
Intel® IXP400 Digital Signal
Processing (DSP) Software
Version 2.5
API Reference Manual

December 2004

Document Number: 273811-007a

2 API Reference Manual

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, Sound Mark, The Computer Inside, The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © Intel Corporation, 2004

*Other names and brands may be claimed as the property of others.

http://www.intel.com
http://www.intel.com

API Reference Manual 3

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

Contents
1.0 Introduction .. 7

1.1 General.. 7
1.2 Scope .. 7
1.3 Audience ... 7
1.4 Acronyms .. 7

2.0 Architectural Overview .. 9

3.0 Media Processing Resource Components .. 10
3.1 Network Endpoint Resource Component .. 10
3.2 Decoder Resource Component... 11
3.3 Encoder Resource Component ... 13
3.4 Tone Generation Resource Component ... 15
3.5 Tone Detection Resource Component .. 16
3.6 Audio Player Resource Component .. 17
3.7 Audio Mixer Resource Component ... 17
3.8 T.38 Fax Resource Component .. 18
3.9 Message Agent Resource Component ... 19

4.0 Message Format and Delivery Mechanism.. 20
4.1 Message Functions ... 20
4.2 Message Header Format... 21
4.3 Message Type List .. 22

5.0 Common Control Message... 23
5.1 Reset Message ... 23
5.2 Start Message ... 23
5.3 Stop Message ... 24
5.4 Ping Message.. 24
5.5 Set-Parameter Message ... 24
5.6 Set-Multiple-Parameter Message.. 25
5.7 Get-Parameter Message ... 26
5.8 Get-Parameter Acknowledge Message... 26
5.9 Get-All-Parameters Message .. 26
5.10 Get-All-Parameters Acknowledge Message.. 27
5.11 General-Acknowledge Message ... 27
5.12 Error Message... 28
5.13 Event Message.. 28

6.0 Resource-Specific Control Messages ... 29
6.1 CODEC Start Message ... 29
6.2 CODEC Stop-Acknowledgement Message... 29
6.3 Tone Generator Play Message ... 30
6.4 Tone Generator Play-FSK Message ... 30
6.5 Tone Generator Play-Completed Message... 31
6.6 Tone Detector Receive-Digit Message.. 31
6.7 Tone Detector Receive-Completed Message ... 32

4 API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

6.8 Tone Detector Receive-FSK Message...32
6.9 Tone Detector FSK-Receive-Completed Message ..33
6.10 Player-Start Message...33
6.11 Player Play-Completed Message...34
6.12 Get-Jitter-Buffer-Statistics Message ..35
6.13 Complete Message of Getting Jitter Buffer Statistics35

7.0 Packet Data Interface...36
7.1 Packet Formats ..36
7.2 Packet Delivery Mechanism...37

8.0 Configuration and Initialization ...38
8.1 System Configuration...38
8.2 Adding Tones to Tone Generator...40
8.3 Adding Tones to Tone Detector ...41
8.4 Getting DSP Resource Configuration and Routing Information42

9.0 Complementary Functions..44
9.1 Direct Parameter Access ...44
9.2 Flash Hook Detection...44
9.3 Cache Prompt Registration ..45
9.4 Get Version Number ..46

10.0 Constant Data ...47
10.1 Error Codes..47
10.2 Event Codes...48
10.3 Tone IDs...48
10.4 Other Constants ...51

Figures
1 Architecture of Intel® IXP400 DSP Software v2.5 ..9
2 Resource Component Identifiers..10

Tables
None.

API Reference Manual 5

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

Revision History

Date Revision Description

December 2004 008 Updated product branding.

September 2004 007 Further updates for the release of Intel® IXP400 DSP Software
v2.5. Change bars indicate areas of change.

June 2004 006 Updates for the release of Intel® IXP400 DSP Software v2.5.

January 2004 005 Updates for the release of Intel® IXP400 DSP Software
Version 2.4.

September 2003 004 Clarified input for XStatus_t xMsgReceive message
function.

September 2003 003 Updates for the release of Intel® IXP400 DSP Software
Version 2.3

March 2003 002 Added minor updates to represent features of Intel® IXP400
DSP Software Version 1.1.

January 2003 001 First release of this document.

6 API Reference Manual

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

This page intentionally left blank.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Introduction

API Reference Manual 7

1.0 Introduction

The Intel® IXP400 DSP Software v2.5 is a software module that provides the basic voice processing
functionalities for VoIP residential gateway applications. It can be viewed as a completed media pro-
cessing layer with control and data interfaces as its API.
This document defines the API specifications.

1.1 General

The Intel® IXP400 DSP Software is a software module for media processing, targeted for next gen-
eration IADs such as Consumer Premise Equipment (CPE), specifically, to perform audio encoding/
decoding, echo cancellation, tone processing and jitter control, etc., as required in any IP media gate-
way or real-time media streaming functionalities.
This document is intended to describe the control and data interfaces in order for a third party de-
veloper to incorporate the module into a media gateway or server system. It provides sufficient de-
tails of the interfaces so that the user can fully configure and control the operations and services.
It additionally describes the data interface and format as well as message and data delivery mecha-
nisms.

1.2 Scope

The interface of DSP software is a set of functions, macros, and message and packet formats that
determines how the applications access the media processing resource components.

1.3 Audience

This document is intended for the following audiences:
• Firmware engineers who are responsible for the development of DSP Resources

• Third party software engineers who are building a gateway or server application

• System architects and engineers

• Project development managers

1.4 Acronyms

AGC Automatic Gain Control for voice data towards IP network

ALC Automatic Level Control

CPE Consumer Premise Equipment

EC Echo Cancellation

FSK Frequency Shift Keying

IP Internet Protocol

ISR Interrupt Service Routine

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Introduction

8 API Reference Manual

NLP Non-linear Processing (for EC)

SP Signal Processing

VAD Voice Activity Detection

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Architectural Overview

API Reference Manual 9

2.0 Architectural Overview

Intel® IXP400 DSP Software is implemented as an independent module having its own tasks and
runtime environment. The software architecture is of a two-layer hierarchy – a control layer that pro-
vides the control interface and control logic, and a data processing layer where the media data
streams are processed by appropriate algorithms. Figure 1 shows the architecture of the module.
In this architecture, a group of media resource (MPR) components forms a channel for full duplex
media processing. They are the addressable entities that can be controlled individually by the appli-
cations.

Figure 1. Architecture of Intel® IXP400 DSP Software v2.5

Common Control Logic and
Generic Control Engine

Control
Messages

Real-Time Execution Environment

Intel® IXP400 DSP
Software Control Interface

Network
Endpoint Decoder Encoder Tone

Generator
Tone

Detector

Data-Processing
Algorithms and
Components

SLIC
Interface

IP
Stack

Intel® IXP400 DSP Software Client

PCM
Data

Interface

Packet
Interface

Control Layer

Data Processing Layer

Message
Agent

User-Defined
Control Interface

Audio
Mixer

Audio
Player

Replies and
Events

User-Defined
Control

Messages
and Replies

T.38

PCM
Data

Sync

Encoded
Packets

Revision 002

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

10 API Reference Manual

3.0 Media Processing Resource Components

As shown in Figure 1, the addressable control entities of Intel® IXP400 DSP Software are media
processing resource (MPR) components similar to those defined in many Intel Dialogic compute te-
lephony system architecture. There are nine resource components, working together to provide all
the media processing needed by a gateway or server channel. Each resource component has a unique
identifier as shown below. In the following, we will refer to each of these nine media processing en-
tities as either a resource or a resource component.

Each resource contains a particular set of algorithms to perform a specific set of media-processing
functions. For example, the Network Endpoint resource consists of echo cancellation, high pass fil-
ter and PCM A-law or µ-lawconversion algorithms to perform TDM front-end processing. Each re-
source, therefore, has a unique set of parameters associated with the particular set of algorithms it
contains.
Communications of control information to these resource components are through messages defined
in this document. Some messages are common to all the resources while others are unique only to a
particular resource.
The following sections describe each resource in terms of their identifiers, media processing func-
tions, parameters, and control messages. The resource parameters can be read or modified by the
messages or direct function calls. Some of the parameters can only be set though the messages be-
cause they can only be updated by the internal control task.

3.1 Network Endpoint Resource Component

Resource Type: XMPR_NET

Media Processing Functions

• A-law or µ-law compression and decompression

• High pass Filter

• Echo Cancellation (EC)

• Supplementary functions (timer and flash hook detection)

Resource-Specific Control Messages: None

Figure 2. Resource Component Identifiers

typedef enum{
XMPR_ANY=0, /* any resource, not currently supported */
XMPR_NET, /* Network Endpoint resource */
XMPR_DEC, /* Decoder resource */
XMPR_ENC, /* Encoder resource */
XMPR_TNGEN, /* Tone generator resource */
XMPR_TNDET, /* Tone detector resource */
XMPR_PLY, /* Audio player resource */
XMPR_MIX, /* Audio mixer resource */

 XMPR_T38, /* T38 IP fax resource */
XMPR_MA /* Message Agent resource */

} XMPResource_t;

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

API Reference Manual 11

Parameters

Events

• XEVT_NET_HOOK_STATE — Hook state change detected.

• XEVT_NET_TIMER — Timer expired.

3.2 Decoder Resource Component

Resource Type: XMPR_DEC

Identifier Description, Values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_NET_LP_STREAM The L-Port stream ID. Default: the stream assigned to the IP termination’s T-
Port of the same channel if exist, otherwise –1. R/W N

XPARMID_NET_LAW
PCM data format on HSS TDM bus. XPARM_NET_ALAW or
XPARM_NET_MULAW.
Default: XPARM_NET_MULAW

R/W N

XPARMID_NET_ECENABLE
EC enabling flag, XPARM_ON or XPARM_OFF.
Default: XPARM_ON

R/W Y

XPARMID_NET_ECTAIL
EC tail length (2, 4, 6, 8, ... in 1 ms unit, Max 64 in narrowband mode and 32
in wideband mode).
Default: 6. The resource must be reset after setting the parameter.

R/W N

XPARMID_NET_ECNLP
EC NLP and suppress flag, XPARM_OFF, XPARM_EC_NLP_ON or
XPARM_EC_NLP_SUP_ON.
Default: XPARM_OFF

R/W N

XPARMID_NET_ECFREEZE EC freezing flag, XPARM_ON (freeze) or XPARM_OFF (adaptive).
Typically, freeze is used only in debug situations. Default: XPARM_OFF R/W N

XPARMID_NET_DELAYCOMP
EC delay compensation (0 ~ 240 in 0.125-ms units).
Default: 20 (or 2.5 ms delay compensation)

R/W Y

XPARMID_NET_FLASH_HK
The window of flash hook detection (in 10-ms units)
Default: 100

R/W Y

XPARMID_NET_TIMER
Timer counter (in 10 ms unit). This timer can be used for timing that is
synchronized to the TDM clock.
Default: 0

R/W Y

XPARMID_NET_GAIN_RX
Input gain of HSS interface (+15 ~ –40 in 1-dB units)
Default: 0

R/W N

XPARMID_NET_GAIN_TX
Output gain of HSS interface (+15 ~ –40 in 1-dB units)
Default: 0

R/W N

XPARMID_NET_HSS_BYPASS

TDM short bypass flag, XPARM_ON or XPARM_OFF. The low latency
connection made within NPE between the corresponding time slots if
enabled. Do not enable it in wideband mode.
Default: XPARM_OFF

R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

12 API Reference Manual

Media Processing Functions

• Decoding

• Automatic level control and/or volume control

• Comfort noise generation

• Jitter compensation

Resource-Specific Control Messages

• XMSG_CODER_START (inbound)

• XMSG_CODER_STOP_ACK (outbound)

Parameters

Identifier Description and Values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_DEC_VOL
Decoder volume adjustment; +15 ~ -40 in 1-dB units.
Default: 0 (Set to -99 to mute)

R/W N

XPARMID_DEC_ALC
ALC enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_ON

R/W N

XPARMID_DEC_CNG CNG enable flag. XPARM_ON or XPARM_OFF. Default:
XPARM_OFF R/W Y

XPARMID_DEC_CTYPE

Coder type. Currently supported types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS, XCODER_TYPE_G729A
or XCODE_TYPE_G723, XCODER_TYPE_G722,
XCODER_TYPE_G726_40, XCODER_TYPE_G726_32,

XCODER_TYPE_G726_24, XCODER_TYPE_G726_16,
and XCODER_TYPE_G729.
Default: XCODER_TYPE_G711MU_10MS

R/W N

XPARMID_DEC_EVT_PKT
Report bad and lost packet, caused by the jitter buffer unable to
provide packets to the decoder. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W Y

XPARMID_DEC_EVT_PKTCHNG
Report RTP payload type change. XPARM_ON or
XPARM_OFF.
Default: XPARM_ON.

R/W Y

XPARMID_DEC_AUTOSW
Auto-Switch mask bits. This specifies which coder types are
allowed to be auto-switched based on input RTP payload type.
Default: XPARM_DEC_AUTOSW_ALL

R/W Y

XPARMID_DEC_JB_MAXDLY
Jitter buffer maximum delay (0 ~ 500 in 1-ms units).
Default: 200.

R/W N

XPARMID_DEC_JB_PLR
Jitter buffer packet loss rate in 0.1% units.
Default: 1

R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

API Reference Manual 13

Events

• XEVT_LOST_PACKET – Bad or lost packet.

• XEVT_DEC_PACKET_CHNG – RTP payload type changed.

3.3 Encoder Resource Component

Resource Type: XMPR_ENC

Media Processing Functions

• Encoding

• Automatic Gain Control

• Voice Activity Detection

Resource-Specific Control Messages

• XMSG_CODER_START (inbound)

• XMSG_CODER_STOP_ACK (outbound)

XPARMID_DEC_G726_40_RTP_PLD

RTP payload type for G.726 40-Kbps coder. The payload type is
negotiated and set by the call stack. The range of values is 96 to
127.
Default: 96

R/W Y

XPARMID_DEC_G726_32_RTP_PLD

RTP payload type for G.726 32-Kkbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
127.
Default: 97

R/W Y

XPARMID_DEC_G726_24_RTP_PLD

RTP payload type for G.726 24-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
127.
Default: 98

R/W Y

XPARMID_DEC_G726_16_RTP_PLD

RTP payload type for G.726 16kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to
127.
Default: 99

R/W Y

XPARMID_DEC_G726_PACK
G.726 packing format. Set to XPARM_G726_PACK_LSB for RFC
3551 format, or XPARM_G726_PACK_MSB for I.366.2 Annex E
format.
Default: XPARM_G726_PACK_LSB

R/W N

Identifier Description and Values Attr. Direct
Write

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

14 API Reference Manual

Parameters

Events

• XEVT_LOST_PACKET — Bad packet.

• XEVT_DEC_PACKET_CHNG — Received RTP payload type changed.

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_ENC_LP_STREAM L-Port stream ID. Default: the stream assigned to the TDM termination’s
T-Port of the same channel if exist, otherwise –1. R/W N

XPARMID_ENC_AGC
AGC enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W N

XPARMID_ENC_VAD
VAD enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W N

XPARMID_ENC_CTYPE

Coder type. Currently supported types are
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS, XCODER_TYPE_G729A or
XCODE_TYPE_G723,
XCODER_TYPE_G722,XCODER_TYPE_G726_40,
XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24,
XCODER_TYPE_G726_16,
and XCODER_TYPE_G729.
Default: XCODER_TYPE_G711MU_10MS

R/W N

XPARMID_ENC_MFPP

Number of frames per packet. Supported range is 1~6 for G.711 and
G.722, 1~8 for G.723, 1~9 for G.726 40 Kbps, 1~12 for G.726 32 Kbps,
1~16 for G.726 24 Kbps, and 1~24 for G.729 and G.726 16 Kbps.
Default: 1.

R/W N

XPARMID_ENC_EVT_PKT
Enable packet lost event. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W Y

XPARMID_ENC_G726_40_RTP_PLD
RTP payload type for G.726 40-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.
Default: 96

R/W Y

XPARMID_ENC_G726_32_RTP_PLD
RTP payload type for G.726 32-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.
Default: 97

R/W Y

XPARMID_ENC_G726_24_RTP_PLD
RTP payload type for G.726 24-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.
Default: 98

R/W Y

XPARMID_ENC_G726_16_RTP_PLD
RTP payload type for G.726 16-Kbps coder, The payload type is
negotiated and set by the call stack. The range of values is 96 to 127.
Default: 99

R/W Y

XPARMID_ENC_G726_PACK
G.726 packing format. Set to XPARM_G726_PACK_LSB for RFC 3551
format, or XPARM_G726_PACK_MSB for I.366.2 Annex E format.
Default: XPARM_G726_PACK_LSB

R/W N

XPARMID_ENC_VOL
Encoder gain adjustment, +15 ~ – 40 in 1-dB units.
Default: 0 (Set to -99 to mute)

R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

API Reference Manual 15

3.4 Tone Generation Resource Component

Resource Type: XMPR_TNGEN

Media Processing Functions

• Generating multiple frequency tone signals

• Generating call progress tones

Resource-Specific Control Messages

• XMSG_TG_PLAY (inbound)

• XMSG_TG_PLAY_FSK (inbound)

• XMSG_TG_PLAY_CMPLT (outbound)

Parameters

Events

None.

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_TNGEN_VOL
Tone Generator’s volume adjustment, +15 ~ –20 in 1-dB units.
Default: 0

R/W N

XPARMID_TNGEN_FSK_MOD

FSK modulator mode. XPARM_TNGEN_FSK_V23 or
XPARM_TNGEN_FSK_B202.
Default: XPARM_TNGEN_FSK_B202 if country code set to
COUNTRY_CODE_US or COUNTRY_CODE_PRC, otherwise
XPARM_TNGEN_FSK_V23

R/W Y

XPARMID_TNGEN_FSK_CS
CS bit length of FSK modulator (in bit unit).
Default: 300 if country code set to COUNTRY_CODE_US or
COUNTRY_CODE_PRC, otherwise 0.

R/W Y

XPARMID_TNGEN_FSK_MARK
Mark bit length of FSK modulator (in bit unit).
Default: 180 if country code set to COUNTRY_CODE_US or
COUNTRY_CODE_PRC, otherwise 100.

R/W Y

XPARMID_TNGEN_FSK_RATE

FSK modulator baud rate (XPARM_TNGEN_FSK_R1200,
XPARM_TNGEN_FSK_R600, XPARM_TNGEN_FSK_R300,
XPARM_TNGEN_FSK_R150 or XPARM_TNGEN_FSK_R75).
Default: XPARM_TNGEN_FSK_R1200, i.e., 1200 bps

R/W N

XPARMID_TNGEN_FSK_POSTMK
Postmark bit length of FSK modulator (in bit unit)
Default: 72

R/W Y

XPARMID_TNGEN_RFC2833
RFC2833 enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_ON

R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

16 API Reference Manual

3.5 Tone Detection Resource Component

Resource Type: XMPR_TNDET

Media Processing Functions

• Receiving DTMF digits

• Detecting individual tone event

Resource-Specific Control Messages

• XMSG_TD_RCV (inbound)

• XMSG_TD_RCV_FSK (inbound)

• XMSG_TD_RCV_CMPLT (outbound)

• XMSG_TD_RCV_FSK_CMPLT (outbound)

Parameters

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_TD_LP_STREAM L-Port stream ID. Default: the stream assigned to the DTM
termination’s T-Port of the same channel if exist, otherwise –1. R/W N

XPARMID_TD_TC Tone Clamping enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF R/W Y

XPARMID_TD_TC_FRAMES
Tone Clamping buffer size. 0 ~ 3 in 10 ms unit.
Default: 3

R/W N

XPARMID_TD_RPT_EVENTS

Tone event enable flag. XPARM_OFF,
XPARM_TD_RPT_TONE_ON,
XPARM_TD_RPT_TONE_OFF or
XPARM_TD_RPT_TONE_ON_OFF.
Default: XPARM_OFF

R/W Y

XPARMID_TD_RFC2833E_ENABLE
RFC2833 event enable flag. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W Y

XPARMID_TD_RFC2833E_UPDATERATE
RFC 2833 packet rate in 10-ms units, i.e., the period between
the packets generated when a tone event is detected.
Default: 5

R/W N

XPARMID_TD_RFC2833E_NUMEOE
Redundancy of end-of-event packet. Range 0-255.
Default: 3

R/W Y

XPARMID_TD_RFC2833E_NUMBOE
Redundancy of begin-of-event packet. Range 0-255.
Default: 0

R/W Y

XPARMID_TD_RFC2833E_AUDIOSUPRESS
Flag of audio encoding suppression when event detected.
XPARM_ON or XPARM_OFF.
Default: XPARM_ON

R/W N

XPARMID_TD_RFC2833E_PAYLOADTYPE
RFC 2833 Payload type, Range is in the RTP dynamic payload
type range of 96 to 127.
Default: 0x65.

R/W Y

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

API Reference Manual 17

Events

• XEVT_CODE_TD_TONEON – tone on event for an individual tone

• XEVT_CODE_TD_TONEOFF – tone off event for an individual tone

Event data1 gives the tone ID and data2 gives the time stamp in 10-ms units.

3.6 Audio Player Resource Component

Resource Type: XMPR_PLY

Media Processing Functions

• Play back recorded audio data.

Resource-Specific Control Messages

• XMSG_PLY_START (inbound)

• XMSG_PLY_CMPLT (outbound)

Parameters

Events

None.

3.7 Audio Mixer Resource Component

Resource Type: XMPR_MIX

XPARMID_TD_FSK_CS
Minimum CS-bit length required by FSK receiver. Default: 200
if country code set to COUNTRY_CODE_US or
COUNTRY_CODE_PRC, otherwise 0.

R/W Y

XPARMID_TD_FSK_MARK
Minimum mark-bit length required by FSK receiver. Default:
100 if country code set to COUNTRY_CODE_US or
COUNTRY_CODE_PRC, otherwise 60.

R/W Y

XPARMID_TD_FSK_STOP
Extra stop bits allowed between data.
Default: 20

R/W Y

XPARMID_TD_FSK_RATE Baud rate of FSK receiver. (Reserved for future, currently only
support 1,200 bps rate) R/W Y

Identifier Description and values Attr. Direct
Write

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_PLY_VOL Volume adjustment (+15 ~ –30 in 1dB unit), Default: 0 R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

18 API Reference Manual

Media Processing Functions

Mixing multiple audio streams for three-way call or small audio conference. The maximum number
of parties to the mixer is currently five.

Resource-Specific Control Messages

None.

Parameters

Events

None.

3.8 T.38 Fax Resource Component

Resource Type: XMPR_T38

Media Processing Functions

• Real-time fax gateway between TDM interface and IP network

Resource-Specific Control Messages

None.

Parameters

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_MIX_LP_STREAM The first L-Port stream ID. Default: –1 R/W N

XPARMID_MIX_LP_STREAM+1 The 2nd L-Port stream ID. Default: –1 R/W N

XPARMID_MIX_LP_STREAM+n-1 The nth L-Port stream ID. Default: –1 R/W N

Identifier Description and Values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_T38_ELLIPSIS
Flag of enabling ellipsis. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W N

XPARMID_T38_FEC
Flag of enabling FEC. XPARM_ON or XPARM_OFF.
Default: XPARM_OFF

R/W N

XPARMID_T38_REDUNDANCY
Redundancy level, (0 ~ 7)
Default: 0

R/W N

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Media Processing Resource Components

API Reference Manual 19

Events

XEVT_T38_END — End of the T.38 session. Event Data 1 gives the reason of the termination.

3.9 Message Agent Resource Component

Resource Type: XMPR_MA

Media Processing Functions

• No media processing function.

• Converting the user-defined messages and executing the control accordingly.

Resource-Specific Control Messages

None.

Parameters

Events

None.

XPARMID_T38_RATE_NEG

Method of modem rate negotiation.
XPARM_T38_RATE_NEG_LOCAL or
XPARM_T38_RATE_NEG_REMOTE.
Default:XPARM_T38_RATE_NEG_REMOTE if packet transferred over
UDP, otherwise XPARM_T38_RATE_NEG_LOCAL

R/W N

XPARAID_T38_TCF_THRSHLD
TCF error threshold (in percentage).
Default: 5

R/W N

XPARMID_T38_TRANSPORT
Protocol used to transfer T.38 packets over IP network.
XPARMID_T38_TRANS_UDP or XPARMID_T38_TRANS_TCP.
Default: XPARMID_T38_TRANS_UDP

R/W N

XPARMID_T38_MODE
Special mode, XPARM_T38_MODE_ITU or
XPARM_T38_MODE_CHINA.
Default: XPARM_T38_MODE_ITU

R/W N

Identifier Description and Values Attr. Direct
Write

Identifier Description and values Attr. Direct
Write

XPARMID_RES_STATE Current state (0: idle, 1: active) R N

XPARMID_MA_DEBUG
Enable trace during processing user’s messages. XPARM_ON or
XPARM_OFF
Default: XPARM_OFF

Default: XPARM_OFF R/W Y

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Message Format and Delivery Mechanism

20 API Reference Manual

4.0 Message Format and Delivery Mechanism

There are two message queues (in-bound and out-bound) for the user application to send control
messages and to receive response and event messages, respectively. The message queues are created
from pre-allocated memory buffers in consideration of maximum message size and total number of
messages. The entire message header and content are copied to/from the buffers in the message
queue during message transmitting and receiving. The memory used for messaging is not shared be-
tween the message sender and the receiver.

4.1 Message Functions

Three functions are provided to send and receive messages.

XStatus_t xMsgSend (void *pMsgBuf);

Description Sends a control message to the in-bound message queue

Input pMsgBuf – Pointer to the message buffer.

Output None

Return
• XSUCC — If successful
• XERROR — If errors

Caution Message buffer requires 4-byte alignment.

Note Message buffer can be used for any other purpose after sending.

XStatus_t xMsgReceive (void *pMsgBuf, UINT16 channel, int timeout);

Description Receives acknowledgement or event from the outbound message queue.

Input

• pMsgBuf – Pointer to the message buffer
• channel – Channel number. (Reserved for future extension)
• timeout – Waiting flag

— XWAIT_NONE — If return immediately
— XWAIT_FOREVER — If never time out (no other values are valid.)

Output None

Return
• XSUCC — If successful
• XERROR — If errors

Caution Message buffer requires 4-byte alignment. The receiving buffer must fit the maximum
message size. Cannot be called from ISR.

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 1 of 2)

Description Posts a message (e.g. an user defined external event message) to the out-bound queue so
that it can be retrieved by XMsgReceive().

Input pMsgBuf — Pointer to the message buffer.

Output None

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Message Format and Delivery Mechanism

API Reference Manual 21

4.2 Message Header Format

Return
• XSUCC — If successful
• XERROR — If errors

Caution Message buffer requires 4-byte alignment.

Note The message buffer can be used for any other purpose, after posting.

Format

typedef struct{
UINT32 transactionId; /* used by apps to track the message */
UINT16 instance; /* instance ID (1-0xffff), 0:reserved */
UINT8 resource; /* MPR resource type */
UINT8 reserved; /* reserved for future */
UINT16 size; /* total size in bytes */
UINT8 type; /* message type */
UINT8 attribute; /* attribute, reserved for future */

} XMsgHdr_t, *XMsgRef_t_t;

Caution Message content must follow the header in contiguous memory.

Macros

#define XMSG_MAKE_HEAD(pMsg, trans, res, inst, sz, typ, attr) \
((XMsgRef_t)(pMsg))->transactionId = trans;\
((XMsgRef_t)(pMsg))->instance = inst;\
((XMsgRef_t)(pMsg))->resource = res;\
((XMsgRef_t)(pMsg))->reserved = 0;\
((XMsgRef_t)(pMsg))->size = sz;\
((XMsgRef_t)(pMsg))->type = typ;\

 ((XMsgRef_t)(pMsg))->attribute = attr;

XStatus_t xMsgWrite (void *pMsgBuf); (Sheet 2 of 2)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Message Format and Delivery Mechanism

22 API Reference Manual

4.3 Message Type List

All message types are pre-defined as:

Typedef enum{
XMSG_BEGIN =0, /* Begin list */
XMSG_RESET, /* reset a resource */
XMSG_START, /* start media processing a SP resource */
XMSG_STOP, /* stop a current action on a SP resource */
XMSG_PING, /* ping a SP resource */
XMSG_SET_PARM, /* set a parameter on a SP resource */
XMSG_SET_MPARMS, /* set multiple parameters on a SP resource */
XMSG_GET_PARM, /* get a parameter from a SP resource */
XMSG_GET_PARM_ACK, /* acknowledgement to get parameter message */
XMSG_GET_ALLPARMS, /* get all parameters from a SP resource */
XMSG_GET_ALLPARMS_ACK, /* acknowledgement to get all parameter message */
XMSG_ACK, /* general acknowledgement message */
XMSG_ERROR, /* error message from SP resource */
XMSG_EVENT, /* event message from SP resource */
XMSG_CODER_START, /* start a codec resource */
XMSG_CODER_STOP_ACK, /* acknowledgement to stop message */
XMSG_TG_PLAY, /* play a digit string on a TG instance */
XMSG_TG_PLAY_FSK, /* play FSK modulated data */
XMSG_TG_PLAY_CMPLT, /* play-completed message from a TG instance */
XMSG_TD_RCV, /* receive a digit string on a TD instance */
XMSG_TD_RCV_CMPLT, /* receive-completed message from a channel */
XMSG_TD_RCV_FSK, /* receive a FSK signal on a TD instance */
XMSG_TD_RCV_FSK_CMPLT, /* receive-completed message from TD instance */
XMSG_PLY_START, /* start playing audio on a Player instance */
XMSG_GET_JBSTAT, /* get jitter buffer statistics from Dec */
XMSG_GET_JBSTAT_CMPLT, /* response to the get-JB-statistics msg */
XMSG_PLY_CMPLT, /* play-completed message from Player */
XMSG_END /* end of list */

} XMsgType_t;

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

API Reference Manual 23

5.0 Common Control Message

This section defines the control messages that can be applied to all the resources.

5.1 Reset Message

5.2 Start Message

Type XMSG_RESET

Direction Inbound

Description Stops the current action and resets the resource to idle state.

Format
typedef struct{
 XMsgHdr_t head;/* message header */
} XMsgReset_t;

Macro

#define XMSG_MAKE_RESET(pMsg, trans, res, inst) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgReset_t),\
 XMSG_RESET, 0)\
}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Caution Any intermediate results are discarded.

Type XMSG_Start

Direction Inbound

Description Generic start message. Starts the media-processing functions on a resource.

Format
typedef struct{
 XMsgHdr_t head; /* message header */
} XMsgStart_t;

Macro

#define XMSG_MAKE_START(pMsg, trans, res, inst) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStart_t),\
 XMSG_START, 0)\
}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Caution This message is not applicable to Tone Generator and Player resources.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

24 API Reference Manual

5.3 Stop Message

5.4 Ping Message

5.5 Set-Parameter Message

Type XMSG_STOP

Direction Inbound

Description Stops the current action.

Format
typedef struct{
 XMsgHdr_t head; /* message header */
} XMsgStop_t;

Macro

#define XMSG_MAKE_STOP(pMsg, trans, res, inst)\
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgStop_t),\
 XMSG_STOP, 0)\
}

Response Resource returns the processing results or states, if any, depending on the resources and current actions.

Type XMSG_PING

Direction Inbound

Description Verifies if the resource is alive.

Format
typedef struct{

XMsgHdr_t head; /* message header */
} XMsgPing_t;

Macro

#define XMSG_MAKE_PING(pMsg, trans, res, inst) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgPing_t),\
 XMSG_PING, 0)\
}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Type XMSG_SET_PARM (Sheet 1 of 2)

Direction Inbound

Description Sets a parameter to a resource.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

API Reference Manual 25

5.6 Set-Multiple-Parameter Message

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 parmId; /* parameter id */
UINT16 value; /* parameter value */

} XMsgSetParm_t;

Macro

#define XMSG_MAKE_SET_PARM(pMsg, trans, res, inst, id, val) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetParm_t),\
 XMSG_SET_PARM, 0)\

((XMsgSetParm_t *)(pMsg))->parmId= id;\
((XMsgSetParm_t *)(pMsg))->value= val;\

}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Type XMSG_SET_MPARMS

Direction Inbound

Description Set multiple parameters to a resource

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 numParms; /* number of parameters */
UINT16 parmIDs[XMAX_PARMS]; /* parameter id */
UINT16 values[XMAX_PARMS]; /* parameter value */

} XMsgSetxParms_t;

Macro

#define XMSG_MAKE_SET_MPARMS(pMsg, trans, res, inst, num) \
{\

XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgSetmParms_t),\
 XMSG_SET_MPARMS, 0)\

((XMsgSetmParms_t *)(pMsg))->numParms = num; \
}

#define XMSG_FIELD_SET_MPARMS(pMsg, pIDs, pVals) \
{\

pIDs = ((XMsgSetmParms_t *)(pMsg))->parmIDs;\
 pVals = ((XMsgSetmParms_t *)(pMsg))->values;\
}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Type XMSG_SET_PARM (Sheet 2 of 2)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

26 API Reference Manual

5.7 Get-Parameter Message

5.8 Get-Parameter Acknowledge Message

5.9 Get-All-Parameters Message

Type XMSG_GET_PARM

Direction Inbound

Description Gets a parameter from a resource.

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 parmId; /* parameter id */

} XMsgGetParm_t;

Macro

#define XMSG_MAKE_GET_PARM(pMsg, trans, res, inst, id) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetParm_t),\
 XMSG_GET_PARM, 0)\

((XMsgGetParm_t *)(pMsg))->parmId= id;\
}

Response
• Specific acknowledgement message (XMSG_GET_PARM_ACK)
• Error message (XMSG_ERROR) if error.

Type XMSG_GET_PARM_ACK

Direction Outbound

Description Resource returns the parameter enquired.

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 parmId; /* parameter id */
UINT16 value; /* parameter value */

} XMsgGetParmAck_t;

Macro

#define XMSG_FIELD_GET_PARM_ACK(pMsg, id, val)\
{\

id = ((XMsgGetParmAck_t *)(pMsg))->parmId;\
val = ((XMsgGetParmAck_t *)(pMsg))->value;\

}

Type XMSG_GET_ALLPARMS

Direction Inbound

Description Gets all parameters from a resource.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

API Reference Manual 27

5.10 Get-All-Parameters Acknowledge Message

5.11 General-Acknowledge Message

Format
typedef struct{

XMsgHdr_t head; /* message header */
} XMsgGetAllParms_t;

Macro

#define XMSG_MAKE_GET_ALLPARMS(pMsg, trans, res, inst) \
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgGetAllParms_t),\
 XMSG_GET_ALLPARMS, 0)\
}

Response Specific acknowledgement message (XMSG_GET_ALLPARMS_ACK)

Type XMSG_GET_ALLPARMS_ACK

Direction Outbound

Description Resource returns the parameter inquired.

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 numParms; /* number of parameters */
UINT16 parmIDs[XMAX_PARMS_GET]; /* array of parameter IDs */
UINT16 values[XMAX_PARMS_GET]; /* array of parameter values */
} XMsgGetAllParmsAck_t;

Macro

#define XMSG_FIELD_GET_ALLPARMS_ACK(pMsg, num, pIDs, pVals)\
{\

num = ((XMsgGetAllParmsAck_t *)(pMsg))->numParms;\
pIDs = ((XMsgGetAllParmsAck_t *)(pMsg))->parmIDs;\
pVals = ((XMsgGetAllParmsAck_t *)(pMsg))->values;\

}

Type XMSG_ACK

Direction Outbound

Description Resource indicates the control message has been processed successfully.

Format
typedef struct{

XMsgHdr_t head; /* message header */
} XMsgAck_t;

Type XMSG_GET_ALLPARMS

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Common Control Message

28 API Reference Manual

5.12 Error Message

5.13 Event Message

Type XMSG_ERROR

Direction Outbound

Description Resource reports an error condition. (See constant data section for error codes.)

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT32 code; /* error code */
UINT32 data1; /* error data1 */
UINT32 data2; /* error data2 */

} XMsgError_t;

Macro

#define XMSG_FIELD_ERROR(pMsg, c, d1, d2)\
{\

c = ((XMsgError_t *)(pMsg))->code;\
d1 = ((XMsgError_t *)(pMsg))->data1;\
d2 = ((XMsgError_t *)(pMsg))->data2;\

}

Type XMSG_EVENT

Direction Outbound

Description Resource reports an event condition. (See constant data section for error codes.)

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT32 code; /* event code */
UINT32 data1; /* event data1 */
UINT32 data2; /* event data2 */

} XMsgEvent_t;

Macro

#define XMSG_FIELD_EVENT(pMsg, c, d1, d2)\
{\

c = ((XMsgEvent_t *)(pMsg))->code;\
d1 = ((XMsgEvent_t *)(pMsg))->data1;\
d2 = ((XMsgEvent_t *)(pMsg))->data2;\

}

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

API Reference Manual 29

6.0 Resource-Specific Control Messages

This section defines the resource-specific messages.

6.1 CODEC Start Message

6.2 CODEC Stop-Acknowledgement Message

Type XMSG_CODER_START

Direction Inbound

Description Starts a decoder or encoder.

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 codecType; /* codec type */
UINT16 frmsPerPkt; /* number of frames per packet */

} XMsgCoderStart_t;

Macro

#define XMSG_MAKE_CODER_START(pMsg, trans, res, inst, cType, fpp)\
{\
 XMSG_MAKE_HEAD(pMsg, trans, res, inst, sizeof(XMsgCoderStart_t),\

XMSG_CODER_START, 0)\
((XMsgCoderStart_t *)(pMsg))->codecType = cType;\
((XMsgCoderStart_t *)(pMsg))->frmsPerPkt = fpp;\

}

Response
• General acknowledgement message (XMSG_ACK)
• Error message (XMSG_ERROR) if error.

Type XMSG_CODER_STOP_ACK

Direction Outbound

Description Decoder or encoder resource acknowledges the XMSG_STOP message

Format

typedef struct{
XMsgHdr_t head; /* message header */

 UINT32 numFrames; /* total number of frames processed */
 UINT32 numBadFrames; /* number of bad frames */
} XMsgCoderStopAck_t;

Macro

#define XMSG_FIELD_EVENT(pMsg, num, numBad)\
{\

num = ((XMsgCoderStopAck_t *)(pMsg))->numFrames;\
numBad = ((XMsgCoderStopAck_t *)(pMsg))->numBadFrames;\

}

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

30 API Reference Manual

6.3 Tone Generator Play Message

6.4 Tone Generator Play-FSK Message

Type XMSG_TG_PLAY

Direction Inbound

Description Requires Tone Generator to play a tone string. (Tone ID’s are listed in the constant data section.)

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT8 numTones; /* number of tones to play */
UINT8 toneId[XMAX_TONEBUFSIZE]; /* tone ID string */

} XMsgTGPlay_t;

Macro

#define XMSG_MAKE_TG_PLAY(pMsg, trans, inst, num)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNGEN, inst, sizeof(XMsgTGPlay_t),\
XMSG_TG_PLAY, 0)\

 ((XMsgTGPlay_t *)(pMsg))->numTones = num;\
}

#define XMSG_FIELD_TG_PLAY(pMsg, pToneID) \
{\

pToneID= ((XMsgTGPlay_t *)(pMsg))->toneId;\
}

Type MSG_TG_PLAY_FSK

Direction Inbound

Description Require Tone Generator to play a FSK modulated data

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT8 numBytes; /* number of bytes to play */
INT8 data[XMAX_FSKDATASIZE]; /* data string */

} XMsgTGPlayFSK_t;

Macro

#define XMSG_MAKE_TG_PLAY_FSK(pMsg, trans, inst, num)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNGEN, inst, sizeof(XMsgTGPlayFSK_t),\
 XMSG_TG_PLAY_FSK, 0)\

((XMsgTGPlayFSK_t *)(pMsg))->numBytes = num;\
}

#define XMSG_FIELD_TG_PLAY_FSK(pMsg, pData) \
{\

pData= ((XMsgTGPlayFSK_t *)(pMsg))->data;\
}

Response • Tone Generator Play-Completed message (XMSG_TG_PLAY_CMPLT)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

API Reference Manual 31

6.5 Tone Generator Play-Completed Message

6.6 Tone Detector Receive-Digit Message

Type XMSG_TG_PLAY_CMPLT

Direction Outbound

Description Tone Generator indicates the completion of playing tones.

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 reason; /* the reason of completion: */

/* XMSG_STOP_REASON_USER(1) */
/* XMSG_STOP_REASON_EOD(2) */

UINT8 numTones; /* number of tones played. 0 if FSK data */

} XMsgTGPlayCmplt_t;

Macro

#define XMSG_FIELD_TG_PLAY_CMPLT(pMsg, rsn, num)\
{\

reason = ((XMsgTGPlayCmplt_t *)(pMsg))->reason;\
num = ((XMsgTGPlayCmplt_t *)(pMsg))->numTones;\

}

Type XMSG_TD_RCV

Direction Inbound

Description Require Tone Detector to receive a tone string.

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 UINT16 totalTimeout; /* total time out (in 10 ms unit) */
 UINT16 firstDigitTimeout; /* first digit time out (10 ms uint)*/
 UINT16 interDigitTimeout; /* inter digit time out (10 ms unit)*/
 UINT16 termDigit; /* OR'd terminate digit bits */
 UINT8 numDigits; /* number of digits to receive */
} XMsgTDRcv_t;

Macro

#define XMSG_MAKE_TD_RCV(pMsg, trans, inst, num, term, tm, fstTm, intTm)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNDET, inst,\
sizeof(XMsgTDRcv_t), XMSG_TD_RCV, 0)\

 ((XMsgTDRcv_t *)(pMsg))->numDigits = num;\
 ((XMsgTDRcv_t *)(pMsg))->termDigit = term;\
 ((XMsgTDRcv_t *)(pMsg))->totalTimeout = tm;\
 ((XMsgTDRcv_t *)(pMsg))->firstDigitTimeout = fstTm;\
 ((XMsgTDRcv_t *)(pMsg))->interDigitTimeout = intTm;\
}

Response Tone detector receives completed message (XMSG_TD_RCV_CMPLT)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

32 API Reference Manual

6.7 Tone Detector Receive-Completed Message

6.8 Tone Detector Receive-FSK Message

Type XMSG_TD_RCV_CMPLT

Direction Outbound

Description Tone detector indicates the completion of receiving DTMF tones.

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 UINT16 reason; /* the reason of completion */
 UINT8 numDigits; /* number of tones received */
 UINT8 digits[XMAX_DIGITBUFSIZE]; /* received tone IDs */
} XMsgTDRcvCmplt_t;

where the reason may be:
#define XMSG_STOP_REASON_EOD 2
#define XMSG_STOP_REASON_TERM 3
#define XMSG_STOP_REASON_TIMEOUT 4

Macro

#define XMSG_FIELD_TD_RCV_CMPLT(pMsg, rsn, num, pBuf)\
{\
 rsn = ((XMsgTDRcvCmplt_t *)(pMsg))->reason;\
 num = ((XMsgTDRcvCmplt_t *)(pMsg))->numDigits;\
 pBuf= ((XMsgTDRcvCmplt_t *)(pMsg))->digits;\
}

Type MSG_TD_RCV_FSK

Direction Inbound

Description Require Tone Detector to receive FSK data

Format

typedef struct{
XMsgHdr_t head; /* message header */
UINT16 timeout; /* total time out (in 10 ms unit) */

} XMsgTDRcvFSK_t;

Macro

#define XMSG_MAKE_TD_RCV_FSK(pMsg, trans, inst, tmout)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_TNDET, inst,\
 sizeof(XMsgTDRcvFSK_t), XMSG_TD_RCV_FSK, 0)\

((XMsgTDRcvFSK_t *)(pMsg))->timeout = tmout;\
}

Response Tone Detector FSK receive-completed message (XMSG_TD_RCV_FSK_CMPLT)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

API Reference Manual 33

6.9 Tone Detector FSK-Receive-Completed Message

6.10 Player-Start Message

Type XMSG_TD_RCV_FSK_CMPLT

Direction Outbound

Description Tone Detector indicates the completion of receiving FSK data

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 UINT16 reason; /* the reason of completion */
 UINT8 numBytes; /* number of bytes received */
 UINT8 data[XMAX_FSKDATASIZE]; /* received data */
} XMsgTDRcvFskCmplt_t;

where the reason may be:
#define XMSG_STOP_REASON_EOD 2
#define XMSG_STOP_REASON_TIMEOUT 4

Macro

#define XMSG_FIELD_TD_RCV_FSK_CMPLT(pMsg, rsn, num, pBuf)\
{\

rsn = ((XMsgTDRcvFskCmplt_t *)(pMsg))->reason;\
num = ((XMsgTDRcvFskCmplt_t *)(pMsg))->numBytes;\
pBuf= ((XMsgTDRcvFskCmplt_t *)(pMsg))->data;\

}

Type XMSG_PLY_START (Sheet 1 of 2)

Direction Inbound

Description Start Player to play back pre-recorded audio data

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

34 API Reference Manual

6.11 Player Play-Completed Message

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 XPlyMediaDesc_t mediaSeg[XMAX_PLY_SEG]; /* media segments to play */
 UINT8 numSeg; /* number of segments */
} XMsgPlyStart_t;

where the media segment data structure is defined as
typedef struct{

INT32 offset; /* offset in byte where player starts */
INT32 length; /* length to play (in 10ms unit),

 0 means playing till end of this segment*/
XMediaHandle_t handle; /* media storage handle */
INT16 next; /* the relative index of next segment followed,

 XPLY_MEDIA_SEG_EOP means end-of-play
 at this segment */
} XPlyMediaDesc_t;

Macro

#define XMSG_MAKE_PLY_START(pMsg, trans, inst, num)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_PLY, inst,\
sizeof(XMsgPlyStart_t), XMSG_PLY_START, 0)\
((XMsgPlyStart_t *)(pMsg))->numSeg = num;\

}

#define XMSG_FIELD_PLY_START(pMsg, pMedia) \
{\

pMedia = ((XMsgPlyStart_t *)(pMsg))->mediaSeg;\
}

Response Player play-completed message (XMSG_PLY_CMPLT)

Type XMSG_PLY_CMPLT

Direction Outbound

Description Player indicates the completion of playing audio data.

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 UINT16 reason; /* the reason of completion */
} XMsgPlyCmplt_t;

where the reason may be:
#define XMSG_STOP_REASON_USER 1
#define XMSG_STOP_REASON_EOD 2

Macro

#define XMSG_FIELD_PLY_CMPLT(pMsg, rsn)\
{\

rsn = ((XMsgPlyCmplt_t *)(pMsg))->reason;\
}

Type XMSG_PLY_START (Sheet 2 of 2)

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Resource-Specific Control Messages

API Reference Manual 35

6.12 Get-Jitter-Buffer-Statistics Message

6.13 Complete Message of Getting Jitter Buffer Statistics

Type XMSG_GET_JBSTAT

Direction Inbound

Description Get the jitter buffer statistics from a Decoder instance.

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 UINT16 reset; /* reset flag, 1: reset statistics after
 retrieve the information */
} XMsgGetJBStat_t;

Macro

#define XMSG_MAKE_GET_JBSTAT(pMsg, trans, inst, clr)\
{\

XMSG_MAKE_HEAD(pMsg, trans, XMPR_DEC, inst,\
sizeof(XMsgGetJBStat_t), XMSG_GET_JBSTAT, 0)\
((XMsgGetJBStat_t *)(pMsg))->reset = clr;\

}

Response Complete message of getting jitter buffer statistics (XMSG_GET_JBSTAT_CMPLT)

Type XMSG_GET_JBSTAT_CMPLT

Direction Outbound

Description Response to the message of getting the jitter buffer statistics.

Format

typedef struct{
 XMsgHdr_t head; /* message header */
 XJBStatistics_t stat; /* jiter buffer statistics */
} XMsgGetJBStatCmplt_t;

where the XMsgGetJBStatCmplt_t date structure of jitter buffer statistics
is defined as
typedef struct{
 UINT32 rcvdPackets; /* total packets received */
 UINT32 lostPackets; /* lost packets */
 UINT32 badFrames; /* decoder bad frames */
 UINT32 rcvdTonePackets; /* RFC2833 packets received */
} XJBStatistics_t;

Macro

#define XMSG_FIELD_GET_JBSTAT_CMPLT(pMsg, pStat)\
{\
 pStat = &(((XMsgGetJBStatCmplt_t *)(pMsg))->stat);\
}

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Packet Data Interface

36 API Reference Manual

7.0 Packet Data Interface

The packet data interface is a protocol for the Intel® IXP400 DSP Software to exchange the encoded
data packets with IP stack. This interface is defined as a packet format and two callback functions –
one is provided by DSP software release and another is provided by the user (IP stack).

7.1 Packet Formats

The ingress packet from the IP stack to the DSP software has an 8-byte header as shown below:

Similarly, the egress packet from the DSP software to the IP stack has an 8-byte header as shown
below:

The fields of the packet header and the payload are described as:

31 24 23 22 16 15 12 11 8 7 0

Channel ID M Payload Type Media Payload Length

Remote Time Stamp

:
Payload

:

31 24 23 22 16 15 12 11 8 7 0

Channel ID M Payload Type Media Payload Length

Local Time Stamp

:
Payload

:

Field Description

Local Time Stamp Packet arrival time as measured by a local clock.

Remote Time Stamp Packet data sampling time measured by a remote clock.

Payload Length Payload length in bytes.

Media

4-bit media type field is defined as:
• 0x01 – Audio
• 0x02 – Tone (RFC 2833 event type)
• 0x04 – Tone (RFC 2833 tone type)
• 0x08 – T.38 UDP
• 0x09 – T.38 TCP

M Marker bit for the RTP packet. This bit set indicates the first speech packet after a
silence period or the first packet of a RFC-2833 tone event, otherwise 0.

Payload type RTP payload type as defined in RFC 1990.

Payload Encoded audio data or RFC-2838, tone-event information.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Packet Data Interface

API Reference Manual 37

The corresponding data structure is defined as:

In ingress, the header information of Remote Time Stamp, Payload Type and Marker bit are directly
copied from a RTP packet. In egress, the header information is filled by DSP software except for the
Payload Type of RFC-2833 event packets. The RTP processing module is responsible to determine
the payload type if media type indicates a RFC-2833 tone-event packet.

7.2 Packet Delivery Mechanism

The packets are transferred between Intel® IXP400 DSP Software and IP stack via the callback func-
tions. The packet delivery module calls the function and passes the packet each time when a packet
is produced. The rules of using the callback function to deliver the packets include:

• The packet receiver registers a callback function with the packet deliverer.

• The packet deliverer is responsible to prepare the memory for the packet.

• The packet receiver has to copy the data to its internal buffer immediately in the callback
function because the deliverer may reuse the same memory for the next packet (i.e., the packet
data may not be valid any more after the callback function returns).

• The packet receiver may perform some data processing in the callback function provided the
execution of such processing is predictable (i.e., the processing must be guaranteed to
complete within a certain short period of time).

The function that the DSP software receives the packets from the IP stack is provided as follows:

IP stack has to build the data packets from the IP packets it received and deliver them to DSP soft-
ware by calling this function.
In egress direction, IP stack must provide a function to receive egress data packets. DSP software
will call the function each time when a packet generated. That function must be registered during
initialization as described in next section.

typedef struct{
UINT8 channelID; /* channel ID */
UINT8 payloadType; /* bit[0-6]payloadtype,bit[7] SID mark bit */

unsigned int mediaType:4; /* media type */
unsigned int payloadLen:12; /* payload length */
UINT32 timeStamp; /* local or remote time stamp */

} __attribute__ ((packed)) XPacketHeader_t;

XStatus_t xPacketReceive (UNIT16 channel, XPacket_t *buffer);

Description Call-back function to receive packets.

Input
Buffer – memory address of the packet
Channel – Channel numbers

Output None

Return
XSUCC – If successful
XERROR – If the packet receptor is unable to process the packet.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

38 API Reference Manual

8.0 Configuration and Initialization

The Intel® IXP400 DSP Software is configurable at initialization time, allowing the user to specify
the HSS parameters, the number of resource instances to be created and the country-specific fea-
tures. The user-supplied call back functions are also registered at that time.

8.1 System Configuration

Description

This function performs the following procedures:
• Initialize and start HSS port

• Create TDM termination channels (i.e., Network Endpoint resource instance) and link them to
the HSS time slots sequentially. Error will occur if not enough time slots are enabled for all the
TDM channels

• Create the IP terminations (i.e., Decoder, Encoder, Tone Generator and Tone Detector
resources)

• Create media service resources (i.e., Player and Mixer)

• Enable country-specific call progress tones and set country-specific default parameters to the
resources

• Register user-supplied call back functions

Prototype void xDspSysInit(XDSPSysConfig_t *pSysConfig);

Input pSysConfig – System configuration information

Output None

Return None

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

API Reference Manual 39

The configuration information in this function is defined as:

The pChanTsMap field is an array that specifies how the instances of Network Endpoint are linked
with the time slots of HSS. Each element of the array is defined as:

Assuming there are two channels – one wideband and one narrowband. The time slot locations for
the channels in a 32-slot frame are shown as:

typedef struct{

 int numChTDM; /* number of channels of TDM termination(1~4) */

 int numChIP; /* number of channels of IP termination (1~4) */

 int numPlayers; /* number of Player instances (1~4) */

 int numMixers; /* number of Audio Mixers (must be 1) */

 int numPortsPerMixer; /* number of ports per mixer (3~5) */

 int countryCode; /* country code */

 int taskPriBase; /* the base priority of DSP module */

 int taskPriOrder; /* the priority ordering of the OS */

 IxHssAccHssPort port; /* HSS port (must be Port 0) */

 IxHssAccConfigParams *pHssCfgParms; /* HSS configuration parameters */
 IxHssAccTdmSlotUsage *pHssTDMSlots; /* HSS TDM time slot mapping */
 XDSPChanTdmSlots_t *pChanTsMap; /* channel vs. time slot mapping */
 XPktRcvFxn_t pktRcvFxn; /* packet receiver function in egress */

 XMsgAgentDec_t msgDecoder; /* optional message decoder function of MA */

 XMsgAgentEnc_t msgEncoder; /* optional message encoder function of MA */

} XDSPSysConfig_t;

where:
typedef XStatus_t (*XPktRcvFxn_t)(UINT16 channel, void *pPacket);
typedef int (*XMsgAgentDec_t)(XMsgRef_t pUsrMsg, XMsgRef_t pNativeMsg, int sequenceNo);
typedef void (*XMsgAgentEnc_t)(XMsgRef_t pUsrReply, XMsgRef_t pNativeReply,
 int sequenceNo, UINT8 usrMsgType);

typedef struct{
 int slotSample1; /* time slot of the 1st sample */
 int slotSample2; /* time slot of the 2nd sample,

set to XCHAN_TDM_SLOT_NULL if narrowband */
} XDSPChanTdmSlots_t;

0 1 2 ... 16 17 ... 31

M
S

A

LS
B

µ-
la

w ...

M
S

B

LS
B ...

1st WB
sample

N
B

 S
am

pl
e

2nd
WB

sample

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

40 API Reference Manual

Then the array that describes such configuration is given as:

If the pChanTsMap field is given a NULL pointer, all the instances of Network Endpoint will be con-
figured to the narrowband mode and are linked to the active time slots sequentially.

Warning: This function must be called after downloading HSS NPE. An assertion occurs if any fatal errors
happen (e.g., memory exhausted) during the initialization. If the numbers of resources to be created
are not specified correctly, the default ones are applied, which can be retrieved by the
xDspGetResConfig() function.

8.2 Adding Tones to Tone Generator

Description

This function adds a new tone which can be played by the Tone Generator resources. Each new tone
can contains one or more segments which is defined as:

XDSPChanTdmSlots_t chanTsMapping[2] =
{

{0, 16}, /* channel 1 – WB, time slot 0 and 16 */
{2, XCHAN_TDM_SLOT_NULL} /* channel 2 – NB, time slot 2 */

};

Prototype
XStatus_t xBuildToneTG(UINT16 toneId, UINT16 numSegs,
 XTGToneSeg_t *pToneSegs, UINT32 *pErrCode);

Input
• oneId — Tone ID, must be in the range of 16 ~ 255
• NumSegs — Number of segments of the tone
• pToneSegs — Array of tone segment definition

Output pErrCode – Error code if errors

Return
• XSUCC if successful
• Otherwise XERROR

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

API Reference Manual 41

Warning: New tone definition must be added during the initialization after xDspSysInit(). The pre-
defined country-specific call progress tone will be overwritten if a new tone is added with the same
tone ID.

8.3 Adding Tones to Tone Detector

Description

This function adds a criterion for the Tone Detector to detect a new tone. The criterion specify the
qualification ranges to a set of parameters defined as:

typedef struct {
UINT16 repCount; /* repetition number of the segment. 0 means to repeat forever */
UINT16 segType; /* signal type (single or dual frequency wave or AM wave) */
UINT32 durationOn; /* active duration in 1-ms unit. */
UINT32 durationOff;/* silence duration in 1-ms unit. */
INT16 freqA; /* 1st frequency if single or dual frequency wave,

 or the modulated carry frequency if AM wave, in 1Hz unit*/
INT16 freqB; /* 2nd frequency if dual frequency wave

 or the modulating frequency if AM wave,
 ignored if single frequency wave */

INT16 ampA; /* amplitude of frequency A above, (0~ – 45 in 1dBm unit) */
INT16 ampB; /* amplitude of frequency B if dual frequency wave,

 or modulation rate if AM wave (0~100 in 1% unit),
 ignored if single frequency wave */

UINT16 mode; /* mode, overwrite or mix over the Decoder output */
INT16 nextSeg; /* the index of next segment relative to the current segement.

 e.g., 1 means to go the following segment,
 0 means repeat the current segment,
 –2 means go back to previous 2 segments.
 XTG_LASTSEG means end-of-tone */

} XTGToneSeg_t;

Prototype
Status_t xBuildToneTD(UINT8 toneId, XTDToneInfo_t

*pToneInfo, UINT32 *pErrCode);

Input
• toneId – Tone ID, must be in the range of 16 ~ 255
• pToneInfo — Tone detection criterion information

Output pErrCode – Error code if errors

Return
• XSUCC if successful
• Otherwise XERROR

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

42 API Reference Manual

Warning: New tone detection criterion must be added during the initialization before xDspSysInit().

8.4 Getting DSP Resource Configuration and Routing Information

Description

The user’s applications can call this function any time after xDspSysInit () to obtain the DSP
resource configuration and the stream IDs assigned to the T-Ports of each type of the resources. The

/* segment data for tone detection template. */
typedef struct {

UINT16 type; /* tone type (single or dual frequency tone) */
UINT16 criteria; /* loose, medium or tight, use medium for normal

 case, use loose to get higher detection probability
 in poor SNR, use tight to get lower false

 detection probability in good SNR */
UINT16 freqLowA; /* low bound of the 1st frequency in Hz */
UINT16 freqHighA; /* high bound of the 1st frequency in Hz */
UINT16 freqLowB; /* low bound of the 2nd frequency in Hz */
UINT16 freqHighB; /* high bound of the 2nd frequency in Hz */
INT16 ampLowA; /* low level of the 1st frequency in dBm */
INT16 ampHighA; /* high level of the 1st frequency in dBm

 If both low and high are set to 0, the default
 full range is applied */

INT16 ampLowB; /* low level of the 2nd frequency in dBm */
INT16 ampHighB; /* high level of the 2nd frequency in dBm,

 If both low and high are set to 0, the default
 full range is applied */

UINT8 attributes; /* attribute (report the tone on, tone off or
 both on/off) */

} XTDToneInfo_t;

Prototype void xDspGetResConfig(XDSPResConfig_t *pCfgInfo)

Input pCfgInfo – Pointer to DSP configuration data structure

Output The resource configuration and the assignment of the routing streams

Return None

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Configuration and Initialization

API Reference Manual 43

data structure XDSPResConfig_t is defined as:

The stream ID information is used for the application to connect the T-Ports and L-Ports of the re-
sources.

typedef struct{
int numChTDM; /* number of TDM termination channels */
int numChIP; /* number of IP termination channels */
int numPlayers; /* number of player instances */
int numMixers; /* number of Audio Mixers */
int numPortsPerMixer; /* number of ports per mixer */
int numStreams; /* number of total streams in the router */
int streamBaseTDM; /* T-Port stream ID of the first TMD termination channel */
int streamBaseIP; /* T-Port stream ID of the first IP termination channel */
int streamBasePly; /* T-Port stream ID 1st port of the 1st Player instance */
int streamBaseMix; /* T-Port stream ID of the first mixer port */
int countryCode; /* country code */

} XDSPResConfig_t;

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Complementary Functions

44 API Reference Manual

9.0 Complementary Functions

9.1 Direct Parameter Access

The user’s applications can bypass the message and directly access the DSP parameters. This allows
quicker access without having to send a message and receive a response. All parameters can be di-
rectly read but only some of them can be directly modified. The functions to access the parameters
are:

9.2 Flash Hook Detection

Prototype
XStatus_t xDspParmRead(UINT8 res, UINT16 inst, UINT16 parmId,
 UINT16 *pParmVal);

Input

• res – DSP resource ID
• inst – Instance ID of the resource
• parmId – Parameter ID
• pParmVal – Pointer to the variable that receives the returned parameter value

Output Parameter value

Return
• XSUCC if successful
• Otherwise XERROR

Description This function retrieves the specified parameter value.

Prototype
XStatus_t xDspParmWrite(UINT8 res, UINT16 inst,

UINT16 parmId, UINT16 parmVal, UINT32 transId);

Input

• res – DSP resource ID
• inst – instaNce ID of the resource
• parmId – Parameter ID
• parmVal – Parameter value to be set
• transId – Transaction ID

Output None

Return
• XSUCC if successful
• Otherwise XERROR

Description This function sets the value of the specified parameter.

Prototype
Status_t xFlashHookDetect(UINT16 channel,
 XHookState_t hookState, XUINT32 transId);

Input
• channel – Channel number starting from 1
• hookState – Hook state, XHOOK_STATE_ON or XHOOK_STATE_OFF
• transId – Transaction ID

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Complementary Functions

API Reference Manual 45

The hook states are defined as:

9.3 Cache Prompt Registration

Output None

Return
• XSUCC if successful
• Otherwise XERROR

Description
This function is called by the SLIC driver to report the hook state changes via the event
message.
If an on-hook transition followed by an off-hook one within the time specified by the
XPARMID_NET_FLASH_HK parameter, a flash hook event is reported.

Prototype
Status_t xFlashHookDetect(UINT16 channel,
 XHookState_t hookState, XUINT32 transId);

typedef enum{
XHOOK_STATE_ON = 0,
XHOOK_STATE_OFF,
XHOOK_STATE_FLASH

}XHookState_t;

Prototype XMediaHandle_t xDspRegCachePrompt(XCachePromptDesc_t *pDesc);

Input pDesc – The pointer to structure XCachePromptDesc_t.

Output None

Return XMediaHandle — Returns XMEDIA_HANDLE_NULL in the error case.

Description This function is called to register a cached prompt for playing at a later time.
XCachePromptDesc_t describes the data required to register a cached prompt.

typedef struct{
UINT8 *pBuffer; /* Pointer to the play buffer. */
INT32 size; /* The size of play buffer. */
XCoderType_t type; /* The type of data in play buffer.

 The valid types are
 XCODER_TYPE_G711MU_10MS,

 XCODER_TYPE_G711A_10MS and
 XCODER_TYPE_G729A */

} XCachePromptDesc_t;

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Complementary Functions

46 API Reference Manual

9.4 Get Version Number

Prototype char * xDspGetVersion(void);

Input None

Output None

Return Pointer to the version string.

Description

This function returns a six-digit version string in ASCII format hard coded in each release
uniquely. The first two digits give the major version number, the 2 digits in the middle give the
minor number and the last two digits give the build number. Depending on each release, the
build number may indicate the release types like normal release, service package (SP), early
access release (EAR), etc. For example, the Intel® IXP400 DSP Software v2.5 EAR gives the
string 020501 and the production release has the string 020505.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

API Reference Manual 47

10.0 Constant Data

This section lists up the definitions for constant data such as error codes and event codes.

10.1 Error Codes

Errors are reported via XMSG_ERROR message with an error code and two error data. The common
error codes are defined as:

The resource-specific error codes are defined as:

#define XERR_SYSTEM 0x0001 /* system error */
#define XERR_HSSIF 0x0002 /* HSS interface error */
#define XERR_MEMORY 0x0003 /* memory error # */
#define XERR_INVALID_RES_ID 0x0011 /* invalid resource id */
#define XERR_INVALID_CHAN_ID 0x0012 /* invalid channel id */
#define XERR_INVALID_PARM_ID 0x0013 /* invalid parameter id */
#define XERR_INVALID_STREAM_ID 0x0014 /* invalid stream id */
#define XERR_PARM_READONLY 0x0015 /* real only parameter */
#define XERR_PARM_SET_FAIL 0x0016 /* cannot set parameter */
#define XERR_PARM_GET_FAIL 0x0017 /* cannot get parameter */
#define XERR_UNEXPECTED_MSG 0x0018 /* unexpected message */
#define XERR_UNSUPPORTED_MSG 0x0019 /* unsupported message */
#define XERR_ALGORITHM 0x0041 /* algorithm related error # */
#define XERR_OTHERS 0x00ff /* other errors */

#define XERR_INVALID_CODE_TYPE 0x401 /* invalid codec type */
#define XERR_INVALID_FPP 0x402 /* invalid # frms per pkt */
#define XERR_TG_INVALID_TONE_ID 0x403 /* invalid tone ID */
#define XERR_TG_INVALID_TID_NUM 0x404 /* too many tone IDs */
#define XERR_TG_INVALID_DATA_NUM 0x405 /* too many FSK data */
#define XERR_TD_INVALID_DIGIT_NUM 0x406 /* too many digits */
#define XERR_RESOURCE_BUSY 0x407 /* resource is busy */
#define XERR_RESOURCE_IDLE 0x408 / * resource is idle */
#define XERR_MA_DEEP_RECURSIVE 0x409 /* deep recursive msg decoder*/

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

48 API Reference Manual

10.2 Event Codes

Events are reported via XMSG_EVENT message with an event code and two event data. The resource
specific event codes are defined as:

10.3 Tone IDs

The DTMF tone IDs used by the Tone Generator and Detector are defined as:

Fax-tone IDs reported by the Tone Detector for fax bypass applications. Not supported by the Tone
Generator.

#define XEVT_CODE_TD_TONEON 0x101 /* tone-on event */
#define XEVT_CODE_TD_TONEOFF 0x102 /* tone-off event */
#define XEVT_LOST_PACKET 0x103 /* lost packet */
#define XEVT_DEC_PACKET_CHNG 0x104 /* RTP payload type changed */
#define XEVT_NET_HOOK_STATE 0x105 /* hook state change detected */
#define XEVT_NET_TIMER 0x106 /* timer expired */

#define RFC_TID_DTMF_0 0
#define RFC_TID_DTMF_1 1
#define RFC_TID_DTMF_2 2
#define RFC_TID_DTMF_3 3
#define RFC_TID_DTMF_4 4
#define RFC_TID_DTMF_5 5
#define RFC_TID_DTMF_6 6
#define RFC_TID_DTMF_7 7
#define RFC_TID_DTMF_8 8
#define RFC_TID_DTMF_9 9
#define RFC_TID_DTMF_STAR 10
#define RFC_TID_DTMF_POUND 11
#define RFC_TID_DTMF_A 12
#define RFC_TID_DTMF_B 13
#define RFC_TID_DTMF_C 14
#define RFC_TID_DTMF_D 15

#define RFC_TID_FAX_CED 32
#define RFC_TID_FAX_CNG 36
#define RFC_TID_FAX_V21 40

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

API Reference Manual 49

The general call-progress tone IDs used by the Tone Generator are defined as:

Currently only the following specific call progress tones are supported for tone generation:
• China (People’s Republic of China)

• Japan

• United States

Japan Call-Progress Tones

#define RFC_TID_DIAL 66
#define RFC_TID_PBX_DIAL 67
#define RFC_TID_SP_DIAL 68
#define RFC_TID_2ND_DIAL 69
#define RFC_TID_RING 70
#define RFC_TID_SP_RING 71
#define RFC_TID_BUSY 72
#define RFC_TID_CONGESTION 73
#define RFC_TID_SP_INFO 74
#define RFC_TID_COMFORT 75
#define RFC_TID_HOLD 76
#define RFC_TID_REC 77
#define RFC_TID_CALLER_WT 78
#define RFC_TID_CALL_WT 79
#define RFC_TID_PAY 80
#define RFC_TID_POS_IND 81
#define RFC_TID_NEG_IND 82
#define RFC_TID_WARNING 83
#define RFC_TID_INSTRUSION 84
#define RFC_TID_CAL_CARD 85
#define RFC_TID_PAYPHONE 86

#define COUNTRY_CODE_JP 81 /* country code for Japan */
#define NTT_TID_DT RFC_TID_DIAL /* dial tone */
#define NTT_TID_RBT RFC_TID_RING /* ring back tone */
#define NTT_TID_BT RFC_TID_BUSY /* busy tone */
#define NTT_TID_PDT RFC_TID_PBX_DIAL /* private dial tone */
#define NTT_TID_SDT RFC_TID_2ND_DIAL /* 2nd dial tone */
#define NTT_TID_CPT RFC_TID_POS_IND /* acceptance tone */
#define NTT_TID_HST RFC_TID_HOLD /* hold service tone */
#define NTT_TID_IIT RFC_TID_CALL_WT /* incoming id tone */
#define NTT_TID_SIIT 110 /* special incoming id tone */

#define NTT_TID_HOW RFC_TID_OFFHK_WARN /* howler tone */

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

50 API Reference Manual

United States Call-Progress Tones

China Call-Progress Tones

#define COUNTRY_CODE_US 1 /* US country code */
#define US_TID_DIAL RFC_TID_DIAL /* dial tone */
#define US_TID_RING RFC_TID_RING /* ring back tone */
#define US_TID_BUSY RFC_TID_BUSY /* busy tone */
#define US_TID_RC_DIAL RFC_TID_SP_DIAL /* recall dial tone */
#define US_TID_PBX_DIAL RFC_TID_PBX_DIAL /* PBX dial tone */
#define US_TID_CONGESTION RFC_TID_CONGESTION /* congestion tone */
#define US_TID_CALL_WT RFC_TID_CALL_WT /* call waiting tone */
#define US_TID_WARN_OPER 110 /* operator intervening tone */

#define COUNTRY_CODE_PRC 86 /* China country code */
#define PRC_TID_DIAL RFC_TID_DIAL /* dial tone */
#define PRC_TID_RING RFC_TID_RING /* ring back tone */
#define PRC_TID_BUSY RFC_TID_BUSY /* busy tone */
#define PRC_TID_SP_DIAL RFC_TID_SP_DIAL /* special dial tone */
#define PRC_TID_CONGESTION RFC_TID_CONGESTION /* congestion tone */
#define PRC_TID_UNAVAILABLE RFC_TID_UNAVAILABLE /* unavailable tone */
#define PRC_TID_TOLL RFC_TID_COMFORT /* long distance tone */
#define PRC_TID_QUEUE RFC_TID_QUEUE /* queue tone */
#define PRC_TID_CALL_WT RFC_TID_CALL_WT /* call waiting tone */
#define PRC_TID_THR_PARTY RFC_TID_THR_PARTY /* 3 party remind tone */
#define PRC_TID_CONFIRMATION RFC_TID_CONFIRMATION /* confirmation tone */
#define PRC_TID_OFFHK_WARN RFC_TID_OFFHK_WARN /* howler tone */

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

API Reference Manual 51

10.4 Other Constants

The coder types used in the XPARMID_DEC_CTYPE and XPARMID_ENC_CTYPE parameters and
the XMSG_CODER_START message are defined as:

Mask bits used to specify the coder type subset in Decoder auto-switch parameter are defined as:

typedef enum{
XCODER_TYPE_PASSTHRU = 0,
XCODER_TYPE_G711MU_10MS,
XCODER_TYPE_G711A_10MS,
XCODER_TYPE_G729A,
XCODER_TYPE_G723,
XCODER_TYPE_G722,
XCODER_TYPE_G726_40,
XCODER_TYPE_G726_32,
XCODER_TYPE_G726_24,
XCODER_TYPE_G726_16,
XCODER_TYPE_G729 = 17,
XCODER_TYPE_UNDEF = -1

} XCoderType_t;

#define XPARM_DEC_AUTOSW_OFF 0x0000
#define XPARM_DEC_AUTOSW_G711MU 0x0001
#define XPARM_DEC_AUTOSW_G711A 0x0002
#define XPARM_DEC_AUTOSW_G729A 0x0004
#define XPARM_DEC_AUTOSW_G723 0x0008
#define XPARM_DEC_AUTOSW_G722 0x0010
#define XPARM_DEC_AUTOSW_G726_40 0x0020
#define XPARM_DEC_AUTOSW_G726_32 0x0040
#define XPARM_DEC_AUTOSW_G726_24 0x0080
#define XPARM_DEC_AUTOSW_G726_16 0x0100
#define XPARM_DEC_AUTOSW_ALL 0xffff

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Constant Data

52 API Reference Manual

Mask bits used to specify the termination digits in the XMSG_TD_RCV message are defined as:

The stop-reasons in the XMSG_TG_PLAY_CMPLT, XMSG_TD_RCV_CMPLT,
XMSG_TD_RCV_FSK_CMPLT, and XMSG_PLY_CMPLT messages are defined as:

#define XTD_TERM_DIGIT_NONE 0x0000
#define XTD_TERM_DIGIT_0 0x0001
#define XTD_TERM_DIGIT_1 0x0002
#define XTD_TERM_DIGIT_2 0x0004
#define XTD_TERM_DIGIT_3 0x0008
#define XTD_TERM_DIGIT_4 0x0010
#define XTD_TERM_DIGIT_5 0x0020
#define XTD_TERM_DIGIT_6 0x0040
#define XTD_TERM_DIGIT_7 0x0080
#define XTD_TERM_DIGIT_8 0x0100
#define XTD_TERM_DIGIT_9 0x0200
#define XTD_TERM_DIGIT_STAR 0x0400
#define XTD_TERM_DIGIT_POUND 0x0800
#define XTD_TERM_DIGIT_A 0x1000
#define XTD_TERM_DIGIT_B 0x2000
#define XTD_TERM_DIGIT_C 0x4000
#define XTD_TERM_DIGIT_D 0x8000

#define XMSG_STOP_REASON_USER 1 /* stopped by XMSG_STOP message */
#define XMSG_STOP_REASON_EOD 2 /* end of data */
#define XMSG_STOP_REASON_TERM 3 /* stopped by the terminate digits */
#define XMSG_STOP_REASON_TIMEOUT 4 /* time out */

	Contents
	Figures
	1 Architecture of Intel® IXP400 DSP Software v2.5 9
	2 Resource Component Identifiers 10

	Tables
	None.

	Revision History

	1.0 Introduction
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Acronyms

	2.0 Architectural Overview
	3.0 Media Processing Resource Components
	3.1 Network Endpoint Resource Component
	3.2 Decoder Resource Component
	3.3 Encoder Resource Component
	3.4 Tone Generation Resource Component
	3.5 Tone Detection Resource Component
	3.6 Audio Player Resource Component
	3.7 Audio Mixer Resource Component
	3.8 T.38 Fax Resource Component
	3.9 Message Agent Resource Component

	4.0 Message Format and Delivery Mechanism
	4.1 Message Functions
	4.2 Message Header Format
	4.3 Message Type List

	5.0 Common Control Message
	5.1 Reset Message
	5.2 Start Message
	5.3 Stop Message
	5.4 Ping Message
	5.5 Set-Parameter Message
	5.6 Set-Multiple-Parameter Message
	5.7 Get-Parameter Message
	5.8 Get-Parameter Acknowledge Message
	5.9 Get-All-Parameters Message
	5.10 Get-All-Parameters Acknowledge Message
	5.11 General-Acknowledge Message
	5.12 Error Message
	5.13 Event Message

	6.0 Resource-Specific Control Messages
	6.1 CODEC Start Message
	6.2 CODEC Stop-Acknowledgement Message
	6.3 Tone Generator Play Message
	6.4 Tone Generator Play-FSK Message
	6.5 Tone Generator Play-Completed Message
	6.6 Tone Detector Receive-Digit Message
	6.7 Tone Detector Receive-Completed Message
	6.8 Tone Detector Receive-FSK Message
	6.9 Tone Detector FSK-Receive-Completed Message
	6.10 Player-Start Message
	6.11 Player Play-Completed Message
	6.12 Get-Jitter-Buffer-Statistics Message
	6.13 Complete Message of Getting Jitter Buffer Statistics

	7.0 Packet Data Interface
	7.1 Packet Formats
	7.2 Packet Delivery Mechanism

	8.0 Configuration and Initialization
	8.1 System Configuration
	8.2 Adding Tones to Tone Generator
	8.3 Adding Tones to Tone Detector
	8.4 Getting DSP Resource Configuration and Routing Information

	9.0 Complementary Functions
	9.1 Direct Parameter Access
	9.2 Flash Hook Detection
	9.3 Cache Prompt Registration
	9.4 Get Version Number

	10.0 Constant Data
	10.1 Error Codes
	10.2 Event Codes
	10.3 Tone IDs
	10.4 Other Constants

