<td>Canonical Ltd.</td>
<td>Canonical Ltd.</td>
</tr>
<tr>
<td></td>
<td>Wind River Linux LTS distribution (64-bit)</td>
<td>Wind River</td>
<td>Wind River</td>
</tr>
<tr>
<td></td>
<td>Android 10 (64-bit)⁶</td>
<td>Intel</td>
<td>ISV partners</td>
</tr>
</tbody>
</table>

Boot firmware	UEFI/BIOS	IBVs	IBVs
Intel® Programmable Services Engine	Intel® Programmable Services Engine firmware (Zephyr RTOS‒based)	Intel	Zephyr RTOS ecosystem and open source community
Intel® Media SDK	Intel	Intel	
Intel® Distribution of OpenVINO™ toolkit	Intel	Intel	
Intel® System Studio	Intel	Intel	
Intel® Context Sensing SDK	Intel	Intel	
Intel® Time Coordinated Computing and time-sensitive networking software toolkit	Intel	Intel	

1. Not all SKUs include the Intel® Safety Island or support functional safety.
2. Not all SKUs support real-time computing, time-sensitive computing, or time-synchronous networking.
4. Source: Intel. Claims based on (a) SPEC CPU 2006 metric estimates based on Pre-Si projections and (b) 3DMark11 estimates based on Pre-Si projections, using Intel® Pentium® J4205 as prior generation.
5. Not all SKUs include every feature.
6. Not all features are supported in every operating system.
7. Android 10 (64-bit) availability to be determined.