tel.

Intel® IXP400 Digital Signal
Processing (DSP) Software

Version 2.6.2

API Reference Manual

February 2005

Document Number: 273811, Revision: 008
February 2005

Intel® IXP400 DSP Software |n

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECS, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This API Reference Manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, 486, i960, iICOMP, InstantlP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,

Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, Sound Mark, The Computer Inside, The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © Intel Corporation, 2005
*Other names and brands may be claimed as the property of others.

February 2005 DSP Software Version 2.6.2 API| Reference Manual
2 Document Number: 273811, Revision: 008

http://www.intel.com

[|
| n'tel . Intel® IXP400 DSP Software

Contents

O I [o1 (o Yo [o3 A o] I O PP P PP TOPPPPN 7
I R € 1= 0T = | PP P PP PP PPPPPPR 7
S 1ol o] o TP P PP PPPPPPPP 7
G T AN [0 1T oo = PP PP P PTP PP PPPP 7
o] (0] 017/ 14 I TP PP PP PPPPRPPRT 8
2.0 ATCHITECTUIAl OVEIVIBWiiiiiiiiiiiiiiee ettt ettt e et bt e e s st et e e e e st b e et e e s ek be e e e e s aanbeeeeesbreeeeenn 8
3.0 Media Processing Resource COMPONENTS......cciiiiiiiiiiiiiiiiiee ettt et e e e sbneee e 9
3.1 Network Endpoint Resource COMPONENTuuiiiiiiiiaaiaaiiiiiiiie e e e e e eeaaaa e 10
3.2 Decoder ReESOUICE COMPONENTcciiiiiiiititiee it et e e e e e ettt e et e e e e e e e s e s aabebbeeeeeeaaaaaaeaaaannns 11
3.3 Encoder ReSOUICE COMPONENTcciiiiiiiiiiiiiiiieite e e e e e e e e e e ettt e e e e e e e e e e e s e nnnbnbbeaeeeeaaaaaeas 13
3.4 Tone Generation Resource COMPONENT..........uuuiiiiiiiiiaaaea ittt e e e e e e eeeaaaeeas 15
3.5 Tone Detection ReSOUIrCe COMPONENTuuuiiiiiiiiiaiiaaa ettt e e e e e e e e e e e e s aeibeb e ereeeeaaaaeas 16
3.6 Audio Player Resource COMPONENTccuuuuiiiiiiitiaaae ettt e e e e e e e e e e e e s aiaebbebeeaeeeaaaaeaeas 17
3.7 Audio Mixer ReSoUrCe COMPONENT........oiiiiiiiiiieieeiie e e e et e e e e e e e e e e e e s e rnnbeb e eeeeeaaaaaaas 18
3.8 T.38 Fax ReSOUICE COMPONENT.......uuuiiiaiai e e e e e e e et et ettt ettt e e e e e e e e e e e aaaeeeeeseesrneeennnanas 18
3.9 Message Agent RESOUICE COMPONENT.ttt e e e e e e e e e e e eeeeeeeeeees 19
4.0 Message Format and Delivery MechanisSm ... 20
R (Y =T T L= [T 1 1 20
4.2 Message Header FOMMAL.........cciiiiiiiiii s e e e e e e e e e e e e e e e e 22
G T (V=T Vo L= I o= N1 22
5.0 COmMMON CONTIOI MESSAQE ..uuuuuuiiiiii et i ettt e e e e e e e e e e e e e e et e e e e e e e e e s e e e aeeaaaaaens 24
5.1 RESEEMESSAGEccciiiiiiiiiiiiieiet e e e e e e e n e 24
5.2 SHAI IMESSAGE ... utttieiiiiiiee ettt e e e e et e e e e e e a e 24
5.3 SEOP MESSAGEeuiieiiiiiieeeii ettt e et a e e e e e 25
B4 PING MESSAQE e ittt ettt ettt ettt e e ettt e e e bt e e bbb e e e e e b e e e e s et e e e e e abreeee e 25
5.5 St Parameter MESSAQEuuuiiieiiiiiiieee ettt e et e e e 25
5.6 Set Multiple-Parameter MESSATEeeiiiiiiiiiiiiiee ittt e st e e e e ee e 26
5.7 Get Parameter MESSAGTE.cciieiiiiiiiiie e e ettt e e e e e s et e e e e e e 27
5.8 Get Parameter ACKNOWIEAGE MESSAJEoiuuvieiiiiiiiiii ettt 27
5.9 Get All PArameters MESSAQEuuutiieiiiiiiiie e ettt ettt e sttt ettt e e s bbb e e e s e e e s aanneeee s 27
5.10 Get All Parameters ACKNOWIEAJE MESSAGEeeeiiiiiiiiieiiiitiiiie ettt e e 28
5.11 General ACKNOWIEAJE MESSATEuuveiiieiiiiiiee ettt ettt e e e e e e st eee e e e 28
5.12 EITOIN IMESSAGE ..eeeeiiiiieieie ettt e e e e e et e ettt e e e e e e e s e s e ettt e e e e e e s e s n e e e e e e 29
5.13 EVENTMESSATE .. .etteeiiiiiieee e ettt e et ettt et e e et e et e et et e e e e a e ae s 29
6.0 Resource-Specific CONTrOl MESSAGEScoiuiriiiiiiiiiii ettt 29
6.1 CODEQC StAIt MESSAGE.cuuteuuttututiaaa e e e e e e e e e e e e et e ettt aeaetaba bbb s s s e e e e e aaaaaaeaeaeeeeeessssnrnnes 30
6.2 CODEC Stop Acknowledgement MESSAGEccuuiaiaeiiiiiiiiiiiiiiieee e e e e e e et ree e e e e e e e e e 30
6.3 Tone Generator Play MESSAQEccui ittt ettt e e e e e e e e eeeeaaaae s 31
6.4 Tone Generator Play FSK MESSAJEccccuuuuiiiiiiiiiaaaa ettt e e e e e e 31
6.5 Tone Generator Play Completed MESSAQJEccuiiiiieiiiiiiiiiiiiiiieeee et 32
6.6 Tone Detector Receive Digit MESSATEcuuuuiiiiiiiiiiaaaaie ettt e e e e e 32
6.7 Tone Detector Receive Completed MESSAJEuueiiiiiiaaiiiiiiiiiiieee e 33
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 3

[|
Intel® IXP400 DSP Software | n'tel .

6.8 Tone Detector RECEIVE FSK MESSAQEuuueiiiiiiiieeiieiiiiiiitiiieeet e e e e e e e e e e e e e e e sninees 33
6.9 Tone Detector FSK Receive Completed MESSAQEccuviiiiiiiiiiiiiiiiiiieiee e 34
B.10 Player STArt MESSAQE .. .uueeeiieiae ettt e e e e e e e ettt ettt e e e e e e e e s s e bbb bebeeeeaaaaeeeeeeaanannneees 34
6.11 Player Play Completed MESSAGE.uuiiiii ittt e et e e e e e e e e e e eebaeeeeee e 35
6.12 Get Jitter Buffer StatiStiCS MESSAGE.uuuiiiii ittt 36
6.13 Complete Message of Getting Jitter Buffer StatiStiCsoooviiiiiiiiiiiiii e, 36
6.14 T.38 SESSION STAr MESSAUE. .. .cicceuutiieiiitiei e e ettt et e e e e e e e e e b e b e eeeeaaaaeeeaaaannebebeees 37
6.15 T.38 SeSSiON COMPIEE MESSAQE ... uuuuurtiiiiiiiiiaiee e e ettt et e e e e e e e e e s eebbbb e e e e aaaeeeaaeaannenes 37
7.0 Packet Data INtEITaCEcooiiieie ettt e e e e e e et b e e e e e e e e e eaanbbnee e 37
7.1 PACKET FOIMALS. ...ttt ettt e e et e e e e e e e s et bbb e e e e e e e e e e e e e e annnneees 37
7.2 Packet Delivery MEChaNISIMcooiiiiiiee e a e e e e e aaeeees 39
8.0 Configuration and INItIAliZAtiON ... e 39
8.1 System Configuration with HSS INterface...........cccoovvieiiiiiieie e 40
8.2 System Configuration with External PCM Interface.........c.cccoovevviiiiiiieiiiiie e, 42
ESTRC I Ao [0 1o o I o a T=TS30 (o I o 0 [= B C1=T a =T = L (o) S 43
8.4 Change the DTMF TONE PArameELterSuuuiiiiieiieeeieiiiiiiieiieeeeeeeeeeesssssnnreeaeeeeeeaeeeseeannnnnnes 44
8.5 Adding TONES t0 TONE DEIECION.......ccceeeeiiiiieeie e e e e e e e s et r e e e e e e e e s s s e e eeeaeeeseesnnnnnes 44
8.6 Amplitude Check in TONE DELECHIONovvviieeeei it ee e e e e e e nrreeee s 45
8.7 Getting DSP Resource Configuration and Routing Information...........cccccceeevviiiiivinvennnnn. 46
9.0 Complementary FUNCLIONS ...oiiiiiii i e e s e st e e e e e e e e e e s an et e e e e e e e e e e e s e ansnnnnsrnreees 46
9.1 DIreCt Par@meter ACCESS ...cciiiiiieiei ittt et et e e e e ettt et e e e e e e e e e s s e ebbbbebeeeaaaaeaeaaeaannnne 46
9.2 FIash HOOK DEIECLIONceiiiiiiiiiiiiite ettt e e e e e e e e e e s neneaeeeees 47
9.3 Cache Prompt RegiStration...........ooii ittt e e e e e e e e sneaes 48
9.4 Gt VersioN NUMDENooiiiii ettt e e et e e e e e e e e e e e e anenneeees 48
9.5 External PCM Interface SyNChronizationcc.uuueeiiiiiiiiiiiiiiieeeeeee e 49
10.0 CONSEANT DALAuuuiiiie e e e e e e e e e e e et et et e et e e et tee b et b e e e e e e e e e e e e aeeaaaaaaaaaaaaas 49
O R =1 ¢ (o] 6 To [PP PTU TP PP PUPPP 49
L10.2 EVENE COUBS ... ettt e e e e e ettt ettt e e e e e e e e s e e bbbt e e e e et e e e e e e e e e e e nneneees 50
O B o g =N 1 I E PP PP 51
10.4 Other CONSTANTS. .. .uuuttiiieeeiie ettt e e e e e s e e et e e e e e e e e e s e s aeabb et e e eeeeaaeaeeeeaaannnnnneees 54
Figures
1 Architecture of INtel® IXPA00 DSP SOfWAIEc.covvivieeereeeeeeeeeeeseseeseee s s s 9
2 Resource Component [AENTIFIEISuuueiiiiiii i e e e e e e e e e e e nanrrnaeees 10
February 2005 DSP Software Version 2.6.2 API Reference Manual
4 Document Number: 273811, Revision: 008

[|
| n'tel . Intel® IXP400 DSP Software

Revision History

Date Revision Description
February 2005 008 Updates for the release of Intel® IXP400 DSP Software v2.6.2.
Further updates for the release of Intel® IXP400 DSP Software
September 2004 007 v2.5. Change bars indicate areas of change.
June 2004 006 Updates for the release of Intel® IXP400 DSP Software v2.5.
Updates for the release of Intel® IXP400 DSP Software
January 2004 005 Version 2.4.
September 2003 004 fCla\rlf_led input for XStatus t xMsgReceive message
unction.
Updates for the release of Intel® IXP400 DSP Software
September 2003 003 version 2.3
Added minor updates to represent features of Intel® IXP400
March 2003 002 DSP Software Version 1.1.
January 2003 001 First release of this document.
API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 5

Intel® IXP400 DSP Software

This page is intentionally left blank.

February 2005 DSP Software Version 2.6.2
6 Document Number: 273811, Revision: 008

API Reference Manual

1.0

1.1

1.2

1.3

Intel® IXP400 DSP Software

Introduction

The Intel® IXP400 DSP Software v2.6.2 Release is a software module that provides the basic voice
processing functionalities for VoIP residential gateway applications. It can be viewed as a
completed media processing layer with control and data interfaces as its API.

This document defines the API specifications.

General

The Intel® 1XP400 DSP Software is a software module for media processing, targeted for next
generation 1ADs such as Consumer Premises Equipment (CPE), specifically, to perform audio
encoding/decoding, echo cancellation, tone processing and jitter control, etc., as required in any IP
media gateway or real-time media streaming functionalities.

This document is intended to describe the control and data interfaces in order for a third party
developer to incorporate the module into a media gateway or server system. It provides sufficient
details of the interfaces so that the user can fully configure and control the operations and services.

It additionally describes the data interface and format as well as message and data delivery
mechanisms.

Scope

The interface of Intel® IXP400 DSP Software is a set of functions, macros, and message and
packet formats that determines how the applications access the media processing resource
components.

Audience

This document is intended for the following audiences:
* Firmware engineers who are responsible for the development of DSP Resources
¢ Third party software engineers who are building a gateway or server application
¢ System architects and engineers
* Project development managers

API| Reference Manual DSP Software Version 2.6.2 February 2005
7

Document Number: 273811, Revision: 008

Intel® IXP400

1.4

2.0

February 2005
8

DSP Software

Acronyms

AGC
ALC
CPE
EC
FEC
FSK
IP
ISR
NLP
SP
VAD

intel.

Automatic Gain Control for voice data towards IP network
Automatic Level Control

Consumer Premise Equipment

Echo Cancellation

Forward Error Correction

Frequency Shift Keying

Internet Protocol

Interrupt Service Routine

Non-linear Processing (for EC)

Signal Processing

\oice Activity Detection

Architectural Overview

Intel® 1XP400 DSP Software is implemented as an independent module having its own tasks and
runtime environment. The software architecture is of a two-layer hierarchy — a control layer that
provides the control interface and control logic, and a data processing layer where the media data
streams are processed by appropriate algorithms. Figure 1 shows the architecture of the module.

In this architecture, a group of Media Processing Resource (MPR) components forms a channel for
full duplex media processing. They are the addressable entities that can be controlled individually

by the applications.

DSP Software Version 2.6.2 API Reference Manual

Document Number: 273811, Revision: 008

intel.

Figure 1.

3.0

Intel® IXP400 DSP Software

Architecture of Intel® IXP400 DSP Software

[Intel® IXP400 DSP Software Client j
A A User-Defined
Control Replies and Control
Messages Events Messages
and Replies
y .
Intel® IXP400 DSP User-Defined
Software Control Interface Control Interface
A A
\ \
Common Control Logic and Message
Generic Control Engine Agent
A

A
Network Decoder Tone Tone Audio Audio
Endpoint Generator Detector Player Mixer
A

Control Layer

v Data Processing Layer
PCM Data-Processing
SLIC Data Algorithms and Packet
Interface Interface

Components
Interface p Encoded

Data Packets

A4

[Real-Time Execution Environment]

Sync

Revision 002

Media Processing Resource Components

As shown in Figure 1, the addressable control entities of DSP software are Media Processing
Resource (MPR) components. There are nine resource components, working together to provide
all the media processing needed by a gateway or server channel. Each resource component has a
unique identifier as shown below. In the following, we will refer to each of these nine media
processing entities as either a resource or a resource component.

API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 9

[|
Intel® IXP400 DSP Software | n'tel .

Figure 2.

3.1

February 2005

10

Resource Component ldentifiers

typedef enum{
XMPR_ANY=0, /* any resource, not currently supported */
XMPR_NET, /* Network Endpoint resource */
XMPR_DEC, /* Decoder resource */
XMPR_ENC, /* Encoder resource */
XMPR_TNGEN, /* Tone generator resource */
XMPR_TNDET, /* Tone detector resource */
XMPR_PLY, /* Audio player resource */
XMPR_MIX, /* Audio mixer resource */
XMPR_T38, /* T38 IP fax resource */
XMPR_MA /* Message Agent resource */

} XMPResource_t;

Each resource contains a particular set of algorithms to perform a specific set of media-processing
functions. For example, the Network Endpoint resource consists of echo cancellation, high pass
filter and PCM A-law or p-law conversion algorithms to perform TDM front-end processing. Each
resource, therefore, has a unique set of parameters associated with the particular set of algorithms it
contains.

Communications of control information to these resource components are through messages
defined in this document. Some messages are common to all the resources while others are unique
only to a particular resource.

The following sections describe each resource in terms of their identifiers, media processing
functions, parameters, and control messages. The resource parameters can be read or modified by

the messages or direct function calls. Some of the parameters can only be set though the messages
because they can only be updated by the internal control task.

Network Endpoint Resource Component

Resource Type: XMPR NET

Media Processing Functions

* A-law or p-law compression and decompression
* High pass Filter
* Echo Cancellation (EC)

* Supplementary functions (timer and flash hook detection)

Resource-Specific Control Messages: None

DSP Software Version 2.6.2 API Reference Manual
Document Number: 273811, Revision: 008

Intel® IXP400 DSP Software

Parameters
Identifier Description, Values Attr Direct
’ " | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID NET LP STREAM The L-Port stream ID. Def'ault:' the stream assigned to the IP termination’s T- RIW N
- - = Port of the same channel if exist, otherwise —1.
PCM data format on HSS TDM bus. XPARM NET ALAW or
XPARMID_NET_LAW XPARM NET MULAW. RIW N
Default: XPARM NET MULAW
EC enabling flag, XPARM ON or XPARM OFF.
XPARMID_NET_ECENABLE - - R/W Y
Default: XPARM ON
EC tail length (2, 4, 6, 8, ... in 1 ms unit, Max 128 in narrowband mode and 64
XPARMID_NET_ECTAIL in wideband mode). RIW N
Default: 6. The resource must be reset after setting the parameter.
EC NLP and suppress flag, XPARM OFF, XPARM EC NLP ON or
XPARMID_NET_ECNLP XPARM EC_NLP_ SUP_ON. RIW N
Default: XPARM OFF
EC freezing flag, XPARM ON (freeze) or XPARM OF'F (adaptive).
XPARMID_NET_ECFREEZE Typically, freeze is used only in debug situations. Default: XPARM OFF RIW N
EC delay compensation (0 ~ 240 in 0.125-ms units).
XPARMID_NET_DELAYCOMP] R/W Y
- - Default: 20 (or 2.5 ms delay compensation)
The window of flash hook detection (in 10-ms units)
XPARMID_NET_FLASH_HK R/W Y
Default: 100
Timer counter (in 10 ms unit). This timer can be used for timing that is
XPARMID_NET_TIMER synchronized to the TDM clock. RIW Y
Default: 0
Input gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_RX R/W N
- - - Default: 0
Qutput gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_TX RIW N
Default: 0
TDM short bypass flag, XPARM ON or XPARM OFF. The low latency
connection made within NPE between the corresponding time slots if
XPARMID_NET_HSS_BYPASS |gnapled. Do not enable it in wideband mode. RIW N
Default: XPARM OFF
Events
* XEVT NET HOOK STATE — Hook state change detected.
* XEVT NET TIMER — Timer expired.
3.2 Decoder Resource Component
Resource Type: XMPR DEC
API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 11

Intel® IXP400 DSP Software

Media Processing Functions

* Decoding

* Automatic level control and/or volume control

* Comfort noise generation

¢ Jitter compensation

Resource-Specific Control Messages

* XMSG_CODER START (inbound)

®* XMSG CODER STOP ACK (outbound)

Parameters

Identifier

Description and Values

Attr.

Direct
Write

XPARMID_RES_STATE

Current state (O: idle, 1: active)

N

XPARMID_DEC_VOL

Decoder volume adjustment; +15 ~ -40 in 1-dB units.
Default: 0 (Set to -99 to mute)

R/W

N

XPARMID_DEC_ALC

ALC enable flag. XPARM ON or XPARM OFF.
Default: XPARM ON

R/W

XPARMID_DEC_CNG

CNG enable flag. XPARM ON or XPARM OFF. Default:
XPARM OFF

R/W

XPARMID_DEC_CTYPE

Coder type. Currently supported types are

XCODER_TYPE G711MU_10MS,

XCODER TYPE G711A 10MS, XCODER TYPE G729A
or XCODE_TYPE G723, XCODER TYPE G722,

XCODER TYPE G726 40, XCODER TYPE G726 32,
XCODER_TYPE G726 24, XCODER TYPE G726 16,
and XCODER_TYPE_G729.

Default: XCODER_TYPE G711MU_10MS

R/W

XPARMID_DEC_EVT_PKT

Report bad and lost packet, caused by the jitter buffer unable to

Default: XPARM OFF

provide packets to the decoder. XPARM ON or XPARM OFF.

R/W

XPARMID_DEC_EVT_PKTCHNG

Report RTP payload type change. XPARM ON or
XPARM OFF.

Default: XPARM ON.

R/W

XPARMID_DEC_AUTOSW

Auto-Switch mask bits. This specifies which coder types are
allowed to be auto-switched based on input RTP payload type.

Default: XPARM _DEC_AUTOSW_ALL

R/W

XPARMID_DEC_JB_MAXDLY

Jitter buffer maximum delay (0 ~ 500 in 1-ms units).
Default: 200.

R/IW

XPARMID_DEC_JB_PLR

Jitter buffer packet loss rate in 0.1% units.
Default: 1

R/W

February 2005
12

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

API Reference Manual

|n Intel® IXP400 DSP Software

. o Direct
Identifier Description and Values Attr. Write
RTP payload type for G.726 40-Kbps coder. The payload type is
negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_40_RTP_PLD | {57, R/IW Y
Default: 96
RTP payload type for G.726 32-Kkbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_32_RTP_PLD |17, RIW Y
Default: 97
RTP payload type for G.726 24-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_24 RTP_PLD |{57. RIW Y
Default: 98
RTP payload type for G.726 16kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_16_RTP_PLD | {57 RIW Y
Default: 99
G.726 packing format. Setto XPARM G726 PACK LSB for RFC
XPARMID_DEC_G726_PACK]':%OSrEr;‘lalzormat, or XPARM G726 PACK MSB for 1.366.2 Annex E RIW N
Default: XPARM G726 PACK_LSB
Events
®* XEVT LOST PACKET — Bad or lost packet.
* XEVT DEC_PACKET CHNG — RTP payload type changed.
3.3 Encoder Resource Component
Resource Type: XMPR_ENC
Media Processing Functions
¢ Encoding
* Automatic Gain Control
¢ \oice Activity Detection
Resource-Specific Control Messages
* XMSG CODER START (inbound)
* XMSG CODER STOP ACK (outbound)
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 13

Intel® IXP400 DSP Software |n

Parameters

Direct

Identifier Description and values Attr. Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

L-Port stream ID. Default: the stream assigned to the TDM termination’s

XPARMID_ENC_LP_STREAM T-Port of the same channel if exist, otherwise —1.

R/W N

AGC enable flag. XPARM ON or XPARM OFF.

XPARMID_ENC_AGC
Default: XPARM OFF

R/IW N

VAD enable flag. XPARM ON or XPARM OFF.

XPARMID_ENC_VAD
- - Default: XPARM OFF

R/W N

Coder type. Currently supported types are

XCODER TYPE G711MU_10MS,

XCODER_TYPE G711A 10MS, XCODER _TYPE G729A or
XCODE TYPE G723,

XCODER _TYPE G722,XCODER TYPE G726 40,
XPARMID_ENC_CTYPE XCODER TYPE G726 32, RW | N
XCODER TYPE G726 24,
XCODER_TYPE G726 16,
and XCODER TYPE G7209.

Default: XCODER _TYPE G711MU_10MS

Number of frames per packet. Supported range is 1~6 for G.711 and
G.722, 1~8 for G.723, 1~9 for G.726 40 Kbps, 1~12 for G.726 32 Kbps,
XPARMID_ENC_MFPP 1~16 for G.726 24 Kbps, and 1~24 for G.729 and G.726 16 Kbps. RW | N

Default: 1.

Enable packet lost event. XPARM ON or XPARM OFF.

XPARMID_ENC_EVT_PKT
- - - Default: XPARM OFF

R/W Y

RTP payload type for G.726 40-Kbps coder, The payload type is
XPARMID_ENC_G726_40_RTP_PLD |negotiated and set by the call stack. The range of values is 96 to 127. R/W Y

Default: 96

RTP payload type for G.726 32-Kbps coder, The payload type is
XPARMID_ENC_G726_32_RTP_PLD |negotiated and set by the call stack. The range of values is 96 to 127. R/W Y

Default: 97

RTP payload type for G.726 24-Kbps coder, The payload type is
XPARMID_ENC_G726_24 RTP_PLD |negotiated and set by the call stack. The range of values is 96 to 127. R/W Y

Default: 98

RTP payload type for G.726 16-Kbps coder, The payload type is
XPARMID_ENC_G726_16_RTP_PLD |negotiated and set by the call stack. The range of values is 96 to 127. R/W Y

Default: 99

G.726 packing format. Set to XPARM G726 PACK_LSB for RFC 3551
XPARMID_ENC_G726_PACK format, or XPARM G726 PACK_MSB for 1.366.2 Annex E format. R/W N

Default: XPARM G726 PACK LSB

Encoder gain adjustment, +15 ~ — 40 in 1-dB units.
XPARMID_ENC_VOL R/W N
Default: 0 (Set to -99 to mute)

Events

* XEVT LOST PACKET — Bad packet.
* XEVT DEC PACKET CHNG — Received RTP payload type changed.

February 2005 DSP Software Version 2.6.2 API| Reference Manual
14 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

3.4 Tone Generation Resource Component

Resource Type: XMPR_TNGEN

Media Processing Functions

¢ Generating multiple frequency tone signals

¢ Generating call progress tones
Resource-Specific Control Messages

* XMSG TG PLAY (inbound)
* XMSG_TG PLAY FSK (inbound)
* XMSG TG PLAY CMPLT (outbound)

Parameters
Identifier Description and values Attr. Dm.eCt
Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
Tone Generator’s volume adjustment, +15 ~ —20 in 1-dB units.
XPARMID_TNGEN_VOL R/W N

Default: 0

FSK modulator mode. XPARM TNGEN FSK V23 or
XPARM TNGEN FSK B202.

XPARMID_TNGEN_FSK_MOD Default: XPARM TNGEN_ FSK B202 if country code set to RIW Y
COUNTRY_ CODE_US or COUNTRY CODE PRC, otherwise
XPARM TNGEN FSK V23

CS bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_CS Default: 300 if country code setto COUNTRY CODE_US or RIW Y
COUNTRY CODE_PRC, otherwise 0.

Mark bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_MARK | Default: 180 if country code setto COUNTRY CODE_US or RIW Y
COUNTRY CODE PRC, otherwise 100.

FSK modulator baud rate (XPARM TNGEN FSK R1200,
XPARM TNGEN FSK_R600, XPARM TNGEN FSK R300,
XPARMID_TNGEN_FSK_RATE |xpARM TNGEN FSK_R150 or XPARM_TNGEN_ FSK_R75). RIW N

Default: XPARM TNGEN FSK R1200, i.e., 1200 bps

Postmark bit length of FSK modulator (in bit unit)

XPARMID_TNGEN_FSK_POSTMK RIW Y
- - - Default: 72
RFC2833 enable flag. XPARM ON or XPARM OFF.
XPARMID_TNGEN_RFC2833 - - RIW N
Default: XPARM ON
Events
None.
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 15

Intel® IXP400 DSP Software |n

®
3.5 Tone Detection Resource Component
Resource Type: XMPR_TNDET
Media Processing Functions
* Receiving DTMF digits
¢ Detecting individual tone event
Resource-Specific Control Messages
* XMSG TD RCV (inbound)
® XMSG_TD RCV_FSK (inbound)
®* XMSG TD RCV CMPLT (outbound)
®* XMSG TD RCV FSK CMPLT (outbound)
Parameters
Identifier Description and values Attr Direct
P “ | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
L-Port stream ID. Default: the stream assigned to the DTM
XPARMID_TD_LP_STREAM termination’s T-Port of the same channel if exist, otherwise —1. RIW N
Tone Clamping enable flag. XPARM ON or XPARM OFF.
XPARMID_TD_TC Default: XPARM _OFF - - RIW 1Y
Tone Clamping buffer size. 0 ~ 3 in 10 ms unit.
XPARMID_TD_TC_FRAMES RIW N
Default: 3
Tone event enable flag. XPARM OFF,
XPARM TD RPT TONE_ON,
XPARMID_TD_RPT_EVENTS XPARM TD_RPT_TONE_OFF or RIW Y
XPARM TD RPT TONE ON OFF.
Default: XPARM OFF
RFC2833 event enable flag. XPARM ON or XPARM OFF.
XPARMID_TD_RFC2833E_ENABLE - - R/W Y
Default: XPARM OFF
RFC 2833 packet rate in 10-ms units, i.e., the period between
XPARMID_TD_RFC2833E_UPDATERATE the packets generated when a tone event is detected. R/W N
Default: 5
Redundancy of end-of-event packet. Range 0-255.
XPARMID_TD_RFC2833E_NUMEOE R/W Y
Default: 3
Redundancy of begin-of-event packet. Range 0-255.
XPARMID_TD_RFC2833E_NUMBOE R/W Y
Default: 0
Flag of audio encoding suppression when event detected.
XPARMID_TD_RFC2833E_AUDIOSUPRESS |XPARM ON or XPARM OFF. RIW N
Default: XPARM ON
February 2005 DSP Software Version 2.6.2 API| Reference Manual

16 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

Direct

Identifier Description and values Attr. Write

RFC 2833 Payload type, Range is in the RTP dynamic payload
XPARMID_TD_RFC2833E_PAYLOADTYPE |type range of 96 to 127. RIW Y
Default: 0x65.

Minimum CS-bit length required by FSK receiver. Default: 200
XPARMID_TD_FSK_CS if country code set to COUNTRY CODE_US or R/W Y
COUNTRY CODE_PRC, otherwise 0.

Minimum mark-bit length required by FSK receiver. Default:
XPARMID_TD_FSK_MARK 100 if country code setto COUNTRY CODE_US or R/W Y
COUNTRY CODE_PRC, otherwise 60.

Extra stop bits allowed between data.
XPARMID_TD_FSK_STOP R/W Y
Default: 20

XPARMID_TD_FSK_RATE Baud rate of FSK receiver. (Reserved for future, currently only

support 1,200 bps rate) RIW Y

Events

®* XEVT CODE_TD_ TONEON - tone on event for an individual tone

* XEVT CODE_TD_ TONEOFF — tone off event for an individual tone

Event datal gives the tone ID and data2 gives the time stamp in 10-ms units.

3.6 Audio Player Resource Component

Resource Type: XMPR PLY

Media Processing Functions

* Play back recorded audio data.

Resource-Specific Control Messages

* XMSG_PLY START (inbound)
* XMSG_PLY CMPLT (outbound)

Parameters
Identifier Description and values Attr Direct
P ’ Write
XPARMID_RES_STATE Current state (0O: idle, 1: active) R N
XPARMID_PLY_VOL Volume adjustment (+15 ~ —30 in 1dB unit), Default: 0 R/W N
Events
None.
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 17

[|
Intel® IXP400 DSP Software | n'tel .

3.7 Audio Mixer Resource Component

Resource Type: XMPR MIX

Media Processing Functions

Mixing multiple audio streams for three-way call or small audio conference. The maximum
number of parties to the mixer is currently five.

Resource-Specific Control Messages

None.
Parameters
Identifier Description and values Attr. B\i/rricet
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID_MIX_LP_STREAM The first L-Port stream ID. Default: -1 R/W N
XPARMID_MIX_LP_STREAM+1 The 2nd L-Port stream ID. Default: -1 R/W N
XPARMID_MIX_LP_STREAM+n-1 The nth L-Port stream ID. Default: —1 R/W N
Events
None.
3.8 T.38 Fax Resource Component
Resource Type: XMPR_T38
Media Processing Functions
* Real-time fax gateway between TDM interface and IP network
Resource-Specific Control Messages
* XMSG_T38 START (inbound)
* XMSG_T38 CMPLT (outbound
February 2005 DSP Software Version 2.6.2 API| Reference Manual

18 Document Number: 273811, Revision: 008

Intel® IXP400 DSP Software

Parameters
Identifier Description and Values Attr Dir(_ect
’ Write
XPARMID_RES_STATE Current state (O: idle, 1: active) R N
Flag of enabling support of ellipsis added to Internet Fax Protocol in T.38
XPARMID_T38 ELLIPSIS Corrigendum 1 (2001). XPARM_ON or XPARM_OFF. R/W N
Default: XPARM_OFF
Flag of enabling FEC. XPARM ON or XPARM OFF.
XPARMID_T38_FEC - - RIW N
Default: XPARM OFF
Redundancy level, (0 ~ 7)
XPARMID_T38_REDUNDANCY R/W N
- = Default: 0
Method of modem rate negotiation. XPARM_T38_ RATE_NEG_LOCAL
or XPARM_T38_RATE_NEG_REMOTE.
XPARMID_T38_RATE_NEG - - N) R/W N
- = - Default:XPARM_T38_RATE_NEG_REMOTE if packet transferred over
UDP, otherwise XPARM_T38 RATE_NEG_LOCAL
TCF error threshold (in percentage). Only applies if local modem rate
XPARMID_T38 _TCF_THRSHLD |negotiation is selected. RIW N
Default: 5
Protocol used to transfer T.38 packets over IP network.
XPARMID_T38 _TRANS_UDP or XPARMID_T38 TRANS_TCP (only
XPARMID_T38_TRANSPORT XPARMID_T38_TRANS_UDP is supported in this release). RIW N
Default : XPARMID_T38_TRANS_UDP
T.38 mode, XPARM_T38_MODE_ITU or
XPARMID_T38_MODE XPARM_T38_MODE_CHINA. R/W N
Default: XPARM_T38_MODE_ITU
Enable China T.38 disconnect message generation. Applies only if
XPARMID_T38_DISCONNECT China T.38 mode is selected. XPARM_ON or XPARM_OFF. R/W N
Default: XPARM_OFF
Number of FEC messages per UDPTL packet when FEC is enabled.
XPARMID_T38_FEC_NMESSAG |(1 - 5) RIW N
ES
Default : 2
Number of previous packets per FEC message when FEC is enabled.
XPARMID_T38_FEC_NPACKET (5 - 3) RIW N

S

Default : 2

Events

XEVT T38 END — End of the T.38 session. Event Data 1 gives the reason of the termination.

3.9

Message Agent Resource Component

Resource Type: XMPR_MA

Media Processing Functions

* No media processing function.

API Reference Manual

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

February 2005

19

Intel® IXP400 DSP Software

* Converting the user-defined messages and executing the control accordingly.

Resource-Specific Control Messages

None.
Parameters
Identifier Description and values Attr. D'“?Ct
Write
XPARMID_RES_STATE Current state (0O: idle, 1: active) R N
Enable trace during processing user’'s messages. XPARM ON or
XPARMID_MA DEBUG |XPARM OFF RIW v
Default: XPARM_OFF

4.0

4.1

Events

None.

Message Format and Delivery Mechanism

There are two message queues (in-bound and out-bound) for the user application to send control
messages and to receive response and event messages, respectively. The message queues are
created from pre-allocated memory buffers in consideration of maximum message size and total
number of messages. The entire message header and content are copied to/from the buffers in the
message queue during message transmitting and receiving. The memory used for messaging is not
shared between the message sender and the receiver.

Message Functions

Three functions are provided to send and receive messages.

XStatus_t xMsgSend (void *pMsgBuf);

Description Sends a control message to the in-bound message queue
Input pMsgBuf — Pointer to the message buffer.
Output None
e XSUCC — If successful
Return
¢ XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note Message buffer can be used for any other purpose after sending.

February 2005

20

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

API Reference Manual

Intel® IXP400 DSP Software

XStatus_t xMsgReceive (void *pMsgBuf, UINT16 channel, int timeout);

Description Receives acknowledgement or event from the outbound message queue.
* pMsgBuf - Pointer to the message buffer
* channel - Channel number. (Reserved for future extension)
Input * timeout - Waiting flag
— XWAIT NONE — If return immediately
— XWAIT FOREVER — If never time out (no other values are valid.)
Output None
* XSUCC — If successful
Return
* XERROR — If errors
Caution Message buffer requires 4-byte alignment. The receiving buffer must fit the maximum

message size. Cannot be called from ISR.

XStatus_t xMsgWrite (void *pMsgBuf);

Posts a message (e.g. an user defined external event message) to the out-bound queue so

Description that it can be retrieved by XMsgReceive ().
Input pMsgBuf — Pointer to the message buffer.
Output None
* XSUCC — If successful
Return
* XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note The message buffer can be used for any other purpose, after posting.

API Reference Manual

DSP Software Version 2.6.2

February 2005
Document Number: 273811, Revision: 008 21

Intel® IXP400 DSP Software

4.2 Message Header Format
typedef struct{
UINT32 transactionId; /* used by apps to track the message */
UINT16 instance; /* instance ID (1-0xffff), O:reserved */
UINTS8 resource; /* MPR resource type */
Format UINTS reserved; /* reserved for future */
UINT16 size; /* total size in bytes */
UINTS type; /* message type */
UINTS8 attribute; /* attribute, reserved for future */
} XMsgHdr_t, *XMsgRef_ t_t;
Caution | Message content must follow the header in contiguous memory.
#define XMSG_MAKE_HEAD (pMsg, trans, res, inst, sz, typ, attr) \
((XMsgRef_t) (pMsg)) ->transactionId = trans;\
((XMsgRef_t) (pMsg)) ->instance = inst;\
Macros ((XMsgRef_t) (pMsg)) ->resource = res;\
((XMsgRef_t) (pMsg)) ->reserved = 0;\
((XMsgRef_t) (pMsg)) ->size = sz;\
((XMsgRef_t) (pMsg)) ->type = typ;i\
((XMsgRef_t) (pMsg)) ->attribute = attr;

4.3 Message Type List

All message types are pre-defined as:

February 2005
22

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

API Reference Manual

INtal.

Intel® IXP400 DSP Software

Typedef enum{
XMSG_BEGIN =0,
XMSG_RESET,
XMSG_START,
XMSG_STOP,
XMSG_PING,
XMSG_SET_PARM,
XMSG_SET_MPARMS,
XMSG_GET_PARM,
XMSG_GET_PARM_ACK,
XMSG_GET_ALLPARMS,
XMSG_GET_ALLPARMS_ACK,
XMSG_ACK,
XMSG_ERROR,
XMSG_EVENT,
XMSG_CODER_START,
XMSG_CODER_STOP_ACK,
XMSG_TG_PLAY,
XMSG_TG_PLAY_FSK,
XMSG_TG_PLAY_CMPLT,
XMSG_TD_RCV,
XMSG_TD_RCV_CMPLT,
XMSG_TD_RCV_FSK,
XMSG_TD_RCV_FSK_CMPLT,
XMSG_PLY_START,
XMSG_PLY_CMPLT,
XMSG_GET_JBSTAT,
XMSG_GET_JBSTAT_CMPLT,
XMSG_T38_START,
XMSG_T38_CMPLT,
XMSG_END

} XMsgType_t;

/* Begin list */
/* reset a resource */
/* start media processing a SP resource */
/* stop a current action on a SP resource */
/* ping a SP resource */
/* set a parameter on a SP resource */
/* set multiple parameters on a SP resource */
/* get a parameter from a SP resource */
/* acknowledgement to get parameter message */
/* get all parameters from a SP resource */
/* acknowledgement to get all parameter message */
/* general acknowledgement message */
/* error message from SP resource */
/* event message from SP resource */
/* start a codec resource */
/* acknowledgement to stop message */
/* play a digit string on a TG instance */
/* play FSK modulated data */
/* play-completed message from a TG instance */
/* receive a digit string on a TD instance */
/* receive-completed message from a channel */
/* receive a FSK signal on a TD instance */
/* receive-completed message from TD instance */
/* start playing audio on a Player instance */
/* play-completed message from Player */
/* get jitter buffer statistics from Dec */
/* response to the get-JB-statistics msg */
/* start T.38 resource */
/* T.38 session complete message */

/* end of list */

API Reference Manual

DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 23

Intel® IXP400 DSP Software |n

®
5.0 Common Control Message
This section defines the control messages that can be applied to all the resources.
5.1 Reset Message
Type XMSG_RESET
Direction Inbound
Description Stops the current action and resets the resource to idle state.
typedef struct{
Format XMsgHdr t head;/* message header */
} XMsgReset t;
#define XMSG MAKE RESET (pMsg, trans, res, inst) \
{\
Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgReset t),\
XMSG RESET, 0) \
}
¢ General acknowledgement message (XMSG_ACK)
Response .
+ Error message (XMSG_ERROR) if error.
Caution Any intermediate results are discarded.
5.2 Start Message
Type XMSG_Start
Direction Inbound
Description Generic start message. Starts the media-processing functions on a resource.
typedef struct{
Format XMsgHdr t head; /* message header */
} XMsgStart t;
#define XMSG MAKE START (pMsg, trans, res, inst) \
0\
Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgStart t),\
XMSG_START, 0)\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.
Caution This message is not applicable to Tone Generator and Player resources.
February 2005 DSP Software Version 2.6.2 API| Reference Manual
24 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

5.3 Stop Message

Type XMSG_STOP

Direction Inbound

Description Stops the current action.

typedef struct{
Format XMsgHdr t head; /* message header */
} XMsgStop t;

#define XMSG_MAKE STOP (pMsg, trans, res, inst)\

N\

Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgStop t),\
XMSG_STOP, 0)\

}

Response Resource returns the processing results or states, if any, depending on the resources and current actions.

5.4 Ping Message

Type XMSG_PING

Direction Inbound

Description Verifies if the resource is alive.

typedef struct{
Format XMsgHdr t head; /* message header */
} XMsgPing t;

#define XMSG_MAKE PING (pMsg, trans, res, inst) \

{\

Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgPing t),\
XMSG_PING, 0)\

* General acknowledgement message (XMSG_ACK)

Response .
» Error message (XMSG_ERROR) if error.
5.5 Set Parameter Message
Type XMSG_SET_PARM (Sheet 1 of 2)
Direction Inbound

Description Sets a parameter to a resource.

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 25

Intel® IXP400 DSP Software N .
Type XMSG_SET_PARM (Sheet 2 of 2)
typedef struct{
XMsgHdr t head; /* message header */
Format UINT16 parmId; /* parameter id */
UINT16 value; /* parameter value */
} XMsgSetParm t;
#define XMSG MAKE SET PARM (pMsg, trans, res, inst, id, val) \
{\
XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgSetParm t),\
Macro XMSG_SET PARM, 0)\
((XMsgSetParm t *) (pMsg))->parmld= id;\
((XMsgSetParm t *) (pMsg))->value= val;\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.
5.6 Set Multiple-Parameter Message
Type XMSG_SET_MPARMS
Direction Inbound
Description Set multiple parameters to a resource
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 numParms; /* number of parameters */
UINT16 parmIDs [XMAX_PARMS] ; /* parameter id */
UINT16 values [XMAX_PARMS] ; /* parameter value */
} XMsgSetxParms_t;
#define XMSG_MAKE SET MPARMS (pMsg, trans, res, inst, num) \
0\
XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgSetmParms t),\
XMSG_SET MPARMS, 0)\
((XMsgSetmParms t *) (pMsg))->numParms = num; \
Macro J
#define XMSG_FIELD SET MPARMS (pMsg, pIDs, pVals) \
{\
pIDs = ((XMsgSetmParms_t *) (pMsg))->parmlIDs;\
pVals = ((XMsgSetmParms_t *) (pMsg))->values;\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.
February 2005 DSP Software Version 2.6.2 API| Reference Manual
26 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

S.7 Get Parameter Message
Type XMSG_GET_PARM
Direction Inbound
Description Gets a parameter from a resource.
typedef struct{
Format XMsgHdr t head; /* message header */
UINT16 parmId; /* parameter id */
} XMsgGetParm t;
#define XMSG MAKE GET PARM(pMsg, trans, res, inst, id) \
\
Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgGetParm t),\
XMSG_GET PARM, 0)\
((XMsgGetParm t *) (pMsg))->parmId= id;\
}
» Specific acknowledgement message (XMSG_GET_PARM_ACK)
Response)
» Error message (XMSG_ERROR) if error.
5.8 Get Parameter Acknowledge Message
Type XMSG_GET_PARM_ACK
Direction Outbound

Description Resource returns the parameter enquired.

typedef struct{

XMsgHdr t head; /* message header */
Format UINT16 parmId; /* parameter id */
UINT16 value; /* parameter value */

} XMsgGetParmAck t;

#define XMSG FIELD GET PARM ACK (pMsg, id, val)\

{\
Macro id = ((XMsgGetParmAck t *) (pMsg))->parmId;\
val = ((XMsgGetParmAck t *) (pMsg))->value;\
}
5.9 Get All Parameters Message
Type XMSG_GET_ALLPARMS (Sheet 1 of 2)
Direction Inbound

Description Gets all parameters from a resource.

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 27

Intel® IXP400 DSP Software |n

®
Type XMSG_GET_ALLPARMS (Sheet 2 of 2)
typedef struct{
Format XMsgHdr t head; /* message header */
} XMsgGetAllParms t;
#define XMSG MAKE GET ALLPARMS (pMsg, trans, res, inst) \
{\
Macro XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgGetAllParms t),\
XMSG_GET ALLPARMS, 0)\
}
Response Specific acknowledgement message (XMSG_GET_ALLPARMS_ACK)
5.10 Get All Parameters Acknowledge Message
Type XMSG_GET_ALLPARMS_ACK
Direction Outbound
Description Resource returns the parameter inquired.
typedef struct{
XMsgHdr t head; /* message header */
Format UINT16 numParms ; /* number of parameters */
UINT16 parmIDs [XMAX PARMS GET]; /* array of parameter IDs */
UINT16 values [XMAX PARMS GET]; /* array of parameter values */
} XMsgGetAllParmsAck t;
#define XMSG_FIELD_GET_ ALLPARMS ACK (pMsg, num, pIDs, pVals)\
{\
Macro num = ((XMngetAllParmsAck_t *) (pMsg)) —>numParms; \
pIDs = ((XMsgGetAllParmsAck t *) (pMsg))->parmIDs;\
pVals = ((XMsgGetAllParmsAck t *) (pMsg))->values; \
}
5.11 General Acknowledge Message
Type XMSG_ACK
Direction Outbound
Description Resource indicates the control message has been processed successfully.
typedef struct{
Format XMsgHdr t head; /* message header */
} XMsgAck t;
February 2005 DSP Software Version 2.6.2 API| Reference Manual
28 Document Number: 273811, Revision: 008

[|
| n'tel . Intel® IXP400 DSP Software

5.12 Error Message

Type XMSG_ERROR

Direction Outbound

Description Resource reports an error condition. (See constant data section for error codes.)

typedef struct{

XMsgHdr t head; /* message header */
UINT32 code; /* error code */
Format
UINT32 datal; /* error datal */
UINT32 data2; /* error data2 */
} XMsgError t;
#define XMSG_FIELD ERROR (pMsg, c, dl, d2)\
{\
Macro c = ((XMsgError t *) (pMsg))->code;\
dl = ((XMsgError t *) (pMsg))->datal;\
d2 = ((XMsgError t *) (pMsg))->data2;\

5.13 Event Message

Type XMSG_EVENT
Direction Outbound
Description Resource reports an event condition. (See constant data section for error codes.)
typedef struct{
XMsgHdr t head; /* message header */
UINT32 code; /* event code */
Format
UINT32 datal; /* event datal */
UINT32 data2; /* event data2 */
} XMsgEvent t;
#define XMSG_FIELD EVENT (pMsg, c, dl, d2)\
{\
Macro c = ((XMsgEvent t *) (pMsg))->code;\
dl = ((XMsgEvent t *) (pMsg))->datal;\
d2 = ((XMsgEvent t *) (pMsg))->data2;\
}
6.0 Resource-Specific Control Messages
This section defines the resource-specific messages.
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 29

Intel® IXP400

6.1

DSP Software I n

CODEC Start Message

Type XMSG_CODER_START
Direction Inbound
Description Starts a decoder or encoder.
typedef struct{
XMsgHdr t head; /* message header */
Format UINT16 codecType; /* codec type */
UINT16 frmsPerPkt; /* number of frames per packet */
} XMsgCoderStart t;
#define XMSG MAKE CODER_START (pMsg, trans, res, inst, cType, fpp)\
N\
XMSG_MAKE HEAD (pMsg, trans, res, inst, sizeof (XMsgCoderStart t),\
Macro XMSG_CODER_START, 0)\
((XMsgCoderStart t *) (pMsg))->codecType = cType;\
((XMsgCoderStart_t *) (pMsg))->frmsPerPkt = fpp;\
}
* General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.

6.2

CODEC Stop Acknowledgement Message

Type XMSG_CODER_STOP_ACK
Direction Outbound
Description Decoder or encoder resource acknowledges the XMSG STOP message
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT32 numFrames; /* total number of frames processed */
UINT32 numBadFrames; /* number of bad frames */
} XMsgCoderStopAck_t;
#define XMSG FIELD EVENT (pMsg, num, numBad)\
{\
Macro num = ((XMsgCoderStopAck t *) (pMsg))->numFrames;\
numBad = ((XMsgCoderStopAck t *) (pMsg)) ->numBadFrames; \
}
February 2005 DSP Software Version 2.6.2 API| Reference Manual
30 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

6.3 Tone Generator Play Message
Type XMSG_TG_PLAY
Direction Inbound

Description |Requires Tone Generator to play a tone string. (Tone ID’s are listed in the constant data section.)

typedef struct{

XMsgHdr t head; /* message header */
Format UINTS numTones; /* number of tones to play */
UINTS toneId[XMAX TONEBUFSIZE]; /* tone ID string */

} XMsgTGPlay t;

#define XMSG MAKE TG PLAY (pMsg, trans, inst, num)\

{\
XMSG_MAKE HEAD (pMsg, trans, XMPR TNGEN, inst, sizeof (XMsgTGPlay t),\
XMSG_TG_PLAY, 0)\

((XMsgTGPlay t *) (pMsg))->numTones = num; \
Macro

—

#define XMSG_FIELD TG_PLAY (pMsg, pToneID) \
{\
pTonelID= ((XMsgTGPlay t *) (pMsg))->toneld; \

6.4 Tone Generator Play FSK Message

Type MSG_TG_PLAY_FSK

Direction Inbound

Description | Require Tone Generator to play a FSK modulated data

typedef struct{

XMsgHdr_t head; /* message header */
Format UINTS numBytes; /* number of bytes to play */
INT8 data [XMAX_FSKDATASIZE] ; /* data string */

} XMsgTGPlayFSK_t;

#define XMSG MAKE TG PLAY FSK(pMsg, trans, inst, num)\

0\
XMSG_MAKE HEAD (pMsg, trans, XMPR TNGEN, inst, sizeof (XMsgTGPlayFSK t),\
XMSG_TG_PLAY FSK, 0)\

((XMsgTGPlayFSK t *) (pMsg))->numBytes = num; \
Macro }

#define XMSG FIELD TG PLAY FSK(pMsg, pData) \
{\

pData= ((XMsgTGPlayFSK t *) (pMsg))->data;\
}

Response | + Tone Generator Play-Completed message (XMSG_TG PLAY CMPLT)

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 31

Intel® IXP400 DSP Software

6.5 Tone Generator Play Completed Message
Type XMSG_TG_PLAY_CMPLT
Direction Outbound
Description Tone Generator indicates the completion of playing tones.
typedef struct{
XMsgHdr_t head; /* message header */
Format .
UINT16 reason; /* the reason of completion: */
UINTS numTones; /* number of tones played. 0 if FSK data */
} XMsgTGPlayCmplt_t;
#define XMSG FIELD TG PLAY CMPLT (pMsg, rsn, num)\
0\
Macro reason = ((XMsgTGPlayCmplt t *) (pMsg))->reason;\
num = ((XMsgTGPlayCmplt t *) (pMsg)) =>numTones; \
}
6.6 Tone Detector Receive Digit Message
Type XMSG_TD_RCV
Direction Inbound

Description Require Tone Detector to receive a tone string.

typedef struct{

XMsgTDRcv_t

(
(()->termDigit = term;\
((XMsgTDRcv_t
((
((

g)
pMsg)) —>totalTimeout = tm;\

pPMsg)) ->firstDigitTimeout = fstTm;\
pMsg)) ->interDigitTimeout = intTm;\

pM

*
*
XMsgTDRcv_t *
*

) (
) (
) (
) (
XMsgTDRcv_t *) (

}

XMsgHdr t head; /* message header */
UINT16 totalTimeout; /* total time out (in 10 ms unit) */
UINT16 firstDigitTimeout; /* first digit time out (10 ms uint)*/
Format : L) . L .
UINT16 interDigitTimeout; /* inter digit time out (10 ms unit)*/
UINT16 termDigit; /* OR'd terminate digit bits */
UINTS numDigits; /* number of digits to receive */
} XMsgTDRcv_t;
#define XMSG MAKE TD RCV(pMsg, trans, inst, num, term, tm, f£stTm, intTm)\
{\
XMSG_MAKE HEAD (pMsg, trans, XMPR TNDET, inst,\
sizeof (XMsgTDRcv_t), XMSG TD RCV, 0)\
Macro ((XMsgTDRcv_t * pMsg))—>numDigits = num; \

Response Tone detector receives completed message (XMSG_TD RCV_CMPLT)

February 2005 DSP Software Version 2.6.2 API| Reference Manual

32 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

6.7 Tone Detector Receive Completed Message
Type XMSG_TD_RCV_CMPLT
Direction Outbound

Description Tone detector indicates the completion of receiving DTMF tones.

typedef struct{

XMsgHdr t head; /* message header */
UINT16 reason; /* the reason of completion */
UINTS numDigits; /* number of tones received */
UINTS8 digits[XMAX DIGITBUFSIZE]; /* received tone IDs */

Format } XMsgTDRcvCmplt t;

where the reason may be:

#define XMSG_STOP_REASON EOD 2

#define XMSG STOP_ REASON TERM 3

#define XMSG_STOP REASON TIMEOUT 4

#define XMSG_FIELD TD RCV_CMPLT (pMsg, rsn, num, pBuf)\
{\

Macro rsn = ((XMsgTDRcvCmplt t *) (pMsg))->reason; \
num = ((XMsgTDRcvCmplt t *) (pMsg))->numDigits;\
pBuf= ((XMsgTDRcvCmplt t *) (pMsg))->digits;\

}
6.8 Tone Detector Recelive FSK Message

Type MSG_TD_RCV_FSK

Direction Inbound

Description Require Tone Detector to receive FSK data

typedef struct{

Format XMsgHdr t head; /* message header */
UINT16 timeout; /* total time out (in 10 ms unit) */
} XMsgTDRcVFSK t;
#define XMSG MAKE TD RCV_FSK(pMsg, trans, inst, tmout)\
N\
Macro XMSG_MAKE HEAD (pMsg, trans, XMPR TNDET, inst, \

sizeof (XMsgTDRcvFSK_t), XMSG_TD RCV_FSK, 0)\
((XMsgTDRCVFSK_t *) (pMsg))->timeout = tmout;\
}

Response Tone Detector FSK receive-completed message (XMSG_TD RCV_FSK CMPLT)

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 33

Intel® IXP400

6.9

DSP Software

intel.

Tone Detector FSK Receive Completed Message

Type XMSG_TD_RCV_FSK_CMPLT
Direction Outbound
Description Tone Detector indicates the completion of receiving FSK data
typedef struct{
XMsgHdr t Thead; /* message header */
UINT16 reason; /* the reason of completion */
UINTS numBytes; /* number of bytes received */
UINTS8 data [XMAX FSKDATASIZE]; /* received data */
Format } XMsgTDRcvFskCmplt t;
where the reason may be:
#define XMSG STOP REASON EOD 2
#define XMSG STOP REASON TIMEOUT 4
#define XMSG_FIELD TD RCV_FSK CMPLT (pMsg, rsn, num, pBuf)\
0\
Macro rsn = ((XMsgTDRcvFskCmplt t *) (pMsg)) ->reason; \
num = ((XMngDRchskaplt_t *) (pMsg)) —>numBytes; \
pBuf= ((XMsgTDRcvFskCmplt t *) (pMsg))->data;\
}

6.10

Player Start Message

Type XMSG_PLY_START (Sheet 1 of 2)

Direction Inbound

Description Start Player to play back pre-recorded audio data
February 2005 DSP Software Version 2.6.2 API| Reference Manual
34 Document Number: 273811, Revision: 008

|n . Intel® IXP400 DSP Software

Type XMSG_PLY_START (Sheet 2 of 2)

typedef struct{
XMsgHdr t head; /* message header */
XPlyMediaDesc_t mediaSeg[XMAX PLY SEG]; /* media segments to play */
UINTS numSeq; /* number of segments */

} XMsgPlyStart t;

where the media segment data structure is defined as
typedef struct{
INT32 offset; /* offset in byte where player starts */
INT32 length; /* length to play (in 10ms unit),
0 means playing till end of this segment*/
XMediaHandle t handle; /* media storage handle */
INT16 next; /* the relative index of next segment followed,
XPLY MEDIA SEG EOP means end-of-play
at this segment */

Format

} XPlyMediaDesc_ t;

#define XMSG MAKE PLY START (pMsg, trans, inst, num) \

{\
XMSG_MAKE_HEAD(pMsg, trans, XMPR_PLY, inst, \
sizeof (XMSgPlyStart_t) , XMSG_PLY_START, 0)\
((XMsgPlyStart t *) (pMsg))->numSeg = num;\

Macro }

#define XMSG FIELD PLY START (pMsg, pMedia) \
{\

pMedia = ((XMsgPlyStart t *) (pMsg))->mediaSeg;\
}

Response Player play-completed message (XMSG_PLY CMPLT)

6.11 Player Play Completed Message

Type XMSG_PLY_CMPLT

Direction Outbound

Description Player indicates the completion of playing audio data.

typedef struct{

XMsgHdr t head; /* message header */
UINT16 reason; /* the reason of completion */
} XMsgPlyCmplt t;
Format -
where the reason may be:
#define XMSG STOP REASON USER 1
#define XMSG_STOP REASON EOD 2
#define XMSG FIELD PLY CMPLT (pMsg, rsn)\
Macro a
rsn = ((XMsgPlyCmplt t *) (pMsg)) —>reason; \
}
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 35

Intel® IXP400 DSP Software |n

6.12

Get Jitter Buffer Statistics Message

Type XMSG_GET_JBSTAT
Direction Inbound
Description Get the jitter buffer statistics from a Decoder instance.
typedef struct{
XMsgHdr t head; /* message header */
Format UINT16 reset; /* reset flag, 1: reset statistics after
retrieve the information */
} XMsgGetJBStat t;
#define XMSG MAKE GET_ JBSTAT (pMsg, trans, inst, clr)\
0\
Macro XMSG_MAKE HEAD (pMsg, trans, XMPR DEC, inst,\
sizeof (XMsgGetJBStat t), XMSG GET JBSTAT, 0)\
((XMsgGetJBStat t *) (pMsg))->reset = clr;\
}
Response Complete message of getting jitter buffer statistics (XMSG_GET_JBSTAT CMPLT)

6.13

Complete Message of Getting Jitter Buffer Statistics

Type XMSG_GET_JBSTAT_CMPLT
Direction Outbound
Description Response to the message of getting the jitter buffer statistics
typedef struct{
XMsgHdr t head; /* message header */
XJBStatistics t stat; /* jiter buffer statistics */
} XMsgGetJBStatCmplt t;
where the XMsgGetJBStatCmplt t date structure of jitter buffer statistics
Format is defined as
typedef struct{
UINT32 rcvdPackets; /* total packets received */
UINT32 lostPackets; /* lost packets */
UINT32 badFrames; /* decoder bad frames */
UINT32 rcvdTonePackets; /* RFC2833 packets received */
} XJBStatistics t;
#define XMSG _FIELD GET JBSTAT CMPLT (pMsg, pStat)\
{\
Macro
pStat = &(((XMsgGetJBStatCmplt t *) (pMsg)) ->stat) ; \
}
February 2005 DSP Software Version 2.6.2 API Reference Manual

36

Document Number: 273811, Revision: 008

[|
| n'tel . Intel® IXP400 DSP Software

6.14 T.38 Session Start Message

Type XMSG_T38_START

Direction Inbound

Start a T.38 session. The tonelD field indicates the tone which was detected that caused this message to be
Description issued. The options are 0 (no tone detected), Fax CED tone (RFC_TID_FAX_CED), Fax CNG tone
(RFC_TID_FAX_CNG) or V.21 modem signal (RFC_TID_FAX_V21).

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 toneld; /* fax tone id */

} XMsgT38Start_t;

#define XMSG_MAKE_T38_START(pMsg, trans, inst, tnid)\
{
XMSG_MAKE_HEAD(pMsg, trans, XMPR_T38, inst,\
sizeof(XMsgT38Start_t), XMSG_T38_START, 0)\
((XMsgT38Start_t *)(pMsg))->toneld = tnid;\

Format

Macro

}
Response T38 session completed message (XMSG_T38_CMPLT)

6.15 T.38 Session Complete Message

Type XMSG_T38_CMPLT
Direction Outbound
Description Indicate the completion of a T.38 session
typedef struct{
XMsgHdr_t head; /* message header */
Format)
UINT16 reason; [* the reason of completion */
} XMsgT38Cmplt_t;
#define XMSG_FIELD_T38_CMPLT(pMsg, rsn)\
Macro {\
rsn = ((XMsgT38Cmplt_t *)(pMsg))->reason;\
}
7.0 Packet Data Interface
The packet data interface is a protocol for the Intel® 1XP400 DSP Software to exchange the
encoded data packets with IP stack. This interface is defined as a packet format and two callback
functions — one is provided by DSP software release and another is provided by the user (IP stack).
7.1 Packet Formats
The ingress packet from the IP stack to the DSP software has an 8-byte header as shown below:
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 37

Intel® IXP400 DSP Software N .
31 24123|22 16 (15 12|11 8|7 0
Channel ID M Payload Type Media Payload Length
Remote Time Stamp
Payload
Similarly, the egress packet from the DSP software to the IP stack has an 8-byte header as shown
below:
31 2412322 16|15 12|11 8|7 0
Channel ID M Payload Type Media Payload Length
Local Time Stamp
Payload
The fields of the packet header and the payload are described as:
Field Description
Local Time Stamp Packet arrival time as measured by a local clock.
Remote Time Stamp | Packet data sampling time measured by a remote clock.
Payload Length Payload length in bytes.
4-bit media type field is defined as:
e 0x01 - Audio
Media * 0x02 — Tone (RFC 2833 event type)
* 0x04 — Tone (RFC 2833 tone type)
» 0x08 — T.38 UDP
* 0x09-T.38TCP
M Marker bit for the RTP packet. This bit set indicates the first speech packet after a
silence period or the first packet of a RFC-2833 tone event, otherwise 0.
Payload type RTP payload type as defined in RFC 1990.
Payload Encoded audio data or RFC-2838, tone-event information.
The corresponding data structure is defined as:
typedef struct{
UINTS8 channelID; /* channel ID */
UINTS8 payloadType; /* bit[0-6]payloadtype,bit[7] SID mark bit */
unsigned int mediaType:4; /* media type */
unsigned int payloadLen:12; /* payload length */
UINT32 timeStamp; /* local or remote time stamp */
} __attribute__ ((packed)) XPacketHeader_t;
February 2005 DSP Software Version 2.6.2 API| Reference Manual

38 Document Number: 273811, Revision: 008

Intel® IXP400 DSP Software

In ingress, the header information of Remote Time Stamp, Payload Type and Marker bit are
directly copied from a RTP packet. In egress, the header information is filled by DSP software
except for the Payload Type of RFC-2833 event packets. The RTP processing module is
responsible to determine the payload type if media type indicates a RFC-2833 tone-event packet.

7.2 Packet Delivery Mechanism
The packets are transferred between DSP software and IP stack via the callback functions. The
packet delivery module calls the function and passes the packet each time when a packet is
produced. The rules of using the callback function to deliver the packets include:

* The packet receiver registers a callback function with the packet deliverer.

* The packet deliverer is responsible to prepare the memory for the packet.

* The packet receiver has to copy the data to its internal buffer immediately in the callback
function because the deliverer may reuse the same memory for the next packet (i.e., the packet
data may not be valid any more after the callback function returns).

* The packet receiver may perform some data processing in the callback function provided the
execution of such processing is predictable (i.e., the processing must be guaranteed to
complete within a certain short period of time).

The function that the DSP software receives the packets from the IP stack is provided as follows:

XStatus_t xPacketReceive (UNIT16 channel, XPacket_t *buffer);

Description Call-back function to receive packets.

Inout Buffer — memory address of the packet

P Channel — Channel numbers
Output None
XSUCC - If successful
Return)
XERROR - If the packet receptor is unable to process the packet.
IP stack has to build the data packets from the IP packets it received and deliver them to DSP
software by calling this function.
In egress direction, IP stack must provide a function to receive egress data packets. DSP software
will call the function each time when a packet generated. That function must be registered during
initialization as described in next section.
8.0 Configuration and Initialization
The Intel® 1XP400 DSP Software is configurable at initialization time, allowing the user to specify
the HSS parameters, the number of resource instances to be created and the country-specific
features. The user-supplied call back functions are also registered at that time.
API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 39

Intel® IXP400 DSP Software
INtal.

8.1 System Configuration with HSS Interface

Prototype void xDspSysInit (XDSPSysConfig t *pSysConfig);

Input pSysConfig — System configuration information

Output None

Return None

Description

This function performs the following procedures:
* [|nitialize and start HSS port

* Create TDM termination channels (i.e., Network Endpoint resource instance) and link them to

the HSS time slots sequentially. Error will occur if not enough time slots are enabled for all the
TDM channels

* Create the IP terminations (i.e., Decoder, Encoder, Tone Generator and Tone Detector
resources)

* Create media service resources (i.e., Player and Mixer)

Enable country-specific call progress tones and set country-specific default parameters to the
resources

* Register user-supplied call back functions

The configuration information in this function is defined as:

typedef struct{

int numChTDM; /* number of channels of TDM termination (1~4) */
int numChIP; /* number of channels of IP termination (1~4) */
int numPlayers; /* number of Player instances (1~4) */

int numMixers; /* number of Audio Mixers (must be 1) */

int numPortsPerMixer; /* number of ports per mixer (3~5) */

int countryCode; /* country code */

int taskPriBase; /* the base priority of DSP module */

int taskPriOrder; /* the priority ordering of the 0S */
IxHssAccHssPort port; /* HSS port (must be Port 0) */

IxHssAccConfigParams *pHssCfgParms; /* HSS configuration parameters */
IxHssAccTdmSlotUsage *pHssTDMSlots; /* HSS TDM time slot mapping */

XDSPChanTdmSlots_t *pChanTsMap; /* channel vs. time slot mapping */

XPktRcvExn t pktRcvExn; /* packet receiver function in egress */
XMsgAgentDec t msgDecoder; /* optional message decoder function of MA */
XMsgAgentEnc t msgEncoder; /* optional message encoder function of MA */

} XDSPSysConfig t;

where:
typedef XStatus t (*XPktRcvEFxn t) (UINT16 channel, void *pPacket);
typedef int (*XMsgAgentDec t) (XMsgRef t pUsrMsg, XMsgRef t pNativeMsg, int sequenceNo);
typedef void (*XMsgAgentEnc t) (XMsgRef t pUsrReply, XMsgRef t pNativeReply,
int sequenceNo, UINT8 usrMsgType) ;

February 2005 DSP Software Version 2.6.2 API| Reference Manual
40 Document Number: 273811, Revision: 008

Intel® IXP400 DSP Software

The pchanTsMap field is an array that specifies how the instances of Network Endpoint are linked
with the time slots of HSS. Each element of the array is defined as:

typedef struct{
int slotSamplel;

int slotSample2;

} XDSPChanTdmSlots_t;

/* time slot of the lst sample */
/* time slot of the 2nd sample,

set to XCHAN_TDM_SLOT_NULL if narrowband */

Assuming there are two channels — one wideband and one narrowband. The time slot locations for
the channels in a 32-slot frame are shown as:

0 |12 16|17 31
2 m
GG o |5
= |4 | % S |3
3 2nd
o n
1st WB % WB
sample 2 sample
zZ

Then the array that describes such configuration is given as:

{

XDSPChanTdmSlots_t chanTsMapping[2]

time slot 0 and 16 */

{0, 16}, /* channel 1 - WB,
{2, XCHAN_TDM_SLOT_NULL} /* channel 2 - NB, time slot 2 */
}i
If the pchanTsMap field is given a NULL pointer, all the instances of Network Endpoint will be
configured to the narrowband mode and are linked to the active time slots sequentially.

Warning: This function must be called after downloading HSS NPE. An assertion occurs if any fatal errors
happen (e.g., memory exhausted) during the initialization. If the numbers of resources to be created
are not specified correctly, the default ones are applied, which can be retrieved by the
xDspGetResConfig () function.

API| Reference Manual DSP Software Version 2.6.2 February 2005

Document Number: 273811, Revision: 008 41

[|
Intel® IXP400 DSP Software | n'tel .

8.2 System Configuration with External PCM Interface
Prototype void xDspSysInit2 (XDSPSysConfig2 t *pSysConfig);
Input pSysConfig — System configuration information
Output None
Return None
Description

This function performs the similar system initialization to xDspSysiInit(), except it does not
initialize the HSS device, opening an external PCM data interface and allowing users to obtain the
PCM data in alternative way. The users specify configuration information as defined in the data
structure XDSPSysConfig2_t.

typedef struct{
int numChTDM; /* number of PCM channels */
int numChIP; /* number of channels of IP termination */
int numPlayers; /* number of player instances */
int numMixers; /* number of Audio Mixers */
int numPortsPerMixer; /* number of ports per mixer */
int countryCode; /* country code */
int taskPriBase; /* the base priority of DSP module */
int taskPriOrder; /* the priority ordering of the 0S */
int framesPerBuf; /* PCM buffer size in terms of frame size */
int transferType; /* data transfered via DMA or CPU */
XDSPExtChan t *pExtChannel; /* array of external PCM channel */
XPktRcvExn t pktRcvExn; /* packet receiver function */
XMsgAgentDec t msgDecoder; /* message decoder function of MA */
XMsgAgentEnc t msgEncoder; /* message encoder function of MA */
} XDSPSysConfig2 t;

The user provides the information of the data format and transfer buffers through an array of
XDSPExtChan_t structure, which is defined as

typedef struct{

void *pRxBuffer; /* address of Rx circular buffer */
void *pTxBuffer; /* address of Tx circular buffer */
int format; /* data format, 8-bit, 16-bit or 16-bit wideband */

} XDSPExtChan_t;

The restriction of the external PCM interface includes

® xDspSysInit2()and xDspSyslnit()are mutual exclusive. The users can choose either of them but not both.

® The user application is responsible to allocate two data transfer buffers (Rx and Tx buffers) for each
channel if using external PCM interface. (Here Rx refers the direction going to DSP module and Tx for
the opposite).

® The data formats can be 8-bit compressed (A-law or -law), 16-bit linear or 16-bit wideband-linear
(16KHz sampling rate), specified by the format in XDSPExtChan_t as XPCM_FORMAT_8BIT,
XPCM_FORMAT_16BIT and XPCM_FORMAT_16BIT_WAB respectively. For 16-bit linear format, it
must be left-adjust signed fraction or Q.15 format.

February 2005 DSP Software Version 2.6.2 API| Reference Manual
42 Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

® The length of the data transfer buffers is specified in 0.125ms unit. All the channels must have the same
length regarding this time unit.

® The buffer length must be the multiple of the frame size defined by XPCM_FRAME_SIZE (80 in
0.125ms unit) and must be at least two times of this frame size. The buffer length is specified by
framesPerBuf in XDSPSysConfig2_t in term of frames per buffer.

* The external device must transfer the data in the synchronous manner, i.e., the device maintain the
common access index for all the channels.

® The device must call the function xDspPcmSync(rxOffset, txOffset) every frame period (10ms) and pass
its current access index - rxOffset and txOffset. The index is given in 0.125ms unit and must be always at
the frame boundary. (e.g, 0, 80,160 if the buffer length is 240)

® Cache flush/invalidation will be performed is the transferType field in XDSPSysConfig2_t is set to
XPCM_XFER_TYPE_DMA.

8.3 Adding Tones to Tone Generator

XStatus_ t xBuildToneTG(UINT16 toneId, UINT1l6 numSegs,

Prototype
XTGToneSeg_t *pToneSegs, UINT32 *pErrCode);

* toneTd — Tone TD, must be in the range of 16 ~ 255
Input * NumSegs — Number of segments of the tone
* pToneSegs — Array of tone segment definition

Output pErrCode - Error code if errors

* XSUCC if successful

Return .
* Otherwise XERROR

Description

This function adds a new tone which can be played by the Tone Generator resources. Each new
tone can contains one or more segments which is defined as:

typedef struct {
UINT16 repCount; /* repetition number of the segment. 0 means to repeat forever */
UINT16 segType; /* signal type (single or dual frequency wave or AM wave) */
UINT32 durationOn; /* active duration in 1-ms unit. */
UINT32 durationOff;/* silence duration in l-ms unit. */

INT16 freqgh; /* 1st frequency if single or dual frequency wave,
or the modulated carry frequency if AM wave, in 1Hz unit*/
INT16 fregB; /* 2nd frequency if dual frequency wave

or the modulating frequency if AM wave,
ignored if single frequency wave */
INT16 ampA; /* amplitude of frequency A above, (0~ - 45 in 1dBm unit) */
INT16 ampB; /* amplitude of frequency B if dual frequency wave,
or modulation rate if AM wave (0~100 in 1% unit),
ignored if single frequency wave */
UINT16 mode; /* mode, overwrite or mix over the Decoder output */
INT16 nextSeg; /* the index of next segment relative to the current segement.
e.g., 1 means to go the following segment,
0 means repeat the current segment,
-2 means go back to previous 2 segments.
XTG_LASTSEG means end-of-tone */

} XTGToneSeg t;

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 43

[|
Intel® IXP400 DSP Software | n'tel .

Warning:

8.4

8.5

New tone definition must be added during the initialization after xDspSysInit (). The pre-
defined country-specific call progress tone will be overwritten if a new tone is added with the same

tone ID.

Change the DTMF Tone Parameters

Prototype Status_t xSetTGParmDTMF (int toneOn, int toneOff, int ampdBm) ;
toneOn - tone on duration in ms. Range 1 ~ FFFFFFF

Input toneOff - tone off duration in ms. Range 1 ~ FFFFFFF
ampdBm - total tone level in dBm, must be in 0 ~ -45 range

Output

XSUCC if successful
otherwise XERROR

Return

Description

The DTMF tone generation has the default parameters of 100 ms tone-on and tone-off duration and
-3dBm level. This function allows the users to change the default parameters.

Adding Tones to Tone Detector

Status t xBuildToneTD (UINT8 tonelId, XTDToneInfo t
Prototype - _
*pToneInfo, UINT32 *pErrCode);
Inout e tonelId - Tone ID, must be in the range of 16 ~ 255
P « pToneInfo — Tone detection criterion information

Output pErrCode - Error code if errors

* XSUCC if successful
Return)

* Otherwise XERROR
Description

This function adds a criterion for the Tone Detector to detect a new tone. The criterion specify the
qualification ranges to a set of parameters defined as:

February 2005 DSP Software Version 2.6.2 API| Reference Manual

44

Document Number: 273811, Revision: 008

|n Intel® IXP400 DSP Software

/* segment data for tone detection template. */
typedef struct {
UINT16 type; /* tone type (single or dual frequency tone) */
UINT16 criteria; /* loose, medium or tight, use medium for normal
case, use loose to get higher detection probability
in poor SNR, use tight to get lower false
detection probability in good SNR */

UINT16 freqLowh; /* low bound of the 1lst frequency in Hz */
UINT16 fregHighA; /* high bound of the 1lst frequency in Hz */
UINT16 freqLowB; /* low bound of the 2nd frequency in Hz */
UINT16 fregHighB; /* high bound of the 2nd frequency in Hz */
INT16 ampLowA; /* low level of the 1st frequency in dBm */
INT16 ampHighA; /* high level of the 1lst frequency in dBm

If both low and high are set to 0, the default
full range is applied */

INT16 ampLowB; /* low level of the 2nd frequency in dBm */

INT16 ampHighB; /* high level of the 2nd frequency in dBm,
If both low and high are set to 0, the default
full range is applied */

UINTS8 attributes; /* attribute (report the tone on, tone off or
both on/off) */

} XTDToneInfo t;

Warning: New tone detection criterion must be added during the initialization before xDspSysInit ()or
xDspInit2 ().

8.6 Amplitude Check in Tone Detection

Prototype XStatus_t xSetAmplitudeRangeTD (int category, int ampMinFO,
P int ampMaxF0, int ampMinFl, int ampMaxF1)

Category - Tone category to specify DTMF tones or fax tones
ampMinF0 - Minimum amplitude of the low frequency, +3 ~ -45 in
dBm
ampMaxF0 - Maximum amplitude of the low frequency, +3 ~ -45 in

Input dBm
ampMinFl - Minimum amplitude of the high frequency, +3 ~ -45
in dBm
ampMinFl - Maximum amplitude of the high frequency, +3 ~ -45
in dBm

Output None

Return XSUCC if successful, otherwise XERROR

Description

The Tone Detector is able to detect the pre-defined DTMF tones and fax tones in the full amplitude
level range of +3 ~ -43 dBm. The applications can use this function to set a specific amplitude
range. Only the signals within this amplitude range can detected as the DTMF or fax tones.

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 45

Intel® IXP400

Warning:

8.7

DSP Software I n

New tone detection criterion must be added during the initialization before xDspSysInit () or
xDspInit2 ().

Getting DSP Resource Configuration and Routing Information

Prototype void xDspGetResConfig (XDSPResConfig_t *pCfgInfo)
Input pCfgInfo - Pointerto DSP configuration data structure
Output The resource configuration and the assignment of the routing streams
Return None
Description

The user’s applications can call this function any time after xDspSysInit () to obtainthe DSP
resource configuration and the stream IDs assigned to the T-Ports of each type of the resources.
The data structure XDSPResConfig t is defined as:

typedef struct{

int numChTDM; /* number of TDM termination channels */

int numChIP; /* number of IP termination channels */

int numPlayers; /* number of player instances */

int numMixers; /* number of Audio Mixers */

int numPortsPerMixer; /* number of ports per mixer */

int numStreams; /* number of total streams in the router */

int streamBaseTDM; /* T-Port stream ID of the first TMD termination channel */
int streamBaselIP; /* T-Port stream ID of the first IP termination channel */
int streamBasePly; /* T-Port stream ID 1st port of the 1lst Player instance */
int streamBaseMix; /* T-Port stream ID of the first mixer port */

int countryCode; /* country code */

} XDSPResConfig t;

9.0

9.1

February 2005
46

The stream 1D information is used for the application to connect the T-Ports and L-Ports of the
resources.

Complementary Functions

Direct Parameter Access

The user’s applications can bypass the message and directly access the DSP parameters. This
allows quicker access without having to send a message and receive a response. All parameters can
be directly read but only some of them can be directly modified. The functions to access the
parameters are:

DSP Software Version 2.6.2 API Reference Manual
Document Number: 273811, Revision: 008

9.2

Intel® IXP400 DSP Software

XStatus_ t xDspParmRead (UINT8 res, UINT16inst, UINT16 parmId,

Prototype
s UINT16 *pParmVal) ;
e res — DSP resource ID
Inout * inst - Instance ID of the resource
P * parmId - ParameterID
* pParmVal - Pointer to the variable that receives the returned parameter value
Output Parameter value
» XSUCC if successful
Return)
* Otherwise XERROR
Description This function retrieves the specified parameter value.
Prototype XStatus t xDspParmWrite (UINT8 res, UINT16 inst,
yp UINT16 parmId, UINT16 parmVal, UINT32 transId);
* res —DSP resource ID
* inst —instaNce ID of the resource
Input * parmId - Parameter|D
« parmVal - Parameter value to be set
* transId - Transaction ID
Output None
* XSUCC if successful
Return .
» Otherwise XERROR
Description This function sets the value of the specified parameter.

Flash Hook Detection

Status t xFlashHookDetect (UINT16 channel,

Prototype
yp XHookState t hookState, XUINT32 transId);
* channel - Channel number starting from 1
Input * hookState —Hook state, XHOOK STATE ON or XHOOK STATE OFF
* transId - Transaction ID
Output None
» XSUCC if successful
Return)
* Otherwise XERROR
This function is called by the SLIC driver to report the hook state changes via the event
Description | Message.

If an on-hook transition followed by an off-hook one within the time specified by the
XPARMID_NET_FLASH_HK parameter, a flash hook event is reported.

The hook states are defined as:

API Reference Manual

DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 a7

Intel® IXP400 DSP Software |n

typedef enum{
XHOOK_STATE_ON = O,
XHOOK_STATE_OFF,
XHOOK_STATE_FLASH

}XHookState_t;

9.3 Cache Prompt Registration

Prototype XMediaHandle t xDspRegCachePrompt (XCachePromptDesc t *pDesc) ;

Input pDesc — The pointer to structure XCachePromptDesc_t.

Output None
Return XMediaHandle — Returns XMEDIA_HANDLE_NULL in the error case.

This function is called to register a cached prompt for playing at a later time.

Description XCachePromptDesc_t describes the data required to register a cached prompt.

typedef struct{

UINT8 *pBuffer; /* Pointer to the play buffer. */
INT32 size; /* The size of play buffer. */
XCoderType_t type; /* The type of data in play buffer.

The valid types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS and
XCODER_TYPE_G729A */

} XCachePromptDesc_t;

9.4 Get Version Number

Prototype char * xDspGetVersion (void);
Input None

Output None

Return Pointer to the version string.

This function returns a 8-digit version string in ASCII format hard coded in each release
uniquely. The first 2 digits give the major version number, the 4 digits in the middle give the
minor number and the last 2 digits give the build number. Depending on each release, the
build number may indicate the release types like normal release, service package (SP), early
access release (EAR), etc. For example, the Intel® IXP400 DSP Software v2.6.2 EAR gives
the string 02060201.

Description

February 2005 DSP Software Version 2.6.2 API| Reference Manual
48 Document Number: 273811, Revision: 008

N . Intel® IXP400 DSP Software
9.5 External PCM Interface Synchronization
Prototype void xDspPcmSync (int rxOffset, int txOffset)
rxOffset - the current access index of the external PCM
Input device in Rx direction
P txOffset - the current access index of the external PCM

device in Tx direction

Output None

Return None

The external device must call this function every frame
Description period (10ms) when it passes the frame boundary in the data
transfer buffers.

10.0 Constant Data

This section lists up the definitions for constant data such as error codes and event codes.

10.1 Error Codes

Errors are reported via xMSG_ERROR message with an error code and two error data. The common
error codes are defined as:

#define XERR_SYSTEM 0x0001 /* system error */

#define XERR_HSSIF 0x0002 /* HSS interface error */
#define XERR_MEMORY 0x0003 /* memory error # */
#define XERR_INVALID_RES_ID 0x0011 /* invalid resource id */
#define XERR_INVALID_CHAN_ID 0x0012 /* invalid channel id */
#define XERR_INVALID_PARM ID 0x0013 /* invalid parameter id */
#define XERR_INVALID_STREAM_ID 0x0014 /* invalid stream id */
#define XERR_PARM_READONLY 0x0015 /* real only parameter */
#define XERR_PARM_SET_FAIL 0x0016 /* cannot set parameter */
#define XERR_PARM_GET_FAIL 0x0017 /* cannot get parameter */
#define XERR_UNEXPECTED_MSG 0x0018 /* unexpected message */
#define XERR_UNSUPPORTED_MSG 0x0019 /* unsupported message */
#define XERR_ALGORITHM 0x0041 /* algorithm related error # */
#define XERR_OTHERS 0x00ff /* other errors */

The resource-specific error codes are defined as:

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 49

Intel® IXP400 DSP Software

INtal.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XERR_INVALID_CODE_TYPE
XERR_INVALID_FPP
XERR_TG_INVALID TONE_ID
XERR_TG_INVALID TID NUM
XERR_TG_INVALID DATA_NUM
XERR_TD_INVALID DIGIT_NUM
XERR_RESOURCE_BUSY
XERR_RESOURCE_IDLE
XERR_MA_DEEP_RECURSIVE
XERR_MA_MSG_DECORDER

0x401
0x402
0x403
0x404
0x405
0x406
0x407
0x408
0x409
0x40a

/* invalid codec type */

/* invalid # frms per pkt */

/* invalid tone ID */

/* too many tone IDs */

/* too many FSK data */

/* too many digits */

/* resource is busy */

/* resource is idle */

/* deep recursive msg decoder*/
/* message decoding fail */

10.2

Event Codes

Events are reported via xMSG_EVENT message with an event code and two event data. The
resource specific event codes are defined as:

#define XEVT CODE_TD TONEON 0x101 /* tone-on event */

#define XEVT CODE TD TONEOFF 0x102 /* tone-off event */

#define XEVT LOST PACKET 0x103 /* lost packet */

#define XEVT DEC_ PACKET CHNG 0x104 /* RTP payload type changed */

#define XEVT NET HOOK STATE 0x105 /* hook state change detected */

#define XEVT NET TIMER 0x106 /* timer expired */

February 2005 DSP Software Version 2.6.2 API| Reference Manual

50

Document Number: 273811, Revision: 008

INtal.

10.3 Tone

The DTMF tone IDs used by the Tone Generator and Detector are defined as:

IDs

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

RFC_TID_DTMF_0O
RFC_TID_DTMF_1
RFC_TID_DTMF_2
RFC_TID_DTMF_3
RFC_TID_DTMF_4
RFC_TID_DTMF_5
RFC_TID_DTMF_6
RFC_TID_DTMF_7
RFC_TID_DTMF_8

RFC_TID_DTMF_9

RFC_TID_DTMF_STAR

RFC_TID_DTMF_POUND

RFC_TID_DTMF_A

RFC_TID_DTMF_B

RFC_TID_DTMF_C

RFC_TID_DTMF_D

10

11

12

13

14

15

Intel® IXP400 DSP Software

Fax-tone IDs reported by the Tone Detector for fax bypass applications. Not supported by the Tone

Generator.

#define RFC_TID_FAX_ CED 32
#define RFC_TID_FAX_ CNG 36
#define RFC_TID_ FAX V21 40

API Reference Manual

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

February 2005
51

Intel® IXP400 DSP Software

The general call-progress tone IDs used by the Tone Generator are defined as:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

RFC_TID DIAL
RFC_TID PBX DIAL
RFC_TID SP DIAL
RFC_TID 2ND DIAL
RFC_TID RING
RFC_TID SP_RING
RFC_TID BUSY
RFC_TID CONGESTION
REC_TID SP INFO
REC_TID COMFORT
RFC_TID HOLD
RFC_TID REC
RFC_TID CALLER WT
RFC_TID CALL WT
RFC_TID PAY
RFC_TID POS_IND
RFC_TID NEG_IND
RFC_TID WARNING
RFC_TID INSTRUSION
RFC_TID CAL CARD
RFC_TID PAYPHONE

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Currently only the following specific call progress tones are supported for tone generation:

* China (People’s Republic of China)

* Japan

* United States

Japan country code and pre-defined call progress tones are as follows:

#define
#define NTT_TID_DT

#define NTT_TID_RBT
#define NTT_TID_BT

#define NTT_TID_PDT
#define NTT_TID_SDT
#define NTT_TID_CPT
#define NTT_TID_HST
#define NTT_TID_TIIT
#define NTT_TID_SIIT

#define NTT_TID_HOW

COUNTRY_CODE_JP 81

RFC_TID_DIAL

RFC_TID_RING

RFC_TID_BUSY

RFC_TID_PBX_ DIAL

RFC_TID_2ND_DIAL

RFC_TID_POS_IND

RFC_TID_HOLD

RFC_TID_CALL_WT

110

RFC_TID_OFFHK_WARN

/*
/*
/*
/*
/*
/*
/*
/*
/*
J*

/*

country code for Japan */

dial tone */

ring back tone */

busy tone */

private dial tone */

2nd dial tone */

acceptance tone */

hold service tone */

incoming id tone */

special incoming id tone */

howler tone */

February 2005
52

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

API Reference Manual

In

Intel® IXP400 DSP Software

United States country code and pre-defined call progress tones are as follows:

#define COUNTRY_CODE_US 1 /* US country code */

#define US_TID_DIAL RFC_TID_DIAL /* dial tone */

#define US_TID_RING RFC_TID_RING /* ring back tone */

#define US_TID_BUSY RFC_TID_BUSY /* busy tone */

#define US_TID_RC_DIAL RFC_TID_SP_DIAL /* recall dial tone */

#define US_TID_PBX_DIAL RFC_TID_PBX_DIAL /* PBX dial tone */

#define US_TID_CONGESTION RFC_TID_CONGESTION /* congestion tone */

#define US_TID_CALL_WT RFC_TID_CALL_WT /* call waiting tone */

#define US_TID_WARN_OPER 110 /* operator intervening tone */
China country code and pre-defined call progress tones are as follows:

#define COUNTRY_CODE_PRC 86 /* China country code */

#define PRC_TID_DIAL RFC_TID_DIAL /* dial tone */

#define PRC_TID_RING RFC_TID_RING /* ring back tone */

#define PRC_TID_BUSY RFC_TID_BUSY /* busy tone */

#define PRC_TID_SP_DIAL RFC_TID_SP_DIAL /* special dial tone */

#define PRC_TID_CONGESTION RFC_TID_CONGESTION /* congestion tone */

#define PRC_TID_UNAVAILABLE RFC_TID_UNAVAILABLE /* unavailable tone */

#define PRC_TID_TOLL RFC_TID_COMFORT /* long distance tone */

#define PRC_TID_QUEUE RFC_TID_QUEUE /* queue tone */

#define PRC_TID_CALL_WT RFC_TID_CALL_WT /* call waiting tone */

#define PRC_TID_THR_PARTY RFC_TID_THR_PARTY /* 3 party remind tone */

#define PRC_TID_CONFIRMATION RFC_TID_CONFIRMATION /* confirmation tone */

#define PRC_TID_OFFHK_WARN RFC_TID_OFFHK_WARN /* howler tone */

API Reference Manual

DSP Software Version 2.6.2
Document Number: 273811, Revision: 008

February 2005

53

Intel® IXP400 DSP Software

10.4 Other Constants

The coder types used in the XPARMID DEC CTYPE and XPARMID ENC_CTYPE parameters

and the XMSG_CODER_START message are defined as:

typedef enum{
XCODER_TYPE_PASSTHRU = 0,
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS,
XCODER_TYPE_G729A,
XCODER_TYPE_G723,
XCODER_TYPE_G722,
XCODER_TYPE_G726_40,
XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24,
XCODER_TYPE_G726_16,
XCODER_TYPE_G729 = 17,

XCODER_TYPE_UNDEF = -1
} XCoderType t;

Mask bits used to specify the coder type subset in Decoder auto-switch parameter are defined as:

#define XPARM_ DEC_AUTOSW_OFF
#define XPARM DEC_AUTOSW_G711MU
#define XPARM_ DEC_AUTOSW_G711A
#define XPARM_DEC_AUTOSW_G729A
#define XPARM_ DEC_AUTOSW_G723
#define XPARM_ DEC_AUTOSW_G722
#define XPARM_DEC_AUTOSW_G726_40
#define XPARM_DEC_AUTOSW_G726_32
#define XPARM_DEC_AUTOSW_G726_24
#define XPARM_DEC_AUTOSW_G726_16

#define XPARM DEC_AUTOSW_ALL

0x0000

0x0001

0x0002

0x0004

0x0008

0x0010

0x0020

0x0040

0x0080

0x0100

Oxffff

February 2005 DSP Software Version 2.6.2

54 Document Number: 273811, Revision: 008

API Reference Manual

|n Intel® IXP400 DSP Software

Mask bits used to specify the termination digits in the xMsG_TD RCV message are defined as:

#define XTD_TERM_DIGIT_NONE 0x0000
#define XTD_TERM_DIGIT_O 0x0001
#define XTD_TERM_DIGIT_1 0x0002
#define XTD_TERM_DIGIT_2 0x0004
#define XTD_TERM_DIGIT_3 0x0008
#define XTD_TERM_DIGIT_4 0x0010
#define XTD_TERM_DIGIT_5 0x0020
#define XTD_TERM_DIGIT_6 0x0040
#define XTD_TERM_DIGIT_7 0x0080
#define XTD_TERM_DIGIT_8 0x0100
#define XTD_TERM_DIGIT_9 0x0200
#define XTD_TERM_DIGIT_STAR 0x0400
#define XTD_TERM_DIGIT_POUND 0x0800
#define XTD_TERM_DIGIT_A 0x1000
#define XTD_TERM_DIGIT_B 0x2000
#define XTD_TERM_DIGIT_C 0x4000
#define XTD_TERM_DIGIT_D 0x8000

The stop-reasons in the XMSG_ TG PLAY CMPLT, XMSG_TD RCV_CMPLT,
XMSG_TD_RCV_FSK_CMPLT, and xMSG_PLY CMPLT messages are defined as:

#define XMSG_STOP REASON_ USER 1 /* stopped by XMSG_STOP message */
#define XMSG_STOP_ REASON EOD 2 /* end of data */

#define XMSG_STOP REASON TERM 3 /* stopped by the terminate digits */
#define XMSG STOP_REASON TIMEOUT 4 /* time out */

API| Reference Manual DSP Software Version 2.6.2 February 2005
Document Number: 273811, Revision: 008 55

Intel® IXP400 DSP Software

This page is intentionally left blank.

February 2005 DSP Software Version 2.6.2
56 Document Number: 273811, Revision: 008

API Reference Manual

	Contents
	Figures
	Revision History

	1.0 Introduction
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Acronyms

	2.0 Architectural Overview
	3.0 Media Processing Resource Components
	3.1 Network Endpoint Resource Component
	3.2 Decoder Resource Component
	3.3 Encoder Resource Component
	3.4 Tone Generation Resource Component
	3.5 Tone Detection Resource Component
	3.6 Audio Player Resource Component
	3.7 Audio Mixer Resource Component
	3.8 T.38 Fax Resource Component
	3.9 Message Agent Resource Component

	4.0 Message Format and Delivery Mechanism
	4.1 Message Functions
	4.2 Message Header Format
	4.3 Message Type List

	5.0 Common Control Message
	5.1 Reset Message
	5.2 Start Message
	5.3 Stop Message
	5.4 Ping Message
	5.5 Set Parameter Message
	5.6 Set Multiple-Parameter Message
	5.7 Get Parameter Message
	5.8 Get Parameter Acknowledge Message
	5.9 Get All Parameters Message
	5.10 Get All Parameters Acknowledge Message
	5.11 General Acknowledge Message
	5.12 Error Message
	5.13 Event Message

	6.0 Resource-Specific Control Messages
	6.1 CODEC Start Message
	6.2 CODEC Stop Acknowledgement Message
	6.3 Tone Generator Play Message
	6.4 Tone Generator Play FSK Message
	6.5 Tone Generator Play Completed Message
	6.6 Tone Detector Receive Digit Message
	6.7 Tone Detector Receive Completed Message
	6.8 Tone Detector Receive FSK Message
	6.9 Tone Detector FSK Receive Completed Message
	6.10 Player Start Message
	6.11 Player Play Completed Message
	6.12 Get Jitter Buffer Statistics Message
	6.13 Complete Message of Getting Jitter Buffer Statistics
	6.14 T.38 Session Start Message
	6.15 T.38 Session Complete Message

	7.0 Packet Data Interface
	7.1 Packet Formats
	7.2 Packet Delivery Mechanism

	8.0 Configuration and Initialization
	8.1 System Configuration with HSS Interface
	8.2 System Configuration with External PCM Interface
	8.3 Adding Tones to Tone Generator
	8.4 Change the DTMF Tone Parameters
	8.5 Adding Tones to Tone Detector
	8.6 Amplitude Check in Tone Detection
	8.7 Getting DSP Resource Configuration and Routing Information

	9.0 Complementary Functions
	9.1 Direct Parameter Access
	9.2 Flash Hook Detection
	9.3 Cache Prompt Registration
	9.4 Get Version Number
	9.5 External PCM Interface Synchronization

	10.0 Constant Data
	10.1 Error Codes
	10.2 Event Codes
	10.3 Tone IDs
	10.4 Other Constants

