

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 4: IA-32 Instruction Set Reference

Revision 2.3

May 2010

Document Number: 323208

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 398

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 399

Contents

1 About this Manual . 4:1

1.1 Overview of Volume 1: Application Architecture . 4:1
1.1.1 Part 1: Application Architecture Guide . 4:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 4:1

1.2 Overview of Volume 2: System Architecture. 4:2
1.2.1 Part 1: System Architecture Guide . 4:2
1.2.2 Part 2: System Programmer’s Guide . 4:3
1.2.3 Appendices. 4:4

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 4:4
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 4:4
1.5 Terminology . 4:5
1.6 Related Documents . 4:5
1.7 Revision History . 4:6

2 Base IA-32 Instruction Reference . 4:11

2.1 Additional Intel® Itanium® Faults . 4:11
2.2 Interpreting the IA-32 Instruction Reference Pages . 4:12

2.2.1 IA-32 Instruction Format . 4:12
2.2.2 Operation . 4:15
2.2.3 Flags Affected. 4:18
2.2.4 FPU Flags Affected . 4:18
2.2.5 Protected Mode Exceptions . 4:19
2.2.6 Real-address Mode Exceptions . 4:19
2.2.7 Virtual-8086 Mode Exceptions . 4:19
2.2.8 Floating-point Exceptions . 4:20

2.3 IA-32 Base Instruction Reference. 4:20

3 IA-32 Intel® MMX™ Technology Instruction Reference . 4:399

4 IA-32 SSE Instruction Reference . 4:463

4.1 IA-32 SSE Instructions . 4:463
4.2 About the Intel® SSE Architecture . 4:463
4.3 Single Instruction Multiple Data . 4:464
4.4 New Data Types . 4:464
4.5 SSE Registers . 4:465
4.6 Extended Instruction Set. 4:465

4.6.1 Instruction Group Review . 4:466
4.7 IEEE Compliance . 4:474

4.7.1 Real Number System . 4:474
4.7.2 Operating on NaNs. 4:480

4.8 Data Formats . 4:481
4.8.1 Memory Data Formats . 4:481
4.8.2 SSE Register Data Formats . 4:481

4.9 Instruction Formats . 4:483
4.10 Instruction Prefixes . 4:483
4.11 Reserved Behavior and Software Compatibility . 4:484
4.12 Notations. 4:484
4.13 SIMD Integer Instruction Set Extensions . 4:562
4.14 Cacheability Control Instructions . 4:575

 Index . 4:583

400 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

Figures

2-2 Bit Offset for BIT[EAX,21]. 4:18
2-3 Memory Bit Indexing. 4:18
2-4 Version Information in Registers EAX . 4:79
3-1 Operation of the MOVD Instruction . 4:401
3-2 Operation of the MOVQ Instruction . 4:403
3-3 Operation of the PACKSSDW Instruction. 4:405
3-4 Operation of the PACKUSWB Instruction. 4:408
3-5 Operation of the PADDW Instruction . 4:410
3-6 Operation of the PADDSW Instruction . 4:413
3-7 Operation of the PADDUSB Instruction . 4:416
3-8 Operation of the PAND Instruction . 4:419
3-9 Operation of the PANDN Instruction. 4:421
3-10 Operation of the PCMPEQW Instruction . 4:423
3-11 Operation of the PCMPGTW Instruction . 4:426
3-12 Operation of the PMADDWD Instruction . 4:429
3-13 Operation of the PMULHW Instruction . 4:431
3-14 Operation of the PMULLW Instruction . 4:433
3-15 Operation of the POR Instruction. . 4:435
3-16 Operation of the PSLLW Instruction . 4:437
3-17 Operation of the PSRAW Instruction . 4:440
3-18 Operation of the PSRLW Instruction . 4:443
3-19 Operation of the PSUBW Instruction . 4:446
3-20 Operation of the PSUBSW Instruction . 4:449
3-21 Operation of the PSUBUSB Instruction . 4:452
3-22 High-order Unpacking and Interleaving of Bytes with the PUNPCKHBW Instruction. 4:455
3-23 Low-order Unpacking and Interleaving of Bytes with the PUNPCKLBW Instruction 4:458
3-24 Operation of the PXOR Instruction . 4:461
4-1 Packed Single-FP Data Type . 4:464
4-2 SSE Register Set . 4:465
4-3 Packed Operation. 4:466
4-4 Scalar Operation. 4:466
4-5 Packed Shuffle Operation. 4:468
4-6 Unpack High Operation . 4:469
4-7 Unpack Low Operation . 4:469
4-8 Binary Real Number System . 4:475
4-9 Binary Floating-point Format . 4:476
4-10 Real Numbers and NaNs . 4:478
4-11 Four Packed FP Data in Memory (at address 1000H) . 4:481

Tables

2-1 Register Encodings Associated with the +rb, +rw, and +rd Nomenclature 4:13
2-2 Exception Mnemonics, Names, and Vector Numbers . .4:19
2-3 Floating-point Exception Mnemonics and Names . .4:20
2-4 Information Returned by CPUID Instruction . .4:78
2-5 Feature Flags Returned in EDX Register .4:80

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 401

2-6 FPATAN Zeros and NaNs . 4:149
2-7 FPREM Zeros and NaNs . 4:151
2-8 FPREM1 Zeros and NaNs . 4:154
2-9 FSUB Zeros and NaNs . 4:183
2-10 FSUBR Zeros and NaNs . 4:186
2-11 FYL2X Zeros and NaNs . 4:199
2-12 FYL2XP1 Zeros and NaNs . 4:201
2-13 IDIV Operands . 4:204
2-14 INT Cases . 4:218
2-15 LAR Descriptor Validity . 4:253
2-16 LEA Address and Operand Sizes . 4:258
2-17 Repeat Conditions . 4:338
4-1 Real Number Notation . 4:476
4-2 Denormalization Process . 4:478
4-3 Results of Operations with NAN Operands . 4:481
4-4 Precision and Range of SSE Datatype . 4:482
4-5 Real Number and NaN Encodings. . 4:482
4-6 SSE Instruction Behavior with Prefixes . 4:483
4-7 SIMD Integer Instructions – Behavior with Prefixes . 4:483
4-8 Cacheability Control Instruction Behavior with Prefixes 4:483
4-9 Key to SSE Naming Convention. . 4:485

§

402 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

Volume 4: About this Manual 4:1

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

4:2 Volume 4: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 4: About this Manual 4:3

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

4:4 Volume 4: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 4: About this Manual 4:5

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

IA-32 System Environment – The operating system privileged environment and
resources as defined by the Intel Architecture Software Developer’s Manual. Resources
include virtual paging, control registers, debugging, performance monitoring, machine
checks, and the set of privileged instructions.

Itanium® Architecture-based Firmware – The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes

4:6 Volume 4: About this Manual

model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 4: About this Manual 4:7

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

4:8 Volume 4: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 4: About this Manual 4:9

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

4:10 Volume 4: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 4: Base IA-32 Instruction Reference 4:11

Base IA-32 Instruction Reference 2

This section lists all IA-32 instructions and their behavior in the Itanium System
Environment and IA-32 System Environments on an processor based on the Itanium
architecture. Unless noted otherwise all IA-32 and MMX technology and SSE
instructions operate as defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

This volume describes the complete IA-32 Architecture instruction set, including the
integer, floating-point, MMX technology and SSE technology, and system instructions.
The instruction descriptions are arranged in alphabetical order. For each instruction, the
forms are given for each operand combination, including the opcode, operands
required, and a description. Also given for each instruction are a description of the
instruction and its operands, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of the exceptions that
can be generated.

For all IA-32 the following relationships hold:

• Writes – Writes of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions are reflected in the Itanium registers
defined to hold that IA-32 state when IA-32 instruction set completes execution.

• Reads – Reads of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions see the state of the Itanium registers
defined to hold the IA-32 state after entering the IA-32 instruction set.

• State mappings – IA-32 numeric instructions are controlled by and reflect their
status in FCW, FSW, FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32
instruction set, Itanium numeric status and control resources defined to hold IA-32
state reflect the results of all IA-32 prior numeric instructions in FCR, FSR, FIR and
FDR. Itanium numeric status and control resources defined to hold IA-32 state are
honored by IA-32 numeric instructions when entering the IA-32 instruction set.

2.1 Additional Intel® Itanium® Faults

The following fault behavior is defined for all IA-32 instructions in the Itanium System
Environment:

• IA-32 Faults – All IA-32 faults are performed as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, unless otherwise noted.
IA-32 faults are delivered on the IA_32_Exception interruption vector.

• IA-32 GPFault – Null segments are signified by the segment descriptor register’s
P-bit being set to zero. IA-32 memory references through DSD, ESD, FSD, and GSD
with the P-bit set to zero result in an IA-32 GPFault.

• Itanium Low FP Reg Fault – If PSR.dfl is 1, execution of any IA-32 MMX
technology, SSE or floating-point instructions results in a Disabled FP Register fault
(regardless of whether FR2-31 is referenced).

• Itanium High FP Reg Fault – If PSR.dfh is 1, execution of the first target IA-32
instruction following an br.ia or rfi results in a Disabled FP Register fault
(regardless of whether FR32-127 is referenced).

4:12 Volume 4: Base IA-32 Instruction Reference

• Itanium Instruction Mem Faults – The following additional Itanium memory
faults can be generated on each virtual page referenced when fetching IA-32 or
MMX technology or SSE instructions for execution:

• Alternative instruction TLB fault

• VHPT instruction fault

• Instruction TLB fault

• Instruction Page Not Present fault

• Instruction NaT Page Consumption Abort

• Instruction Key Miss fault

• Instruction Key Permission fault

• Instruction Access Rights fault

• Instruction Access Bit fault

• Itanium Data Mem Faults – The following additional Itanium memory faults can
be generated on each virtual page touched when reading or writing memory
operands from the IA-32 instruction set including MMX technology and SSE
instructions:

• Nested TLB fault

• Alternative data TLB fault

• VHPT data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption Abort

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty bit fault

• Data Access bit fault

2.2 Interpreting the IA-32 Instruction Reference
Pages

This section describes the information contained in the various sections of the
instruction reference pages that make up the majority of this chapter. It also explains
the notational conventions and abbreviations used in these sections.

2.2.1 IA-32 Instruction Format

The following is an example of the format used for each Intel architecture instruction
description in this chapter.

2.2.1.0.0.1 CMC—Complement Carry Flag

Opcode Instruction Description

F5 CMC Complement carry flag

Volume 4: Base IA-32 Instruction Reference 4:13

2.2.1.1 Opcode Column

The “Opcode” column gives the complete object code produced for each form of the
instruction. When possible, the codes are given as hexadecimal bytes, in the same
order in which they appear in memory. Definitions of entries other than hexadecimal
bytes are as follows:

• /digit – A digit between 0 and 7 indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit
that provides an extension to the instruction's opcode.

• /r – Indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

• cb, cw, cd, cp – A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value
following the opcode that is used to specify a code offset and possibly a new value
for the code segment register.

• ib, iw, id – A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the
instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and doublewords are
given with the low-order byte first.

• +rb, +rw, +rd – A register code, from 0 through 7, added to the hexadecimal byte
given at the left of the plus sign to form a single opcode byte. The register codes
are given in Table 2-1.

• +i – A number used in floating-point instructions when one of the operands is ST(i)
from the FPU register stack. The number i (which can range from 0 to 7) is added to
the hexadecimal byte given at the left of the plus sign to form a single opcode byte.

2.2.1.2 Instruction Column

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to represent
operands in the instruction statements:

• rel8 – A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

• rel16 and rel32 – A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an
operand-size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits.

Table 2-1. Register Encodings Associated with the +rb, +rw, and +rd
Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7

4:14 Volume 4: Base IA-32 Instruction Reference

• ptr16:16 and ptr16:32 – A far pointer, typically in a code segment different from
that of the instruction. The notation 16:16 indicates that the value of the pointer
has two parts. The value to the left of the colon is a 16-bit selector or value
destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when
the operand-size attribute is 32 bits.

• r8 – One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16 – One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32 – One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP,
EBP, ESI, or EDI.

• imm8 – An immediate byte value. The imm8 symbol is a signed number between –
128 and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or
doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 – An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32 – An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648 inclusive.

• r/m8 – A byte operand that is either the contents of a byte general-purpose
register (AL, BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16 – A word general-purpose register or memory operand used for instructions
whose operand-size attribute is 16 bits. The word general-purpose registers are:
AX, BX, CX, DX, SP, BP, SI, and DI. The contents of memory are found at the
address provided by the effective address computation.

• r/m32 – A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword
general-purpose registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The
contents of memory are found at the address provided by the effective address
computation.

• m – A 16- or 32-bit operand in memory.

• m8 – A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used
only with the string instructions and the XLAT instruction.

• m16 – A word operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used
only with the string instructions.

• m32 – A doubleword operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

• m64 – A memory quadword operand in memory. This nomenclature is used only
with the CMPXCHG8B instruction.

• m16:16, m16:32 – A memory operand containing a far pointer composed of two
numbers. The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

• m16&32, m16&16, m32&32 – A memory operand consisting of data item pairs
whose sizes are indicated on the left and the right side of the ampersand. All

Volume 4: Base IA-32 Instruction Reference 4:15

memory addressing modes are allowed. The m16&16 and m32&32 operands are
used by the BOUND instruction to provide an operand containing an upper and
lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to
provide a word with which to load the limit field, and a doubleword with which to
load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32 – A simple memory variable (memory offset) of type
byte, word, or doubleword used by some variants of the MOV instruction. The
actual address is given by a simple offset relative to the segment base. No ModR/M
byte is used in the instruction. The number shown with moffs indicates its size,
which is determined by the address-size attribute of the instruction.

• Sreg – A segment register. The segment register bit assignments are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

• m32real, m64real, m80real – A single-, double-, and extended-real
(respectively) floating-point operand in memory.

• m16int, m32int, m64int – A word-, short-, and long-integer (respectively)
floating-point operand in memory.

• ST or ST(0) – The top element of the FPU register stack.

• ST(i) – The ith element from the top of the FPU register stack. (i = 0 through 7).

• mm – An MMX technology register. The 64-bit MMX technology registers are: MM0
through MM7.

• mm/m32 – The low order 32 bits of an MMX technology register or a 32-bit
memory operand. The 64-bit MMX technology registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address
computation.

• mm/m64 – An MMX technology register or a 64-bit memory operand. The 64-bit
MMX technology registers are: MM0 through MM7. The contents of memory are
found at the address provided by the effective address computation.

2.2.1.3 Description Column

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain
more details of the instruction's operation.

2.2.1.4 Description

The “Description” section describes the purpose of the instructions and the required
operands. It also discusses the effect of the instruction on flags.

2.2.2 Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of
the instruction. The pseudo-code uses a notation similar to the Algol or Pascal
language. The algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for
an if statement, DO and OD for a do statement, or CASE... OF and ESAC for a case
statement.

4:16 Volume 4: Base IA-32 Instruction Reference

• A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to SI’s default segment (DS) or overridden
segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that an offset is read from the SI register if the current address-size
attribute is 16 or is read from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates that
the contents of the source operand is a segment-relative offset.

• A  B; indicates that the value of B is assigned to A.

• The symbols =, , , and  are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is
FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination
operand should be shifted left or right, respectively, by the number of bits indicated
by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize – The OperandSize identifier represents the
operand-size attribute of the instruction, which is either 16 or 32 bits. The
AddressSize identifier represents the address-size attribute, which is either 16 or
32 bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize  16;
ELSE

IF instruction = CMPSD
THEN OperandSize  32;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel
Architecture Software Developer’s Manual, Volume 1, for general guidelines on how
these attributes are determined.

• StackAddrSize – Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for
Stack” in Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume
1).

• SRC – Represents the source operand.

• DEST – Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value) – Returns a value zero-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, zero extending a
byte value of -10 converts the byte from F6H to a doubleword value of 000000F6H.
If the value passed to the ZeroExtend function and the operand-size attribute are
the same size, ZeroExtend returns the value unaltered.

Volume 4: Base IA-32 Instruction Reference 4:17

• SignExtend(value) – Returns a value sign-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, sign extending a
byte containing the value -10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size
attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte – Converts a signed 16-bit value to a signed
8-bit value. If the signed 16-bit value is less than -128, it is represented by the
saturated value -128 (80H); if it is greater than 127, it is represented by the
saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord – Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than -32768, it is represented
by the saturated value
-32768 (8000H); if it is greater than 32767, it is represented by the saturated
value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte – Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by the
saturated value 255 (FFH).

• SaturateToSignedByte – Represents the result of an operation as a signed 8-bit
value. If the result is less than -128, it is represented by the saturated value -128
(80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord – Represents the result of an operation as a signed
16-bit value. If the result is less than -32768, it is represented by the saturated
value -32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

• SaturateToUnsignedByte – Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToUnsignedWord – Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (00H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

• LowOrderWord(DEST * SRC) – Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination
operand.

• HighOrderWord(DEST * SRC) – Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

• Push(value) – Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction.

• Pop() – Removes the value from the top of the stack and returns it. The statement
EAX  Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word or a doubleword depending on the operand-size attribute.

• PopRegisterStack – Marks the FPU ST(0) register as empty and increments the
FPU register stack pointer (TOP) by 1.

• Switch-Tasks – Performs a task switch.

• Bit(BitBase, BitOffset) – Returns the value of a bit within a bit string, which is a
sequence of bits in memory or a register. Bits are numbered from low-order to

4:18 Volume 4: Base IA-32 Instruction Reference

high-order within registers and within memory bytes. If the base operand is a
register, the offset can be in the range 0..31. This offset addresses a bit within the
indicated register. An example, the function Bit[EAX, 21] is illustrated in Figure 2-2.

If BitBase is a memory address, BitOffset can range from -2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)), where DIV is signed division with rounding towards negative infinity,
and MOD returns a positive number. This operation is illustrated in Figure 2-3.

2.2.3 Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, EFLAGS Cross-Reference, in the Intel Architecture
Software Developer’s Manual, Volume 1). Non-conventional assignments are described
in the “Operation” section. The values of flags listed as undefined may be changed by
the instruction in an indeterminate manner. Flags that are not listed are unchanged by
the instruction.

2.2.4 FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how
each instruction can affect the four condition code flags of the FPU status word.

Figure 2-2. Bit Offset for BIT[EAX,21]

Figure 2-3. Memory Bit Indexing

02131

BitOffset = 21

0777 5 0 0

0777 50 0

BitBase +1 BitBase BitBase -1

BitOffset = +13

BitBase BitBase -1 BitBase -2

BitOffset = -11

Volume 4: Base IA-32 Instruction Reference 4:19

2.2.5 Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two letters
and an optional error code in parentheses. For example, #GP(0) denotes a general
protection exception with an error code of 0. Table 2-2 associates each two-letter
mnemonic with the corresponding interrupt vector number and exception name. See
Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software
Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their
operating systems to determine the actions taken when exceptions occur.

2.2.6 Real-address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode.

2.2.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode.

Table 2-2. Exception Mnemonics, Names, and Vector Numbers

Vector
No.

Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) UD2 instruction or reserved opcode.a

a. The UD2 instruction was introduced in the Pentium® Pro processor.

 7 #NM Device Not Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection
checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.b

b. This exception was introduced in the Intel® 486 processor.

18 #MC Machine Check Model dependent.c

c. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.

4:20 Volume 4: Base IA-32 Instruction Reference

2.2.8 Floating-point Exceptions

The “Floating-point Exceptions” section lists additional exceptions that can occur when
a floating-point instruction is executed in any mode. All of these exception conditions
result in a floating-point error exception (#MF, vector number 16) being generated.
Table 2-3 associates each one- or two-letter mnemonic with the corresponding
exception name. See “Floating-Point Exception Conditions” in Chapter 7 of the Intel
Architecture Software Developer’s Manual, Volume 1, for a detailed description of these
exceptions.

2.3 IA-32 Base Instruction Reference

The remainder of this chapter provides detailed descriptions of each of the Intel
architecture instructions.

Table 2-3. Floating-point Exception Mnemonics and Names

Vector
No.

Mnemonic Name Source

16
#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- FPU stack overflow or underflow
- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized operation Attempting to operate on a denormal
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result (precision) Inexact result (precision)

Volume 4: Base IA-32 Instruction Reference 4:21

AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addition)
two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the
CF and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register are
cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL  (AL + 6);
AH  AH + 1;
AF  1;
CF  1;

ELSE
AF  0;
CF  0;

FI;
AL  AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise
they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

37 AAA ASCII adjust AL after addition

4:22 Volume 4: Base IA-32 Instruction Reference

AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on the
result will yield a correct unpacked BCD value. The AAD instruction is only useful when
it precedes a DIV instruction that divides (binary division) the adjusted value in the AL
register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit number in registers AH and AL.

Operation

tempAL  AL;
tempAH  AH;
AL  (tempAL + (tempAH  imm8)) AND FFH;
AH  0

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

Volume 4: Base IA-32 Instruction Reference 4:23

AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of
unpacked BCD values. The AX register is the implied source and destination operand for
this instruction. The AAM instruction is only useful when it follows an MUL instruction
that multiplies (binary multiplication) two unpacked BCD values and stores a word
result in the AX register. The AAM instruction then adjusts the contents of the AX
register to contain the correct 2-digit unpacked BCD result.

Operation

tempAL  AL;
AH  tempAL / imm8;
AL  tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

4:24 Volume 4: Base IA-32 Instruction Reference

AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked
BCD result. The AL register is the implied source and destination operand for this
instruction. The AAS instruction is only useful when it follows a SUB instruction that
subtracts (binary subtraction) one unpacked BCD value from another and stores a byte
result in the AL register. The AAA instruction then adjusts the contents of the AL
register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and
the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are
cleared, and the AH register is unchanged. In either case, the AL register is left with its
top nibble set to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN

AL  AL - 6;
AH  AH - 1;
AF  1;
CF  1;

ELSE
CF  0;
AF  0;

FI;
AL  AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction

Volume 4: Base IA-32 Instruction Reference 4:25

ADC—Add with Carry

Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. The state of the CF flag represents a carry
from a previous addition. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in
which an ADD instruction is followed by an ADC instruction.

Operation

DEST  DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

4:26 Volume 4: Base IA-32 Instruction Reference

ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:27

ADD—Add

Description

Adds the first operand (destination operand) and the second operand (source operand)
and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a
memory location. When an immediate value is used as an operand, it is sign-extended
to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

Operation

DEST  DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

4:28 Volume 4: Base IA-32 Instruction Reference

ADD—Add (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0)If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:29

AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand
can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location.

Operation

DEST  DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8

83 /4 ib AND r/m32,imm8 r/m32 AND imm8

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

4:30 Volume 4: Base IA-32 Instruction Reference

AND—Logical AND (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:31

ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the RPL
field of the destination operand is less than the RPL field of the source operand, the ZF
flag is set and the RPL field of the destination operand is increased to match that of the
source operand. Otherwise, the ZF flag is cleared and no change is made to the
destination operand. (The destination operand can be a word register or a memory
location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector passed
to the operating system is placed in the destination operand and segment selector for
the application program’s code segment is placed in the source operand. (The RPL field
in the source operand represents the privilege level of the application program.)
Execution of the ARPL instruction then insures that the RPL of the segment selector
received by the operating system is no lower (does not have a higher privilege) than
the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the procedure stack following a procedure
call.)

See the Intel Architecture Software Developer’s Manual, Volume 3 for more information
about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF  1;
DEST(RPL)  SRC(RPL);

ELSE
ZF  0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the
source operand; otherwise, is cleared to 0.

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16

4:32 Volume 4: Base IA-32 Instruction Reference

ARPL—Adjust RPL Field of Segment Selector (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:33

BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified
the second operand (bounds operand). The array index is a signed integer located in a
register. The bounds operand is a memory location that points to a pair of signed
doubleword-integers (when the operand-size attribute is 32) or a pair of signed
word-integers (when the operand-size attribute is 16). The first doubleword (or word)
is the lower bound of the array and the second doubleword (or word) is the upper
bound of the array. The array index must be greater than or equal to the lower bound
and less than or equal to the upper bound plus the operand size in bytes. If the index is
not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this
exception is generated, the saved return instruction pointer points to the BOUND
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the limits
addressable via a constant offset from the beginning of the array. Because the address
of the array already will be present in a register, this practice avoids extra bus cycles to
obtain the effective address of the array bounds.

Operation
IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))

(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by m16&16

4:34 Volume 4: Base IA-32 Instruction Reference

BOUND—Check Array Index Against Bounds (Continued)

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#BR If the bounds test fails.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#BR If the bounds test fails.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:35

BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If
a least significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IF SRC = 0
THEN

ZF  1;
DEST is undefined;

ELSE
ZF  0;
temp  0;

WHILE Bit(SRC, temp) = 0
DO

temp  temp + 1;
DEST  temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32

4:36 Volume 4: Base IA-32 Instruction Reference

BSF—Bit Scan Forward (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:37

BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If
a most significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IF SRC = 0
THEN

ZF  1;
DEST is undefined;

ELSE
ZF  0;
temp  OperandSize - 1;

WHILE Bit(SRC, temp) = 0
DO

temp  temp  1;
DEST  temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32

4:38 Volume 4: Base IA-32 Instruction Reference

BSR—Bit Scan Reverse (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:39

BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped
with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through 23.
This instruction is provided for converting little-endian values to big-endian format and
vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

Operation

TEMP  DEST
DEST(7..0)  TEMP(31..24)
DEST(15..8)  TEMP(23..16)
DEST(23..16)  TEMP(15..8)
DEST(31..24)  TEMP(7..0)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel architecture processors earlier than
the Intel486™ processor family. For compatibility with this instruction, include
functionally-equivalent code for execution on Intel processors earlier than the Intel486
processor family.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.

4:40 Volume 4: Base IA-32 Instruction Reference

BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand) and stores the value
of the bit in the CF flag. The bit base operand can be a register or a memory location;
the bit offset operand can be a register or an immediate value. If the bit base operand
specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16-
or 32-bit register, respectively. If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string. The offset operand then selects a bit position within the
range 231 to 231  1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. In
this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits
are shifted and combined with the byte displacement in the addressing mode by the
assembler. The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

Effective Address + (4  (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using
this relationship:

Effective Address + (2  (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit.
When using this bit addressing mechanism, software should avoid referencing areas of
memory close to address space holes. In particular, it should avoid references to
memory-mapped I/O registers. Instead, software should use the MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

Operation

CF  Bit(BitBase, BitOffset)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag

Volume 4: Base IA-32 Instruction Reference 4:41

BT—Bit Test (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:42 Volume 4: Base IA-32 Instruction Reference

BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and complements the selected bit in the bit string. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231  1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF,
ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement

Volume 4: Base IA-32 Instruction Reference 4:43

BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:44 Volume 4: Base IA-32 Instruction Reference

BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231  1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF,
and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear

Volume 4: Base IA-32 Instruction Reference 4:45

BTR—Bit Test and Reset (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:46 Volume 4: Base IA-32 Instruction Reference

BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range 231 to 231  1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF  Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset)  1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and
PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set

Volume 4: Base IA-32 Instruction Reference 4:47

BTS—Bit Test and Set (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:48 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure

Description

Saves procedure linking information on the procedure stack and jumps to the
procedure (called procedure) specified with the destination (target) operand. The target
operand specifies the address of the first instruction in the called procedure. This
operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call – A call to a procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment
call.

• Far call – A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call – A far call to a procedure in a segment at a different
privilege level than that of the currently executing program or procedure. Results
in an IA-32_Intercept(Gate) in Itanium System Environment.

• Task switch – A call to a procedure located in a different task. Results in an
IA-32_Intercept(Gate) in Itanium System Environment.

The latter two call types (inter-privilege-level call and task switch) can only be executed
in protected mode. See Chapter 6 in the Intel Architecture Software Developer’s
Manual, Volume 3 for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which
contains the address of the instruction following the CALL instruction) onto the
procedure stack (for use later as a return-instruction pointer. The processor then jumps
to the address specified with the target operand for the called procedure. The target
operand specifies either an absolute address in the code segment (that is an offset from
the base of the code segment) or a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register, which points to the
instruction following the call). An absolute address is specified directly in a register or
indirectly in a memory location (r/m16 or r/m32 target-operand form). (When
accessing an absolute address indirectly using the stack pointer (ESP) as a base
register, the base value used is the value of the ESP before the instruction executes.) A
relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed, 16- or 32-bit immediate value, which
is added to the instruction pointer.

Opcode Instruction Description

E8 cw CALL rel16 Call near, displacement relative to next instruction

E8 cd CALL rel32 Call near, displacement relative to next instruction

FF /2 CALL r/m16 Call near, r/m16 indirect

FF /2 CALL r/m32 Call near, r/m32 indirect

9A cd CALL ptr16:16 Call far, to full pointer given

9A cp CALL ptr16:32 Call far, to full pointer given

FF /3 CALL m16:16 Call far, address at r/m16

FF /3 CALL m16:32 Call far, address at r/m32

Volume 4: Base IA-32 Instruction Reference 4:49

CALL—Call Procedure (Continued)

When executing a near call, the operand-size attribute determines the size of the target
operand (16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly
into the EIP register. When a relative offset is specified, it is added to the value of the
EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s, resulting in a maximum instruction pointer size of 16 bits. The CS
register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and
EIP registers onto the procedure stack for use as a return-instruction pointer. The
processor then performs a far jump to the code segment and address specified with the
target operand for the called procedure. Here the target operand specifies an absolute
far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to 0s.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from
the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of
the instruction is set to 16, allowing only a 16-bit return address offset to be saved.
Also, the call should be made using a 16-bit call gate so that 16-bit values will be
pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to
access a code segment at a different privilege level or to switch tasks. Here, the
processor uses the segment selector part of the far address to access the segment
descriptor for the segment being jumped to. Depending on the value of the type and
access rights information in the segment selector, the CALL instruction can perform:

• A far call to the same privilege level (described in the previous paragraph).

• An far call to a different privilege level. Results in an IA-32_Intercept(Gate) in
Itanium System Environment.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

When executing an inter-privilege-level far call, the code segment for the procedure
being called is accessed through a call gate. The segment selector specified by the
target operand identifies the call gate. In executing a call through a call gate where a
change of privilege level occurs, the processor switches to the stack for the privilege
level of the called procedure, pushes the current values of the CS and EIP registers and
the SS and ESP values for the old stack onto the new stack, then performs a far jump to
the new code segment. The new code segment is specified in the call gate descriptor;
the new stack segment is specified in the TSS for the currently running task. The jump
to the new code segment occurs after the stack switch. On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack, a set of
parameters from the calling procedures stack, and the segment selector and instruction
pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.)

Finally, the processor jumps to the address of the procedure being called within the new
code segment. The procedure address is the offset specified by the target operand.
Here again, the target operand can specify the far address of the call gate and
procedure either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32).

4:50 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

Executing a task switch with the CALL instruction, is similar to executing a call through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to and the address of the procedure being called in the task.
The task gate in turn points to the TSS for the task, which contains the segment
selectors for the task’s code and stack segments. The CALL instruction can also specify
the segment selector of the TSS directly. See the Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

Operation

IF near call
THEN IF near relative call

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP  EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP  (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP  DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP  DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;
IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)

THEN
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP  DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

Volume 4: Base IA-32 Instruction Reference 4:51

CALL—Call Procedure (Continued)

Push(IP);
CS  DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP  DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP  EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF not present THEN #NP(selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  DEST(offset);

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS  DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL  CPL) THEN #GP(new code segment selector); FI;

4:52 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF stack not large enough for return address THEN #SS(0); FI;
tempEIP  DEST(offset)
IF OperandSize=16

THEN
tempEIP  tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS  DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS  DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL)  CPL;
EIP  tempEIP;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
newSS  TSSstackAddress + 4;
newESP  stack address;

ELSE (* TSS is 16-bit *)

Volume 4: Base IA-32 Instruction Reference 4:53

CALL—Call Procedure (Continued)

TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
newESP  TSSstackAddress;
newSS  TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL  DPL of code segment

OR stack segment DPL  DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS  newSS;
(* segment descriptor information also loaded *)
ESP  newESP;
CS:EIP  CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS  newSS;
(* segment descriptor information also loaded *)
ESP  newESP;
CS:IP  CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp  parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL  CodeSegment(DPL)
CS(RPL)  CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;

4:54 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF EIP not within code segment limit then #GP(0); FI;
CS:EIP  CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP  CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL)  CPL

END;

TASK-GATE:
IF task gate DPL < CPL or RPL

THEN #GP(task gate selector);
FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
ORTSS segment selector local/global bit is set to local
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

Volume 4: Base IA-32 Instruction Reference 4:55

CALL—Call Procedure (Continued)

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for CALLs through CALL Gates, Task Gates and Task
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code
segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor
table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL
or the RPL for the segment’s segment selector is greater than the
CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s
segment selector.

If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a call gate is greater
than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

4:56 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

#SS(0) If pushing the return address, parameters, or stack segment pointer
onto the stack exceeds the bounds of the stack segment, when no
stack switch occurs.

If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer
onto the stack exceeds the bounds of the stack segment, when a
stack switch occurs.

If the SS register is being loaded as part of a stack switch and the
segment pointed to is marked not present.

If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of
the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is
not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:57

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit in
the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit
15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is
intended for use when the operand-size attribute is 16 and the CWDE instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CBW is used and to 32 when CWDE is used. Others may treat these
mnemonics as synonyms (CBW/CWDE) and use the current setting of the operand-size
attribute to determine the size of values to be converted, regardless of the mnemonic
used.

The CWDE instruction is different from the CWD (convert word to double) instruction.
The CWD instruction uses the DX:AX register pair as a destination operand; whereas,
the CWDE instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX  SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX  SignExtend(AX);
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

98 CBW AX  sign-extend of AL

98 CWDE EAX  sign-extend of AX

4:58 Volume 4: Base IA-32 Instruction Reference

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.

Volume 4: Base IA-32 Instruction Reference 4:59

CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF  0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag

4:60 Volume 4: Base IA-32 Instruction Reference

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations
increment the index registers (ESI and/or EDI).

Operation

DF  0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag

Volume 4: Base IA-32 Instruction Reference 4:61

CLI—Clear Interrupt Flag

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF
flag causes the processor to ignore maskable external interrupts. The IF flag and the
CLI and STI instruction have no affect on the generation of exceptions and NMI
interrupts. In the Itanium System Environment, external interrupts are enabled
for IA-32 instructions if PSR.i and (~CFLG.if or EFLAG.if) is 1 and for Itanium
instructions if PSR.i is 1.

The following decision table indicates the action of the CLI instruction (bottom of the
table) depending on the processor’s mode of operating and the CPL and IOPL of the
currently running program or procedure (top of the table).

Notes:
XDon't care.
NAction in column 1 not taken.
YAction in column 1 taken.

Operation

OLD_IF <- IF;

IF PE = 0 (* Executing in real-address mode *)
THEN

IF  0;
ELSE

IF VM = 0 (* Executing in protected mode *)
THEN

IF CR4.PVI = 1
THEN

IF CPL = 3
THEN

IF IOPL<3
THEN VIF <- 0;
ELSE IF <- 0;
FI;

ELSE (*CPL < 3*)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt flag
cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X  IOPL X > IOPL X

IOPL X X  3 X < 3

IF 0 Y Y Y N N

#GP(0) N N N Y Y

4:62 Volume 4: Base IA-32 Instruction Reference

CLI—Clear Interrupt Flag (Continued)

FI;
FI;

ELSE (*CR4.PVI==0 *)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <- 0;
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF 
ELSE

IF CR4.VME= 0
THEN #GP(0);
ELSE VIF <- 0;
FI;

FI;
FI;

FI;
IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF

THEN IA-32_Intercept(System_Flag,CLI);

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not
affected. The other flags in the EFLAGS register are unaffected.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Volume 4: Base IA-32 Instruction Reference 4:63

CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the description
of the TS flag in the Intel Architecture Software Developer’s Manual, Volume 3 for more
information about this flag.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,CLTS);

CR0(TS)  0;

Flags Affected

The TS flag in CR0 register is cleared.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept fault.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0

4:64 Volume 4: Base IA-32 Instruction Reference

CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF  NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F5 CMC Complement CF flag

Volume 4: Base IA-32 Instruction Reference 4:65

CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 cw/cd CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 cw/cd CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 cw/cd CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 cw/cd CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 cw/cd CMOVB r16, r/m16 Move if below (CF=1)

0F 42 cw/cd CMOVB r32, r/m32 Move if below (CF=1)

0F 46 cw/cd CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 cw/cd CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 cw/cd CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 cw/cd CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 cw/cd CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 cw/cd CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F cw/cd CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F cw/cd CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D cw/cd CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D cw/cd CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C cw/cd CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C cw/cd CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E cw/cd CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 cw/cd CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 cw/cd CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 cw/cd CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 cw/cd CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 cw/cd CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 cw/cd CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 cw/cd CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 cw/cd CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 cw/cd CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 cw/cd CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 cw/cd CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 cw/cd CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E cw/cd CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E cw/cd CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C cw/cd CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C cw/cd CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D cw/cd CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D cw/cd CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F cw/cd CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F cw/cd CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

4:66 Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move (Continued)

Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied, a
move is not performed and execution continues with the instruction following the
CMOVcc instruction.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

These instructions can move a 16- or 32-bit value from memory to a general-purpose
register or from one general-purpose register to another. Conditional moves of 8-bit
register operands are not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode 0F 47H.

Opcode Instruction Description

0F 41 cw/cd CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 cw/cd CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B cw/cd CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B cw/cd CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 cw/cd CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 cw/cd CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 cw/cd CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 cw/cd CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 cw/cd CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 cw/cd CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A cw/cd CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A cw/cd CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A cw/cd CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A cw/cd CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B cw/cd CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B cw/cd CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 cw/cd CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 cw/cd CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 cw/cd CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 cw/cd CMOVZ r32, r/m32 Move if zero (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:67

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they
may not be supported by all the processors in the family. Software can determine if the
CMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see “CPUID—CPU Identification” on page 4:78).

Operation

temp  DEST
IF condition TRUE

THEN
DEST  SRC

ELSE
DEST  temp

FI;

Flags Affected

None.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

4:68 Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:69

CMP—Compare Two Operands

Description

Compares the first source operand with the second source operand and sets the status
flags in the EFLAGS register according to the results. The comparison is performed by
subtracting the second operand from the first operand and then setting the status flags
in the same manner as the SUB instruction. When an immediate value is used as an
operand, it is sign-extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc),
condition move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc,
CMOVcc, and SETcc instructions are based on the results of a CMP instruction.

Operation

temp  SRC1  SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32

4:70 Volume 4: Base IA-32 Instruction Reference

CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:71

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with
the byte, word, or double word specified with the second source operand and sets the
status flags in the EFLAGS register according to the results. The first source operand
specifies the memory location at the address DS:ESI and the second source operand
specifies the memory location at address ES:EDI. (When the operand-size attribute is
16, the SI and DI register are used as the source-index and destination-index registers,
respectively.) The DS segment may be overridden with a segment override prefix, but
the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and
doubleword versions of the CMPS instructions. They are simpler to use, but provide no
type or segment checking. (For the CMPS instruction, “DS:ESI” and “ES:EDI” must be
explicitly specified in the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI
registers are decremented.) The registers are incremented or decremented by 1 for
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix
for block comparisons of ECX bytes, words, or doublewords. More often, however, these
instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made.

Opcode Instruction Description

A6 CMPS DS:(E)SI, ES:(E)DI Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:SI, ES:DI Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:SI with byte at address
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

4:72 Volume 4: Base IA-32 Instruction Reference

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Operation

temp SRC1  SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN (E)DI  1; (E)SI  1;
ELSE (E)DI  -1; (E)SI  -1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
THEN DI  2; (E)SI  2;
ELSE DI  -2; (E)SI  -2;

FI;
ELSE (* doubleword comparison *)

THEN IF DF = 0
THEN EDI  4; (E)SI  4;
ELSE EDI  -4; (E)SI  -4;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Volume 4: Base IA-32 Instruction Reference 4:73

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:74 Volume 4: Base IA-32 Instruction Reference

CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the
operand) with the first operand (destination operand). If the two values are equal, the
second operand (source operand) is loaded into the destination operand. Otherwise,
the destination operand is loaded into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)

IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,CMPXCHG);

IF accumulator = DEST
THEN

ZF  1
DEST  SRC

ELSE
ZF  0
accumulator  DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the
results of the comparison operation.

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded into
r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is loaded
into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is loaded
into r/m32. Else, clear ZF and load r/m32 into AL

Volume 4: Base IA-32 Instruction Reference 4:75

CMPXCHG—Compare and Exchange (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486
processors.

4:76 Volume 4: Base IA-32 Instruction Reference

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the
values are equal, the 64-bit value in ECX:EBX is stored in the destination operand.
Otherwise, the value in the destination operand is loaded into EDX:EAX. The destination
operand is an 8-byte memory location. For the EDX:EAX and ECX:EBX register pairs,
EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-order 32
bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,CMPXCHG);

IF (EDX:EAX = DEST)
ZF  1
DEST  ECX:EBX

ELSE
ZF  0
EDX:EAX  DEST

FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

Volume 4: Base IA-32 Instruction Reference 4:77

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium
processors.

4:78 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register
before the instruction is executed. Table 2-4 shows the information returned,
depending on the initial value loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction.
If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic
information and extended function information. Basic information is returned by
entering an input value starting at 0 in the EAX register; extended function information
is returned by entering an input value starting at 80000000H. When the input value in
the EAX register is 0, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning basic information. Always use an EAX
parameter value that is equal to or greater than zero and less than or equal to this
highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning extended function information. Always use
an EAX parameter value that is equal to or greater than zero and less than or equal to
this highest EAX return value for extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction
execution. Serializing instruction execution guarantees that any modifications to flags,
registers, and memory for previous instructions are completed before the next
instruction is fetched and executed.

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information in the
EAX, EBX, ECX, and EDX registers, according to the input
value entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor

Basic CPUID Information

0 EAX
EBX
ECX
EDX

Maximum CPUID Input Value
756E6547H “Genu” (G in BL)
6C65746EH “ntel” (n in CL)
49656E69H “ineI” (i in DL)

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0: Brand Indexa

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor
Bits 31-24: Local APIC IDb

Reserved
Feature Information (see Table 2-5)

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

Volume 4: Base IA-32 Instruction Reference 4:79

When the input value is 1, the processor returns version information in the EAX register
(see Figure 2-4). The version information consists of an Intel architecture family
identifier, a model identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID
instruction will generate two additional fields in the EAX register: the extended family
field and the extended model field. Here, a value of FH in either the model field or the
family field indicates that the extended model or family field, respectively, is valid.
Family and model numbers beyond FH range from 0FH to FFH, with the least significant
hexadecimal digit always FH.

See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number
241618) for more information on identifying Intel architecture processors.

Extended Function CPUID Information

8000000H EAX
EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information
Reserved
Reserved
Reserved

8000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
reserved.)
Reserved
Reserved
Reserved

8000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

8000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is
returned.

b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Figure 2-4. Version Information in Registers EAX

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type

4:80 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to
the EBX register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string
table that contains brand strings for IA-32 processors. Please refer to AP-485,
Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for information on brand indices.

Note: The Brand index field is not supported for processors based on Itanium
architecture, zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments.
This field is valid only when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium
architecture, reserved value is returned. Software should check the
feature flags to make sure they are not running on processors based on
the Itanium architecture before interpreting the return value in this
field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to
loading the processor signature in the EAX register) loads the EDX register with the
feature flags. The feature flags (when a Flag = 1) indicate what features the processor
supports. Table 2-5 lists the currently defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software
should identify Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode
enhancements, including CR4.VME for controlling the feature,
CR4.PVI for protected mode virtual interrupts, software interrupt
indirection, expansion of the TSS with the software indirection bitmap,
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including
CR4.DE for controlling the feature, and optional trapping of accesses
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The
RDMSR and WRMSR instructions are supported. Some of the MSRs
are implementation dependent.

Volume 4: Base IA-32 Instruction Reference 4:81

6 PAE Physical Address Extension. Physical addresses greater than 32
bits are supported: extended page table entry formats, an extra level
in the page translation tables is defined, 2 Mbyte pages are supported
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address
bits beyond 32 is not defined, and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model-specific processing of the exception, or test for the presence of
the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped
commands in the physical address range FFFE0000H to FFFE0FFFH
(by default – some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and
SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The
MTRRcap MSR contains feature bits that describe what memory
types are supported, how many variable MTRRs are supported, and
whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture,
which provides a compatible mechanism for error reporting is
supported. The MCG_CAP MSR contains feature bits describing how
many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction
CMOV is supported. In addition, if x87 FPU is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are
supported. This feature indicates that the upper four bits of the
physical address of the 4-MByte page is encoded by bits 13-16 of the
page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 NX Execute Disable Bit.

21 DS Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

4:82 Volume 4: Base IA-32 Instruction Reference

When the input value is 2, the processor returns information about the processor’s
internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of
these registers is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors.

Please see the processor-specific supplement for further information on how to decode
the return values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to be
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating
point context. Presence of this bit also indicates that CR4.OSFXSR is
available for an operating system to indicate that it supports the
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements
Hyper-Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Processor based on the Intel
Itanium architecture

The processor is based on the Intel Itanium architecture and is
capable of executing the Intel Itanium instruction set. IA-32 application
level software MUST also check with the running operating system to
see if the system can also support Itanium architecture-based code
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state
(STPCLK# is asserted) to signal the processor that an interrupt is
pending and that the processor should return to normal operation to
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE
MSR enables this capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

Volume 4: Base IA-32 Instruction Reference 4:83

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX  Highest input value understood by CPUID;
EBX  Vendor identification string;
EDX  Vendor identification string;
ECX  Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0]  Stepping ID;
EAX[7:4]  Model;
EAX[11:8]  Family;
EAX[13:12]  Processor Type;
EAX[15:14]  Reserved;
EAX[19:16]  Extended Model;
EAX[27:20]  Extended Family;
EAX[31:28]  Reserved;
EBX[7:0]  Brand Index; (* Always zero for processors based on Itanium architecture *)
EBX[15:8]  CLFLUSH Line Size;
EBX[16:23]  Number of logical processors per physical processor;
EBX[31:24]  Initial APIC ID; (* Reserved for processors based on Itanium architecture *)
ECX  Reserved;
EDX  Feature flags;

BREAK;
EAX = 2H:

EAX  Cache and TLB information;
EBX  Cache and TLB information;
ECX  Cache and TLB information;
EDX  Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX  Highest extended function input value understood by CPUID;
EBX  Reserved;
ECX  Reserved;
EDX  Reserved;

BREAK;
EAX = 80000001H:

EAX  Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX  Reserved;
ECX  Reserved;
EDX  Reserved;

BREAK;
EAX = 80000002H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;

BREAK;
EAX = 80000003H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;

4:84 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification (Continued)

BREAK;
EAX = 80000004H:

EAX  Processor Name;
EBX  Processor Name;
ECX  Processor Name;
EDX  Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX  Reserved, Undefined;
EBX  Reserved, Undefined;
ECX  Reserved, Undefined;
EDX  Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in
any Intel architecture processor earlier than the Intel486 processor. The ID flag in the
EFLAGS register can be used to determine if this instruction is supported. If a procedure
is able to set or clear this flag, the CPUID is supported by the processor running the
procedure.

Volume 4: Base IA-32 Instruction Reference 4:85

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to
Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size)
by means of sign extension and stores the result in registers DX:AX or EDX:EAX,
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register
into every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of
the value in the EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before
a word division, and the CDQ instruction can be used to produce a quadword dividend
from a doubleword before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CWD is used and to 32 when CDQ is used. Others may treat these mnemonics
as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to
determine the size of values to be converted, regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX  SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX  SignExtend(EAX);
FI;

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

99 CWD DX:AX  sign-extend of AX

99 CDQ EDX:EAX  sign-extend of EAX

4:86 Volume 4: Base IA-32 Instruction Reference

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

Volume 4: Base IA-32 Instruction Reference 4:87

DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result.
If a decimal carry is detected, the CF and AF flags are set accordingly.

Operation

IF (((AL AND 0FH) > 9) or AF = 1)
THEN

AL AL + 6;
CF CF OR CarryFromLastAddition; (* CF OR carry from AL AL + 6 *)
AF 1;

ELSE
AF 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL  AL + 60H;
CF  1;

ELSE
CF 0;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=79H BL=35H EFLAGS(OSZAPC)=110000
After: AL=AEH BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition

4:88 Volume 4: Base IA-32 Instruction Reference

DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD
result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in the
AL register. The DAS instruction then adjusts the contents of the AL register to contain
the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF and AF
flags are set accordingly.

Operation

IF (AL AND 0FH) > 9 OR AF = 1
THEN

AL  AL  6;
CF CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL AL  6 *)
AF  1;

ELSE AF  0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL  AL  60H;
CF  1;

ELSE CF  0;
FI;

Example

SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111
After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction

Volume 4: Base IA-32 Instruction Reference 4:89

DEC—Decrement by 1

Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source
operand can be a register or a memory location. This instruction allows a loop counter
to be updated without disturbing the CF flag. (Use a SUB instruction with an immediate
operand of 1 to perform a decrement operation that does updates the CF flag.)

Operation

DEST  DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

4:90 Volume 4: Base IA-32 Instruction Reference

DEC—Decrement by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:91

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source
operand (divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The
source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp  AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL  temp;
AH  AX MOD SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

temp  DX:AX / SRC;
IF temp > FFFFH

THEN #DE; (* divide error *) ;
ELSE

AX  temp;
DX  DX:AX MOD SRC;

FI;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL  Quotient,
AH  Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX  Quotient,
DX  Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX  Quotient, EDX  Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232  1

4:92 Volume 4: Base IA-32 Instruction Reference

DIV—Unsigned Divide (Continued)

ELSE (* quadword/doubleword operation *)
temp  EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX  temp;
EDX  EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Volume 4: Base IA-32 Instruction Reference 4:93

DIV—Unsigned Divide (Continued)

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:94 Volume 4: Base IA-32 Instruction Reference

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new stack
frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register
specifies the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies
the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. They do not provide a jump or call to another procedure; they merely set up
a new stack frame for an already called procedure. An ENTER instruction is commonly
followed by a CALL, JMP, or Jcc instruction to transfer program control to the procedure
being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register
onto the stack, copies the current stack pointer from the ESP register into the EBP
register, and loads the ESP register with the current stack-pointer value minus the value
in the size operand. For nesting levels of 1 or greater, the processor pushes additional
frame pointers on the stack before adjusting the stack pointer. These additional frame
pointers provide the called procedure with access points to other nested frames on the
stack.

Operation

NestingLevel  NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp  ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp  SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel  0)

FOR i  1 TO (NestingLevel  1)
DO

IF OperandSize = 32
THEN

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure

Volume 4: Base IA-32 Instruction Reference 4:95

ENTER—Make Stack Frame for Procedure Parameters (Continued)

IF StackSize = 32
EBP  EBP  4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP  BP  4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP  EBP  2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP  BP  2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP  FrameTemp
ESP  EBP  Size;

ELSE (* StackSize = 16*)
BP  FrameTemp
SP  BP  Size;

FI;
END;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption Abort, Data Key
Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data Access Bit Fault,
Data Dirty Bit Fault

4:96 Volume 4: Base IA-32 Instruction Reference

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Volume 4: Base IA-32 Instruction Reference 4:97

F2XM1—Compute 2x-1

Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The
source operand is located in register ST(0) and the result is also stored in ST(0). The
value of the source operand must lie in the range -1.0 to +1.0. If the source value is
outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value
of various classes of numbers, assuming that neither overflow nor underflow occurs:

Values other than 2 can be exponentiated using the following formula:

xy = 2(y  log
2
x)

Operation

ST(0)  (2ST(0)  1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) - 1)

ST(0) SRC ST(0) DEST

-1.0 to 0 0.5 to 0

0 0

0 +0

+0 to +1.0 +0 to 1.0

4:98 Volume 4: Base IA-32 Instruction Reference

F2XM1—Compute 2x-1 (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:99

FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes of
numbers.

Note:
Fmeans finite-real number.

Operation

ST(0)  |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

• +

F +F

0 +0

0 +0

+F +F

+ +

NaN NaN

4:100 Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination
location. The destination operand is always an FPU register; the source operand can be
a register or a memory location. Source operands in memory can be in single-real,
double-real, word-integer, or short-integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the
ST(1) register. The one-operand version adds the contents of a memory location (either
a real or an integer value) to the contents of the ST(0) register. The two-operand
version, adds the contents of the ST(0) register to the ST(i) register or vice versa. The
value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. (The no-operand
version of the floating-point add instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FADD rather than
FADDP.)

The FIADD instructions convert an integer source operand to extended-real format
before performing the addition.

The table on the following page shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the
round toward  mode, in which case the result is 0. When the source operand is an
integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is  of the expected sign.
If both operands are infinities of opposite signs, an invalid-operation exception is
generated.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the register
stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the register
stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:101

FADD/FADDP/FIADD—Add (Continued)

.

Notes:
Fmeans finite-real number.
Lmeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN

DEST  DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST + SRC;
FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

DEST

-• F 0 +0 +F + NaN

- - - - - - * NaN

F or I - F SRC SRC F or 0 + NaN

SRC 0 - DEST 0 0 DEST + NaN

+0 - DEST 0 +0 DEST + NaN

+For +I - F or 0 SRC SRC +F + NaN

+ * + + + + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:102 Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:103

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into extended-real format and pushes the value onto
the FPU stack. The source operand is loaded without rounding errors. The sign of the
source operand is preserved, including that of 0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does
not check for invalid digits (AH through FH). Attempting to load an invalid encoding
produces an undefined result.

Operation

TOP  TOP  1;
ST(0)  ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack overflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.

4:104 Volume 4: Base IA-32 Instruction Reference

FBLD—Load Binary Coded Decimal (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:105

FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by
1.

The destination operand specifies the address where the first byte destination value is
to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.

The following table shows the results obtained when storing various classes of numbers
in packed BCD format.

Notes:
Fmeans finite-real number.
Dmeans packed-BCD number.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation
exception is not masked, an invalid-operation exception is generated and no value is
stored in the destination operand. If the invalid-operation exception is masked, the
packed BCD indefinite value is stored in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet
NaNs do not normally cause this exception to be generated.

Operation

DEST  BCD(ST(0));
PopRegisterStack;

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

• *

F < 1 D

1 < F < 0 **

0 0

0 +0

+0 < +F < +1 **

+F > +1 +D

+ *

NaN *

4:106 Volume 4: Base IA-32 Instruction Reference

FBSTP—Store BCD Integer and Pop (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, , or unsupported
format; or contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that
points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:107

FBSTP—Store BCD Integer and Pop (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:108 Volume 4: Base IA-32 Instruction Reference

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice-versa. The following table shows the results
obtained when creating the absolute value of various classes of numbers.

Note:
Fmeans finite-real number.

Operation

SignBit(ST(0))  NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

• +

F +F

0 0

0 0

+F F

+ •

NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:109

FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.

Operation

FPUStatusWord[0..7]  0;
FPUStatusWord[15]  0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The
C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set. /

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for pending
unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

4:110 Volume 4: Base IA-32 Instruction Reference

FCMOVcc—Floating-point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The source operand is always in the ST(i) register and the destination operand is always
ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.

A processor in the Pentium Pro processor family may not support the FCMOVcc
instructions. Software can check if the FCMOVcc instructions are supported by checking
the processor’s feature information with the CPUID instruction (see “CPUID—CPU
Identification” on page 4:78). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

Operation

IF condition TRUE
ST(0)  ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)

Volume 4: Base IA-32 Instruction Reference 4:111

FCMOVcc—Floating-point Conditional Move (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:112 Volume 4: Base IA-32 Instruction Reference

FCOM/FCOMP/FCOMPP—Compare Real

Description

Compares the contents of register ST(0) and source value and sets condition code flags
C0, C2, and C3 in the FPU status word according to the results (see the table below).
The source operand can be a data register or a memory location. If no source operand
is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is
ignored, so that -0.0 = +0.0.

This instruction checks the class of the numbers being compared. If either operand is a
NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is
raised and, if the exception is masked, the condition flags are set to “unordered.” If the
invalid-arithmetic-operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and
the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an
invalid-arithmetic-operand exception for QNaNs.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is
generated.

1 1 1

Volume 4: Base IA-32 Instruction Reference 4:113

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0  000;
ST < SRC: C3, C2, C0  001;
ST = SRC: C3, C2, C0  100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0  111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

4:114 Volume 4: Base IA-32 Instruction Reference

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:115

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS

Description

Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and
CF in the EFLAGS register according to the results (see the table below). The sign of
zero is ignored for comparisons, so that -0.0 = +0.0.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The
FCOMI/FCOMIP instructions set the status flags to “unordered” and generate an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value (SNaN or QNaN) or is in an unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception
for QNaNs.

If invalid-operation exception is unmasked, the status flags are not set if the
invalid-arithmetic-operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0) register
as empty and increments the stack pointer (TOP) by 1.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and pop
register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and set
status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set status
flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand
(#IA) exception is generated.

1 1 1

4:116 Volume 4: Base IA-32 Instruction Reference

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF  000;
ST(0) < ST(i): ZF, PF, CF  001;
ST(0) = ST(i): ZF, PF, CF  100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF  111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF  111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF  111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:117

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values
or have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a
QNaN value does not raise an invalid-operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set./

4:118 Volume 4: Base IA-32 Instruction Reference

FCOS—Cosine

Description

Calculates the cosine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range 263
to +263. The following table shows the results obtained when taking the cosine of
various classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
* indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF |ST(0)|  263

THEN
C2  0;
ST(0)  cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2  1;

FI;

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

 *

F 1 to +1

0 +1

0 +1

+F 1 to +1

+ *

NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:119

FCOS—Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:120 Volume 4: Base IA-32 Instruction Reference

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack
pointer). The contents of the FPU data registers and tag register are not affected.

Operation

IF TOP = 0
THEN TOP  7;
ELSE TOP  TOP - 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.

Volume 4: Base IA-32 Instruction Reference 4:121

FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the
destination location. The destination operand (dividend) is always in an FPU register;
the source operand (divisor) can be a register or a memory location. Source operands
in memory can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by
the contents of the ST(0) register. The one-operand version divides the contents of the
ST(0) register by the contents of a memory location (either a real or an integer value).
The two-operand version, divides the contents of the ST(0) register by the contents of
the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than
FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format
before performing the division. When the source operand is an integer 0, it is treated as
a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the
exception is masked, an  of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the register
stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)

4:122 Volume 4: Base IA-32 Instruction Reference

FDIV/FDIVP/FIDIV—Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC 0
THEN

#Z
ELSE

IF instruction is FIDIV
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;

FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

-• F 0 +0 +F + NaN

- * +0 +0 0 0 * NaN

F + +F +0 0 F -• NaN

I + +F +0 0 F -• NaN

SRC 0 + ** * * ** -• NaN

+0 -• ** * * ** + NaN

+I -• F 0 +0 +F + NaN

+F -• F 0 +0 +F + NaN

+ * 0 0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:123

FDIV/FDIVP/FIDIV—Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z DEST / 0, where DEST is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:124 Volume 4: Base IA-32 Instruction Reference

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the
destination location. The destination operand (divisor) is always in an FPU register; the
source operand (dividend) can be a register or a memory location. Source operands in
memory can be in single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by
the contents of the ST(1) register. The one-operand version divides the contents of a
memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, divides the contents of the ST(i) register by the
contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than
FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format
before performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the
exception is masked, an  of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the register
stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:125

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation

IF DEST 0
THEN

#Z
ELSE

IF instruction is FIDIVR
THEN

DEST  ConvertExtendedReal(SRC)  DEST;
ELSE (* source operand is real number *)

DEST  SRC  DEST;
FI;

FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

DEST

 F 0 +0 +F + NaN

 * + + -•  * NaN

SRC F +0 +F ** ** -F 0 NaN

I +0 +F ** ** -F 0 NaN

0 +0 +0 * * 0 0 NaN

+0 0 0 * * +0 +0 NaN

+I 0 -F ** ** +F + NaN

+F 0 -F ** ** +F + NaN

+ *   + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:126 Volume 4: Base IA-32 Instruction Reference

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

; 0 / 0

#D Result is a denormal value.

#Z SRC / 0, where SRC is not equal to 0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:127

FFREE—Free Floating-point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The
contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation

TAG(i)  11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty

4:128 Volume 4: Base IA-32 Instruction Reference

FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition
code flags C0, C2, and C3 in the FPU status word according to the results (see table
below). The integer value is converted to extended-real format before the comparison
is made.

These instructions perform an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared. If either operand is a NaN or is in an
undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that -0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the
register stack, the processor marks the ST(0) register empty and increments the stack
pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0  000;
ST(0) < SRC: C3, C2, C0  001;
ST(0) = SRC: C3, C2, C0  100;
Unordered: C3, C2, C0  111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1

Volume 4: Base IA-32 Instruction Reference 4:129

FICOM/FICOMP—Compare Integer (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:130 Volume 4: Base IA-32 Instruction Reference

FILD—Load Integer

Description

Converts the signed-integer source operand into extended-real format and pushes the
value onto the FPU register stack. The source operand can be a word, short, or long
integer value. It is loaded without rounding errors. The sign of the source operand is
preserved.

Operation

TOP  TOP  1;
ST(0)  ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.

Volume 4: Base IA-32 Instruction Reference 4:131

FILD—Load Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:132 Volume 4: Base IA-32 Instruction Reference

FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer).
The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack
register is not marked empty.

Operation

IF TOP = 7
THEN TOP  0;
ELSE TOP  TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, generates an #IS fault. The C0, C2, and C3 flags are
undefined.

Floating-point Exceptions

#IS

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register

Volume 4: Base IA-32 Instruction Reference 4:133

FINIT/FNINIT—Initialize Floating-point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their
default states. The FPU control word is set to 037FH (round to nearest, all exceptions
masked, 64-bit precision). The status word is cleared (no exception flags set, TOP is set
to 0). The data registers in the register stack are left unchanged, but they are all
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point
exceptions before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord  037FH;
FPUStatusWord  0;
FPUTagWord  FFFFH;
FPUDataPointer  0;
FPUInstructionPointer  0;
FPULastInstructionOpcode  0;

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked
floating-point exceptions.

4:134 Volume 4: Base IA-32 Instruction Reference

FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and
stores the result in the destination operand. Values can be stored in word- or
short-integer format. The destination operand specifies the address where the first byte
of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction
can also stores values in long-integer format.

The following table shows the results obtained when storing various classes of numbers
in integer format.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-operation (#IA) exception.
**0 or 1, depending on the rounding mode.

If the source value is a non-integral value, it is rounded to an integer value, according
to the rounding mode specified by the RC field of the FPU control word.

If the value being stored is too large for the destination format, is an , is a NaN, or is
in an unsupported format and if the invalid-arithmetic-operand exception (#IA) is
unmasked, an invalid-operation exception is generated and no value is stored in the
destination operand. If the invalid-operation exception is masked, the integer indefinite
value is stored in the destination operand.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

 *

F <1 I

1 < F < 0 **

0 0

0 0

+0 < +F < +1 **

+F > +1 +I

+ *

NaN *

Volume 4: Base IA-32 Instruction Reference 4:135

FIST/FISTP—Store Integer (Continued)

Operation

DEST  Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:136 Volume 4: Base IA-32 Instruction Reference

FIST/FISTP—Store Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:137

FLD—Load Real

Description

Pushes the source operand onto the FPU register stack. If the source operand is in
single- or double-real format, it is automatically converted to the extended-real format
before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the
stack. Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN

temp  ST(i)
TOP  TOP  1;
FI;
IF SRC is memory-operand

THEN
ST(0)  ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) temp;

FI;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source
operand is in extended-real format.

FLD—Load Real (Continued)

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.

4:138 Volume 4: Base IA-32 Instruction Reference

FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:139

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU
register stack. The constants that can be loaded with these instructions include +1.0,
+0.0, log210, log2e, , log102, and loge2. For each constant, an internal 66-bit constant
is rounded (as specified by the RC field in the FPU control word) to external-real format.
The inexact-result exception (#P) is not generated as a result of the rounding.

Operation

TOP  TOP  1;
ST(0)  CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Floating-point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push  onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.

4:140 Volume 4: Base IA-32 Instruction Reference

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (Continued)

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that
is produced by the Intel 8087 and Intel287 math coprocessors.

Volume 4: Base IA-32 Instruction Reference 4:141

FLDCW—Load Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a
memory location. This instruction is typically used to establish or change the FPU’s
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU
control word and the new control word unmasks one or more of those exceptions, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid raising
exceptions when changing FPU operating modes, clear any pending exceptions (using
the FCLEX or FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord  SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None; however, this operation might unmask a pending exception in the FPU status
word. That exception is then generated upon execution of the next waiting
floating-point instruction.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.

4:142 Volume 4: Base IA-32 Instruction Reference

FLDCW—Load Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:143

FLDENV—Load FPU Environment

Description

Loads the complete FPU operating environment from memory into the FPU registers.
The source operand specifies the first byte of the operating-environment data in
memory.This data is typically written to the specified memory location by a FSTENV or
FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the loaded
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the
corresponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid generating
exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

Operation

FPUControlWord  SRC(FPUControlWord);
FPUStatusWord  SRC(FPUStatusWord);
FPUTagWord  SRC(FPUTagWord);
FPUDataPointer  SRC(FPUDataPointer);
FPUInstructionPointer  SRC(FPUInstructionPointer);
FPULastInstructionOpcode  SRC(FPULastInstructionOpcode);

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated
upon execution of the next waiting floating-point instruction.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.

4:144 Volume 4: Base IA-32 Instruction Reference

FLDENV—Load FPU Environment (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:145

FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination
location. The destination operand is always an FPU data register; the source operand
can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register
by the contents of the ST(1) register. The one-operand version multiplies the contents
of a memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, multiplies the contents of the ST(0) register by the
contents of the ST(i) register or vice versa.

The FMULP instructions perform the additional operation of popping the FPU register
stack after storing the product. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point multiply instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FMUL rather
than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format
before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or
more of the values being multiplied is 0 or . When the source operand is an integer 0,
it is treated as a +0.

The following table shows the results obtained when multiplying various classes of
numbers, assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)

4:146 Volume 4: Base IA-32 Instruction Reference

FMUL/FMULP/FIMUL—Multiply (Continued)

Notes:
Fmeans finite-real number.
Imeans Integer.
*indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is 0 and the other is .

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

DEST

 F 0 +0 +F + NaN

 + + * *   NaN

F + +F +0 0 F  NaN

I + +F +0 0 F  NaN

SRC 0 * +0 +0 0 0 * NaN

+0 * 0 0 +0 +0 * NaN

+I  F 0 +0 +F + NaN

+F  F 0 +0 +F + NaN

+   * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:147

FMUL/FMULP/FIMUL—Multiply (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:148 Volume 4: Base IA-32 Instruction Reference

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but
does not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 D0 FNOP No operation is performed.

Volume 4: Base IA-32 Instruction Reference 4:149

FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source
operand in register ST(0), stores the result in ST(1), and pops the FPU register stack.
The result in register ST(0) has the same sign as the source operand ST(1) and a
magnitude less than .

The following table shows the results obtained when computing the arctangent of
various classes of numbers, assuming that underflow does not occur.

Note:
Fmeans finite-real number.

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1)  arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)ST(0)) and pop the register
stack

Table 2-6. FPATAN Zeros and NaNs

ST(0)

-• F 0 +0 +F + NaN

-• 34 /2 /2 /2 /2 /4 NaN

ST(1) F -p to2 /2 /2 2 to 0 -0 NaN

0 -p -p -p 0 0 0 NaN

+0 + + + +0 +0 +0 NaN

+F + +to+2 +2 +2 +2 to +0 +0 NaN

+ +34 +2 +2 +2 +2 +/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:150 Volume 4: Base IA-32 Instruction Reference

FPATAN—Partial Arctangent (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility Information

The source operands for this instruction are restricted for the 80287 math coprocessor
to the following range:

0  |ST(1)|  |ST(0)|  

Volume 4: Base IA-32 Instruction Reference 4:151

FPREM—Partial Remainder

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0)  (N  ST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the
dividend. The magnitude of the remainder is less than that of the modulus, unless a
partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
, the result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std. 754. The
IEEE specified remainder can be computed with the FPREM1 instruction. The FPREM
instruction is provided for compatibility with the Intel 8087 and Intel287 math
coprocessors.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing ST(0)
by ST(1)

Table 2-7. FPREM Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:152 Volume 4: Base IA-32 Instruction Reference

FPREM—Partial Remainder (Continued)

The FPREM instruction gets its name “partial remainder” because of the way it
computes the remainder. This instructions arrives at a remainder through iterative
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one
execution of the instruction. If the instruction succeeds in producing a remainder that is
less than the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of /4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D  exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q  Integer(TruncateTowardZero(ST(0)  ST(1)));
ST(0)  ST(0) - (ST(1)  Q);
C2  0;
C0, C3, C1  LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2  1;
N  an implementation-dependent number between 32 and 63;
QQ  Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0)  ST(0) - (ST(1)  QQ  2(D  N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:153

FPREM—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is , or
unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:154 Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0)  (N  ST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of
[ST(0) / ST(1)] toward the nearest integer value. The sign of the remainder is the same
as the sign of the dividend. The magnitude of the remainder is less than half the
magnitude of the modulus, unless a partial remainder was computed (as described
below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
, the result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This
instruction operates differently from the FPREM instruction in the way that it rounds the
quotient of ST(0) divided by ST(1) to an integer (see the “Operation” below).

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on dividing
ST(0) by ST(1)

Table 2-8. FPREM1 Zeros and NaNs

ST(1)

-• F 0 +0 +F + NaN

-• * * * * * * NaN

ST(0) F ST(0) F or 0 ** ** F or 0 ST(0) NaN

0 0 0 * * 0 0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:155

FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execution
of the instruction. If the instruction succeeds in producing a remainder that is less than
one half the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM1 instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and C0 flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of /4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D  exponent(ST(0)) - exponent(ST(1));
IF D < 64

THEN
Q  Integer(RoundTowardNearestInteger(ST(0)  ST(1)));
ST(0)  ST(0) - (ST(1)  Q);
C2  0;
C0, C3, C1  LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2  1;
N  an implementation-dependent number between 32 and 63;
QQ  Integer(TruncateTowardZero((ST(0) ST(1)) / 2(D N)));
ST(0)  ST(0) - (ST(1)  QQ  2(D  N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

4:156 Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is
, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:157

FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be given
in radians and must be less than ±263. The following table shows the unmasked results
obtained when computing the partial tangent of various classes of numbers, assuming
that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

The value 1.0 is pushed onto the register stack after the tangent has been computed to
maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This
operation also simplifies the calculation of other trigonometric functions. For instance,
the cotangent (which is the reciprocal of the tangent) can be computed by executing a
FDIVR instruction after the FPTAN instruction.

Operation

IF ST(0)  263

THEN
C2  0;
ST(0)  tan(ST(0));
TOP  TOP  1;
ST(0)  1.0;

ELSE (*source operand is out-of-range *)
C2  1;

FI;

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1 onto
the FPU stack.

ST(0) SRC ST(0) DEST

 *

F F to +F

0 0

0 +0

+F F to +F

+ *

NaN NaN

4:158 Volume 4: Base IA-32 Instruction Reference

FPTAN—Partial Tangent (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:159

FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending
on the current rounding mode (setting of the RC field of the FPU control word), and
stores the result in ST(0).

If the source value is , the value is not changed. If the source value is not an integral
value, the floating-point inexact-result exception (#P) is generated.

Operation

ST(0)  RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.

4:160 Volume 4: Base IA-32 Instruction Reference

FRSTOR—Restore FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area
specified with the source operand. This state data is typically written to the specified
memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a
floating-point exception will be generated. To avoid raising exceptions when loading a
new operating environment, clear all the exception flags in the FPU status word that is
being loaded.

Operation

FPUControlWord  SRC(FPUControlWord);
FPUStatusWord  SRC(FPUStatusWord);
FPUTagWord  SRC(FPUTagWord);
FPUDataPointer  SRC(FPUDataPointer);
FPUInstructionPointer  SRC(FPUInstructionPointer);
FPULastInstructionOpcode  SRC(FPULastInstructionOpcode);
ST(0)  SRC(ST(0));
ST(1)  SRC(ST(1));
ST(2)  SRC(ST(2));
ST(3)  SRC(ST(3));
ST(4)  SRC(ST(4));
ST(5)  SRC(ST(5));
ST(6)  SRC(ST(6));
ST(7)  SRC(ST(7));

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-point Exceptions

None; however, this operation might unmask an existing exception that has been
detected but not generated, because it was masked. Here, the exception is generated
at the completion of the instruction.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.

Volume 4: Base IA-32 Instruction Reference 4:161

FRSTOR—Restore FPU State (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:162 Volume 4: Base IA-32 Instruction Reference

FSAVE/FNSAVE—Store FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified
destination in memory, and then re-initializes the FPU. The FSAVE instruction checks for
and handles pending unmasked floating-point exceptions before storing the FPU state;
the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set
to with the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-point Unit”
on page 4:133).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application
program needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord)  FPUControlWord;
DEST(FPUStatusWord)  FPUStatusWord;
DEST(FPUTagWord)  FPUTagWord;
DEST(FPUDataPointer)  FPUDataPointer;
DEST(FPUInstructionPointer)  FPUInstructionPointer;
DEST(FPULastInstructionOpcode)  FPULastInstructionOpcode;
DEST(ST(0))  ST(0);
DEST(ST(1))  ST(1);
DEST(ST(2))  ST(2);
DEST(ST(3))  ST(3);
DEST(ST(4))  ST(4);
DEST(ST(5))  ST(5);
DEST(ST(6))  ST(6);
DEST(ST(7))  ST(7);
(* Initialize FPU *)
FPUControlWord  037FH;

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for pending
unmasked floating-point exceptions. Then re-initialize the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without checking
for pending unmasked floating-point exceptions. Then re-initialize
the FPU.

Volume 4: Base IA-32 Instruction Reference 4:163

FSAVE/FNSAVE—Store FPU State (Continued)

FPUStatusWord  0;
FPUTagWord  FFFFH;
FPUDataPointer  0;
FPUInstructionPointer  0;
FPULastInstructionOpcode  0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

4:164 Volume 4: Base IA-32 Instruction Reference

FSAVE/FNSAVE—Store FPU State (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Pentium processor, an FWAIT
instruction should be executed before attempting to read from the memory image
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that
the storage operation has been completed.

Volume 4: Base IA-32 Instruction Reference 4:165

FSCALE—Scale

Description

Multiplies the destination operand by 2 to the power of the source operand and stores
the result in the destination operand. This instruction provides rapid multiplication or
division by integral powers of 2. The destination operand is a real value that is located
in register ST(0). The source operand is the nearest integer value that is smaller than
the value in the ST(1) register (that is, the value in register ST(1) is truncate toward 0
to its nearest integer value to form the source operand). The actual scaling operation is
performed by adding the source operand (integer value) to the exponent of the value in
register ST(0). The following table shows the results obtained when scaling various
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
Nmeans integer.

In most cases, only the exponent is changed and the mantissa (significand) remains
unchanged. However, when the value being scaled in ST(0) is a denormal value, the
mantissa is also changed and the result may turn out to be a normalized number.
Similarly, if overflow or underflow results from a scale operation, the resulting mantissa
will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from
the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then
scales the significand in ST(0) by the exponent in ST(1), recreating the original value
before the FXTRACT operation was performed. The FSTP ST(1) instruction returns the
recreated value to the FPU register where it originally resided.

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

ST(1)

N 0 +N

   

ST(0) F F F F

0 0 0 0

+0 +0 +0 +0

+F +F +F +F

+ + + +

NaN NaN NaN NaN

4:166 Volume 4: Base IA-32 Instruction Reference

FSCALE—Scale (Continued)

Operation

ST(0)  ST(0) 2ST(1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:167

FSIN—Sine

Description

Calculates the sine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range 263
to +263. The following table shows the results obtained when taking the sine of various
classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0)  263

THEN
C2  0;
ST(0)  sin(ST(0));

ELSE (* source operand out of range *)
C2  1;

FI:

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

 *

F 1 to +1

0 0

0 0

+F 1 to +1

+ *

NaN NaN

4:168 Volume 4: Base IA-32 Instruction Reference

FSIN—Sine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:169

FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores
the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. (This
instruction is faster than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range 263 to
+263. The following table shows the results obtained when taking the sine and cosine of
various classes of numbers, assuming that underflow does not occur.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range 263
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2 or by using the FPREM instruction with a divisor of 2.

Operation

IF ST(0)  263

THEN
C2  0;
TEMP  cosine(ST(0));
ST(0)  sine(ST(0));
TOP  TOP  1;
ST(0)  TEMP;

ELSE (* source operand out of range *)
C2  1;

FI:

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with the
sine, and push the cosine onto the register stack.

SRC DEST

ST(0)) ST(0) Cosine ST(1) Sine

 * *

F 1 to +1 1 to +1

0 1 0

0 1 0

+F 1 to +1 1 to +1

+ * *

NaN NaN NaN

4:170 Volume 4: Base IA-32 Instruction Reference

FSINCOS—Sine and Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow
occurs.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range 263 to +263;
otherwise, cleared to 0.

C0, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, , or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:171

FSQRT—Square Root

Description

Calculates the square root of the source value in the ST(0) register and stores the
result in ST(0).

The following table shows the results obtained when taking the square root of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

ST(0)  SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for 0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in ST(0)

SRC (ST(0)) DEST (ST(0))

 *

F *

0 0

0 0

+F +F

+ +

NaN NaN

4:172 Volume 4: Base IA-32 Instruction Reference

FSQRT—Square Root (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:173

FST/FSTP—Store Real

Description

The FST instruction copies the value in the ST(0) register to the destination operand,
which can be a memory location or another register in the FPU registers stack. When
storing the value in memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops
the register stack. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The FSTP instruction can also
stores values in memory in extended-real format.

If the destination operand is a memory location, the operand specifies the address
where the first byte of the destination value is to be stored. If the destination operand
is a register, the operand specifies a register in the register stack relative to the top of
the stack.

If the destination size is single- or double-real, the significand of the value being stored
is rounded to the width of the destination (according to rounding mode specified by the
RC field of the FPU control word), and the exponent is converted to the width and bias
of the destination format. If the value being stored is too large for the destination
format, a numeric overflow exception (#O) is generated and, if the exception is
unmasked, no value is stored in the destination operand. If the value being stored is a
denormal value, the denormal exception (#D) is not generated. This condition is simply
signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±, or a NaN, the least-significant bits of the significand
and the exponent are truncated to fit the destination format. This operation preserves
the value’s identity as a 0,  or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is
not generated.

Operation

DEST  ST(0);
IF instruction = FSTP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack

4:174 Volume 4: Base IA-32 Instruction Reference

FST/FSTP—Store Real (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception
(#P) is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:175

FST/FSTP—Store Real (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:176 Volume 4: Base IA-32 Instruction Reference

FSTCW/FNSTCW—Store Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory.
The FSTCW instruction checks for and handles pending unmasked floating-point
exceptions before storing the control word; the FNSTCW instruction does not.

Operation

DEST  FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for pending
unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for pending
unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:177

FSTCW/FNSTCW—Store Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:178 Volume 4: Base IA-32 Instruction Reference

FSTENV/FNSTENV—Store FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the
destination operand, and then masks all floating-point exceptions. The FPU operating
environment consists of the FPU control word, status word, tag word, instruction
pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for the layout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the size of
the current address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode
layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point
exceptions before storing the FPU environment; the FNSTENV instruction does not.The
saved image reflects the state of the FPU after all floating-point instructions preceding
the FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to
the FPU instruction and data pointers. The environment is typically saved in the
procedure stack. Masking all exceptions after saving the environment prevents
floating-point exceptions from interrupting the exception handler.

Operation

DEST(FPUControlWord)  FPUControlWord;
DEST(FPUStatusWord)  FPUStatusWord;
DEST(FPUTagWord)  FPUTagWord;
DEST(FPUDataPointer)  FPUDataPointer;
DEST(FPUInstructionPointer)  FPUInstructionPointer;
DEST(FPULastInstructionOpcode)  FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after checking
for pending unmasked floating-point exceptions. Then mask all
floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point exceptions. Then
mask all floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:179

FSTENV/FNSTENV—Store FPU Environment (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:180 Volume 4: Base IA-32 Instruction Reference

FSTSW/FNSTSW—Store Status Word

Description

Stores the current value of the FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The
FSTSW instruction checks for and handles pending unmasked floating-point exceptions
before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM
instruction), where the direction of the branch depends on the state of the FPU
condition code flags. This instruction can also be used to invoke exception handlers (by
examining the exception flags) in environments that do not use interrupts. When the
FNSTSW AX instruction is executed, the AX register is updated before the processor
executes any further instructions. The status stored in the AX register is thus
guaranteed to be from the completion of the prior FPU instruction.

Operation

DEST  FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for pending
unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for pending
unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for pending
unmasked floating-point exceptions.

DF E0 FNSTSW AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:181

FSTSW/FNSTSW—Store Status Word (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:182 Volume 4: Base IA-32 Instruction Reference

FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in
the destination location. The destination operand is always an FPU data register; the
source operand can be a register or a memory location. Source operands in memory
can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register
from the ST(1) register and stores the result in ST(1). The one-operand version
subtracts the contents of a memory location (either a real or an integer value) from the
contents of the ST(0) register and stores the result in ST(0). The two-operand version,
subtracts the contents of the ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point subtract instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather
than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the SRC value is subtracted from the DEST value (DEST  SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward  mode, in which case the result is 0. This instruction also
guarantees that +0  (0) = +0, and that 0  (+0) = 0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is , the result is  of the expected sign. If both operands are  of
the same sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register
stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Volume 4: Base IA-32 Instruction Reference 4:183

FSUB/FSUBP/FISUB—Subtract (Continued)

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB
THEN

DEST  DEST  ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST  DEST  SRC;
FI;
IF instruction = FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Table 2-9. FSUB Zeros and NaNs

SRC

 F or I 0 +0 +F or +I + NaN

 *      NaN

F + F or 0 DEST DEST F  NaN

DEST 0 + SRC 0 0 SRC  NaN

+0 + SRC +0 0 SRC  NaN

+F + +F DEST DEST F or 0  NaN

+ + + + + + * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:184 Volume 4: Base IA-32 Instruction Reference

FSUB/FSUBP/FISUB—Subtract (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:185

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in
the destination location. The destination operand is always an FPU register; the source
operand can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register
from the ST(0) register and stores the result in ST(1). The one-operand version
subtracts the contents of the ST(0) register from the contents of a memory location
(either a real or an integer value) and stores the result in ST(0). The two-operand
version, subtracts the contents of the ST(i) register from the ST(0) register or vice
versa.

The FSUBRP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point reverse subtract instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR
rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the DEST value is subtracted from the SRC value (SRC  DEST = result).

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0)and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop register
stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

4:186 Volume 4: Base IA-32 Instruction Reference

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward  mode, in which case the result is 0. This instruction also
guarantees that +0  (0) = +0, and that 0  (+0) = 0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is , the result is  of the expected sign. If both operands are  of
the same sign, an invalid-operation exception is generated.

Notes:
Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN

DEST  ConvertExtendedReal(SRC)  DEST;
ELSE (* source operand is real number *)

DEST  SRC  DEST;
FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Table 2-10. FSUBR Zeros and NaNs

SRC

 F 0 +0 +F + NaN

 * + + + + + NaN

DEST F or I  F or 0 DEST DEST +F + NaN

0  SRC 0 +0 SRC + NaN

+0  SRC 0 0 SRC + NaN

+F or +I  F DEST DEST F or 0 + NaN

+      * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Volume 4: Base IA-32 Instruction Reference 4:187

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:188 Volume 4: Base IA-32 Instruction Reference

FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0,
C2, and C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared (see “FXAM—Examine” on
page 4:193). If the value in register ST(0) is a NaN or is in an undefined format, the
condition flags are set to “unordered.”)

The sign of zero is ignored, so that -0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0  111;
ST(0) > 0.0: C3, C2, C0  000;
ST(0) < 0.0: C3, C2, C0  001;
ST(0) = 0.0: C3, C2, C0  100;

ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0) 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1

Volume 4: Base IA-32 Instruction Reference 4:189

FTST—TEST (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:190 Volume 4: Base IA-32 Instruction Reference

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets
condition code flags C0, C2, and C3 in the FPU status word according to the results (see
the table below). If no operand is specified, the contents of registers ST(0) and ST(1)
are compared. The sign of zero is ignored, so that -0.0 = +0.0.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” on page 4:193). The FUCOM instructions perform the same
operation as the FCOM instructions. The only difference is that the FUCOM instruction
raises the invalid-arithmetic-operand exception (#IA) only when either or both
operands is an SNaN or is in an unsupported format; QNaNs cause the condition code
flags to be set to unordered, but do not cause an exception to be generated. The FCOM
instruction raises an invalid-operation exception when either or both of the operands is
a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand
exception being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and
the FUCOMPP instructions pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0  000;
ST < SRC: C3, C2, C0  001;
ST = SRC: C3, C2, C0  100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordereda

a. Flags not set if unmasked invalid-arithmetic- operand
(#IA) exception is generated.

1 1 1

Volume 4: Base IA-32 Instruction Reference 4:191

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real (Continued)

THEN
C3, C2, C0  111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0  111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported
formats. Detection of a QNaN value in and of itself does not raise an
invalid-operand exception.

#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

4:192 Volume 4: Base IA-32 Instruction Reference

FWAIT—Wait

See entry for WAIT.

Volume 4: Base IA-32 Instruction Reference 4:193

FXAM—Examine

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2,
and C3 in the FPU status word to indicate the class of value or number in the register
(see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is
empty or full.

Operation

C1  sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0  000;
NaN: C3, C2, C0  001;
Normal: C3, C2, C0  010;
Infinity: C3, C2, C0  011;
Zero: C3, C2, C0  100;
Empty: C3, C2, C0  101;
Denormal: C3, C2, C0  110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0

4:194 Volume 4: Base IA-32 Instruction Reference

FXAM—Examine (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:195

FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified,
the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to
the top of the stack [ST(0)], so that they can be operated on by those floating-point
instructions that can only operate on values in ST(0). For example, the following
instruction sequence takes the square root of the third register from the top of the
register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

Operation

IF number-of-operands is 1
THEN

temp  ST(0);
ST(0)  SRC;
SRC  temp;

ELSE
temp  ST(0);
ST(0)  ST(1);
ST(1)  temp;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)

4:196 Volume 4: Base IA-32 Instruction Reference

FXCH—Exchange Register Contents (Continued)

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:197

FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand,
stores the exponent in ST(0), and pushes the significand onto the register stack.
Following this operation, the new top-of-stack register ST(0) contains the value of the
original significand expressed as a real number. The sign and significand of this value
are the same as those found in the source operand, and the exponent is 3FFFH (biased
value for a true exponent of zero). The ST(1) register contains the value of the original
operand’s true (unbiased) exponent expressed as a real number. (The operation
performed by this instruction is a superset of the IEEE-recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range
scaling operations. The FXTRACT instruction is also useful for converting numbers in
extended-real format to decimal representations (e.g. for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is
zero, an exponent value of - is stored in register ST(1) and 0 with the sign of the
source operand is stored in register ST(0).

Operation

TEMP  Significand(ST(0));
ST(0)  Exponent(ST(0));
TOP TOP  1;
ST(0)  TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.

C0, C2, C3 Undefined.

Floating-point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is 0.

#D Source operand is a denormal value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand, store
exponent in ST(0), and push the significand onto the register
stack.

4:198 Volume 4: Base IA-32 Instruction Reference

FXTRACT—Extract Exponent and Significand (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:199

FYL2X—Compute y  log2x

Description

Calculates (ST(1)  log2 (ST(0))), stores the result in resister ST(1), and pops the FPU
register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains 0, the
instruction returns  with a sign that is the opposite of the sign of the source operand in
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the
calculation of logarithms with an arbitrary positive base (b):

logbx = (log2b)-1 log2x

Operation

ST(1)  ST(1) log2ST(0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) log2ST(0)) and pop the register
stack

Table 2-11. FYL2X Zeros and NaNs

ST(0)

 F 0 0 F + NaN

 * * + + +  NaN

ST(1) F * * ** ** F  NaN

0 * * * * 0 * NaN

0 * * * * 0 * NaN

F * * ** ** F + NaN

+ * *    + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

4:200 Volume 4: Base IA-32 Instruction Reference

FYL2X—Compute y  log2x (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not 0).

#Z Source operand in register ST(0) is 0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:201

FYL2XP1—Compute y  log2(x +1)

Description

Calculates the log epsilon (ST(1)  log2(ST(0) + 1.0)), stores the result in register
ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the
range:

The source operand in ST(1) can range from  to . If either of the source operands
is outside its acceptable range, the result is undefined and no exception is generated.

The following table shows the results obtained when taking the log epsilon of various
classes of numbers, assuming that underflow does not occur:

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register
ST(0)] that are close to 0. When the epsilon value () is small, more significant digits
can be retained by using the FYL2XP1 instruction than by using (+1) as an argument
to the FYL2X instruction. The (+1) expression is commonly found in compound interest
and annuity calculations. The result can be simply converted into a value in another
logarithm base by including a scale factor in the ST(1) source operand. The following
equation is used to calculate the scale factor for a particular logarithm base, where n is
the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor = logn 2

Operation

ST(1)  ST(1)  log2(ST(0) + 1.0);
PopRegisterStack;

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) log2(ST(0) + 1.0) and pop the
register stack

Table 2-12. FYL2XP1 Zeros and NaNs

ST(0)

 (1 )) to 0 0 0 +0 to +(1 ()) + NaN

 * + * *   NaN

ST(1) F * +F +0 0 F  NaN

0 * +0 +0 0 0 * NaN

0 * 0 0 +0 +0 * NaN

F * F 0 +0 +F + NaN

+ *  * * + + NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1 2 2–  to 1 2 2– –

2 2 2 2

4:202 Volume 4: Base IA-32 Instruction Reference

FYL2XP1—Compute y  log2(x +1) (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Volume 4: Base IA-32 Instruction Reference 4:203

HLT—Halt

Description

Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used
to resume execution after a HLT instruction, the saved instruction pointer (CS:EIP)
points to the instruction following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in
protected or virtual 8086 mode, the privilege level of a program or procedure must to 0
to execute the HLT instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,HALT);

Enter Halt state;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

F4 HLT Halt

4:204 Volume 4: Base IA-32 Instruction Reference

IDIV—Signed Divide

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and
stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a
general-purpose register or a memory location. The action of this instruction depends
on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is
always the same as the sign of the dividend. The absolute value of the remainder is
always less than the absolute value of the divisor. Overflow is indicated with the #DE
(divide error) exception rather than with the OF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp  AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL  temp;
AH  AX SignedModulus SRC;

FI;
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-extension of
AL) by r/m byte. (Results: AL=Quotient, AH=Remainder)

F7 /7 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-extension
of AX) by r/m word. (Results: AX=Quotient, DX=Remainder)

F7 /7 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Table 2-13. IDIV Operands

Operand Size Dividend Divisor Quotient Remainder
Quotient
Range

Word/byte AX r/m8 AL AH 128 to +127

Doubleword/word DX:AX r/m16 AX DX 32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX 231 to 232 1

Volume 4: Base IA-32 Instruction Reference 4:205

IDIV—Signed Divide (Continued)

temp  DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX  temp;
DX  DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp  EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX  temp;
EDX  EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:206 Volume 4: Base IA-32 Instruction Reference

IDIV—Signed Divide (Continued)

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:207

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction.
Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, or EAX register (depending on the operand
size) and the product is stored in the AX, DX:AX, or EDX:EAX registers,
respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a
general-purpose register and the source operand is an immediate value, a
general-purpose register, or a memory location. The product is then stored in the
destination operand location.

• Three-operand form. This form requires a destination operand (the first operand)
and two source operands (the second and the third operands). Here, the first
source operand (which can be a general-purpose register or a memory location) is
multiplied by the second source operand (an immediate value). The product is then
stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the result fits exactly in the lower half of
the result.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX AL  r/m byte

F7 /5 IMUL r/m16 DX:AX  AX  r/m word

F7 /5 IMUL r/m32 EDX:EAX  EAX  r/m doubleword

0F AF /r IMUL r16,r/m16 word register  word register  r/m word

0F AF /r IMUL r32,r/m32 doubleword register  doubleword register  r/m doubleword

6B /r ib IMUL r16,r/m16,imm8 word register  r/m16  sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register  r/m32  sign-extended immediate byte

6B /r ib IMUL r16,imm8 word register  word register  sign-extended immediate byte

6B /r ib IMUL r32,imm8 doubleword register  doubleword register  sign-extended
immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register  r/m16  immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register  r/m32  immediate doubleword

69 /r iw IMUL r16,imm16 word register  r/m16  immediate word

69 /r id IMUL r32,imm32 doubleword register  r/m32  immediate doubleword

4:208 Volume 4: Base IA-32 Instruction Reference

IMUL—Signed Multiply (Continued)

The three forms of the IMUL instruction are similar in that the length of the product is
calculated to twice the length of the operands. With the one-operand form, the product
is stored exactly in the destination. With the two- and three- operand forms, however,
result is truncated to the length of the destination before it is stored in the destination
register. Because of this truncation, the CF or OF flag should be tested to ensure that no
significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because
the lower half of the product is the same regardless if the operands are signed or
unsigned. The CF and OF flags, however, cannot be used to determine if the upper half
of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX  AL  SRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE IF OperandSize = 16

THEN
DX:AX  AX  SRC (* signed multiplication *)
IF ((DX = 0000H) OR (DX = FFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX  EAX  SRC (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp  DEST  SRC (* signed multiplication; temp is double DEST size*)
DEST  DEST  SRC (* signed multiplication *)
IF temp  DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;

ELSE (* NumberOfOperands = 3 *)
DEST  SRC1  SRC2 (* signed multiplication *)
temp SRC1 SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp  DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;
FI;

FI;

Volume 4: Base IA-32 Instruction Reference 4:209

IMUL—Signed Multiply (Continued)

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when
significant bits are carried into the upper half of the result and cleared when the result
fits exactly in the lower half of the result. For the two- and three-operand forms of the
instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination
operand size. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:210 Volume 4: Base IA-32 Instruction Reference

IN—Input from Port

Description

Copies the value from the I/O port specified with the second operand (source operand)
to the destination operand (first operand). The source operand can be a
byte-immediate or the DX register; the destination operand can be register AL, AX, or
EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively).
Using the DX register as a source operand allows I/O port addresses from 0 to 65,535
to be accessed; using a byte immediate allows I/O port addresses 0 to 255 to be
accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports.
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLB in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing IN instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX

EC IN AL,DX Input byte from I/O port in DX into AL

ED IN AX,DX Input word from I/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX

Volume 4: Base IA-32 Instruction Reference 4:211

IN—Input from Port (Continued)

ELSE (* Real-address mode or protected mode with CPL  IOPL *)
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)

FI;

IF (Itanium_System_Environment THEN
SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST  [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <-SRC;
memory-fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

4:212 Volume 4: Base IA-32 Instruction Reference

INC—Increment by 1

Description

Adds 1 to the operand, while preserving the state of the CF flag. The source operand
can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate
operand of 1 to perform a increment operation that does updates the CF flag.)

Operation

DEST  DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1

Volume 4: Base IA-32 Instruction Reference 4:213

INC—Increment by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:214 Volume 4: Base IA-32 Instruction Reference

INS/INSB/INSW/INSD—Input from Port to String

Description

Copies the data from the I/O port specified with the second operand (source operand)
to the destination operand (first operand). The source operand must be the DX register,
allowing I/O port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit
I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O
port, the operand-size attribute determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the
operand-size attribute is 16, the DI register is used as the destination-index register.)
The ES segment cannot be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and
doubleword versions of the INS instructions. (For the INS instruction, “ES:EDI” must be
explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the I/O port to the memory
location, the EDI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is
incremented; if the DF flag is 1, the EDI register is decremented.) The EDI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4
for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI

6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:215

INS/INSB/INSW/INSD—Input from Port to String (Continued)

If the referenced I/O port is mapped to an unimplemented virtual address (via
the IOBase register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing INS instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* I/O operation is allowed *)

FI;
IF (Itanium_System_Environment) THEN

SRC_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST  [SRC_PA]; (* Reads from I/O port *)

FI;

memory_fence();
DEST <- SRC;
memory_fence();

IF (byte transfer)
THEN IF DF = 0

THEN (E)DI  1;
ELSE (E)DI  -1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN DI  2;
ELSE DI  -2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN EDI  4;
ELSE EDI  -4;

FI;
FI;

FI;
FI;

Flags Affected

None.

4:216 Volume 4: Base IA-32 Instruction Reference

INS/INSB/INSW/INSD—Input from Port to String (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:217

INTn/INTO/INT3—Call to Interrupt Procedure

Description

The INTn instruction generates a call to the interrupt or exception handler specified
with the destination operand. The destination operand specifies an interrupt vector
from 0 to 255, encoded as an 8-bit unsigned intermediate value. The first 32 interrupt
vectors are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.

The INTn instruction is the general mnemonic for executing a software-generated call
to an interrupt handler. The INTO instruction is a special mnemonic for calling overflow
exception (#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the
EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT3 instruction is a special mnemonic for calling the debug exception handler. The
action of the INT3 instruction (opcode CC) is slightly different from the operation of the
INT 3 instruction (opcode CC03), as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled
by a protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without
faulting at any IOPL level.

The action of the INTn instruction (including the INTO and INT3 instructions) is similar
to that of a far call made with the CALL instruction. The primary difference is that with
the INTn instruction, the EFLAGS register is pushed onto the stack before the return
address. (The return address is a far address consisting of the current values of the CS
and EIP registers.) Returns from interrupt procedures are handled with the IRET
instruction, which pops the EFLAGS information and return address from the stack.

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn
contains a pointer to an interrupt or exception handler procedure. In protected mode,
the IDT contains an array of 8-byte descriptors, each of which points to an interrupt
gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far
pointers (2-byte code segment selector and a 2-byte instruction pointer), each of which
point directly to procedure in the selected segment.

The following decision table indicates which action in the lower portion of the table is
taken given the conditions in the upper portion of the table. Each Y in the lower section
of the decision table represents a procedure defined in the “Operation” section for this
instruction (except #GP).

Opcode Instruction Description

CC INT3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector numbered by immediate byte

CE INTO Interrupt 4—if overflow flag is 1

4:218 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Notes:
 Don't Care
Y Yes, Action Taken
BlankAction Not Taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action
of the INTn instruction. If the IOPL is less than 3, the processor generates a general
protection exception (#GP); if the IOPL is 3, the processor executes a protected mode
interrupt to privilege level 0. The interrupt gate's DPL must be set to three and the
target CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit
of the IDT. The initial base address value of the IDTR after the processor is powered up
or reset is 0.

Operation

The following operational description applies not only to the INTn and INTO
instructions, but also to external interrupts and exceptions.

IF Itanium System EnvironmentTHEN

IF INT3 Form THEN IA_32_Exception(3);

IF INTO Form THEN IA_32_Exception(4);

IF INT Form THEN IA-32_Interrupt(N);

FI;

Table 2-14. INT Cases

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-G
ATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL
-INTERRUPT

Y

INTRA-PRIVILEGE-LEVE
L-INTERRUPT

Y

INTERRUPT-FROM-VIRT
UAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

Volume 4: Base IA-32 Instruction Reference 4:219

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

/*IN the Itanium System Environment all of the following operations are intercepted*/

IF PE=0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 *)

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE:
IF ((DEST  4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF  0; (* Clear interrupt flag *)
TF  0; (* Clear trap flag *)
AC  0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS  IDT(Descriptor (vector  4), selector));
EIP  IDT(Descriptor (vector  4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST  8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST  8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;
IF software interrupt (* generated by INTn, INT3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector number  8) + 2);
(* PE=1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector number  8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;

4:220 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

IF TSS not present
THEN #NP(TSS selector);

FI;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of two bytes

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL  CPL

THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPLCPL, VM=0 *)

ELSE (* VM=1 *)
IF code segment DPL  0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPLCPL, VM=1 *)

FI;
ELSE (* PE=1, interrupt or trap gate, DPL  CPL *)

IF VM=1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;

Volume 4: Base IA-32 Instruction Reference 4:221

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

FI;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT

(* PE=1, interrupt or trap gate, non-conforming code segment, DPLCPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress + 4;
NewESP  stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
NewESP  TSSstackAddress;
NewSS  TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL  DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL  DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP  TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP  Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP  Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);

4:222 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL  CodeSegmentDescriptor(DPL);
CS(RPL)  CPL;
IF interrupt gate

THEN IF  0 (* interrupt flag to 0 (disabled) *); FI;
TF  0;
VM  0;
RF  0;
NT  0;

I END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress  new code segment (DPL  8) + 4
IF (TSSstackAddress + 7)  TSS limit

THEN #TS(current TSS selector); FI;
NewSS  TSSstackAddress + 4;
NewESP  stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress  new code segment (DPL  4) + 2
IF (TSSstackAddress + 4)  TSS limit

THEN #TS(current TSS selector); FI;
NewESP  TSSstackAddress;
NewSS  TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL  DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL  DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed)

Volume 4: Base IA-32 Instruction Reference 4:223

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;

IF CR4.VME = 0
THEN

IF IOPL=3
THEN

IF Gate DPL = 3
THEN (*CPL=3, VM=1, IOPL=3, VME=0, gate DPL=3)

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERURPT_TO_PRIV0;

FI;
ELSE (*Gate DPL < 3*)

#GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
ELSE (*VME = 1*)

(*Check whether interrupt is directed for INT n instruction only,
(*executes virtual 8086 interupt, protected mode interrupt or faults*)
Ptr <- [TSS + 66]; (*Fetch IO permission bitmpa pointer*)
IF BIT[Ptr-32,N] = 0 (*software redirection bitmap is 32 bytes below IO

Permission*)
THEN (*Interrupt redirected*)

Goto VM86_INTERRUPT_TO_VM86;
ELSE

IF IOPL = 3
THEN

IF Gate DPL = 3
THEN

IF Target CPL != 0
THEN #GP(0);
ELSE Goto VM86_INTERRUPT_TO_PRIV0;
FI;

ELSE #GP(0);
FI;

ELSE (*IOPL < 3*)
#GP(0);

FI;
FI;

FI;
END;

VM86_INTERRUPT_TO_PRIV0:
tempEFLAGS  EFLAGS;
VM  0;

4:224 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

TF  0;
RF  0;
IF service through interrupt gate THEN IF  0; FI;
TempSS  SS;
TempESP  ESP;
SS:ESP  TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS  0; (*segment registers nullified, invalid in protected mode *)
FS  0;
DS  0;
ES  0;
CS  Gate(CS);
IF OperandSize=32

THEN
EIP  Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP  Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

VM86_INTERRUPT_TO_VM86:
IF IOPL = 3

THEN
push(FLAGS OR 3000H); (*Push FLAGS w/ IOPL bits as 11B or IOPL 3*)
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 7CD5H; (*Clear TF and IF in EFLAGS like 8086*)

ELSE
TempFlags <- FLAGS OR 3000H; (*Set IOPL to 11B or IOPL 3*)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);
push(CS);
push(IP);
CS <- [N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 77ED5H; (*Clear VIF and TF and IF in EFLAGS like 8086*)

FI;
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

Volume 4: Base IA-32 Instruction Reference 4:225

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP  Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP  Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL)  CPL;
IF interrupt gate

THEN
IF  0; FI;
TF  0;
NT  0;
VM  0;
RF  0;

FI;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction
is executed (see “Operation” section.)

Additional Itanium System Environment Exceptions

IA_32_Exception If INT3 or INTO form, vector numbers are 3 and 4 respectively.

IA-32_Interrupt If INT n form, vector number is N.

4:226 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, or stack segment
pointer exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the interrupt vector is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment when a stack switch
occurs.

Volume 4: Base IA-32 Instruction Reference 4:227

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Virtual 8086 Mode Exceptions

#GP(0) (For INTn instruction) If the IOPL is less than 3 and the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTn instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment
is not equal to the DPL of the code segment descriptor for the
interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

4:228 Volume 4: Base IA-32 Instruction Reference

INVD—Invalidate Internal Caches

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus
cycle that directs external caches to also flush themselves. Data held in internal caches
is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches to
complete their flushing operation before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

Use this instruction with care. Data cached internally and not written back to main
memory will be lost. Unless there is a specific requirement or benefit to flushing caches
without writing back modified cache lines (for example, testing or fault recovery where
cache coherency with main memory is not a concern), software should use the WBINVD
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVD);

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

Opcode Instruction Description

0F 08 INVD Flush internal caches; initiate flushing of external caches.

Volume 4: Base IA-32 Instruction Reference 4:229

INVD—Invalidate Internal Caches (Continued)

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

4:230 Volume 4: Base IA-32 Instruction Reference

INVLPG—Invalidate TLB Entry

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the
source operand. The source operand is a memory address. The processor determines
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page;
however, in some cases, it flushes the entire TLB.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVLPG);

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual 8086
mode.

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

Opcode Instruction Description

0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m

Volume 4: Base IA-32 Instruction Reference 4:231

IRET/IRETD—Interrupt Return

Description

Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt or, a
software-generated interrupt, or returns from a nested task. IRET and IRETD are
mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is
intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand
sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT
(nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image
stored on the current stack. Depending on the setting of these flags, the processor
performs the following types of interrupt returns:

• Real Mode.

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

Return from nested task (task switch)

All forms of IRET result in an IA-32_Intercept(Inst,IRET) in the Itanium
System Environment.

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being returned
to must be equally or less privileged than the interrupt handler routine (as indicated by
the RPL field of the code segment selector popped from the stack). As with a
real-address mode interrupt return, the IRET instruction pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure. If the return is to another privilege level, the IRET instruction
also pops the stack pointer and SS from the stack, before resuming program execution.
If the return is to virtual-8086 mode, the processor also pops the data segment
registers from the stack.

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)

4:232 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

If the NT flag is set, the IRET instruction performs a return from a nested task (switches
from the called task back to the calling task) or reverses the operation of an interrupt
or exception that caused a task switch. The updated state of the task executing the
IRET instruction is saved in its TSS. If the task is reentered later, the code that follows
the IRET instruction is executed.

IRET performs an instruction serialization and a memory fence operation.

Operation

IF(Itanium System Environment)
THEN IA-32_Intercept(Inst,IRET);

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE:;
ELSE

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
tempEFLAGS  Pop();
EFLAGS  (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
EFLAGS[15:0]  Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits

Volume 4: Base IA-32 Instruction Reference 4:233

IRET/IRETD—Interrupt Return (Continued)

THEN #SS(0)
FI;
tempEIP  Pop();
tempCS  Pop();
tempEFLAGS  Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0);
FI;
tempEIP  Pop();
tempCS  Pop();
tempEFLAGS  Pop();
tempEIP  tempEIP AND FFFFH;
tempEFLAGS  tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF CR4.VME = 0
THEN

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS  Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
EFLAGS[15:0]  Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

FI;
ELSE (*VME is 1*)

IF IOPL = 3
THEN

IF OperandSize = 32

4:234 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
TempEFlags  Pop();
FLAGS = (EFLAGS AND 1B3000H) OR (TempEFlags AND 244FD7H)
(*VM,IOPL,RF,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
TempFlags <- Pop();
FLAGS = (FLAGS AND 3000H) OR (TempFLags AND 4FD5H)
(*IOPL unmodified*)

FI;
ELSE (*IOPL < 3*)

IF OperandSize = 16
THEN

IF ((STACK.TF !-0) OR (EFLAGS.VIP=1 AND STACK.IF=1))
THEN #GP(0);
ELSE

IP <- Pop(); (*Word Pops*)
CS <- Pop(0);
TempFlags <- Pop();
(*FLAGS IOPL, IF and TF are not modified*)
FLAGS = (FLAGS AND 3302H) OR (TempFlags AND 4CD5H)
EFLAGS.VIF <- TempFlags.IF;

FI;
ELSE (*OperandSize = 32 *)

#GP(0);
FI;

FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);

FI;
IF instruction pointer not within code segment limits

THEN #GP(0);
FI;
CS  tempCS;
EIP  tempEIP;
EFLAGS  tempEFLAGS
TempESP  Pop();
TempSS  Pop();
ES  Pop(); (* pop 2 words; throw away high-order word *)
DS  Pop(); (* pop 2 words; throw away high-order word *)
FS  Pop(); (* pop 2 words; throw away high-order word *)
GS  Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP  TempSS:TempESP;

Volume 4: Base IA-32 Instruction Reference 4:235

IRET/IRETD—Interrupt Return (Continued)

(* Resume execution in Virtual 8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;
CS  tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID)  tempEFLAGS;

FI;
IF CPL  IOPL

THEN
EFLAGS(IF)  tempEFLAGS;

FI;

4:236 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

IF CPL = 0
THEN

EFLAGS(IOPL)  tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP)  tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:

IF OperandSize=32
THEN

IF top 8 bytes on stack are not within limits THEN #SS(0); FI;
ELSE (* OperandSize=16 *)

IF top 4 bytes on stack are not within limits THEN #SS(0); FI;
FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector

IF stack segment selector RPL  RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL  RPL of the return code segment selector

THEN #GP(SS selector);
FI;
IF stack segment is not present THEN #NP(SS selector); FI;

IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP  tempEIP;
CS  tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID)  tempEFLAGS;

FI;
IF CPO  IOPL

THEN
EFLAGS(IF)  tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL)  tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP)  tempEFLAGS;
FI;

FI;
CPL  RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment

Volume 4: Base IA-32 Instruction Reference 4:237

IRET/IRETD—Interrupt Return (Continued)

AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)

SegmentSelector  0; (* null segment selector *)
FI;

OD;
END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Instruction Intercept Trap for ALL forms of IRET.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return
code segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL
of the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the
return code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the segment descriptor for a code segment does not indicate it is
a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.

4:238 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:239

Jcc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=OF)

7C cb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 Jump short if not carry (CF=0)

75 cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF)

7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75 cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

4:240 Volume 4: Base IA-32 Instruction Reference

Jcc—Jump if Condition Is Met (Continued)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. A condition code (cc) is
associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the
instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally specified as a label in assembly code, but at the machine code
level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the
instruction pointer. Instruction coding is most efficient for offsets of -128 to +127. If
the operand-size attribute is 16, the upper two bytes of the EIP register are cleared to
0s, resulting in a maximum instruction pointer size of 16 bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Opcode Instruction Description

0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:241

Jcc—Jump if Condition Is Met (Continued)

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if
above) instruction and the JNBE (jump if not below or equal) instruction are alternate
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When
the target for the conditional jump is in a different segment, use the opposite condition
from the condition being tested for the Jcc instruction, and then access the target with
an unconditional far jump (JMP instruction) to the other segment. For example, the
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do
not check the status flags. Instead they check the contents of the ECX and CX registers,
respectively, for 0. These instructions are useful at the beginning of a conditional loop
that terminates with a conditional loop instruction (such as LOOPNE). They prevent
entering the loop when the ECX or CX register is equal to 0, which would cause the loop
to execute 232 or 64K times, respectively, instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines,
regardless of jump address or cacheability.

Operation

IF condition
THEN

 EIP  EIP + SignExtend(DEST);
IF OperandSize = 16

THEN
EIP  EIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

4:242 Volume 4: Base IA-32 Instruction Reference

Jcc—Jump if Condition Is Met (Continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment
or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment
or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

Volume 4: Base IA-32 Instruction Reference 4:243

JMP—Jump

Description

Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address of
the instruction being jumped to. This operand can be an immediate value, a
general-purpose register, or a memory location.

• Near jump – A jump to an instruction within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment call.

• Far jump – A jump to an instruction located in a different segment than the current
code segment, sometimes referred to as an intersegment call.

• Task switch – A jump to an instruction located in a different task. (This is a form of
a far jump.) Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

A task switch can only be executed in protected mode (see Chapter 6 in the Intel
Architecture Software Developer’s Manual, Volume 3 for information on task switching
with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current
code segment) that is specified with the target operand. The target operand specifies
either an absolute address (that is an offset from the base of the code segment) or a
relative offset (a signed offset relative to the current value of the instruction pointer in
the EIP register). An absolute address is specified directly in a register or indirectly in a
memory location (r/m16 or r/m32 operand form). A relative offset (rel8, rel16, or
rel32) is generally specified as a label in assembly code, but at the machine code level,
it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the value
in the EIP register (that is, to the instruction following the JMP instruction). The
operand-size attribute determines the size of the target operand (16 or 32 bits) for
absolute addresses. Absolute addresses are loaded directly into the EIP register. When
a relative offset is specified, it is added to the value of the EIP register. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0s,
resulting in a maximum instruction pointer size of 16 bits. The CS register is not
changed on near jumps.

Opcode Instruction Description

EB cb JMP rel8 Jump near, relative address

E9 cw JMP rel16 Jump near, relative address

E9 cd JMP rel32 Jump near, relative address

FF /4 JMP r/m16 Jump near, indirect address

FF /4 JMP r/m32 Jump near, indirect address

EA cd JMP ptr16:16 Jump far, absolute address

EA cp JMP ptr16:32 Jump far, absolute address

FF /5 JMP m16:16 Jump far, indirect address

FF /5 JMP m16:32 Jump far, indirect address

4:244 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

When executing a far jump, the processor jumps to the code segment and address
specified with the target operand. Here the target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to 0s.

When the processor is operating in protected mode, a far jump can also be used to
access a code segment through a call gate or to switch tasks. Here, the processor uses
the segment selector part of the far address to access the segment descriptor for the
segment being jumped to. Depending on the value of the type and access rights
information in the segment selector, the JMP instruction can perform:

• A far jump to a conforming or non-conforming code segment (same mechanism as
the far jump described in the previous paragraph, except that the processor checks
the access rights of the code segment being jumped to).

• An far jump through a call gate.

• A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the
target operand identifies the call gate. (The offset part of the target operand is
ignored.) The processor then jumps to the code segment specified in the call gate
descriptor and begins executing the instruction at the offset specified in the gate. No
stack switch occurs. Here again, the target operand can specify the far address of the
call gate and instruction either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is similar to executing a jump through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to. (The offset part of the target operand is ignored). The task
gate in turn points to the TSS for the task, which contains the segment selectors for the
task’s code, data, and stack segments and the instruction pointer to the target
instruction. One form of the JMP instruction allows the jump to be made directly to a
TSS, without going through a task gate. See Chapter 13 in Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Volume 4: Base IA-32 Instruction Reference 4:245

JMP—Jump (Continued)

Operation

IF near jump
THEN IF near relative jump

THEN
tempEIP  EIP + DEST; (* EIP is instruction following JMP instruction*)

ELSE (* near absolute jump *)
tempEIP  DEST;

FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP  tempEIP;

ELSE (* OperandSize=16 *)
EIP  tempEIP AND 0000FFFFH;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN

tempEIP  DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS  DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP  tempEIP; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
EIP  tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);

FI;

4:246 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP  DEST(offset);
IF OperandSize=16

THEN tempEIP  tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL  CPL) THEN #GP(code segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP  DEST(offset);
IF OperandSize=16

THEN tempEIP  tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

CALL-GATE:

IF call gate DPL < CPL
OR call gate DPL < call gate segment-selector RPL

THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL  CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP  DEST(offset);
IF GateSize=16

THEN tempEIP  tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS  DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL)  CPL
EIP  tempEIP;

Volume 4: Base IA-32 Instruction Reference 4:247

JMP—Jump (Continued)

END;

TASK-GATE:
IF task gate DPL < CPL

OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
IF Itanium System Environment THENIA-32_Intercept(Gate,JMP);
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Gate Intercept for JMP through CALL Gates, Task Gates and Task
Segments

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code
segment limits.

If the segment selector in the destination operand, call gate, task
gate, or TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

4:248 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment
selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s
segment selector.

If the segment descriptor for selector in a call gate does not indicate
it is a code segment.

If the segment descriptor for the segment selector in a task gate
does not indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made. (Only occurs when fetching target from memory.)

Volume 4: Base IA-32 Instruction Reference 4:249

JMPE—Jump to Intel® Itanium® Instruction Set

Description

This instruction is available only on processors based on the Itanium architecture in the
Itanium System Environment. Otherwise, execution of this instruction at privilege levels
1, 2, and 3 results in an Illegal Opcode fault, and at privilege level 0, termination of the
IA-32 System Environment on a processor based on the Itanium architecture.

JMPE switches the processor to the Itanium instruction set and starts execution at the
specified target address There are two forms; an indirect form, r/mr16/32, and an
unsigned absolute form, disp16/32. Both 16 and 32-bit formats are supported.

The absolute form computes the 16-byte aligned 64-bit virtual target address in the
Itanium instruction set by adding the unsigned 16 or 32-bit displacement to the current
CS base (IP{31:0} = disp16/32 + CSD.base). The indirect form specifies the virtual
target address by the contents of a register or memory location (IP{31:0} =
[r/m16/32] + CSD.base). Target addresses are constrained to the lower 4G-bytes of
the 64-bit virtual address space within virtual region 0.

GR[1] is loaded with the next sequential instruction address following JMPE.

If PSR.di is 1, the instruction is nullified and a Disabled Instruction Set Transition fault is
generated. If Itanium branch debugging is enabled, an IA_32_Exception(Debug)
trap is taken after JMPE completes execution.

JMPE can be performed at any privilege level and does not change the privilege level of
the processor.

JMPE performs a FWAIT operation, any pending IA-32 unmasked floating-point
exceptions are reported as faults on the JMPE instruction.

JMPE does not perform a memory fence or serialization operation.

Successful execution of JMPE clears EFLAG.rf and PSR.id to zero.

If the register stack engine is enabled for eager execution, the register stack engine
may immediately start loading registers when the processor enters the Itanium
instruction set.

Opcode Instruction Description

0F 00 /6 JMPE r/m16 Jump to Intel Itanium instruction set, indirect address specified by
r/m16

0F 00 /6 JMPE r/m32 Jump to Intel Itanium instruction set, indirect address specified by
r/m32

0F B8 JMPE disp16 Jump to Intel Itanium instruction set, absolute address specified by
addr16

0F B8 JMPE disp32 Jump to Intel Itanium instruction set, absolute address specified by
addr32

4:250 Volume 4: Base IA-32 Instruction Reference

JMPE—Jump to Intel® Itanium® Instruction Set (Continued)

Operation

IF(NOT Itanium System Environment) {
IF (PSR.cpl==0) Terminate_IA-32_System_Env();
ELSE IA_32_Exception(IllegalOpcode);

} ELSE IF(PSR.di==1) {

Disabled_Instruction_Set_Transition_Fault();

} ELSE IF(pending_numeric_exceptions()) {

IA_32_exception(FPError);

} ELSE {

IF(absolute_form) { //compute virtual target
IP{31:0} = disp16/32 + AR[CSD].base;//disp is 16/32-bit unsigned value

} ELSE IF(indirect_form) {

IP{31:0} = [r/m16/32] + AR[CSD].base;

}

PSR.is = 0; //set Itanium Instruction Set bit

IP{3:0}= 0; //Force 16-byte alignment

IP{63:32} = 0; //zero extend from 32-bits to 64-bits

GR[1]{31:0} = EIP + AR[CSD].base; //next sequential instruction address

GR[1]{63:32} = 0;

PSR.id = EFLAG.rf = 0;

IF (PSR.tb) //taken branch trap
IA_32_Exception(Debug);

}

Flags Affected

None (other than EFLAG.rf)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Fault.

Disabled ISA Disabled Instruction Set Transition Fault, if PSR.di is 1

IA_32_Exception Floating-point Error, if any floating-point exceptions are pending

IA_32_Exception Taken Branch trap, if PSR.tb is 1.

IA-32 System Environment Exceptions (All Operating Modes)

#UD JMPE raises an invalid opcode exception at privilege levels 1, 2 and
3. Privilege level 0 results in termination of the IA-32 System
Environment on a processor based on the Itanium architecture.

Volume 4: Base IA-32 Instruction Reference 4:251

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF,
and CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in
the AH register as shown in the “Operation” below.

Operation

AH  EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)

4:252 Volume 4: Base IA-32 Instruction Reference

LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. The
destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can preform additional checks on the access rights
information.

When the operand size is 32 bits, the access rights for a segment descriptor comprise
the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in
the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword
is masked by 00FXFF00H before it is loaded into the destination operand. When the
operand size is 16 bits, the access rights comprise the type and DPL fields. Here, the
two lower-order bytes of the doubleword are masked by FF00H before being loaded into
the destination operand.

This instruction performs the following checks before it loads the access rights in the
destination register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16  r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32  r/m32 masked by 00FxFF00H

Volume 4: Base IA-32 Instruction Reference 4:253

LAR—Load Access Rights Byte (Continued)

Operation
IF SRC(Offset) > descriptor table limit THEN ZF  0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF  0

ELSE
IF OperandSize = 32

THEN
DEST  [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST  [SRC] AND FF00H;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is
cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Table 2-15. LAR Descriptor Validity

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

4:254 Volume 4: Base IA-32 Instruction Reference

LAR—Load Access Rights Byte (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions

#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:255

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Load a far pointer (segment selector and offset) from the second operand (source
operand) into a segment register and the first operand (destination operand). The
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The
instruction opcode and the destination operand specify a segment
register/general-purpose register pair. The 16-bit segment selector from the source
operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from
the segment descriptor pointed to by the segment selector in the source operand is
loaded in the hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into
DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent
reference to a segment whose corresponding segment register is loaded with a null
selector, causes a general-protection exception (#GP) and no memory reference to the
segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded

THEN IF SegementSelector = null
THEN #GP(0);

FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL  CPL
OR Access rights indicate nonwritable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
ELSE IF Segment marked not present

THEN #SS(selector);
FI;
SS  SegmentSelector(SRC);

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

4:256 Volume 4: Base IA-32 Instruction Reference

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

SS  SegmentDescriptor([SRC]);
ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector

THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister  SegmentSelector(SRC) AND RPL;
SegmentRegister  SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister  NullSelector;
SegmentRegister(DescriptorValidBit)  0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS  SegmentSelector(SRC);

FI;
DEST  Offset(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table limits,
the segment selector RPL is not equal to CPL, the segment is a
nonwritable data segment, or DPL is not equal to CPL.

Volume 4: Base IA-32 Instruction Reference 4:257

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

If the DS, ES, FS, or GS register is being loaded with a non-null
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the segment is
neither a data nor a readable code segment, or the segment is a
data or nonconforming-code segment and both RPL and CPL are
greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment is marked not
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:258 Volume 4: Base IA-32 Instruction Reference

LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores
it in the first operand (destination operand). The source operand is a memory address
(offset part) specified with one of the processors addressing modes; the destination
operand is a general-purpose register. The address-size and operand-size attributes
affect the action performed by this instruction, as shown in the following table. The
operand-size attribute of the instruction is determined by the chosen register; the
address-size attribute is determined by the attribute of the code segment.

Different assemblers may use different algorithms based on the size attribute and
symbolic reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN

DEST  EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32

THEN
temp  EffectiveAddress(SRC); (* 32-bit address *)
DEST  temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp  EffectiveAddress(SRC); (* 16-bit address *)
DEST  ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN

DEST  EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

Table 2-16. LEA Address and Operand Sizes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit
register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address
are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is
zero-extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

Volume 4: Base IA-32 Instruction Reference 4:259

LEA—Load Effective Address (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

4:260 Volume 4: Base IA-32 Instruction Reference

LEAVE—High Level Procedure Exit

Description

Executes a return from a procedure or group of nested procedures established by an
earlier ENTER instruction. The instruction copies the frame pointer (in the EBP register)
into the stack pointer register (ESP), releasing the stack space used by a procedure for
its local variables. The old frame pointer (the frame pointer for the calling procedure
that issued the ENTER instruction) is then popped from the stack into the EBP register,
restoring the calling procedure’s frame.

A RET instruction is commonly executed following a LEAVE instruction to return
program control to the calling procedure and remove any arguments pushed onto the
stack by the procedure being returned from.

Operation

IF StackAddressSize = 32
THEN

ESP  EBP;
ELSE (* StackAddressSize = 16*)

SP  BP;
FI;
IF OperandSize = 32

THEN
EBP  Pop();

ELSE (* OperandSize = 16*)
BP  Pop();

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of
the current stack segment.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP

Volume 4: Base IA-32 Instruction Reference 4:261

LEAVE—High Level Procedure Exit (Continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective
address space from 0 to 0FFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective
address space from 0 to 0FFFFH.

4:262 Volume 4: Base IA-32 Instruction Reference

LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:263

LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:264 Volume 4: Base IA-32 Instruction Reference

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description

Loads the values in the source operand into the global descriptor table register (GDTR)
or the interrupt descriptor table register (IDTR). The source operand is a pointer to 6
bytes of data in memory that contains the base address (a linear address) and the limit
(size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the
6-byte data operand) and a 32-bit base address (upper 4 bytes of the data operand)
are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit limit (lower
2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the
high-order byte of the operand is not used and the high-order byte of the base address
in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are
not used in application programs. They are the only instructions that directly load a
linear address (that is, not a segment-relative address) and a limit in protected mode.
They are commonly executed in real-address mode to allow processor initialization prior
to switching to protected mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,LGDT/LIDT);

IF instruction is LIDT
THEN

IF OperandSize = 16
THEN

IDTR(Limit)  SRC[0:15];
IDTR(Base)  SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit)  SRC[0:15];
IDTR(Base)  SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit)  SRC[0:15];
GDTR(Base)  SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit)  SRC[0:15];
GDTR(Base)  SRC[16:47];

FI;
FI;

Flags Affected

None.

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR

Volume 4: Base IA-32 Instruction Reference 4:265

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register (Continued)

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept for LIDT and LGDT

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

4:266 Volume 4: Base IA-32 Instruction Reference

LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:267

LLDT—Load Local Descriptor Table Register

Description

Loads the source operand into the segment selector field of the local descriptor table
register (LDTR). The source operand (a general-purpose register or a memory location)
contains a segment selector that points to a local descriptor table (LDT). After the
segment selector is loaded in the LDTR, the processor uses to segment selector to
locate the segment descriptor for the LDT in the global descriptor table (GDT). It then
loads the segment limit and base address for the LDT from the segment descriptor into
the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not affected by this
instruction, nor is the LDTR field in the task state segment (TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors
in the LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general
protection exception (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be
used in application programs. Also, this instruction can only be executed in protected
mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LLDT);

IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector)  SRC;
LDTR(SegmentDescriptor)  GDTSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR

4:268 Volume 4: Base IA-32 Instruction Reference

LLDT—Load Local Descriptor Table Register (Continued)

#GP(selector) If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:269

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt
Descriptor Table Register.

4:270 Volume 4: Base IA-32 Instruction Reference

LMSW—Load Machine Status Word

Description

Loads the source operand into the machine status word, bits 0 through 15 of register
CR0. The source operand can be a 16-bit general-purpose register or a memory
location. Only the low-order 4 bits of the source operand (which contains the PE, MP,
EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of
CR0 are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the
processor to switch to protected mode. The PE flag in the CR0 register is a sticky bit.
Once set to 1, the LMSW instruction cannot be used clear this flag and force a switch
back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be
used in application programs. In protected or virtual 8086 mode, it can only be
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on processors more recent than the Intel 286 should use
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LMSW);

CR0[0:3]  SRC[0:3];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0

Volume 4: Base IA-32 Instruction Reference 4:271

LMSW—Load Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

4:272 Volume 4: Base IA-32 Instruction Reference

LOCK—Assert LOCK# Signal Prefix

Description

Causes the processor’s LOCK# signal to be asserted during execution of the
accompanying instruction (turns the instruction into an atomic instruction). In a
multiprocessor environment, the LOCK# signal insures that the processor has exclusive
use of any shared memory while the signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms
of the instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS,
CMPXCHG, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined
opcode exception will be generated if the LOCK prefix is used with any other instruction.
The XCHG instruction always asserts the LOCK# signal regardless of the presence or
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a
read-modify-write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Operation
IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK);

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, the instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of the instruction.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying
instruction

Volume 4: Base IA-32 Instruction Reference 4:273

LOCK—Assert LOCK# Signal Prefix (Continued)

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

4:274 Volume 4: Base IA-32 Instruction Reference

LODS/LODSB/LODSW/LODSD—Load String Operand

Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX
register, respectively. The source operand is a memory location at the address DS:ESI.
(When the operand-size attribute is 16, the SI register is used as the source-index
register.) The DS segment may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and
doubleword versions of the LODS instructions. (For the LODS instruction, “DS:ESI”
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL,
AX, or EAX register, the ESI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
ESI register is incremented; if the DF flag is 1, the ESI register is decremented.) The
ESI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct, because further processing of the data
moved into the register is usually necessary before the next transfer can be made. See
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a
description of the REP prefix.

Operation

IF (byte load)
THEN

AL  SRC; (* byte load *)
THEN IF DF = 0

THEN (E)SI  1;
ELSE (E)SI  -1;

FI;
ELSE IF (word load)

THEN
AX  SRC; (* word load *)

THEN IF DF = 0
THEN SI  2;
ELSE SI  -2;

FI;
ELSE (* doubleword transfer *)

EAX  SRC; (* doubleword load *)

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DS:SI Load word at address DS:SI into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:SI into AX

AD LODSD Load doubleword at address DS:ESI into EAX

Volume 4: Base IA-32 Instruction Reference 4:275

LODS/LODSB/LODSW/LODSD—Load String Operand (Continued)

THEN IF DF = 0
THEN ESI  4;
ELSE ESI  -4;

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:276 Volume 4: Base IA-32 Instruction Reference

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the
LOOP instruction is executed, the count register is decremented, then checked for 0. If
the count is 0, the loop is terminated and program execution continues with the
instruction following the LOOP instruction. If the count is not zero, a near jump is
performed to the destination (target) operand, which is presumably the instruction at
the beginning of the loop. If the address-size attribute is 32 bits, the ECX register is
used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). This offset is generally
specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit immediate value, which is added to the instruction pointer. Offsets of -128
to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the instruction,
a condition code (cc) is associated with each instruction to indicate the condition being
tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF flag;
the ZF flag is changed by other instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Operation

IF AddressSize = 32
THEN

Count is ECX;
ELSE (* AddressSize = 16 *)

Count is CX;
FI;
Count  Count - 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN

IF (ZF =1) AND (Count  0)
THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count  0

E1 cb LOOPE rel8 Decrement count; jump short if count  0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count  0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count  0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count  0 and ZF=0

Volume 4: Base IA-32 Instruction Reference 4:277

LOOP/LOOPcc—Loop According to ECX Counter (Continued)

IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN

IF (ZF =0) AND (Count  0)
THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count  0)

THEN BranchCond  1;
ELSE BranchCond  0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP  EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP  EIP AND 0000FFFFH;
FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

4:278 Volume 4: Base IA-32 Instruction Reference

LSL—Load Segment Limit

Description

Loads the unscrambled segment limit from the segment descriptor specified with the
second operand (source operand) into the first operand (destination operand) and sets
the ZF flag in the EFLAGS register. The source operand (which can be a register or a
memory location) contains the segment selector for the segment descriptor being
accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can compare the segment limit with the offset of a
pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of
byte 6 of the segment descriptor. If the descriptor has a byte granular segment limit
(the granularity flag is set to 0), the destination operand is loaded with a byte granular
value (byte limit). If the descriptor has a page granular segment limit (the granularity
flag is set to 1), the LSL instruction will translate the page granular limit (page limit)
into a byte limit before loading it into the destination operand. The translation is
performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-order 12 bits
with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however,
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the
destination operand.

This instruction performs the following checks before it loads the segment limit into the
destination register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

• Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LSL instruction. The
valid special segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of
the segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16  segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32  segment limit, selector r/m32)

Volume 4: Base IA-32 Instruction Reference 4:279

LSL—Load Segment Limit (Continued)

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF  0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF  0

ELSE
temp SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST  temp;

ELSE (*OperandSize = 16*)
DEST  temp AND FFFFH;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared
to 0.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit trap gate No

7 16-bit interrupt gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit trap gate No

F 32-bit interrupt gate No

4:280 Volume 4: Base IA-32 Instruction Reference

LSL—Load Segment Limit (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LSL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:281

LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:282 Volume 4: Base IA-32 Instruction Reference

LTR—Load Task Register

Description

Loads the source operand into the segment selector field of the task register. The
source operand (a general-purpose register or a memory location) contains a segment
selector that points to a task state segment (TSS). After the segment selector is loaded
in the task register, the processor uses to segment selector to locate the segment
descriptor for the TSS in the global descriptor table (GDT). It then loads the segment
limit and base address for the TSS from the segment descriptor into the task register.
The task pointed to by the task register is marked busy, but a switch to the task does
not occur.

The LTR instruction is provided for use in operating-system software; it should not be
used in application programs. It can only be executed in protected mode when the CPL
is 0. It is commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LTR);
IF SRC(Offset) > descriptor table limit OR IF SRC(type) global

THEN #GP(segment selector);
FI;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy)  1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector)  SRC;
TaskRegister(SegmentDescriptor)  TSSSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into TR

Volume 4: Base IA-32 Instruction Reference 4:283

LTR—Load Task Register (Continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one
for a task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LTR instruction is not recognized in virtual 8086 mode.

4:284 Volume 4: Base IA-32 Instruction Reference

MOV—Move

Notes:
*The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where 8, 16,

and 32 refer to the size of the data. The address-size attribute of the instruction determines the size of the
offset, either 16 or 32 bits.

**In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value 66H
preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand).
The source operand can be an immediate value, general-purpose register, segment
register, or memory location; the destination register can be a general-purpose register,
segment register, or memory location. Both operands must be the same size, which can
be a byte, a word, or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results
in an invalid opcode exception (#UD). To load the CS register, use the RET instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16 Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

Volume 4: Base IA-32 Instruction Reference 4:285

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor
information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register. While loading this information, the segment
selector and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS
registers without causing a protection exception. However, any subsequent attempt to
reference a segment whose corresponding segment register is loaded with a null value
causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all external interrupts
and traps until after the execution of the next instruction in the IA-32 System
Environment. For the Itanium System Environment, MOV to SS results in a
IA-32_Intercept(SystemFlag) trap after the instruction completes. This
operation allows a stack pointer to be loaded into the ESP register with the next
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit
general-purpose register, the Pentium Pro processor does not require the use of a
16-bit operand size prefix; however, some assemblers do require this prefix. The
processor assumes that the sixteen least-significant bits of the general-purpose register
are the destination or source operand. When moving a value from a segment selector
to a 32-bit register, the processor fills the two high-order bytes of the register with
zeros.

Operation
DEST SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL  CPL
OR segment is not a writable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

4:286 Volume 4: Base IA-32 Instruction Reference

MOV—Move (Continued)

SS segment selector;
SS segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for Move to SS
Itanium Reg Faults NaT Register Consumption Abort.
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.
If the destination operand is in a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.
If the SS register is being loaded and the segment selector's RPL and
the segment descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a
nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is not a data or readable code segment.

Volume 4: Base IA-32 Instruction Reference 4:287

MOV—Move (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is a data or nonconforming code segment, but both the
RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#UD If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If attempt is made to load the CS register.

4:288 Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose
register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See the Intel Architecture Software
Developer’s Manual, Volume 3 for a detailed description of the flags and fields in the
control registers.)

When loading a control register, a program should not attempt to change any of the
reserved bits; that is, always set reserved bits to the value previously read.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are always 11B. The r/m field
specifies the general-purpose register loaded or read.

These instructions have the following side effects:

• When writing to control register CR3, all non-global TLB entries are flushed (see the
Intel Architecture Software Developer’s Manual, Volume 3.

• When modifying any of the paging flags in the control registers (PE and PG in
register CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed,
including global entries. This operation is implementation specific for the Pentium
Pro processor. Software should not depend on this functionality in future Intel
architecture processors.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1
(to enable the physical address extension mode), the pointers (PDPTRs) in the
page-directory pointers table will be loaded into the processor (into internal,
non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3
will cause the PDPTRs to be reloaded into the processor.

• If the PAE flag is set to 1 and control register CR0 is written to set the PG flag, the
PDPTRs are reloaded into the processor.

Operation

IF Itanium System Environment AND Move To CR Form THEN IA-32_Intercept(INST,MOVCR);

DEST  SRC;

Opcode Instruction Description

0F 22 /r MOV CR0,r32 Move r32 to CR0

0F 22 /r MOV CR2,r32 Move r32 to CR2

0F 22 /r MOV CR3,r32 Move r32 to CR3

0F 22 /r MOV CR4,r32 Move r32 to CR4

0F 20 /r MOV r32,CR0 Move CR0 to r32

0F 20 /r MOV r32,CR2 Move CR2 to r32

0F 20 /r MOV r32,CR3 Move CR3 to r32

0F 20 /r MOV r32,CR4 Move CR4 to r32

Volume 4: Base IA-32 Instruction Reference 4:289

MOV—Move to/from Control Registers (Continued)

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Move To CR#, Mandatory Instruction Intercept.

Move From CR#, read the virtualized control register values,
CR0{15:6} return zeros.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory
pointers table (used in the extended physical addressing mode)
when the PAE flag in control register CR4 and the PG flag in control
register CR0 are set to 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual 8086 mode.

4:290 Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Debug Registers

Description

Moves the contents of two or more debug registers (DR0 through DR3, DR4 and DR5,
or DR6 and DR7) to a general-purpose register or vice versa. The operand size for these
instructions is always 32 bits, regardless of the operand-size attribute. (See the Intel
Architecture Software Developer’s Manual, Volume 3 for a detailed description of the
flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate
on debug registers in a manner that is compatible with Intel386™ and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7,
respectively. When the DE set in CR4 is set, attempts to reference DR4 and DR5 result
in an undefined opcode (#UD) exception.

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are always 11. The r/m field
specifies the general-purpose register loaded or read.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,MOVDR);

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST  SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

Opcode Instruction Description

0F 21/r MOV r32, DR0-DR3 Move debug registers to r32

0F 21/r MOV r32, DR4-DR5 Move debug registers to r32

0F 21/r MOV r32, DR6-DR7 Move debug registers to r32

0F 23 /r MOV DR0-DR3, r32 Move r32 to debug registers

0F 23 /r MOV DR4-DR5, r32 Move r32 to debug registers

0F 23 /r MOV DR6-DR7,r32 Move r32 to debug registers

Volume 4: Base IA-32 Instruction Reference 4:291

MOV—Move to/from Debug Registers (Continued)

#DB If any debug register is accessed while the GD flag in debug register
DR7 is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register
DR7 is set.

Virtual 8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual 8086
mode.

4:292 Volume 4: Base IA-32 Instruction Reference

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description

Moves the byte, word, or doubleword specified with the second operand (source
operand) to the location specified with the first operand (destination operand). The
source operand specifies the memory location at the address DS:ESI and the
destination operand specifies the memory location at address ES:EDI. (When the
operand-size attribute is 16, the SI and DI register are used as the source-index and
destination-index registers, respectively.) The DS segment may be overridden with a
segment override prefix, but the ES segment cannot be overridden.

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and
doubleword versions of the MOVS instructions. They are simpler to use, but provide no
type or segment checking. (For the MOVS instruction, “DS:ESI” and “ES:EDI” must be
explicitly specified in the instruction.)

After the transfer, the ESI and EDI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI
registers are decremented.) The registers are incremented or decremented by 1 for
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP
prefix (see “REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation” on
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337) for
block moves of ECX bytes, words, or doublewords.

Operation

DEST SRC;
IF (byte move)

THEN IF DF = 0
THEN (E)DI  1;
ELSE (E)DI  -1;

FI;
ELSE IF (word move)

THEN IF DF = 0
THEN DI  2;
ELSE DI  -2;

Opcode Instruction Description

A4 MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS ES:DI,DS:SI Move word at address DS:SI to address ES:DI

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address ES:EDI

A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:SI to address ES:DI

A5 MOVSD Move doubleword at address DS:ESI to address ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:293

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(Continued)

FI;
ELSE (* doubleword move*)

THEN IF DF = 0
THEN EDI  4;
ELSE EDI  -4;

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:294 Volume 4: Base IA-32 Instruction Reference

MOVSX—Move with Sign-Extension

Description

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and sign extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Operation

DEST  SignExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension

Volume 4: Base IA-32 Instruction Reference 4:295

MOVZX—Move with Zero-Extend

Description

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and sign extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and zero extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

Operation

DEST  ZeroExtend(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension

0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension

0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension

4:296 Volume 4: Base IA-32 Instruction Reference

MOVZX—Move with Zero-Extend (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:297

MUL—Unsigned Multiplication of AL, AX, or EAX

Description

Performs an unsigned multiplication of the first operand (destination operand) and the
second operand (source operand) and stores the result in the destination operand. The
destination operand is an implied operand located in register AL, AX or EAX (depending
on the size of the operand); the source operand is located in a general-purpose register
or a memory location. The action of this instruction and the location of the result
depends on the opcode and the operand size as shown in the following table.

:

The AH, DX, or EDX registers (depending on the operand size) contain the high-order
bits of the product. If the contents of one of these registers are 0, the CF and OF flags
are cleared; otherwise, the flags are set.

Operation

IF byte operation
THEN

AX  AL  SRC
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX  AX  SRC
ELSE (* OperandSize = 32 *)

EDX:EAX  EAX  SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they
are set to 1. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX  AL  r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX  AX  r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX  EAX  r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

4:298 Volume 4: Base IA-32 Instruction Reference

MUL—Unsigned Multiplication of AL, AX, or EAX (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:299

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. The
destination operand is located in a general-purpose register or a memory location.

Operation

IF DEST = 0
THEN CF  0
ELSE CF  1;

FI;
DEST  - (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF,
ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

4:300 Volume 4: Base IA-32 Instruction Reference

NEG—Two's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:301

NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in
the instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction performs no operation, no registers are accessed and no
faults are generated.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation

4:302 Volume 4: Base IA-32 Instruction Reference

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (1’s complement) on the destination operand and
stores the result in the destination operand location. The destination operand can be a
register or a memory location.

Operation

DEST  NOT DEST;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32

Volume 4: Base IA-32 Instruction Reference 4:303

NOT—One's Complement Negation (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:304 Volume 4: Base IA-32 Instruction Reference

OR—Logical Inclusive OR

Description

Performs a bitwise OR operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand
can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location.

Operation

DEST  DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAXOR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81 /1 id OR r/m32,imm32 r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8

83 /1 ib OR r/m32,imm8 r/m32 OR imm8

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32

Volume 4: Base IA-32 Instruction Reference 4:305

OR—Logical Inclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:306 Volume 4: Base IA-32 Instruction Reference

OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing
a 16- and 32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports.
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing OUT instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* Real-address mode or protected mode with CPL  IOPL *)

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte AL to imm8 I/O port address

E7 ib OUT imm8, AX Output word AX to imm8 I/O port address

E7 ib OUT imm8, EAX Output doubleword EAX to imm8 I/O port address

EE OUT DX, AL Output byte AL to I/O port address in DX

EF OUT DX, AX Output word AX to I/O port address in DX

EF OUT DX, EAX Output doubleword EAX to I/O port address in DX

Volume 4: Base IA-32 Instruction Reference 4:307

OUT—Output to Port (Continued)

(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *)
FI;
IF (Itanium_System_Environment) THEN

DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA]  SRC; (* Writes to selected I/O port *)

FI;

memory_fence();
[DEST_PA]  SRC; (* Writes to selected I/O port *)
memory_fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

4:308 Volume 4: Base IA-32 Instruction Reference

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the second operand (source operand) to the I/O port specified with
the first operand (destination operand). The source operand is a memory location at the
address DS:ESI. (When the operand-size attribute is 16, the SI register is used as the
source-index register.) The DS register may be overridden with a segment override
prefix.

The destination operand must be the DX register, allowing I/O port addresses from 0 to
65,535 to be accessed. When accessing an 8-bit I/O port, the opcode determines the
port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute
determines the port size.

The OUTSB, OUTSW and OUTSD mnemonics are synonyms of the byte, word, and
doubleword versions of the OUTS instructions. (For the OUTS instruction, “DS:ESI”
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location to the I/O
port, the ESI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is
incremented; if the DF flag is 1, the EDI register is decremented.) The ESI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4
for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix
for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” on page 4:337 for a description of the REP
prefix.

After an OUTS, OUTSB, OUTSW, or OUTSD instruction is executed, the processor waits
for the acknowledgment of the OUT transaction before beginning to execute the next
instruction. Note that the next instruction may be prefetched, even if the OUT
transaction has not completed.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space.

I/O transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/O transaction.

Opcode Instruction Description

6E OUTS DX, DS:(E)SI Output byte at address DS:(E)SI to I/O port in DX

6F OUTS DX, DS:SI Output word at address DS:SI to I/O port in DX

6F OUTS DX, DS:ESI Output doubleword at address DS:ESI to I/O port in DX

6E OUTSB Output byte at address DS:(E)SI to I/O port in DX

6F OUTSW Output word at address DS:SI to I/O port in DX

6F OUTSD Output doubleword at address DS:ESI to I/O port in DX

Volume 4: Base IA-32 Instruction Reference 4:309

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

In the Itanium System Environment, I/O port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize TLBs in the Itanium
architecture to grant or deny permission to any four I/O ports. The I/O port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not
referenced).

If the referenced I/O port is mapped to an unimplemented virtual address (via
the I/O Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing OUTS instruction.

Operation

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)

IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);

FI;
ELSE (* I/O operation is allowed *)

FI;

IF (Itanium_System_Environment) THEN
DEST_VA = IOBase | (Port{15:2}<<12) | Port{11:0};
DEST_PA = translate(DEST_VA);
[DEST_PA]  SRC; (* Writes to selected I/O port *)

FI;
memory_fence();
[DEST_PA]  SRC; (* Writes to selected I/O port *)
memory_fence();

IF (byte operation)
THEN IF DF = 0

THEN (E)DI  1;
ELSE (E)DI  -1;

FI;
ELSE IF (word operation)

THEN IF DF = 0
THEN DI  2;
ELSE DI  -2;

FI;
ELSE (* doubleword operation *)

THEN IF DF = 0
THEN EDI  4;
ELSE EDI  -4;

FI;
FI;

FI;
FI;

4:310 Volume 4: Base IA-32 Instruction Reference

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step

IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segments
is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:311

POP—Pop a Value from the Stack

Description

Loads the value from the top of the procedure stack to the location specified with the
destination operand and then increments the stack pointer. The destination operand
can be a general-purpose register, memory location, or segment register.

The current address-size attribute for the stack segment and the operand-size attribute
determine the amount the stack pointer is incremented (see the “Operation” below).
For example, if 32-bit addressing and operands are being used, the ESP register (stack
pointer) is incremented by 4 and, if 16-bit addressing and operands are being used, the
SP register (stack pointer for 16-bit addressing) is incremented by 2. The B flag in the
stack segment’s segment descriptor determines the stack’s address-size attribute.

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the descriptor
information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register and causes the selector and the descriptor
information to be validated (see the “Operation” below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a
general protection exception (#GP). In this situation, no memory reference occurs and
the saved value of the segment register is null.

The POP instruction cannot pop a value into the CS register. To load the CS register, use
the RET instruction.

A POP SS instruction inhibits all external interrupts, including the NMI interrupt, and
traps until after execution of the next instruction. in the IA-32 System Environment.
For the Itanium System Environment, POP SS results in an
IA-32_Intercept(SystemFlag) trap after the instruction completes.This
operation allows a stack pointer to be loaded into the ESP register with the next
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

4:312 Volume 4: Base IA-32 Instruction Reference

POP—Pop a Value from the Stack (Continued)

This action allows sequential execution of POP SS and MOV ESP, EBP instructions
without the danger of having an invalid stack during an interrupt. However, use of the
LSS instruction is the preferred method of loading the SS and ESP registers.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instructions computes the effective address of the operand after it
increments the ESP register.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST  SS:ESP; (* copy a doubleword *)
ESP  ESP + 4;

ELSE (* OperandSize = 16*)
DEST  SS:ESP; (* copy a word *)

ESP  ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST  SS:SP; (* copy a word *)
SP  SP + 2;

ELSE (* OperandSize = 32 *)
DEST  SS:SP; (* copy a doubleword *)
SP  SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL  CPL
OR segment is not a writable data segment
OR DPL  CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS segment selector;
SS segment descriptor;

Volume 4: Base IA-32 Instruction Reference 4:313

POP—Pop a Value from the Stack (Continued)

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister segment selector;
SegmentRegister segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister null segment selector;
SegmentRegister null segment descriptor;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for POP SS

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and
the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
nonwritable data segment.

4:314 Volume 4: Base IA-32 Instruction Reference

POP—Pop a Value from the Stack (Continued)

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is a data or nonconforming code segment, but both the
RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment
limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking
is enabled.

Volume 4: Base IA-32 Instruction Reference 4:315

POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the procedure stack into the
general-purpose registers. The registers are loaded in the following order: EDI, ESI,
EBP, EBX, EDX, ECX, and EAX (if the current operand-size attribute is 32) and DI, SI,
BP, BX, DX, CX, and AX (if the operand-size attribute is 16). (These instructions reverse
the operation of the PUSHA/PUSHAD instructions.) The value on the stack for the ESP
or SP register is ignored. Instead, the ESP or SP register is incremented after each
register is loaded (see the “Operation” below).

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode.
The POPA instruction is intended for use when the operand-size attribute is 16 and the
POPAD instruction for when the operand-size attribute is 32. Some assemblers may
force the operand size to 16 when POPA is used and to 32 when POPAD is used. Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting of
the operand-size attribute to determine the size of values to be popped from the stack,
regardless of the mnemonic used.

Operation

IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDIPop();
ESIPop();
EBPPop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBXPop();
EDXPop();
ECXPop();
EAXPop();

ELSE (* OperandSize = 16, instruction = POPA *)
DIPop();
SIPop();
BPPop();
increment ESP by 2 (* skip next 2 bytes of stack *)
BXPop();
DXPop();
CXPop();
AXPop();

FI;

Flags Affected

None.

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX

4:316 Volume 4: Base IA-32 Instruction Reference

POPA/POPAD—Pop All General-Purpose Registers (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:317

POPF/POPFD—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register or pops a word from the top
of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits of the
EFLAGS register. (These instructions reverse the operation of the PUSHF/PUSHFD
instructions.)

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is 16
and the POPFD instruction for when the operand-size attribute is 32. Some assemblers
may force the operand size to 16 when POPF is used and to 32 when POPFD is used.
Others may treat these mnemonics as synonyms (POPF/POPFD) and use the current
setting of the operand-size attribute to determine the size of values to be popped from
the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly,
depending on the mode of operation of the processor. When the processor is operating
in protected mode at privilege level 0 (or in real-address mode, which is equivalent to
privilege level 0), all the non-reserved flags in the EFLAGS register except the VIP and
VIF flags can be modified. The VIP and VIF flags are cleared.

When operating in protected mode, but with a privilege level greater an 0, all the flags
can be modified except the IOPL field and the VIP and VIF flags. Here, the IOPL flags
are masked and the VIP and VIF flags are cleared.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3
to use POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are masked. If
the IOPL is less than 3, the POPF/POPFD instructions cause a general protection
exception (#GP).

The IOPL is altered only when executing at privilege level 0. The interrupt flag is altered
only when executing at a level at least as privileged as the IOPL. (Real-address mode is
equivalent to privilege level 0.) If a POPF/POPFD instruction is executed with insufficient
privilege, an exception does not occur, but the privileged bits do not change.

Operation

OLD_IF <- IF; OLD_AC <- AC; OLD_TF <- TF;

IF CR0.PE = 0 (*Real Mode *)

THEN
IF OperandSize = 32;

THEN
EFLAGS  Pop();
(* All non-reserved flags except VM, RF, VIP and VIF can be modified; *)
ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (*In Protected Mode *)

Opcode Instruction Description

9D POPF Pop top of stack into EFLAGS

9D POPFD Pop top of stack into EFLAGS

4:318 Volume 4: Base IA-32 Instruction Reference

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF CPL=0
THEN

IF OperandSize = 32;
THEN

EFLAGS  Pop();
(* All non-reserved flags except VM, RF, VIP and VIF can be *)
(* modified; *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN

EFLAGS  Pop()
(* All non-reserved bits except IOPL, RF, VM, VIP, and VIF can *)
(* be modified; *)
(* IOPL is masked *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0]  Pop();
(* All non-reserved bits except IOPL can be modified; IOPL is

masked *)
FI;

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN

IF OperandSize=32
THEN

EFLAGS  Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are masked*)

ELSE
EFLAGS[15:0]  Pop()
(* All non-reserved bits except IOPL can be modified; IOPL is *)

(* masked *)
FI;

ELSE (* IOPL < 3 *)
IF CR4.VME = 0

THEN #GP(0);
ELSE

IF ((OperandSize = 32) OR (STACK.TF = 1) OR (EFLAGS.VIP = 1
AND STACK.IF = 1)
THEN #GP(0);
ELSE

TempFlags <- pop();
FLAGS <- TempFlags; (*IF and IOPL bits are unchanged*)
EFLAGS.VIF <- TempFlags.IF;

FI;
FI;

FI;

Volume 4: Base IA-32 Instruction Reference 4:319

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

FI;
FI;

IF(Itanium System Environment AND (AC, TF != OLD_AC, OLD_TF)
THEN IA-32_Intercept(System_Flag,POPF);

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF
THEN IA-32_Intercept(System_Flag,POPF);

Flags Affected

All flags except the reserved bits.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state or if the AC, RF or TF changes state.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with
an operand-size override prefix.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

4:320 Volume 4: Base IA-32 Instruction Reference

PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the
procedure stack. The current address-size attribute for the stack segment and the
operand-size attribute determine the amount the stack pointer is decremented (see the
“Operation” below). For example, if 32-bit addressing and operands are being used, the
ESP register (stack pointer) is decremented by 4 and, if 16-bit addressing and operands
are being used, the SP register (stack pointer for 16-bit addressing) is decremented by
2. Pushing 16-bit operands when the stack address-size attribute is 32 can result in a
misaligned the stack pointer (that is, the stack pointer not aligned on a doubleword
boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction was executed. Thus, if a PUSH instruction uses a memory operand in which
the ESP register is used as a base register for computing the operand address, the
effective address of the operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP  ESP  4;
SS:ESP  SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP  ESP  2;
SS:ESP  SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

Volume 4: Base IA-32 Instruction Reference 4:321

PUSH—Push Word or Doubleword Onto the Stack (Continued)

IF OperandSize = 16
THEN

SP  SP  2;
 SS:SP  SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP  SP  4;
SS:SP  SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

4:322 Volume 4: Base IA-32 Instruction Reference

PUSH—Push Word or Doubleword Onto the Stack (Continued)

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

For Intel architecture processors from the Intel 286 on, the PUSH ESP instruction
pushes the value of the ESP register as it existed before the instruction was executed.
(This is also true in the real-address and virtual-8086 modes.) For the Intel 8086
processor, the PUSH SP instruction pushes the new value of the SP register (that is the
value after it has been decremented by 2).

Volume 4: Base IA-32 Instruction Reference 4:323

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Push the contents of the general-purpose registers onto the procedure stack. The
registers are stored on the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP
(original value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX,
CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16).
(These instructions perform the reverse operation of the POPA/POPAD instructions.)
The value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of values
to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of
stack space. No exception is generated to indicate this condition.

Operation

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp  (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp  (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI

4:324 Volume 4: Base IA-32 Instruction Reference

PUSHA/PUSHAD—Push All General-Purpose Registers (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual 8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:325

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrement the stack pointer by 4 (if the current operand-size attribute is 32) and push
the entire contents of the EFLAGS register onto the procedure stack or decrement the
stack pointer by 2 (if the operand-size attribute is 16) push the lower 16 bits of the
EFLAGS register onto the stack. (These instructions reverse the operation of the
POPF/POPFD instructions.)

When copying the entire EFLAGS register to the stack, bits 16 and 17, called the VM
and RF flags, are not copied. Instead, the values for these flags are cleared in the
EFLAGS image stored on the stack.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to
determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

When the I/O privilege level (IOPL) is less than 3 in virtual-8086 mode, the
PUSHF/PUSHFD instructions causes a general protection exception (#GP). The IOPL is
altered only when executing at privilege level 0. The interrupt flag is altered only when
executing at a level at least as privileged as the IOPL. (Real-address mode is equivalent
to privilege level 0.) If a PUSHF/PUSHFD instruction is executed with insufficient
privilege, an exception does not occur, but the privileged bits do not change.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the
PUSHA/PUSHAD instruction is executed, the processor shuts down due to a lack of
stack space. No exception is generated to indicate this condition.

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN

IF OperandSize = 32
THEN

push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE
push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN

IF OperandSize = 32

Opcode Instruction Description

9C PUSHF Push EFLAGS

9C PUSHFD Push EFLAGS

4:326 Volume 4: Base IA-32 Instruction Reference

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack (Continued)

THEN push(EFLAGS AND 0FCFFFFH);
(* VM and RF EFLAGS bits are cleared in image stored on the stack*)
ELSE push(EFLAGS); (* Lower 16 bits only *)

FI;
ELSE (*IOPL < 3*)

IF OperandSize =32 OR CR$.VME=0
THEN #GP(0); (* Trap to virtual-8086 monitor *)
ELSE

TempFlags <- FLAGS OR 3000H; (*Set IOPL bits to 11B or IOPL 3 *)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.

Volume 4: Base IA-32 Instruction Reference 4:327

RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8,1 Rotate 9 bits (CF,r/m8) left once

D2 /2 RCL r/m8,CL Rotate 9 bits (CF,r/m8) left CL times

C0 /2 ib RCL r/m8,imm8 Rotate 9 bits (CF,r/m8) left imm8 times

D1 /2 RCL r/m16,1 Rotate 17 bits (CF,r/m16) left once

D3 /2 RCL r/m16,CL Rotate 17 bits (CF,r/m16) left CL times

C1 /2 ib RCL r/m16,imm8 Rotate 17 bits (CF,r/m16) left imm8 times

D1 /2 RCL r/m32,1 Rotate 33 bits (CF,r/m32) left once

D3 /2 RCL r/m32,CL Rotate 33 bits (CF,r/m32) left CL times

C1 /2 ib RCL r/m32,imm8 Rotate 33 bits (CF,r/m32) left imm8 times

D0 /3 RCR r/m8,1 Rotate 9 bits (CF,r/m8) right once

D2 /3 RCR r/m8,CL Rotate 9 bits (CF,r/m8) right CL times

C0 /3 ib RCR r/m8,imm8 Rotate 9 bits (CF,r/m8) right imm8 times

D1 /3 RCR r/m16,1 Rotate 17 bits (CF,r/m16) right once

D3 /3 RCR r/m16,CL Rotate 17 bits (CF,r/m16) right CL times

C1 /3 ib RCR r/m16,imm8 Rotate 17 bits (CF,r/m16) right imm8 times

D1 /3 RCR r/m32,1 Rotate 33 bits (CF,r/m32) right once

D3 /3 RCR r/m32,CL Rotate 33 bits (CF,r/m32) right CL times

C1 /3 ib RCR r/m32,imm8 Rotate 33 bits (CF,r/m32) right imm8 times

D0 /0 ROL r/m8,1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8,CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8,imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16,1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16,CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16,imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32,1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32,CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32,imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8,1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8,CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8,imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16,1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16,CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16,imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32,1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32,CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32,imm8 Rotate 32 bits r/m32 right imm8 times

4:328 Volume 4: Base IA-32 Instruction Reference

RCL/RCR/ROL/ROR-—Rotate (Continued)

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory location;
the count operand is an unsigned integer that can be an immediate or a value in the CL
register. The processor restricts the count to a number between 0 and 31 by masking
all the bits in the count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into the
CF flag. The RCR instruction shifts the CF flag into the most-significant bit and shifts the
least-significant bit into the CF flag. For the ROL and ROR instructions, the original
value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit
that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases. For
left rotates, the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the
most-significant bit of the result. For right rotates, the OF flag is set to the exclusive OR
of the two most-significant bits of the result.

Operation
SIZE  OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT  (COUNT AND 1FH) MOD 9;
SIZE = 16: tempCOUNT  (COUNT AND 1FH) MOD 17;
SIZE = 32: tempCOUNT  COUNT AND 1FH;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  MSB(DEST);
DEST  (DEST  2)  tempCF;
tempCOUNT  tempCOUNT - 1;

OD;
ELIHW;
CF  tempCF;
IF COUNT = 1

THEN OF  MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* ROR instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  LSB(SRC);

Volume 4: Base IA-32 Instruction Reference 4:329

RCL/RCR/ROL/ROR-—Rotate (Continued)

DEST  (DEST / 2) + (tempCF  2SIZE);
tempCOUNT  tempCOUNT - 1;

OD;
IF COUNT = 1

THEN OF  MSB(DEST) XOR MSB  1(DEST);
ELSE OF is undefined;

FI;
(* RCL instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  MSB(DEST);
DEST  (DEST  2)  tempCF;
tempCOUNT  tempCOUNT - 1;

OD;
ELIHW;
CF  tempCF;
IF COUNT = 1

THEN OF  MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
WHILE (tempCOUNT  0)

DO
tempCF  LSB(SRC);
DEST  (DEST / 2) + (tempCF * 2SIZE);
tempCOUNT  tempCOUNT - 1;

OD;
IF COUNT = 1
IF COUNT = 1

THEN OF  MSB(DEST) XOR MSB  1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF,
ZF, AF, and PF flags are not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:330 Volume 4: Base IA-32 Instruction Reference

RCL/RCR/ROL/ROR-—Rotate (Continued)

Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the rotation count. All Intel architecture processors from the
Intel386™ processor on do mask the rotation count in all operating modes.

Volume 4: Base IA-32 Instruction Reference 4:331

RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. The EDX register is loaded with the high-order 32 bits
of the MSR and the EAX register is loaded with the low-order 32 bits. If less than 64 bits
are implemented in the MSR being read, the values returned to EDX:EAX in
unimplemented bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) will be generated. Specifying a
reserved or unimplemented MSR address in ECX will also cause a general protection
exception.

The MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

See model-specific instructions for all the MSRs that can be written to with this
instruction and their addresses

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RDMSR);

EDX:EAX  MSR[ECX];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR
address.

Opcode Instruction Description

0F 32 RDMSR Load MSR specified by ECX into EDX:EAX

4:332 Volume 4: Base IA-32 Instruction Reference

RDMSR—Read from Model Specific Register (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The RDMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into
the Intel architecture with the Pentium processor. Execution of this instruction by an
Intel architecture processor earlier than the Pentium processor results in an invalid
opcode exception #UD.

Volume 4: Base IA-32 Instruction Reference 4:333

RDPMC—Read Performance-Monitoring Counters

Description

Loads the contents of the N-bit performance-monitoring counter specified in the ECX
register into registers EDX:EAX. The EDX register is loaded with the high-order N-32
bits of the counter and the EAX register is loaded with the low-order 32 bits.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3
to read the performance-monitoring counters if the PCE flag in the CR4 register is set
for IA-32 System Environment operation or in the Itanium System Environment if the
performance counters have been configured as user level counters. This instruction is
provided to allow performance monitoring by application code without incurring the
overhead of a call to an operating-system procedure.

The performance-monitoring counters are event counters that can be programmed to
count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads.

The RDPMC instruction does not serialize instruction execution. That is, it does not
imply that all the events caused by the preceding instructions have been completed or
that events caused by subsequent instructions have not begun. If an exact event count
is desired, software must use a serializing instruction (such as the CPUID instruction)
before and/or after the execution of the RDPCM instruction.

The RDPMC instruction can execute in 16-bit addressing mode or virtual 8086 mode;
however, the full contents of the ECX register are used to determine the counter to
access and a full N-bit result is returned (the low-order 32 bits in the EAX register and
the high-order N-32 bits in the EDX register).

Operation

IF (ECX != Implemented Counters) THEN #GP(0)

IF (Itanium System Environment)

THEN

SECURED = PSR.sp || CR4.pce==0;

IF ((PSR.cpl ==0) || (PSR.cpl!=0 && ~PMC[ECX].pm && ~SECURED)))
THEN

EDX:EAX  PMD[ECX+4];
ELSE

#GP(0)
FI;

ELSE

IF ((CR4.PCE = 1 OR ((CR4.PCE = 0) AND (CPL=0)))
THEN

EDX:EAX  PMD[ECX+4];
ELSE (* CR4.PCE is 0 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Opcode Instruction Description

0F 33 RDPMC Read performance-monitoring counter specified by ECX into
EDX:EAX

4:334 Volume 4: Base IA-32 Instruction Reference

RDPMC—Read Performance-Monitoring Counters (Continued)

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

#GP(0) If the current privilege level is not 0 and the selected PMD register’s
PM bit is 1, or if PSR.sp is 1.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear
/*In IA-32 System Environment*/.

If the value in the ECX register does not match an implemented
performance counter.

Real Address Mode Exceptions

#GP If the PCE flag in the CR4 register is clear. /*In the IA-32 System
Environment*/

If the value in the ECX register does not match an implemented
performance counter.

Virtual 8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear. /*In the IA-32 System
Environment*/

If the value in the ECX register does not match an implemented
performance counter.

Volume 4: Base IA-32 Instruction Reference 4:335

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter into the EDX:EAX
registers. The time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits
of the MSR are loaded into the EDX register, and the low-order 32 bits are loaded into
the EAX register. The processor increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset.

In the IA-32 System Environment, the time stamp disable (TSD) flag in register CR4
restricts the use of the RDTSC instruction. When the TSD flag is clear, the RDTSC
instruction can be executed at any privilege level; when the flag is set, the instruction
can only be executed at privilege level 0. The time-stamp counter can also be read with
the RDMSR instruction.

In the Itanium System Environment, PSR.si and CR4.TSD restricts the use of the
RDTSC instruction. When PSR.si is clear and CR4.TSD is clear, the RDTSC instruction
can be executed at any privilege level; when PSR.si is set or CR4.TSD is set, the
instruction can only be executed at privilege level 0.

The RDTSC instruction is not serializing instruction. Thus, it does not necessarily wait
until all previous instructions have been executed before reading the counter. Similarly,
subsequent instructions may begin execution before the read operation is performed.

This instruction was introduced into the Intel architecture in the Pentium processor.

Operation

IF (IA-32 System Environement)

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=0))
THEN

EDX:EAX  TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

ELSE /*Itanium System Environment*/

SECURED = PSR.si || CR4.TSD;

IF (!SECURED) OR (SECURED AND (CPL=0))
THEN

EDX:EAX  TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

FI;

Flags Affected

None.

Opcode Instruction Description

0F 31 RDTSC Read time-stamp counter into EDX:EAX

4:336 Volume 4: Base IA-32 Instruction Reference

RDTSC—Read Time-Stamp Counter (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

#GP(0) If PSR.si is 1 or CR4.TSD is 1 and the CPL is greater than 0.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
/*For the IA-32 System Environment only*/

Real Address Mode Exceptions

#GP If the TSD flag in register CR4 is set. /*For the IA-32 System
Environment only*/

Virtual 8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set. /*For the IA-32 System
Environment only*/

Volume 4: Base IA-32 Instruction Reference 4:337

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register (ECX) or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and
STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be added to
the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synonymous forms
of the REPE and REPNE prefixes, respectively.) The behavior of the REP prefix is
undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct.

F3 6C REP INS r/m8, DX Input ECX bytes from port DX into ES:[EDI]

F3 6D REP INS r/m16,DX Input ECX words from port DX into ES:[EDI]

F3 6D REP INS r/m32,DX Input ECX doublewords from port DX into ES:[EDI]

F3 A4 REP MOVS m8,m8 Move ECX bytes from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m16,m16 Move ECX words from DS:[ESI] to ES:[EDI]

F3 A5 REP MOVS m32,m32 Move ECX doublewords from DS:[ESI] to ES:[EDI]

F3 6E REP OUTS DX,r/m8 Output ECX bytes from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m16 Output ECX words from DS:[ESI] to port DX

F3 6F REP OUTS DX,r/m32 Output ECX doublewords from DS:[ESI] to port DX

F3 AC REP LODS AL Load ECX bytes from DS:[ESI] to AL

F3 AD REP LODS AX Load ECX words from DS:[ESI] to AX

F3 AD REP LODS EAX Load ECX doublewords from DS:[ESI] to EAX

F3 AA REP STOS m8 Fill ECX bytes at ES:[EDI] with AL

F3 AB REP STOS m16 Fill ECX words at ES:[EDI] with AX

F3 AB REP STOS m32 Fill ECX doublewords at ES:[EDI] with EAX

F3 A6 REPE CMPS m8,m8 Find nonmatching bytes in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m16,m16 Find nonmatching words in ES:[EDI] and DS:[ESI]

F3 A7 REPE CMPS m32,m32 Find nonmatching doublewords in ES:[EDI] and DS:[ESI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[EDI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[EDI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[EDI]

F2 A6 REPNE CMPS m8,m8 Find matching bytes in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m16,m16 Find matching words in ES:[EDI] and DS:[ESI]

F2 A7 REPNE CMPS m32,m32 Find matching doublewords in ES:[EDI] and DS:[ESI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[EDI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[EDI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[EDI]

4:338 Volume 4: Base IA-32 Instruction Reference

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the
count in register ECX is decremented to 0 (see the following table). The REPE, REPNE,
REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and
terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined
either by testing the ECX register with a JECXZ instruction or by testing the ZF flag with
a JZ, JNZ, and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according
to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this
happens, the state of the registers is preserved to allow the string operation to be
resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a page fault occurs during CMPS or SCAS instructions that are prefixed with
REPNE, the EFLAGS value may NOT be restored to the state prior to the execution of
the instruction. Since SCAS and CMPS do not use EFLAGS as an input, the processor
can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Operation

IF AddressSize = 16
THEN

use CX for CountReg;
ELSE (* AddressSize = 32 *)

use ECX for CountReg;
FI;
WHILE CountReg  0

DO
service pending interrupts (if any);
execute associated string instruction;
CountReg  CountReg - 1;

Table 2-17. Repeat Conditions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1

Volume 4: Base IA-32 Instruction Reference 4:339

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

IF CountReg = 0
THEN exit WHILE loop

FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is
associated with.

4:340 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made to
the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to release
parameters from the stack that were passed to the called procedure and are no longer
needed.

The RET instruction can be used to execute three different types of returns:

• Near return – A return to a calling procedure within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment return.

• Far return – A return to a calling procedure located in a different segment than the
current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return – A far return to a different privilege level than that
of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode.

When executing a near return, the processor pops the return instruction pointer (offset)
from the top of the procedure stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the
top of the procedure stack into the EIP register, then pops the segment selector from
the top of the stack into the CS register. The processor then begins program execution
in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of the
code and stack segments being returned to determine if the control transfer is allowed
to be made. The DS, ES, FS, and GS segment registers are cleared by the RET
instruction during an inter-privilege-level return if they refer to segments that are not
allowed to be accessed at the new privilege level. Since a stack switch also occurs on an
inter-privilege level return, the ESP and SS registers are loaded from the stack.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from
stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from stack

Volume 4: Base IA-32 Instruction Reference 4:341

RET—Return from Procedure (Continued)

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP  Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP  ESP + SRC;
ELSE (* StackAddressSize=16 *)

SP  SP + SRC;
FI;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); FI;
tempEIP  Pop();
tempEIP  tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP  tempEIP;
CS  Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand THEN SP  SP + (SRC AND FFFFH); FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

FI;

(* Protected mode, not virtual 8086 mode *)
IF (PE = 1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32

THEN

4:342 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure (Continued)

IF second doubleword on stack is not within stack limits THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits THEN #SS(0); FI;
FI;

IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit

THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is condorming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit

THEN #GP(0);
FI;
IF OperandSize=32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
ESP  ESP + SRC;

ELSE (* OperandSize=16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop *)
ESP  ESP + SRC;

FI;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32)

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL  RPL of the return code segment selector

OR stack segment is not a writable data segment
OR stack segment descriptor DPL  RPL of the return code segment selector

THEN #GP(selector); FI;

Volume 4: Base IA-32 Instruction Reference 4:343

RET—Return from Procedure (Continued)

IF stack segment not present THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
 CPL  ReturnCodeSegmentSelector(RPL);
IF OperandSize=32

THEN
EIP  Pop();
CS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP + SRC;
tempESP  Pop();
tempSS  Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

ELSE (* OperandSize=16 *)
EIP  Pop();
EIP  EIP AND 0000FFFFH;
CS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL)  CPL;
ESP  ESP + SRC;
tempESP  Pop();
tempSS  Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP  tempESP;
SS  tempSS;

FI;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector/Descriptor  0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment descriptor indicates the segment is not a data or
readable code segment

OR if the segment is a data or non-conforming code segment and the segment
descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register  null selector;
OD;

Flags Affected

None.

4:344 Volume 4: Base IA-32 Instruction Reference

RET—Return from Procedure (Continued)

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.
If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.
If the return code or stack segment selector index is not within its
descriptor table limits.
If the return code segment descriptor does not indicate a code
segment.
If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s segment
selector
If the return code segment is conforming and the segment selector’s
DPL greater than the RPL of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the
return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference 4:345

ROL/ROR—Rotate

See entry for RCL/RCR/ROL/ROR.

4:346 Volume 4: Base IA-32 Instruction Reference

RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application
program or operating system procedure that was interrupted when the processor
received an SSM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause a
shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

• (Intel Pentium and Intel486 only.) The value stored in the state dump base field is
not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

See Chapter 9 in the Intel Architecture Software Developer’s Manual, Volume 3 for
more information about SMM and the behavior of the RSM instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,RSM);

ReturnFromSSM;
ProcessorState  Restore(SSMDump);

Flags Affected

All.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Real Address Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Virtual 8086 Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor
is not in SMM.

Opcode Instruction Description

0F AA RSM Resume operation of interrupted program

Volume 4: Base IA-32 Instruction Reference 4:347

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and
5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS registers are set as shown in the “Operation” below

Operation

EFLAGS(SF:ZF:0:AF:0:PF:1:CF)  AH;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are set to 1, 0, and 0, respectively.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into
EFLAGS register

4:348 Volume 4: Base IA-32 Instruction Reference

SAL/SAR/SHL/SHR—Shift Instructions

Note:
*Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

Volume 4: Base IA-32 Instruction Reference 4:349

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Description

Shift the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond the
destination operand boundary are first shifted into the CF flag, then discarded. At the
end of the shift operation, the CF flag contains the last bit shifted out of the destination
operand.

The destination operand can be a register or a memory location. The count operand can
be an immediate value or register CL. The count is masked to 5 bits, which limits the
count range to from 0 to 31. A special opcode encoding is provide for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same
operation; they shift the bits in the destination operand to the left (toward more
significant bit locations). For each shift count, the most significant bit of the destination
operand is shifted into the CF flag, and the least significant bit is cleared.

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of
the destination operand to the right (toward less significant bit locations). For each shift
count, the least significant bit of the destination operand is shifted into the CF flag, and
the most significant bit is either set or cleared depending on the instruction type. The
SHR instruction clears the most significant bit; the SAR instruction sets or clears the
most significant bit to correspond to the sign (most significant bit) of the original value
in the destination operand. In effect, the SAR instruction fills the empty bit position’s
shifted value with the sign of the unshifted value.

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded toward
zero, whereas the “quotient” of the SAR instruction is rounded toward negative infinity.
This difference is apparent only for negative numbers. For example, when the IDIV
instruction is used to divide -9 by 4, the result is -2 with a remainder of -1. If the SAR
instruction is used to shift -9 right by two bits, the result is -3 and the “remainder” is
+3; however, the SAR instruction stores only the most significant bit of the remainder
(in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if
the most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR
instruction, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag
is set to the most-significant bit of the original operand.

Operation

tempCOUNT  COUNT;
tempDEST  DEST;
WHILE (tempCOUNT  0)
DO

4:350 Volume 4: Base IA-32 Instruction Reference

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

IF instruction is SAL or SHL
THEN

CF  MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF  LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST  DEST  2;

ELSE
IF instruction is SAR

THEN
DEST  DEST  2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST  DEST  2 ; (* Unsigned divide *);

FI;
FI;
temp  temp - 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN
OF  MSB(DEST) XORCF;

ELSE
IF instruction is SAR

THEN
OF  0;

ELSE (* instruction is SHR *)
OF  MSB(tempDEST);

FI;
FI;

ELSE
OF  undefined;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is
undefined for SHL and SHR instructions count is greater than or equal to the size of the
destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the
result. If the count is 0, the flags are not affected.

Volume 4: Base IA-32 Instruction Reference 4:351

SAL/SAR/SHL/SHR—Shift Instructions (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

The 8086 does not mask the shift count. All Intel architecture processors from the
Intel386 processor on do mask the rotation count in all operating modes.

4:352 Volume 4: Base IA-32 Instruction Reference

SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction
in which a SUB instruction is followed by a SBB instruction.

Operation

DEST  DEST - (SRC + CF);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32

Volume 4: Base IA-32 Instruction Reference 4:353

SBB—Integer Subtraction with Borrow (Continued)

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:354 Volume 4: Base IA-32 Instruction Reference

SCAS/SCASB/SCASW/SCASD—Scan String Data

Description

Compares the byte, word, or double word specified with the source operand with the
value in the AL, AX, or EAX register, respectively, and sets the status flags in the
EFLAGS register according to the results. The source operand specifies the memory
location at the address ES:EDI. (When the operand-size attribute is 16, the DI register
is used as the source-index register.) The ES segment cannot be overridden with a
segment override prefix.

The SCASB, SCASW, and SCASD mnemonics are synonyms of the byte, word, and
doubleword versions of the SCAS instructions. They are simpler to use, but provide no
type or segment checking. (For the SCAS instruction, “ES:EDI” must be explicitly
specified in the instruction.)

After the comparison, the EDI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The
EDI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix
for block comparisons of ECX bytes, words, or doublewords. More often, however, these
instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made. See
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a
description of the REP prefix.

Operation

IF (byte cmparison)
THEN

temp  AL  SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI  1;
ELSE (E)DI  -1;

FI;
ELSE IF (word comparison)

THEN
temp  AX  SRC;
SetStatusFlags(temp)

THEN IF DF = 0

Opcode Instruction Description

AE SCAS ES:(E)DI Compare AL with byte at ES:(E)DI and set status flags

AF SCAS ES:DI Compare AX with word at ES:DI and set status flags

AF SCAS ES:EDI Compare EAX with doubleword at ES:EDI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:DI and set status flags

AF SCASD Compare EAX with doubleword at ES:EDI and set status flags

Volume 4: Base IA-32 Instruction Reference 4:355

SCAS/SCASB/SCASW/SCASD—Scan String Data (Continued)

THEN DI  2;
ELSE DI  -2;

FI;
ELSE (* doubleword comparison *)

temp  EAX  SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN EDI  4;
ELSE EDI  -4;

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is
given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:356 Volume 4: Base IA-32 Instruction Reference

SETcc—Set Byte on Condition

Description

Set the destination operand to the value 0 or 1, depending on the settings of the status
flags (CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to
a byte register or a byte in memory. The condition code suffix (cc) indicates the
condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the
relationship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or (ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)

Volume 4: Base IA-32 Instruction Reference 4:357

SETcc—Set Byte on Condition (Continued)

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the
SETG (set byte if greater) and SETNLE (set if not less or equal) both have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alternate
mnemonics are provided to make code more intelligible.

Some languages represent a logical one as an integer with all bits set. This
representation can be arrived at by choosing the mutually exclusive condition for the
SETcc instruction, then decrementing the result. For example, to test for overflow, use
the SETNO instruction, then decrement the result.

Operation

IF condition
THEN DEST  1
ELSE DEST  0;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

4:358 Volume 4: Base IA-32 Instruction Reference

SETcc—Set Byte on Condition (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:359

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register

Description

Stores the contents of the global descriptor table register (GDTR) or the interrupt
descriptor table register (IDTR) in the destination operand. The destination operand is a
pointer to 6-byte memory location. If the operand-size attribute is 32 bits, the 16-bit
limit field of the register is stored in the lower 2 bytes of the memory location and the
32-bit base address is stored in the upper 4 bytes. If the operand-size attribute is 16
bits, the limit is stored in the lower 2 bytes and the 24-bit base address is stored in the
third, fourth, and fifth byte, with the sixth byte is filled with 0s.

The SGDT and SIDT instructions are useful only in operating-system software; however,
they can be used in application programs.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SGDT/SIDT);

IF instruction is IDTR
THEN

IF OperandSize = 16
THEN

DEST[0:15]  IDTR(Limit);
DEST[16:39]  IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47]  0;

ELSE (* 32-bit Operand Size *)
DEST[0:15]  IDTR(Limit);
DEST[16:47]  IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN

DEST[0:15]  GDTR(Limit);
DEST[16:39]  GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47]  0;

ELSE (* 32-bit Operand Size *)
DEST[0:15]  GDTR(Limit);
DEST[16:47]  GDTR(Base); (* full 32-bit base address loaded *)

FI;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Instruction Intercept for SIDT and SGDT.

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m

4:360 Volume 4: Base IA-32 Instruction Reference

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register (Continued)

Protected Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

Real Address Mode Exceptions

#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Intel Architecture Compatibility

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits
with 1s; the Pentium Pro processor fills these bits with 0s.

Volume 4: Base IA-32 Instruction Reference 4:361

SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR.

4:362 Volume 4: Base IA-32 Instruction Reference

SHLD—Double Precision Shift Left

Description

Shifts the first operand (destination operand) to the left the number of bits specified by
the third operand (count operand). The second operand (source operand) provides bits
to shift in from the right (starting with bit 0 of the destination operand). The destination
operand can be a register or a memory location; the source operand is a register. The
count operand is an unsigned integer that can be an immediate byte or the contents of
the CL register. Only bits 0 through 4 of the count are used, which masks the count to a
value between 0 and 31. If the count is greater than the operand size, the result in the
destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred;
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHLD instruction is useful for multi-precision shifts of 64 bits or more.

Operation

COUNT  COUNT MOD 32;
SIZE  OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT  SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF  BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i  SIZE - 1 DOWNTO COUNT
DO

Bit(DEST, i)  Bit(DEST, i - COUNT);
OD;
FOR i  COUNT - 1 DOWNTO 0

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16 in
from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in from
the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32 in
from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in from
the right

Volume 4: Base IA-32 Instruction Reference 4:363

SHLD—Double Precision Shift Left (Continued)

DO
BIT[DEST, i]  BIT[SRC, i - COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:364 Volume 4: Base IA-32 Instruction Reference

SHRD—Double Precision Shift Right

Description

Shifts the first operand (destination operand) to the right the number of bits specified
by the third operand (count operand). The second operand (source operand) provides
bits to shift in from the left (starting with the most significant bit of the destination
operand). The destination operand can be a register or a memory location; the source
operand is a register. The count operand is an unsigned integer that can be an
immediate byte or the contents of the CL register. Only bits 0 through 4 of the count
are used, which masks the count to a value between 0 and 31. If the count is greater
than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred;
otherwise, it is cleared. If the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT  COUNT MOD 32;
SIZE  OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT  SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF  BIT[DEST, COUNT - 1]; (* last bit shifted out on exit *)
FOR i  0 TO SIZE - 1 - COUNT

DO
BIT[DEST, i]  BIT[DEST, i - COUNT];

OD;
FOR i  SIZE - COUNT TO SIZE - 1

DO
BIT[DEST,i]  BIT[inBits,i+COUNT - SIZE];

OD;
FI;

FI;

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from r16 in
from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16 in from
the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from r32 in
from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32 in from
the left

Volume 4: Base IA-32 Instruction Reference 4:365

SHRD—Double Precision Shift Right (Continued)

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the
destination operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:366 Volume 4: Base IA-32 Instruction Reference

SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT.

Volume 4: Base IA-32 Instruction Reference 4:367

SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the LDT.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to
0s. With the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be
used in application programs. Also, this instruction can only be executed in protected
mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,SLDT);

DEST  LDTR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept SLDT results in an IA-32 Intercept

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of r/m32;
high-order 16 bits are undefined

4:368 Volume 4: Base IA-32 Instruction Reference

SLDT—Store Local Descriptor Table Register (Continued)

Real Address Mode Exceptions

#UD The SLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The SLDT instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:369

SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the
destination operand. The destination operand can be a 16-bit general-purpose register
or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0
are copied into the low-order 16 bits of the register and the upper 16 bits of the register
are undefined. With the destination operand is a memory location, the low-order 16 bits
of register CR0 are written to memory as a 16-bit quantity, regardless of the operand
size.

The SMSW instruction is only useful in operating-system software; however, it is not a
privileged instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on processors more recent than the Intel 286 should use
the MOV (control registers) instruction to load the machine status word.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,SMSW);

DEST  CR0[15:0]; (* MachineStatusWord *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16;
high-order 16 bits of r32 are undefined

4:370 Volume 4: Base IA-32 Instruction Reference

SMSW—Store Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:371

STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

Operation

CF  1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F9 STC Set CF flag

4:372 Volume 4: Base IA-32 Instruction Reference

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

Operation

DF  1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF  1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag

Volume 4: Base IA-32 Instruction Reference 4:373

STI—Set Interrupt Flag

Description

Sets the interrupt flag (IF) in the EFLAGS register. In the IA-32 System
Environment, after the IF flag is set, the processor begins responding to external
maskable interrupts after the next instruction is executed. If the STI instruction is
followed by a CLI instruction (which clears the IF flag) the effect of the STI instruction is
negated. In the Itanium System Environment, the processor will immediately
respond do interrupts after STI, unless execution of STI results in a trap or
intercept. External interrupts are enabled for IA-32 instructions if PSR.i and
(~CFLG.if or EFLAG.if).

The IF flag and the STI and CLI instruction have no affect on the generation of
exceptions and NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the
table) depending on the processor’s mode of operating and the CPL and IOPL of the
currently running program or procedure (top of the table).

Notes:
XDon't care.
NAction in Column 1 not taken.
YAction in Column 1 taken.

Operation

OLD_IF <- IF;

IF PE=0 (* Executing in real-address mode *)
THEN

IF  1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM=0 (* Executing in protected mode*)
THEN

IF CR4.PVI = 0
THEN

IF CPL <= IOPL
THEN IF <- 1
ELSE #GP(0);
FI;

ELSE (*PVI is 1 *)

Opcode Instruction Description

FB STI Set interrupt flag; interrupts enabled at the end of the next
instruction

PE = 0 1 1 1

VM = X 0 0 1

CPL X  IOPL > IOPL =3

IOPL X X X =3

IF  1 Y Y N Y

#GP(0) N N Y N

4:374 Volume 4: Base IA-32 Instruction Reference

STI—Set Interrupt Flag (Continued)

IF CPL = 3
THENSTI—Set Interrupt Flag (Continued)

IF IOPL < 3
THEN

IF VIP = 0
THEN VIF <- 1;
ELSE #GP(0);
FI;

ELSE (*IOPL = 3 *)
IF <- 1;

FI;
ELSE (*CPL < 3*)

IF IOPL < CPL THEN #GP(0); FI;
IF IOPL>=CPL OR IOPL=3 THEN IF <-1; FI;

FI;
FI;

ELSE (*Executing in Virtual-8086 Mode*)
IF IOPL = 3

THEN IF <- 1;
ELSE

IF CR4.VME = 0
THEN #GP(0);
ELSE

IF VIP = 1 (*virtual interrupt is pending*)
THEN #GP(0);
ELSE VIF <- 1;
FI;

FI;
FI;

FI;
FI;

FI;

IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF
THEN IA-32_Intercept(System_Flag,STI);

Flags Affected

The IF flag is set to 1.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Volume 4: Base IA-32 Instruction Reference 4:375

STI—Set Interrupt Flag (Continued)

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

4:376 Volume 4: Base IA-32 Instruction Reference

STOS/STOSB/STOSW/STOSD—Store String Data

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into
the destination operand. The destination operand is a memory location at the address
ES:EDI. (When the operand-size attribute is 16, the DI register is used as the
source-index register.) The ES segment cannot be overridden with a segment override
prefix.

The STOSB, STOSW, and STOSD mnemonics are synonyms of the byte, word, and
doubleword versions of the STOS instructions. They are simpler to use, but provide no
type or segment checking. (For the STOS instruction, “ES:EDI” must be explicitly
specified in the instruction.)

After the byte, word, or doubleword is transfer from the AL, AX, or EAX register to the
memory location, the EDI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
EDI register is incremented; if the DF flag is 1, the EDI register is decremented.) The
EDI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct, because data needs to be moved into the
AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—
Repeat String Operation Prefix” on page 4:337 for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST  AL;
THEN IF DF = 0

THEN (E)DI  1;
ELSE (E)DI  -1;

FI;
ELSE IF (word store)

THEN
DEST  AX;

THEN IF DF = 0
THEN DI  2;
ELSE DI  -2;

FI;
ELSE (* doubleword store *)

Opcode Instruction Description

AA STOS ES:(E)DI Store AL at address ES:(E)DI

AB STOS ES:DI Store AX at address ES:DI

AB STOS ES:EDI Store EAX at address ES:EDI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:DI

AB STOSD Store EAX at address ES:EDI

Volume 4: Base IA-32 Instruction Reference 4:377

STOS/STOSB/STOSW/STOSD—Store String Data (Continued)

DEST  EAX;
THEN IF DF = 0

THEN EDI  4;
ELSE EDI  -4;

FI;
FI;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:378 Volume 4: Base IA-32 Instruction Reference

STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand. The
destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the task state segment (TSS) for
the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied
into the lower 16 bits of the register and the upper 16 bits of the register are cleared to
0s. With the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed
in protected mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,STR);

DEST  TR(SegmentSelector);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a
nonwritable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The STR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The STR instruction is not recognized in virtual 8086 mode.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16

Volume 4: Base IA-32 Instruction Reference 4:379

SUB—Integer Subtraction

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand can
be a register or a memory location; the source operand can be an immediate, register,
or memory location. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The SUB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a borrow in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

Operation

DEST  DEST - SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

4:380 Volume 4: Base IA-32 Instruction Reference

SUB—Integer Subtraction (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:381

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second
operand (source 2 operand) and sets the SF, ZF, and PF status flags according to the
result. The result is then discarded.

Operation

TEMP  SRC1 AND SRC2;
SF  MSB(TEMP);
IF TEMP = 0

THEN ZF  0;
ELSE ZF  1;

FI:
PF  BitwiseXNOR(TEMP[0:7]);
CF  0;
OF  0;
(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the
result (see “Operation” above). The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result

4:382 Volume 4: Base IA-32 Instruction Reference

TEST—Logical Compare (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:383

UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to
explicitly generate an invalid opcode. The opcode for this instruction is reserved for this
purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,0F0B);

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all
operating modes).

Opcode Instruction Description

0F 0B UD2 Raise invalid opcode exception

4:384 Volume 4: Base IA-32 Instruction Reference

VERR, VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is
readable (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector for
the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not null.

• The selector must denote a descriptor within the bounds of the descriptor table
(GDT or LDT).

• The selector must denote the descriptor of a code or data segment (not that of a
system segment or gate).

• For the VERR instruction, the segment must be readable; the VERW instruction, the
segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be
greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as if the segment were loaded into the DS, ES,
FS, or GS register, and the indicated access (read or write) were performed. The
selector's value cannot result in a protection exception, enabling the software to
anticipate possible segment access problems.

Operation

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit))
THEN

ZF  0
Read segment descriptor;
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *)

OR (SegmentDescriptor(Type)  conforming code segment)
AND (CPL > DPL) OR (RPL > DPL)

THEN
ZF  0

ELSE
IF ((Instruction = VERR) AND (segment = readable))

OR ((Instruction = VERW) AND (segment = writable))
THEN

ZF  1;
FI;

FI;

Opcode Instruction Description

0F 00 /4 VERR r/m16 Set ZF=1 if segment specified with r/m16 can be read

0F 00 /5 VERW r/m16 Set ZF=1 if segment specified with r/m16 can be written

Volume 4: Base IA-32 Instruction Reference 4:385

VERR, VERW—Verify a Segment for Reading or Writing (Continued)

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is cleared to 0.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real address
mode.

Virtual 8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual 8086
mode.

4:386 Volume 4: Base IA-32 Instruction Reference

WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending unmasked floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding
a WAIT instruction after a floating-point instruction insures that any unmasked
floating-point exceptions the instruction may raise are handled before the processor
can modify the instruction’s results.

Operation
CheckPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Protected Mode Exceptions

#NM MP and TS in CR0 is set.

Real Address Mode Exceptions

#NM MP and TS in CR0 is set.

Virtual 8086 Mode Exceptions

#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.

Volume 4: Base IA-32 Instruction Reference 4:387

WBINVD—Write-Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory,
invalidates (flushes) the internal caches, and issues a special-function bus cycle that
directs external caches to also write back modified data.

After executing this instruction, the processor does not wait for the external caches to
complete their write-back and flushing operations before proceeding with instruction
execution. It is the responsibility of hardware to respond to the cache write-back and
flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also a serializing instruction.

In situations where cache coherency with main memory is not a concern, software can
use the INVD instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WBINVD);

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Opcode Instruction Description

0F 09 WBINVD Write-back and flush Internal caches; initiate writing-back and
flushing of external caches.

4:388 Volume 4: Base IA-32 Instruction Reference

WBINVD—Write-Back and Invalidate Cache (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The WBINVD instruction cannot be executed at the virtual 8086
mode.

Intel Architecture Compatibility

The WDINVD instruction implementation-dependent; its function may be implemented
differently on future Intel architecture processors. The instruction is not supported on
Intel architecture processors earlier than the Intel486 processor.

Volume 4: Base IA-32 Instruction Reference 4:389

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR)
specified in the ECX register. The high-order 32 bits are copied from EDX and the
low-order 32 bits are copied from EAX. Always set undefined or reserved bits in an MSR
to the values previously read.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) will be generated. Specifying a
reserved or unimplemented MSR address in ECX will also cause a general protection
exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated,
including the global entries see the Intel Architecture Software Developer’s Manual,
Volume 3).

The MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. See model-specific instructions for all the MSRs that can be
written to with this instruction and their addresses.

The WRMSR instruction is a serializing instruction.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,WRMSR);

MSR[ECX]  EDX:EAX;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

Real Address Mode Exceptions

#GP If the current privilege level is not 0

If the value in ECX specifies a reserved or unimplemented MSR
address.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX

4:390 Volume 4: Base IA-32 Instruction Reference

WRMSR—Write to Model Specific Register (Continued)

Virtual 8086 Mode Exceptions

#GP(0) The WRMSR instruction is not recognized in virtual 8086 mode.

Intel Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into
the Intel architecture with the Pentium processor. Execution of this instruction by an
Intel architecture processor earlier than the Pentium processor results in an invalid
opcode exception #UD.

Volume 4: Base IA-32 Instruction Reference 4:391

XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

This instruction can be used with a LOCK prefix.

Operation

IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.lc
THEN IA-32_Intercept(LOCK,XADD);

TEMP  SRC + DEST
SRC  DEST
DEST  TEMP

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result stored in the
destination operand.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

0F C0/r XADD r/m8,r8 Exchange r8 and r/m8; load sum into r/m8.

0F C1/r XADD r/m16,r16 Exchange r16 and r/m16; load sum into r/m16.

0F C1/r XADD r/m32,r32 Exchange r32 and r/m32; load sum into r/m32.

4:392 Volume 4: Base IA-32 Instruction Reference

XADD—Exchange and Add (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

Intel architecture processors earlier than the Intel486 processor do not recognize this
instruction. If this instruction is used, you should provide an equivalent code sequence
that runs on earlier processors.

Volume 4: Base IA-32 Instruction Reference 4:393

XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
When the operands are two registers, one of the registers must be the EAX or AX
register. If a memory operand is referenced, the LOCK# signal is automatically asserted
for the duration of the exchange operation, regardless of the presence or absence of
the LOCK prefix or of the value of the IOPL.

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See Chapter 5, Processor Management and Initialization, in
the Intel Architecture Software Developer’s Manual, Volume 3 for more information on
bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

Operation
IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc

THEN IA-32_Intercept(LOCK,XCHG);

TEMP  DEST
DEST  SRC
SRC  TEMP

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange r16 with AX

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange r32 with EAX

86 /r XCHG r/m8,r8 Exchange byte register with EA byte

86 /r XCHG r8,r/m8 Exchange byte register with EA byte

87 /r XCHG r/m16,r16 Exchange r16 with EA word

87 /r XCHG r16,r/m16 Exchange r16 with EA word

87 /r XCHG r/m32,r32 Exchange r32 with EA doubleword

87 /r XCHG r32,r/m32 Exchange r32 with EA doubleword

4:394 Volume 4: Base IA-32 Instruction Reference

XCHG—Exchange Register/Memory with Register (Continued)

IA-32_Intercept Lock Intercept – If an external atomic bus lock is required to
complete this operation and DCR.lc is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If either operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:395

XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as unsigned integer. The XLAT and XLATB instructions
get the base address of the table in memory from the DS:EBX registers (or the DS:BX
registers when the address-size attribute of 16 bits.) The XLAT instruction allows a
different segment register to be specified with a segment override. When assembled,
the XLAT and XLATB instructions produce the same machine code.

Operation

IF AddressSize = 16
THEN

AL  (DS:BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

AL  (DS:EBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Opcode Instruction Description

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL]

D7 XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]

4:396 Volume 4: Base IA-32 Instruction Reference

XLAT/XLATB—Table Look-up Translation (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:397

XOR—Logical Exclusive OR

Description

Performs a bitwise exclusive-OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location.

Operation

DEST  DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8

4:398 Volume 4: Base IA-32 Instruction Reference

XOR—Logical Exclusive OR (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

§

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:399

IA-32 Intel® MMX™ Technology Instruction
Reference 3

This section lists the IA-32 MMX technology instructions designed to increase
performance of multimedia intensive applications.

4:400 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

EMMS—Empty MMX State

Description

Sets the values of all the tags in the FPU tag word to empty (all ones). This operation
marks the MMX technology registers as available, so they can subsequently be used by
floating-point instructions. (See Figure 7-11 in the Intel Architecture Software
Developer’s Manual, Volume 1, for the format of the FPU tag word.) All other MMX
technology instructions (other than the EMMS instruction) set all the tags in FPU tag
word to valid (all zeros).

The EMMS instruction must be used to clear the MMX technology state at the end of all
MMX technology routines and before calling other procedures or subroutines that may
execute floating-point instructions. If a floating-point instruction loads one of the
registers in the FPU register stack before the FPU tag word has been reset by the EMMS
instruction, a floating-point stack overflow can occur that will result in a floating-point
exception or incorrect result.

Operation

FPUTagWord  FFFFH;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:401

MOVD—Move 32 Bits

Description

Copies doubleword from the source operand (second operand) to the destination
operand (first operand). Source and destination operands can be MMX technology
registers, memory locations, or 32-bit general-purpose registers; however, data cannot
be transferred from an MMX technology register to an MMX technology register, from
one memory location to another memory location, or from one general-purpose register
to another general-purpose register.

When the destination operand is an MMX technology register, the 32-bit source value is
written to the low-order 32 bits of the 64-bit MMX technology register and
zero-extended to 64 bits (see Figure 3-1). When the source operand is an MMX
technology register, the low-order 32 bits of the MMX technology register are written to
the 32-bit general-purpose register or 32-bit memory location selected with the
destination operand.

Operation

IF DEST is MMX register
THEN

DEST  ZeroExtend(SRC);
ELSE (* SRC is MMX register *)

DEST  LowOrderDoubleword(SRC);

Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move doubleword from r/m32 to mm.

0F 7E /r MOVD r/m32, mm Move doubleword from mm to r/m32.

Figure 3-1. Operation of the MOVD Instruction

3006010

MOVD m32, mm

MOVD mm, r32
63

31 0

32 31

mm

m32

15 0

0
00000000

b b b b r32

b b b b

63

mm

0
xxxxxxxx b b b

b b

b b

W

W

32 31

3 2 1 0

3

01

2 N+1

N+1

3 2 1 0

b3 2 1 0

4:402 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

MOVD—Move 32 Bits (continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:403

MOVQ—Move 64 Bits

Description

Copies quadword from the source operand (second operand) to the destination operand
(first operand). (See Figure 3-2.) A source or destination operand can be either an MMX
technology register or a memory location; however, data cannot be transferred from
one memory location to another memory location. Data can be transferred from one
MMX technology register to another MMX technology register.

Operation

DEST  SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move quadword from mm/m64 to mm.

0F 7F /r MOVQ mm/m64, mm Move quadword from mm to mm/m64.

Figure 3-2. Operation of the MOVQ Instruction

3006013

MOVQ mm, m64
63 48 47 32 31

mm

m64

15 0

1615 0
b7 b6 b5 b4 b3 b2 b1 b0

b7 b6

b5 b4

b3 b2

b1

W

W

W

Wb0
N+1

N+2

N+3

N+0

4:404 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

MOVQ—Move 64 Bits (continued)

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:405

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Packs and saturates signed words into bytes (PACKSSWB) or signed doublewords into
words (PACKSSDW). The PACKSSWB instruction packs 4 signed words from the
destination operand (first operand) and 4 signed words from the source operand
(second operand) into 8 signed bytes in the destination operand. If the signed value of
a word is beyond the range of a signed byte (that is, greater than 7FH or less than
80H), the saturated byte value of 7FH or 80H, respectively, is stored into the
destination.

The PACKSSDW instruction packs 2 signed doublewords from the destination operand
(first operand) and 2 signed doublewords from the source operand (second operand)
into 4 signed words in the destination operand (see Figure 3-3). If the signed value of a
doubleword is beyond the range of a signed word (that is, greater than 7FFFH or less
than 8000H), the saturated word value of 7FFFH or 8000H, respectively, is stored into
the destination.

The destination operand for either the PACKSSWB or PACKSSDW instruction must be an
MMX technology register; the source operand may be either an MMX technology
register or a quadword memory location.

Operation

IF instruction is PACKSSWB
THEN

DEST(7..0)  SaturateSignedWordToSignedByte DEST(15..0);
DEST(15..8)  SaturateSignedWordToSignedByte DEST(31..16);
DEST(23..16)  SaturateSignedWordToSignedByte DEST(47..32);
DEST(31..24)  SaturateSignedWordToSignedByte DEST(63..48);
DEST(39..32)  SaturateSignedWordToSignedByte SRC(15..0);
DEST(47..40)  SaturateSignedWordToSignedByte SRC(31..16);
DEST(55..48)  SaturateSignedWordToSignedByte SRC(47..32);
DEST(63..56)  SaturateSignedWordToSignedByte SRC(63..48);

Opcode Instruction Description

0F 63 /r PACKSSWB mm,
mm/m64

Packs and saturate pack 4 signed words from mm and 4
signed words from mm/m64 into 8 signed bytes in mm.

0F 6B /r PACKSSDW mm,
mm/m64

Pack and saturate 2 signed doublewords from mm and 2
signed doublewords from mm/m64 into 4 signed words in mm.

Figure 3-3. Operation of the PACKSSDW Instruction

mm/m64

mm

D C B A

D’ C’ B’ A’

mm

PACKSSDW mm, mm/m64

4:406 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

ELSE (* instruction is PACKSSDW *)
DEST(15..0)  SaturateSignedDoublewordToSignedWord DEST(31..0);
DEST(31..16)  SaturateSignedDoublewordToSignedWord DEST(63..32);
DEST(47..32)  SaturateSignedDoublewordToSignedWord SRC(31..0);
DEST(63..48)  SaturateSignedDoublewordToSignedWord SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:407

PACKSSWB/PACKSSDW—Pack with Signed Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:408 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PACKUSWB—Pack with Unsigned Saturation

Description

Packs and saturates 4 signed words from the destination operand (first operand) and 4
signed words from the source operand (second operand) into 8 unsigned bytes in the
destination operand (see Figure 3-4). If the signed value of a word is beyond the range
of an unsigned byte (that is, greater than FFH or less than 00H), the saturated byte
value of FFH or 00H, respectively, is stored into the destination.

The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a quadword memory location.

Operation

DEST(7..0)  SaturateSignedWordToUnsignedByte DEST(15..0);
DEST(15..8)  SaturateSignedWordToUnsignedByte DEST(31..16);
DEST(23..16)  SaturateSignedWordToUnsignedByte DEST(47..32);
DEST(31..24)  SaturateSignedWordToUnsignedByte DEST(63..48);
DEST(39..32)  SaturateSignedWordToUnsignedByte SRC(15..0);
DEST(47..40)  SaturateSignedWordToUnsignedByte SRC(31..16);
DEST(55..48)  SaturateSignedWordToUnsignedByte SRC(47..32);
DEST(63..56)  SaturateSignedWordToUnsignedByte SRC(63..48);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/m64 Pack and saturate 4 signed words from mm and 4 signed
words from mm/m64 into 8 unsigned bytes in mm.

Figure 3-4. Operation of the PACKUSWB Instruction

3006014

PACKUSWB mm, mm/m64
mm/m64 mm

mm

H

G

F

E

H'

G'

F'

E'

D'

C'

B'

A'

D

C

B

A

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:409

PACKUSWB—Pack with Unsigned Saturation (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:410 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDB/PADDW/PADDD—Packed Add

Description

Adds the individual data elements (bytes, words, or doublewords) of the source
operand (second operand) to the individual data elements of the destination operand
(first operand). (See Figure 3-5.) If the result of an individual addition exceeds the
range for the specified data type (overflows), the result is wrapped around, meaning
that the result is truncated so that only the lower (least significant) bits of the result are
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PADDB instruction adds the bytes of the source operand to the bytes of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 8 bits, the lower 8 bits of the result
are written to the destination operand and therefore the result wraps around.

The PADDW instruction adds the words of the source operand to the words of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 16 bits, the lower 16 bits of the result
are written to the destination operand and therefore the result wraps around.

The PADDD instruction adds the doublewords of the source operand to the doublewords
of the destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 32 bits, the lower 32 bits of the result
are written to the destination operand and therefore the result wraps around.

Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed bytes from mm/m64 to packed bytes in mm.

0F FD /r PADDW mm, mm/m64 Add packed words from mm/m64 to packed words in mm.

0F FE /r PADDD mm, mm/m64 Add packed doublewords from mm/m64 to packed
doublewords in mm.

Figure 3-5. Operation of the PADDW Instruction

3006015

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:411

PADDB/PADDW/PADDD—Packed Add (continued)

Note that like the integer ADD instruction, the PADDB, PADDW, and PADDD instructions
can operate on either unsigned or signed (two's complement notation) packed integers.
Unlike the integer instructions, none of the MMX technology instructions affect the
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags
to indicate when overflow has occurred, so the software must control the range of
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PADDB
THEN

DEST(7..0)  DEST(7..0) + SRC(7..0);
DEST(15..8)  DEST(15..8) + SRC(15..8);
DEST(23..16)  DEST(23..16)+ SRC(23..16);
DEST(31..24)  DEST(31..24) + SRC(31..24);
DEST(39..32)  DEST(39..32) + SRC(39..32);
DEST(47..40)  DEST(47..40)+ SRC(47..40);
DEST(55..48)  DEST(55..48) + SRC(55..48);
DEST(63..56)  DEST(63..56) + SRC(63..56);

ELSEIF instruction is PADDW
THEN

DEST(15..0)  DEST(15..0) + SRC(15..0);
DEST(31..16)  DEST(31..16) + SRC(31..16);
DEST(47..32)  DEST(47..32) + SRC(47..32);
DEST(63..48)  DEST(63..48) + SRC(63..48);

ELSE (* instruction is PADDD *)
DEST(31..0)  DEST(31..0) + SRC(31..0);
DEST(63..32)  DEST(63..32) + SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:412 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDB/PADDW/PADDD—Packed Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:413

PADDSB/PADDSW—Packed Add with Saturation

Description

Adds the individual signed data elements (bytes or words) of the source operand
(second operand) to the individual signed data elements of the destination operand
(first operand). (See Figure 3-6.) If the result of an individual addition exceeds the
range for the specified data type, the result is saturated. The destination operand must
be an MMX technology register; the source operand can be either an MMX technology
register or a quadword memory location.

The PADDSB instruction adds the signed bytes of the source operand to the signed
bytes of the destination operand and stores the results to the destination operand.
When an individual result is beyond the range of a signed byte (that is, greater than
7FH or less than 80H), the saturated byte value of 7FH or 80H, respectively, is written
to the destination operand.

The PADDSW instruction adds the signed words of the source operand to the signed
words of the destination operand and stores the results to the destination operand.
When an individual result is beyond the range of a signed word (that is, greater than
7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H, respectively,
is written to the destination operand.

Operation

IF instruction is PADDSB
THEN

DEST(7..0)  SaturateToSignedByte(DEST(7..0) + SRC (7..0)) ;
DEST(15..8)  SaturateToSignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16)  SaturateToSignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24)  SaturateToSignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32)  SaturateToSignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40)  SaturateToSignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48)  SaturateToSignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56)  SaturateToSignedByte(DEST(63..56) + SRC(63..56));

Opcode Instruction Description

0F EC /r PADDSB mm, mm/m64 Add signed packed bytes from mm/m64 to signed packed
bytes in mm and saturate.

0F ED /r PADDSW mm, mm/m64 Add signed packed words from mm/m64 to signed packed
words in mm and saturate.

Figure 3-6. Operation of the PADDSW Instruction

3006016

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

4:414 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDSB/PADDSW—Packed Add with Saturation (continued)

ELSE { (* instruction is PADDSW *)
DEST(15..0)  SaturateToSignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16)  SaturateToSignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32)  SaturateToSignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48)  SaturateToSignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:415

PADDSB/PADDSW—Packed Add with Saturation (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:416 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation

Description

Adds the individual unsigned data elements (bytes or words) of the packed source
operand (second operand) to the individual unsigned data elements of the packed
destination operand (first operand). (See Figure 3-7.) If the result of an individual
addition exceeds the range for the specified unsigned data type, the result is saturated.
The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PADDUSB instruction adds the unsigned bytes of the source operand to the
unsigned bytes of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of an unsigned byte (that is,
greater than FFH), the saturated unsigned byte value of FFH is written to the
destination operand.

The PADDUSW instruction adds the unsigned words of the source operand to the
unsigned words of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of an unsigned word (that is,
greater than FFFFH), the saturated unsigned word value of FFFFH is written to the
destination operand.

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/m64 Add unsigned packed bytes from mm/m64 to unsigned
packed bytes in mm and saturate.

0F DD /r PADDUSW mm, mm/m64 Add unsigned packed words from mm/m64 to unsigned
packed words in mm and saturate.

Figure 3-7. Operation of the PADDUSB Instruction

3006017

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ + + ++ +

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:417

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Operation

IF instruction is PADDUSB
THEN

DEST(7..0)  SaturateToUnsignedByte(DEST(7..0) + SRC (7..0));
DEST(15..8)  SaturateToUnsignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16)  SaturateToUnsignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24)  SaturateToUnsignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32)  SaturateToUnsignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40)  SaturateToUnsignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48)  SaturateToUnsignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56)  SaturateToUnsignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDUSW *)
DEST(15..0)  SaturateToUnsignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16)  SaturateToUnsignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32)  SaturateToUnsignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48)  SaturateToUnsignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:418 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation (continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:419

PAND—Logical AND

Description

Performs a bitwise logical AND operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location
(see Figure 3-8). The source operand can be an MMX technology register or a quadword
memory location; the destination operand must be an MMX technology register. Each
bit of the result of the PAND instruction is set to 1 if the corresponding bits of the
operands are both 1; otherwise it is made zero

Operation

DEST  DEST AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND quadword from mm/m64 to quadword in mm.

Figure 3-8. Operation of the PAND Instruction

3006019

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

&

4:420 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PAND—Logical AND (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:421

PANDN—Logical AND NOT

Description

Performs a bitwise logical NOT on the quadword destination operand (first operand).
Then, the instruction performs a bitwise logical AND operation on the inverted
destination operand and the quadword source operand (second operand). (See
Figure 3-9.) Each bit of the result of the AND operation is set to one if the
corresponding bits of the source and inverted destination bits are one; otherwise it is
set to zero. The result is stored in the destination operand location.

The source operand can be an MMX technology register or a quadword memory
location; the destination operand must be an MMX technology register.

Operation

DEST (NOT DEST) AND SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 AND quadword from mm/m64 to NOT quadword in mm.

Figure 3-9. Operation of the PANDN Instruction

~

&
m/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

4:422 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PANDN—Logical AND NOT (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:423

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal

Description

Compares the individual data elements (bytes, words, or doublewords) in the
destination operand (first operand) to the corresponding data elements in the source
operand (second operand). (See Figure 3-10.) If a pair of data elements are equal, the
corresponding data element in the destination operand is set to all ones; otherwise, it is
set to all zeros. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPEQB instruction compares the bytes in the destination operand to the
corresponding bytes in the source operand, with the bytes in the destination operand
being set according to the results.

The PCMPEQW instruction compares the words in the destination operand to the
corresponding words in the source operand, with the words in the destination operand
being set according to the results.

The PCMPEQD instruction compares the doublewords in the destination operand to the
corresponding doublewords in the source operand, with the doublewords in the
destination operand being set according to the results.

Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed bytes in mm/m64 with packed bytes in mm for
equality.

0F 75 /r PCMPEQW mm, mm/m64 Compare packed words in mm/m64 with packed words in mm for
equality.

0F 76 /r PCMPEQD mm, mm/m64 Compare packed doublewords in mm/m64 with packed
doublewords in mm for equality.

Figure 3-10. Operation of the PCMPEQW Instruction

3006020

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

== ==== ==

4:424 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

Operation

IF instruction is PCMPEQB
THEN

IF DEST(7..0) = SRC(7..0)
THEN DEST(7 0)  FFH;
ELSE DEST(7..0)  0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) = SRC(63..56)

THEN DEST(63..56)  FFH;
ELSE DEST(63..56)  0;

ELSE IF instruction is PCMPEQW
THEN

IF DEST(15..0) = SRC(15..0)
THEN DEST(15..0)  FFFFH;
ELSE DEST(15..0)  0;

* Continue comparison of second and third words in DEST and SRC *
IF DEST(63..48) = SRC(63..48)

THEN DEST(63..48)  FFFFH;
ELSE DEST(63..48)  0;

ELSE (* instruction is PCMPEQD *)
IF DEST(31..0) = SRC(31..0)

THEN DEST(31..0)  FFFFFFFFH;
ELSE DEST(31..0)  0;

IF DEST(63..32) = SRC(63..32)
THEN DEST(63..32)  FFFFFFFFH;
ELSE DEST(63..32)  0;

FI;

Flags Affected

None:

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:425

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal (continued)

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:426 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than

Description

Compare the individual signed data elements (bytes, words, or doublewords) in the
destination operand (first operand) to the corresponding signed data elements in the
source operand (second operand). (See Figure 3-11.) If a data element in the
destination operand is greater than its corresponding data element in the source
operand, the data element in the destination operand is set to all ones; otherwise, it is
set to all zeros. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand, with the bytes in the destination
operand being set according to the results.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand, with the words in the destination
operand being set according to the results.

The PCMPGTD instruction compares the signed doublewords in the destination operand
to the corresponding signed doublewords in the source operand, with the doublewords
in the destination operand being set according to the results.

Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/m64 Compare packed bytes in mm with packed bytes in mm/m64
for greater value.

0F 65 /r PCMPGTW mm, mm/m64 Compare packed words in mm with packed words in
mm/m64 for greater value.

0F 66 /r PCMPGTD mm, mm/m64 Compare packed doublewords in mm with packed
doublewords in mm/m64 for greater value.

Figure 3-11. Operation of the PCMPGTW Instruction

3006021

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

> >> >

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:427

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than
(continued)

Operation

IF instruction is PCMPGTB
THEN

IF DEST(7..0) > SRC(7..0)
THEN DEST(7 0)  FFH;
ELSE DEST(7..0)  0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) > SRC(63..56)

THEN DEST(63..56)  FFH;
ELSE DEST(63..56)  0;

ELSE IF instruction is PCMPGTW
THEN

IF DEST(15..0) > SRC(15..0)
THEN DEST(15..0)  FFFFH;
ELSE DEST(15..0) 0;

* Continue comparison of second and third bytes in DEST and SRC *
IF DEST(63..48) > SRC(63..48)

THEN DEST(63..48)  FFFFH;
ELSE DEST(63..48)  0;

ELSE { (* instruction is PCMPGTD *)
IF DEST(31..0) > SRC(31..0)

THEN DEST(31..0)  FFFFFFFFH;
ELSE DEST(31..0)  0;

IF DEST(63..32) > SRC(63..32)
THEN DEST(63..32)  FFFFFFFFH;
ELSE DEST(63..32)  0;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:428 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than
(continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:429

PMADDWD—Packed Multiply and Add

Description

Multiplies the individual signed words of the destination operand by the corresponding
signed words of the source operand, producing four signed, doubleword results (see
Figure 3-12). The two doubleword results from the multiplication of the high-order
words are added together and stored in the upper doubleword of the destination
operand; the two doubleword results from the multiplication of the low-order words are
added together and stored in the lower doubleword of the destination operand. The
destination operand must be an MMX technology register; the source operand may be
either an MMX technology register or a 64-bit memory location.

The PMADDWD instruction wraps around to 80000000H only when all four words of
both the source and destination operands are 8000H.

Operation

DEST(31..0)  (DEST(15..0)  SRC(15..0)) + (DEST(31..16)  SRC(31..16));
DEST(63..32)  (DEST(47..32)  SRC(47..32)) + (DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/m64 Multiply the packed words in mm by the packed words in
mm/m64. Add the 32-bit pairs of results and store in mm
as doubleword

Figure 3-12. Operation of the PMADDWD Instruction

* * **

01110001110001110111000111000111

1000000000000000 0000010000000000

1100100011100011 1001110000000000

+ +

mm

PMADDWD mm, mm/m64

mm/m64

mm

4:430 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMADDWD—Packed Multiply and Add (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:431

PMULHW—Packed Multiply High

Description

Multiplies the four signed words of the source operand (second operand) by the four
signed words of the destination operand (first operand), producing four signed,
doubleword, intermediate results (see Figure 3-13). The high-order word of each
intermediate result is then written to its corresponding word location in the destination
operand. The destination operand must be an MMX technology register; the source
operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0)  HighOrderWord(DEST(15..0)  SRC(15..0));
DEST(31..16)  HighOrderWord(DEST(31..16)  SRC(31..16));
DEST(47..32)  HighOrderWord(DEST(47..32)  SRC(47..32));
DEST(63..48)  HighOrderWord(DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F E5 /r PMULHW mm, mm/m64 Multiply the signed packed words in mm by the signed
packed words in mm/m64, then store the high-order word
of each doubleword result in mm.

Figure 3-13. Operation of the PMULHW Instruction

3006022

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

* ** *

4:432 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMULHW—Packed Multiply High (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:433

PMULLW—Packed Multiply Low

Description

Multiplies the four signed or unsigned words of the source operand (second operand)
with the four signed or unsigned words of the destination operand (first operand),
producing four doubleword, intermediate results (see Figure 3-14). The low-order word
of each intermediate result is then written to its corresponding word location in the
destination operand. The destination operand must be an MMX technology register; the
source operand may be either an MMX technology register or a 64-bit memory location.

Operation

DEST(15..0)  LowOrderWord(DEST(15..0)  SRC(15..0));
DEST(31..16)  LowOrderWord(DEST(31..16)  SRC(31..16));
DEST(47..32)  LowOrderWord(DEST(47..32)  SRC(47..32));
DEST(63..48)  LowOrderWord(DEST(63..48)  SRC(63..48));

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F D5 /r PMULLW mm,
mm/m64

Multiply the packed words in mm with the packed words in
mm/m64, then store the low-order word of each doubleword
result in mm.

Figure 3-14. Operation of the PMULLW Instruction

3006025

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

* ** *

4:434 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PMULLW—Packed Multiply Low (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:435

POR—Bitwise Logical OR

Description

Performs a bitwise logical OR operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location
(see Figure 3-15). The source operand can be an MMX technology register or a
quadword memory location; the destination operand must be an MMX technology
register. Each bit of the result is made 0 if the corresponding bits of both operands are
0; otherwise the bit is set to 1.

Operation

DEST  DEST OR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR quadword from mm/m64 to quadword in mm.

Figure 3-15. Operation of the POR Instruction.

3006024

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

4:436 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

POR—Bitwise Logical OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:437

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the
destination operand (first operand) to the left by the number of bits specified in the
unsigned count operand (second operand). (See Figure 3-16.) The result of the shift
operation is written to the destination operand. As the bits in the data elements are
shifted left, the empty low-order bits are cleared (set to zero). If the value specified by
the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX technology register; the count operand can
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSLLW instruction shifts each of the four words of the destination operand to the
left by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the two doublewords of the destination operand; and the PSLLQ instruction
shifts the 64-bit quadword in the destination operand. As the individual data elements
are shifted left, the empty low-order bit positions are filled with zeros.

Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in mm left by amount specified in mm/m64, while
shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in mm left by imm8, while shifting in zeros.

0F F2 /r PSLLD mm, mm/m64 Shift doublewords in mm left by amount specified in mm/m64,
while shifting in zeros.

0F 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm by imm8, while shifting in zeros.

0F F3 /r PSLLQ mm, mm/m64 Shift mm left by amount specified in mm/m64, while shifting in
zeros.

0F 73 /6 ib PSLLQ mm, imm8 Shift mm left by Imm8, while shifting in zeros.

Figure 3-16. Operation of the PSLLW Instruction

3006026

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

4:438 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Operation

IF instruction is PSLLW
THEN

DEST(15..0)  DEST(15..0) << COUNT;
DEST(31..16)  DEST(31..16) << COUNT;
DEST(47..32)  DEST(47..32) << COUNT;
DEST(63..48)  DEST(63..48) << COUNT;

ELSE IF instruction is PSLLD
THEN {

DEST(31..0)  DEST(31..0) << COUNT;
DEST(63..32)  DEST(63..32) << COUNT;

ELSE (* instruction is PSLLQ *)
DEST  DEST << COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:439

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:440 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRAW/PSRAD—Packed Shift Right Arithmetic

Description

Shifts the bits in the data elements (words or doublewords) in the destination operand
(first operand) to the right by the amount of bits specified in the unsigned count
operand (second operand). (See Figure 3-17.) The result of the shift operation is
written to the destination operand. The empty high-order bits of each element are filled
with the initial value of the sign bit of the data element. If the value specified by the
count operand is greater than 15 (for words) or 31 (for doublewords), each destination
data element is filled with the initial value of the sign bit of the element.

The destination operand must be an MMX technology register; the count operand
(source operand) can be either an MMX technology register, a 64-bit memory location,
or an 8-bit immediate.

The PSRAW instruction shifts each of the four words in the destination operand to the
right by the number of bits specified in the count operand; the PSRAD instruction shifts
each of the two doublewords in the destination operand. As the individual data
elements are shifted right, the empty high-order bit positions are filled with the sign
value.

Opcode Instruction Description

0F E1 /r PSRAW mm, mm/m64 Shift words in mm right by amount specified in mm/m64 while
shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in sign bits

0F E2 /r PSRAD mm, mm/m64 Shift doublewords in mm right by amount specified in mm/m64
while shifting in sign bits.

0F 72 /4 ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting in sign
bits.

Figure 3-17. Operation of the PSRAW Instruction

3006048

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:441

PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Operation
IF instruction is PSRAW

THEN
DEST(15..0)  SignExtend (DEST(15..0) >> COUNT);
DEST(31..16)  SignExtend (DEST(31..16) >> COUNT);
DEST(47..32)  SignExtend (DEST(47..32) >> COUNT);
DEST(63..48)  SignExtend (DEST(63..48) >> COUNT);

ELSE { (*instruction is PSRAD *)
DEST(31..0)  SignExtend (DEST(31..0) >> COUNT);
DEST(63..32)  SignExtend (DEST(63..32) >> COUNT);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

4:442 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRAW/PSRAD—Packed Shift Right Arithmetic (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:443

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the
destination operand (first operand) to the right by the number of bits specified in the
unsigned count operand (second operand). (See Figure 3-18.) The result of the shift
operation is written to the destination operand. As the bits in the data elements are
shifted right, the empty high-order bits are cleared (set to zero). If the value specified
by the count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a
quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX technology register; the count operand can
be either an MMX technology register, a 64-bit memory location, or an 8-bit immediate.

The PSRLW instruction shifts each of the four words of the destination operand to the
right by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the two doublewords of the destination operand; and the PSRLQ instruction
shifts the 64-bit quadword in the destination operand. As the individual data elements
are shifted right, the empty high-order bit positions are filled with zeros.

Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in mm right by amount specified in mm/m64
while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in mm right by imm8.

0F D2 /r PSRLD mm, mm/m64 Shift doublewords in mm right by amount specified in
mm/m64 while shifting in zeros.

0F 72 /2 ib PSRLD mm, imm8 Shift doublewords in mm right by imm8.

0F D3 /r PSRLQ mm, mm/m64 Shift mm right by amount specified in mm/m64 while
shifting in zeros.

0F 73 /2 ib PSRLQ mm, imm8 Shift mm right by imm8 while shifting in zeros.

Figure 3-18. Operation of the PSRLW Instruction

3006027

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

4:444 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Operation

IF instruction is PSRLW
THEN {

DEST(15..0)  DEST(15..0) >> COUNT;
DEST(31..16)  DEST(31..16) >> COUNT;
DEST(47..32)  DEST(47..32) >> COUNT;
DEST(63..48)  DEST(63..48) >> COUNT;

ELSE IF instruction is PSRLD
THEN {

DEST(31..0)  DEST(31..0) >> COUNT;
DEST(63..32)  DEST(63..32) >> COUNT;

ELSE (* instruction is PSRLQ *)
DEST  DEST >> COUNT;

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:445

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:446 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBB/PSUBW/PSUBD—Packed Subtract

Description

Subtracts the individual data elements (bytes, words, or doublewords) of the source
operand (second operand) from the individual data elements of the destination operand
(first operand). (See Figure 3-19.) If the result of a subtraction exceeds the range for
the specified data type (overflows), the result is wrapped around, meaning that the
result is truncated so that only the lower (least significant) bits of the result are
returned (that is, the carry is ignored).

The destination operand must be an MMX technology register; the source operand can
be either an MMX technology register or a quadword memory location.

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 8 bits, the lower 8 bits of the result
are written to the destination operand and therefore the result wraps around.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand and stores the results to the destination operand. When an
individual result is too large to be represented in 16 bits, the lower 16 bits of the result
are written to the destination operand and therefore the result wraps around.

The PSUBD instruction subtracts the doublewords of the source operand from the
doublewords of the destination operand and stores the results to the destination
operand. When an individual result is too large to be represented in 32 bits, the lower
32 bits of the result are written to the destination operand and therefore the result
wraps around.

Opcode Instruction Description

0F F8 /r PSUBB mm, mm/m64 Subtract packed bytes in mm/m64 from packed bytes in mm.

0F F9 /r PSUBW mm, mm/m64 Subtract packed words inmm/m64 from packed words in mm.

0F FA /r PSUBD mm, mm/m64 Subtract packed doublewords in mm/m64 from packed
doublewords in mm.

Figure 3-19. Operation of the PSUBW Instruction

3006028

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

– –– –

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:447

PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Note that like the integer SUB instruction, the PSUBB, PSUBW, and PSUBD instructions
can operate on either unsigned or signed (two's complement notation) packed integers.
Unlike the integer instructions, none of the MMX technology instructions affect the
EFLAGS register. With MMX technology instructions, there are no carry or overflow flags
to indicate when overflow has occurred, so the software must control the range of
values or else use the “with saturation” MMX technology instructions.

Operation

IF instruction is PSUBB
THEN

DEST(7..0)  DEST(7..0) - SRC(7..0);
DEST(15..8)  DEST(15..8) - SRC(15..8);
DEST(23..16)  DEST(23..16) - SRC(23..16);
DEST(31..24)  DEST(31..24) - SRC(31..24);
DEST(39..32)  DEST(39..32) - SRC(39..32);
DEST(47..40)  DEST(47..40) - SRC(47..40);
DEST(55..48)  DEST(55..48) - SRC(55..48);
DEST(63..56)  DEST(63..56) - SRC(63..56);

ELSEIF instruction is PSUBW
THEN

DEST(15..0)  DEST(15..0) - SRC(15..0);
DEST(31..16)  DEST(31..16) - SRC(31..16);
DEST(47..32)  DEST(47..32) - SRC(47..32);
DEST(63..48)  DEST(63..48) - SRC(63..48);

ELSE { (* instruction is PSUBD *)
DEST(31..0)  DEST(31..0) - SRC(31..0);
DEST(63..32)  DEST(63..32) - SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:448 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBB/PSUBW/PSUBD—Packed Subtract (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:449

PSUBSB/PSUBSW—Packed Subtract with Saturation

Description

Subtracts the individual signed data elements (bytes or words) of the source operand
(second operand) from the individual signed data elements of the destination operand
(first operand). (See Figure 3-20.) If the result of a subtraction exceeds the range for
the specified data type, the result is saturated. The destination operand must be an
MMX technology register; the source operand can be either an MMX technology register
or a quadword memory location.

The PSUBSB instruction subtracts the signed bytes of the source operand from the
signed bytes of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of a signed byte (that is,
greater than 7FH or less than 80H), the saturated byte value of 7FH or 80H,
respectively, is written to the destination operand.

The PSUBSW instruction subtracts the signed words of the source operand from the
signed words of the destination operand and stores the results to the destination
operand. When an individual result is beyond the range of a signed word (that is,
greater than 7FFFH or less than 8000H), the saturated word value of 7FFFH or 8000H,
respectively, is written to the destination operand.

Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/m64 Subtract signed packed bytes in mm/m64 from signed
packed bytes in mm and saturate.

0F E9 /r PSUBSW mm, mm/m64 Subtract signed packed words in mm/m64 from signed
packed words in mm and saturate.

Figure 3-20. Operation of the PSUBSW Instruction

3006029

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

– –– –

4:450 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Operation

IF instruction is PSUBSB
THEN

DEST(7..0)  SaturateToSignedByte(DEST(7..0) - SRC (7..0));
DEST(15..8)  SaturateToSignedByte(DEST(15..8) - SRC(15..8));
DEST(23..16)  SaturateToSignedByte(DEST(23..16) - SRC(23..16));
DEST(31..24)  SaturateToSignedByte(DEST(31..24) - SRC(31..24));
DEST(39..32)  SaturateToSignedByte(DEST(39..32) - SRC(39..32));
DEST(47..40)  SaturateToSignedByte(DEST(47..40) - SRC(47..40));
DEST(55..48)  SaturateToSignedByte(DEST(55..48) - SRC(55..48));
DEST(63..56)  SaturateToSignedByte(DEST(63..56) - SRC(63..56))

ELSE (* instruction is PSUBSW *)
DEST(15..0)  SaturateToSignedWord(DEST(15..0) - SRC(15..0));
DEST(31..16)  SaturateToSignedWord(DEST(31..16) - SRC(31..16));
DEST(47..32)  SaturateToSignedWord(DEST(47..32) - SRC(47..32));
DEST(63..48)  SaturateToSignedWord(DEST(63..48) - SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:451

PSUBSB/PSUBSW—Packed Subtract with Saturation (continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:452 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation

Description

Subtracts the individual unsigned data elements (bytes or words) of the source operand
(second operand) from the individual unsigned data elements of the destination
operand (first operand). (See Figure 3-21.) If the result of an individual subtraction
exceeds the range for the specified unsigned data type, the result is saturated. The
destination operand musts be an MMX technology register; the source operand can be
either an MMX technology register or a quadword memory location.

The PSUBUSB instruction subtracts the unsigned bytes of the source operand from the
unsigned bytes of the destination operand and stores the results to the destination
operand. When an individual result is less than zero (a negative value), the saturated
unsigned byte value of 00H is written to the destination operand.

The PSUBUSW instruction subtracts the unsigned words of the source operand from the
unsigned words of the destination operand and stores the results to the destination
operand. When an individual result is less than zero (a negative value), the saturated
unsigned word value of 0000H is written to the destination operand.

Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/m64 Subtract unsigned packed bytes in mm/m64 from
unsigned packed bytes in mm and saturate.

0F D9 /r PSUBUSW mm,
mm/m64

Subtract unsigned packed words in mm/m64 from
unsigned packed words in mm and saturate.

Figure 3-21. Operation of the PSUBUSB Instruction

3006030

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

– –––––– –

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:453

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(continued)

Operation

IF instruction is PSUBUSB
THEN

DEST(7..0)  SaturateToUnsignedByte (DEST(7..0 - SRC (7..0));
DEST(15..8)  SaturateToUnsignedByte (DEST(15..8) - SRC(15..8));
DEST(23..16)  SaturateToUnsignedByte (DEST(23..16) - SRC(23..16));
DEST(31..24)  SaturateToUnsignedByte (DEST(31..24) - SRC(31..24));
DEST(39..32)  SaturateToUnsignedByte (DEST(39..32) - SRC(39..32));
DEST(47..40)  SaturateToUnsignedByte (DEST(47..40) - SRC(47..40));
DEST(55..48)  SaturateToUnsignedByte (DEST(55..48) - SRC(55..48));
DEST(63..56)  SaturateToUnsignedByte (DEST(63..56) - SRC(63..56));

ELSE { (* instruction is PSUBUSW *)
DEST(15..0)  SaturateToUnsignedWord (DEST(15..0) - SRC(15..0));
DEST(31..16)  SaturateToUnsignedWord (DEST(31..16) - SRC(31..16));
DEST(47..32)  SaturateToUnsignedWord (DEST(47..32) - SRC(47..32));
DEST(63..48)  SaturateToUnsignedWord (DEST(63..48) - SRC(63..48));

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:454 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:455

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed
Data

Description

Unpacks and interleaves the high-order data elements (bytes, words, or doublewords)
of the destination operand (first operand) and source operand (second operand) into
the destination operand (see Figure 3-22). The low-order data elements are ignored.
The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a 64-bit memory location. When the source
data comes from a memory operand, the full 64-bit operand is accessed from memory,
but the instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source
operand and the four high-order bytes of the destination operand and writes them to
the destination operand.

The PUNPCKHWD instruction interleaves the two high-order words of the source
operand and the two high-order words of the destination operand and writes them to
the destination operand.

The PUNPCKHDQ instruction interleaves the high-order doubleword of the source
operand and the high-order doubleword of the destination operand and writes them to
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the
destination operand. With the PUNPCKHBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned words), and with the PUNPCKHWD
instruction, the high-order words are zero extended (unpacked into unsigned
doublewords).

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/m64 Interleave high-order bytes from mm and mm/m64 into mm.

0F 69 /r PUNPCKHWD mm,
mm/m64

Interleave high-order words from mm and mm/m64 into mm.

0F 6A /r PUNPCKHDQ mm, mm/m64 Interleave high-order doublewords from mm and mm/m64 into
mm.

Figure 3-22. High-order Unpacking and Interleaving of Bytes with the
PUNPCKHBW Instruction

3006031

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

4:456 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data
(continued)

Operation

IF instruction is PUNPCKHBW
THEN

DEST(7..0)  DEST(39..32);
DEST(15..8)  SRC(39..32);
DEST(23..16)  DEST(47..40);
DEST(31..24)  SRC(47..40);
DEST(39..32)  DEST(55..48);
DEST(47..40)  SRC(55..48);
DEST(55..48)  DEST(63..56);
DEST(63..56)  SRC(63..56);

ELSE IF instruction is PUNPCKHW
THEN

DEST(15..0)  DEST(47..32);
DEST(31..16)  SRC(47..32);
DEST(47..32)  DEST(63..48);
DEST(63..48)  SRC(63..48);

ELSE (* instruction is PUNPCKHDQ *)
DEST(31..0)  DEST(63..32)
DEST(63..32)  SRC(63..32);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:457

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

4:458 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data

Description

Unpacks and interleaves the low-order data elements (bytes, words, or doublewords) of
the destination and source operands into the destination operand (see Figure 3-23).
The destination operand must be an MMX technology register; the source operand may
be either an MMX technology register or a memory location. When source data comes
from an MMX technology register, the upper 32 bits of the register are ignored. When
the source data comes from a memory, only 32-bits are accessed from memory.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand
and the four low-order bytes of the destination operand and writes them to the
destination operand.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand
and the two low-order words of the destination operand and writes them to the
destination operand.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source
operand and the low-order doubleword of the destination operand and writes them to
the destination operand.

If the source operand is all zeros, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the
destination operand. With the PUNPCKLBW instruction the low-order bytes are zero
extended (that is, unpacked into unsigned words), and with the PUNPCKLWD
instruction, the low-order words are zero extended (unpacked into unsigned
doublewords).

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm,
mm/m32

Interleave low-order bytes from mm and mm/m64 into
mm.

0F 61 /r PUNPCKLWD mm,
mm/m32

Interleave low-order words from mm and mm/m64 into
mm.

0F 62 /r PUNPCKLDQ mm, mm/m32 Interleave low-order doublewords from mm and mm/m64
into mm.

Figure 3-23. Low-order Unpacking and Interleaving of Bytes with the
PUNPCKLBW Instruction

3006032

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 13 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:459

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data
(continued)

Operation

IF instruction is PUNPCKLBW
THEN

DEST(63..56) SRC(31..24);
DEST(55..48)  DEST(31..24);
DEST(47..40)  SRC(23..16);
DEST(39..32)  DEST(23..16);
DEST(31..24)  SRC(15..8);
DEST(23..16) DEST(15..8);
DEST(15..8)  SRC(7..0);
DEST(7..0)  DEST(7..0);

ELSE IF instruction is PUNPCKLWD
THEN

DEST(63..48)  SRC(31..16);
DEST(47..32)  DEST(31..16);
DEST(31..16)  SRC(15..0);
DEST(15..0)  DEST(15..0);

ELSE (* instruction is PUNPCKLDQ *)
DEST(63..32)  SRC(31..0);
DEST(31..0)  DEST(31..0);

FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4:460 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data
(continued)

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference 4:461

PXOR—Logical Exclusive OR

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the quadword source
(second) and destination (first) operands and stores the result in the destination
operand location (see Figure 3-24). The source operand can be an MMX technology
register or a quadword memory location; the destination operand must be an MMX
technology register. Each bit of the result is 1 if the corresponding bits of the two
operands are different; each bit is 0 if the corresponding bits of the operands are the
same.

Operation

DEST  DEST XOR SRC;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR quadword from mm/m64 to quadword in mm.

Figure 3-24. Operation of the PXOR Instruction

3006033

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

^

4:462 Volume 4: IA-32 Intel® MMX™ Technology Instruction Reference

PXOR—Logical Exclusive OR (continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space
from 0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

§

Volume 4: IA-32 SSE Instruction Reference 4:463

IA-32 SSE Instruction Reference 4

4.1 IA-32 SSE Instructions

This section lists the IA-32 SSE instructions designed to increase performance of IA-32
3D and floating-point intensive applications. For details on SSE please refer to the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

4.2 About the Intel® SSE Architecture

The Intel SSE architecture accelerates performance of 3D graphics applications over the
current P6 generation of the Pentium Pro, Pentium II and Pentium III processors. The
programming model is similar to the MMX technology model except that instructions
now operate on new packed floating-point data types which contain four
single-precision floating-point numbers.

The Intel SSE architecture introduces new general purpose floating-point instructions,
which operate on a new set of eight 128-bit SSE registers. This gives the programmer
the ability to develop algorithms that can finely mix packed single-precision
floating-point and integer using both SSE and MMX technology instructions respectively.
In addition to these instructions, the Intel SSE architecture also provides new
instructions to control cacheability of all MMX technology data types. These include
ability to stream data into and from the processor while minimizing pollution of the
caches and the ability to prefetch data before it is actually used. The main focus of
packed floating-point instructions is the acceleration of 3D geometry. The new definition
also contains additional SIMD Integer instructions to accelerate 3D rendering and video
encoding and decoding. Together with the cacheability control instruction, this
combination enables the development of new algorithms that can significantly
accelerate 3D graphics.

The new SSE state requires OS support for saving and restoring the new state during a
context switch. A new set of extended FSAVE/FRSTOR instructions will permit
saving/restoring new and existing state for applications and OS. To make use of these
new instructions, an application must verify that the processor supports the Intel SSE
architecture and the operating system supports this new extension. If both the
extension and support is enabled, then the software application can use the new
features.

The SSE instruction set is fully compatible with all software written for Intel architecture
microprocessors. All existing software continues to run correctly, without modification,
on microprocessors that incorporate the Intel SSE architecture, as well as in the
presence of existing and new applications that incorporate this technology.

4:464 Volume 4: IA-32 SSE Instruction Reference

4.3 Single Instruction Multiple Data

The Intel SSE architecture uses the Single Instruction Multiple Data (SIMD) technique.
This technique speeds up software performance by processing multiple data elements
in parallel, using a single instruction. The Intel SSE architecture supports operations on
packed single-precision floating-point data types, and the additional SIMD Integer
instructions support operations on packed quadrate data types (byte, word, or
double-word). This approach was chosen because most 3D graphics and DSP
applications have the following characteristics:

• Inherently parallel

• Wide dynamic range, hence floating-point based

• Regular and re-occurring memory access patterns

• Localized re-occurring operations performed on the data

• Data independent control flow

The Intel SSE architecture is 100% compatible with the IEEE Standard 754 for Binary
Floating-point Arithmetic. The SSE instructions are accessible from all IA execution
modes: Protected mode, Real address mode, and Virtual 8086 mode.New Features

The Intel SSE architecture provides the following new features, while maintaining
backward compatibility with all existing Intel architecture microprocessors, IA
applications and operating systems.

• New data type

• Eight SSE registers

• Enhanced instruction set

The Intel SSE architecture can enhance the performance of applications that use these
features.

4.4 New Data Types

The principal data type of the Intel SSE architecture is a packed single-precision
floating-point operand, specifically:

• Four 32-bit single-precision (SP) floating-point numbers (Figure 4-1).

The SIMD Integer instructions will operate on the packed byte, word or doubleword
data types. The prefetch instruction works on typeless data of size 32 bytes or greater.

Figure 4-1. Packed Single-FP Data Type

Packed Single-FP

127 96 95 65 63 32 31 0

Volume 4: IA-32 SSE Instruction Reference 4:465

4.5 SSE Registers

The Intel SSE architecture provides eight 128-bit general purpose registers, each of
which can be directly addressed. These registers are new state, and require support
from the operating system to use them.

The SSE registers can hold packed 128-bit data. The SSE instructions access the SSE
registers directly using the registers names XMM0 to XMM7 (Figure 4-2).

SSE registers can be used to perform calculation on data. They cannot be used to
address memory; addressing is accomplished by using the integer registers and
existing IA addressing modes.

The contents of SSE registers are cleared upon reset.

There is a new control/status register MXCSR which is used to mask/unmask numerical
exception handling, to set rounding modes, to set flush-to-zero mode, and to view
status flags.

4.6 Extended Instruction Set

The Intel SSE architecture supplies a rich set of instructions that operate on either all or
the least significant pairs of packed data operands, in parallel. The packed instructions
operate on a pair of operands as shown in Figure 4-3 while scalar instructions always
operate on the least significant pair of the two operands as shown in Figure 4-4; for
scalar operations, the three upper components from the first operand are passed
through to the destination. In general, the address of a memory operand has to be
aligned on a 16-byte boundary for all instructions, except for unaligned loads and
stores.

Figure 4-2. SSE Register Set

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

4:466 Volume 4: IA-32 SSE Instruction Reference

4.6.1 Instruction Group Review

4.6.1.1 Arithmetic Instructions

Packed/Scalar Addition and Subtraction
The ADDPS (Add packed single-precision floating-point) and SUBPS (Subtract packed
single-precision floating-point) instructions add or subtract four pairs of packed
single-precision floating-point operands.

The ADDSS (Add scalar single-precision floating-point) and SUBSS (Subtract scalar
single-precision floating-point) instructions add or subtract the least significant pair of
packed single-precision floating-point operands; the upper three fields are passed
through from the source operand.

Packed/Scalar Multiplication and Division
The MULPS (Multiply packed single-precision floating-point) instruction multiplies four
pairs of packed single-precision floating-point operands.

The MULSS (Multiply scalar single-precision floating-point) instruction multiplies the
least significant pair of packed single-precision floating-point operands; the upper three
fields are passed through from the source operand.

Figure 4-3. Packed Operation

Figure 4-4. Scalar Operation

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 op Y1 (SP) X2 op Y2 (SP) X3 op Y3 (SP) X4 op Y4 (SP)

OPOPOPOP

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2 (SP) Y3 (SP) Y4 (SP)

X1 (SP) X2 (SP) X3 (SP) X4 op Y4 (SP)

OP

Volume 4: IA-32 SSE Instruction Reference 4:467

The DIVPS (Divide packed single-precision floating-point) instruction divides four pairs
of packed single-precision floating-point operands.

The DIVSS (Divide scalar single-precision floating-point) instruction divides the least
significant pair of packed single-precision floating-point operands; the upper three
fields are passed through from the source operand.

Packed/Scalar Square Root
The SQRTPS (Square root packed single-precision floating-point) instruction returns the
square root of the packed four single-precision floating-point numbers from the source
to a destination register.

The SQRTSS (Square root scalar single-precision floating-point) instruction returns the
square root of the least significant component of the packed single-precision
floating-point numbers from source to a destination register; the upper three fields are
passed through from the source operand.

Packed Maximum/Minimum
The MAXPS (Maximum packed single-precision floating-point) instruction returns the
maximum of each pair of packed single-precision floating-point numbers into the
destination register.

The MAXSS (Maximum scalar single-precision floating-point) instructions returns the
maximum of the least significant pair of packed single-precision floating-point numbers
into the destination register; the upper three fields are passed through from the source
operand, to the destination register.

The MINPS (Minimum packed single-precision floating-point) instruction returns the
minimum of each pair of packed single-precision floating-point numbers into the
destination register.

The MINSS (Minimum scalar single-precision floating-point) instruction returns the
minimum of the least significant pair of packed single-precision floating-point numbers
into the destination register; the upper three fields are passed through from the source
operand, to the destination register

4.6.1.2 Logical Instructions

The ANDPS (Bit-wise packed logical AND for single-precision floating-point) instruction
returns a bitwise AND between the two operands.

The ANDNPS (Bit-wise packed logical AND NOT for single-precision floating-point)
instruction returns a bitwise AND NOT between the two operands.

The ORPS (Bit-wise packed logical OR for single-precision floating-point) instruction
returns a bitwise OR between the two operands.

The XORPS (Bit-wise packed logical XOR for single-precision floating-point) instruction
returns a bitwise XOR between the two operands.

4:468 Volume 4: IA-32 SSE Instruction Reference

4.6.1.3 Compare Instructions

The CMPPS (Compare packed single-precision floating-point) instruction compares four
pairs of packed single-precision floating-point numbers using the immediate operand as
a predicate, returning per SP field an all “1” 32-bit mask or an all “0” 32-bit mask as a
result. The instruction supports a full set of 12 conditions: equal, less than, less than
equal, greater than, greater than or equal, unordered, not equal, not less than, not less
than or equal, not greater than, not greater than or equal, ordered.

The CMPSS (Compare scalar single-precision floating-point) instruction compares the
least significant pairs of packed single-precision floating-point numbers using the
immediate operand as a predicate (same as CMPPS), returning per SP field an all “1”
32-bit mask or an all “0” 32-bit mask as a result.

The COMISS (Compare scalar single-precision floating-point ordered and set EFLAGS)
instruction compares the least significant pairs of packed single-precision floating-point
numbers and sets the ZF,PF,CF bits in the EFLAGS register (the OF, SF and AF bits are
cleared).

The UCOMISS (Unordered compare scalar single-precision floating-point ordered and
set EFLAGS) instruction compares the least significant pairs of packed single-precision
floating-point numbers and sets the ZF,PF,CF bits in the EFLAGS register as described
above (the OF, SF and AF bits are cleared).

4.6.1.4 Shuffle Instructions

The SHUFPS (Shuffle packed single-precision floating-point) instruction is able to
shuffle any of the packed four single-precision floating-point numbers from one source
operand to the lower two destination fields; the upper two destination fields are
generated from a shuffle of any of the four SP FP numbers from the second source
operand (Figure 4-5). By using the same register for both sources, SHUFPS can return
any combination of the four SP FP numbers from this register.

The UNPCKHPS (Unpacked high packed single-precision floating-point) instruction
performs an interleaved unpack of the high-order data elements of first and second
packed single-precision floating-point operands. It ignores the lower half part of the

Figure 4-5. Packed Shuffle Operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

Volume 4: IA-32 SSE Instruction Reference 4:469

sources (Figure 4-6). When unpacking from a memory operand, the full 128-bit
operand is accessed from memory but only the high order 64 bits are utilized by the
instruction.

The UNPCKLPS (Unpacked low packed single-precision floating-point) instruction
performs an interleaved unpack of the low-order data elements of first and second
packed single-precision floating-point operands. It ignores the higher half part of the
sources (Figure 4-7). When unpacking from a memory operand, the full 128-bit
operand is accessed from memory but only the low order 64 bits are utilized by the
instruction.

4.6.1.5 Conversion Instructions

These instructions support packed and scalar conversions between 128-bit SSE
registers and either 64-bit integer MMX technology registers or 32-bit integer IA-32
registers. The packed versions behave identically to original MMX technology
instructions, in the presence of x87-FP instructions, including:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

• Use of EMMS for transition from MMX technology to x87-FP.

Figure 4-6. Unpack High Operation

Figure 4-7. Unpack Low Operation

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y4 X4 Y3 X3

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y2 X2 Y1 X1

4:470 Volume 4: IA-32 SSE Instruction Reference

The CVTPI2PS (Convert packed 32-bit integer to packed single-precision floating-point)
instruction converts two 32-bit signed integers in a MMX technology register to the two
least significant single-precision floating-point numbers; when the conversion is
inexact, the rounded value according to the rounding mode in MXCSR is returned. The
upper two significant numbers in the destination register are retained.

The CVTSI2SS (Convert scalar 32-bit integer to scalar single-precision floating-point)
instruction converts a 32-bit signed integer in a MMX technology register to the least
significant single-precision floating-point number; when the conversion is inexact, the
rounded value according to the rounding mode in MXCSR is returned. The upper three
significant numbers in the destination register are retained.

The CVTPS2PI (Convert packed single-precision floating-point to packed 32-bit integer)
instruction converts the two least significant single-precision floating-point numbers to
two 32-bit signed integers in a MMX technology register; when the conversion is
inexact, the rounded value according to the rounding mode in MXCSR is returned. The
CVTTPS2PI (Convert truncate packed single-precision floating-point to packed 32-bit
integer) instruction is similar to CVTPS2PI except if the conversion is inexact, in which
case the truncated result is returned.

The CVTSS2SI (Convert scalar single-precision floating-point to a 32-bit integer)
instruction converts the least significant single-precision floating-point number to a
32-bit signed integer in an Intel architecture 32-bit integer register; when the
conversion is inexact, the rounded value according to the rounding mode in MXCSR is
returned.The CVTTSS2SI (Convert truncate scalar single-precision floating-point to
scalar 32-bit integer) instruction is similar to CVTSS2SI except if the conversion is
inexact, the truncated result is returned.

4.6.1.6 Data Movement Instructions

The MOVAPS (Move aligned packed single-precision floating-point) instruction transfers
128-bits of packed data from memory to SSE registers and vice versa, or between SSE
registers. The memory address is aligned to 16-byte boundary; if not then a general
protection exception will occur.

The MOVUPS (Move unaligned packed single-precision floating-point) instruction
transfers 128-bits of packed data from memory to SSE registers and vice versa, or
between SSE registers. No assumption is made for alignment.

The MOVHPS (Move aligned high packed single-precision floating-point) instruction
transfers 64-bits of packed data from memory to the upper two fields of a SSE register
and vice versa. The lower field is left unchanged.

The MOVLPS (Move aligned low packed single-precision floating-point) instruction
transfers 64-bits of packed data from memory to the lower two fields of a SSE register
and vice versa. The upper field is left unchanged.

The MOVMSKPS (Move mask packed single-precision floating-point) instruction
transfers the most significant bit of each of the four packed single-precision
floating-point number to an IA integer register. This 4-bit value can then be used as a
condition to perform branching.

Volume 4: IA-32 SSE Instruction Reference 4:471

The MOVSS (Move scalar single-precision floating-point) instruction transfers a single
32-bit floating-point number from memory to a SSE register or vice versa, and between
registers.

4.6.1.7 State Management Instructions

The LDMXCSR (Load SSE Control and Status Register) instruction loads the SSE control
and status register from memory. STMXCSR (Store SSE Control and Status Register)
instruction stores the SSE control and status word to memory.

The FXSAVE instruction saves FP and MMX technology state and SSE state to memory.
Unlike FSAVE, FXSAVE does not clear the x87-FP state. FXRSTOR loads FP and MMX
technology state and SSE state from memory.

4.6.1.8 Additional SIMD Integer Instructions

Similar to the conversions instructions discussed in Section 4.6.1.5, “Conversion
Instructions” on page 4:469, these SIMD Integer instructions also behave identically to
original MMX technology instructions, in the presence of x87-FP instructions.

The PAVGB/PAVGW (Average unsigned source sub-operands, without incurring a loss in
precision) instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register. The results of the add are then each
independently right shifted right by one bit position. The high order bits of each
element are filled with the carry bits of the sums. To prevent cumulative round-off
errors, an averaging is performed. The low order bit of each final shifted result is set to
1 if at least one of the two least significant bits of the intermediate unshifted shifted
sum is 1.

The PEXTRW (Extract 16-bit word from MMX technology register) instruction moves the
word in a MMX technology register selected by the two least significant bits of the
immediate operand to the lower half of a 32-bit integer register; the upper word in the
integer register is cleared.

The PINSRW (Insert 16-bit word into MMX technology register) instruction moves the
lower word in a 32-bit integer register or 16-bit word from memory into one of the four
word locations in a MMX technology register, selected by the two least significant bits of
the immediate operand.

The PMAXUB/PMAXSW (Maximum of packed unsigned integer bytes or signed integer
words) instruction returns the maximum of each pair of packed elements into the
destination register.

The PMINUB/PMINSW (Minimum of packed unsigned integer bytes or signed integer
words) instructions returns the minimum of each pair of packed data elements into the
destination register.

The PMOVMSKB (Move Byte Mask from MMX technology register) instruction returns an
8-bit mask formed of the most significant bits of each byte of its source operand in a
MMX technology register to an IA integer register.

4:472 Volume 4: IA-32 SSE Instruction Reference

The PMULHUW (Unsigned high packed integer word multiply in MMX technology
register) instruction performs an unsigned multiply on each word field of the two source
MMX technology registers, returning the high word of each result to a MMX technology
register.

The PSADBW (Sum of absolute differences) instruction computes the absolute
difference for each pair of sub-operand byte sources and then accumulates the 8
differences into a single 16-bit result.

The PSHUFW (Shuffle packed integer word in MMX technology register) instruction
performs a full shuffle of any source word field to any result word field, using an 8-bit
immediate operand.

4.6.1.9 Cacheability Control Instructions

Data referenced by a programmer can have temporal (data will be used again) or
spatial (data will be in adjacent locations, e.g. same cache line) locality. Some
multimedia data types, such as the display list in a 3D graphics application, are
referenced once and not reused in the immediate future. We will refer to this data type
as non-temporal data. Thus the programmer does not want the application’s cached
code and data to be overwritten by this non-temporal data. The cacheability control
instructions enable the programmer to control caching so that non-temporal accesses
will minimize cache pollution.

In addition, the execution engine needs to be fed such that it does not become stalled
waiting for data. SSE instructions allow the programmer to prefetch data long before
it’s final use. These instructions are not architectural since they do not update any
architectural state, and are specific to each implementation. The programmer may have
to tune his application for each implementation to take advantage of these instructions.
These instructions merely provide a hint to the hardware, and they will not generate
exceptions or faults. Excessive use of prefetch instructions may be throttled by the
processor.

The following four instructions provide hints to the cache hierarchy which enables the
data to be prefetched to different levels of the cache hierarchy and avoid polluting
cache with non-temporal data.

The MASKMOVQ (Non-temporal byte mask store of packed integer in a MMX technology
register) instruction stores data from a MMX technology register to the location
specified by the EDI register. The most significant bit in each byte of the second MMX
technology mask register is used to selectively write the data of the first register on a
per-byte basis. The instruction is implicitly weakly-ordered, with all of the
characteristics of the WC memory type; successive non-temporal stores may not write
memory in program-order, do not write-allocate (i.e. the processor will not fetch the
corresponding cache line into the cache hierarchy, prior to performing the store), write
combine/collapse, and minimize cache pollution.

The MOVNTQ (Non-temporal store of packed integer in a MMX technology register)
instruction stores data from a MMX technology register to memory. The instruction is
implicitly weakly-ordered, does not write-allocate and minimizes cache pollution.

Volume 4: IA-32 SSE Instruction Reference 4:473

The MOVNTPS (Non-temporal store of packed single-precision floating-point)
instruction stores data from a SSE register to memory. The memory address must be
aligned to a 16-byte boundary; if it is not aligned, a general protection exception will
occur. The instruction is implicitly weakly-ordered, does not write-allocate and
minimizes cache pollution.

The main difference between a non-temporal store and a regular cacheable store is in
the write-allocation policy. The memory type of the region being written to can override
the non-temporal hint, leading to the following considerations:

• If the programmer specifies a non-temporal store to uncacheable memory, then the
store behaves like an uncacheable store; the non-temporal hint is ignored and the
memory type for the region is retained. Uncacheable as referred to here means that
the region being written to has been mapped with either a UC or WP memory type.
If the memory region has been mapped as WB, WT or WC, the non-temporal store
will implement weakly-ordered (WC) semantic behavior.

• If the programmer specifies a non-temporal store to cacheable memory, two cases
may result:

• If the data is present in the cache hierarchy, the instruction will ensure
consistency. A given processor may choose different ways to implement this;
some examples include: updating data in-place in the cache hierarchy while
preserving the memory type semantics assigned to that region, or evicting the
data from the caches and writing the new non-temporal data to memory (with
WC semantics).

• If the data is not present in the cache hierarchy, and the destination region is
mapped as WB, WT or WC, the transaction will be weakly ordered, and is
subject to all WC memory semantics. The non-temporal store will not write
allocate. Different implementations may choose to collapse and combine these
stores.

• In general, WC semantics require software to ensure coherence, with respect to
other processors and other system agents (such as graphics cards). Appropriate
use of synchronization and a fencing operation (see SFENCE, below) must be
performed for producer-consumer usage models. Fencing ensures that all system
agents have global visibility of the stored data; for instance, failure to fence may
result in a written cache line staying within a processor, and the line would not be
visible to other agents. For processors which implement non-temporal stores by
updating data in-place that already resides in the cache hierarchy, the destination
region should also be mapped as WC. Otherwise if mapped as WB or WT, there is
the potential for speculative processor reads to bring the data into the caches; in
this case, non-temporal stores would then update in place, and data would not be
flushed from the processor by a subsequent fencing operation.

• The memory type visible on the bus in the presence of memory type aliasing is
implementation specific. As one possible example, the memory type written to the
bus may reflect the memory type for the first store to this line, as seen in program
order; other alternatives are possible. This behavior should be considered reserved,
and dependency on the behavior of any particular implementation risks future
incompatibility.

The PREFETCH (Load 32 or greater number of bytes) instructions load either
non-temporal data or temporal data in the specified cache level. This access and the
cache level are specified as a hint. The prefetch instructions do not affect functional
behavior of the program and will be implementation specific.

4:474 Volume 4: IA-32 SSE Instruction Reference

The SFENCE (Store Fence) instruction guarantees that every store instruction that
precedes the store fence instruction in program order is globally visible before any store
instruction which follows the fence. The SFENCE instruction provides an efficient way of
ensuring ordering between routines that produce weakly-ordered results and routines
that consume this data.

4.7 IEEE Compliance

SSE floating-point computation is IEEE-754 compliant except when the control word is
set to flush to zero mode. IEEE-754 compliance includes support for single-precision
signed infinities, QNaNs, SNaNs, integer indefinite, signed zeros, denormals, masked
and unmasked exceptions. single-precision floating-point values are represented
identically both internally and in memory, and are of the following form:

This is a change from x87 floating-point which internally represents all numbers in
80-bit extended format. This change implies that x87-FP libraries re-written to use SSE
instructions may not produce results that are identical to the those of the x87-FP
implementation.Real Numbers and Floating-point Formats.

This section describes how real numbers are represented in floating-point format in the
processor. It also introduces terms such as normalized numbers, denormalized
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar
with floating-point processing techniques and the IEEE standards may wish to skip this
section.

4.7.1 Real Number System

As shown in Figure 4-8, the real-number system comprises the continuum of real
numbers from minus infinity () to plus infinity (+).

Sign Exponent Significand

31 30...23 22...0

Volume 4: IA-32 SSE Instruction Reference 4:475

Because the size and number of registers that any computer can have is limited, only a
subset of the real-number continuum can be used in real-number calculations. As
shown at the bottom of Figure 4-1, the subset of real numbers that a particular
processor supports represents an approximation of the real number system. The range
and precision of this real-number subset is determined by the format that the processor
uses to represent real numbers.

4.7.1.1 Floating-point Format

To increase the speed and efficiency of real-number computations, computers typically
represent real numbers in a binary floating-point format. In this format, a real number
has three parts: a sign, a significand, and an exponent. Figure 4-9 shows the binary
floating-point format that SSE data uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative
(1). The significand has two parts: a 1-bit binary integer (also referred to as the J-bit)
and a binary fraction. The J-bit is often not represented, but instead is an implied value.
The exponent is a binary integer that represents the base-2 power that the significand
is raised to.

Figure 4-8. Binary Real Number System

Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format.

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

VV VV

-100 -10 -1 0 1 10 100

VV VV

-100 -10 -1 0 1 10 100

4:476 Volume 4: IA-32 SSE Instruction Reference

Table 4-1 shows how the real number 178.125 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads
to the format that the processor uses. In this format, the binary real number is
normalized and the exponent is biased.

4.7.1.2 Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means
that except for zero, the significand is always made up of an integer of 1 and the
following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated,
the exponent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits
that can be accommodated in a significand of a given width. To summarize, a
normalized real number consists of a normalized significand that represents a real
number between 1 and 2 and an exponent that specifies the number’s binary point.

4.7.1.3 Biased Exponent

The processor represents exponents in a biased form. This means that a constant is
added to the actual exponent so that the biased exponent is always a positive number.
The value of the biasing constant depends on the number of bits available for
representing exponents in the floating-point format being used. The biasing constant is
chosen so that the smallest normalized number can be reciprocated without overflow.

Figure 4-9. Binary Floating-point Format

Table 4-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 10110010001E210000110

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
1 (Implied)

Sign

Integer or J-Bit

Exponent Significand

Fraction

Volume 4: IA-32 SSE Instruction Reference 4:477

4.7.1.4 Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the processor’s
floating-point format. These numbers and values are generally divided into the
following classes:

• Signed zeros

• Denormalized finite numbers

• Normalized finite numbers

• Signed infinities

• NaNs

• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-10 shows how the encodings for these numbers and non-numbers fit into the
real number continuum. The encodings shown here are for the IEEE single-precision
(32-bit) format, where the term “S” indicates the sign bit, “E” the biased exponent, and
“F” the fraction. (The exponent values are given in decimal.)

The processor can operate on and/or return any of these values, depending on the type
of computation being performed. The following sections describe these number and
non-number classes.

4.7.1.5 Signed Zeros

Zero can be represented as a +0 or a 0 depending on the sign bit. Both encodings are
equal in value. The sign of a zero result depends on the operation being performed and
the rounding mode being used. Signed zeros have been provided to aid in
implementing interval arithmetic. The sign of a zero may indicate the direction from
which underflow occurred, or it may indicate the sign of an that has been
reciprocated.

4.7.1.6 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized.
The normalized finite numbers comprise all the non-zero finite values that can be
encoded in a normalized real number format between zero and . In the format shown
in Figure 4-10, this group of numbers includes all the numbers with biased exponents
ranging from 1 to 25410 (unbiased, the exponent range is from 12610 to +12710).

4:478 Volume 4: IA-32 SSE Instruction Reference

When real numbers become very close to zero, the normalized-number format can no
longer be used to represent the numbers. This is because the range of the exponent is
not large enough to compensate for shifting the binary point to the right to eliminate
leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making
the integer bit (and perhaps other leading bits) of the significand zero. The numbers in
this range are called denormalized (or tiny) numbers. The use of leading zeros with
denormalized numbers allows smaller numbers to be represented. However, this
denormalization causes a loss of precision (the number of significant bits in the fraction
is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally
operates on normalized numbers and produces normalized numbers as results.
Denormalized numbers represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow.
Table 4-2 gives an example of gradual underflow in the denormalization process. Here
the single-real format is being used, so the minimum exponent (unbiased) is 12610.
The true result in this example requires an exponent of 12910 in order to have a
normalized number. Since 12910 is beyond the allowable exponent range, the result
is denormalized by inserting leading zeros until the minimum exponent of 12610 is
reached.

Figure 4-10. Real Numbers and NaNs

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand

True Result 0 129 1.01011100000...00

Denormalize 0 128 0.10101110000...00

Denormalize 0 127 0.01010111000...00

1 0 0
S E F

-0

1 0 -Denormalized
Finite

NaN

1 1...254 Any Value -Normalized
Finite

1 255 0 -

255 1.0XX2 -SNaN

255 1.1XX -QNaN

Notes
1. Sign bit ignored
2. Fractions must be non-zero

0 0 0
S E F

0 0

NaN

0 1...254 Any Value

0 255 0

X1 255 1.0XX2

255 1.1XX

+0

+Denormalized
Finite

+Normalized
Finite

+

+SNaN

+QNaN X1

X1

X1

Real Number and NaN Encodings For 32-bit Floating-point Format

-Denormalized Finite

-Normalized Finite -0- +
+Denormalized Finite

+Normalized Finite+0

0.XXX2 0.XXX2

Volume 4: IA-32 SSE Instruction Reference 4:479

In the extreme case, all the significant bits are shifted out to the right by leading zeros,
creating a zero result.

The processor deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect
cases when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for
computations.

4.7.1.7 Signed Infinities

The two infinities, + and , represent the maximum positive and negative real
numbers, respectively, that can be represented in the floating-point format. Infinity is
always represented by a zero significand (fraction and integer bit) and the maximum
biased exponent allowed in the specified format (for example, 25510 for the single-real
format).

The signs of infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, - is less than any finite number and +is
greater than any finite number. Arithmetic on infinities is always exact. Exceptions are
generated only when the use of an infinity as a source operand constitutes an invalid
operation.

Whereas denormalized numbers represent an underflow condition, the two infinity
numbers represent the result of an overflow condition. Here, the normalized result of a
computation has a biased exponent greater than the largest allowable exponent for the
selected result format.

4.7.1.8 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-10,
the encoding space for NaNs in the processor floating-point formats is shown above the
ends of the real number line. This space includes any value with the maximum
allowable biased exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through
most arithmetic operations without signaling an exception. SNaNs generally signal an
invalid-operation exception whenever they appear as operands in arithmetic operations.
Exceptions, as well as detailed information on how the processor handles NaNs, are
discussed in Section 4.7.2, “Operating on NaNs”.

Denormalize 0 126 0.00101011100...00

Denormal Result 0 126 0.00101011100...00

a. Expressed as an unbiased, decimal number.

Table 4-2. Denormalization Process

Operation Sign Exponenta Significand

4:480 Volume 4: IA-32 SSE Instruction Reference

4.7.1.9 Indefinite

In response to a masked invalid-operation floating-point exceptions, the indefinite
value QNAN is produced. The integer indefinite, which can be produced during
conversion from single-precision floating-point to 32-bit integer, is defined to be
80000000H.

4.7.2 Operating on NaNs

As was described in Section 4.7.1.8, “NaNs” on page 4:479, the Intel SSE architecture
supports two types of NaNs: SNaNs and QNaNs. An SNaN is any NaN value with its
most-significant fraction bit set to 0 and at least one other fraction bit set to 1. (If all
the fraction bits are set to 0, the value is an .) A QNaN is any NaN value with the
most-significant fraction bit set to 1. The sign bit of a NaN is not interpreted.

As a general rule, when a QNaN is used in one or more arithmetic floating-point
instructions, it is allowed to propagate through a computation. An SNaN on the other
hand causes a floating-point invalid-operation exception to be signaled. SNaNs are
typically used to trap or invoke an exception handler.

The invalid operation exception has a flag and a mask bit associated with it in MXCSR.
The mask bit determines how the an SNaN value is handled. If the invalid operation
mask bit is set, the SNaN is converted to a QNaN by setting the most-significant
fraction bit of the value to 1. The result is then stored in the destination operand and
the invalid operation flag is set. If the invalid operation mask is clear, an invalid
operation fault is signaled and no result is stored in the destination operand.

When a real operation or exception delivers a QNaN result, the value of the result
depends on the source operands, as shown in Table 4-3. The exceptions to the behavior
described in Table 4-3 are the MINPS and MAXPS instructions. If only one source is a
NaN for these instructions, the Src2 operand (either NaN or real value) is written to the
result; this differs from the behavior for other instructions as defined in Table 4-3,
which is to always write the NaN to the result, regardless of which source operand
contains the NaN. This approach for MINPS/MAXPS allows NaN data to be screened out
of the bounds-checking portion of an algorithm. If instead of this behavior, it is required
that the NaN source operand be returned, the min/max functionality can be emulated
using a sequence of instructions: comparison followed by AND, ANDN and OR.

In general Src1 and Src2 relate to an SSE instruction as follows:

ADDPS Src1, Src2/m128

Except for the rules given at the beginning of this section for encoding SNaNs and
QNaNs, software is free to use the bits in the significand of a NaN for any purpose. Both
SNaNs and QNaNs can be encoded to carry and store data, such as diagnostic
information.

Volume 4: IA-32 SSE Instruction Reference 4:481

4.8 Data Formats

4.8.1 Memory Data Formats

The Intel SSE architecture introduces a new packed 128-bit data type which consists of
4 single-precision floating-point numbers. The 128 bits are numbered 0 through 127.
Bit 0 is the least significant bit (LSB), and bit 127 is the most significant bit (MSB).

Bytes in the new data type format have consecutive memory addresses. The ordering is
always little endian, that is, the bytes with the lower addresses are less significant than
the bytes with the higher addresses.

4.8.2 SSE Register Data Formats

Values in SSE registers have the same format as a 128-bit quantity in memory. They
have two data access modes: 128-bit access mode and 32-bit access mode. The data
type corresponds directly to the single-precision format in the IEEE standard. Table 4-4
gives the precision and range of this data type. Only the fraction part of the significand
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized
finite numbers. The exponent of the single-precision data type is encoded in biased
format. The biasing constant is 127 for the single-precision format.

Table 4-3. Results of Operations with NAN Operands

Source Operands
NaN Result

(invalid operation exception is masked)

An SNaN and a QNaN. Src1 NaN (converted to QNaN if Src1 is an SNaN).

Two SNaNs. Src1 NaN (converted to QNaN)

Two QNaNs. Src1 QNaN

An SNaN and a real value. The SNaN converted into a QNaN.

A QNaN and a real value. The QNaN source operand.

An SNaN/QNaN value (for instructions
which take only one operand i.e.
RCPPS, RCPSS, RSQRTPS,
RSQRTSS)

The SNaN converted into a QNaN/the source QNaN.

Neither source operand is a NaN and a
floating-point invalid-operation
exception is signaled.

The default QNaN real indefinite.

Figure 4-11. Four Packed FP Data in Memory (at address 1000H)

02 16 34579 813 10111215 14

Byte 0

Memory Address 1000dMemory Address 1016d

Byte 15

4:482 Volume 4: IA-32 SSE Instruction Reference

Table 4-5 shows the encodings for all the classes of real numbers (that is, zero,
denormalized-finite, normalized-finite, and ) and NaNs for the single-real data-type. It
also gives the format for the real indefinite value, which is a QNaN encoding that is
generated by several SSE instructions in response to a masked floating-point
invalid-operation exception.

When storing real values in memory, single-real values are stored in 4 consecutive
bytes in memory. The 128-bit access mode is used for 128-bit memory accesses,
128-bit transfers between SSE registers, and all logical, unpack and arithmetic
instructions.The 32-bit access mode is used for 32-bit memory access, 32-bit transfers
between SSE registers, and all arithmetic instructions.

There are sixty-eight new instructions in SSE instruction set. This chapter describes the
packed and scalar floating-point instructions in alphabetical order, with a full description
of each instruction. The last two sections of this chapter describe the SIMD Integer
instructions and the cacheability control instructions.

Table 4-4. Precision and Range of SSE Datatype

Data Type Length
Precision

(Bits)

Approximate Normalized Range

Binary Decimal

Single-precision 32 24 2-126 to 2127 1.18  10-38 to 3.40  1038

Table 4-5. Real Number and NaN Encodings

Class Sign Biased Exponent
Significand

Integer1 Fraction

Positive + 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
 .
 .

00..01

1
.
.
1

11..11
 .
 .

00..00

+Denormals 0
.
.
0

00..00
 .
 .

00..00

0
.
.
0

11.11
 .
 .

00..01

+Zero 0 00..00 0 00..00

Negative Zero 1 00..00 0 00..00

Denormals 1
.
.
1

00..00
 .
 .

00..00

0
.
.
0

00..01
 .
 .

11..11

Normals 1
.
.
1

00..01
 .
 .

11..10

1
.
.
1

00..00
 .
 .

11..11

- 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

Real Indefinite
(QNaN)

1 11..11 1 10..00

Single 8 Bits  23 Bits 

Volume 4: IA-32 SSE Instruction Reference 4:483

4.9 Instruction Formats

The nature of the Intel SSE architecture allows the use of existing instruction formats.
Instructions use the ModR/M format and are preceded by the 0F prefix byte. In general,
operations are not duplicated to provide two directions (i.e. separate load and store
variants).

4.10 Instruction Prefixes

The SSE instructions use prefixes as specified in Table 4-6, Table 4-7, and Table 4-8.
The effect of multiple prefixes (more than one prefix from a group) is unpredictable and
may vary from processor to processor.

Applying a prefix, in a manner not defined in this document, is considered reserved
behavior. For example, Table 4-6 shows general behavior for most SSE instructions;
however, the application of a prefix (Repeat, Repeat NE, Operand Size) is reserved for
the following instructions:

ANDPS, ANDNPS, COMISS, FXRSTOR, FXSAVE, ORPS, LDMXCSR, MOVAPS, MOVHPS,
MOVLPS, MOVMSKPS, MOVNTPS, MOVUPS, SHUFPS, STMXCSR, UCOMISS, UNPCKHPS,
UNPCKLPS, XORPS.

Table 4-6. SSE Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions
Address Size Prefix (67H) Affects SSE instructions with memory operand

Ignored by SSE instructions without memory operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects SSE instructions with mem.operand
Ignored by SSE instructions without mem operand

Repeat Prefix (F3H) Affects SSE instructions

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-7. SIMD Integer Instructions – Behavior with Prefixes

Prefix Type Effect on Intel® MMX™ Technology Instructions

Address Size Prefix (67H) Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects Intel MMX technology instructions with mem. operand
Ignored by Intel MMX technology instructions without mem operand

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates invalid opcode exception.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions

Address Size Prefix (67H) Affects cacheability control instruction with a mem. operand
Ignored by cacheability control instruction w/o a mem. operand.

Operand Size (66H) Reserved and may result in unpredictable behavior.

4:484 Volume 4: IA-32 SSE Instruction Reference

4.11 Reserved Behavior and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved.
When bits are marked as reserved, it is essential for compatibility with future
processors that software treat these bits as having a future, though unknown, effect.
The behavior of reserved bits should be regarded as not only reserved, but
unpredictable. In general, reserved behavior may also be applied in other areas.
Software should follow these guidelines in dealing with reserved behavior:

• Do not depend on the states of any reserved fields when testing the values of
registers which contain such bits. Mask out the reserved fields before testing.

• Do not depend on the states of any reserved fields when storing to memory or to a
register.

• Do not depend on the ability to retain information written into any reserved fields.

• When loading a register, always load the reserved fields with the values indicated in
the documentation, if any, or reload them with values previously read from the
same register.

Note: Avoid any software dependency upon the reserved state/behavior. Depending
upon reserved behavior will make the software dependent upon the unspecified
manner in which the processor handles this behavior and risks incompatibility
with future processors.

4.12 Notations

Besides opcodes, two kinds of notations are found which both describe information
found in the ModR/M byte:

1. /digit: (digit between 0 and 7) indicates that the instruction uses only the r/m
(register and memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

2. /r: indicates that the ModR/M byte of an instruction contains both a register
operand and an r/m operand.

In addition, the following abbreviations are used:

• r32: Intel architecture 32-bit integer register.

• xmm/m128:Indicates a 128-bit multimedia register or a 128-bit memory location.

• xmm/m64: Indicates a 128-bit multimedia register or a 64-bit memory location.

• xmm/m32: Indicates a 128-bit multimedia register or a 32-bit memory location.

• mm/m64: Indicates a 64-bit multimedia register or a 64-bit memory location.

Segment Override
(2EH,36H,3EH,26H,64H,65H)

Affects cacheability control instructions with mem. operand
Ignored by cacheability control instruction without mem operand

Repeat Prefix(F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (0F0H) Generates an invalid opcode exception for all cacheability
instructions.

Table 4-8. Cacheability Control Instruction Behavior with Prefixes

Prefix Type Effect on SSE Instructions

Volume 4: IA-32 SSE Instruction Reference 4:485

• imm8: Indicates an immediate 8-bit operand.

• ib: Indicates that an immediate byte operand follows the opcode,
ModR/M byte or

scaled-indexing byte.

When there is ambiguity, xmm1 indicates the first source operand and xmm2 the
second source operand.

Table 4-9 describes the naming conventions used in the SSE instruction mnemonics.

Table 4-9. Key to SSE Naming Convention

Mnemonic Description

PI Packed integer qword (e.g. mm0)

PS Packed single FP (e.g. xmm0)

SI Scalar integer (e.g. eax)

SS Scalar single-FP (e.g. low 32 bits of xmm0)

4:486 Volume 4: IA-32 SSE Instruction Reference

ADDPS: Packed Single-FP Add

Operation: xmm1[31-0] = xmm1[31-0] + xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] + xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] + xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] + xmm2/m128[127-96];

Description: The ADDPS instruction adds the packed SP FP numbers of both their operands.

Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0)

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,58,/r ADDPS xmm1, xmm2/m128 Add packed SP FP numbers from XMM2/Mem to XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:487

ADDSS: Scalar Single-FP Add

Operation: xmm1[31-0] = xmm1[31-0] + xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The ADDSS instruction adds the lower SP FP numbers of both their operands; the upper
3 fields are passed through from xmm1.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,58, /r ADDSS xmm1, xmm2/m32 Add the lower SP FP number from XMM2/Mem to XMM1.

4:488 Volume 4: IA-32 SSE Instruction Reference

ANDNPS: Bit-wise Logical And Not for Single-FP

Operation: xmm1[127-0] = ~(xmm1[127-0]) & xmm2/m128[127-0];

Description: The ANDNPS instructions returns a bit-wise logical AND between the complement of
XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDNPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ANDNPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,55,/r ANDNPS xmm1, xmm2/m128 Invert the 128 bits in XMM1and then AND the result with 128
bits from XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:489

ANDPS: Bit-wise Logical And for Single-FP

Operation: xmm1[127-0] &= xmm2/m128[127-0];

Description: The ANDPS instruction returns a bit-wise logical AND between XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ANDPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ANDPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,54,/r ANDPS xmm1, xmm2/m128 Logical AND of 128 bits from XMM2/Mem to XMM1 register.

4:490 Volume 4: IA-32 SSE Instruction Reference

CMPPS: Packed Single-FP Compare

Operation: switch (imm8) {

case eq: op = eq;

case lt: op = lt;

case le: op = le;

case unord: op = unord;

case neq: op = neq;

case nlt: op = nlt;

case nle: op = nle;

case ord: op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m128[31-0]);

cmp1 = op(xmm1[63-32],xmm2/m128[63-32]);

cmp2 = op(xmm1[95-64],xmm2/m128[95-64]);

cmp3 = op(xmm1[127-96],xmm2/m128[127-96]);

xmm1[31-0] = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32] = (cmp1) ? 0xffffffff : 0x00000000;

xmm1[95-64] = (cmp2) ? 0xffffffff : 0x00000000;

xmm1[127-96] = (cmp3) ? 0xffffffff : 0x00000000;

Description: For each individual pairs of SP FP numbers, the CMPPS instruction returns an all “1”
32-bit mask or an all “0” 32-bit mask, using the comparison predicate specified by
imm8; note that a subsequent computational instruction which uses this mask as an
input operand will not generate a fault, since a mask of all “0’s” corresponds to a FP
value of +0.0 and a mask of all “1’s” corresponds to a FP value of -qNaN. Some of the
comparisons can be achieved only through software emulation. For these comparisons
the programmer must swap the operands, copying registers when necessary to protect
the data that will now be in the destination, and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed in under the
heading “Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

0F,C2,/r,ib CMPPS xmm1, xmm2/m128,
imm8

Compare packed SP FP numbers from XMM2/Mem to
packed SP FP numbers in XMM1 register using imm8 as
predicate.

Volume 4: IA-32 SSE Instruction Reference 4:491

CMPPS: Packed Single-FP Compare (Continued)

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table,
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented
in hardware.

Relation Emulation
imm8

Encoding

Result if
NaN

Operand

QNaN
Operand
Signals
Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-equal !(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No

4:492 Volume 4: IA-32 SSE Instruction Reference

CMPPS: Packed Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in
addition to the 3-operand CMPPS instruction:

The greater-than relations not implemented in hardware require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the
corresponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1,xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1,xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1,xmm2, 7

Volume 4: IA-32 SSE Instruction Reference 4:493

CMPSS: Scalar Single-FP Compare

Operation: switch (imm8) {

case eq: op = eq;

case lt: op = lt;

case le: op = le;

case unord: op = unord;

case neq: op = neq;

case nlt: op = nlt;

case nle: op = nle;

case ord: op = ord;

default: Reserved;

}

cmp0 = op(xmm1[31-0],xmm2/m32[31-0]);

xmm1[31-0] = (cmp0) ? 0xffffffff : 0x00000000;

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: For the lowest pair of SP FP numbers, the CMPSS instruction returns an all “1” 32-bit
mask or an all “0” 32-bit mask, using the comparison predicate specified by imm8; the
values for the upper three pairs of SP FP numbers are not compared. Note that a
subsequent computational instruction which uses this mask as an input operand will not
generate a fault, since a mask of all “0’s” corresponds to a FP value of +0.0 and a mask
of all “1’s” corresponds to a FP value of -qNaN. Some of the comparisons can be
achieved only through software emulation. For these comparisons the programmer
must swap the operands, copying registers when necessary to protect the data that will
now be in the destination, and then perform the compare using a different predicate.
The predicate to be used for these emulations is listed in under the heading
“Emulation.” The following table shows the different comparison types:

Opcode Instruction Description

F3,0F,C2,/r,ib CMPSS xmm1, xmm2/m32,
imm8

Compare lowest SP FP number from XMM2/Mem to lowest
SP FP number in XMM1 register using imm8 as predicate.

4:494 Volume 4: IA-32 SSE Instruction Reference

CMPSS: Scalar Single-FP Compare (Continued)

FP Exceptions: None.

Numeric Exceptions: Invalid if sNaN operand, invalid if qNaN and predicate as listed in above table,
denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true (CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Predicate Descriptiona

a. The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not directly implemented
in hardware.

Relation Emulation
imm8

Encoding

Result if
NaN

Operand

qNaN
OperandSig
nals Invalid

eq equal xmm1 == xmm2 000B False No

lt less-than xmm1 < xmm2 001B False Yes

le less-than-or-equal xmm1 <= xmm2 010B False Yes

greater than xmm1 > xmm2 swap, protect, lt False Yes

greater-than-or-equal xmm1 >= xmm2 swap protect, le False Yes

unord unordered xmm1 ? xmm2 011B True No

neq not-equal !(xmm1 == xmm2) 100B True No

nlt not-less-than !(xmm1 < xmm2) 101B True Yes

nle not-less-than-or-
equal

!(xmm1 <= xmm2) 110B True Yes

not-greater-than !(xmm1 > xmm2) swap, protect, nlt True Yes

not-greater-than-or-equal !(xmm1 >= xmm2) swap, protect, nle True Yes

ord ordered !(xmm1 ? xmm2) 111B False No

Volume 4: IA-32 SSE Instruction Reference 4:495

CMPSS: Scalar Single-FP Compare (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Compilers and assemblers should implement the following 2-operand pseudo-ops in
addition to the 3-operand CMPSS instruction:

The greater-than relations not implemented in hardware require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the
corresponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them
differently. Usage of these bits risks incompatibility with future processors.

Pseudo-Op Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1,xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1,xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1,xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1,xmm2, 7

4:496 Volume 4: IA-32 SSE Instruction Reference

COMISS: Scalar Ordered Single-FP Compare and set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED: ZF,PF,CF = 111;

case GREATER_THAN: ZF,PF,CF = 000;

case LESS_THAN: ZF,PF,CF = 001;

case EQUAL: ZF,PF,CF = 100;

}

Description: The COMISS instructions compare two SP FP numbers and sets the ZF,PF,CF bits in the
EFLAGS register as described above. Although the data type is packed single-FP, only
the lower SP numbers are compared. In addition, the OF, SF and AF bits in the EFLAGS
register are zeroed out. The unordered predicate is returned if either source operand is
a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions: Invalid (if SNaN or QNaN operands), Denormal. Integer EFLAGS values will not be
updated in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2F,/r COMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower
SP FP number in XMM2/Mem and set the status flags
accordingly

Volume 4: IA-32 SSE Instruction Reference 4:497

COMISS: Scalar Ordered Single-FP Compare and set EFLAGS (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: COMISS differs from UCOMISS in that it signals an invalid numeric exception when a
source operand is either a qNaN or sNaN; UCOMISS signals invalid only if a source
operand is an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size (66H) prefixes with COMISS is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with COMISS risks incompatibility with future processors.

4:498 Volume 4: IA-32 SSE Instruction Reference

CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion

Operation: xmm[31-0] = (float) (mm/m64[31-0]);

xmm[63-32] = (float) (mm/m64[63-32]);

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTPI2PS instruction converts signed 32-bit integers to SP FP numbers; when the
conversion is inexact, rounding is done according to MXCSR.

FP Exceptions: None.

Numeric Exceptions: Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference; #AC for unaligned memory reference.
To enable #AC exceptions, three conditions must be true(CR0.AM is set; EFLAGS.AC is
set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #AC for unaligned memory reference; #XM for an unmasked
SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2A,/r CVTPI2PS xmm, mm/m64 Convert two 32-bit signed integers from MM/Mem to two SP
FP.

Volume 4: IA-32 SSE Instruction Reference 4:499

CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

However, the use of a memory source operand with this instruction will not result in the
above transition from x87-FP to MMX technology.

Prioritization for fault and assist behavior for CVTPI2PS is as follows:

Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #SS or #GP, for limit violation

4. #PF, page fault

5. SSE numeric fault (i.e. precision)

Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:500 Volume 4: IA-32 SSE Instruction Reference

CVTPS2PI: Packed Single-FP to Packed INT32 Conversion

Operation: mm[31-0] = (int) (xmm/m64[31-0]);

mm[63-32] = (int) (xmm/m64[63-32]);

Description: The CVTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to signed
32-bit integers in mm; when the conversion is inexact, the value rounded according to
the MXCSR is returned. If the converted result(s) is/are larger than the maximum
signed 32 bit value, the Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions, including:

Opcode Instruction Description

0F,2D,/r CVTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed
integers in MM using rounding specified by MXCSR.

Volume 4: IA-32 SSE Instruction Reference 4:501

CVTPS2PI: Packed Single-FP to Packed INT32 Conversion (Continued)

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. #SS or #GP, for limit violation

6. #PF, page fault

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:502 Volume 4: IA-32 SSE Instruction Reference

CVTSI2SS: Scalar signed INT32 to Single-FP Conversion

Operation: xmm[31-0] = (float) (r/m32);

xmm[63-32] = xmm[63-32];

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

Description: The CVTSI2SS instruction converts a signed 32-bit integer from memory or from a
32-bit integer register to a SP FP number; when the conversion is inexact, rounding is
done according to the MXCSR.

FP Exceptions: None.

Numeric Exceptions: Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2A,/r CVTSI2SS xmm, r/m32 Convert one 32-bit signed integer from Integer Reg/Mem to
one SP FP.

Volume 4: IA-32 SSE Instruction Reference 4:503

CVTSS2SI: Scalar Single-FP to Signed INT32 Conversion

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTSS2SI instruction converts a SP FP number to a signed 32-bit integer and
returns it in the 32-bit integer register; when the conversion is inexact, the rounded
value according to the MXCSR is returned. If the converted result is larger than the
maximum signed 32 bit integer, the Integer Indefinite value (0x80000000) will be
returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT = 0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2D,/r CVTSS2SI r32, xmm/m32 Convert one SP FP from XMM/Mem to one 32 bit signed
integer using rounding mode specified by MXCSR, and move
the result to an integer register.

4:504 Volume 4: IA-32 SSE Instruction Reference

CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion
(truncate)

Operation: mm[31-0] = (int) (xmm/m64[31-0]);

mm[63-32] = (int) (xmm/m64[63-32]);

Description: The CVTTPS2PI instruction converts the lower 2 SP FP numbers in xmm/m64 to 2 32-bit
signed integers in mm; if the conversion is inexact, the truncated result is returned. If
the converted result(s) is/are larger than the maximum signed 32 bit value, the Integer
Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3); #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,2C,/r CVTTPS2PI mm, xmm/m64 Convert lower 2 SP FP from XMM/Mem to 2 32-bit signed
integers in MM using truncate.

Volume 4: IA-32 SSE Instruction Reference 4:505

CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion (truncate)
(Continued)

Comments: This instruction behaves identically to original MMX technology instructions, in the
presence of x87-FP instructions, including:

• Transition from x87-FP to MMX technology (TOS=0, FP valid bits set to all valid).

• MMX technology instructions write ones (1’s) to the exponent part of the
corresponding x87-FP register.

Prioritization for fault and assist behavior for CVTTPS2PI is as follows:

 Memory source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. #SS or #GP, for limit violation

6. #PF, page fault

7. SSE numeric fault (i.e. invalid, precision)

 Register source

1. Invalid opcode (CR0.EM=1)

2. DNA (CR0.TS=1)

3. #MF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX technology transition

5. SSE numeric fault (i.e. precision)

4:506 Volume 4: IA-32 SSE Instruction Reference

CVTTSS2SI: Scalar Single-FP to signed INT32 Conversion (truncate)

Operation: r32 = (int) (xmm/m32[31-0]);

Description: The CVTTSS2SI instruction converts a SP FP number to a signed 32-bit integer and
returns it in the 32-bit integer register; if the conversion is inexact, the truncated result
is returned. If the converted result is larger than the maximum signed 32 bit value, the
Integer Indefinite value (0x80000000) will be returned.

FP Exceptions: None.

Numeric Exceptions: Invalid, Precision.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3; #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,2C,/r CVTTSS2SI r32, xmm/m32 Convert lowest SP FP from XMM/Mem to one 32 bit signed
integer using truncate, and move the result to an integer
register.

Volume 4: IA-32 SSE Instruction Reference 4:507

DIVPS: Packed Single-FP Divide

Operation: xmm1[31-0] = xmm1[31-0] / (xmm2/m128[31-0]);

xmm1[63-32] = xmm1[63-32] / (xmm2/m128[63-32]);

xmm1[95-64] = xmm1[95-64] / (xmm2/m128[95-64]);

xmm1[127-96] = xmm1[127-96] / (xmm2/m128[127-96]);

Description: The DIVPS instruction divides the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5E,/r DIVPS xmm1, xmm2/m128 Divide packed SP FP numbers in XMM1 by XMM2/Mem

4:508 Volume 4: IA-32 SSE Instruction Reference

DIVSS: Scalar Single-FP Divide

Operation: xmm1[31-0] = xmm1[31-0] / (xmm2/m32[31-0]);

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The DIVSS instructions divide the lowest SP FP numbers of both operands; the upper 3
fields are passed through from xmm1.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5E,/r DIVSS xmm1, xmm2/m32 Divide lower SP FP numbers in XMM1 by XMM2/Mem

Volume 4: IA-32 SSE Instruction Reference 4:509

FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE
State

Operation: FP and MMX technology state and SSE state = m512byte;

Description: The FXRSTOR instruction reloads the FP and MMX technology state and SSE state
(environment and registers) from the memory area defined by m512byte. This data
should have been written by a previous FXSAVE.

The FP and MMX technology and SSE environment and registers consist of the following
data structure (little-endian byte order as arranged in memory, with byte offset into
row described by right column):

Opcode Instruction Description

0F,AE,/1 FXRSTOR
m512byte

Load FP/Intel MMX technology and SSE state from m512byte.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

4:510 Volume 4: IA-32 SSE Instruction Reference

Three fields in the floating-point save area contain reserved bits that are not indicated
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP:32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

If the MXCSR state contains an unmasked exception with corresponding status flag also
set, loading it will not result in a floating-point error condition being asserted; only the
next occurrence of this unmasked exception will result in the error condition being
asserted.

Some bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared;
attempting to write a non-zero value to these bits will result in a general protection
exception.

FXRSTOR does not flush pending x87-FP exceptions, unlike FRSTOR. To check and raise
exceptions when loading a new operating environment, use FWAIT after FXRSTOR.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable
execution of SSE instructions.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3),
signalling of #AC is not guaranteed and may vary with implementation; in all
implementations where #AC is not signalled, a general protection fault will instead be
signalled. In addition, the width of the alignment check when #AC is enabled may also
vary with implementation; for instance, for a given implementation #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a
LOCK override prefix. General protection fault if reserved bits of MXCSR are loaded with
non-zero values

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Reserved 464

Reserved 480

Reserved 496

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Volume 4: IA-32 SSE Instruction Reference 4:511

FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE State
(Continued)

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in
incorrect restoration of state in the processor. The address size prefix will have the
usual effect on address calculation but will have no effect on the format of the FXRSTOR
image.

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXRSTOR is
reserved. Different processor implementations may handle this prefix differently. Use of
this prefix with FXRSTOR risks incompatibility with future processors.

4:512 Volume 4: IA-32 SSE Instruction Reference

FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State

Operation: m512byte = FP and MMX technology state and SSE state;

Description: The FXSAVE instruction writes the current FP and MMX technology state and SSE state
(environment and registers) to the specified destination defined by m512byte. It does
this without checking for pending unmasked floating-point exceptions, similar to the
operation of FNSAVE. Unlike the FSAVE/FNSAVE instructions, the processor retains the
contents of the FP and MMX technology state and SSE state in the processor after the
state has been saved. This instruction has been optimized to maximize floating-point
save performance. The save data structure is as follows (little-endian byte order as
arranged in memory, with byte offset into row described by right column):

Opcode Instruction Description

0F,AE,/0 FXSAVE
m512byte

Store FP and Intel MMX technology state and SSE state to m512byte.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

Reserved MXCSR Rsrvd DS DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Volume 4: IA-32 SSE Instruction Reference 4:513

Three fields in the floating-point save area contain reserved bits that are not indicated
in the table:

• FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.

• IP & DP: 32-bit mode: 32-bit IP-offset.

• 16-bit mode: lower 16-bits are IP-offset and upper 16-bits are reserved.

The FXSAVE instruction is used when an operating system needs to perform a context
switch or when an exception handler needs to use the FP and MMX technology and SSE
units. It cannot be used by an application program to pass a “clean” FP state to a
procedure, since it retains the current state. An application must explicitly execute an
FINIT instruction after FXSAVE to provide for this functionality.

All of the x87-FP fields retain the same internal format as in FSAVE except for FTW.

Unlike FSAVE, FXSAVE saves only the FTW valid bits rather than the entire x87-FP FTW
field. The FTW bits are saved in a non-TOS relative order, which means that FR0 is
always saved first, followed by FR1, FR2 and so forth. As an example, if TOS=4 and
only ST0, ST1 and ST2 are valid, FSAVE saves the FTW field in the following format:

ST3 ST2 ST1 ST0 ST7 ST6 ST5 ST4 (TOS=4)
FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
11 xx xx xx 11 11 11 11

where xx is one of (00, 01, 10). (11) indicates an empty stack elements, and the 00,
01, and 10 indicate Valid, Zero, and Special, respectively. In this example, FXSAVE
would save the following vector:

FR7 FR6 FR5 FR4 FR3 FR2 FR1 FR0
0 1 1 1 0 0 0 0

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored
80-bit FP data (assuming the stored data was not the contents of MMX technology
registers) using the following table:

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsrvd CS IP FOP FTW FSW FCW 0

4:514 Volume 4: IA-32 SSE Instruction Reference

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the
significand. The M-bit is defined to be the most significant bit of the fractional portion of
the significand (i.e. the bit immediately to the right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it
must be 0 if the fraction is all 0’s.

If the FXSAVE instruction is immediately preceded by an FP instruction which does not
use a memory operand, then the FXSAVE instruction does not write/update the DP
field, in the FXSAVE image.

MXCSR holds the contents of the SSE Control/Status Register. See the LDMXCSR
instruction for a full description of this field.

The fields XMM0-XMM7 contain the content of registers XMM0-XMM7 in exactly the
same format as they exist in the registers.

The SSE fields in the save image (XMM0-XMM7 and MXCSR) may not be loaded into the
processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in order to enable
execution of SSE instructions.

The destination m512byte is assumed to be aligned on a 16-byte boundary. If
m512byte is not aligned on a 16-byte boundary, FXSAVE generates a general protection
exception.

FP Exceptions: If #AC exception detection is disabled, a general protection exception is signalled if the
address is not aligned on 16-byte boundary. Note that if #AC is enabled (and CPL is 3),
signalling of #AC is not guaranteed and may vary with implementation; in all
implementations where #AC is not signalled, a general protection fault will instead be
signalled. In addition, the width of the alignment check when #AC is enabled may also
vary with implementation; for instance, for a given implementation #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for all other
misalignments (4/8/16-byte). Invalid opcode exception if instruction is preceded by a
LOCK override prefix.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit x87 FTW

Volume 4: IA-32 SSE Instruction Reference 4:515

FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State
(Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #NM if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Notes: State saved with FXSAVE and restored with FRSTOR (and vice versa) will result in
incorrect restoration of state in the processor. The address size prefix will have the
usual effect on address calculation but will have no effect on the format of the FXSAVE
image.

If there is a pending unmasked FP exception at the time FXSAVE is executed, the
sequence of FXSAVE-FWAIT-FXRSTOR will result in incorrect state in the processor. The
FWAIT instruction causes the processor to check and handle pending unmasked FP
exceptions. Since the processor does not clear the FP state with FXSAVE (unlike
FSAVE), the exception is handled but that fact is not reflected in the saved image.
When the image is reloaded using FXRSTOR, the exception bits in FSW will be
incorrectly reloaded.

The use of Repeat (F2H, F3H) and Operand Size (66H) prefixes with FXSAVE is
reserved. Different processor implementations may handle this prefix differently. Use of
these prefixes with FXSAVE risks incompatibility with future processors.

4:516 Volume 4: IA-32 SSE Instruction Reference

LDMXCSR: Load SSE Control/Status

Operation: MXCSR = m32;

Description: The MXCSR control/status register is used to enable masked/unmasked exception
handling, to set rounding modes, to set flush-to-zero mode, and to view exception
status flags. The following figure shows the format and encoding of the fields in MXCSR.

31-16 15 10 5
0

Bits 5-0 indicate whether an SSE numerical exception has been detected. They are
“sticky” flags, and can be cleared by using the LDMXCSR instruction to write zeroes to
these fields. If a LDMXCSR instruction clears a mask bit and sets the corresponding
exception flag bit, an exception will not be immediately generated. The exception will
occur only upon the next SSE instruction to cause this type of exception. The Intel SSE
architecture uses only one exception flag for each exception. There is no provision for
individual exception reporting within a packed data type. In situations where multiple
identical exceptions occur within the same instruction, the associated exception flag is
updated and indicates that at least one of these conditions happened. These flags are
cleared upon reset.

Bits 12-7 configure numerical exception masking; an exception type is masked if the
corresponding bit is set and it is unmasked if the bit is clear. These enables are set upon
reset, meaning that all numerical exceptions are masked.

Bits 14-13 encode the rounding-control, which provides for the common
round-to-nearest mode, as well as directed rounding and true chop. Rounding control
affects the arithmetic instructions and certain conversion instructions. The encoding for
RC is as follows:

The rounding-control is set to round to nearest upon reset.

Opcode Instruction Description

0F,AE,/2 LDMXCSR m32 Load SSE control/status word from m32.

Reserved FZ RC RC PM UM OM ZM DM IM Rsvd PE UE OE ZE DE IE

Rounding Mode RC Field Description

Round to nearest (even) 00B Rounded result is the closest to the infinitely
precise result. If two values are equally
close, the result is the even value (that is,
the one with the least-significant bit of zero).

Round down (to minus infinity) 01B Rounded result is close to but no greater
than the infinitely precise result

Round up (toward positive infinity) 10B Rounded result is close to but no less than
the infinitely precise result.

Round toward zero (truncate) 11B Rounded result is close to but no greater in
absolute value than the infinitely precise
result.

Volume 4: IA-32 SSE Instruction Reference 4:517

LDMXCSR: Load SSE Control/Status (Continued)

Bit 15 (FZ) is used to turn on the Flush To Zero mode (bit is set). Turning on the Flush
To Zero mode has the following effects during underflow situations:

• Zero results are returned with the sign of the true result.

• Precision and underflow exception flags are set.

The IEEE mandated masked response to underflow is to deliver the denormalized result
(i.e. gradual underflow); consequently, the flush to zero mode is not compatible with
IEEE Std. 754. It is provided primarily for performance reasons. At the cost of a slight
precision loss, faster execution can be achieved for applications where underflows are
common. Unmasking the underflow exception takes precedence over Flush To Zero
mode; this means that an exception handler will be invoked for a SSE instruction that
generates an underflow condition while this exception is unmasked, regardless of
whether flush to zero is enabled.

The other bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared;
attempting to write a non-zero value to these bits, using either the FXRSTOR or
LDMXCSR instructions, will result in a general protection exception.

The linear address corresponds to the address of the least-significant byte of the
referenced memory data.

FP Exceptions: General protection fault if reserved bits are loaded with non-zero values.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for
unaligned memory reference.

4:518 Volume 4: IA-32 SSE Instruction Reference

LDMXCSR: Load SSE Control/Status (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with LDMXCSR is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with LDMXCSR risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:519

MAXPS: Packed Single-FP Maximum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] > xmm2/m128[31-0]) ? xmm1[31-0] ?
xmm2/m128[31-0];

xmm1[63-32] = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

 (xmm1[63-32] > xmm2/m128[63-32]) ? xmm1[63-32] ?
xmm2/m128[63-32];

xmm1[95-64] = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

 (xmm1[95-64] > xmm2/m128[95-64]) ? xmm1[95-64] ?
xmm2/m128[95-64];

xmm1[127-96] = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

 (xmm1[127-96] > xmm2/m128[127-96]) ? xmm1[127-96] ?
xmm2/m128[127-96];

Description: The MAXPS instruction returns the maximum SP FP numbers from XMM1 and
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128)
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5F,/r MAXPS xmm1, xmm2/m128 Return the maximum SP FP numbers between XMM2/Mem
and XMM1.

4:520 Volume 4: IA-32 SSE Instruction Reference

MAXPS: Packed Single-FP Maximum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. This approach for MAXPS allows
compilers to use the MAXPS instruction for common C conditional constructs. If instead
of this behavior, it is required that the NaN source operand be returned, the min/max
functionality can be emulated using a sequence of instructions: comparison followed by
AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:521

MAXSS: Scalar Single-FP Maximum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

 (xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] > xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MAXSS instruction returns the maximum SP FP number from the lower SP FP
numbers of XMM1 and XMM2/Mem; the upper 3 fields are passed through from xmm1.
If the values being compared are both zeros, source2 (xmm2/m128) would be
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

F3,0F,5F,/r MAXSS xmm1, xmm2/m32 Return the maximum SP FP number between the lower SP
FP numbers from XMM2/Mem and XMM1.

4:522 Volume 4: IA-32 SSE Instruction Reference

MAXSS: Scalar Single-FP Maximum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. The upper three operands are
still bypassed from the src1 operand, as in all other scalar operations. This approach for
MAXSS allows compilers to use the MAXSS instruction for common C conditional
constructs. If instead of this behavior, it is required that the NaN source operand be
returned, the min/max functionality can be emulated using a sequence of instructions:
comparison followed by AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:523

MINPS: Packed Single-FP Minimum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

(xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] < xmm2/m128[31-0]) : xmm1[31-0] ?
xmm2/m128[31-0];

xmm1[63-32] = (xmm1[63-32] == NAN) ? xmm2[63-32] :

(xmm2[63-32] == NAN) ? xmm2[63-32] :

 (xmm1[63-32] < xmm2/m128[63-32]) : xmm1[63-32] ?
xmm2/m128[63-32];

xmm1[95-64] = (xmm1[95-64] == NAN) ? xmm2[95-64] :

(xmm2[95-64] == NAN) ? xmm2[95-64] :

 (xmm1[95-64] < xmm2/m128[95-64]) : xmm1[95-64] ?
xmm2/m128[95-64];

xmm1[127-96] = (xmm1[127-96] == NAN) ? xmm2[127-96] :

(xmm2[127-96] == NAN) ? xmm2[127-96] :

 (xmm1[127-96] < xmm2/m128[127-96]) : xmm1[127-96] ?
xmm2/m128[127-96];

Description: The MINPS instruction returns the minimum SP FP numbers from XMM1 and
XMM2/Mem. If the values being compared are both zeros, source2 (xmm2/m128)
would be returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded
unchanged to the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Opcode Instruction Description

0F,5D,/r MINPS xmm1, xmm2/m128 Return the minimum SP numbers between XMM2/Mem and
XMM1.

4:524 Volume 4: IA-32 SSE Instruction Reference

MINPS: Packed Single-FP Minimum (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. This approach for MINPS allows
compilers to use the MINPS instruction for common C conditional constructs. If instead
of this behavior, it is required that the NaN source operand be returned, the min/max
functionality can be emulated using a sequence of instructions: comparison followed by
AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:525

MINSS: Scalar Single-FP Minimum

Operation: xmm1[31-0] = (xmm1[31-0] == NAN) ? xmm2[31-0] :

 (xmm2[31-0] == NAN) ? xmm2[31-0] :

 (xmm1[31-0] < xmm2/m32[31-0]) ? xmm1[31-0] : xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MINSS instruction returns the minimum SP FP number from the lower SP FP
numbers from XMM1 and XMM2/Mem; the upper 3 fields are passed through from
xmm1.If the values being compared are both zeros, source2 (xmm2/m128) would be
returned. If source2 (xmm2/m128) is an sNaN, this sNaN is forwarded unchanged to
the destination (i.e. a quieted version of the sNaN is not returned).

FP Exceptions: None

Numeric Exceptions: Invalid (including qNaN source operand), Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory references.

Opcode Instruction Description

F3,0F,5D,/r MINSS xmm1, xmm2/m32 Return the minimum SP FP number between the lowest SP
FP numbers from XMM2/Mem and XMM1.

4:526 Volume 4: IA-32 SSE Instruction Reference

MINSS: Scalar Single-FP Minimum (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: Note that if only one source is a NaN for these instructions, the Src2 operand (either
NaN or real value) is written to the result; this differs from the behavior for other
instructions as defined in Table 4-3, which is to always write the NaN to the result,
regardless of which source operand contains the NaN. The upper three operands are
still bypassed from the src1 operand, as in all other scalar operations. This approach for
MINSS allows compilers to use the MINSS instruction for common C conditional
constructs. If instead of this behavior, it is required that the NaN source operand be
returned, the min/max functionality can be emulated using a sequence of instructions:
comparison followed by AND, ANDN and OR.

Volume 4: IA-32 SSE Instruction Reference 4:527

MOVAPS: Move Aligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127=0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data at
memory location m128 are loaded or stored. When the register-register form of this
operation is used, the content of the 128-bit source register is copied into 128-bit
destination register.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Opcode Instruction Description

0F,28,/r

0F,29,/r

MOVAPS xmm1, xmm2/m128

MOVAPS xmm2/m128, xmm1

Move 128 bits representing 4 packed SP data from
XMM2/Mem to XMM1 register.
Move 128 bits representing 4 packed SP from XMM1 register
to XMM2/Mem.

4:528 Volume 4: IA-32 SSE Instruction Reference

MOVAPS: Move Aligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: MOVAPS should be used when dealing with 16-byte aligned SP FP numbers. If the data
is not known to be aligned, MOVUPS should be used instead of MOVAPS. The usage of
this instruction should be limited to the cases where the aligned restriction is easy to
meet. Processors that support the Intel SSE architecture will provide optimal aligned
performance for the MOVAPS instruction.

The usage of Repeat Prefixes (F2H, F3H) with MOVAPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVAPS
risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:529

MOVHLPS: Move High to Low Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm1[127-64];

xmm1[63-0] = xmm2[127-64];

Description: The upper 64-bits of the source register xmm2 are loaded into the lower 64-bits of the
128-bit register xmm1 and the upper 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVHLPS is
reserved. Different processor implementations may handle these prefixes differently.
Usage of these prefixes with MOVHLPS risks incompatibility with future processors.

Opcode Instruction Description

0F,12,/r MOVHLPS xmm1, xmm2 Move 64 bits representing higher two SP operands from
XMM2 to lower two fields of XMM1 register.

4:530 Volume 4: IA-32 SSE Instruction Reference

MOVHPS: Move High Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[127-64] = m64;

xmm[31-0] = xmm[31-0];

xmm[63-32] = xmm[63-32];

}

else {

// store instruction

m64 = xmm[127-64];

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When the load form of this operation is used, m64 is loaded
into the upper 64-bits of the 128-bit register xmm and the lower 64-bits are left
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,16,/r

0F,17,/r

MOVHPS xmm, m64

MOVHPS m64, xmm

Move 64 bits representing two SP operands from Mem to
upper two fields of XMM register.
Move 64 bits representing two SP operands from upper two
fields of XMM register to Mem.

Volume 4: IA-32 SSE Instruction Reference 4:531

MOVHPS: Move High Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVHPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVHPS
risks incompatibility with future processors.

4:532 Volume 4: IA-32 SSE Instruction Reference

MOVLHPS: Move Low to High Packed Single-FP

Operation: // move instruction

xmm1[127-64] = xmm2[63-0];

xmm1[63-0] = xmm1[63-0];

Description: The lower 64-bits of the source register xmm2 are loaded into the upper 64-bits of the
128-bit register xmm1 and the lower 64-bits of xmm1 are left unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD
if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments:

Example: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with MOVLHPS is
reserved. Different processor implementations may handle these prefixes differently.
Usage of these prefixes with MOVLHPS risks incompatibility with future processors.

Opcode Instruction Description

0F,16,/r MOVLHPS xmm1, xmm2 Move 64 bits representing lower two SP operands from XMM2
to upper two fields of XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:533

MOVLPS: Move Low Packed Single-FP

Operation: if (destination == xmm) {

// load instruction

xmm[63-0] = m64;

xmm[95-64] = xmm[95-64];

xmm[127-96] = xmm[127-96];

}

else {

// store instruction

m64 = xmm[63-0];

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When the load form of this operation is used, m64 is loaded
into the lower 64-bits of the 128-bit register xmm and the upper 64-bits are left
unchanged.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Opcode Instruction Description

0F,12,/r

0F,13,/r

MOVLPS xmm, m64

MOVLPS m64, xmm

Move 64 bits representing two SP operands from Mem to
lower two fields of XMM register.
Move 64 bits representing two SP operands from lower two
fields of XMM register to Mem.

4:534 Volume 4: IA-32 SSE Instruction Reference

MOVLPS: Move Low Packed Single-FP (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVLPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVLPS
risks incompatibility with future processors.

Volume 4: IA-32 SSE Instruction Reference 4:535

MOVMSKPS: Move Mask to Integer

Operation: r32[3] = xmm[127]; r32[2] = xmm[95];

r32[1] = xmm[63]; r32[0] = xmm[31];

r32[7-4] = 0x0; r32[15-8] = 0x00;

r32[31-16] = 0x0000;

Description: The MOVMSKPS instruction returns to the integer register r32 a 4-bit mask formed of
the most significant bits of each SP FP number of its operand.

FP Exceptions: None

Numeric Exceptions: None.

Protected Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.; #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set.; #UD if CRCR4.OSFXSR(bit 9) = 0;
#UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with MOVMSKPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
MOVMSKPS risks incompatibility with future processors.

Opcode Instruction Description

0F,50,/r MOVMSKPS r32, xmm Move the single mask to r32.

4:536 Volume 4: IA-32 SSE Instruction Reference

MOVSS: Move Scalar Single-FP

Operation: if (destination == xmm1) {

if (source == m32) {

// load instruction

xmm1[31-0] = m32;

xmm1[63-32] = 0x00000000;

xmm1[95-64] = 0x00000000;

xmm1[127-96] = 0x00000000;

}

else {

// move instruction

xmm1[31-0] = xmm2[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

}

}

else {

if (destination == m32) {

// store instruction

m32 = xmm1[31-0];

}

else {

// move instruction

xmm2[31-0] = xmm1[31-0]

xmm2[63-32] = xmm2[63-32];

xmm2[95-64] = xmm2[95-64];

Opcode Instruction Description

F3,0F,10,/r

F3,0F,11,/r

MOVSS xmm1, xmm2/m32

MOVSS xmm2/m32, xmm1

Move 32 bits representing one scalar SP operand from
XMM2/Mem to XMM1 register.
Move 32 bits representing one scalar SP operand from XMM1
register to XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:537

MOVSS: Move Scalar Single-FP (Continued)

xmm2[127-96] = xmm2[127-96];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 4 bytes of data at
memory location m32 are loaded or stored. When the load form of this operation is
used, the 32-bits from memory are copied into the lower 32 bits of the 128-bit register
xmm, the 96 most significant bits being cleared.

FP Exceptions: None

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:538 Volume 4: IA-32 SSE Instruction Reference

MOVUPS: Move Unaligned Four Packed Single-FP

Operation: if (destination == xmm1) {

if (source == m128) {

// load instruction

xmm1[127-0] = m128;

}

else {

// move instruction

xmm1[127-0] = xmm2[127-0];

}

}

else {

if (destination == m128) {

// store instruction

m128 = xmm1[127-0];

}

else {

// move instruction

xmm2[127-0] = xmm1[127-0];

}

}

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. When a memory address is indicated, the 16 bytes of data at
memory location m128 are loaded to the 128-bit multimedia register xmm or stored
from the 128-bit multimedia register xmm. When the register-register form of this
operation is used, the content of the 128-bit source register is copied into 128-bit
register xmm. No assumption is made about alignment.

FP Exceptions: None

Numeric Exceptions: None

Opcode Instruction Description

0F,10,/r

0F,11,/r

MOVUPS xmm1, xmm2/m128

MOVUPS xmm2/m128, xmm1

Move 128 bits representing four SP data from XMM2/Mem to
XMM1 register.
Move 128 bits representing four SP data from XMM1 register to
XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:539

MOVUPS: Move Unaligned Four Packed Single-FP (Continued)

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVUPS should be used with SP FP numbers when that data is known to be
unaligned.The usage of this instruction should be limited to the cases where the aligned
restriction is hard or impossible to meet. SSE implementations guarantee optimum
unaligned support for MOVUPS. Efficient SSE applications should mainly rely on
MOVAPS, not MOVUPS, when dealing with aligned data.

The usage of Repeat-NE Prefix (F2H) and Operand Size Prefix (66H) with MOVUPS is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with MOVUPS risks incompatibility with future processors.

A linear address of the 128 bit data access, while executing in 16-bit mode, that
overlaps the end of a 16-bit segment is not allowed and is defined as reserved behavior.
Different processor implementations may/may not raise a GP fault in this case if the
segment limit has been exceeded; additionally, the address that spans the end of the
segment may/may not wrap around to the beginning of the segment.

4:540 Volume 4: IA-32 SSE Instruction Reference

MULPS: Packed Single-FP Multiply

Operation: xmm1[31-0] = xmm1[31-0] * xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] * xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] * xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] * xmm2/m128[127-96];

Description: The MULPS instructions multiply the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,59,/r MULPS xmm1, xmm2/m128 Multiply packed SP FP numbers in XMM2/Mem to XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:541

MULSS: Scalar Single-FP Multiply

xmm1[31-0] = xmm1[31-0] * xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The MULSS instructions multiply the lowest SP FP numbers of both their operands; the
upper 3 fields are passed through from xmm1.

FP Exceptions: None

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0).

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,59,/r MULSS xmm1 xmm2/m32 Multiply the lowest SP FP number in XMM2/Mem to XMM1.

4:542 Volume 4: IA-32 SSE Instruction Reference

ORPS: Bit-wise Logical OR for Single-FP Data

Operation: xmm1[127-0] |= xmm2/m128[127-0];

Description: The ORPS instructions return a bit-wise logical OR between xmm1 and xmm2/mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with ORPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with ORPS risks
incompatibility with future processors.

Opcode Instruction Description

0F,56,/r ORPS xmm1, xmm2/m128 OR 128 bits from XMM2/Mem to XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:543

RCPPS: Packed Single-FP Reciprocal

Operation: xmm1[31-0] = approx (1.0/(xmm2/m128[31-0]));

xmm1[63-32] = approx (1.0/(xmm2/m128[63-32]));

xmm1[95-64] = approx (1.0/(xmm2/m128[95-64]));

xmm1[127-96] = approx (1.0/(xmm2/m128[127-96]));

Description: RCPPS returns an approximation of the reciprocal of the SP FP numbers from
xmm2/m128. The relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RCPPS is not affected by the rounding control in MXCSR. Denormal inputs are treated
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

0F,53,/r RCPPS xmm1, xmm2/m128 Return a packed approximation of the reciprocal of
XMM2/Mem.

4:544 Volume 4: IA-32 SSE Instruction Reference

RCPPS: Packed Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <=
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01

Volume 4: IA-32 SSE Instruction Reference 4:545

RCPSS: Scalar Single-FP Reciprocal

Operation: xmm1[31-0] = approx (1.0/(xmm2/m32[31-0]));

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: RCPSS returns an approximation of the reciprocal of the lower SP FP number from
xmm2/m32; the upper 3 fields are passed through from xmm1. The relative error for
this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #AC for unaligned memory reference if the current privilege
level is 3; #NM if TS bit in CR0 is set.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RCPSS is not affected by the rounding control in MXCSR. Denormal inputs are treated
as zeros (of the same sign) and tiny results are always flushed to zero, with the sign of
the operand.

Results are guaranteed not to be tiny, and therefore not flushed to zero, for input
values x which satisfy

|x| <= 1.11111111110100000000000B×2125

Opcode Instruction Description

F3,0F,53,/r RCPSS xmm1, xmm2/m32 Return an approximation of the reciprocal of the lower SP FP
number in XMM2/Mem.

4:546 Volume 4: IA-32 SSE Instruction Reference

RCPSS: Scalar Single-FP Reciprocal (Continued)

For input values x which satisfy

1.11111111110100000000001B×2125 <= |x| <=
1.00000000000110000000000B×2126

flush-to-zero might or might not occur, depending on the implementation (this interval
contains 6144 + 3072 = 9216 single precision floating-point numbers).

Results are guaranteed to be tiny, and therefore flushed to zero, for input values x
which satisfy

|x| <= 1.00000000000110000000001B×2126

The decimal approximations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 ~= 8.5039437×1037

1.11111111110100000000001B×2125 ~= 8.5039443×1037

1.00000000000110000000000B×2126 ~= 4.2550872×1037

1.00000000000110000000001B×2126 ~= 4.2550877×1037

The hexadecimal representations of the single precision numbers that delimit the three
intervals specified above, are as follows:

1.11111111110100000000000B×2125 = 0x7e7fe800

1.11111111110100000000001B×2125 = 0x7e7fe801

1.00000000000110000000000B×2126 = 0x7e800c00

1.00000000000110000000001B×2126 = 0x7e800c01

Volume 4: IA-32 SSE Instruction Reference 4:547

RSQRTPS: Packed Single-FP Square Root Reciprocal

Operation: xmm1[31-0] = approx (1.0/sqrt(xmm2/m128[31-0]));

xmm1[63-32] = approx (1.0/sqrt(xmm2/m128[63-32]));

xmm1[95-64] = approx (1.0/sqrt(xmm2/m128[95-64]));

xmm1[127-96] = approx (1.0/sqrt(xmm2/m128[127-96]));

Description: RSQRTPS returns an approximation of the reciprocal of the square root of the SP FP
numbers from xmm2/m128. The relative error for this approximation is Error, which
satisfies:

|Error| <= 1.5x2-12

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: RSQRTPS is not affected by the rounding control in MXCSR. Denormal inputs are
treated as zeros (of the same sign).

Opcode Instruction Description

0F,52,/r RSQRTPS xmm1, xmm2/m128 Return a packed approximation of the square root of the
reciprocal of XMM2/Mem.

4:548 Volume 4: IA-32 SSE Instruction Reference

RSQRTSS: Scalar Single-FP Square Root Reciprocal

Operation: xmm1[31-0] = approx (1.0/sqrt(xmm2/m32[31-0]));

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: RSQRTSS returns an approximation of the reciprocal of the square root of the lowest SP
FP number from xmm2/m32; the upper 3 fields are passed through from xmm1. The
relative error for this approximation is Error, which satisfies:

|Error| <= 1.5x2-12

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments:

Example: RSQRTSS is not affected by the rounding control in MXCSR. Denormal inputs are
treated as zeros (of the same sign).

Opcode Instruction Description

F3,0F,52,/r RSQRTSS xmm1, xmm2/m32 Return an approximation of the square root of the reciprocal of
the lowest SP FP number in XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:549

SHUFPS: Shuffle Single-FP

Operation: fp_select = (imm8 >> 0) & 0x3;

xmm1[31-0] = (fp_select == 0) ? xmm1[31-0] :

 (fp_select == 1) ? xmm1[63-32] :

 (fp_select == 2) ? xmm1[95-64] :

 xmm1[127-96];

fp_select = (imm8 >> 2) & 0x3;

xmm1[63-32] = (fp_select == 0) ? xmm1[31-0] :

 (fp_select == 1) ? xmm1[63-32] :

 (fp_select == 2) ? xmm1[95-64] :

 xmm1[127-96];

fp_select = (imm8 >> 4) & 0x3;

xmm1[95-64] = (fp_select == 0) ? xmm2/m128[31-0] :

 (fp_select == 1) ? xmm2/m128[63-32] :

 (fp_select == 2) ? xmm2/m128[95-64] :

 xmm2/m128[127-96];

fp_select = (imm8 >> 6) & 0x3;

xmm1[127-96] = (fp_select == 0) ? xmm2/m128[31-0] :

 (fp_select == 1) ? xmm2/m128[63-32] :

 (fp_select == 2) ? xmm2/m128[95-64] :

 xmm2/m128[127-96];

Description: The SHUFPS instruction is able to shuffle any of the four SP FP numbers from xmm1 to
the lower 2 destination fields; the upper 2 destination fields are generated from a
shuffle of any of the four SP FP numbers from xmm2/m128. By using the same register
for both sources, SHUFPS can return any combination of the four SP FP numbers from
this register. Bits 0 and 1 of the immediate field are used to select which of the four
input SP FP numbers will be put in the first SP FP number of the result; bits 3 and 2 of
the immediate field are used to select which of the four input SP FP will be put in the
second SP FP number of the result; etc.

Opcode Instruction Description

0F,C6,/r, ib SHUFPS xmm1, xmm2/m128, imm8 Shuffle Single.

4:550 Volume 4: IA-32 SSE Instruction Reference

SHUFPS: Shuffle Single-FP (Continued)

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: The usage of Repeat Prefixes (F2H, F3H) with SHUFPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with SHUFPS
risks incompatibility with future processors.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

{Y4 ... Y1} {Y4 ... Y1} {X4 ... X1} {X4 ... X1}

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:551

SQRTPS: Packed Single-FP Square Root

Operation: xmm1[31-0] = sqrt (xmm2/m128[31-0]);

xmm1[63-32] = sqrt (xmm2/m128[63-32]);

xmm1[95-64] = sqrt (xmm2/m128[95-64]);

xmm1[127-96] = sqrt (xmm2/m128[127-96]);

Description: The SQRTPS instruction returns the square root of the packed SP FP numbers from
xmm2/m128.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,51,/r SQRTPS xmm1, xmm2/m128 Square Root of the packed SP FP numbers in XMM2/Mem.

4:552 Volume 4: IA-32 SSE Instruction Reference

SQRTSS: Scalar Single-FP Square Root

Operation: xmm1[31-0] = sqrt (xmm2/m32[31-0]);

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SQRTSS instructions return the square root of the lowest SP FP numbers of their
operand.

FP Exceptions: None

Numeric Exceptions: Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,51,/r SQRTSS xmm1, xmm2/m32 Square Root of the lower SP FP number in XMM2/Mem.

Volume 4: IA-32 SSE Instruction Reference 4:553

STMXCSR: Store SSE Control/Status

Operation: m32 = MXCSR;

Description: The MXCSR control/status register is used to enable masked/unmasked exception
handling, to set rounding modes, to set flush-to-zero mode, and to view exception
status flags. Refer to LDMXCSR for a description of the format of MXCSR. The linear
address corresponds to the address of the least-significant byte of the referenced
memory data. The reserved bits in the MXCSR are stored as zeroes.

FP Exceptions: None.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault. #AC for
unaligned memory reference.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults NaT Register Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: The usage of Repeat (F2H, F3H) and Operand Size (66H) prefixes with STMXCSR is
reserved. Different processor implementations may handle this prefix differently. Usage
of this prefix with STMXCSR risks incompatibility with future processors.

Opcode Instruction Description

0F,AE,/3 STMXCSR m32 Store SSE control/status word to m32.

4:554 Volume 4: IA-32 SSE Instruction Reference

SUBPS: Packed Single-FP Subtract

Operation: xmm1[31-0] = xmm1[31-0] - xmm2/m128[31-0];

xmm1[63-32] = xmm1[63-32] - xmm2/m128[63-32];

xmm1[95-64] = xmm1[95-64] - xmm2/m128[95-64];

xmm1[127-96] = xmm1[127-96] - xmm2/m128[127-96];

Description: The SUBPS instruction subtracts the packed SP FP numbers of both their operands.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric
exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault;.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,5C,/r SUBPS xmm1 xmm2/m128 Subtract packed SP FP numbers in XMM2/Mem from XMM1.

Volume 4: IA-32 SSE Instruction Reference 4:555

SUBSS: Scalar Single-FP Subtract

Operation: xmm1[31-0] = xmm1[31-0] - xmm2/m32[31-0];

xmm1[63-32] = xmm1[63-32];

xmm1[95-64] = xmm1[95-64];

xmm1[127-96] = xmm1[127-96];

Description: The SUBSS instruction subtracts the lower SP FP numbers of both their operands.

FP Exceptions: None.

Numeric Exceptions: Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

F3,0F,5C, /r SUBSS xmm1, xmm2/m32 Subtract the lower SP FP numbers in XMM2/Mem from
XMM1.

4:556 Volume 4: IA-32 SSE Instruction Reference

UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS

Operation: switch (xmm1[31-0] <> xmm2/m32[31-0]) {

OF,SF,AF = 000;

case UNORDERED: ZF,PF,CF = 111;

case GREATER_THAN: ZF,PF,CF = 000;

case LESS_THAN: ZF,PF,CF = 001;

case EQUAL: ZF,PF,CF = 100;

}

Description: The UCOMISS instructions compare the two lowest scalar SP FP numbers and sets the
ZF,PF,CF bits in the EFLAGS register as described above. In addition, the OF, SF and AF
bits in the EFLAGS register are zeroed out. The unordered predicate is returned if either
source operand is a NaN (qNaN or sNaN).

FP Exceptions: None.

Numeric Exceptions: Invalid (if SNaN operands), Denormal. Integer EFLAGS values will not be updated
in the presence of unmasked numeric exceptions.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #AC for unaligned memory
reference. To enable #AC exceptions, three conditions must be true(CR0.AM is set;
EFLAGS.AC is set; current CPL is 3); #XM for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =1); #UD for an unmasked SSE numeric exception
(CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX
bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #XM for an
unmasked SSE numeric exception (CR4.OSXMMEXCPT =1); #UD for an unmasked SSE
numeric exception (CR4.OSXMMEXCPT =0); #UD if CRCR4.OSFXSR(bit 9) = 0; #UD if
CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Opcode Instruction Description

0F,2E,/r UCOMISS xmm1, xmm2/m32 Compare lower SP FP number in XMM1 register with lower
SP FP number in XMM2/Mem and set the status flags
accordingly.

Volume 4: IA-32 SSE Instruction Reference 4:557

UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS
(Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: UCOMISS differs from COMISS in that it signals an invalid numeric exception when a
source operand is an sNaN; COMISS signals invalid if a source operand is either a qNaN
or an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size prefixes with UCOMISS is reserved.
Different processor implementations may handle this prefix differently. Usage of this
prefix with UCOMISS risks incompatibility with future processors.

4:558 Volume 4: IA-32 SSE Instruction Reference

UNPCKHPS: Unpack High Packed Single-FP Data

Operation: xmm1[31-0] = xmm1[95-64];

xmm1[63-32] = xmm2/m128[95-64];

xmm1[95-64] = xmm1[127-96];

xmm1[127-96] = xmm2/m128[127-96];

Description: The UNPCKHPS instruction performs an interleaved unpack of the high-order data
elements of XMM1 and XMM2/Mem. It ignores the lower half of the sources.

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,15,/r UNPCKHPS xmm1, xmm2/m128 Interleaves SP FP numbers from the high halves of XMM1
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y4 X4 Y3 X3

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:559

UNPCKHPS: Unpack High Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKHPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
UNPCKHPS risks incompatibility with future processors.

4:560 Volume 4: IA-32 SSE Instruction Reference

UNPCKLPS: Unpack Low Packed Single-FP Data

Operation: xmm1[31-0] = xmm1[31-0];

xmm1[63-32] = xmm2/m128[31-0];

xmm1[95-64] = xmm1[63-32];

xmm1[127-96] = xmm2/m128[63-32];

Description: The UNPCKLPS instruction performs an interleaved unpack of the low-order data
elements of XMM1 and XMM2/Mem. It ignores the upper half part of the sources.

Example:

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Opcode Instruction Description

0F,14,/r UNPCKLPS xmm1, xmm2/m128 Interleaves SP FP numbers from the low halves of XMM1
and XMM2/Mem into XMM1 register.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

Y2 X2 Y1 X1

xmm1

xmm2/m128

xmm1

Volume 4: IA-32 SSE Instruction Reference 4:561

UNPCKLPS: Unpack Low Packed Single-FP Data (Continued)

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments: When unpacking from a memory operand, an implementation may decide to fetch only
the appropriate 64 bits. Alignment to 16-byte boundary and normal segment checking
will still be enforced.

The usage of Repeat Prefixes (F2H, F3H) with UNPCKLPS is reserved. Different
processor implementations may handle this prefix differently. Usage of this prefix with
UNPCKLPS risks incompatibility with future processors.

4:562 Volume 4: IA-32 SSE Instruction Reference

XORPS: Bit-wise Logical Xor for Single-FP Data

Operation: xmm[127-0] ^= xmm/m128[127-0];

Description: The XORPS instruction returns a bit-wise logical XOR between XMM1 and XMM2/Mem.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Comments:

The usage of Repeat Prefixes (F2H, F3H) with XORPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with XORPS
risks incompatibility with future processors.

4.13 SIMD Integer Instruction Set Extensions

Additional new SIMD Integer instructions have been added to accelerate the
performance of 3D graphics, video decoding and encoding and other applications.
These instructions operate on the MMX technology registers and on 64-bit memory
operands.

Opcode Instruction Description

0F,57,/r XORPS xmm1, xmm2/m128 XOR 128 bits from XMM2/Mem to XMM1 register.

Volume 4: IA-32 SSE Instruction Reference 4:563

PAVGB/PAVGW: Packed Average

Operation: if (instruction == PAVGB) {

x[0] = mm1[7-0] y[0] = mm2/m64[7-0];

x[1] = mm1[15-8] y[1] = mm2/m64[15-8];

x[2] = mm1[23-16] y[2] = mm2/m64[23-16];

x[3] = mm1[31-24] y[3] = mm2/m64[31-24];

x[4] = mm1[39-32] y[4] = mm2/m64[39-32];

x[5] = mm1[47-40] y[5] = mm2/m64[47-40];

x[6] = mm1[55-48] y[6] = mm2/m64[55-48];

x[7] = mm1[63-56] y[7] = mm2/m64[63-56];

for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

res[i] = (temp[i] +1) >> 1;

}

mm1[7-0] = res[0];

...

mm1[63-56] = res[7];

}

else if (instruction == PAVGW){

x[0] = mm1[15-0] y[0] = mm2/m64[15-0];

x[1] = mm1[31-16] y[1] = mm2/m64[31-16];

x[2] = mm1[47-32] y[2] = mm2/m64[47-32];

x[3] = mm1[63-48] y[3] = mm2/m64[63-48];

for (i = 0; i < 4; i++) {

Opcode Instruction Description

0F,E0, /r PAVGB mm1,mm2/m64 Average with rounding packed unsigned bytes from
MM2/Mem to packed bytes in MM1 register.

0F,E3, /r PAVGW mm1, mm2/m64 Average with rounding packed unsigned words from
MM2/Mem to packed words in MM1 register.

4:564 Volume 4: IA-32 SSE Instruction Reference

PAVGB/PAVGW: Packed Average (Continued)

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

res[i] = (temp[i] +1) >> 1;

}

mm1[15-0] = res[0];

...

mm1[63-48] = res[3];

}

Description: The PAVG instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register, along with a carry-in. The results of
the add are then each independently right shifted by one bit position. The high order
bits of each element are filled with the carry bits of the corresponding sum.

The destination operand is a MMX technology register. The source operand can either
be a MMX technology register or a 64-bit memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction
operates on packed unsigned words.

Numeric Exceptions: None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory references (if the current privilege level is 3).

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Volume 4: IA-32 SSE Instruction Reference 4:565

PEXTRW: Extract Word

Operation: sel = imm8 & 0x3;

mm_temp = (mm >> (sel * 16)) & 0xffff;

r[15-0] = mm_temp[15-0];

r[31-16] = 0x0000;

Description: The PEXTRW instruction moves the word in MM selected by the two least significant bits
of imm8 to the lower half of a 32-bit integer register.

Numeric Exceptions: None.

Protected Mode Exceptions:

 #GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a pending FPU
exception.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,C5, /r, ib PEXTRW r32, mm, imm8 Extract the word pointed to by imm8 from MM and move it to a
32-bit integer register.

4:566 Volume 4: IA-32 SSE Instruction Reference

 PINSRW: Insert Word

Operation: sel = imm8 & 0x3;

mask = (sel == 0)? 0x000000000000ffff :

 (sel == 1)? 0x00000000ffff0000 :

 (sel == 2)? 0x0000ffff00000000 :

 0xffff000000000000;

mm = (mm & ~mask) | ((m16/r32[15-0] << (sel * 16)) & mask);

Description: The PINSRW instruction loads a word from the lower half of a 32-bit integer register (or
from memory) and inserts it in the MM destination register at a position defined by the
two least significant bits of the imm8 constant. The insertion is done in such a way that
the three other words from the destination register are left untouched.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,C4,/r,ib PINSRW mm, r32/m16, imm8 Insert the word from the lower half of r32 or from Mem16 into
the position in MM pointed to by imm8 without touching the
other words.

Volume 4: IA-32 SSE Instruction Reference 4:567

PMAXSW: Packed Signed Integer Word Maximum

Operation: mm1[15-0] = (mm1[15-0] > mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16] = (mm1[31-16] > mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32] = (mm1[47-32] > mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48] = (mm1[63-48] > mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMAXSW instruction returns the maximum between the four signed words in MM1
and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EE, /r PMAXSW mm1, mm2/m64 Return the maximum words between MM2/Mem and MM1.

4:568 Volume 4: IA-32 SSE Instruction Reference

PMAXUB: Packed Unsigned Integer Byte Maximum

Operation: mm1[7-0] = (mm1[7-0] > mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0];

mm1[15-8] = (mm1[15-8] > mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16] = (mm1[23-16] > mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24] = (mm1[31-24] > mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32] = (mm1[39-32] > mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40] = (mm1[47-40] > mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48] = (mm1[55-48] > mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56] = (mm1[63-56] > mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMAXUB instruction returns the maximum between the eight unsigned words in
MM1 and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DE, /r PMAXUB mm1, mm2/m64 Return the maximum bytes between MM2/Mem and MM1.

Volume 4: IA-32 SSE Instruction Reference 4:569

PMINSW: Packed Signed Integer Word Minimum

Operation: mm1[15-0] = (mm1[15-0] < mm2/m64[15-0]) ? mm1[15-0] : mm2/m64[15-0];

mm1[31-16] = (mm1[31-16] < mm2/m64[31-16]) ? mm1[31-16] : mm2/m64[31-16];

mm1[47-32] = (mm1[47-32] < mm2/m64[47-32]) ? mm1[47-32] : mm2/m64[47-32];

mm1[63-48] = (mm1[63-48] < mm2/m64[63-48]) ? mm1[63-48] : mm2/m64[63-48];

Description: The PMINSW instruction returns the minimum between the four signed words in MM1
and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception#AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true (CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set. #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,EA, /r PMINSW mm1, mm2/m64 Return the minimum words between MM2/Mem and MM1.

4:570 Volume 4: IA-32 SSE Instruction Reference

PMINUB: Packed Unsigned Integer Byte Minimum

Operation: mm1[7-0] = (mm1[7-0] < mm2/m64[7-0]) ? mm1[7-0] : mm2/m64[7-0];

mm1[15-8] = (mm1[15-8] < mm2/m64[15-8]) ? mm1[15-8] : mm2/m64[15-8];

mm1[23-16] = (mm1[23-16] < mm2/m64[23-16]) ? mm1[23-16] : mm2/m64[23-16];

mm1[31-24] = (mm1[31-24] < mm2/m64[31-24]) ? mm1[31-24] : mm2/m64[31-24];

mm1[39-32] = (mm1[39-32] < mm2/m64[39-32]) ? mm1[39-32] : mm2/m64[39-32];

mm1[47-40] = (mm1[47-40] < mm2/m64[47-40]) ? mm1[47-40] : mm2/m64[47-40];

mm1[55-48] = (mm1[55-48] < mm2/m64[55-48]) ? mm1[55-48] : mm2/m64[55-48];

mm1[63-56] = (mm1[63-56] < mm2/m64[63-56]) ? mm1[63-56] : mm2/m64[63-56];

Description: The PMINUB instruction returns the minimum between the eight unsigned words in
MM1 and MM2/Mem.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,DA, /r PMINUB mm1, mm2/m64 Return the minimum bytes between MM2/Mem and MM1.

Volume 4: IA-32 SSE Instruction Reference 4:571

PMOVMSKB: Move Byte Mask To Integer

Operation: r32[7] = mm[63]; r32[6] = mm[55];

r32[5] = mm[47]; r32[4] = mm[39];

r32[3] = mm[31]; r32[2] = mm[23];

r32[1] = mm[15]; r32[0] = mm[7];

r32[31-8] = 0x000000;

Description: The PMOVMSKB instruction returns a 8-bit mask formed of the most significant bits of
each byte of its source operand.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF (fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Opcode Instruction Description

0F,D7,/r PMOVMSKB r32, mm Move the byte mask of MM to r32.

4:572 Volume 4: IA-32 SSE Instruction Reference

PMULHUW: Packed Multiply High Unsigned

Operation: mm1[15-0] = (mm1[15-0] * mm2/m64[15-0])[31-16];

mm1[31-16] = (mm1[31-16] * mm2/m64[31-16])[31-16];

mm1[47-32] = (mm1[47-32] * mm2/m64[47-32])[31-16];

mm1[63-48] = (mm1[63-48] * mm2/m64[63-48])[31-16];

Description: The PMULHUW instruction multiplies the four unsigned words in the destination operand
with the four unsigned words in the source operand. The high-order 16 bits of the
32-bit intermediate results are written to the destination operand.

Numeric Exceptions: None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Opcode Instruction Description

0F,E4,/r PMULHUW mm1, mm2/m64 Multiply the packed unsigned words in MM1 register
with the packed unsigned words in MM2/Mem, then
store the high-order 16 bits of the results in MM1.

Volume 4: IA-32 SSE Instruction Reference 4:573

PSADBW: Packed Sum of Absolute Differences

Operation: temp1 = ABS(mm1[7-0] - mm2/m64[7-0]);

temp2 = ABS(mm1[15-8] - mm2/m64[15-8]);

temp3 = ABS(mm1[23-16] - mm2/m64[23-16]);

temp4 = ABS(mm1[31-24] - mm2/m64[31-24]);

temp5 = ABS(mm1[39-32] - mm2/m64[39-32]);

temp6 = ABS(mm1[47-40] - mm2/m64[47-40]);

temp7 = ABS(mm1[55-48] - mm2/m64[55-48]);

temp8 = ABS(mm1[63-56] - mm2/m64[63-56]);

mm1[15:0] = temp1 + temp2 + temp3 + temp4 + temp5 + temp6 + temp7 + temp8;

mm1[31:16] = 0x00000000;

mm1[47:32] = 0x00000000;

mm1[63:48] = 0x00000000;

Description: The PSADBW instruction computes the absolute value of the difference of unsigned
bytes for mm1 and mm2/m64. These differences are then summed to produce a word
result in the lower 16-bit field; the upper 3 words are cleared.

The destination operand is a MMX technology register. The source operand can either
be a MMX technology register or a 64-bit memory operand.

Numeric Exceptions: None

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Opcode Instruction Description

0F,F6, /r PSADBW mm1,mm2/m64 Absolute difference of packed unsigned bytes from MM2
/Mem and MM1; these differences are then summed to
produce a word result.

4:574 Volume 4: IA-32 SSE Instruction Reference

PSADBW: Packed Sum of Absolute Differences (Continued)

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

Volume 4: IA-32 SSE Instruction Reference 4:575

PSHUFW: Packed Shuffle Word

Operation: mm1[15-0] = (mm2/m64 >> (imm8[1-0] * 16))[15-0]

mm1[31-16] = (mm2/m64 >> (imm8[3-2] * 16))[15-0]

mm1[47-32] = (mm2/m64 >> (imm8[5-4] * 16))[15-0]

mm1[63-48] = (mm2/m64 >> (imm8[7-6] * 16))[15-0]

Description: The PSHUF instruction uses the imm8 operand to select which of the four words in
MM2/Mem will be placed in each of the words in MM1. Bits 1 and 0 of imm8 encode the
source for destination word 0 (MM1[15-0]), bits 3 and 2 encode for word 1, bits 5 and 4
encode for word 2, and bits 7 and 6 encode for word 3 (MM1[63-48]). Similarly, the two
bit encoding represents which source word is to be used, e.g. an binary encoding of 10
indicates that source word 2 (MM2/Mem[47-32]) will be used.

Numeric Exceptions: None.

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault

4.14 Cacheability Control Instructions

This section describes the cacheability control instructions which enable an application
writer to minimize data access latency and cache pollution.

Opcode Instruction Description

0F,70,/r,ib PSHUFW mm1, mm2/m64, imm8 Shuffle the words in MM2/Mem based on the
encoding in imm8 and store in MM1.

4:576 Volume 4: IA-32 SSE Instruction Reference

MASKMOVQ: Byte Mask Write

Operation: if (mm2[7]) m64[edi] = mm1[7-0];

if (mm2[15]) m64[edi+1] = mm1[15-8];

if (mm2[23]) m64[edi+2] = mm1[23-16];

if (mm2[31]) m64[edi+3] = mm1[31-24];

if (mm2[39]) m64[edi+4] = mm1[39-32];

if (mm2[47]) m64[edi+5] = mm1[47-40];

if (mm2[55]) m64[edi+6] = mm1[55-48];

if (mm2[63]) m64[edi+7] = mm1[63-56];

Description: Data is stored from the mm1 register to the location specified by the di/edi register
(using DS segment). The size of the store address depends on the address-size
attribute. The most significant bit in each byte of the mask register mm2 is used to
selectively write the data (0 = no write, 1 = write), on a per-byte basis. Behavior with a
mask of all zeroes is as follows:

• No data will be written to memory. However, transition from FP to MMX technology
state (if necessary) will occur, irrespective of the value of the mask.

• For memory references, a zero byte mask does not prevent addressing faults (i.e.
#GP, #SS) from being signalled.

• Signalling of page faults (#PF) is implementation specific.

• #UD, #NM, #MF, and #AC faults are signalled irrespective of the value of the mask.

• Signalling of breakpoints (code or data) is not guaranteed; different processor
implementations may signal or not signal these breakpoints.

• If the destination memory region is mapped as UC or WP, enforcement of
associated semantics for these memory types is not guaranteed (i.e. is reserved)
and is implementation specific. Dependency on the behavior of a specific
implementation in this case is not recommended, and may lead to future
incompatibility.

The Mod field of the ModR/M byte must be 11, or an Invalid Opcode Exception will
result.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Opcode Instruction Description

0F,F7,/r MASKMOVQ mm1, mm2 Move 64-bits representing integer data from MM1 register to
memory location specified by the edi register, using the byte
mask in MM2 register.

Volume 4: IA-32 SSE Instruction Reference 4:577

MASKMOVQ: Byte Mask Write (Continued)

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1

Comments: MASKMOVQ can be used to improve performance for algorithms which need to merge
data on a byte granularity.MASKMOVQ should not cause a read for ownership; doing so
generates unnecessary bandwidth since data is to be written directly using the
byte-mask without allocating old data prior to the store. Similar to the SSE
non-temporal store instructions, MASKMOVQ minimizes pollution of the cache
hierarchy. MASKMOVQ implicitly uses weakly-ordered, write-combining stores (WC).
See Section 4.6.1.9, “Cacheability Control Instructions” for further information about
non-temporal stores.

As a consequence of the resulting weakly-ordered memory consistency model, a
fencing operation such as SFENCE should be used if multiple processors may use
different memory types to read/write the same memory location specified by edi.

This instruction behaves identically to MMX technology instructions, in the presence of
x87-FP instructions: transition from x87-FP to MMX technology (TOS=0, FP valid bits
set to all valid).

MASMOVQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE
state, they will not generate an invalid exception if CR4.OSFXSR = 0.

4:578 Volume 4: IA-32 SSE Instruction Reference

MOVNTPS: Move Aligned Four Packed Single-FP Non-temporal

Operation: m128 = xmm;

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. This store instruction minimizes cache pollution.

FP Exceptions: General protection exception if not aligned on 16-byte boundary, regardless of
segment.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if CRCR4.OSFXSR(bit 9) =
0; #UD if CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #UD if
CRCR4.OSFXSR(bit 9) = 0; #UD if CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVTNPS should be used when dealing with 16-byte aligned single-precision FP
numbers. MOVNTPS minimizes pollution in the cache hierarchy. As a consequence of
the resulting weakly-ordered memory consistency model, a fencing operation should be
used if multiple processors may use different memory types to read/write the memory
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information
about non-temporal stores.

The usage of Repeat Prefixes(F2H, F3H) with MOVNTPS is reserved. Different processor
implementations may handle this prefix differently. Usage of this prefix with MOVNTPS
risks incompatibility with future processors.

Opcode Instruction Description

0F,2B, /r MOVNTPS m128, xmm Move 128 bits representing four packed SP FP data from XMM
register to Mem, minimizing pollution in the cache hierarchy.

Volume 4: IA-32 SSE Instruction Reference 4:579

MOVNTQ: Move 64 Bits Non-temporal

Operation: m64 = mm;

Description: The linear address corresponds to the address of the least-significant byte of the
referenced memory data. This store instruction minimizes cache pollution.

Numeric Exceptions: None

Protected Mode Exceptions:

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF (fault-code) for a page
fault; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception; #AC for unaligned memory reference. To enable #AC exceptions, three
conditions must be true(CR0.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions:

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to 0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a
pending FPU exception.

Virtual 8086 Mode Exceptions:

Same exceptions as in Real Address Mode; #AC for unaligned memory reference if the
current privilege level is 3; #PF (fault-code) for a page fault.

Additional Itanium System Environment Exceptions

 Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register
Consumption Fault

 Itanium Mem Faults VHPT Data Fault, Data TLB Fault, Alternate Data TLB Fault, Data
Page Not Present Fault, Data NaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights
Fault, Data Access Bit Fault, Data Dirty Bit Fault

Comments: MOVNTQ minimizes pollution in the cache hierarchy. As a consequence of the resulting
weakly-ordered memory consistency model, a fencing operation should be used if
multiple processors may use different memory types to read/write the memory
location. See Section 4.6.1.9, “Cacheability Control Instructions” for further information
about non-temporal stores.

MOVNTQ ignores the value of CR4.OSFXSR. Since it does not affect the new SSE state,
they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,E7,/r MOVNTQ m64, mm Move 64 bits representing integer operands (8b, 16b, 32b) from
MM register to memory, minimizing pollution within cache
hierarchy.

4:580 Volume 4: IA-32 SSE Instruction Reference

PREFETCH: Prefetch

Operation: fetch (m8);

Description: If there are no excepting conditions, the prefetch instruction fetches the line containing
the addresses byte to a location in the cache hierarchy specified by a locality hint. If the
line is already present in the cache hierarchy at a level closer to the processor, no data
movement occurs. The bits 5:3 of the ModR/M byte specify locality hints as follows:

• Temporal data(t0) - prefetch data into all cache levels.

• Temporal with respect to first level cache (t1) – prefetch data in all cache levels
except 0th cache level.

• Temporal with respect to second level cache (t2) – prefetch data in all cache levels,
except 0th and 1st cache levels.

• Non-temporal with respect to all cache levels (nta) – prefetch data into
non-temporal cache structure.

Locality hints do not affect the functional behavior of the program. They are
implementation dependent, and can be overloaded or ignored by an implementation.
The prefetch instruction does not cause any exceptions (except for code breakpoints),
does not affect program behavior and may be ignored by the implementation. The
amount of data prefetched is implementation dependent. It will however be a minimum
of 32 bytes. Prefetches to uncacheable memory (UC or WC memory types) will be
ignored. Additional ModRM encodings, besides those specified above, are defined to be
reserved and the use of reserved encodings risks future incompatibility.

Numeric Exceptions: None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: This instruction is merely a hint.If executed, this instruction moves data closer to the
processor in anticipation of future use. The performance of these instructions in
application code can be implementation specific. To achieve maximum speedup, code
tuning might be necessary for each implementation. The non temporal hint also
minimizes pollution of useful cache data.

PREFETCH instructions ignore the value of CR4.OSFXSR. Since they do not affect the
new SSE state, they will not generate an invalid exception if CR4.OSFXSR = 0.

Opcode Instruction Description

0F,18,/1

0F,18,/2

0F,18,/3

0F,18,/0

PREFETCHT0 m8

PREFETCHT1 m8

PREFETCHT2 m8

PREFETCHNTA m8

Move data specified by address closer to the processor using
the t0 hint.
Move data specified by address closer to the processor using
the t1 hint.
Move data specified by address closer to the processor using
the t2 hint.
Move data specified by address closer to the processor using
the nta hint.

Volume 4: IA-32 SSE Instruction Reference 4:581

SFENCE: Store Fence

Operation: while (!(preceding_stores_globally_visible)) wait();

Description: Weakly ordered memory types can enable higher performance through such techniques
as out-of-order issue, write-combining, and write-collapsing. Memory ordering issues
can arise between a producer and a consumer of data and there are a number of
common usage models which may be affected by weakly ordered stores: (1) library
functions, which use weakly ordered memory to write results (2) compiler-generated
code, which also benefit from writing weakly-ordered results, and (3) hand-written
code. The degree to which a consumer of data knows that the data is weakly ordered
can vary for these cases. As a result, the SFENCE instruction provides a
performance-efficient way of ensuring ordering between routines that produce
weakly-ordered results and routines that consume this data.

SFENCE uses the following ModRM encoding:

Mod (7:6) = 11B

Reg/Opcode (5:3) = 111B

R/M (2:0) = 000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

Numeric Exceptions: None

Protected Mode Exceptions: None

Real Address Mode Exceptions: None

Virtual 8086 Mode Exceptions: None

Additional Itanium System Environment Exceptions: None

Comments: SFENCE ignores the value of CR4.OSFXSR. SFENCE will not generate an invalid
exception if CR4.OSFXSR = 0

Opcode Instruction Description

0F AE /7 SFENCE Guarantees that every store instruction that precedes in
program order the store fence instruction is globally visible
before any store instruction which follows the fence is globally
visible.

4:582 Volume 4: IA-32 SSE Instruction Reference

Index Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index

Index Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index for Volumes 1, 2, 3 and 4 Index:1

INDEX FOR VOLUMES 1, 2, 3 AND 4

A
AAA Instruction 4:21
AAD Instruction 4:22
AAM Instruction 4:23
AAS Instruction 4:24
Aborts 2:95, 2:538
ACPI 2:631

P-states 2:315, 2:637
Acquire Semantics 2:507
ADC Instruction 4:25, 4:26
ADD Instruction 4:27, 4:28
add Instruction 3:14
addp4 Instruction 3:15
ADDPS Instruction 4:486
Address Space Model 2:561
ADDSS Instruction 4:487
Advanced Load 1:153, 1:154
Advanced Load Address Table (ALAT) 1:64
Advanced Load Check 1:154
ALAT (Advanced Load Address Table) 1:64

Coherency 2:554
Data Speculation 1:17

alloc Instruction 3:16
AND Instruction 4:29, 4:30
and Instruction 3:18
andcm Instruction 3:19
ANDNPS Instruction 4:488
ANDPS Instruction 4:489
Application Architecture Guide 1:1
Application Memory Addressing Model 1:36
Application Register (AR) 1:23, 1:28, 1:140
AR (Application Register) 1:28, 1:140
Arithmetic Instructions 1:51
ARPL Instruction 4:31, 4:32

B
Backing Store 2:133
Banked General Registers 2:42
Bit Field and Shift Instructions 1:52
Bit Strings 1:84
Boot Sequence 2:13
BOUND Instruction 4:33
BR (Branch Register) 1:26, 1:140
br Instruction 3:20

br.ia 1:112, 2:596
Branch Hints 1:78, 1:176
Branch Instructions 1:74, 1:145
Branch Register (BR) 1:19, 1:26, 1:140
break Instruction 2:556, 3:29
Break Instruction Fault 2:151
brl Instruction 3:30
brp Instruction 3:32
BSF Instruction 4:35
BSP (RSE Backing Store Pointer Register) 1:29
BSPSTORE (RSE Backing Store Pointer for Memory

Stores Register) 1:30
BSR Instruction 4:37
bsw Instruction 3:34
BSWAP Instruction 4:39
BT Instruction 4:40
BTC Instruction 4:42
BTR Instruction 4:44
BTS Instruction 4:46
Bundle Format 1:38
Bundles 1:38, 1:141
Byte Ordering 1:36

C
CALL Instruction 4:48
CBW Instruction 4:57
CCV (Compare and Exchange Value Register) 1:30
CDQ Instruction 4:85
CFM (Current Frame Marker) 1:27
Character Strings 1:83
Check Code 1:161
Check Load 1:154
chk Instruction 3:35
CLC Instruction 4:59
CLD Instruction 4:60
CLI Instruction 4:61
clrrrb Instruction 3:37
CLTS Instruction 4:63
clz Instruction 3:38
CMC (Corrected Machine Check) 2:350
CMC Instruction 4:64
CMCV (Corrected Machine Check Vector) 2:126
CMP Instruction 4:69
cmp Instruction 3:39
cmp4 Instruction 3:43
CMPPS Instruction 4:490
CMPS Instruction 4:71
CMPSB Instruction 4:71
CMPSD Instruction 4:71
CMPSS Instruction 4:493
CMPSW Instruction 4:71
CMPXCHG Instruction 4:74
cmpxchg Instruction 2:508, 3:46
CMPXCHG8B Instruction 4:76
Coalescing Attribute 2:78
COMISS Instruction 4:496
Compare and Exchange Value Register (CCV) 1:30
Compare and Store Data Register (CSD) 1:30
Compare Types 1:55
Context Management 2:549
Context Switching 2:557

Operating System Kernel 2:558
User-Level 2:557

Control Dependencies 1:148
Control Registers 2:29
Control Speculation 1:16, 1:60, 1:142, 1:151,

INDEX

Index:2 Index for Volumes 1, 2, 3 and 4

1:155, 2:579
Control Speculative Load 1:156
Corrected Error 2:350
Corrected Machine Check Vector (CMCV) 2:126
cover Instruction 3:48
CPUID (Processor Identification Register) 1:34
CPUID Instruction 4:78
Cross-modifying Code 2:533
CSD (Compare and Store Data Register) 1:30
Current Frame Marker (CFM) 1:27
CVTPI2PS Instruction 4:498
CVTPS2PI Instruction 4:500
CVTSI2SS Instruction 4:502
CVTSS2SI Instruction 4:503
CVTTPS2PI Instruction 4:504
CVTTSS2SI Instruction 4:506
CWD Instruction 4:85
CWDE Instruction 4:57, 4:86
czx Instruction 3:49

D
DAA Instruction 4:87
DAS Instruction 4:88
Data Arrangement 1:81
Data Breakpoint Register (DBR) 2:151, 2:152
Data Debug Faults 2:152
Data Dependencies 1:149, 1:150, 3:371
Data Poisoning 2:302
Data Prefetch Hint 1:148
Data Serialization 2:18
Data Speculation 1:17, 1:63, 1:143, 1:151, 2:579
Data Speculative Load 1:154
DBR (Data Breakpoint Register) 2:151, 2:152
DCR (Default Control Register) 2:31
Debugging 2:151
DEC Instruction 4:89
Default Control Register (DCR) 2:31
Dekker’s Algorithm 2:529
dep Instruction 3:51
DIV Instruction 4:91
DIVPS Instruction 4:507
DIVSS Instruction 4:508

E
EC (Epilog Count Register) 1:33
EFLAG (IA-32 EFLAG Register) 1:123
EMMS Instruction 4:400
End of External Interrupt Register (EOI) 2:124
Endian 1:36
ENTER Instruction 4:94
EOI (End of External Interrupt Register) 2:124
epc Instruction 2:555, 3:53
Epilog Count Register (EC) 1:33
Explicit Prefetch 1:70
External Controller Interrupts 2:96

External Interrupt 2:96, 2:538
External Interrupt Control Registers (CR64-81)

2:42
External Interrupt Request Registers (IRR0-3)

2:125
External Interrupt Vector Register (IVR) 2:123
External Task Priority Cycle (XTP) 2:130
External Task Priority Register (XTPR) 2:605
ExtINT (External Controller Interrupt) 2:96
extr Instruction 3:54

F
F2XM1 Instruction 4:97
FABS Instruction 4:99
fabs Instruction 3:55
FADD Instruction 4:100
fadd Instruction 3:56
FADDP Instruction 4:100
famax Instruction 3:57
famin Instruction 3:58
fand Instruction 3:59
fandcm Instruction 3:60
Fatal Error 2:350
Fault Handlers 2:583
Faults 2:96, 2:537
FBLD Instruction 4:103
FBSTP Instruction 4:105
fc Instruction 3:61
fchkf Instruction 3:63
FCHS Instruction 4:108
fclass Instruction 3:64
FCLEX Instruction 4:109
fclrf Instruction 3:66
FCMOI Instruction 4:115
FCMOVcc Instruction 4:110
fcmp Instruction 3:67
FCOM Instruction 4:112
FCOMIP Instruction 4:115
FCOMP Instruction 4:112
FCOMPP Instruction 4:112
FCOS Instruction 4:118
FCR (IA-32 Floating-point Control Register) 1:126
fcvt Instruction

fcvt.fx 3:70
fcvt.xf 3:72
fcvt.xuf 3:73

FDECSTP Instruction 4:120
FDIV Instruction 4:121
FDIVP Instruction 4:121
FDIVR Instruction 4:124
FDIVRP Instruction 4:124
Fence Semantics 2:508
fetchadd Instruction 2:508, 3:74
FFREE Instruction 4:127
FIADD Instruction 4:100

Index for Volumes 1, 2, 3 and 4 Index:3

INDEX

FICOM Instruction 4:128
FICOMP Instruction 4:128
FIDIV Instruction 4:121
FIDIVR Instruction 4:124
FILD Instruction 4:130
FIMUL Instruction 4:145
FINCSTP Instruction 4:132
Firmware 1:7, 2:623
Firmware Address Space 2:283
Firmware Entrypoint 2:281, 2:350
Firmware Interface Table (FIT) 2:287
FIST Instruction 4:134
FISTP Instruction 4:134
FISUB Instruction 4:182, 4:183
FISUBR Instruction 4:185
FIT (Firmware Interface Table) 2:287
FLD Instruction 4:137
FLD1 Instruction 4:139
FLDCW Instruction 4:141
FLDENV Instruction 4:143
FLDL2E Instruction 4:139
FLDL2T Instruction 4:139
FLDLG2 Instruction 4:139
FLDLN2 Instruction 4:139
FLDPI Instruction 4:139
FLDZ Instruction 4:139
Floating-point Architecture 1:19, 1:85, 1:205
Floating-point Exception Fault 1:102
Floating-point Instructions 1:91
Floating-point Register (FR) 1:139
Floating-point Software Assistance Exception

Handler (FPSWA) 2:587
Floating-point Status Register (FPSR) 1:31, 1:88
flushrs Instruction 3:76
fma Instruction 1:210, 3:77
fmax Instruction 3:79
fmerge Instruction 3:80
fmin Instruction 3:82
fmix Instruction 3:83
fmpy Instruction 3:85
fms Instruction 3:86
FMUL Instruction 4:145
FMULP Instruction 4:145
FNCLEX Instruction 4:109
fneg Instruction 3:88
fnegabs Instruction 3:89
FNINIT Instruction 4:133
fnma Instruction 3:90
fnmpy Instruction 3:92
FNOP Instruction 4:148
fnorm Instruction 3:93
FNSAVE Instruction 4:162
FNSTCW Instruction 4:176
FNSTENV Instruction 4:178
FNSTSW Instruction 4:180
for Instruction 3:94

fpabs Instruction 3:95
fpack Instruction 3:96
fpamax Instruction 3:97
fpamin Instruction 3:99
FPATAN Instruction 4:149
fpcmp Instruction 3:101
fpcvt Instruction 3:104
fpma Instruction 3:107
fpmax Instruction 3:109
fpmerge Instruction 3:111
fpmin Instruction 3:113
fpmpy Instruction 3:115
fpms Instruction 3:116
fpneg Instruction 3:118
fpnegabs Instruction 3:119
fpnma Instruction 3:120
fpnmpy Instruction 3:122
fprcpa Instruction 3:123
FPREM Instruction 4:151
FPREM1 Instruction 4:154
fprsqrta Instruction 3:126
FPSR (Floating-point Status Register) 1:31, 1:88
FPSWA (Floating-point Software Assistance

Handler) 2:587
FPTAN Instruction 4:157
FR (Floating-point Register) 1:139
frcpa Instruction 3:128
FRNDINT Instruction 4:159
frsqrta Instruction 3:131
FRSTOR Instruction 4:160
FSAVE Instruction 4:162
FSCALE Instruction 4:165
fselect Instruction 3:134
fsetc Instruction 3:135
FSIN Instruction 4:167
FSINCOS Instruction 4:169
FSQRT Instruction 4:171
FSR (IA-32 Floating-point Status Register) 1:126
FST Instruction 4:173
FSTCW Instruction 4:176
FSTENV Instruction 4:178
FSTP Instruction 4:173
FSTSW Instruction 4:180
FSUB Instruction 4:182, 4:183
fsub Instruction 3:136
FSUBP Instruction 4:182, 4:183
FSUBR Instruction 4:185
FSUBRP Instruction 4:185
fswap Instruction 3:137
fsxt Instruction 3:139
FTST Instruction 4:188
FUCOM Instruction 4:190
FUCOMI Instruction 4:115
FUCOMIP Instruction 4:115
FUCOMP Instruction 4:190
FUCOMPP Instruction 4:190

INDEX

Index:4 Index for Volumes 1, 2, 3 and 4

FWAIT Instruction 4:386
fwb Instruction 3:141
FXAM Instruction 4:193
FXCH Instruction 4:195
fxor Instruction 3:142
FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

G
General Register (GR) 1:25, 1:139
getf Instruction 3:143
GR (General Register) 1:139

H
hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32

IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception

Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken

Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225

IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept

Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233

Locked Data Reference Fault 2:237
System Flag Trap 2:236

IA-32 Interrupt
Software Trap 2:232

IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261

IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIB0 (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address)

2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151,

2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293

SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217

Index for Volumes 1, 2, 3 and 4 Index:5

INDEX

INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIB0-1)

2:42
Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178
Alternate Instruction TLB 2:177
Break Instruction 2:185
Data Access Rights 2:191
Data Access-Bit 2:184
Data Key Miss 2:181
Data Nested TLB 2:179
Data TLB 2:176
Debug 2:200
Dirty-Bit 2:182
Disabled FP-Register 2:195
External Interrupt 2:186
Floating-point Fault 2:203
Floating-point Trap 2:204
General Exception 2:192
IA-32 Exception 2:210
IA-32 Intercept 2:211
IA-32 Interrupt 2:212
Instruction Access Rights 2:190
Instruction Access-Bit 2:183
Instruction Key Miss 2:180
Instruction TLB 2:175
Key Permission 2:189
Lower-Privilege Transfer Trap 2:205
NaT Consumption 2:196
Page Not Present 2:188
Single Step Trap 2:208
Speculation 2:198
Taken Branch Trap 2:207
Unaligned Reference 2:201
Unsupported Data Reference 2:202
Virtual External Interrupt 2:187
Virtualization 2:209

Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

INTn Instruction 4:217
INTO Instruction 4:217
invala Instruction 3:146
INVD instructions 4:228
INVLPG Instruction 4:230
IP (Instruction Pointer) 1:27, 1:140
IPI (Inter-processor Interrupt) 2:127
IPSR (Interruption Processor Status Register)

2:36, 2:541
IRET Instruction 4:231
IRETD Instruction 4:231
IRR (External Interrupt Request Registers) 2:125
ISR (Interruption Status Register) 2:36, 2:165,

2:541
Itanium Architecture 1:7
Itanium Instruction Set 1:21
Itanium System Architecture 1:20
Itanium System Environment 1:7, 1:21
ITC (Interval Time Counter) 1:31, 2:32
itc Instruction 3:147
ITIR (Interruption TLB Insertion Register) 2:541
ITM (Interval Time Match Register) 2:32
ITO (Interval Timer Offset) 2:34
itr Instruction 3:149
ITV (Interval Timer Vector) 2:125
IVA (Interruption Vector Address) 2:35, 2:538
IVA-based interruptions 2:95, 2:537
IVR (External Interrupt Vector Register) 2:123

J
Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K
Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L
LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53
LC (Loop Count Register) 1:33
ld Instruction 3:151
ldf Instruction 3:157
ldfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255
LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
lfetch Instruction 3:164
LFS Instruction 4:255
LGDT Instruction 4:264

INDEX

Index:6 Index for Volumes 1, 2, 3 and 4

LGS Instruction 4:255
LIDT Instruction 4:264
LLDT Instruction 4:267
LMSW Instruction 4:270
Load Instructions 1:58
loadrs Instruction 3:167
Loads from Memory 1:147
Local Redirection Registers (LRR0-1) 2:126
Locality Hints 1:70
LOCK Instruction 4:272
LODS Instruction 4:274
LODSB Instruction 4:274
LODSD Instruction 4:274
LODSW Instruction 4:274
Logical Instructions 1:51
Loop Count Register (LC) 1:33
LOOP Instruction 4:276
Loop Optimization 1:160, 1:181
LOOPcc Instruction 4:276
Lower Privilege Transfer Trap 2:151
LRR (Local Redirection Registers) 2:126
LSL Instruction 4:278
LSS Instruction 4:255
LTR Instruction 4:282

M
Machine Check (MC) 2:95, 2:296, 2:351
Machine Check Abort (MCA) 2:632
MASKMOVQ Instruction 4:576
MAXPS Instruction 4:519
MAXSS Instruction 4:521
MC (Machine Check) 2:351
MCA (Machine Check Abort) 2:95, 2:296, 2:632
Memory 1:36

Cacheable Page 2:77
Memory Access 1:142
Memory Access Ordering 1:73
Memory Attribute Transition 2:88
Memory Attributes 2:75, 2:524
Memory Consistency 1:72
Memory Fences 2:510
Memory Instructions 1:57
Memory Management 2:561
Memory Ordering 2:507, 2:510

IA-32 2:525
Memory Reference 1:147
Memory Regions 2:561
Memory Synchronization 2:526

mf Instruction 2:510, 2:526, 3:168
mf.a 2:615

MINPS Instruction 4:523
MINSS Instruction 4:525
mix Instruction 3:169
MMX technology 1:20
MOV Instruction 4:284
mov Instruction 3:172

MOVAPS Instruction 4:527
MOVD Instruction 4:401
MOVHLPS Instruction 4:529
MOVHPS Instruction 4:530
movl Instruction 3:187
MOVLHPS Instruction 4:532
MOVLPS Instruction 4:533
MOVMSKPS Instruction 4:535
MOVNTPS Instruction 4:578
MOVNTQ Instruction 4:579
MOVQ Instruction 4:403
MOVS Instruction 4:292
MOVSB Instruction 4:292
MOVSD Instruction 4:292
MOVSS Instruction 4:536
MOVSW Instruction 4:292
MOVSX Instruction 4:294
MOVUPS Instruction 4:538
MOVZX Instruction 4:295
MP Coherence 2:507
mpy4 Instruction 3:188
mpyshl4 Instruction 3:189
MUL Instruction 4:297
MULPS Instruction 4:540
MULSS Instruction 4:541
Multimedia Instructions 1:79
Multimedia Support 1:20
Multi-threading 1:177
Multiway Branches 1:173
mux Instruction 3:190

N
NaT (Not a Thing) 1:155
NaTPage (Not a Thing Attribute) 2:86
NaTVal (Not a Thing Value) 1:26
NEG Instruction 4:299
NMI (Non-Maskable Interrupt) 2:96
Non-Maskable Interrupt (NMI) 2:96
NOP Instruction 4:301
nop Instruction 3:193
Not A Thing (NaT) 1:155
Not a Thing Attribute (NaTPage) 2:86
Not a Thing Value (NatVal) 1:26
NOT Instruction 4:302

O
OLR (On Line Replacement) 2:351
Operating Environments 1:14
Operating System - See OS (Operating System)
OR Instruction 4:304
or Instruction 3:194
ORPS Instruction 4:542
OS (Operating System)

Boot Flow Sample Code 2:639
Boot Sequence 2:625
FPSWA handler 2:587

Index for Volumes 1, 2, 3 and 4 Index:7

INDEX

Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306
OUTS Instruction 4:308
OUTSB Instruction 4:308
OUTSD Instruction 4:308
OUTSW Instruction 4:308

P
pack Instruction 3:195
PACKSSDW Instruction 4:405
PACKSSWB Instruction 4:405
PACKUSWB Instruction 4:408
padd Instruction 3:197
PADDB Instruction 4:410
PADDD Instruction 4:410
PADDSB Instruction 4:413
PADDSW Instruction 4:413
PADDUSB Instruction 4:416
PADDUSW Instruction 4:416
PADDW Instruction 4:410
Page Access Rights 2:56
Page Sizes 2:57
Page Table Address 2:35
PAL (Processor Abstraction Layer) 1:7, 1:21,

2:279, 2:351
PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314
PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499

INDEX

Index:8 Index for Volumes 1, 2, 3 and 4

PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289

PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96,

2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96,

2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

PMULHUW Instruction 4:572
PMULHW Instruction 4:431
PMULLW Instruction 4:433
PMV (Performance Monitoring Vector) 2:126
POP Instruction 4:311
POPA Instruction 4:315
POPAD Instruction 4:315
popcnt Instruction 3:216
POPF Instruction 4:317
POPFD Instruction 4:317
POR Instruction 4:435
Power Management 2:313
Power-on Event 2:351
PR (Predicate Register) 1:26, 1:140
Predicate Register (PR) 1:26, 1:140
Predication 1:17, 1:54, 1:143, 1:163, 1:164
Prefetch Hints 1:176
PREFETCH Instruction 4:580
Preserved Values 2:351
Previous Function State (PFS) 1:32
Privilege Level Transfer 1:84
Privilege Levels 2:17
probe Instruction 3:217
Procedure Calls 2:549
Processor Abstraction Layer - See PAL (Processor

Abstraction Layer)
Processor Abstraction Layer (PAL) 2:279
Processor Boot Flow 2:623
Processor Identification Registers (CPUID) 1:34
Processor Interrupt Block (PIB) 2:127
Processor Min-state Save Area 2:302
Processor Reset 2:95
Processor State Parameter (PSP) 2:299, 2:308
Processor Status Register (PSR) 2:23
Programmed I/O 2:534
Protection Keys 2:59, 2:564
psad Instruction 3:220
PSADBW Instruction 4:573
Pseudo-Code Functions 3:281
pshl Instruction 3:222
pshladd Instruction 3:223
pshr Instruction 3:224
pshradd Instruction 3:226
PSHUFW Instruction 4:575
PSLLD Instruction 4:437
PSLLQ Instruction 4:437
PSLLW Instruction 4:437
PSP (Processor State Parameter) 2:308
PSR (Processor Status Register) 2:23
PSRAD Instruction 4:440
PSRAW Instruction 4:440
PSRLD Instruction 4:443
PSRLQ Instruction 4:443
PSRLW Instruction 4:443
psub Instruction 3:227
PSUBB Instruction 4:446

Index for Volumes 1, 2, 3 and 4 Index:9

INDEX

PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230
ptc.g 2:570, 3:231
ptc.ga 2:570, 3:231
ptc.l 2:568, 3:233

ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R
RAW Dependency 1:149
RCL Instruction 4:327
RCPPS Instruction 4:543
RCPSS Instruction 4:545
RCR Instruction 4:327
RDMSR Instruction 4:331
RDPMC Instruction 4:333
RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351
Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62
Register Stack 1:18, 1:47
Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549
Release Semantics 2:507
Rendezvous 2:301
REP Instruction 4:337
REPE Instruction 4:337
REPNE Instruction 4:337
REPNZ Instruction 4:337
REPZ Instruction 4:337
Reserved Variables 2:351
Reset Event 2:95, 2:351

Resource Utilization Counter (RUC) 1:31, 2:33
RET Instruction 4:340
rfi Instruction 2:543, 3:236
RID (Region Identifier) 2:561
RNAT(RSE NaT Collection Register) 1:30
ROL Instruction 4:327
ROR Instruction 4:327
Rotating Registers 1:145
RR (Region Register) 2:58, 2:561
RSC (Register Stack Configuration Register) 1:29
RSE (Register Stack Engine) 2:133
RSE Backing Store Pointer (BSP) 1:29
RSE Backing Store Pointer for Memory Stores

(BSPSTORE) 1:30
RSE NaT Collection Register (RNAT) 1:30
RSM Instruction 4:346
rsm Instruction 3:239
RSQRTPS Instruction 4:547
RSQRTSS Instruction 4:548
RUC (Resource Utilization Counter) 1:31, 2:33
rum Instruction 3:241

S
SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352,

2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310

SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549

INDEX

Index:10 Index for Volumes 1, 2, 3 and 4

SIDT Instruction 4:359
Single Step Trap 2:151
SLDT Instruction 4:367
SMSW Instruction 4:369
Software Pipelining 1:19, 1:75, 1:145, 1:181
Speculation 1:16, 1:142, 1:151

Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551
SQRTSS Instruction 4:552
srlz Instruction 3:249
SSE Instructions 4:463
ssm Instruction 3:250
st Instruction 3:251
Stacked Calling Convention 2:352
Stacked General Registers 2:550
Stacked Registers 1:144
Static Calling Convention 2:352
Static General Registers 2:550
STC Instruction 4:371
STD Instruction 4:372
stf Instruction 3:254
STI Instruction 4:373
STMXCSR Instruction 4:553
Stops 1:38
Store Instructions 1:59
Stores to Memory 1:147
STOS Instruction 4:376
STOSB Instruction 4:376
STOSD Instruction 4:376
STOSW Instruction 4:376
STR Instruction 4:378
SUB Instruction 4:379
sub Instruction 3:256
SUBPS Instruction 4:554
SUBSS Instruction 4:555
sum Instruction 3:257
sxt Instruction 3:258
sync Instruction 3:259

sync.i 2:526
System Abstraction Layer - See SAL (System

Abstraction Layer)
System Architecture 1:20
System Environment 2:13
System Programmer’s Guide 2:501
System State 2:20

T
tak Instruction 3:260
Taken Branch trap 2:151
Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261
TC (Translation Cache) 2:49, 2:567

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567

purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U
UCOMISS Instruction 4:556
UD2 Instruction 4:383
UEFI (Unified Extensible Firmware Interface)

2:630
UM (User Mask Register) 1:33
UNAT (User NaT Collection Register) 1:31, 1:156
Uncacheable Page 2:77
Unchanged Register 2:352
Unordered Semantics 2:507
unpack Instruction 3:270
UNPCKHPS Instruction 4:558
UNPCKLPS Instruction 4:560
User Mask (UM) 1:33
User NaT Collection Register (UNAT) 1:31, 1:156

V
VERR Instruction 4:384
VERW Instruction 4:384
VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173
Virtual Addressing 2:45
Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352
Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352
Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324
Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329
VMM (Virtual Machine Monitor) 2:352
vmsw Instruction 3:273
VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561

Index for Volumes 1, 2, 3 and 4 Index:11

INDEX

W
WAIT Instruction 4:386
WAR Dependency 1:149
WAW Dependency 1:149
WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X
XADD Instruction 4:391
XCHG Instruction 4:393
xchg Instruction 2:508, 3:274
XLAT Instruction 4:395
XLATB Instruction 4:395
xma Instruction 3:276
xmpy Instruction 3:278
XOR Instruction 4:397
xor Instruction 3:279
XORPS Instruction 4:562
XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z
zxt Instruction 3:280

INDEX

Index:12 Index for Volumes 1, 2, 3 and 4

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 4: IA-32 Instruction Set Reference
	1 About this Manual
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	2 Base IA-32 Instruction Reference
	2.1 Additional Intel® Itanium® Faults
	2.2 Interpreting the IA-32 Instruction Reference Pages
	2.2.1 IA-32 Instruction Format
	2.2.1.1 Opcode Column
	2.2.1.2 Instruction Column
	2.2.1.3 Description Column
	2.2.1.4 Description

	2.2.2 Operation
	2.2.3 Flags Affected
	2.2.4 FPU Flags Affected
	2.2.5 Protected Mode Exceptions
	2.2.6 Real-address Mode Exceptions
	2.2.7 Virtual-8086 Mode Exceptions
	2.2.8 Floating-point Exceptions

	2.3 IA-32 Base Instruction Reference
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	AND-Logical AND
	ARPL-Adjust RPL Field of Segment Selector
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword
	CDQ-Convert Double to Quad
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLI-Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands
	CMPXCHG-Compare and Exchange
	CMPXCHG8B-Compare and Exchange 8 Bytes
	CPUID-CPU Identification
	CWD/CDQ-Convert Word to Doubleword/Convert Doubleword to Quadword
	CWDE-Convert Word to Doubleword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	1 DEC-Decrement by
	DIV-Unsigned Divide
	ENTER-Make Stack Frame for Procedure Parameters
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-point Conditional Move
	FCOM/FCOMP/FCOMPP-Compare Real
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Real and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide (Continued)
	FFREE-Free Floating-point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-point Unit
	FIST/FISTP-Store Integer
	FLD-Load Real
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant (Continued)
	FLDCW-Load Control Word
	FLDENV-Load FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore FPU State
	FSAVE/FNSAVE-Store FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Real
	FSTCW/FNSTCW-Store Control Word
	FSTENV/FNSTENV-Store FPU Environment
	FSTSW/FNSTSW-Store Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Real
	FWAIT-Wait
	FXAM-Examine
	FXCH-Exchange Register Contents
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y ¥ log2x
	FYL2XP1-Compute y * log2(x +1)
	HLT-Halt
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	1 INC-Increment by
	INS/INSB/INSW/INSD-Input from Port to String
	INTn/INTO/INT3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	JMPE-Jump to Intel® Itanium® Instruction Set
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LES-Load Full Pointer
	LFS-Load Full Pointer
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LGS-Load Full Pointer
	LLDT-Load Local Descriptor Table Register
	LIDT-Load Interrupt Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD-Load String Operand
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LSS-Load Full Pointer
	LTR-Load Task Register
	MOV-Move
	MOV-Move to/from Control Registers
	MOV-Move to/from Debug Registers
	MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String
	MOVSX-Move with Sign-Extension
	MOVZX-Move with Zero-Extend
	MUL-Unsigned Multiplication of AL, AX, or EAX
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPF/POPFD-Pop Stack into EFLAGS Register
	PUSH-Push Word or Doubleword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	RCL/RCR/ROL/ROR--Rotate
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDTSC-Read Time-Stamp Counter
	REP/REPE/REPZ/REPNE /REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	ROL/ROR-Rotate
	RSM-Resume from System Management Mode
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift Instructions
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String Data
	SETcc-Set Byte on Condition
	SETcc-Set Byte on Condition (Continued)
	SGDT/SIDT-Store Global/Interrupt Descriptor Table Register
	SHL/SHR-Shift Instructions
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STOS/STOSB/STOSW/STOSD-Store String Data
	STR-Store Task Register
	SUB-Integer Subtraction
	TEST-Logical Compare
	UD2-Undefined Instruction
	VERR, VERW-Verify a Segment for Reading or Writing
	WAIT/FWAIT-Wait
	WBINVD-Write-Back and Invalidate Cache
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR

	3 IA-32 Intel® MMX™ Technology Instruction Reference
	EMMS-Empty MMX State
	MOVD-Move 32 Bits
	MOVQ-Move 64 Bits
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Packed Add
	PADDSB/PADDSW-Packed Add with Saturation
	PADDUSB/PADDUSW-Packed Add Unsigned with Saturation
	PAND-Logical AND
	PANDN-Logical AND NOT
	PCMPEQB/PCMPEQW/PCMPEQD-Packed Compare for Equal
	PCMPGTB/PCMPGTW/PCMPGTD-Packed Compare for Greater Than
	PMADDWD-Packed Multiply and Add
	PMULHW-Packed Multiply High
	PMULLW-Packed Multiply Low
	POR-Bitwise Logical OR
	PSLLW/PSLLD/PSLLQ-Packed Shift Left Logical
	PSRAW/PSRAD-Packed Shift Right Arithmetic
	PSRLW/PSRLD/PSRLQ-Packed Shift Right Logical
	PSUBB/PSUBW/PSUBD-Packed Subtract
	PSUBSB/PSUBSW-Packed Subtract with Saturation
	PSUBUSB/PSUBUSW-Packed Subtract Unsigned with Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ-Unpack High Packed Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ-Unpack Low Packed Data
	PXOR-Logical Exclusive OR

	4 IA-32 SSE Instruction Reference
	4.1 IA-32 SSE Instructions
	4.2 About the Intel® SSE Architecture
	4.3 Single Instruction Multiple Data
	4.4 New Data Types
	4.5 SSE Registers
	4.6 Extended Instruction Set
	4.6.1 Instruction Group Review
	4.6.1.1 Arithmetic Instructions
	4.6.1.2 Logical Instructions
	4.6.1.3 Compare Instructions
	4.6.1.4 Shuffle Instructions
	4.6.1.5 Conversion Instructions
	4.6.1.6 Data Movement Instructions
	4.6.1.7 State Management Instructions
	4.6.1.8 Additional SIMD Integer Instructions
	4.6.1.9 Cacheability Control Instructions

	4.7 IEEE Compliance
	4.7.1 Real Number System
	4.7.1.1 Floating-point Format
	4.7.1.2 Normalized Numbers
	4.7.1.3 Biased Exponent
	4.7.1.4 Real Number and Non-Number Encodings
	4.7.1.5 Signed Zeros
	4.7.1.6 Normalized and Denormalized Finite Numbers
	4.7.1.7 Signed Infinities
	4.7.1.8 NaNs
	4.7.1.9 Indefinite

	4.7.2 Operating on NaNs

	4.8 Data Formats
	4.8.1 Memory Data Formats
	4.8.2 SSE Register Data Formats

	4.9 Instruction Formats
	4.10 Instruction Prefixes
	4.11 Reserved Behavior and Software Compatibility
	4.12 Notations
	ADDPS: Packed Single-FP Add
	Additional Itanium System Environment Exceptions

	ADDSS: Scalar Single-FP Add
	Additional Itanium System Environment Exceptions

	ANDNPS: Bit-wise Logical And Not for Single-FP
	Additional Itanium System Environment Exceptions

	ANDPS: Bit-wise Logical And for Single-FP
	Additional Itanium System Environment Exceptions

	CMPPS: Packed Single-FP Compare
	Additional Itanium System Environment Exceptions

	CMPSS: Scalar Single-FP Compare
	Additional Itanium System Environment Exceptions

	COMISS: Scalar Ordered Single-FP Compare and set EFLAGS
	Additional Itanium System Environment Exceptions

	CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
	Additional Itanium System Environment Exceptions

	CVTPS2PI: Packed Single-FP to Packed INT32 Conversion
	Additional Itanium System Environment Exceptions

	CVTSI2SS: Scalar signed INT32 to Single-FP Conversion
	Additional Itanium System Environment Exceptions

	CVTSS2SI: Scalar Single-FP to Signed INT32 Conversion
	Additional Itanium System Environment Exceptions

	CVTTPS2PI: Packed Single-FP to Packed INT32 Conversion (truncate)
	Additional Itanium System Environment Exceptions

	CVTTSS2SI: Scalar Single-FP to signed INT32 Conversion (truncate)
	Additional Itanium System Environment Exceptions

	DIVPS: Packed Single-FP Divide
	Additional Itanium System Environment Exceptions

	DIVSS: Scalar Single-FP Divide
	Additional Itanium System Environment Exceptions

	FXRSTOR: Restore FP and Intel® MMX™ Technology State and SSE State
	Additional Itanium System Environment Exceptions

	FXSAVE: Store FP and Intel® MMX™ Technology State and SSE State
	Additional Itanium System Environment Exceptions

	LDMXCSR: Load SSE Control/Status
	Additional Itanium System Environment Exceptions

	MAXPS: Packed Single-FP Maximum
	Additional Itanium System Environment Exceptions

	MAXSS: Scalar Single-FP Maximum
	Additional Itanium System Environment Exceptions

	MINPS: Packed Single-FP Minimum
	Additional Itanium System Environment Exceptions

	MINSS: Scalar Single-FP Minimum
	Additional Itanium System Environment Exceptions

	MOVAPS: Move Aligned Four Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVHLPS: Move High to Low Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVHPS: Move High Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVLHPS: Move Low to High Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVLPS: Move Low Packed Single-FP
	Additional Itanium System Environment Exceptions

	MOVMSKPS: Move Mask to Integer
	Additional Itanium System Environment Exceptions

	MOVSS: Move Scalar Single-FP
	Additional Itanium System Environment Exceptions

	MOVUPS: Move Unaligned Four Packed Single-FP
	Additional Itanium System Environment Exceptions

	MULPS: Packed Single-FP Multiply
	Additional Itanium System Environment Exceptions

	MULSS: Scalar Single-FP Multiply
	Additional Itanium System Environment Exceptions

	ORPS: Bit-wise Logical OR for Single-FP Data
	Additional Itanium System Environment Exceptions

	RCPPS: Packed Single-FP Reciprocal
	Additional Itanium System Environment Exceptions

	RCPSS: Scalar Single-FP Reciprocal
	Additional Itanium System Environment Exceptions

	RSQRTPS: Packed Single-FP Square Root Reciprocal
	Additional Itanium System Environment Exceptions

	RSQRTSS: Scalar Single-FP Square Root Reciprocal
	Additional Itanium System Environment Exceptions

	SHUFPS: Shuffle Single-FP
	Additional Itanium System Environment Exceptions

	SQRTPS: Packed Single-FP Square Root
	Additional Itanium System Environment Exceptions

	SQRTSS: Scalar Single-FP Square Root
	Additional Itanium System Environment Exceptions

	STMXCSR: Store SSE Control/Status
	Additional Itanium System Environment Exceptions

	SUBPS: Packed Single-FP Subtract
	Additional Itanium System Environment Exceptions

	SUBSS: Scalar Single-FP Subtract
	Additional Itanium System Environment Exceptions

	UCOMISS: Unordered Scalar Single-FP Compare and Set EFLAGS
	Additional Itanium System Environment Exceptions

	UNPCKHPS: Unpack High Packed Single-FP Data
	Additional Itanium System Environment Exceptions

	UNPCKLPS: Unpack Low Packed Single-FP Data
	Additional Itanium System Environment Exceptions

	XORPS: Bit-wise Logical Xor for Single-FP Data
	Additional Itanium System Environment Exceptions

	4.13 SIMD Integer Instruction Set Extensions
	PAVGB/PAVGW: Packed Average
	Additional Itanium System Environment Exceptions

	PEXTRW: Extract Word
	Additional Itanium System Environment Exceptions

	PINSRW: Insert Word
	Additional Itanium System Environment Exceptions

	PMAXSW: Packed Signed Integer Word Maximum
	Additional Itanium System Environment Exceptions

	PMAXUB: Packed Unsigned Integer Byte Maximum
	Additional Itanium System Environment Exceptions

	PMINSW: Packed Signed Integer Word Minimum
	Additional Itanium System Environment Exceptions

	PMINUB: Packed Unsigned Integer Byte Minimum
	Additional Itanium System Environment Exceptions

	PMOVMSKB: Move Byte Mask To Integer
	Additional Itanium System Environment Exceptions

	PMULHUW: Packed Multiply High Unsigned
	Protected Mode Exceptions
	Real Address Mode Exceptions
	Virtual 8086 Mode Exceptions
	Additional Itanium System Environment Exceptions

	PSADBW: Packed Sum of Absolute Differences
	Protected Mode Exceptions
	Real Address Mode Exceptions
	Virtual 8086 Mode Exceptions
	Additional Itanium System Environment Exceptions

	PSHUFW: Packed Shuffle Word
	Additional Itanium System Environment Exceptions

	4.14 Cacheability Control Instructions
	MASKMOVQ: Byte Mask Write
	Additional Itanium System Environment Exceptions

	MOVNTPS: Move Aligned Four Packed Single-FP Non-temporal
	Additional Itanium System Environment Exceptions

	MOVNTQ: Move 64 Bits Non-temporal
	Additional Itanium System Environment Exceptions

	PREFETCH: Prefetch
	Additional Itanium System Environment Exceptions: None

	SFENCE: Store Fence
	Additional Itanium System Environment Exceptions: None

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

