Intel® IXP400 Digital Signal
Processing (DSP) Software

Version 2.5

API| Reference Manual

December 2004

Document Number: 273811-007a

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, 486, i960, iCOMP, InstantlP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,

Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, Sound Mark, The Computer Inside, The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © Intel Corporation, 2004
*Other names and brands may be claimed as the property of others.

2 API Reference Manual

http://www.intel.com
http://www.intel.com

intel Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
®

Contents

1.0 INEFOTUCTION .ot 7
11 GBNETAL ...t 7
1.2 ST oT0] o1 PP PR RUPPPPTPPN 7
1.3 AUGIENCE ...t e e 7
1.4 ACTONYIMIS ..ttt e e e e e e e e e e et et et ettt ete e bab s s e e e e e e e e e aeaaeaeaeeeeessebnnbnrnnnnan 7
2.0 ATChiIteCtUral OVEIVIEWcooviiiiiiiiiiii s 9
3.0 Media Processing Resource COmMpoONentsccccovviennienenicenenns 10
3.1 Network Endpoint Resource COmMPONENT...........uuuiieiiiiieeeainiiiiiiiiieeeeeeeaeaeans 10
3.2 Decoder Resource COMPONENT........uueiiiiiiiia ittt 11
3.3 Encoder Resource COMPONENTuuuuiiiiiiieaaiaaiiiiieiie e e e e e e 13
3.4 Tone Generation Resource COMPONENTc..uvviiiiiiiiieee e ea e 15
3.5 Tone Detection Resource COMPONENTuuiiiiiiiiaaaaaiiaiiiiiieiieeeee e e e e e e 16
3.6 Audio Player Resource COMPONENT.........ooiciiiiiiiiiiiiea et 17
3.7 Audio Mixer Resource COMPONENTccoiii ittt a e 17
3.8 T.38 Fax Resource COMPONENTcouiiiiiiiiiiiiiiiiiiiiaaea e e e e e e e aeaeeeeeeeeeeeanes 18
3.9 Message Agent Resource COMPONENTcoovviiiiiiiiiiiiiiaie e e e e e e e eeeeeeeeanes 19
4.0 Message Format and Delivery MechanisSm ..o 20
4.1 MESSAQE FUNCHONSuiiiiii i s 20
4.2 Message Header FOrmMaL............ooovvvviiiiiiiiiiiiii e 21
4.3 LT ST= Vo T T Y/ o =] S 22
5.0 Common Control MESSAQE.........ccvovcvcveeeiieecceeeee e 23
51 RESEE MESSAGE ... 23
5.2 SEAM MESSATE ..eeeiieiieiiiiet et e e e e e 23
5.3 SEOP MESSATE ...eeiieieiiiiiee et e e 24
5.4 PING MESSAGE. ...ttt 24
55 Set-Parameter MESSAQEuuvviiiiiiiiii it 24
5.6 Set-Multiple-Parameter MESSAQEc.covurrriieiiiiiiie ettt 25
57 Get-Parameter MESSAJEceiiiiiiiiiiie et 26
5.8 Get-Parameter Acknowledge MeSSage.ccuvvvvieiiiiiiieiiiiiiee e 26
59 Get-All-Parameters MESSAQEuvveiieiiiiiie ettt 26
5.10 Get-All-Parameters Acknowledge MeSSage.........occuvveeeiiiiiieeeiniiiieee e 27
5.11 General-Acknowledge MESSAQEcoouurriiiiiiiiiiie ettt 27
5.12 EITON MESSATEuuieeiiiiiiee e ettt e e e e e e s e e es 28
5.13 EVENEIMESSAGE. ...eueeiiiiiiiieii ittt e e 28
6.0 Resource-Specific Control MeSSagesccooevvverrrsnnsnnes 29
6.1 CODEC Start MESSAJE ...ccvvvvrrrrtutuiiiaiaaaaaaaeaeaaeteeeeeeeeeeeassssbasn s e e e e e aaaaaaaas 29
6.2 CODEC Stop-Acknowledgement MeSSage.........oocuvveiiiiiiiiieeeee e 29
6.3 Tone Generator Play MESSA0Eccueeiiiiiiiiiiiiieiieeee e 30
6.4 Tone Generator Play-FSK MESSAgeccooviiiiiiiiiiiiiei et 30
6.5 Tone Generator Play-Completed MeSSage........ccoovviiiiiiiiiiiiiiiieiee e 31
6.6 Tone Detector Receive-Digit MESSAgE.uuuiiiiiiiiaaiaiiiiiiiiieiiee e 31
6.7 Tone Detector Receive-Completed MeSSageooovviviviiiiiieiiiiieeee s 32

API Reference Manual 3

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u tel
®

7.0

8.0

9.0

10.0

Figures

Tables

6.8 Tone Detector Receive-FSK MESSAQe.......uuuiiiiiiiiiiaiiiiiiiiiieiieeee e 32
6.9 Tone Detector FSK-Receive-Completed MeSSageeevveveeeeeeiiiiiiiiiiiinnen. 33
6.10 Player-Start MESSAQE. ... uu ettt eaaie ittt e e e et e e e e e e e e e e e s e e e enneaes 33
6.11 Player Play-Completed MESSAQEuuueiiiiiiieeaiiiiiiiiiiiieiie e 34
6.12 Get-Jitter-Buffer-StatiSticS MESSAGEcccvviieiiiiiiiiiiiiiieeeee e 35
6.13 Complete Message of Getting Jitter Buffer StatisticS.........cccccceeeviiiiiiiiiiinnee. 35
Packet Data INterface..........coooiiiiieeee e 36
7.1 PaCKEt FOMMALSeeiiiiiieieii e 36
7.2 Packet Delivery MeChaniSMccciiiiiiiiiii it e e e e, 37
Configuration and INitialization ..., 38
8.1 System ConfigUIatioNoiiiiiiiiiiiie e 38
8.2 Adding Tones to TONE GENEIALOr..........coccceveiieiieee e e e e e ee s e e e e e e e s e nneees 40
8.3 Adding Tones to TONE DELECIONcccceieiiiiiieie e 41
8.4 Getting DSP Resource Configuration and Routing Information...................... 42
Complementary FUNCLIONScccccoiiiiiiiiccccee e 44
9.1 DIreCt ParameEter ACCESSuuueiiieiiiaiae ettt e e e e e e e e et eeeeaaaaeaeeaan 44
9.2 Flash HOOK DEteCHONcooiiiiiiiiieeeee et 44
9.3 Cache Prompt RegiStrationccceiiiiiiiiiiiiiiieieeeee e 45
9.4 Get Version NUMDET ...ttt 46
CONSTANT DALA.......cieciiieiie et 47
L10.1 EXrOFr COUBS ... ittt e et e et e e e e e e s e e bbb e e ee e a7
10.2 EVENE COUBS. .. oottt e e e e e e e e e e 48
10.3 TONE IDS ittt e e e et 48
10.4 Other CONSLANTSuiiiiiiiiiiiie ettt e e e e et e e e e e e e e e s eeee e e neees 51
1 Architecture of Intel® IXP400 DSP Software V2.5..........cccoovieveeeseeeerssenns 9
2 Resource Component [dentifiers...........coooviiiiiieieccre e 10
None.

API Reference Manual

intel Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
®

Revision History

Date Revision Description
December 2004 008 Updated product branding.
Further updates for the release of Intel® IXP400 DSP Software
September 2004 007 v2.5. Change bars indicate areas of change.
June 2004 006 Updates for the release of Intel® IXP400 DSP Software v2.5.
Updates for the release of Intel® IXP400 DSP Software
January 2004 005 Version 2.4.
September 2003 004 fCla\rlf_led input for XStatus_t xMsgReceive message
unction.
Updates for the release of Intel® IXP400 DSP Software
September 2003 003 version 2.3
Added minor updates to represent features of Intel® IXP400
March 2003 002 DSP Software Version 1.1.
January 2003 001 First release of this document.

API Reference Manual 5

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u tel
®

This page intentionally left blank.

6 API Reference Manual

In Introduction

u tel Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
®

1.0 Introduction

The Intel® IXP400 DSP Software v2.5 is a software module that provides the basic voice processing
functionalities for VoIP residential gateway applications. It can be viewed as a completed media pro-
cessing layer with control and data interfaces as its API.

This document defines the API specifications.

1.1 General

The Intel® 1XP400 DSP Software is a software module for media processing, targeted for next gen-
eration IADs such as Consumer Premise Equipment (CPE), specifically, to perform audio encoding/
decoding, echo cancellation, tone processing and jitter control, etc., as required in any IP media gate-
way or real-time media streaming functionalities.

This document is intended to describe the control and data interfaces in order for a third party de-
veloper to incorporate the module into a media gateway or server system. It provides sufficient de-
tails of the interfaces so that the user can fully configure and control the operations and services.

It additionally describes the data interface and format as well as message and data delivery mecha-
nisms.

1.2 Scope

The interface of DSP software is a set of functions, macros, and message and packet formats that
determines how the applications access the media processing resource components.

1.3 Audience

This document is intended for the following audiences:
* Firmware engineers who are responsible for the development of DSP Resources
¢ Third party software engineers who are building a gateway or server application
¢ System architects and engineers

* Project development managers

1.4 Acronyms
AGC Automatic Gain Control for voice data towards IP network
ALC Automatic Level Control
CPE Consumer Premise Equipment
EC Echo Cancellation
FSK Frequency Shift Keying
IP Internet Protocol
ISR Interrupt Service Routine

API Reference Manual 7

Introduction In

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u tel
®

NLP Non-linear Processing (for EC)
SP Signal Processing
VAD \oice Activity Detection

8 API Reference Manual

In

2.0

tel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Architectural Overview

Architectural Overview

Intel® 1XP400 DSP Software is implemented as an independent module having its own tasks and
runtime environment. The software architecture is of a two-layer hierarchy —a control layer that pro-
vides the control interface and control logic, and a data processing layer where the media data
streams are processed by appropriate algorithms. Figure 1 shows the architecture of the module.

In this architecture, a group of media resource (MPR) components forms a channel for full duplex
media processing. They are the addressable entities that can be controlled individually by the appli-
cations.

Figure 1. Architecture of Intel® IXP400 DSP Software v2.5

Intel® IXP400 DSP Software Client

[

A A User-Defined
Control Replies and Control
Messages Events Messages
and Replies
Y i
Intel® IXP400 DSP User-Defined
Software Control Interface Control Interface
A A
\ \
Common Control Logic and Message
Generic Control Engine Agent

A

PCM

SLIC

Algorith
Interface

Data
Interface

Data

\

Components

\J
Network Decoder Tone Tone Audio Audio
Endpoint Generator Detector Player Mixer
A

Control Layer

Data-Processing

Packet
Interface

ms and

Encoded
Packets

/

Real-Time Execution Environment

Revision 002

API Reference Manual

Media Processing Resource Components In

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u tel
®

3.0

3.1

10

Figure 2.

Media Processing Resource Components

As shown in Figure 1, the addressable control entities of Intel® 1XP400 DSP Software are media
processing resource (MPR) components similar to those defined in many Intel Dialogic compute te-
lephony system architecture. There are nine resource components, working together to provide all
the media processing needed by a gateway or server channel. Each resource component has a unique
identifier as shown below. In the following, we will refer to each of these nine media processing en-
tities as either a resource or a resource component.

Resource Component Identifiers

typedef enum{
XMPR_ANY=0, /* any resource, not currently supported */
XMPR_NET, /* Network Endpoint resource */
XMPR_DEC, /* Decoder resource */
XMPR_ENC, /* Encoder resource */
XMPR_TNGEN, /* Tone generator resource */
XMPR_TNDET, /* Tone detector resource */
XMPR_PLY, /* Audio player resource */
XMPR_MIX, /* Audio mixer resource */
XMPR_T38, /* T38 IP fax resource */
XMPR_MA /* Message Agent resource */

} XMPResource_t;

Each resource contains a particular set of algorithms to perform a specific set of media-processing
functions. For example, the Network Endpoint resource consists of echo cancellation, high pass fil-
ter and PCM A-law or p-lawconversion algorithms to perform TDM front-end processing. Each re-
source, therefore, has a unique set of parameters associated with the particular set of algorithms it
contains.

Communications of control information to these resource components are through messages defined
in this document. Some messages are common to all the resources while others are unique only to a
particular resource.

The following sections describe each resource in terms of their identifiers, media processing func-
tions, parameters, and control messages. The resource parameters can be read or modified by the
messages or direct function calls. Some of the parameters can only be set though the messages be-
cause they can only be updated by the internal control task.

Network Endpoint Resource Component

Resource Type: XMPR_NET

Media Processing Functions

* A-law or p-law compression and decompression

* High pass Filter

* Echo Cancellation (EC)

* Supplementary functions (timer and flash hook detection)

Resource-Specific Control Messages: None

API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

Parameters
Identifier Description, Values Attr Direct
’ “ | Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID NET LP STREAM The L-Port stream ID. Def'ault:' the stream assigned to the IP termination’s T- RIW N
- - = Port of the same channel if exist, otherwise —1.
PCM data format on HSS TDM bus. XPARM_NET_ALAW or
XPARMID_NET_LAW XPARM_NET_MULAW. RIW N
Default: XPARM_NET_MULAW
XPARMID NET ECENABLE EC enabling flag, XPARM_ON or XPARM_OFF. RIW v
- - Default: XPARM_ON
EC tail length (2, 4, 6, 8, ... in 1 ms unit, Max 64 in narrowband mode and 32
XPARMID_NET_ECTAIL in wideband mode). RIW N
Default: 6. The resource must be reset after setting the parameter.
EC NLP and suppress flag, XPARM_OFF, XPARM_EC_NLP_ON or
XPARMID_NET_ECNLP XPARM_EC_NLP_SUP_ON. RIW N
Default: XPARM_OFF
EC freezing flag, XPARM_ON (freeze) or XPARM_OFF (adaptive).
XPARMID_NET_ECFREEZE Typically, freeze is used only in debug situations. Default: XPARM_OFF RIW N
EC delay compensation (0 ~ 240 in 0.125-ms units).
XPARMID_NET_DELAYCOMP] R/W Y
- - Default: 20 (or 2.5 ms delay compensation)
The window of flash hook detection (in 10-ms units)
XPARMID_NET_FLASH_HK R/W Y
Default: 100
Timer counter (in 10 ms unit). This timer can be used for timing that is
XPARMID_NET_TIMER synchronized to the TDM clock. R/W Y
Default: 0
Input gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_RX R/W N
- - - Default: 0
QOutput gain of HSS interface (+15 ~ —40 in 1-dB units)
XPARMID_NET_GAIN_TX RIW N
Default: 0
TDM short bypass flag, XPARM_ON or XPARM_OFF. The low latency
connection made within NPE between the corresponding time slots if
XPARMID_NET_HSS_BYPASS RIW N

enabled. Do not enable it in wideband mode.

Default: XPARM_OFF

Events

e XEVT_NET_HOOK_STATE — Hook state change detected.
e XEVT_NET_TIMER — Timer expired.

3.2

Decoder Resource Component

Resource Type: XMPR_DEC

API Reference Manual

11

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

Media Processing Functions

* Decoding

* Automatic level control and/or volume control

* Comfort noise generation

¢ Jitter compensation

Resource-Specific Control Messages

* XMSG_CODER_START (inbound)
* XMSG_CODER_STOP_ACK (outbound)

Parameters

Identifier

Description and Values

Attr.

Direct
Write

XPARMID_RES_STATE

Current state (0: idle, 1: active)

N

XPARMID_DEC_VOL

Decoder volume adjustment; +15 ~ -40 in 1-dB units.
Default: 0 (Set to -99 to mute)

R/W

N

XPARMID_DEC_ALC

ALC enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_ON

R/W

XPARMID_DEC_CNG

CNG enable flag. XPARM_ON or XPARM_OFF. Default:
XPARM_OFF

R/W

XPARMID_DEC_CTYPE

Coder type. Currently supported types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS, XCODER_TYPE_G729A
or XCODE_TYPE_G723, XCODER_TYPE G722,

XCODER_TYPE_G726_40, XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24, XCODER_TYPE_G726_16,
and XCODER_TYPE_G729.

Default: XCODER_TYPE_G711MU_10MS

R/W

XPARMID_DEC_EVT_PKT

Report bad and lost packet, caused by the jitter buffer unable to

provide packets to the decoder. XPARM_ON or XPARM_OFF.

Default: XPARM_OFF

R/W

XPARMID_DEC_EVT_PKTCHNG

Report RTP payload type change. XPARM_ON or
XPARM_OFF.

Default: XPARM_ON.

R/W

XPARMID_DEC_AUTOSW

Auto-Switch mask bits. This specifies which coder types are
allowed to be auto-switched based on input RTP payload type.

Default: XPARM_DEC_AUTOSW_ALL

R/W

XPARMID_DEC_JB_MAXDLY

Jitter buffer maximum delay (0 ~ 500 in 1-ms units).
Default: 200.

R/W

XPARMID_DEC_JB_PLR

Jitter buffer packet loss rate in 0.1% units.
Default: 1

R/W

12

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Media Processing Resource Components

Direct

Identifier Description and Values Attr. Write

RTP payload type for G.726 40-Kbps coder. The payload type is

negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_40_RTP_PLD | {57, RIW Y

Default: 96

RTP payload type for G.726 32-Kkbps coder, The payload type is

negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_32_RTP_PLD | 157 R/W Y

Default: 97

RTP payload type for G.726 24-Kbps coder, The payload type is

negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_24 RTP_PLD |{57, RIW Y

Default: 98

RTP payload type for G.726 16kbps coder, The payload type is

negotiated and set by the call stack. The range of values is 96 to
XPARMID_DEC_G726_16_RTP_PLD | 157 R/W Y

Default: 99

G.726 packing format. Set to XPARM_G726_PACK_LSB for RFC
XPARMID_DEC_G726_PACK]':%OSrEr;‘lalzormat, or XPARM_G726_PACK_MSB for 1.366.2 Annex E RIW N

Default: XPARM_G726_PACK_LSB

Events

* XEVT_LOST_PACKET - Bad or lost packet.
* XEVT_DEC_PACKET_CHNG — RTP payload type changed.

3.3 Encoder Resource Component

Resource Type: XMPR_ENC

Media Processing Functions

* Encoding

¢ Automatic Gain Control

* \oice Activity Detection
Resource-Specific Control Messages

* XMSG_CODER_START (inbound)
* XMSG_CODER_STOP_ACK (outbound)

API Reference Manual 13

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

Parameters

intel.

Identifier

Description and values

Attr.

Direct
Write

XPARMID_RES_STATE

Current state (0: idle, 1: active)

N

XPARMID_ENC_LP_STREAM

L-Port stream ID. Default: the stream assigned to the TDM termination’s
T-Port of the same channel if exist, otherwise —1.

R/W

N

XPARMID_ENC_AGC

AGC enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/IW

XPARMID_ENC_VAD

VAD enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W

XPARMID_ENC_CTYPE

Coder type. Currently supported types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A 10MS, XCODER_TYPE_G729A or
XCODE_TYPE_G723,

XCODER_TYPE_G722 ,XCODER_TYPE_G726_40,

XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24,
XCODER_TYPE_G726_16,

and XCODER_TYPE_G729.

Default: XCODER_TYPE_G711MU_10MS

R/W

XPARMID_ENC_MFPP

Number of frames per packet. Supported range is 1~6 for G.711 and
G.722, 1~8 for G.723, 1~9 for G.726 40 Kbps, 1~12 for G.726 32 Kbps,
1~16 for G.726 24 Kbps, and 1~24 for G.729 and G.726 16 Kbps.

Default: 1.

R/W

XPARMID_ENC_EVT_PKT

Enable packet lost event. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W

XPARMID_ENC_G726_40_RTP_PLD

RTP payload type for G.726 40-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.

Default: 96

R/W

XPARMID_ENC_G726_32_RTP_PLD

RTP payload type for G.726 32-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.

Default: 97

R/W

XPARMID_ENC_G726_24 RTP_PLD

RTP payload type for G.726 24-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.

Default: 98

R/W

XPARMID_ENC_G726_16_RTP_PLD

RTP payload type for G.726 16-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.

Default: 99

R/W

XPARMID_ENC_G726_PACK

G.726 packing format. Set to XPARM_G726_PACK_LSB for RFC 3551
format, or XPARM_G726_PACK_MSB for 1.366.2 Annex E format.

Default: XPARM_G726_PACK_LSB

R/W

XPARMID_ENC_VOL

Encoder gain adjustment, +15 ~ — 40 in 1-dB units.
Default: 0 (Set to -99 to mute)

R/W

Events

e XEVT_LOST_PACKET — Bad packet.
e XEVT_DEC_PACKET_CHNG — Received RTP payload type changed.

14

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Media Processing Resource Components

3.4 Tone Generation Resource Component
Resource Type: XMPR_TNGEN

Media Processing Functions

¢ Generating multiple frequency tone signals
* Generating call progress tones

Resource-Specific Control Messages

¢ XMSG_TG_PLAY (inbound)
* XMSG_TG_PLAY_FSK (inbound)
¢ XMSG_TG_PLAY_CMPLT (outbound)

Parameters
Identifier Description and values Attr. D'r?Ct
Write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
Tone Generator’s volume adjustment, +15 ~ —20 in 1-dB units.
XPARMID_TNGEN_VOL R/W N

Default: 0
FSK modulator mode. XPARM_TNGEN_FSK_V23 or
XPARM_TNGEN_FSK_B202.

XPARMID_TNGEN_FSK_MOD Default: XPARM_TNGEN_FSK_B202 if country code set to RIW Y
COUNTRY_CODE_US or COUNTRY_ CODE_PRC, otherwise
XPARM_TNGEN_FSK_V23

CS bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_CS Default: 300 if country code set to COUNTRY_CODE_US or RIW Y
COUNTRY_CODE_PRC, otherwise 0.

Mark bit length of FSK modulator (in bit unit).
XPARMID_TNGEN_FSK_MARK | Default: 180 if country code set to COUNTRY_CODE_US or RIW Y
COUNTRY_CODE_PRC, otherwise 100.

FSK modulator baud rate (XPARM_TNGEN_FSK_R1200,
XPARM_TNGEN_FSK_R600, XPARM_TNGEN_FSK_R300,
XPARMID_TNGEN_FSK_RATE | xpARM_TNGEN_FSK_R150 or XPARM_TNGEN_FSK_R75). RIW N

Default: XPARM_TNGEN_FSK_R1200, i.e., 1200 bps

Postmark bit length of FSK modulator (in bit unit)
Default: 72

YPARMID TNGEN RFC2833 RFC2833 enable flag. XPARM_ON or XPARM_OFF. RIW N
- - Default: XPARM_ON

XPARMID_TNGEN_FSK_POSTMK R/W Y

Events

None.

API Reference Manual 15

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

3.5

Tone Detection Resource Component

Resource Type: XMPR_TNDET

Media Processing Functions

* Receiving DTMF digits
¢ Detecting individual tone event

Resource-Specific Control Messages

¢ XMSG_TD_RCV (inbound)

* XMSG_TD_RCV_FSK (inbound)

* XMSG_TD_RCV_CMPLT (outbound)

e XMSG_TD_RCV_FSK_CMPLT (outbound)

Parameters
Identifier Description and values Attr Direct
P | write
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID_TD_LP_STREAM L-Po_rt st_ree’lm ID. Default: the stream assigne_d to the D‘I_'M RIW N
termination’s T-Port of the same channel if exist, otherwise —1.
Tone Clamping enable flag. XPARM_ON or XPARM_OFF.
XPARMID_TD_TC Default: XPARM_OFF RW | Y
Tone Clamping buffer size. 0 ~ 3 in 10 ms unit.
XPARMID_TD_TC_FRAMES R/W N
- - = Default: 3
Tone event enable flag. XPARM_OFF,
XPARM_TD_RPT_TONE_ON,
XPARMID_TD_RPT_EVENTS XPARM_TD_RPT_TONE_OFF or RIW Y
XPARM_TD_RPT_TONE_ON_OFF.
Default: XPARM_OFF
XPARMID TD RFC2833E ENABLE RFC2833 event enable flag. XPARM_ON or XPARM_OFF. RIW v
- - - Default: XPARM_OFF
RFC 2833 packet rate in 10-ms units, i.e., the period between
XPARMID_TD_RFC2833E_UPDATERATE the packets generated when a tone event is detected. R/W N
Default: 5
Redundancy of end-of-event packet. Range 0-255.
XPARMID_TD_RFC2833E_NUMEOE R/W Y
- = - Default: 3
Redundancy of begin-of-event packet. Range 0-255.
XPARMID_TD_RFC2833E_NUMBOE R/W Y
Default: 0
Flag of audio encoding suppression when event detected.
XPARMID_TD_RFC2833E_AUDIOSUPRESS |XPARM_ON or XPARM_OFF. RIW N
Default: XPARM_ON
RFC 2833 Payload type, Range is in the RTP dynamic payload
XPARMID_TD_RFC2833E_PAYLOADTYPE |type range of 96 to 127. RIW Y
Default: 0x65.

16

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Media Processing Resource Components

Direct

Identifier Description and values Attr. Write

Minimum CS-bit length required by FSK receiver. Default: 200
XPARMID_TD_FSK_CS if country code set to COUNTRY_CODE_US or RIW Y
COUNTRY_CODE_PRC, otherwise 0.

Minimum mark-bit length required by FSK receiver. Default:
XPARMID_TD_FSK_MARK 100 if country code set to COUNTRY_CODE_US or R/W Y
COUNTRY_CODE_PRC, otherwise 60.

Extra stop bits allowed between data.
XPARMID_TD_FSK_STOP R/W Y
Default: 20

XPARMID_TD_FSK_RATE Baud rate of FSK receiver. (Reserved for future, currently only

support 1,200 bps rate) RIW Y

Events

* XEVT_CODE_TD_TONEON - tone on event for an individual tone
* XEVT_CODE_TD_TONEOFF - tone off event for an individual tone
Event datal gives the tone ID and data2 gives the time stamp in 10-ms units.

3.6 Audio Player Resource Component

Resource Type: XMPR_PLY

Media Processing Functions

* Play back recorded audio data.

Resource-Specific Control Messages

* XMSG_PLY_START (inbound)
¢ XMSG_PLY_CMPLT (outbound)

Parameters
- - Direct
Identifier Description and values Attr. Write
XPARMID_RES_STATE Current state (0O: idle, 1: active) R N
XPARMID_PLY_VOL Volume adjustment (+15 ~ —30 in 1dB unit), Default: 0 R/W N
Events
None.
3.7 Audio Mixer Resource Component

Resource Type: XMPR_MIX

API Reference Manual 17

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u
Media Processing Resource Components In o

Media Processing Functions

Mixing multiple audio streams for three-way call or small audio conference. The maximum number
of parties to the mixer is currently five.

Resource-Specific Control Messages

None.
Parameters
Identifier Description and values Attr. B\i/rricet

XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID_MIX_LP_STREAM The first L-Port stream ID. Default: -1 R/W N
XPARMID_MIX_LP_STREAM+1 The 2nd L-Port stream ID. Default: -1 R/W N
XPARMID_MIX_LP_STREAM+n-1 The nth L-Port stream ID. Default: —1 R/W N

Events

None.
3.8 T.38 Fax Resource Component

Resource Type: XMPR_T38

Media Processing Functions

¢ Real-time fax gateway between TDM interface and IP network

Resource-Specific Control Messages

None.

Parameters

Identifier Description and Values Attr. B\i/rricet
XPARMID_RES_STATE Current state (0: idle, 1: active) R N
XPARMID T38 ELLIPSIS Flag of enabling ellipsis. XPARM_ON or XPARM_OFF. RIW N
- - Default: XPARM_OFF
XPARMID T38 FEC Flag of enabling FEC. XPARM_ON or XPARM_OFF. RIW N
- - Default: XPARM_OFF
Redundancy level, (0 ~ 7)
XPARMID_T38_REDUNDANCY R/W N
Default: 0

18 API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Media Processing Resource Components

Direct

Identifier Description and Values Attr. Write

Method of modem rate negotiation.
XPARM_T38_RATE_NEG_LOCAL or
XPARMID_T38_RATE_NEG XPARM_T38_RATE_NEG_REMOTE. RIW N

Default: XPARM_T38_RATE_NEG_REMOTE if packet transferred over
UDP, otherwise XPARM_T38_RATE_NEG_LOCAL

TCF error threshold (in percentage).
XPARAID_T38_TCF_THRSHLD Default: 5 R/W N

Protocol used to transfer T.38 packets over IP network.
XPARMID_T38 TRANSPORT XPARMID_T38_TRANS_UDP or XPARMID_T38 TRANS_TCP. RIW N

Default: XPARMID_T38_TRANS_UDP

Special mode, XPARM_T38_MODE_ITU or
XPARMID_T38_MODE XPARM_T38_MODE_CHINA. R/W N
Default: XPARM_T38_MODE_ITU

Events

XEVT_T38 END — End of the T.38 session. Event Data 1 gives the reason of the termination.

3.9 Message Agent Resource Component

Resource Type: XMPR_MA

Media Processing Functions

* No media processing function.

¢ Converting the user-defined messages and executing the control accordingly.

Resource-Specific Control Messages

None.
Parameters
Identifier Description and values Attr Dirgct
' Write
XPARMID_RES_STATE Current state (O: idle, 1: active) R N

Enable trace during processing user’s messages. XPARM_ON or
XPARMID_MA_DEBUG |XPARM_OFF

Default: XPARM_OFF
Default: XPARM_OFF R/W Y

Events

None.

API Reference Manual 19

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u

Message Format and Delivery Mechanism In

4.0

4.1

20

Message Format and Delivery Mechanism

There are two message queues (in-bound and out-bound) for the user application to send control
messages and to receive response and event messages, respectively. The message queues are created
from pre-allocated memory buffers in consideration of maximum message size and total number of
messages. The entire message header and content are copied to/from the buffers in the message
queue during message transmitting and receiving. The memory used for messaging is not shared be-
tween the message sender and the receiver.

Message Functions

Three functions are provided to send and receive messages.

XStatus_t xMsgSend (void *pMsgBuf);

Description Sends a control message to the in-bound message queue

Input pMsgBuUT - Pointer to the message buffer.
Output None
Return » XSUCC — If successful
« XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note Message buffer can be used for any other purpose after sending.

XStatus_t xMsgReceive (void *pMsgBuf, UINT16 channel, int timeout);

Description Receives acknowledgement or event from the outbound message queue.

» pMsgBuT - Pointer to the message buffer

« channel — Channel number. (Reserved for future extension)

Input « timeout - Waiting flag

— XWAIT_NONE — If return immediately

— XWAIT_FOREVER — If never time out (no other values are valid.)

Output None
Return * XSUCC — If successful
» XERROR — If errors
Caution Message buffer requires 4-byte alignment. The receiving buffer must fit the maximum

message size. Cannot be called from ISR.

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 1 of 2)

Description Posts a message (e.g. an user defined external event message) to the out-bound queue so
P that it can be retrieved by XMsgReceive().

Input pMsgBuf — Pointer to the message buffer.

Output None

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Message Format and Delivery Mechanism

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 2 of 2)

» XSUCC — If successful

Return
» XERROR — If errors
Caution Message buffer requires 4-byte alignment.
Note The message buffer can be used for any other purpose, after posting.

4.2 Message Header Format
typedef struct{
UINT32 transactionld; /* used by apps to track the message */
UINT16 instance; /* instance ID (1-Oxffff), O:reserved */
UINTS8 resource; /* MPR resource type */
Format UINTS8 reserved; /* reserved for future */
UINT16 size; /* total size in bytes */
UINTS8 type; /* message type */
UINTS8 attribute; /* attribute, reserved for future */
} XMsgHdr_t, *XMsgRef t_t;
Caution | Message content must follow the header in contiguous memory.
#define XMSG_MAKE_HEAD(pMsg, trans, res, inst, sz, typ, attr) \
((XMsgRef_t) (pMsg))->transactionld = trans;\
((XMsgRef_t) (pMsg))->instance = inst;\
Macros ((XMsgRef_t) (pMsg))->resource = res;\
((XMsgRef_t) (pMsg))->reserved = 0;\
((XMsgRef_t)(pMsg))->size = sz;\
((XMsgRef_t) (pMsg))->type = typ;\
((XMsgRef_t) (pMsg))->attribute = attr;

API Reference Manual

21

Message Format and Delivery Mechanism

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 intel
®

4.3

Message Type List

All message types are pre-defined as:

Typedef enum{

XMSG_BEGIN =0,
XMSG_RESET,
XMSG_START,

XMSG_STOP,

XMSG_PING,
XMSG_SET_PARM,
XMSG_SET_MPARMS,
XMSG_GET_PARM,
XMSG_GET_PARM_ACK,
XMSG_GET_ALLPARMS,
XMSG_GET_ALLPARMS_ACK,
XMSG_ACK,

XMSG_ERROR,
XMSG_EVENT,
XMSG_CODER_START,
XMSG_CODER_STOP_ACK,
XMSG_TG_PLAY,
XMSG_TG_PLAY_FSK,
XMSG_TG_PLAY_CMPLT,
XMSG_TD_RCV,
XMSG_TD_RCV_CMPLT,
XMSG_TD_RCV_FSK,
XMSG_TD_RCV_FSK_CMPLT,
XMSG_PLY_START,
XMSG_GET_JBSTAT,
XMSG_GET_JBSTAT_CMPLT,
XMSG_PLY_CMPLT,
XMSG_END

} XMsgType_t;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Begin list */

reset a resource */

start media processing a SP resource */

stop a current action on a SP resource */
ping a SP resource */

set a parameter on a SP resource */

set multiple parameters on a SP resource */
get a parameter from a SP resource */
acknowledgement to get parameter message */
get all parameters from a SP resource */
acknowledgement to get all parameter message */
general acknowledgement message */

error message from SP resource */

event message from SP resource */

start a codec resource */

acknowledgement to stop message */

play a digit string on a TG instance */

play FSK modulated data */

play-completed message from a TG instance */
receive a digit string on a TD instance */
receive-completed message from a channel */
receive a FSK signal on a TD instance */
receive-completed message from TD instance */
start playing audio on a Player instance */
get jitter buffer statistics from Dec */
response to the get-JB-statistics msg */
play-completed message from Player */

end of list */

22

API Reference Manual

intel.

5.0

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

Common Control Message

This section defines the control messages that can be applied to all the resources.

5.1 Reset Message
Type XMSG_RESET
Direction Inbound
Description Stops the current action and resets the resource to idle state.
typedef struct{
Format XMsgHdr_t head;/* message header */
} XMsgReset_t;
#define XMSG_MAKE_RESET(pMsg, trans, res, inst) \
A\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgReset t),\
XMSG_RESET, 0)\
}
Response » General acknowledgement message (XMSG_ACK)
P Error message (XMSG_ERROR) if error.
Caution Any intermediate results are discarded.
5.2 Start Message
Type XMSG_Start
Direction Inbound
Description Generic start message. Starts the media-processing functions on a resource.
typedef struct{
Format XMsgHdr_t head; /* message header */
} XMsgStart_t;
#define XMSG_MAKE_START(pMsg, trans, res, inst) \
AN
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStart_t),\
XMSG_START, 0)\
}
» General acknowledgement message (XMSG_ACK)
Response .
» Error message (XMSG_ERROR) if error.
Caution This message is not applicable to Tone Generator and Player resources.

API Reference Manual 23

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u
Common Control Message In ®

5.3 Stop Message
Type XMSG_STOP
Direction Inbound

Description Stops the current action.

typedef struct{
Format XMsgHdr_t head; /* message header */
} XMsgStop_t;

#define XMSG_MAKE_STOP(pMsg, trans, res, inst)\

A\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStop_t),\
XMSG_STOP, O)\
}
Response Resource returns the processing results or states, if any, depending on the resources and current actions.
5.4 Ping Message
Type XMSG_PING
Direction Inbound

Description Verifies if the resource is alive.

typedef struct{
Format XMsgHdr_t head; /* message header */
} XMsgPing_t;

#define XMSG_MAKE_PING(pMsg, trans, res, inst) \

A\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgPing_t),\
XMSG_PING, O)\
}
« General acknowledgement message (XMSG_ACK)
Response .
« Error message (XMSG_ERROR) if error.
5.5 Set-Parameter Message
Type XMSG_SET_PARM (Sheet 1 of 2)
Direction Inbound

Description Sets a parameter to a resource.

24 API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

Type XMSG_SET_PARM (Sheet 2 of 2)
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 parmld; /* parameter id */
UINT16 value; /* parameter value */
} XMsgSetParm_t;
#define XMSG_MAKE_SET_PARM(pMsg, trans, res, inst, id, val) \
AN
XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetParm_t),\
Macro XMSG_SET_PARM, O0O)\
((XMsgSetParm_t *)(pMsg))->parmld= id;\
((XMsgSetParm_t *)(pMsg))->value= val;\
}
» General acknowledgement message (XMSG_ACK)
Response)
» Error message (XMSG_ERROR) if error.
5.6 Set-Multiple-Parameter Message
Type XMSG_SET_MPARMS
Direction Inbound
Description Set multiple parameters to a resource
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 numParms; /* number of parameters */
UINT16 parmlDs[XMAX_PARMS] ; /* parameter id */
UINT16 values[XMAX_PARMS] ; /* parameter value */
} XMsgSetxParms_t;
#define XMSG_MAKE_SET_MPARMS(pMsg, trans, res, inst, num) \
AN
XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetmParms_t),\
XMSG_SET_MPARMS, O0)\
((XMsgSetmParms_t *)(pMsg))->numParms = num; \
Macro
#define XMSG_FIELD_SET_MPARMS(pMsg, plIDs, pvals) \
AN
plDs = ((XMsgSetmParms_t *)(pMsg))->parmiDs;\
pvals = ((XMsgSetmParms_t *)(pMsg))->values;\
}
* General acknowledgement message (XMSG_ACK)
Response .
» Error message (XMSG_ERROR) if error.

API Reference Manual 25

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

5.7 Get-Parameter Message
Type XMSG_GET_PARM
Direction Inbound
Description Gets a parameter from a resource.
typedef struct{
Format XMsgHdr_t head; /* message header */
UINT16 parmld; /* parameter id */
} XMsgGetParm_t;
#define XMSG_MAKE_GET_PARM(pMsg, trans, res, inst, id) \
A\
Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetParm_ t),\
XMSG_GET_PARM, 0O)\
((XMsgGetParm_t *)(pMsg))->parmld= id;\
}
« Specific acknowledgement message (XMSG_GET_PARM_ACK)
Response .
» Error message (XMSG_ERROR) if error.
5.8 Get-Parameter Acknowledge Message
Type XMSG_GET_PARM_ACK
Direction Outbound

Description Resource returns the parameter enquired.

typedef struct{

XMsgHdr_t head; /* message header */
Format UINT16 parmld; /* parameter id */
UINT16 value; /* parameter value */

} XMsgGetParmAck_t;

#define XMSG_FIELD_GET PARM_ACK(pMsg, id, val)\

N\
Macro id = ((XMsgGetParmAck_t *)(pMsg))->parmid;\
val = ((XMsgGetParmAck_t *)(pMsg))->value;\
}
5.9 Get-All-Parameters Message
Type XMSG_GET_ALLPARMS
Direction Inbound

Description Gets all parameters from a resource.

26

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In ® Common Control Message

Type XMSG_GET_ALLPARMS

typedef struct{
Format XMsgHdr_t head; /* message header */
} XMsgGetAllParms_t;

#define XMSG_MAKE_GET_ALLPARMS(pMsg, trans, res, inst) \

N

Macro XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetAllParms_t),\
XMSG_GET_ALLPARMS, 0)\

}

Response Specific acknowledgement message (XMSG_GET_ALLPARMS_ACK)

5.10 Get-All-Parameters Acknowledge Message
Type XMSG_GET_ALLPARMS_ACK
Direction Outbound
Description Resource returns the parameter inquired.
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 numParms; /* number of parameters */
UINT16 parmlDs[XMAX_PARMS_GET]; /* array of parameter IDs */
UINT16 values[XMAX_PARMS_GET]; /* array of parameter values */
} XMsgGetAllParmsAck_t;
#define XMSG_FIELD_GET_ALLPARMS_ACK(pMsg, num, plDs, pVals)\
A\
Macro num = ((XMsgGetAllParmsAck_t *)(pMsg))->numParms;\
pIDs = ((XMsgGetAllParmsAck_t *)(pMsg))->parmlIDs;\
pvals = ((XMsgGetAllParmsAck_t *)(pMsg))->values;\
}
5.11 General-Acknowledge Message
Type XMSG_ACK
Direction Outbound

Description Resource indicates the control message has been processed successfully.

typedef struct{
Format XMsgHdr_t head; /* message header */
} XMsgAck_t;

API Reference Manual 27

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

intel.

5.12 Error Message
Type XMSG_ERROR
Direction Outbound
Description Resource reports an error condition. (See constant data section for error codes.)
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT32 code; /* error code */
UINT32 datal; /* error datal */
UINT32 data2; /* error data2 */
} XMsgError_t;
#define XMSG_FIELD_ERROR(pMsg, c, di, d2)\
AN
Macio c = ((XMsgError_t *)(pMsg))->code;\
dl = ((XMsgError_t *)(pMsg))->datal;\
d2 = ((XMsgError_t *)(pMsg))->data2;\
}
5.13 Event Message
Type XMSG_EVENT
Direction Outbound
Description Resource reports an event condition. (See constant data section for error codes.)
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT32 code; /* event code */
UINT32 datal; /* event datal */
UINT32 data?2; /* event data2 */
} XMsgEvent_t;
#define XMSG_FIELD_EVENT(pMsg, c, di, d2)\
A
Macro c = ((XMsgEvent_t *)(pMsg))->code;\
dl = ((XMsgEvent_t *)(pMsg))->datal;\
d2 = ((XMsgEvent_t *)(pMsg))->data2;\
}

28

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

6.0 Resource-Specific Control Messages
This section defines the resource-specific messages.
6.1 CODEC Start Message
Type XMSG_CODER_START
Direction Inbound
Description Starts a decoder or encoder.
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 codecType; /* codec type */
UINT16 frmsPerPkt; /* number of frames per packet */
} XMsgCoderStart_t;
#define XMSG_MAKE_CODER_START(pMsg, trans, res, inst, cType, fpp)\
AN
XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgCoderStart_t),\
Macro XMSG_CODER_START, 0O)\
((XMsgCoderStart_t *)(pMsg))->codecType = cType;\
((XMsgCoderStart_t *)(pMsg))->FrmsPerPkt = fpp;\
}
» General acknowledgement message (XMSG_ACK)
Response .
» Error message (XMSG_ERROR) if error.
6.2 CODEC Stop-Acknowledgement Message
Type XMSG_CODER_STOP_ACK
Direction Outbound
Description Decoder or encoder resource acknowledges the XMSG_STOP message
typedef struct{
XMsgHdr_t head; /* message header */
Format UINT32 numFrames; /* total number of frames processed */
UINT32 numBadFrames; /* number of bad frames */
} XMsgCoderStopAck_t;
#define XMSG_FIELD_EVENT(pMsg, num, numBad)\
AN
Macro num = ((XMsgCoderStopAck_t *)(pMsg))->numFrames;\
numBad = ((XMsgCoderStopAck_t *)(pMsg))->numBadFrames;\
}

API Reference Manual 29

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

In

tel.

6.3 Tone Generator Play Message
Type XMSG_TG_PLAY
Direction Inbound

Description |Requires Tone Generator to play a tone string. (Tone ID’s are listed in the constant data section.)

typedef struct{
XMsgHdr_t head; /* message header */
Format UINT8 numTones;
UINT8 toneld[XMAX_TONEBUFSIZE]; /* tone ID string */
} XMsgTGPlay_t;

/* number of tones to play */

#define XMSG_MAKE_TG_PLAY(pMsg, trans, inst, num)\
0N

XMSG_TG_PLAY, O)\

((XMsgTGPlay_t *)(pMsg))->numTones = num;\
Macro }

#define XMSG_FIELD_TG_PLAY(pMsg, pTonelD) \

XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNGEN, inst, sizeof(XMsgTGPlay_ t),\

AN
pTonelD= ((XMsgTGPlay_t *)(pMsg))->toneld;\
}
6.4 Tone Generator Play-FSK Message
Type MSG_TG_PLAY_FSK

Direction Inbound

Description |[Require Tone Generator to play a FSK modulated data

typedef struct{

} XMsgTGPlayFSK_t;

XMsgHdr_t head; /* message header */
Format UINT8 numBytes; /* number of bytes to play */
INT8 data[XMAX_FSKDATASIZE]; /* data string */

#define XMSG_MAKE_TG_PLAY_FSK(pMsg, trans, inst, num)\

#define XMSG_FIELD_TG_PLAY_FSK(pMsg, pData) \
AN
pData= ((XMsgTGPlayFSK_t *)(pMsg))->data;\

A
XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNGEN, inst, sizeof(XMsgTGPlayFSK_t),\
XMSG_TG_PLAY_FSK, 0)\
((XMsgTGPlayFSK_t *)(pMsg))->numBytes = num;\
Macro }

Response | ¢ Tone Generator Play-Completed message (XMSG_TG_PLAY_CMPLT)

30 API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Resource-Specific Control Messages

6.5 Tone Generator Play-Completed Message
Type XMSG_TG_PLAY_CMPLT
Direction Outbound

Description Tone Generator indicates the completion of playing tones.

typedef struct{

XMsgHdr_t head; /* message header */
UINT16 reason; /* the reason of completion: */
Format /* XMSG_STOP_REASON_USER(1) */
/* XMSG_STOP_REASON_EOD(2) */
UINT8 numTones; /* number of tones played. 0 if FSK data */

} XMsgTGPlayCmplt_t;
#define XMSG_FIELD_TG_PLAY_CMPLT(pMsg, rsn, num)\

N\
Macro reason = ((XMsgTGPlayCmplt_t *)(pMsg))->reason;\
num = ((XMsgTGPlayCmplt_t *)(pMsg))->numTones;\
}
6.6 Tone Detector Receive-Digit Message
Type XMSG_TD_RCV
Direction Inbound

Description Require Tone Detector to receive a tone string.

typedef struct{

XMsgHdr_t head; /* message header */
UINT16 totalTimeout; /* total time out (in 10 ms unit) */
Format UINT16 FfirstDigitTimeout; /* first digit time out (10 ms uint)*/
UINT16 interDigitTimeout; /* inter digit time out (10 ms unit)*/
UINT16 termDigit; /* OR"d terminate digit bits */
UINT8 numDigits; /* number of digits to receive */
} XMsgTDRcv_t;
#define XMSG_MAKE_TD_RCV(pMsg, trans, inst, num, term, tm, fstTm, intTm)\
AN
XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNDET, inst,\
sizeof(XMsgTDRcv_t), XMSG_TD_RCV, 0)\
Macio ((XMsgTDRcv_t *)(pMsg))->numDigits = num;\

((XMsgTDRcv_t *)(pMsg))->termDigit = term;\
((XMsgTDRcv_t *)(pMsg))->totalTimeout = tm;\
((XMsgTDRcv_t *)(pMsg))->FirstDigitTimeout
((XMsgTDRcv_t *)(pMsg))->interDigitTimeout

fstTm;\
intTm;\

}

Response Tone detector receives completed message (XMSG_TD_RCV_CMPLT)

API Reference Manual 31

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

intel.

6.7 Tone Detector Receive-Completed Message
Type XMSG_TD_RCV_CMPLT
Direction Outbound

Description Tone detector indicates the completion of receiving DTMF tones.

typedef struct{

#define XMSG_STOP_REASON_TIMEOUT 4

XMsgHdr_t head; /* message header */
UINT16 reason; /* the reason of completion */
UINT8 numDigits; /* number of tones received */
UINTS digits[XMAX_DIGITBUFSIZE]; /* received tone IDs */
Format } XMsgTDRcvCmplt_t;

where the reason may be:

#define XMSG_STOP_REASON_EOD 2

#define XMSG_STOP_REASON_TERM 3

#define XMSG_FIELD_TD_RCV_CMPLT(pMsg, rsn, num, pBuf)\

N
Macro rsn = ((XMsgTDRcvCmplt_t *)(pMsg))->reason;\
num = ((XMsgTDRcvCmplt_t *)(pMsg))->numDigits;\
pBuf= ((XMsgTDRcvCmplt_t *)(pMsg))->digits;\
}
6.8 Tone Detector Receive-FSK Message
Type MSG_TD_RCV_FSK
Direction Inbound

Description Require Tone Detector to receive FSK data

typedef struct{

Format XMsgHdr_t head; /* message header */
UINT16 timeout; /* total time out (in 10 ms unit) */
} XMsgTDRcVvFSK_t;
#define XMSG_MAKE_TD_RCV_FSK(pMsg, trans, inst, tmout)\
N
Macro XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNDET, inst,\
sizeof(XMsgTDRcvFSK_t), XMSG_TD_RCV_FSK, 0)\
((XMsgTDRcVvFSK_t *) (pMsg))->timeout = tmout;\
}

Response Tone Detector FSK receive-completed message (XMSG_TD_RCV_FSK_CMPLT)

32

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Resource-Specific Control Messages

6.9 Tone Detector FSK-Receive-Completed Message
Type XMSG_TD_RCV_FSK_CMPLT
Direction Outbound

Description Tone Detector indicates the completion of receiving FSK data

typedef struct{

XMsgHdr_t head; /* message header */
UINT16 reason; /* the reason of completion */
UINT8 numBytes; /* number of bytes received */
UINT8 data[XMAX_FSKDATASIZE] ; /* received data */

Format } XMsgTDRcvFskCmplt_t;

where the reason may be:
#define XMSG_STOP_REASON_EOD 2
#define XMSG_STOP_REASON_TIMEOUT 4

#define XMSG_FIELD_TD_RCV_FSK_CMPLT(pMsg, rsn, num, pBuf)\

AN
Macro rsn = ((XMsgTDRcvFskCmplt_t *)(pMsg))->reason;\
num = ((XMsgTDRcvFskCmplt_t *)(pMsg))->numBytes;\
pBuf= ((XMsgTDRcvFskCmplt_t *)(pMsg))->data;\
}
6.10 Player-Start Message
Type XMSG_PLY_START (Sheet 1 of 2)
Direction Inbound

Description Start Player to play back pre-recorded audio data

API Reference Manual 33

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

intel.

} XMsgPlyStart_t;

where the media segment data structure is defined as
typedef struct{

Type XMSG_PLY_START (Sheet 2 of 2)
typedef struct{
XMsgHdr_t head; /* message header */
XPlyMediaDesc_t mediaSeg[XMAX_PLY_SEG]; /* media segments to play */
UINT8 numSeg; /* number of segments */

#define XMSG_FIELD_PLY_START(pMsg, pMedia) \

A
pMedia = ((XMsgPlyStart_t *)(pMsg))->mediaSeg;\
}

Format INT32 offset; /* offset in byte where player starts */
INT32 length; /* length to play (in 10ms unit),
0 means playing till end of this segment*/
XMediaHandle_t handle; /* media storage handle */
INT16 next; /* the relative index of next segment followed,
XPLY_MEDIA_SEG_EOP means end-of-play
at this segment */
} XPlyMediaDesc_t;
#define XMSG_MAKE_PLY_START(pMsg, trans, inst, num)\
A
XMSG_MAKE_HEAD(pMsg, trans, XMPR_PLY, inst,\
sizeof(XMsgPlyStart_t), XMSG_PLY_START, O)\
((XMsgPlyStart_t *)(pMsg))->numSeg = num;\
Macro }

Response Player play-completed message (XMSG_PLY_CMPLT)

6.11 Player Play-Completed Message
Type XMSG_PLY_CMPLT
Direction Outbound

Description Player indicates the completion of playing audio data.

typedef struct{

rsn = ((XMsgPlyCmplt_t *)(pMsg))->reason;\
}

XMsgHdr_t head; /* message header */
UINT16 reason; /* the reason of completion */
} XMsgPlyCmplt_t;
Format
where the reason may be:
#define XMSG_STOP_REASON_USER 1
#define XMSG_STOP_REASON_EOD 2
#define XMSG_FIELD_PLY_CMPLT(pMsg, rsn)\
N\
Macro

34

API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Resource-Specific Control Messages

6.12 Get-Jitter-Buffer-Statistics Message
Type XMSG_GET_JBSTAT
Direction Inbound

Description Get the jitter buffer statistics from a Decoder instance.

typedef struct{
XMsgHdr_t head; /* message header */
Format UINT16 reset; /* reset flag, 1: reset statistics after
retrieve the information */
} XMsgGetJBStat_t;

#define XMSG_MAKE_GET_JBSTAT(pMsg, trans, inst, clr)\
AN
XMSG_MAKE_HEAD(pMsg, trans, XMPR_DEC, inst,\
sizeof(XMsgGetJBStat_t), XMSG_GET_JBSTAT, 0)\
((XMsgGetJBStat_t *)(pMsg))->reset = clr;\

Macro

}
Response Complete message of getting jitter buffer statistics (XMSG_GET_JBSTAT_CMPLT)

6.13 Complete Message of Getting Jitter Buffer Statistics
Type XMSG_GET_JBSTAT_CMPLT
Direction Outbound

Description Response to the message of getting the jitter buffer statistics.

typedef struct{
XMsgHdr_t head; /* message header */
XJBStatistics_t stat; /* jiter buffer statistics */
} XMsgGetJBStatCmplt_t;

where the XMsgGetJBStatCmplt_t date structure of jitter buffer statistics
Format is defined as

typedef struct{

UINT32 rcvdPackets; /* total packets received */
UINT32 lostPackets; /* lost packets */

UINT32 badFrames; /* decoder bad frames */
UINT32 rcvdTonePackets; /* RFC2833 packets received */

} XJBStatistics_t;

#define XMSG_FIELD GET JBSTAT CMPLT(pMsg, pStat)\
0N

}

Macro pStat = &(((XMsgGetJBStatCmplt_t *)(pMsg))->stat);\

API Reference Manual 35

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u

Packet Data Interface

7.0

7.1

INtal.

Packet Data Interface

The packet data interface is a protocol for the Intel® IXP400 DSP Software to exchange the encoded
data packets with IP stack. This interface is defined as a packet format and two callback functions —
one is provided by DSP software release and another is provided by the user (IP stack).

Packet Formats

The ingress packet from the IP stack to the DSP software has an 8-byte header as shown below:

31

24

23

22

16|15 12|11 8|7 0

Channel ID

M

Payload Type Media Payload Length

Remote Time Stamp

Payload

Similarly, the egress packet from the DSP software to the IP stack has an 8-byte header as shown

below:

31

24

23

22

16|15 1211 8|7 0

Channel ID

Payload Type Media Payload Length

Local Time Stamp

Payload

36

The fields of the packet header and the payload are described as:

Field

Description

Local Time Stamp

Packet arrival time as measured by a local clock.

Remote Time Stamp

Packet data sampling time measured by a remote clock.

Payload Length

Payload length in bytes.

4-bit media type field is defined as:
* 0x01 — Audio
* 0x02 — Tone (RFC 2833 event type)

Media
* 0x04 — Tone (RFC 2833 tone type)
* 0x08 — T.38 UDP
* 0x09-T.38TCP
M Marker bit for the RTP packet. This bit set indicates the first speech packet after a
silence period or the first packet of a RFC-2833 tone event, otherwise 0.
Payload type RTP payload type as defined in RFC 1990.
Payload Encoded audio data or RFC-2838, tone-event information.

API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Packet Data Interface

The corresponding data structure is defined as:

typedef struct{
UINT8
UINT8
unsigned int
unsigned int
UINT32

} _ attribute ((packed)) XPacketHeader_t;

channel1D; /* channel ID */

payloadType; /* bit[0-6]payloadtype,bit[7] SID mark bit */
mediaType:4; /* media type */

payloadLen:12; /* payload length */

timeStamp; /* local or remote time stamp */

7.2

Iningress, the header information of Remote Time Stamp, Payload Type and Marker bit are directly
copied from a RTP packet. In egress, the header information is filled by DSP software except for the
Payload Type of RFC-2833 event packets. The RTP processing module is responsible to determine
the payload type if media type indicates a RFC-2833 tone-event packet.

Packet Delivery Mechanism

The packets are transferred between Intel® IXP400 DSP Software and IP stack via the callback func-
tions. The packet delivery module calls the function and passes the packet each time when a packet

is produced. The rules of using the callback function to deliver the packets include:

* The packet receiver registers a callback function with the packet deliverer.

* The packet deliverer is responsible to prepare the memory for the packet.

* The packet receiver has to copy the data to its internal buffer immediately in the callback
function because the deliverer may reuse the same memory for the next packet (i.e., the packet
data may not be valid any more after the callback function returns).

* The packet receiver may perform some data processing in the callback function provided the
execution of such processing is predictable (i.e., the processing must be guaranteed to
complete within a certain short period of time).

The function that the DSP software receives the packets from the IP stack is provided as follows:

XStatus_t xPacketReceive (UNIT16 channel, XPacket_t *buffer);

Description

Call-back function to receive packets.

Input

Buffer — memory address of the packet
Channel - Channel numbers

Output

None

Return

XSUCC - If successful
XERROR - If the packet receptor is unable to process the packet.

IP stack has to build the data packets from the IP packets it received and deliver them to DSP soft-
ware by calling this function.

In egress direction, IP stack must provide a function to receive egress data packets. DSP software
will call the function each time when a packet generated. That function must be registered during
initialization as described in next section.

API Reference Manual

37

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u
Configuration and Initialization In o

8.0 Configuration and Initialization

The Intel® 1XP400 DSP Software is configurable at initialization time, allowing the user to specify
the HSS parameters, the number of resource instances to be created and the country-specific fea-
tures. The user-supplied call back functions are also registered at that time.

8.1 System Configuration
Prototype void xDspSysInit(XDSPSysConfig_t *pSysConfig);
Input pSysConfig - System configuration information
Output None
Return None
Description

This function performs the following procedures:
* [nitialize and start HSS port

* Create TDM termination channels (i.e., Network Endpoint resource instance) and link them to
the HSS time slots sequentially. Error will occur if not enough time slots are enabled for all the
TDM channels

¢ Create the IP terminations (i.e., Decoder, Encoder, Tone Generator and Tone Detector
resources)

¢ Create media service resources (i.e., Player and Mixer)

* Enable country-specific call progress tones and set country-specific default parameters to the
resources

* Register user-supplied call back functions

38 API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In o Configuration and Initialization

The configuration information in this function is defined as:

typedef struct{

int numChTDM; /* number of channels of TDM termination(1~4) */
int numChlP; /* number of channels of IP termination (1~4) */
int numPlayers; /* number of Player instances (1~4) */

int numMixers; /* number of Audio Mixers (must be 1) */

int numPortsPerMixer; /* number of ports per mixer (3~5) */

int countryCode; /* country code */

int taskPriBase; /* the base priority of DSP module */

int taskPriOrder; /* the priority ordering of the 0S */
IxHssAccHssPort port; /* HSS port (must be Port 0) */

IxHssAccConfigParams *pHssCfgParms; /* HSS configuration parameters */
IxHssAccTdmSlotUsage *pHssTDMSlots; /* HSS TDM time slot mapping */
XDSPChanTdmSlots_t *pChanTsMap; /* channel vs. time slot mapping */

XPktRcvFxn_t pktRcvFxn; /* packet receiver function in egress */
XMsgAgentDec_t msgDecoder ; /* optional message decoder function of MA */
XMsgAgentEnc_t msgEncoder ; /* optional message encoder function of MA */

} XDSPSysConfig_t;

where:
typedef XStatus_t (*XPktRcvFxn_t)(UINT16 channel, void *pPacket);
typedef int (*XMsgAgentDec_t) (XMsgRef_t pUsrMsg, XMsgRef_t pNativeMsg, int sequenceNo);
typedef void (*XMsgAgentEnc_t)(XMsgRef_t pUsrReply, XMsgRef t pNativeReply,
int sequenceNo, UINT8 usrMsgType);

The pChanTsMap field is an array that specifies how the instances of Network Endpoint are linked
with the time slots of HSS. Each element of the array is defined as:

typedef struct{
int slotSamplel; /* time slot of the 1st sample */
int slotSample2; /* time slot of the 2nd sample,
set to XCHAN_TDM_SLOT _NULL #f narrowband */

} XDSPChanTdmSlots_t;

Assuming there are two channels — one wideband and one narrowband. The time slot locations for
the channels in a 32-slot frame are shown as:

0 |12 16|17 e 31
= m
AGAE o |6
= (< |5 S (2
e 2nd
=3 n
1st WB % WB
sample| ®
m sample
z

API Reference Manual 39

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u
Configuration and Initialization In o

Then the array that describes such configuration is given as:

XDSPChanTdmSlots_t chanTsMapping[2] =

{
{0, 16}, /* channel 1 — WB, time slot 0 and 16 */

{2, XCHAN_TDM_SLOT_NULL} /* channel 2 — NB, time slot 2 */
}:

If the pChanTsMap field is given a NULL pointer, all the instances of Network Endpoint will be con-
figured to the narrowband mode and are linked to the active time slots sequentially.

Warning: This function must be called after downloading HSS NPE. An assertion occurs if any fatal errors
happen (e.g., memory exhausted) during the initialization. If the numbers of resources to be created
are not specified correctly, the default ones are applied, which can be retrieved by the
xDspGetResConfig() function

8.2 Adding Tones to Tone Generator

Prototvne XStatus_t xBuildToneTG(UINT16 toneld, UINT16 numSegs,
P XTGToneSeg_t *pToneSegs, UINT32 *pErrCode);

« oneld — Tone ID, must be in the range of 16 ~ 255
Input « NumSegs — Number of segments of the tone
« pToneSegs — Array of tone segment definition

Output PErrCode - Error code if errors

» XSUCC if successful
« Otherwise XERROR

Return

Description

This function adds a new tone which can be played by the Tone Generator resources. Each new tone
can contains one or more segments which is defined as:

40 API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

typedef struct {
UINT16 repCount;
UINT16 segType;
INT16 fregA;
INT16 freqgB;

INT16 ampA;
INT16 ampB;

UINT16 mode;
INT16 nextSeg;

} XTGToneSeg_t;

/*
/*

UINT32 durationOn; /*
UINT32 durationOff;/*

/*

/*

repetition number of the segment. 0 means to repeat forever */
signal type (single or dual frequency wave or AM wave) */
active duration in 1-ms unit. */

silence duration in 1-ms unit. */

1st frequency if single or dual frequency wave,

or the modulated carry frequency if AM wave, in 1Hz unit*/
2nd frequency if dual frequency wave

or the modulating frequency if AM wave,

ignored if single frequency wave */

amplitude of frequency A above, (0~ — 45 in 1dBm unit) */

amplitude of frequency B if dual frequency wave,

or modulation rate if AM wave (0~100 in 1% unit),

ignored if single frequency wave */

mode, overwrite or mix over the Decoder output */

the index of next segment relative to the current segement.
e.dg., 1 means to go the following segment,

0 means repeat the current segment,

—2 means go back to previous 2 segments.

XTG_LASTSEG means end-of-tone */

Warning: New tone definition must be added during the initialization after xDspSysInit(). The pre-
defined country-specific call progress tone will be overwritten if a new tone is added with the same

tone ID.
8.3 Adding Tones to Tone Detector
Prototvbe Status_t xBuildToneTD(UINT8 toneld, XTDTonelnfo_t
P *pTonelnfo, UINT32 *pErrCode):
Inout « toneld - Tone ID, must be in the range of 16 ~ 255
P + pTonelnfo — Tone detection criterion information
Output pErrCode - Error code if errors
Return « XSUCC if successful
+ Otherwise XERROR
Description

This function adds a criterion for the Tone Detector to detect a new tone. The criterion specify the
qualification ranges to a set of parameters defined as:

API Reference Manual

41

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u
Configuration and Initialization In o

/* segment data for tone detection template. */
typedef struct {
UINT16 type; /* tone type (single or dual frequency tone) */
UINT16 criteria; /* loose, medium or tight, use medium for normal
case, use loose to get higher detection probability
in poor SNR, use tight to get lower false
detection probability in good SNR */

UINT16 freqlLowA; /* low bound of the 1lst frequency in Hz */

UINT16 fregHighA; /* high bound of the 1st frequency in Hz */
UINT16 freqLowB; /* low bound of the 2nd frequency in Hz */

UINT16 freqHighB; /* high bound of the 2nd frequency in Hz */
INT16 ampLowA; /* low level of the 1st frequency in dBm */
INT16 ampHighA; /* high level of the 1st frequency in dBm

IT both low and high are set to 0, the default
full range is applied */

INT16 ampLowB; /* low level of the 2nd frequency in dBm */

INT16 ampHighB; /* high level of the 2nd frequency in dBm,
IT both low and high are set to 0, the default
full range is applied */

UINT8 attributes; /* attribute (report the tone on, tone off or
both on/off) */

} XTDTonelnfo_t;

Warning: New tone detection criterion must be added during the initialization before xDspSysInit().

8.4 Getting DSP Resource Configuration and Routing Information
Prototype void XxDspGetResConfig(XDSPResConfig_t *pCfglnfo)
Input pCFfglnfo - Pointer to DSP configuration data structure
Output The resource configuration and the assignment of the routing streams
Return None
Description

The user’s applications can call this function any time after xDspSysInit () to obtain the DSP
resource configuration and the stream 1Ds assigned to the T-Ports of each type of the resources. The

42 API Reference Manual

intel.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

Configuration and Initialization

data structure XDSPResConfig_t is defined as:

typedef struct{
int numChTDM;
int numChlP;
int numPlayers;
int numMixers;
int numPortsPerMixer;
Int numStreams;
int streamBaseTDM;
int streamBaselP;
int streamBasePly;
int streamBaseMix;
int countryCode;

} XDSPResConfig_t;

/*
/*
/*
/*
/*
/*

/*
/*
/*

number
number
number
number
number
number

T-Port stream ID of the first TMD termination channel */
T-Port stream ID of the first IP termination channel */
T-Port stream ID 1st port of the 1st Player instance */

T-Port

country code */

of TDM termination channels */
of IP termination channels */

of player instances */

of Audio Mixers */

of ports per mixer */

of total streams in the router */

stream ID of the first mixer port */

The stream ID information is used for the application to connect the T-Ports and L-Ports of the re-

sources.

API Reference Manual

43

Complementary Functions

In

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u tel
®

9.0 Complementary Functions

9.1 Direct Parameter Access

The user’s applications can bypass the message and directly access the DSP parameters. This allows
quicker access without having to send a message and receive a response. All parameters can be di-
rectly read but only some of them can be directly modified. The functions to access the parameters

are:
Prototyne XStatus_txDspParmRead(UINT8 res, UINT16 inst, UINT16 parmid,
¥p UINT16 *pParmval);
e res - DSP resource ID
« inst -Instance ID of the resource
Input
- parmld - Parameter ID
« pParmVal - Pointer to the variable that receives the returned parameter value
Output Parameter value
Return « XSUCC if successful
e Otherwise XERROR
Description This function retrieves the specified parameter value.
Prototyne XStatus_t xDspParmWrite(UINT8 res, UINT16 inst,
P UINT16 parmld, UINT16 parmval, UINT32 transld);
e res -DSP resource ID
« inst-instaNce ID of the resource
Input - parmld - Parameter ID
- parmVal - Parameter value to be set
« transld - Transaction ID
Output None
Return « XSUCC if successful
« Otherwise XERROR
Description This function sets the value of the specified parameter.
9.2 Flash Hook Detection
Prototvpe Status_t xFlashHookDetect(UINT16 channel,
P XHookState_t hookState, XUINT32 transld);
« channel - Channel number starting from 1
Input + hookState - Hook state, XHOOK_STATE_ON or XHOOK_STATE_OFF
« transld - Transaction ID

44

API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Complementary Functions

Prototype

Status_t xFlashHookDetect(UINT16 channel,

XHookState_ t hookState, XUINT32 translid);

Output

None

Return

» XSUCC if successful
« Otherwise XERROR

Description

This function is called by the SLIC driver to report the hook state changes via the event
message.

If an on-hook transition followed by an off-hook one within the time specified by the
XPARMID_NET_FLASH_HK parameter, a flash hook event is reported.

The hook states are defined as:

typedef enum{
XHOOK_STATE_ON = O,
XHOOK_STATE_OFF,
XHOOK_STATE_FLASH

}XHookState t;

9.3 Cache Prompt Registration
Prototype XMediaHandle_t xDspRegCachePrompt(XCachePromptDesc_t *pDesc);
Input pDesc — The pointer to structure XCachePromptDesc_t.
Output None
Return XMediaHandle — Returns XMEDIA_HANDLE_NULL in the error case.
Description This function is called to register a cached prompt for playing at a later time.

XCachePromptDesc_t describes the data required to register a cached prompt.

typedef struct{
UINT8 *pBuffer; /* Pointer to the play buffer. */
INT32
XCoderType_t type; /* The type of data in play buffer.

size; /* The size of play buffer. */

The valid types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS and
XCODER_TYPE_G729A */

} XCachePromptDesc t;

API Reference Manual

45

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 u

Complementary Functions In o
9.4 Get Version Number

Prototype char * xDspGetVersion(void);

Input None

Output None

Return Pointer to the version string.

This function returns a six-digit version string in ASCII format hard coded in each release
uniquely. The first two digits give the major version number, the 2 digits in the middle give the
minor number and the last two digits give the build number. Depending on each release, the
build number may indicate the release types like normal release, service package (SP), early
access release (EAR), etc. For example, the Intel® IXP400 DSP Software v2.5 EAR gives the
string 020501 and the production release has the string 020505.

Description

46 API Reference Manual

u Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
In ® Constant Data

10.0 Constant Data
This section lists up the definitions for constant data such as error codes and event codes.

10.1 Error Codes

Errors are reported via XMSG_ERROR message with an error code and two error data. The common
error codes are defined as:

#define XERR_SYSTEM 0x0001 /* system error */

#define XERR_HSSIF 0x0002 /* HSS interface error */
#define XERR_MEMORY 0x0003 /* memory error # */
#define XERR_INVALID RES ID 0x0011 /* invalid resource id */
#define XERR_INVALID CHAN_ID 0x0012 /* invalid channel id */
#define XERR_INVALID PARM_ID 0x0013 /* invalid parameter id */
#define XERR_INVALID STREAM_ID 0x0014 /* invalid stream id */
#define XERR_PARM_READONLY 0x0015 /* real only parameter */
#define XERR_PARM_SET_ FAIL 0x0016 /* cannot set parameter */
#define XERR_PARM_GET_ FAIL 0x0017 /* cannot get parameter */
#define XERR_UNEXPECTED_MSG 0x0018 /* unexpected message */
#define XERR_UNSUPPORTED_ MSG 0x0019 /* unsupported message */
#define XERR_ALGORITHM 0x0041 /* algorithm related error # */
#define XERR_OTHERS Ox00fFf /* other errors */

The resource-specific error codes are defined as:

#define XERR_INVALID_CODE_TYPE 0x401 /* invalid codec type */
#define XERR_INVALID_FPP 0x402 /* invalid # frms per pkt */
#define XERR_TG_INVALID_TONE_ID 0x403 /* invalid tone 1D */

#define XERR_TG_INVALID_TID_NUM 0x404 /* too many tone IDs */

#define XERR_TG_INVALID_DATA NUM 0x405 /* too many FSK data */

#define XERR_TD_ INVALID DIGIT_NUM 0x406 /* too many digits */

#define XERR_RESOURCE_BUSY 0x407 /* resource is busy */

#define XERR_RESOURCE_IDLE 0x408 / * resource is idle */
#define XERR_MA_DEEP_RECURSIVE 0x409 /* deep recursive msg decoder*/

API Reference Manual 47

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

intel.

10.2 Event Codes
Events are reported via XMSG_EVENT message with an event code and two event data. The resource
specific event codes are defined as:
#define XEVT_CODE_TD TONEON 0x101 /* tone-on event */
#define XEVT_CODE_TD_TONEOFF 0x102 /* tone-off event */
#define XEVT_LOST_PACKET 0x103 /* lost packet */
#define XEVT_DEC_PACKET_CHNG 0x104 /* RTP payload type changed */
#define XEVT_NET_HOOK_STATE 0x105 /* hook state change detected */
#define XEVT_NET_TIMER 0x106 /* timer expired */
10.3 Tone IDs
The DTMF tone IDs used by the Tone Generator and Detector are defined as:
#define RFC_TID_DTMF_O 0
#define RFC_TID DTMF_1 1
#define RFC_TID_DTMF_2 2
#define RFC_TID_DTMF_3 3
#define RFC_TID_DTMF_4 4
#define RFC_TID_DTMF_5 5
#define RFC_TID_DTMF_6 6
#define RFC_TID DTMF_7 7
#define RFC_TID_DTMF_8 8
#define RFC_TID _DTMF_9 9
#define RFC_TID _DTMF_STAR 10
#define RFC_TID_DTMF_POUND 11
#define RFC_TID_DTMF_A 12
#define RFC_TID DTMF_B 13
#define RFC_TID_DTMF_C 14
#define RFC_TID_DTMF_D 15
Fax-tone IDs reported by the Tone Detector for fax bypass applications. Not supported by the Tone
Generator.
#define RFC_TID_FAX_CED 32
#define RFC_TID_FAX_CNG 36
#define RFC_TID_FAX V21 40
48 API Reference Manual

In Constant Data

u tel Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
®

The general call-progress tone IDs used by the Tone Generator are defined as:

#define RFC_TID DIAL 66
#define RFC_TID_PBX_DIAL 67
#define RFC_TID_SP_DIAL 68
#define RFC_TID_2ND_DIAL 69
#define RFC_TID_RING 70
#define RFC_TID_SP_RING 71
#define RFC_TID_BUSY 72
#define RFC_TID_CONGESTION 73
#define RFC_TID_SP_INFO 74
#define RFC_TID_COMFORT 75
#define RFC_TID_HOLD 76
#define RFC_TID_REC 77
#define RFC_TID_CALLER WT 78
#define RFC_TID_CALL_WT 79
#define RFC_TID_PAY 80
#define RFC_TID_POS_IND 81
#define RFC_TID_NEG_IND 82
#define RFC_TID_WARNING 83
#define RFC_TID_INSTRUSION 84
#define RFC_TID_CAL_CARD 85
#define RFC_TID_PAYPHONE 86

Currently only the following specific call progress tones are supported for tone generation:
¢ China (People’s Republic of China)
* Japan
¢ United States

Japan Call-Progress Tones

#define COUNTRY_CODE_JP 81 /* country code for Japan */
#define NTT_TID_DT RFC_TID_DIAL /* dial tone */

#define NTT_TID_RBT RFC_TID_RING /* ring back tone */
#define NTT_TID BT RFC_TID_BUSY /* busy tone */

#define NTT_TID_PDT RFC_TID_PBX DIAL /* private dial tone */
#define NTT_TID_SDT RFC_TID_2ND_DIAL /* 2nd dial tone */

#define NTT_TID_CPT RFC_TID_POS_IND /* acceptance tone */
#define NTT_TID_HST RFC_TID_HOLD /* hold service tone */
#define NTT_TID_HIT RFC_TID_CALL_WT /* incoming id tone */
#define NTT_TID_SIIT 110 /* special incoming id tone */
#define NTT_TID_HOW RFC_TID_OFFHK_WARN /* howler tone */

API Reference Manual 49

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

United States Call-Progress Tones

intel.

#define
#define
#define
#define
#define
#define
#define
#define
#define

COUNTRY_CODE_US
US_TID_DIAL
US_TID_RING
US_TID_BUSY
US_TID_RC_DIAL
US_TID_PBX_DIAL
US_TID_CONGESTION
US_TID_CALL_WT
US_TID_WARN_OPER

1

RFC
RFC
RFC
RFC

TID_DIAL
TID_RING
_TID_BUSY
TID_SP_DIAL

/*
/*
/*
/*
/*

RFC_TID_PBX_DIAL /*

RFC
110

 TID_CALL_WT

US country code */

dial tone */

ring back tone */

busy tone */

recall dial tone */

PBX dial tone */
RFC_TID_CONGESTION /* congestion tone */

/* call waiting tone */

/* operator intervening tone */

China Call-Progress Tones

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

COUNTRY_CODE_PRC
PRC_TID_DIAL
PRC_TID_RING
PRC_TID_BUSY
PRC_TID_SP_DIAL
PRC_TID_CONGESTION
PRC_TID_UNAVAILABLE
PRC_TID_TOLL
PRC_TID_QUEUE
PRC_TID_CALL_WT
PRC_TID_THR_PARTY
PRC_TID_CONFIRMATIO
PRC_TID_OFFHK_WARN

N

86

RFC_TID_DIAL
RFC_TID_RING
RFC_TID_BUSY
RFC_TID_SP_DIAL

RFC_TI1D_CONGESTION

RFC_TID_UNAVAILABLE /*

RFC_TID_COMFORT
RFC_TID_QUEUE

RFC_TID_CALL_WT
RFC_TID_THR_PAR

TY

RFC_TID_CONFIRMATION /*

RFC_TID_OFFHK_WARN

China country code */
dial tone */

ring back tone */
busy tone */

special dial tone */
congestion tone */
unavailable tone */
long distance tone */
queue tone */

call waiting tone */
3 party remind tone */
confirmation tone */
howler tone */

50

API Reference Manual

Constant Data

intel Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
®

10.4 Other Constants

The coder types used in the XPARMID_DEC_CTYPE and XPARMID_ENC_CTYPE parameters and

the XMSG_CODER_START message are defined as:

typedef enum{
XCODER_TYPE_PASSTHRU = O,
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS,
XCODER_TYPE_G729A,
XCODER_TYPE_G723,
XCODER_TYPE_G722,
XCODER_TYPE_G726_40,
XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24,
XCODER_TYPE_G726_16,
XCODER_TYPE_G729 = 17,
XCODER_TYPE_UNDEF = -1

} XCoderType_t;

Mask bits used to specify the coder type subset in Decoder auto-switch parameter are defined as:

#define XPARM_DEC_AUTOSW_OFF
#define XPARM_DEC_AUTOSW_G711MU
#define XPARM_DEC_AUTOSW_G711A
#define XPARM_DEC_AUTOSW_G729A
#define XPARM_DEC_AUTOSW_G723
#define XPARM_DEC_AUTOSW_G722
#define XPARM_DEC_AUTOSW_G726_40
#define XPARM_DEC_AUTOSW_G726_32
#define XPARM_DEC_AUTOSW_G726_24
#define XPARM_DEC_AUTOSW_G726_16
#define XPARM_DEC_AUTOSW_ALL

0x0000
0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
OXTfff

API Reference Manual

51

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

Constant Data

intel.

Mask bits used to specify the termination digits in the XMSG_TD_RCV message are defined as:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XTD_TERM_DIGIT_NONE 0x0000
XTD_TERM_DIGIT_O 0x0001
XTD_TERM_DIGIT_1 0x0002
XTD_TERM_DIGIT_2 0x0004
XTD_TERM_DIGIT_3 0x0008
XTD_TERM_DIGIT_4 0x0010
XTD_TERM_DIGIT_5 0x0020
XTD_TERM_DIGIT_6 0x0040
XTD_TERM_DIGIT_7 0x0080
XTD_TERM_DIGIT_8 0x0100
XTD_TERM_DIGIT_9 0x0200
XTD_TERM_DIGIT_STAR 0x0400
XTD_TERM_DIGIT_POUND 0x0800
XTD_TERM_DIGIT_A 0x1000
XTD_TERM_DIGIT_B 0x2000
XTD_TERM_DIGIT_C 0x4000
XTD_TERM_DIGIT_D 0x8000

The stop-reasons in the XMSG_TG_PLAY_CMPLT, XMSG_TD_RCV_CMPLT,

XMSG_TD_RCV_FSK_CMPLT, and XMSG_PLY_CMPLT messages are defined as:

#define
#define
#define
#define

XMSG_STOP_REASON_USER 1
XMSG_STOP_REASON_EOD 2
XMSG_STOP_REASON_TERM 3
XMSG_STOP_REASON_TIMEOUT 4

/*
/*
/*
/*

stopped by XMSG_STOP message */

end of data */

stopped by the terminate digits */

time out */

52

API Reference Manual

	Contents
	Figures
	1 Architecture of Intel® IXP400 DSP Software v2.5 9
	2 Resource Component Identifiers 10

	Tables
	None.

	Revision History

	1.0 Introduction
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Acronyms

	2.0 Architectural Overview
	3.0 Media Processing Resource Components
	3.1 Network Endpoint Resource Component
	3.2 Decoder Resource Component
	3.3 Encoder Resource Component
	3.4 Tone Generation Resource Component
	3.5 Tone Detection Resource Component
	3.6 Audio Player Resource Component
	3.7 Audio Mixer Resource Component
	3.8 T.38 Fax Resource Component
	3.9 Message Agent Resource Component

	4.0 Message Format and Delivery Mechanism
	4.1 Message Functions
	4.2 Message Header Format
	4.3 Message Type List

	5.0 Common Control Message
	5.1 Reset Message
	5.2 Start Message
	5.3 Stop Message
	5.4 Ping Message
	5.5 Set-Parameter Message
	5.6 Set-Multiple-Parameter Message
	5.7 Get-Parameter Message
	5.8 Get-Parameter Acknowledge Message
	5.9 Get-All-Parameters Message
	5.10 Get-All-Parameters Acknowledge Message
	5.11 General-Acknowledge Message
	5.12 Error Message
	5.13 Event Message

	6.0 Resource-Specific Control Messages
	6.1 CODEC Start Message
	6.2 CODEC Stop-Acknowledgement Message
	6.3 Tone Generator Play Message
	6.4 Tone Generator Play-FSK Message
	6.5 Tone Generator Play-Completed Message
	6.6 Tone Detector Receive-Digit Message
	6.7 Tone Detector Receive-Completed Message
	6.8 Tone Detector Receive-FSK Message
	6.9 Tone Detector FSK-Receive-Completed Message
	6.10 Player-Start Message
	6.11 Player Play-Completed Message
	6.12 Get-Jitter-Buffer-Statistics Message
	6.13 Complete Message of Getting Jitter Buffer Statistics

	7.0 Packet Data Interface
	7.1 Packet Formats
	7.2 Packet Delivery Mechanism

	8.0 Configuration and Initialization
	8.1 System Configuration
	8.2 Adding Tones to Tone Generator
	8.3 Adding Tones to Tone Detector
	8.4 Getting DSP Resource Configuration and Routing Information

	9.0 Complementary Functions
	9.1 Direct Parameter Access
	9.2 Flash Hook Detection
	9.3 Cache Prompt Registration
	9.4 Get Version Number

	10.0 Constant Data
	10.1 Error Codes
	10.2 Event Codes
	10.3 Tone IDs
	10.4 Other Constants

