]
i

........
,,,,,,

— A
O 4
= .

ltanium’
. insi

\

d em

Intel® Itanium® Architecture
Software Developer’s Manual

Volume 4: IA-32 Instruction Set Reference

Revision 2.3
May 2010

Document Number: 323208

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation
*QOther names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 398

Contents

1 Aboutthis Manual ettt e s e 4:1
1.1 Overview of Volume 1: Application Architecture. 4:1

111 Part 1: Application Architecture Guide, .. 4:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 4:1

1.2 Overview of Volume 2: System Architecture. L. 4:2

1.2.1 Part 1: System Architecture Guide oL 4:2

1.2.2 Part 2: System Programmer's Guide 4:3

1.2.3 APPENdICES. . . .o 4:4

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 4:4

1.4 Overview of Volume 4: |IA-32 Instruction Set Reference. 4:4

1.5 TerminolOgYo 4:5

1.6 Related Documents 4:5

1.7 Revision History e 4:6

2 Base IA-32 Instruction Reference i s 4:11
21 Additional Intel® Itanium® Faults 4:11

2.2 Interpreting the IA-32 Instruction Reference Pages 4:12

221 IA-32 Instruction Format. L 4:12

222 Operation 4:15

223 Flags Affected. 4:18

224 FPU Flags Affected i 4:18

2.2.5 Protected Mode Exceptions 4:19

2.2.6 Real-address Mode Exceptions 4:19

227 Virtual-8086 Mode Exceptions 4:19

2.2.8 Floating-point Exceptions. 4:20

2.3 IA-32 Base Instruction Reference. 4:20

3 IA-32 Intel® MMX™ Technology Instruction Reference......................... 4:399
4 IA-32 SSE Instruction Reference i e 4:463
4.1 IA-32 SSE Instéuctions .. 4:463

4.2 About the Intel® SSE Architecture 4:463

4.3 Single Instruction Multiple Data 4:464

4.4 New Data Typeso 4:464

4.5 SSE Registers 4:465

4.6 Extended Instruction Set. 4:465

4.6.1 Instruction Group Review 4:466

4.7 IEEE Compliance 4:474

4.7.1 Real Number System 4:474

4.7.2 Operatingon NaNs. i e e 4:480

4.8 Data Formats 4:481

4.8.1 Memory Data Formats 4:481

4.8.2 SSE RegisterDataFormats. 4:481

4.9 Instruction Formats. e 4:483

410 Instruction Prefixes 4:483

411 Reserved Behavior and Software Compatibility 4:484

412 NOtatioNS. e 4:484

413 SIMD Integer Instruction Set Extensions oL 4:562

4.14 Cacheability Control Instructions 4:575

[o = 4:583

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 399

Figures

2-2 Bit Offset for BIT[EAX,21].o e e e e e e 4:18
2-3 Memory Bit Indexing.o 4:18
2-4 Version Information in Registers EAX 4:79
3-1 Operation of the MOVD Instruction i, 4:401
3-2 Operation of the MOVQ Instruction 4:403
3-3 Operation of the PACKSSDW Instruction. 4:405
3-4 Operation of the PACKUSWB Instruction. 4:408
3-5 Operation of the PADDW Instruction i 4:410
3-6 Operation of the PADDSW Instruction i 4:413
3-7 Operation of the PADDUSB Instruction i 4:416
3-8 Operation of the PAND Instruction. 4:419
3-9 Operation of the PANDN Instruction. 4:421
3-10 Operation of the PCMPEQW Instruction 4:423
3-11 Operation of the PCMPGTW Instruction 4:426
3-12 Operation of the PMADDWD Instruction 4:429
3-13 Operation of the PMULHW Instruction. 4:431
3-14 Operation of the PMULLW Instruction 4:433
3-15 Operation of the POR Instruction. 4:435
3-16 Operation of the PSLLW Instruction., 4:437
3-17 Operation of the PSRAW Instruction 4:440
3-18 Operation of the PSRLW Instruction 4:443
3-19 Operation of the PSUBW Instruction 4:446
3-20 Operation of the PSUBSW Instruction 4:449
3-21 Operation of the PSUBUSB Instruction 4:452
3-22 High-order Unpacking and Interleaving of Bytes with the PUNPCKHBW Instruction. 4:455
3-23 Low-order Unpacking and Interleaving of Bytes with the PUNPCKLBW Instruction 4:458
3-24 Operation of the PXOR Instruction. 4:461
4-1 Packed Single-FP Data Typeot e 4:464
4-2 SSE Register Set 4:465
4-3 Packed Operation. 4:466
4-4 Scalar Operation. 4:466
4-5 Packed Shuffle Operation. 4:468
4-6 Unpack High Operation e e e 4:469
4-7 Unpack Low Operation. 4:469
4-8 Binary Real Number System e 4:475
4-9 Binary Floating-point Format e 4:476
4-10 RealNumbersand NaNs e 4:478
4-11 Four Packed FP Data in Memory (ataddress 1000H) 4:481
Tables

2-1 Register Encodings Associated with the +rb, +rw, and +rd Nomenclature 4:13
2-2 Exception Mnemonics, Names, and Vector Numbers. 4:19
2-3 Floating-point Exception MnemonicsandNames 4:20
2-4 Information Returned by CPUID Instruction. 4:78
2-5 Feature Flags Returned in EDX Register, 4:80
400 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

2-6
2-7
2-8
29
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
4-1
4-2

4-4
4-5

4-7
4-8
4-9

FPATAN Zerosand NaNs 4:149

FPREM Zerosand NaNs 4:151
FPREM1 Zerosand NaNs. 4:154
FSUB Zerosand NaNs L 4:183
FSUBR Zerosand NaNs 4:186
FYL2X Zerosand NaNs L 4:199
FYL2XP1 Zerosand NaNs 4:201
IDIV Operands. e 4:204
INTCases e 4:218
LAR Descriptor Validity 4:253
LEA Addressand Operand Sizeso 4:258
Repeat Conditions. 4:338
Real Number Notation. 4:476
Denormalization Process L 4:478
Results of Operations with NAN Operands 4:481
Precision and Range of SSE Datatype 4:482
Real Number and NaN Encodings. o 4:482
SSE Instruction Behavior with Prefixes 4:483
SIMD Integer Instructions — Behavior with Prefixes 4:483
Cacheability Control Instruction Behavior with Prefixes 4:483
Key to SSE Naming Convention. 4:485
§

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 401

402 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

About this Manual 1

1.1

1.1.1

1.1.2

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “"Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Volume 4: About this Manual 4:1

1.2

1.2.1

4:2

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, "Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “"System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 = GR 127) of the general
register file.

Chapter 7, “"Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 4: About this Manual

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “"About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, "MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, "Memory Management” introduces various memory management strategies.

Chapter 6, "Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

Volume 4: About this Manual 4:3

1.2.3

1.3

1.4

4:4

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “"Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, "Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “"Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 4: About this Manual

1.5

1.6

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, "IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) - Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture - The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture — The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

IA-32 System Environment - The operating system privileged environment and
resources as defined by the Intel Architecture Software Developer’s Manual. Resources
include virtual paging, control registers, debugging, performance monitoring, machine
checks, and the set of privileged instructions.

Itanium® Architecture-based Firmware - The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) - The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) - The firmware layer which abstracts system
features that are implementation dependent.

Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

e Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization- Document number 308065
provides model-specific information about the dual-core Itanium processors.

o Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization - This document (Document number 251110) describes

Volume 4: About this Manual 4:5

model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

o Intel® Itanium® Processor Reference Manual for Software Development -
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

o Intel® 64 and IA-32 Architectures Software Developer’s Manual - This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

o Intel® Itanium® Software Conventions and Runtime Architecture Guide -
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

« Intel® Itanium® Processor Family System Abstraction Layer Specification -
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:
o Unified Extensible Firmware Interface Specification — This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History
Date of Revision A
Revision Number Description
March 2010 23 Added information about illegal virtualization optimization combinations and

IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.

New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.

PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.

New PAL_MC_ERROR_INFO health indicator.

New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.

Added virtual machine disable.

Added variable frequency mode additions to ACPI P-state description.

Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.

Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.

Min-state save area size change.

PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.

Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

4:6 Volume 4: About this Manual

Date of Revision e
Revision Number Description
August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking

on interruption messages by processors optional. See Vol 2, Part |, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.

Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part |, Ch 10.

Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc. 1 instruction in Vol 3 for details.

Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.

Introduced Unimplemented Instruction Address fault.

Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.

Architecture extensions for processor virtualization.

All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.

Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.

Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.

Allows IPI-redirection feature to be optional.

Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.

Modified insertion behavior for TR overlaps. See Vol 2, Part |, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.

New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.

Performance Monitor Data (PMD) registers are no longer sign-extended.

New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.

Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.

Clarified PMU interrupts as edge-triggered.

Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.

Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.

Clarified descriptions for check_target_register and
check_target_register_sof.

Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part |, Ch 5.

Clarified instruction serialization requirements for interruptions in Vol 2, Part Il,
Ch 3.

Updated performance monitor context switch routine in Vol 2, Part |, Ch 7.

Volume 4: About this Manual

4:7

4:8

Date of Revision A
Revision Number Description
August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part |, Volume 3).
Added New fc. i Instruction (Section 4.4.6.1, and 4.4.6.2, Part |, Volume 1;
Section 4.3.3,4.4.1,4.4.5,4.4.6,4.4.7,5.5.2, and 7.1.2, Part |, Volume 2;
Section 2.5,2.5.1,2.5.2, 2.5.3, and 4.5.2.1, Part ll, Volume 2; Section 2.2, 3,
4.1,4.4.6.5, and 4.4.10.10, Part |, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part |,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (1d. s)
(Section 5.5.5 and 11.9, Part |, Volume 2; Section 2.2 and 3, Part |, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part |,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1,7.2.2,7.2.4.1, and 7.2.4.2, Part |, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part |, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part |,
Volume 2).
Added Fault Handling Semantics for 1fetch. fault Instruction (Section 2.2,
Part I, Volume 3).
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 4: About this Manual

Date of
Revision

Revision
Number

Description

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change — added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change — added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Chapter 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).

VHPT read atomicity clarification (Section 4.1).

IIP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions — added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation — changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes — extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).

Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification — added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

|1D1SEF3) :\Bl?lidity on INITs from PAL_MC_ERROR_INFO clarification (Section
Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

July 2000

1.1

Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 4: About this Manual

4:9

Date of
Revision

Revision
Number

Description

Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing I1A-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in [IM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).

Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:

fmix instruction page figures corrected (Chapter 2).

Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).

Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

§

Volume 4: About this Manual

Base IA-32 Instruction Reference 2

This section lists all IA-32 instructions and their behavior in the Itanium System
Environment and IA-32 System Environments on an processor based on the Itanium
architecture. Unless noted otherwise all IA-32 and MMX technology and SSE
instructions operate as defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

This volume describes the complete IA-32 Architecture instruction set, including the
integer, floating-point, MMX technology and SSE technology, and system instructions.
The instruction descriptions are arranged in alphabetical order. For each instruction, the
forms are given for each operand combination, including the opcode, operands
required, and a description. Also given for each instruction are a description of the
instruction and its operands, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of the exceptions that
can be generated.

For all IA-32 the following relationships hold:

e Writes - Writes of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions are reflected in the Itanium registers
defined to hold that IA-32 state when IA-32 instruction set completes execution.

e Reads - Reads of any IA-32 general purpose, floating-point or SSE, MMX
technology registers by IA-32 instructions see the state of the Itanium registers
defined to hold the IA-32 state after entering the IA-32 instruction set.

o State mappings - IA-32 numeric instructions are controlled by and reflect their
status in FCW, FSW, FTW, FCS, FIP, FOP, FDS and FEA. On exit from the IA-32
instruction set, Itanium numeric status and control resources defined to hold IA-32
state reflect the results of all IA-32 prior numeric instructions in FCR, FSR, FIR and
FDR. Itanium numeric status and control resources defined to hold IA-32 state are
honored by IA-32 numeric instructions when entering the IA-32 instruction set.

2.1 Additional Intel® Itanium® Faults

The following fault behavior is defined for all IA-32 instructions in the Itanium System
Environment:

o IA-32 Faults - All IA-32 faults are performed as defined in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, unless otherwise noted.
IA-32 faults are delivered on the IA_32_Exception interruption vector.

¢ IA-32 GPFault - Null segments are signified by the segment descriptor register’s
P-bit being set to zero. IA-32 memory references through DSD, ESD, FSD, and GSD
with the P-bit set to zero result in an IA-32 GPFault.

¢ Itanium Low FP Reg Fault - If PSR.dfl is 1, execution of any IA-32 MMX
technology, SSE or floating-point instructions results in a Disabled FP Register fault
(regardless of whether FR2-31 is referenced).

e Itanium High FP Reg Fault - If PSR.dfh is 1, execution of the first target IA-32
instruction following an br.ia or rfi results in a Disabled FP Register fault
(regardless of whether FR32-127 is referenced).

Volume 4: Base IA-32 Instruction Reference 4:11

2.2

2.2.1

o Itanium Instruction Mem Faults - The following additional Itanium memory
faults can be generated on each virtual page referenced when fetching IA-32 or
MMX technology or SSE instructions for execution:

e Alternative instruction TLB fault

e VHPT instruction fault

e Instruction TLB fault

e Instruction Page Not Present fault

e Instruction NaT Page Consumption Abort
e Instruction Key Miss fault

e Instruction Key Permission fault

e Instruction Access Rights fault

e Instruction Access Bit fault

o Itanium Data Mem Faults - The following additional Itanium memory faults can
be generated on each virtual page touched when reading or writing memory
operands from the IA-32 instruction set including MMX technology and SSE
instructions:

¢ Nested TLB fault

¢ Alternative data TLB fault

e VHPT data fault

e Data TLB fault

e Data Page Not Present fault
e Data NaT Page Consumption Abort
e Data Key Miss fault

e Data Key Permission fault

e Data Access Rights fault

¢ Data Dirty bit fault

e Data Access bit fault

Interpreting the IA-32 Instruction Reference
Pages

This section describes the information contained in the various sections of the
instruction reference pages that make up the majority of this chapter. It also explains
the notational conventions and abbreviations used in these sections.

IA-32 Instruction Format

The following is an example of the format used for each Intel architecture instruction
description in this chapter.

2.2.1.0.0.1 CMC—Complement Carry Flag
Opcode Instruction Description
F5 CMC Complement carry flag

Volume 4: Base IA-32 Instruction Reference

2.2.1.1

2.2.1.2

Volume 4: Base IA-32 Instruction Reference

Opcode Column

The “Opcode” column gives the complete object code produced for each form of the
instruction. When possible, the codes are given as hexadecimal bytes, in the same
order in which they appear in memory. Definitions of entries other than hexadecimal
bytes are as follows:

e /digit - A digit between 0 and 7 indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit
that provides an extension to the instruction's opcode.

e /r - Indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

e cb, cw, cd, cp - A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value
following the opcode that is used to specify a code offset and possibly a new value
for the code segment register.

e ib, iw, id - A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the
instruction that follows the opcode, ModR/M bytes or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and doublewords are
given with the low-order byte first.

e +rb, +rw, +rd - A register code, from 0 through 7, added to the hexadecimal byte
given at the left of the plus sign to form a single opcode byte. The register codes
are given in Table 2-1.

¢ +i - A number used in floating-point instructions when one of the operands is ST(i)
from the FPU register stack. The number i (which can range from 0 to 7) is added to
the hexadecimal byte given at the left of the plus sign to form a single opcode byte.

Table 2-1. Register Encodings Associated with the +rb, +rw, and +rd

Nomenclature

rb rw rd
AL = 0 AX = 0 EAX = 0
CL = 1 CX = 1 ECX = 1
DL = 2 DX = 2 EDX = 2
BL = 3 BX = 3 EBX = 3
rb rw rd
AH = 4 SP = 4 ESP = 4
CH = 5 BP = 5 EBP = 5
DH = 6 Sl = 6 ESI = 6
BH = 7 DI = 7 EDI = 7

Instruction Column

The “Instruction” column gives the syntax of the instruction statement as it would

appear in an ASM386 program. The following is a list of the symbols used to represent

operands in the instruction statements:

¢ rel8 - A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

¢ rel16 and rel32 - A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an
operand-size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits.

ptr16:16 and ptr16:32 - A far pointer, typically in a code segment different from
that of the instruction. The notation 16:16 indicates that the value of the pointer
has two parts. The value to the left of the colon is a 16-bit selector or value
destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the
instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is used when
the operand-size attribute is 32 bits.

r8 - One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.
r16 - One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32 - One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP,
EBP, ESI, or EDI.

imm8 - An immediate byte value. The imm8 symbol is a signed number between -
128 and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or
doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

imm16 - An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.
imm32 - An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a humber between
+2,147,483,647 and -2,147,483,648 inclusive.

r/m8 - A byte operand that is either the contents of a byte general-purpose
register (AL, BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

r/m16 - A word general-purpose register or memory operand used for instructions
whose operand-size attribute is 16 bits. The word general-purpose registers are:
AX, BX, CX, DX, SP, BP, SI, and DI. The contents of memory are found at the
address provided by the effective address computation.

r/m32 - A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword
general-purpose registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The
contents of memory are found at the address provided by the effective address
computation.

m - A 16- or 32-bit operand in memory.

m8 - A byte operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used
only with the string instructions and the XLAT instruction.

m16 - A word operand in memory, usually expressed as a variable or array nhame,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nhomenclature is used
only with the string instructions.

m32 - A doubleword operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

m64 - A memory quadword operand in memory. This nomenclature is used only
with the CMPXCHGS8B instruction.

m16:16, m16:32 - A memory operand containing a far pointer composed of two
numbers. The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

m1l6&32, m16&16, m32&32 - A memory operand consisting of data item pairs
whose sizes are indicated on the left and the right side of the ampersand. All

Volume 4: Base IA-32 Instruction Reference

2.2.1.3

2.2.1.4

2.2.2

memory addressing modes are allowed. The m16&16 and m32&32 operands are
used by the BOUND instruction to provide an operand containing an upper and
lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to
provide a word with which to load the limit field, and a doubleword with which to
load the base field of the corresponding GDTR and IDTR registers.

e moffs8, moffs16, moffs32 - A simple memory variable (memory offset) of type
byte, word, or doubleword used by some variants of the MOV instruction. The
actual address is given by a simple offset relative to the segment base. No ModR/M
byte is used in the instruction. The number shown with moffs indicates its size,
which is determined by the address-size attribute of the instruction.

e Sreg - A segment register. The segment register bit assignments are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

e m32real, m64real, m80real - A single-, double-, and extended-real
(respectively) floating-point operand in memory.

e m16int, m32int, m64int - A word-, short-, and long-integer (respectively)
floating-point operand in memory.

¢ ST or ST(0) - The top element of the FPU register stack.

e ST(i) - The i element from the top of the FPU register stack. (i = 0 through 7).

e mm - An MMX technology register. The 64-bit MMX technology registers are: MMO
through MM7.

e mm/m32 - The low order 32 bits of an MMX technology register or a 32-bit
memory operand. The 64-bit MMX technology registers are: MMO through MM7.
The contents of memory are found at the address provided by the effective address
computation.

e mm/m64 - An MMX technology register or a 64-bit memory operand. The 64-bit
MMX technology registers are: MMO through MM7. The contents of memory are
found at the address provided by the effective address computation.

Description Column

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain
more details of the instruction's operation.

Description

The “Description” section describes the purpose of the instructions and the required
operands. It also discusses the effect of the instruction on flags.

Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of
the instruction. The pseudo-code uses a notation similar to the Algol or Pascal
language. The algorithms are composed of the following elements:
e Comments are enclosed within the symbol pairs “(*” and “*)".
e Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for
an if statement, DO and OD for a do statement, or CASE... OF and ESAC for a case
statement.

Volume 4: Base IA-32 Instruction Reference 4:15

e A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to SI's default segment (DS) or overridden
segment.

e Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that an offset is read from the SI register if the current address-size
attribute is 16 or is read from the ESI register if the address-size attribute is 32.

¢ Brackets are also used for memory operands, where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates that
the contents of the source operand is a segment-relative offset.

* A « B; indicates that the value of B is assigned to A.

e The symbols =, #, >, and < are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A = B is TRUE if the value of A is equal to B; otherwise it is
FALSE.

e The expression “<< COUNT” and “>> COUNT" indicates that the destination
operand should be shifted left or right, respectively, by the number of bits indicated
by the count operand.

The following identifiers are used in the algorithmic descriptions:

¢ OperandSize and AddressSize - The OperandSize identifier represents the
operand-size attribute of the instruction, which is either 16 or 32 bits. The
AddressSize identifier represents the address-size attribute, which is either 16 or
32 bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize « 16;
ELSE
IF instruction = CMPSD
THEN OperandSize « 32;
Fl;
Fl;
See “"Operand-Size and Address-Size Attributes” in Chapter 3 of the Inte/
Architecture Software Developer’s Manual, Volume 1, for general guidelines on how
these attributes are determined.

o StackAddrSize - Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for
Stack” in Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume
1).

e SRC - Represents the source operand.

e DEST - Represents the destination operand.

The following functions are used in the algorithmic descriptions:

o ZeroExtend(value) - Returns a value zero-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, zero extending a
byte value of -10 converts the byte from F6H to a doubleword value of 000000F6H.
If the value passed to the ZeroExtend function and the operand-size attribute are
the same size, ZeroExtend returns the value unaltered.

Volume 4: Base IA-32 Instruction Reference

e SignExtend(value) - Returns a value sign-extended to the operand-size attribute
of the instruction. For example, if the operand-size attribute is 32, sign extending a
byte containing the value -10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size
attribute are the same size, SignExtend returns the value unaltered.

o SaturateSignedWordToSignedByte - Converts a signed 16-bit value to a signed
8-bit value. If the signed 16-bit value is less than -128, it is represented by the
saturated value -128 (80H); if it is greater than 127, it is represented by the
saturated value 127 (7FH).

e SaturateSignedDwordToSignedWord - Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than -32768, it is represented
by the saturated value
-32768 (8000H); if it is greater than 32767, it is represented by the saturated
value 32767 (7FFFH).

e SaturateSignedWordToUnsignedByte - Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by the
saturated value 255 (FFH).

o SaturateToSignedByte - Represents the result of an operation as a signed 8-bit
value. If the result is less than -128, it is represented by the saturated value -128
(80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

e SaturateToSignedWord - Represents the result of an operation as a signed
16-bit value. If the result is less than -32768, it is represented by the saturated
value -32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

e SaturateToUnsignedByte - Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (0OH); if it is greater than 255, it is represented by the saturated value 255
(FFH).

e SaturateToUnsignedWord - Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (O0H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

¢ LowOrderWord(DEST * SRC) - Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination
operand.

e HighOrderWord(DEST * SRC) - Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

e Push(value) - Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction.

¢ Pop() - Removes the value from the top of the stack and returns it. The statement
EAX « Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word or a doubleword depending on the operand-size attribute.

* PopRegisterStack - Marks the FPU ST(0) register as empty and increments the
FPU register stack pointer (TOP) by 1.

o Switch-Tasks - Performs a task switch.

* Bit(BitBase, BitOffset) - Returns the value of a bit within a bit string, which is a
sequence of bits in memory or a register. Bits are numbered from low-order to

Volume 4: Base IA-32 Instruction Reference 4:17

2.2.3

2.2.4

high-order within registers and within memory bytes. If the base operand is a
register, the offset can be in the range 0..31. This offset addresses a bit within the
indicated register. An example, the function Bit[EAX, 21] is illustrated in Figure 2-2.

Figure 2-2. Bit Offset for BIT[EAX,21]

31 21 0

ﬁ BitOffset = 21

If BitBase is a memory address, BitOffset can range from -2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase +
(BitOffset DIV 8)), where DIV is signed division with rounding towards negative infinity,
and MOD returns a positive number. This operation is illustrated in Figure 2-3.

Figure 2-3. Memory Bit Indexing

7 5 07 07 0

BitBase +1 BitBase BitBase -1
A BitOffset = +13

7 07 07 5 0

BitBase BitBase -1 BitBase -2
BitOffset=-11 A

Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, EFLAGS Cross-Reference, in the Intel Architecture
Software Developer’s Manual, Volume 1). Non-conventional assignments are described
in the “Operation” section. The values of flags listed as undefined may be changed by
the instruction in an indeterminate manner. Flags that are not listed are unchanged by
the instruction.

FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how
each instruction can affect the four condition code flags of the FPU status word.

Volume 4: Base IA-32 Instruction Reference

2.2.5 Protected Mode Exceptions
The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two letters
and an optional error code in parentheses. For example, #GP(0) denotes a general
protection exception with an error code of 0. Table 2-2 associates each two-letter
mnemonic with the corresponding interrupt vector number and exception name. See
Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software
Developer’s Manual, Volume 3, for a detailed description of the exceptions.
Application programmers should consult the documentation provided with their
operating systems to determine the actions taken when exceptions occur.
2.2.6 Real-address Mode Exceptions
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode.
Table 2-2. Exception Mnemonics, Names, and Vector Numbers
Vt;:\lc;?r Mnemonic Name Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) UD?2 instruction or reserved opcode.?
7 #NM Device Not Available (No Math Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing
system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other protection
checks.
14 #PF Page Fault Any memory reference.
16 #MF Floating-point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in memory.?
18 #MC Machine Check Model dependent.©
a. The UD2 instruction was introduced in the Pentium® Pro processor.
b. This exception was introduced in the Intel® 486 processor.
c. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.
2.2.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when

the instruction is executed in virtual-8086 mode.

Volume 4: Base IA-32 Instruction Reference

2.2.8

2.3

Floating-point Exceptions

The “Floating-point Exceptions” section lists additional exceptions that can occur when
a floating-point instruction is executed in any mode. All of these exception conditions
result in a floating-point error exception (#MF, vector number 16) being generated.
Table 2-3 associates each one- or two-letter mnemonic with the corresponding
exception name. See “Floating-Point Exception Conditions” in Chapter 7 of the Intel
Architecture Software Developer’s Manual, Volume 1, for a detailed description of these

exceptions.
Table 2-3. Floating-point Exception Mnemonics and Names
Vilc;?r Mnemonic Name Source
16 Floating-point invalid operation:
#IS - Stack overflow or underflow - FPU stack overflow or underflow
#IA - Invalid arithmetic operation - Invalid FPU arithmetic operation
16 #Z Floating-point divide-by-zero FPU divide-by-zero
16 #D Floating-point denormalized operation Attempting to operate on a denormal
number
16 #0O Floating-point numeric overflow FPU numeric overflow
16 #U Floating-point numeric underflow FPU numeric underflow
16 #P Floating-point inexact result (precision) | Inexact result (precision)

IA-32 Base Instruction Reference

The remainder of this chapter provides detailed descriptions of each of the Intel
architecture instructions.

Volume 4: Base IA-32 Instruction Reference

AAA—ASCII Adjust After Addition

Opcode Instruction Description
37 AAA ASCII adjust AL after addition
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addition)
two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the

CF and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register are
cleared to 0.

Operation

IF (AL AND FH) > 9) OR (AF =1)
THEN
AL « (AL + 6);
AH <« AH + 1;
AF « 1;
CF « 1;
ELSE
AF « 0;
CF « 0;
Fl;
AL <~ AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise
they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:21

AAD—ASCII Adjust AX Before Division

Opcode Instruction Description
D5 OA AAD ASCII adjust AX before division
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on the
result will yield a correct unpacked BCD value. The AAD instruction is only useful when
it precedes a DIV instruction that divides (binary division) the adjusted value in the AL
register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit number in registers AH and AL.

Operation

tempAL « AL;

tempAH « AH;

AL « (tempAL + (tempAH * imm8)) AND FFH;
AH « 0

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Description
D4 O0A AAM ASCII adjust AX after multiply
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of
unpacked BCD values. The AX register is the implied source and destination operand for
this instruction. The AAM instruction is only useful when it follows an MUL instruction
that multiplies (binary multiplication) two unpacked BCD values and stores a word
result in the AX register. The AAM instruction then adjusts the contents of the AX
register to contain the correct 2-digit unpacked BCD result.

Operation

tempAL <« AL;
AH « tempAL / immS8;
AL « tempAL MOD immS§,;

The immediate value (imm8) is taken from the second byte of the instruction, which
under normal assembly is 0AH (10 decimal). However, this immediate value can be
changed to produce a different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are
undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:23

AAS—ASCII Adjust AL After Subtraction

4:24

Opcode Instruction Description
3F AAS ASCII adjust AL after subtraction
Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked
BCD result. The AL register is the implied source and destination operand for this
instruction. The AAS instruction is only useful when it follows a SUB instruction that
subtracts (binary subtraction) one unpacked BCD value from another and stores a byte
result in the AL register. The AAA instruction then adjusts the contents of the AL
register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and
the CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are
cleared, and the AH register is unchanged. In either case, the AL register is left with its
top nibble set to 0.

Operation

IF (AL AND FH) > 9) OR (AF = 1)
THEN
AL < AL - 6;
AH <« AH - 1;
AF « 1;
CF « 1;
ELSE
CF « 0;
AF « 0;
Fl;
AL <« AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference

ADC—Add with Carry

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15id ADC EAX,imm32 Add with carry imm32 to EAX

80/2ib ADC r/m8,imm8 Add with carry imm8 to /m8

81/2 iw ADC r/m16,imm16 Add with carry imm16 to /m16

81/2id ADC r/m32,imm32 Add with CF imm32 to /m32

83/2ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16
83/2ib ADC r/m32,imm8 Add with CF sign-extended imm8 into /m32
10 /r ADC r/m8,r8 Add with carry byte register to /m8

MIr ADC r/m16,r16 Add with carry r16 to /m16

11/r ADC r/m32,r32 Add with CF r32 to /m32

12/r ADC r8,r/m8 Add with carry r/m8 to byte register

13 1Ir ADC r16,r/m16 Add with carry /m16to r16

131/r ADC r32,r/m32 Add with CF /m32 to r32
Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. The state of the CF flag represents a carry
from a previous addition. When an immediate value is used as an operand, it is
sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in
which an ADD instruction is followed by an ADC instruction.
Operation

DEST «- DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:25

ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0)
#S5(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

ADD—Add

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to /m8

81/0 iw ADD r/m16,imm16 Add imm16 to /m16

81/0id ADD r/m32,imm32 Add imm32 to r/m32

83/0ib ADD r/m16,imm8 Add sign-extended imm8to /m16
83/0ib ADD r/m32,imm8 Add sign-extended imm8 to /m32
00 /r ADD r/m8,r8 Add r8 to /m8

01/r ADD r/m16,r16 Add r16 to /m16

01/r ADD r/m32,r32 Add r32 to /m32

02 /r ADD r8,r/m8 Add r/m8+to r8

03 /r ADD r16,r/m16 Add r/m16to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

Description

Adds the first operand (destination operand) and the second operand (source operand)

and stores the result in the destination operand. The destination operand can be a

register or a memory location; the source operand can be an immediate, a register, or a
memory location. When an immediate value is used as an operand, it is sign-extended

to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands.

Instead, the processor evaluates the result for both data types and sets the OF and CF

flags to indicate a carry in the signed or unsigned result, respectively. The SF flag

indicates the sign of the signed result.

Operation
DEST « DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access

Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference

4:27

ADD—Add (Continued)

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0)If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0)
#S5(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

AND—Logical AND

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16
25 id AND EAX,imm32 EAX AND imm32
80 /4 ib AND r/m8,imm8 r/m8 AND imm8
81 /4 iw AND r/m16,imm16 r/m16 AND imm16
81/4id AND r/m32,imm32 r/m32 AND imm32
83 /4 ib AND r/m16,imm8 r/m16 AND imm8
83 /4 ib AND r/m32,imm8 r/m32 AND imm8
20 /r AND r/m8,r8 r/m8 AND r8

211Ir AND r/m16,r16 /m16 AND r16
211Ir AND r/m32,r32 /m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23/r AND r16,r/m16 r16 AND r/m16
23/r AND r32,r/m32 r32 AND r/m32
Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand
can be an immediate, a register, or a memory location; the destination operand can be
a register or a memory location.

Operation
DEST « DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

Volume 4: Base IA-32 Instruction Reference 4:29

AND—Logical AND (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Description
63 /r ARPL r/m16,r16 Adjust RPL of /m16 to not less than RPL of r16
Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the RPL
field of the destination operand is less than the RPL field of the source operand, the ZF
flag is set and the RPL field of the destination operand is increased to match that of the
source operand. Otherwise, the ZF flag is cleared and no change is made to the
destination operand. (The destination operand can be a word register or a memory
location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector passed
to the operating system is placed in the destination operand and segment selector for
the application program’s code segment is placed in the source operand. (The RPL field
in the source operand represents the privilege level of the application program.)
Execution of the ARPL instruction then insures that the RPL of the segment selector
received by the operating system is no lower (does not have a higher privilege) than
the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the procedure stack following a procedure
call.)

See the Intel Architecture Software Developer’s Manual, Volume 3 for more information
about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF « 1;

DEST(RPL) «- SRC(RPL);
ELSE

ZF « 0;
Fl;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the
source operand; otherwise, is cleared to 0.

Volume 4: Base IA-32 Instruction Reference 4:31

ARPL—Adjust RPL Field of Segment Selector (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference

BOUND—Check Array Index Against Bounds

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by m16&16
62 Ir BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by m16&16
Description

Determines if the first operand (array index) is within the bounds of an array specified
the second operand (bounds operand). The array index is a signed integer located in a
register. The bounds operand is a memory location that points to a pair of signed
doubleword-integers (when the operand-size attribute is 32) or a pair of signed
word-integers (when the operand-size attribute is 16). The first doubleword (or word)
is the lower bound of the array and the second doubleword (or word) is the upper
bound of the array. The array index must be greater than or equal to the lower bound
and less than or equal to the upper bound plus the operand size in bytes. If the index is
not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this
exception is generated, the saved return instruction pointer points to the BOUND
instruction.)

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the limits
addressable via a constant offset from the beginning of the array. Because the address
of the array already will be present in a register, this practice avoids extra bus cycles to
obtain the effective address of the array bounds.

Operation

IF (Arraylndex < LowerBound OR Arraylndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN
#BR;
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:33

BOUND—Check Array Index Against Bounds (Continued)

4:34

Protected Mode Exceptions

#BR
#UD
#GP(0)

#S5(0)

#PF(fault-code)
#AC(0)

If the bounds test fails.
If second operand is not a memory location.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#BR
#GP

#SS

If the bounds test fails.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#BR
#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the bounds test fails.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

BSF—Bit Scan Forward

Opcode Instruction Description

OF BC BSF r16,r/m16 Bit scan forward on /m16
OF BC BSF r32,r/m32 Bit scan forward on /m32
Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If
a least significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IFSRC=0
THEN
ZF <« 1;
DEST is undefined;
ELSE
ZF < 0;
temp « 0O;
WHILE Bit(SRC, temp) =0
DO
temp « temp + 1;
DEST « temp;
OD;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:35

BSF—Bit Scan Forward (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference

BSR—Bit Scan Reverse

Opcode Instruction Description

OF BD BSR r16,r/m16 Bit scan reverse on r/m16
OF BD BSR r32,r/m32 Bit scan reverse on /m32
Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If
a most significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be a register or a memory location; the destination
operand is a register. The bit index is an unsigned offset from bit 0 of the source
operand. If the contents source operand are 0, the contents of the destination operand
is undefined.

Operation

IFSRC=0
THEN
ZF « 1;
DEST is undefined;
ELSE
ZF < 0;
temp « OperandSize - 1;
WHILE Bit(SRC, temp) =0
DO
temp « temp - 1;
DEST « temp;
OD;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:37

BSR—BIit Scan Reverse (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference

BSWAP—Byte Swap

Opcode Instruction Description
OF C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped
with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through 23.
This instruction is provided for converting little-endian values to big-endian format and
vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the

BSWAP instruction references a 16-bit register, the result is undefined.

Operation

TEMP « DEST

DEST(7..0) < TEMP(31..24)
DEST(15..8) «- TEMP(23..16)
DEST(23..16) <~ TEMP(15..8)
DEST(31..24) < TEMP(7..0)

Flags Affected

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.
Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction is not supported on Intel architecture processors earlier than
the Intel486™ processor family. For compatibility with this instruction, include
functionally-equivalent code for execution on Intel processors earlier than the Intel486
processor family.

Volume 4: Base IA-32 Instruction Reference 4:39

BT—Bit Test

4:40

Opcode Instruction Description

OF A3 BT /m16,r16 Store selected bit in CF flag
OF A3 BT /m32,r32 Store selected bit in CF flag
OF BA/4 ib BT r/m16,imm8 Store selected bit in CF flag
OF BA/4 ib BT r/m32,imm8 Store selected bit in CF flag
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand) and stores the value
of the bit in the CF flag. The bit base operand can be a register or a memory location;
the bit offset operand can be a register or an immediate value. If the bit base operand
specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16-
or 32-bit register, respectively. If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string. The offset operand then selects a bit position within the
range —231 to 231 — 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. In
this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the
immediate bit offset are stored in the immediate bit offset field, and the high-order bits
are shifted and combined with the byte displacement in the addressing mode by the
assembler. The processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:
Effective Address + (4 * (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using
this relationship:

Effective Address + (2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit.
When using this bit addressing mechanism, software should avoid referencing areas of
memory close to address space holes. In particular, it should avoid references to
memory-mapped I/0 registers. Instead, software should use the MOV instructions to
load from or store to these addresses, and use the register form of these instructions to
manipulate the data.

Operation
CF « Bit(BitBase, BitOffset)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Volume 4: Base IA-32 Instruction Reference

BT—Bit Test (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:41

BTC—Bit Test and Complement

Opcode Instruction Description

OF BB BTC r/m16,r16 Store selected bit in CF flag and complement
OF BB BTC r/m32,r32 Store selected bit in CF flag and complement
OF BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement
OF BA/7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and complements the selected bit in the bit string. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range -23! to 231 - 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF « Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) «— NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF,
ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:42 Volume 4: Base IA-32 Instruction Reference

BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:43

BTR—BIit Test and Reset

Opcode Instruction Description

OF B3 BTR r/m16,r16 Store selected bit in CF flag and clear
OF B3 BTR r/m32,r32 Store selected bit in CF flag and clear
OF BA/6ib BTR r/m16,imm8 Store selected bit in CF flag and clear
OF BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range -23! to 231 - 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF « Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) «— 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF,
and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:44 Volume 4: Base IA-32 Instruction Reference

BTR—Bit Test and Reset (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:45

BTS—Bit Test and Set

Opcode Instruction Description

OF AB BTS r/m16,r16 Store selected bit in CF flag and set
OF AB BTS r/m32,r32 Store selected bit in CF flag and set
OF BA/5ib BTS r/m16,imm8 Store selected bit in CF flag and set
OF BA/5ib BTS r/m32,imm8 Store selected bit in CF flag and set
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the
bit-position designated by the bit offset operand (second operand), stores the value of
the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base
operand can be a register or a memory location; the bit offset operand can be a register
or an immediate value. If the bit base operand specifies a register, the instruction takes
the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing
any bit position to be selected in a 16- or 32-bit register, respectively. If the bit base
operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit 0 of the specified byte) of the bit string. The offset
operand then selects a bit position within the range -23! to 231 - 1 for a register offset
and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate
bit offset field in combination with the displacement field of the memory operand. See
“BT—Bit Test” on page 4:40 for more information on this addressing mechanism.

Operation

CF « Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) «— 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and
PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:46 Volume 4: Base IA-32 Instruction Reference

BTS—Bit Test and Set (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP
#SS

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:47

CALL—Call Procedure

4:48

Opcode Instruction Description

E8 cw CALL rel16 Call near, displacement relative to next instruction
E8 cd CALL rel32 Call near, displacement relative to next instruction
FF /2 CALL r/m16 Call near, r/m16 indirect

FF /2 CALL r/m32 Call near, /m32 indirect

9A cd CALL ptr16:16 Call far, to full pointer given

9A cp CALL ptr16:32 Call far, to full pointer given

FF /3 CALL m16:16 Call far, address at /m16

FF /3 CALL m16:32 Call far, address at /m32
Description

Saves procedure linking information on the procedure stack and jumps to the
procedure (called procedure) specified with the destination (target) operand. The target
operand specifies the address of the first instruction in the called procedure. This
operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

e Near call - A call to a procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment
call.

e Far call - A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

¢ Inter-privilege-level far call — A far call to a procedure in a segment at a different
privilege level than that of the currently executing program or procedure. Results
in an IA-32_Intercept(Gate) in Itanium System Environment.

e Task switch — A call to a procedure located in a different task. Results in an
IA-32_Intercept(Gate) in Itanium System Environment.

The latter two call types (inter-privilege-level call and task switch) can only be executed
in protected mode. See Chapter 6 in the Intel Architecture Software Developer’s
Manual, Volume 3 for information on task switching with the CALL instruction.

When executing a near call, the processor pushes the value of the EIP register (which
contains the address of the instruction following the CALL instruction) onto the
procedure stack (for use later as a return-instruction pointer. The processor then jumps
to the address specified with the target operand for the called procedure. The target
operand specifies either an absolute address in the code segment (that is an offset from
the base of the code segment) or a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register, which points to the
instruction following the call). An absolute address is specified directly in a register or
indirectly in a memory location (r/m16 or r/m32 target-operand form). (When
accessing an absolute address indirectly using the stack pointer (ESP) as a base
register, the base value used is the value of the ESP before the instruction executes.) A
relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed, 16- or 32-bit immediate value, which
is added to the instruction pointer.

Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

When executing a near call, the operand-size attribute determines the size of the target
operand (16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly
into the EIP register. When a relative offset is specified, it is added to the value of the
EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to Os, resulting in @ maximum instruction pointer size of 16 bits. The CS
register is not changed on near calls.

When executing a far call, the processor pushes the current value of both the CS and
EIP registers onto the procedure stack for use as a return-instruction pointer. The
processor then performs a far jump to the code segment and address specified with the
target operand for the called procedure. Here the target operand specifies an absolute
far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to Os.

Any far call from a 32-bit code segment to a 16-bit code segment should be made from
the first 64 Kbytes of the 32-bit code segment, because the operand-size attribute of
the instruction is set to 16, allowing only a 16-bit return address offset to be saved.
Also, the call should be made using a 16-bit call gate so that 16-bit values will be
pushed on the stack.

When the processor is operating in protected mode, a far call can also be used to
access a code segment at a different privilege level or to switch tasks. Here, the
processor uses the segment selector part of the far address to access the segment
descriptor for the segment being jumped to. Depending on the value of the type and
access rights information in the segment selector, the CALL instruction can perform:

e A far call to the same privilege level (described in the previous paragraph).

¢ An far call to a different privilege level. Results in an IA-32_Intercept(Gate) in
Itanium System Environment.

e A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

When executing an inter-privilege-level far call, the code segment for the procedure
being called is accessed through a call gate. The segment selector specified by the
target operand identifies the call gate. In executing a call through a call gate where a
change of privilege level occurs, the processor switches to the stack for the privilege
level of the called procedure, pushes the current values of the CS and EIP registers and
the SS and ESP values for the old stack onto the new stack, then performs a far jump to
the new code segment. The new code segment is specified in the call gate descriptor;
the new stack segment is specified in the TSS for the currently running task. The jump
to the new code segment occurs after the stack switch. On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack, a set of
parameters from the calling procedures stack, and the segment selector and instruction
pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.)

Finally, the processor jumps to the address of the procedure being called within the new
code segment. The procedure address is the offset specified by the target operand.
Here again, the target operand can specify the far address of the call gate and
procedure either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32).

Volume 4: Base IA-32 Instruction Reference 4:49

CALL—Call Procedure (Continued)

Executing a task switch with the CALL instruction, is similar to executing a call through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to and the address of the procedure being called in the task.
The task gate in turn points to the TSS for the task, which contains the segment
selectors for the task’s code and stack segments. The CALL instruction can also specify
the segment selector of the TSS directly. See the Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

Operation

IF near call
THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP « EIP + DEST; (* DEST is rel32 *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP « (EIP + DEST) AND O000FFFFH; (* DEST is rel16 *)
Fl;
Fl;
ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); Fl;
IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP « DEST; (* DEST is /m32 *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP < DEST AND 0000FFFFH; (* DEST is /m16 *)
Fl;
Fl:
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
Fl;
IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS « DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP « DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

4:50 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

Fl;

Push(IP);

CS « DESTI[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP « DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP < EIP AND 0000FFFFH; (* clear upper 16 bits *)

IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)

THEN
IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

Fl;

THEN #GP(new code selector);

Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); Fl;

Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;

GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;

GO TO TASK-GATE;

GO TO TASK-STATE-SEGMENT;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); Fl;
IF not present THEN #NP(selector); FI;
IF OperandSize = 32

Fl;

THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); Fl;

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)

Push(EIP);

CS « DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)

CS(RPL) «- CPL

EIP « DEST(offset);

ELSE (* OperandSize = 16 *)

IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

Push(IP);

CS « DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)

CS(RPL) « CPL

EIP «— DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(new code segment selector); Fl;

Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

IF stack not large enough for return address THEN #SS(0); Fl;
tempEIP <« DEST (offset)
IF OperandSize=16
THEN
tempEIP <« tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
Fl;
IF tempEIP outside code segment limit THEN #GP(0); Fl;
IF OperandSize = 32
THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS « DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) «- CPL;
EIP < tempEIP;
ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS « DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) «- CPL;
EIP < tempEIP;
Fl;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); Fl;
IF not present THEN #NP(call gate selector); Fl;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
IF call gate code-segment selector is null THEN #GP(0); Fl;
IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL
THEN #GP(code segment selector); Fl;
IF code segment not present THEN #NP(new code segment selector); Fl;
IF code segment is non-conforming AND DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
Fl;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress < new code segment (DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); Fl;

newSS « TSSstackAddress + 4;
newESP <« stack address;

ELSE (* TSS is 16-bit *)

4:52 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

TSSstackAddress < new code segment (DPL = 4) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
newESP « TSSstackAddress;
newSS <« TSSstackAddress + 2;
Fl;
IF stack segment selector is null THEN #TS(stack segment selector); Fl;
IF stack segment selector index is not within its descriptor table limits
THEN #TS(SS selector); Fl
Read code segment descriptor;
IF stack segment selector's RPL = DPL of code segment
OR stack segment DPL = DPL of code segment
OR stack segment is not a writable data segment
THEN #TS(SS selector); Fl
IF stack segment not present THEN #SS(SS selector); Fl;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); Fl;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS <« newSsS;
(* segment descriptor information also loaded *)
ESP « newESP;
CS:EIP « CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); Fl;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit
THEN #GP(0); FI;
SS <« newSsS;
(* segment descriptor information also loaded *)
ESP « newESP;
CS:IP « CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)
Fl;
CPL « CodeSegment(DPL)
CS(RPL) «- CPL
END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;

Volume 4: Base IA-32 Instruction Reference 4:53

CALL—Call Procedure (Continued)

IF EIP not within code segment limit then #GP(0); Fl;
CS:EIP « CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes
THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP « CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)
Fl;
CS(RPL) «- CPL
END;

TASK-GATE:

IF task gate DPL < CPL or RPL

THEN #GP(task gate selector);
Fl;
IF task gate not present

THEN #NP(task gate selector);
Fl;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits

THEN #GP(TSS selector);

Fl;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
ORTSS segment selector local/global bit is set to local
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector);
Fl;
IF TSS is not present
THEN #NP(TSS selector);
Fl;
IF Itanium System Environment THEN IA-32_Intercept(Gate,CALL);
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

4:54 Volume 4: Base IA-32 Instruction Reference

CALL—Call Procedure (Continued)

THEN #GP(0);

Fl;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does

not occur.

Additional Itanium System Environment Exceptions
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

IA-32_Intercept

IA_32_Exception

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Gate Intercept for CALLs through CALL Gates, Task Gates and Task
Segments

Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0)

#GP(selector)

If target offset in destination operand is beyond the new code
segment limit.

If the segment selector in the destination operand is null.
If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If code segment or gate or TSS selector index is outside descriptor
table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL
or the RPL for the segment’s segment selector is greater than the
CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS'’s
segment selector.

If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a call gate is greater
than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

Volume 4: Base IA-32 Instruction Reference 4:55

CALL—Call Procedure (Continued)

#SS(0) If pushing the return address, parameters, or stack segment pointer
onto the stack exceeds the bounds of the stack segment, when no
stack switch occurs.

If a memory operand effective address is outside the SS segment
limit.
#SS(selector) If pushing the return address, parameters, or stack segment pointer

onto the stack exceeds the bounds of the stack segment, when a
stack switch occurs.

If the SS register is being loaded as part of a stack switch and the
segment pointed to is marked not present.

If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

#TS(selector) IEthe new stack segment selector and ESP are beyond the end of
the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal
to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is
not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor

table limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If aglugaligned memory access occurs when alignment checking is
enabled.

Volume 4: Base IA-32 Instruction Reference

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Opcode Instruction Description

98 CBW AX « sign-extend of AL
98 CWDE EAX « sign-extend of AX
Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit in
the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit
15) of the word in the AX register into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is
intended for use when the operand-size attribute is 16 and the CWDE instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CBW is used and to 32 when CWDE is used. Others may treat these
mnemonics as synonyms (CBW/CWDE) and use the current setting of the operand-size
attribute to determine the size of values to be converted, regardless of the mnemonic
used.

The CWDE instruction is different from the CWD (convert word to double) instruction.
The CWD instruction uses the DX:AX register pair as a destination operand; whereas,
the CWDE instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX « SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)
EAX « SignExtend(AX);
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:57

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Double/Convert Double to Quad.

4:58 Volume 4: Base IA-32 Instruction Reference

CLC—Clear Carry Flag

Opcode Instruction Description
F8 CLC Clear CF flag
Description

Clears the CF flag in the EFLAGS register.

Operation
CF « 0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference

CLD—Clear Direction Flag

Opcode Instruction Description
FC CLD Clear DF flag
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations
increment the index registers (ESI and/or EDI).

Operation
DF « 0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

4:60 Volume 4: Base IA-32 Instruction Reference

CLI—Clear Interrupt Flag

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt flag
cleared

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF
flag causes the processor to ignore maskable external interrupts. The IF flag and the
CLI and STI instruction have no affect on the generation of exceptions and NMI
interrupts. In the Itanium System Environment, external interrupts are enabled
for IA-32 instructions if PSR.i and (~CFLG.if or EFLAG.if) is 1 and for Itanium
instructions if PSR.i is 1.

The following decision table indicates the action of the CLI instruction (bottom of the
table) depending on the processor’s mode of operating and the CPL and IOPL of the
currently running program or procedure (top of the table).

PE = 0 1 1 1 1
VM = X 0 X 0 1
CPL X <I10PL X > |OPL X
10PL X X =3 X <3
IF«<0 Y Y Y N N
#GP(0) N N N Y Y
Notes:
XDon't care.
NAction in column 1 not taken.
YAction in column 1 taken.
Operation
OLD_IF <-IF;
IF PE = 0 (* Executing in real-address mode *)
THEN
IF < 0;
ELSE
IFVM =0 (*Executing in protected mode *)
THEN
IF CR4.PVI =1
THEN
IFCPL=3
THEN
IF IOPL<3
THEN VIF <-0;
ELSE IF <-0;
Fl;
ELSE (*CPL < 3%)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <-0;

Volume 4: Base IA-32 Instruction Reference 4:61

CLI—Clear Interrupt Flag (Continued)

Fl;
Fl;
ELSE (*CR4.PVI==0 *)
IF IOPL < CPL
THEN #GP(0);
ELSE IF <-0;
Fl;
Fl;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN
IF «0;
ELSE
IF CR4.VME=0
THEN #GP(0);
ELSE VIF <- 0;
Fl;
Fl;
Fl;
Fl;
IF Itanium System Environment AND CFLG.ii AND IF != OLD_IF
THEN IA-32_Intercept(System_Flag,CLlI);

Flags Affected
The IF is cleared to O if the CPL is equal to or less than the IOPL; otherwise, the it is not
affected. The other flags in the EFLAGS register are unaffected.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept Trap if CFLG.ii is 1 and the IF flag changes
state.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

4:62 Volume 4: Base IA-32 Instruction Reference

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Description
OF 06 CLTS Clears TS flag in CRO
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the description
of the TS flag in the Intel Architecture Software Developer’s Manual, Volume 3 for more
information about this flag.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,CLTS);
CRO(TS) « 0;

Flags Affected

The TS flag in CRO register is cleared.

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept fault.

Protected Mode Exceptions
#GP(0) If the CPL is greater than 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) If the CPL is greater than 0.

Volume 4: Base IA-32 Instruction Reference 4:63

CMC—Complement Carry Flag

Opcode Instruction Description
F5 CMC Complement CF flag
Description

Complements the CF flag in the EFLAGS register.

Operation
CF « NOT CF,;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)

None.

4:64 Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move

Opcode

OF 47 cw/cd
OF 47 cw/cd
OF 43 cw/cd
OF 43 cw/cd
OF 42 cw/cd
OF 42 cw/cd
OF 46 cw/cd
OF 46 cw/cd
OF 42 cw/cd
OF 42 cw/cd
OF 44 cw/cd
OF 44 cw/cd
OF 4F cw/cd
OF 4F cw/cd
OF 4D cw/cd
OF 4D cw/cd
OF 4C cw/cd
OF 4C cw/cd
OF 4E cw/cd
OF 4E cw/cd
OF 46 cw/cd
OF 46 cw/cd
OF 42 cw/cd
OF 42 cw/cd
OF 43 cw/cd
OF 43 cw/cd
OF 47 cw/cd
OF 47 cw/cd
OF 43 cw/cd
OF 43 cw/cd
OF 45 cw/cd
OF 45 cw/cd
OF 4E cw/cd
OF 4E cw/cd
OF 4C cw/cd
OF 4C cw/cd
OF 4D cw/cd
OF 4D cw/cd
OF 4F cw/cd
OF 4F cw/cd

Instruction

CMOVA r16, /m16
CMOVA r32, /m32
CMOVAE r16, /m16
CMOVAE r32, /m32
CMOVB r16, /m16
CMOVB r32, /m32
CMOVBE r16, /m16
CMOVBE r32, /m32
CMOVC r16, r/m16
CMOVC r32, r/m32
CMOVE r16, /m16
CMOVE r32, /m32
CMOVG r16, /m16
CMOVG r32, r/m32
CMOVGE r16, /m16
CMOVGE r32, /m32
CMOVL r16, /m16
CMOVL r32, /m32
CMOVLE r16, /m16
CMOVLE r32, /m32
CMOVNA r16, /m16
CMOVNA r32, /m32
CMOVNAE r16, /m16
CMOVNAE r32, /m32
CMOVNB r16, /m16
CMOVNB r32, /m32
CMOVNBE r16, /m16
CMOVNBE r32, /m32
CMOVNC r16, /m16
CMOVNC r32, /m32
CMOVNE r16, r/m16
CMOVNE r32, /m32
CMOVNG r16, /m16
CMOVNG r32, /m32
CMOVNGE r16, /m16
CMOVNGE r32, /m32
CMOVNL r16, /m16
CMOVNL r32, /m32
CMOVNLE r16, /m16
CMOVNLE r32, /m32

Description

Move if above (CF=0 and ZF=0)

Move if above (CF=0 and ZF=0)

Move if above or equal (CF=0)

Move if above or equal (CF=0)

Move if below (CF=1)

Move if below (CF=1)

Move if below or equal (CF=1 or ZF=1)
Move if below or equal (CF=1 or ZF=1)
Move if carry (CF=1)

Move if carry (CF=1)

Move if equal (ZF=1)

Move if equal (ZF=1)

Move if greater (ZF=0 and SF=0F)
Move if greater (ZF=0 and SF=0F)
Move if greater or equal (SF=OF)

Move if greater or equal (SF=OF)

Move if less (SF<>OF)

Move if less (SF<>OF)

Move if less or equal (ZF=1 or SF<>OF)
Move if less or equal (ZF=1 or SF<>OF)
Move if not above (CF=1 or ZF=1)
Move if not above (CF=1 or ZF=1)
Move if not above or equal (CF=1)
Move if not above or equal (CF=1)
Move if not below (CF=0)

Move if not below (CF=0)

Move if not below or equal (CF=0 and ZF=0)
Move if not below or equal (CF=0 and ZF=0)
Move if not carry (CF=0)

Move if not carry (CF=0)

Move if not equal (ZF=0)

Move if not equal (ZF=0)

Move if not greater (ZF=1 or SF<>OF)
Move if not greater (ZF=1 or SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not less (SF=OF)

Move if not less (SF=OF)

Move if not less or equal (ZF=0 and SF=0F)
Move if not less or equal (ZF=0 and SF=0F)

Volume 4: Base IA-32 Instruction Reference

4:65

CMOVcc—Conditional Move (Continued)

Opcode Instruction Description

OF 41 cw/cd CMOVNO r16, /m16 Move if not overflow (OF=0)
OF 41 cw/cd CMOVNO r32, /m32 Move if not overflow (OF=0)
OF 4B cw/cd CMOVNP r16, /m16 Move if not parity (PF=0)
OF 4B cw/cd CMOVNP r32, /m32 Move if not parity (PF=0)
OF 49 cw/cd CMOVNS r16, /m16 Move if not sign (SF=0)
OF 49 cw/cd CMOVNS r32, /m32 Move if not sign (SF=0)
OF 45 cw/cd CMOVNZ r16, /m16 Move if not zero (ZF=0)
OF 45 cw/cd CMOVNZ r32, /m32 Move if not zero (ZF=0)
OF 40 cw/cd CMOVO r16, /m16 Move if overflow (OF=0)
OF 40 cw/cd CMOVO r32, /m32 Move if overflow (OF=0)
OF 4A cw/cd CMOVP r16, /m16 Move if parity (PF=1)

OF 4A cw/cd CMOVP r32, /m32 Move if parity (PF=1)

OF 4A cw/cd CMOVPE r16, /m16 Move if parity even (PF=1)
OF 4A cw/cd CMOVPE r32, /m32 Move if parity even (PF=1)
OF 4B cw/cd CMOVPO r16, /m16 Move if parity odd (PF=0)
OF 4B cw/cd CMOVPO r32, /m32 Move if parity odd (PF=0)
OF 48 cw/cd CMOVS r16, /m16 Move if sign (SF=1)

OF 48 cw/cd CMOVS r32, /m32 Move if sign (SF=1)

OF 44 cw/cd CMOVZ r16, /m16 Move if zero (ZF=1)

OF 44 cw/cd CMOVZ r32, /m32 Move if zero (ZF=1)
Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied, a
move is not performed and execution continues with the instruction following the
CMOVcc instruction.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

These instructions can move a 16- or 32-bit value from memory to a general-purpose
register or from one general-purpose register to another. Conditional moves of 8-bit
register operands are not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode OF 47H.

Volume 4: Base IA-32 Instruction Reference

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they
may not be supported by all the processors in the family. Software can determine if the
CMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see “"CPUID—CPU Identification” on page 4:78).

Operation

temp « DEST
IF condition TRUE
THEN
DEST «- SRC
ELSE
DEST « temp
Fl;

Flags Affected
None.

If the condition is false for the memory form, some processor implementations will
initiate the load (and discard the loaded data), possible memory faults can be
generated. Other processor models will not initiate the load and not generate any faults
if the condition is false.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Volume 4: Base IA-32 Instruction Reference 4:67

CMOVcc—Conditional Move (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

4:68 Volume 4: Base IA-32 Instruction Reference

CMP—Compare Two Operands

Opcode Instruction Description

3Cib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX
3D id CMP EAX, imm32 Compare imm32 with EAX
80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8
81/7 iw CMP r/m16, imm16 Compare imm16 with /m16
81/7id CMP r/m32,imm32 Compare imm32 with /m32
83 /7 ib CMP r/m16,imm8 Compare imm8 with /m16
83/7ib CMP r/m32,imm8 Compare imm8 with /m32
38 /r CMP r/m8,r8 Compare r8 with /m8

39/r CMP r/m16,r16 Compare r16 with ’/m16
391/r CMP r/m32,r32 Compare r32 with /m32
3AIr CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32
Description

Compares the first source operand with the second source operand and sets the status
flags in the EFLAGS register according to the results. The comparison is performed by
subtracting the second operand from the first operand and then setting the status flags
in the same manner as the SUB instruction. When an immediate value is used as an
operand, it is sign-extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc),
condition move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc,
CMOVcc, and SETcc instructions are based on the results of a CMP instruction.

Operation

temp <« SRC1 - SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction®)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:69

CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Opcode Instruction Description

A6 CMPS DS:(E)SlI, ES:(E)DI Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS DS:SI, ES:DI Compares byte at address DS:Sl| with byte at address
ES:DI and sets the status flags accordingly

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

AB CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares byte at address DS:Sl| with byte at address
ES:DI and sets the status flags accordingly

A7 CMPSD Compares byte at address DS:ESI with byte at address
ES:EDI and sets the status flags accordingly

Description

Compares the byte, word, or double word specified with the first source operand with
the byte, word, or double word specified with the second source operand and sets the
status flags in the EFLAGS register according to the results. The first source operand
specifies the memory location at the address DS:ESI and the second source operand
specifies the memory location at address ES:EDI. (When the operand-size attribute is
16, the SI and DI register are used as the source-index and destination-index registers,
respectively.) The DS segment may be overridden with a segment override prefix, but
the ES segment cannot be overridden.

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and
doubleword versions of the CMPS instructions. They are simpler to use, but provide no
type or segment checking. (For the CMPS instruction, "DS:ESI” and “ES:EDI” must be
explicitly specified in the instruction.)

After the comparison, the ESI and EDI registers are incremented or decremented
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the ESI and EDI register are incremented; if the DF flag is 1, the ESI and EDI
registers are decremented.) The registers are incremented or decremented by 1 for
byte operations, by 2 for word operations, or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix
for block comparisons of ECX bytes, words, or doublewords. More often, however, these
instructions will be used in a LOOP construct that takes some action based on the
setting of the status flags before the next comparison is made.

Volume 4: Base IA-32 Instruction Reference 4:71

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Operation

temp «~SRC1 — SRC2
SetStatusFlags(temp);
IF (byte comparison)
THEN IF DF =0
THEN (E)DI «

ELSE (E)DI < -

Fl;

1; (E)SI « 1;
1; (E)SI « -1;

ELSE IF (word comparison)
THEN IFDF =0
THEN DI « 2; (E)SI « 2;
ELSE DI « -2; (E)SI « -2;

Fl;
ELSE (* doubleword comparison *)
THEN IF DF =0
THEN EDI « 4; (E)SI « 4;

ELSE EDI < -4; (E)SI « -4;

Fl;
Fl;
Fl;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the

comparison.

Additional Itanium
Itanium Reg Faults

System Environment Exceptions

NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

Volume 4: Base IA-32 Instruction Reference

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:73

CMPXCHG—Compare and Exchange

Opcode Instruction Description

OF BO/r CMPXCHG r/m8,r8 Compare AL with /m8. If equal, ZF is set and r8 is loaded into
r/m8. Else, clear ZF and load r/m8 into AL.

OF B1/r CMPXCHG r/m16,r16 Compare AX with /m16. If equal, ZF is set and r16 is loaded
into /m16. Else, clear ZF and load r/m16 into AL

OF B1/r CMPXCHG r/m32,r32 Compare EAX with /m32. If equal, ZF is set and r32 is loaded
into /m32. Else, clear ZF and load r/m32 into AL

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the
operand) with the first operand (destination operand). If the two values are equal, the
second operand (source operand) is loaded into the destination operand. Otherwise,
the destination operand is loaded into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)

IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.lc
THEN 1A-32_Intercept(LOCK,CMPXCHG);
IF accumulator = DEST
THEN
ZF <1
DEST « SRC
ELSE
ZF <0
accumulator «— DEST
Fl;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the
results of the comparison operation.

4:74 Volume 4: Base IA-32 Instruction Reference

CMPXCHG—Compare and Exchange (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept - If an external atomic bus lock is required to
complete this operation and DCR.Ic is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486
processors.

Volume 4: Base IA-32 Instruction Reference 4:75

CMPXCHG8B—Compare and Exchange 8 Bytes

Opcode Instruction Description

OF C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into mé64. Else, clear ZF and load m64 into
EDX:EAX.

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the
values are equal, the 64-bit value in ECX:EBX is stored in the destination operand.
Otherwise, the value in the destination operand is loaded into EDX:EAX. The destination
operand is an 8-byte memory location. For the EDX:EAX and ECX:EBX register pairs,
EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-order 32
bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed
atomically. To simplify the interface to the processor’s bus, the destination operand
receives a write cycle without regard to the result of the comparison. The destination
operand is written back if the comparison fails; otherwise, the source operand is written
into the destination. (The processor never produces a locked read without also
producing a locked write.)

Operation

IF Itanium System Environment AND External_Atomic_Lock_Required AND DCR.Ic
THEN IA-32_Intercept(LOCK,CMPXCHG);

IF (EDX:EAX = DEST)

ZF <1

DEST « ECX:EBX
ELSE

ZF <0

EDX:EAX < DEST
Fl;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept - If an external atomic bus lock is required to
complete this operation and DCR.Ic is 1, no atomic transaction
occurs, this instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of this instruction

Volume 4: Base IA-32 Instruction Reference

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unalignhed memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium
processors.

Volume 4: Base IA-32 Instruction Reference 4:77

CPUID—CPU Identification

Opcode Instruction Description

OF A2 CPUID Returns processor identification and feature information in the
EAX, EBX, ECX, and EDX registers, according to the input
value entered initially in the EAX register.

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register
before the instruction is executed. Table 2-4 shows the information returned,
depending on the initial value loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction.
If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic
information and extended function information. Basic information is returned by
entering an input value starting at 0 in the EAX register; extended function information
is returned by entering an input value starting at 80000000H. When the input value in
the EAX register is 0, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning basic information. Always use an EAX
parameter value that is equal to or greater than zero and less than or equal to this
highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning extended function information. Always use
an EAX parameter value that is equal to or greater than zero and less than or equal to
this highest EAX return value for extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction
execution. Serializing instruction execution guarantees that any modifications to flags,
registers, and memory for previous instructions are completed before the next
instruction is fetched and executed.

Table 2-4, Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor
Basic CPUID Information

0 EAX Maximum CPUID Input Value
EBX 756E6547H “Genu” (G in BL)
ECX 6C65746EH “ntel” (n in CL)
EDX 49656E69H “inel” (i in DL)
1H EAX Version Information (Type, Family, Model, and Stepping ID)
EBX Bits 7-0: Brand Index?®

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor
Bits 31-24: Local APIC IDP

ECX Reserved

EDX Feature Information (see Table 2-5)
2H EAX Cache and TLB Information

EBX Cache and TLB Information

ECX Cache and TLB Information

EDX Cache and TLB Information

Volume 4: Base IA-32 Instruction Reference

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor |
Extended Function CPUID Information

8000000H EAX Maximum Input Value for Extended Function CPUID Information
EBX Reserved
ECX Reserved
EDX Reserved

8000001H EAX Extended Processor Signature and Extended Feature Bits. (Currently

reserved.)

EBX Reserved
ECX Reserved
EDX Reserved

8000002H EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued

8000003H EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is
returned.
b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

When the input value is 1, the processor returns version information in the EAX register
(see Figure 2-4). The version information consists of an Intel architecture family
identifier, a model identifier, a stepping ID, and a processor type.

Figure 2-4. Version Information in Registers EAX

31 28 27 20 19 16 1514131211 87 43 0

Stepping

EAX Extended Family | Extended Family | Model D

Model

Processor Type

If the values in the family and/or model fields reach or exceed FH, the CPUID
instruction will generate two additional fields in the EAX register: the extended family
field and the extended model field. Here, a value of FH in either the model field or the
family field indicates that the extended model or family field, respectively, is valid.
Family and model numbers beyond FH range from OFH to FFH, with the least significant
hexadecimal digit always FH.

See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number
241618) for more information on identifying Intel architecture processors.

Volume 4: Base IA-32 Instruction Reference 4:79

CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to
the EBX register:
¢ Brand index (low byte of EBX) - this number provides an entry into a brand string
table that contains brand strings for IA-32 processors. Please refer to AP-485,
Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for information on brand indices.

Note: The Brand index field is not supported for processors based on Itanium
architecture, zero (unsupported encoding) is returned.
e CLFLUSH instruction cache line size (second byte of EBX) - this number indicates
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments.
This field is valid only when the CLFSH feature flag is set.

e Local APIC ID (high byte of EBX) - this nhumber is the 8-bit ID that is assigned to
the local APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium
architecture, reserved value is returned. Software should check the
feature flags to make sure they are not running on processors based on
the Itanium architecture before interpreting the return value in this
field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to
loading the processor signature in the EAX register) loads the EDX register with the
feature flags. The feature flags (when a Flag = 1) indicate what features the processor
supports. Table 2-5 lists the currently defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software
should identify Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description
0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.
1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode

enhancements, including CR4.VME for controlling the feature,
CR4.PVI for protected mode virtual interrupts, software interrupt
indirection, expansion of the TSS with the software indirection bitmap,
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including
CR4.DE for controlling the feature, and optional trapping of accesses
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.
5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The

RDMSR and WRMSR instructions are supported. Some of the MSRs
are implementation dependent.

4:80 Volume 4: Base IA-32 Instruction Reference

Table 2-5.

Feature Flags Returned in EDX Register (Continued)

Bit

Mnemonic

Description

PAE

Physical Address Extension. Physical addresses greater than 32
bits are supported: extended page table entry formats, an extra level
in the page translation tables is defined, 2 Mbyte pages are supported
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address
bits beyond 32 is not defined, and is implementation specific.

MCE

Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model-specific processing of the exception, or test for the presence of
the Machine Check feature.

CX8

CMPXCHGS8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

1

APIC

SEP

APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped
commands in the physical address range FFFEOOOOH to FFFEOFFFH
(by default — some processors permit the APIC to be relocated).

SYSENTER and SYSEXIT Instructions. The SYSENTER and
SYSEXIT and associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The
MTRRcap MSR contains feature bits that describe what memory
types are supported, how many variable MTRRs are supported, and
whether fixed MTRRs are supported.

13

PGE

PTE Global Bit. The global bit in page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

14

MCA

Machine Check Architecture. The Machine Check Architecture,
which provides a compatible mechanism for error reporting is
supported. The MCG_CAP MSR contains feature bits describing how
many banks of error reporting MSRs are supported.

15

CMOoV

Conditional Move Instructions. The conditional move instruction
CMOQV is supported. In addition, if x87 FPU is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported.

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17

PSE-36

32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are
supported. This feature indicates that the upper four bits of the
physical address of the 4-MByte page is encoded by bits 13-16 of the
page directory entry.

18

PSN

Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

20

NX

Execute Disable Bit.

21

DS

Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

Volume 4: Base IA-32 Instruction Reference

4:81

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to be
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.
24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR

instructions are supported for fast save and restore of the floating
point context. Presence of this bit also indicates that CR4.OSFXSR is
available for an operating system to indicate that it supports the
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.
26 SSE2 SSE2. The processor supports the SSE2 extensions.
27 SS Self Snoop. The processor supports the management of conflicting

memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements
Hyper-Threading technology.
29 ™ Thermal Monitor. The processor implements the thermal monitor

automatic thermal control circuitry (TCC).

30 Processor based on the Intel The processor is based on the Intel Itanium architecture and is
Itanium architecture capable of executing the Intel Itanium instruction set. IA-32 application
level software MUST also check with the running operating system to
see if the system can also support Itanium architecture-based code
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state
(STPCLK# is asserted) to signal the processor that an interrupt is
pending and that the processor should return to normal operation to
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE
MSR enables this capability.

When the input value is 2, the processor returns information about the processor’s
internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of
these registers is as follows:

e The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs.

e The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

¢ If a register contains valid information, the information is contained in 1 byte
descriptors.

Please see the processor-specific supplement for further information on how to decode
the return values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

4:82 Volume 4: Base IA-32 Instruction Reference

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = OH:
EAX « Highest input value understood by CPUID;
EBX « Vendor identification string;
EDX <« Vendor identification string;
ECX « Vendor identification string;
BREAK;
EAX = 1H:
EAX[3:0] « Stepping ID;
EAX[7:4] < Model;
EAX[11:8] « Family;
EAX[13:12] <« Processor Type;
EAX[15:14] < Reserved;
EAX[19:16] < Extended Model;
EAX[27:20] <~ Extended Family;
EAX[31:28] <~ Reserved;
EBX][7:0] <« Brand Index; (* Always zero for processors based on Itanium architecture *)
EBX[15:8] «- CLFLUSH Line Size;
EBX[16:23] «<— Number of logical processors per physical processor;
EBX[31:24] « Initial APIC ID; (* Reserved for processors based on Itanium architecture *)
ECX <« Reserved;
EDX « Feature flags;
BREAK;
EAX = 2H:
EAX « Cache and TLB information;
EBX « Cache and TLB information;
ECX « Cache and TLB information;
EDX « Cache and TLB information;
BREAK;
EAX = 80000000H:
EAX « Highest extended function input value understood by CPUID;
EBX <« Reserved;
ECX <« Reserved;
EDX « Reserved;
BREAK;
EAX = 80000001H:
EAX « Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX <« Reserved;
ECX « Reserved;
EDX « Reserved;
BREAK;
EAX = 80000002H:
EAX <« Processor Name;
EBX <« Processor Name;
ECX « Processor Name;
EDX « Processor Name;
BREAK;
EAX = 80000003H:
EAX « Processor Name;
EBX <« Processor Name;
ECX <« Processor Name;
EDX <« Processor Name;

Volume 4: Base IA-32 Instruction Reference 4:83

CPUID—CPU Identification (Continued)

BREAK;
EAX =80000004H:
EAX « Processor Name;
EBX « Processor Name;
ECX « Processor Name;
EDX <« Processor Name;
BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)
EAX « Reserved, Undefined;
EBX « Reserved, Undefined;
ECX « Reserved, Undefined;
EDX « Reserved, Undefined;
BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in
any Intel architecture processor earlier than the Intel486 processor. The ID flag in the
EFLAGS register can be used to determine if this instruction is supported. If a procedure
is able to set or clear this flag, the CPUID is supported by the processor running the
procedure.

4:84 Volume 4: Base IA-32 Instruction Reference

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword to
Quadword

Opcode Instruction Description

99 CWD DX:AX « sign-extend of AX

99 cbQ EDX:EAX <« sign-extend of EAX
Description

Doubles the size of the operand in register AX or EAX (depending on the operand size)
by means of sign extension and stores the result in registers DX:AX or EDX:EAX,
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register
into every bit position in the DX register. The CDQ instruction copies the sign (bit 31) of
the value in the EAX register into every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before
a word division, and the CDQ instruction can be used to produce a quadword dividend
from a doubleword before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size to
16 when CWD is used and to 32 when CDQ is used. Others may treat these mnemonics
as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to
determine the size of values to be converted, regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX « SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)
EDX « SignExtend(EAX);
Fl;

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:85

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

4:86 Volume 4: Base IA-32 Instruction Reference

DAA—Decimal Adjust AL after Addition

Opcode Instruction Description
27 DAA Decimal adjust AL after addition
Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result.
If a decimal carry is detected, the CF and AF flags are set accordingly.

Operation

IF (((AL AND OFH) > 9) or AF = 1)
THEN
AL « AL + 6;
CF « CF OR CarryFromLastAddition; (* CF OR carry from AL «~ AL + 6 *)
AF <« 1;
ELSE
AF « 0;
Fl;
IF (AL AND FOH) > 90H) or CF = 1)
THEN
AL « AL + 60H;
CF « 1;
ELSE
CF «0;
Fl;

Example
ADD AL, BL Before: AL=79H BL=35H EFLAGS (OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS (0SZAPC)=110000

DAA Before: AL=79H BL=35H EFLAGS (OSZAPC)=110000
After: AL=AEH BL=35H EFLAGS (0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in
either digit of the result (see “Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:87

DAS—Decimal Adjust AL after Subtraction

Opcode Instruction Description
2F DAS Decimal adjust AL after subtraction
Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD
result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in the
AL register. The DAS instruction then adjusts the contents of the AL register to contain
the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF and AF
flags are set accordingly.

Operation

IF (AL AND OFH) > 9 OR AF =1
THEN
AL < AL - 6;
CF « CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL «— AL — 6 *)
AF « 1;
ELSE AF « 0;
Fl;
IF (AL > 9FH) or CF = 1)
THEN
AL « AL — 60H;
CF « 1,
ELSE CF « 0;
Fl;

Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS (OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS (0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS (OSZAPC)=010111
After: AL=88H BL=47H EFLAGS (0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in
either digit of the result (see “"Operation” above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference

DEC—Decrement by 1

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1
FF /1 DEC r/m16 Decrement r/m16 by 1
FF /1 DEC r/m32 Decrement /m32 by 1
48+rw DEC r16 Decrement r16 by 1
48+rd DEC r32 Decrement r32 by 1
Description

Subtracts 1 from the operand, while preserving the state of the CF flag. The source
operand can be a register or a memory location. This instruction allows a loop counter
to be updated without disturbing the CF flag. (Use a SUB instruction with an immediate
operand of 1 to perform a decrement operation that does updates the CF flag.)

Operation
DEST « DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Volume 4: Base IA-32 Instruction Reference 4:89

DEC—Decrement by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

4:90 Volume 4: Base IA-32 Instruction Reference

DIV—Unsigned Divide

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL < Quotient,
AH < Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by /m16; AX <— Quotient,
DX < Remainder

F7/6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX <— Quotient, EDX <— Remainder

Description

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source
operand (divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The
source operand can be a general-purpose register or a memory location. The action of
this instruction depends on the operand size, as shown in the following table:

Operand Size Dividend Divisor Quotient Remainder “gi)g?eunT
Word/byte AX r/m8 AL AH 255
Doubleword/word DX:AX r/m16 AX DX 65,535
Quadword/doubleword EDX:EAX r/m32 EAX EDX 2%2 1

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

Operation

IFSRC=0
THEN #DE; (* divide error *)
Fl;
IF OpernadSize = 8 (* word/byte operation *)
THEN
temp < AX/ SRC;
IF temp > FFH
THEN #DE; (* divide error *) ;
ELSE
AL « temp;
AH « AX MOD SRC;
Fl;
ELSE
IF OpernadSize = 16 (* doubleword/word operation *)
THEN
temp <~ DX:AX / SRC;
IF temp > FFFFH
THEN #DE; (* divide error) ;
ELSE
AX « temp;
DX «- DX:AX MOD SRC;
Fl;

Volume 4: Base IA-32 Instruction Reference 4:91

DIV—Unsigned Divide (Continued)

ELSE (* quadword/doubleword operation *)
temp <« EDX:EAX / SRC;
IF temp > FFFFFFFFH
THEN #DE; (* divide error *) ;
ELSE
EAX « temp;
EDX « EDX:EAX MOD SRC;
Fl;
Fl;
Fl;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0
If the quotient is too large for the designated register.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,

or GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#DE If the source operand (divisor) is 0.
If the quotient is too large for the designated register.
#GP If a memory operand effective address is outside the CS, DS, ES, FS,

or GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

Volume 4: Base IA-32 Instruction Reference

DIV—Unsigned Divide (Continued)

Virtual 8086 Mode Exceptions

#DE If the source operand (divisor) is 0.
If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS II‘f a_tmemory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:93

ENTER—Make Stack Frame for Procedure Parameters

4:94

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure
C8iwib ENTER imm16,imm8 Create a nested stack frame for a procedure
Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new stack
frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register
specifies the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies
the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. They do not provide a jump or call to another procedure; they merely set up
a new stack frame for an already called procedure. An ENTER instruction is commonly
followed by a CALL, JMP, or Jcc instruction to transfer program control to the procedure
being called.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register
onto the stack, copies the current stack pointer from the ESP register into the EBP
register, and loads the ESP register with the current stack-pointer value minus the value
in the size operand. For nesting levels of 1 or greater, the processor pushes additional
frame pointers on the stack before adjusting the stack pointer. These additional frame
pointers provide the called procedure with access points to other nested frames on the
stack.

Operation

NestingLevel «<— NestingLevel MOD 32
IF StackSize = 32
THEN
Push(EBP) ;
FrameTemp « ESP;
ELSE (* StackSize = 16%)
Push(BP);
FrameTemp « SP;
Fl;
IF NestingLevel =0
THEN GOTO CONTINUE;
Fl;
IF (NestingLevel > 0)
FOR i <~ 1 TO (NestingLevel — 1)
DO
IF OperandSize = 32
THEN

Volume 4: Base IA-32 Instruction Reference

ENTER—Make Stack Frame for Procedure Parameters (Continued)

IF StackSize = 32
EBP « EBP - 4;
Push([EBPY]); (* doubleword push *)
ELSE (* StackSize = 16%)
BP « BP - 4;
Push([BP]); (* doubleword push *)
Fl;
ELSE (* OperandSize = 16 *)
IF StackSize = 32
THEN
EBP « EBP - 2;
Push([EBPY)); (* word push *)
ELSE (* StackSize = 16¥)
BP « BP - 2;
Push([BP]); (* word push *)

Fl;
Fl;
OD;
IF OperandSize = 32
THEN

Push(FrameTemp); (* doubleword push *)
ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)
Fl;
GOTO CONTINUE;
Fl;
CONTINUE:
IF StackSize = 32
THEN
EBP « FrameTemp
ESP « EBP - Size;
ELSE (* StackSize = 16¥)
BP < FrameTemp
SP « BP - Size;
Fl;
END;

Flags Affected

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption Abort, Data Key
Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data Access Bit Fault,
Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:95

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

4:96 Volume 4: Base IA-32 Instruction Reference

F2XM1—Compute 2*-1

Opcode Instruction Description
D9 FO F2XM1 Replace ST(0) with (257©) - 1)
Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The
source operand is located in register ST(0) and the result is also stored in ST(0). The
value of the source operand must lie in the range -1.0 to +1.0. If the source value is
outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value
of various classes of numbers, assuming that neither overflow nor underflow occurs:

ST(0) SRC ST(0) DEST
-1.0t0 -0 -0.5t0 -0
-0 -0
+0 +0
+0to +1.0 +0t0 1.0

Values other than 2 can be exponentiated using the following formula:

xY = 2y * log,X)

Operation
ST(0) « (25T — 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2,C3 Undefined.
Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Volume 4: Base IA-32 Instruction Reference 4:97

F2XM1—Compute 2*-1 (Continued)

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FABS—Absolute Value

Opcode Instruction Description
D9 E1 FABS Replace ST with its absolute value.
Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes of

numbers.
ST(0) SRC ST(0) DEST

—e +00
-F +F
-0 +0
+0 +0
+F +F
+00 +o00

NaN NaN

Note:

Fmeans finite-real number.

Operation
ST(0) « |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.
Cco, C2,C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Floating-point Exceptions
#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 CO+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC CO+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(/)

DE CO+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the register
stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the register
stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

Description

Adds the destination and source operands and stores the sum in the destination
location. The destination operand is always an FPU register; the source operand can be
a register or a memory location. Source operands in memory can be in single-real,
double-real, word-integer, or short-integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the
ST(1) register. The one-operand version adds the contents of a memory location (either
a real or an integer value) to the contents of the ST(0) register. The two-operand
version, adds the contents of the ST(0) register to the ST(/) register or vice versa. The
value in ST(0) can be doubled by coding:

FADD ST (0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. (The no-operand
version of the floating-point add instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FADD rather than
FADDP.)

The FIADD instructions convert an integer source operand to extended-real format
before performing the addition.

The table on the following page shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the
round toward -« mode, in which case the result is —-0. When the source operand is an
integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is « of the expected sign.
If both operands are infinities of opposite signs, an invalid-operation exception is
generated.

4:100 Volume 4: Base IA-32 Instruction Reference

FADD/FADDP/FIADD—Add (Continued)

DEST

-. -F -0 +0 +F +00 NaN

-00 -0 -00 -0 -0 -00 * NaN

—F or -1 -00 -F SRC SRC +For+0 |+ NaN

SRC -0 -0 DEST -0 +0 DEST +00 NaN
+0 -0 DEST +0 +0 DEST +00 NaN

+For +l -0 +For+0 |SRC SRC +F +00 NaN

+00 * +00 +00 +00 +00 +00 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

Lmeans integer.

*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN
DEST « DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST « DEST + SRC;

Fl;
IF instruction = FADDP
THEN
PopRegisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Dlijsabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:101

FADD/FADDP/FIADD—Add (Continued)

4:102

Floating-point Exceptions

#IS
#IA

#D
#U
#0
#P

Stack underflow occurred.

Operand is an SNaN value or unsupported format.
Operands are infinities of unlike sign.

Result is a denormal value.

Result is too small for destination format.

Result is too large for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

FBLD—Load Binary Coded Decimal

Opcode Instruction Description
DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.
Description

Converts the BCD source operand into extended-real format and pushes the value onto
the FPU stack. The source operand is loaded without rounding errors. The sign of the
source operand is preserved, including that of -0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does
not check for invalid digits (AH through FH). Attempting to load an invalid encoding
produces an undefined result.

Operation

TOP « TOP - 1;
ST(0) « ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
Cco, C2,C3 Undefined.

Floating-point Exceptions

#1S Stack overflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Volume 4: Base IA-32 Instruction Reference 4:103

FBLD—Load Binary Coded Decimal (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

4:104 Volume 4: Base IA-32 Instruction Reference

FBSTP—Store BCD Integer and Pop

Opcode Instruction Description
DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).
Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by
1.

The destination operand specifies the address where the first byte destination value is
to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.

The following table shows the results obtained when storing various classes of numbers
in packed BCD format.

ST(0) DEST

-F<-1 -D
-1<-F<-0 **
-0 -0

+0 +0
+0<+F<+1 *x

+F > +1 +D
o *
NaN *

Notes:

Fmeans finite-real number.

Dmeans packed-BCD number.

*indicates floating-point invalid-operation (#lA) exception.
**+0 or +1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation
exception is not masked, an invalid-operation exception is generated and no value is
stored in the destination operand. If the invalid-operation exception is masked, the
packed BCD indefinite value is stored in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet

NaNs do not normally cause this exception to be generated.

Operation

DEST <« BCD(ST(0));
PopRegisterStack;

Volume 4: Base IA-32 Instruction Reference 4:105

FBSTP—Store BCD Integer and Pop (Continued)

4:106

FPU Flags Affected

C1

Co, C2, C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS
#IA

#P

Stack underflow occurred.

Source operand is empty; contains a NaN, +w, or unsupported
format; or contains value that exceeds 18 BCD digits in length.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a segment register is being loaded with a segment selector that
points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FBSTP—Store BCD Integer and Pop (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a.tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:107

FCHS—Change Sign

4:108

Opcode Instruction Description
D9 EO FCHS Complements sign of ST(0)
Description

Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice-versa. The following table shows the results
obtained when creating the absolute value of various classes of numbers.

ST(0) SRC ST(0) DEST

—e +00
-F +F
-0 +0
+0 -0
+F -F
+00 —e

NaN NaN

Note:

Fmeans finite-real number.

Operation
SignBit(ST(0)) «- NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

Cco, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Floating-point Exceptions

#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FCLEX/FNCLEX—Clear Exceptions

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for pending
unmasked floating-point exceptions.

DB E2 FNCLEX Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.

Operation

FPUStatusWord[0..7] < 0;
FPUStatusWord[15] « 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The
C0, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set. /

Volume 4: Base IA-32 Instruction Reference 4:109

FCMOVcc—Floating-point Conditional Move

4:110

Opcode Instruction Description

DA CO+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(/) Move if equal (ZF=1)

DA DO+ FCMOVBE ST(0), ST(j) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(j) Move if unordered (PF=1)

DB CO+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(/) Move if not equal (ZF=0)

DB DO+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)
DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)
Description

Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The source operand is always in the ST(/) register and the destination operand is always
ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.

A processor in the Pentium Pro processor family may not support the FCMOVcc
instructions. Software can check if the FCMOVcc instructions are supported by checking
the processor’s feature information with the CPUID instruction (see “"CPUID—CPU
Identification” on page 4:78). If both the CMOV and FPU feature bits are set, the
FCMOVcc instructions are supported.

Operation

IF condition TRUE
ST(0) « ST(i)
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Cco, C2, C3 Undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Désabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#1S Stack underflow occurred.

Integer Flags Affected

None.

Volume 4: Base IA-32 Instruction Reference

FCMOVcc—Floating-point Conditional Move (Continued)

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:111

FCOM/FCOMP/FCOMPP—Compare Real

4:112

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM mé64real Compare ST(0) with m64real.

D8 DO+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.
DC /3 FCOMP mé64real Compare ST(0) with m64real and pop register stack.
D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.
D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.
DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.
Description

Compares the contents of register ST(0) and source value and sets condition code flags
CO0, C2, and C3 in the FPU status word according to the results (see the table below).
The source operand can be a data register or a memory location. If no source operand
is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is
ignored, so that -0.0 = +0.0.

Condition C3 Cc2 Co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0
Unordered? 1 1 1

a. Flags not set if unmasked invalid-arithmetic-operand (#1A) exception is
generated.

This instruction checks the class of the humbers being compared. If either operand is a
NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is

raised and, if the exception is masked, the condition flags are set to “unordered.” If the
invalid-arithmetic-operand exception is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and
the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an
invalid-arithmetic-operand exception for QNaNs.

Volume 4: Base IA-32 Instruction Reference

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, CO « 000;
ST < SRC: C3, C2, CO « 001;
ST = SRC: C3, C2, CO « 100;
ESAC;
IF ST(0) or SRC = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
C3, C2,CO « 111;
Fl;
Fl;
IF instruction = FCOMP
THEN
PopRegisterStack;
Fl;
IF instruction = FCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.
Cco, C2,C3 See table on previous page.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#1S Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.
Register is marked empty.

#D One or both operands are denormal values.

Volume 4: Base IA-32 Instruction Reference 4:113

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

4:114

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set EFLAGS

Opcode Instruction Description

DB FO+i FCOMI ST, ST(i) Compare ST(0) with ST(/) and set status flags accordingly

DF FO+i FCOMIP ST, ST(i) Compare ST(0) with ST(/), set status flags accordingly, and pop
register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(/), check for ordered values, and set
status flags accordingly

DF E8+i FUCOMIP ST, ST(j) Compare ST(0) with ST(/), check for ordered values, set status
flags accordingly, and pop register stack

Description

Compares the contents of register ST(0) and ST(/) and sets the status flags ZF, PF, and
CF in the EFLAGS register according to the results (see the table below). The sign of
zero is ignored for comparisons, so that -0.0 = +0.0.

Comparison Results ZF PF CF
STO > ST(i) 0 0 0
STO < ST(i) 0 0 1
STO = ST(i) 1 0 0
Unordered?® 1 1 1

a. Flags not set if unmasked invalid-arithmetic- operand
(#lA) exception is generated.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The
FCOMI/FCOMIP instructions set the status flags to “unordered” and generate an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value (SNaN or QNaN) or is in an unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception
for QNaNs.

If invalid-operation exception is unmasked, the status flags are not set if the
invalid-arithmetic-operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0) register
as empty and increments the stack pointer (TOP) by 1.

Volume 4: Base IA-32 Instruction Reference 4:115

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF « 000;
ST(0) < ST(i): ZF, PF, CF « 001;
ST(0) = ST(i): ZF, PF, CF « 100;
ESAC;
IF instruction is FCOMI or FCOMIP
THEN
IF ST(0) or ST(/) = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF « 111;
Fl;
Fl;
Fl;
IF instruction is FUCOMI or FUCOMIP
THEN
IF ST(0) or ST(/) = QNaN, but not SNaN or unsupported format
THEN
ZF, PF, CF « 111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
#IA;
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF « 111;
Fl;
Fl;
Fl;
IF instruction is FCOMIP or FUCOMIP
THEN
PopRegisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.
Co, C2,C3 Not affected.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Dlijsabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

4:116 Volume 4: Base IA-32 Instruction Reference

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set EFLAGS
(Continued)

Floating-point Exceptions

#1S Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values
or have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a
QNaN value does not raise an invalid-operand exception.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set./

Volume 4: Base IA-32 Instruction Reference 4:117

FCOS—Cosine

4:118

Opcode Instruction Description
D9 FF FCOS Replace ST(0) with its cosine
Description

Calculates the cosine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range —23
to +263. The following table shows the results obtained when taking the cosine of
various classes of humbers, assuming that neither overflow nor underflow occurs.

ST(0) SRC ST(0) DEST

—0 *

-F -1 to +1
-0 +1

+0 +1

+F -1to +1
+00 *
NaN NaN

Notes:
Fmeans finite-real number.
* indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range —263
to +2%3 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2r or by using the FPREM instruction with a divisor of 2x.

Operation

IF |ST(0)| < 283

THEN
C2 «0;
ST(0) < cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 « 1;

Fl;

Volume 4: Base IA-32 Instruction Reference

FCOS—Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

c2 Set to 1 if source operand is outside the range —2°3 to +263;
otherwise, cleared to 0.
co, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value, «, or unsupported format.
#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:119

FDECSTP—Decrement Stack-Top Pointer

4:120

Opcode Instruction Description
D9 F6 FDECSTP Decrement TOP field in FPU status word.
Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack
pointer). The contents of the FPU data registers and tag register are not affected.

Operation

IFTOP=0
THEN TOP « 7;
ELSE TOP «- TOP - 1;
Fl;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0O, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FDIV/FDIVP/FIDIV—Divide

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 FO+i FDIV ST(0), ST() Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the register
stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by mé64int and store result in ST(0)

Description

Divides the destination operand by the source operand and stores the result in the
destination location. The destination operand (dividend) is always in an FPU register;
the source operand (divisor) can be a register or a memory location. Source operands
in memory can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by
the contents of the ST(0) register. The one-operand version divides the contents of the
ST(0) register by the contents of a memory location (either a real or an integer value).
The two-operand version, divides the contents of the ST(0) register by the contents of
the ST(/) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than
FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format
before performing the division. When the source operand is an integer 0, it is treated as
a +0.

If an unmasked divide by zero exception (#2Z) is generated, no result is stored; if the
exception is masked, an « of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Volume 4: Base IA-32 Instruction Reference 4:121

FDIV/FDIVP/FIDIV—Divide (Continued)

DEST

-. -F -0 +0 +F +o0 NaN

-0 * +0 +0 -0 -0 * NaN
-F +00 +F +0 -0 -F - NaN
- +00 +F +0 -0 -F - NaN
SRC |0 +00 ** * * * - NaN
+0 Y o " " o +oo NaN
+ -. -F -0 +0 +F +o0 NaN
+F -. -F -0 +0 +F +o0 NaN
+00 * -0 -0 +0 +0 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

Imeans integer.

*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

Operation

IFSRC=0
THEN
#Z
ELSE
IF instruction is FIDIV
THEN

DEST « DEST / ConvertExtendedReal(SRC);

ELSE (* source operand is real number *)
DEST « DEST / SRC;

Fl;
Fl;
IF instruction = FDIVP
THEN
PopRegisterStack
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2, C3 Undefined.

4:122

Volume 4: Base IA-32 Instruction Reference

FDIV/FDIVP/FIDIV—Divide (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.
to0 / #o0; 0 / £0
#D Result is a denormal value.
#Z DEST / +0, where DEST is not equal to +0.
#U Result is too small for destination format.
#0 Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:123

FDIVR/FDIVRP/FIDIVR—Reverse Divide

4:124

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(/) by ST(0) and store result in ST(0)

DC FO+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(/)

DE FO+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the register
stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

Description

Divides the source operand by the destination operand and stores the result in the
destination location. The destination operand (divisor) is always in an FPU register; the
source operand (dividend) can be a register or a memory location. Source operands in
memory can be in single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by
the contents of the ST(1) register. The one-operand version divides the contents of a
memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, divides the contents of the ST(/) register by the
contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The no-operand version
of the floating-point divide instructions always results in the register stack being
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than
FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format
before performing the division.

If an unmasked divide by zero exception (#2) is generated, no result is stored; if the
exception is masked, an « of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of
numbers, assuming that neither overflow nor underflow occurs.

Volume 4: Base IA-32 Instruction Reference

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

DEST
—© -F -0 +0 +F +0 NaN
—0 * +00 +00 - —00 * NaN
SRC -F +0 +F > ** -F -0 NaN
- +0 +F > > -F -0 NaN
-0 +0 +0 * * -0 -0 NaN
+0 -0 -0 * * +0 +0 NaN
+l -0 -F ** ** +F +00 NaN
+F -0 -F > > +F +00 NaN
+00 * —0 —0 +00 +00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

Imeans integer.

*indicates floating-point invalid-arithmetic-operand (#lA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0O, it is treated as a +0.

Operation

IF DEST =0
THEN
#Z
ELSE

IF instruction is FIDIVR

THEN

DEST « ConvertExtendedReal(SRC) / DEST;
ELSE (* source operand is real number *)
DEST « SRC / DEST;

Fl;
Fl;
IF instruction = FDIVRP
THEN
PopRegisterStack

Fl;

FPU Flags Affected

c1

Cco, C2, C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Undefined.

Volume 4: Base IA-32 Instruction Reference 4:125

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

4:126

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#1S Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.
to0 / o0; 0 / +0
#D Result is a denormal value.
#Z SRC / £0, where SRC is not equal to +0.
#U Result is too small for destination format.
#0 Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference

FFREE—Free Floating-point Register

Opcode Instruction Description
DD CO+i FFREE ST(i) Sets tag for ST(i) to empty
Description

Sets the tag in the FPU tag register associated with register ST(/) to empty (11B). The
contents of ST(/) and the FPU stack-top pointer (TOP) are not affected.

Operation
TAG(i) < 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:127

FICOM/FICOMP—Compare Integer

4:128

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register
DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register
Description

Compares the value in ST(0) with an integer source operand and sets the condition
code flags CO, C2, and C3 in the FPU status word according to the results (see table
below). The integer value is converted to extended-real format before the comparison
is made.

Condition C3 Cc2 Co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0
Unordered 1 1 1

These instructions perform an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared. If either operand is a NaN or is in an
undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that -0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the
register stack, the processor marks the ST(0) register empty and increments the stack
pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, CO « 000;
ST(0) < SRC: C3, C2, CO « 001;
ST(0) = SRC: C3, C2, CO « 100;

Unordered: C3,C2,C0 « 111;
ESAC;
IF instruction = FICOMP
THEN
PopRegisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
co, C2,C3 See table on previous page.

Volume 4: Base IA-32 Instruction Reference

FICOM/FICOMP—Compare Integer (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#1S Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.
#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:129

FILD—Load Integer

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.
DB /0 FILD m32int Push m32int onto the FPU register stack.
DF /5 FILD m64int Push m64int onto the FPU register stack.
Description

Converts the signed-integer source operand into extended-real format and pushes the
value onto the FPU register stack. The source operand can be a word, short, or long
integer value. It is loaded without rounding errors. The sign of the source operand is
preserved.

Operation

TOP «~ TOP - 1;
ST(0) « ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.
Co, C2,C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Dli:)sabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4:130 Volume 4: Base IA-32 Instruction Reference

FILD—Load Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:131

FINCSTP—Increment Stack-Top Pointer

4:132

Opcode Instruction Description
D9 F7 FINCSTP Increment the TOP field in the FPU status register
Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer).
The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack
register is not marked empty.

Operation

IF TOP=7

THEN TOP « 0;

ELSE TOP «- TOP + 1;
Fl;

FPU Flags Affected

The C1 flag is set to 0; otherwise, generates an #IS fault. The C0O, C2, and C3 flags are
undefined.

Floating-point Exceptions

#IS

Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FINIT/FNINIT—Initialize Floating-point Unit

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT Initialize FPU without checking for pending unmasked
floating-point exceptions.

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their
default states. The FPU control word is set to 037FH (round to nearest, all exceptions
masked, 64-bit precision). The status word is cleared (no exception flags set, TOP is set
to 0). The data registers in the register stack are left unchanged, but they are all
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point

exceptions before performing the initialization; the FNINIT instruction does not.

Operation

FPUControlWord « 037FH;
FPUStatusWord « O;
FPUTagWord < FFFFH;
FPUDataPointer <« 0;
FPUlnstructionPointer < 0;
FPULastInstructionOpcode « 0;

FPU Flags Affected

Co, C1, C2, C3 cleared to 0.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:133

FIST/FISTP—Store Integer

4:134

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack
Description

The FIST instruction converts the value in the ST(0) register to a signed integer and
stores the result in the destination operand. Values can be stored in word- or

short-integer format. The destination operand specifies the address where the first byte
of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then
pops the register stack. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1. The FISTP instruction
can also stores values in long-integer format.

The following table shows the results obtained when storing various classes of numbers
in integer format.

ST(0) DEST
—0 *
—F < -1 _
-1<-F<-0 >
-0 0
+0 0
+0<+F<+1 **
+F > +1 +|
+00 *
NaN *
Notes:

Fmeans finite-real number.

Imeans integer.

*indicates floating-point invalid-operation (#lA) exception.
**+0 or 1, depending on the rounding mode.

If the source value is a non-integral value, it is rounded to an integer value, according
to the rounding mode specified by the RC field of the FPU control word.

If the value being stored is too large for the destination format, is an «, is a NaN, or is
in an unsupported format and if the invalid-arithmetic-operand exception (#IA) is
unmasked, an invalid-operation exception is generated and no value is stored in the
destination operand. If the invalid-operation exception is masked, the integer indefinite
value is stored in the destination operand.

Volume 4: Base IA-32 Instruction Reference

FIST/FISTP—Store Integer (Continued)

Operation

DEST <« Integer(ST(0));

IF instruction = FISTP
THEN

PopRegisterStack;

Fl;

FPU Flags Affected

c1

Co, C2, C3

Additional Itanium

Itanium Reg Faults

Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.
Undefined.

System Environment Exceptions

Disabled FP Register Fault if PSR.dfl is 1, NaT register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#IS
#IA

#P

Stack underflow occurred.

Source operand is too large for the destination format
Source operand is a NaN value or unsupported format.
Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Volume 4: Base IA-32 Instruction Reference 4:135

FIST/FISTP—Store Integer (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

4:136 Volume 4: Base IA-32 Instruction Reference

FLD—Load Real

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.
DD /0 FLD mé64real Push mé64real onto the FPU register stack.
DB /5 FLD m80real Push m80real onto the FPU register stack.
D9 CO+i FLD ST(i) Push ST(i) onto the FPU register stack.
Description

Pushes the source operand onto the FPU register stack. If the source operand is in
single- or double-real format, it is automatically converted to the extended-real format
before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i/)] onto the
stack. Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN
temp « ST(i)
TOP « TOP - 1;
Fl;
IF SRC is memory-operand
THEN
ST(0) « ExtendedReal(SRC);
ELSE (* SRC is ST(i) *)
ST(0) « temp;
Fl;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
Cco, C2,C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

#1S Stack overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value. Does not occur if the source

operand is in extended-real format.
FLD—Load Real (Continued)

Volume 4: Base IA-32 Instruction Reference 4:137

4:138

FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.
D9 E9 FLDL2T Push log,10 onto the FPU register stack.
D9 EA FLDL2E Push log,e onto the FPU register stack.
D9 EB FLDPI Push = onto the FPU register stack.

D9 EC FLDLG2 Push log42 onto the FPU register stack.
D9 ED FLDLN2 Push loge2 onto the FPU register stack.
D9 EE FLDZ Push +0.0 onto the FPU register stack.
Description

Push one of seven commonly-used constants (in extended-real format) onto the FPU
register stack. The constants that can be loaded with these instructions include +1.0,
+0.0, log,10, log,e, &, log;92, and loge2. For each constant, an internal 66-bit constant
is rounded (as specified by the RC field in the FPU control word) to external-real format.
The inexact-result exception (#P) is not generated as a result of the rounding.

Operation

TOP « TOP - 1;
ST(0) « CONSTANT;
FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
Co, C2, C3 Undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Floating-point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:139

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (Continued)

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.
Intel Architecture Compatibility Information

When the RC field is set to round-to-nearest, the FPU produces the same constants that
is produced by the Intel 8087 and Intel287 math coprocessors.

4:140 Volume 4: Base IA-32 Instruction Reference

FLDCW—Load Control Word

Opcode Instruction Description
D9 /5 FLDCW m2byte Load FPU control word from m2byte.
Description

Loads the 16-bit source operand into the FPU control word. The source operand is a
memory location. This instruction is typically used to establish or change the FPU’s
mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU
control word and the new control word unmasks one or more of those exceptions, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid raising
exceptions when changing FPU operating modes, clear any pending exceptions (using
the FCLEX or FNCLEX instruction) before loading the new control word.

Operation
FPUControlWord <— SRC;

FPU Flags Affected
Co, C1, C2, C3 undefined.

Floating-point Exceptions

None; however, this operation might unmask a pending exception in the FPU status
word. That exception is then generated upon execution of the next waiting
floating-point instruction.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Volume 4: Base IA-32 Instruction Reference 4:141

FLDCW—Load Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

4:142 Volume 4: Base IA-32 Instruction Reference

FLDENV—Load FPU Environment

Opcode Instruction Description
D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.
Description

Loads the complete FPU operating environment from memory into the FPU registers.
The source operand specifies the first byte of the operating-environment data in
memory.This data is typically written to the specified memory location by a FSTENV or
FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the loaded
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the
corresponding FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a
floating-point exception will be generated upon execution of the next floating-point
instruction (except for the no-wait floating-point instructions. To avoid generating
exceptions when loading a new environment, clear all the exception flags in the FPU
status word that is being loaded.

Operation

FPUControlWord < SRC(FPUControlWord);

FPUStatusWord « SRC(FPUStatusWord);

FPUTagWord <« SRC(FPUTagWord);

FPUDataPointer « SRC(FPUDataPointer);
FPUlnstructionPointer <~ SRC(FPUInstructionPointer);
FPULastInstructionOpcode < SRC(FPULastInstructionOpcode);

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Floating-point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated
upon execution of the next waiting floating-point instruction.

Volume 4: Base IA-32 Instruction Reference 4:143

FLDENV—Load FPU Environment (Continued)

4:144

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

FMUL/FMULP/FIMUL—Multiply

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(0) by ST(1), store result in ST(0), and pop the
register stack

DA /1 FIMUL m32int Multiply m32int by ST(0) and store result in ST(0)

DE /1 FIMUL m16int Multiply m16int by ST(0) and store result in ST(0)

Description

Multiplies the destination and source operands and stores the product in the destination
location. The destination operand is always an FPU data register; the source operand
can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(0) register
by the contents of the ST(1) register. The one-operand version multiplies the contents
of a memory location (either a real or an integer value) by the contents of the ST(0)
register. The two-operand version, multiplies the contents of the ST(0) register by the
contents of the ST(i) register or vice versa.

The FMULP instructions perform the additional operation of popping the FPU register
stack after storing the product. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point multiply instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FMUL rather
than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format
before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or
more of the values being multiplied is 0 or . When the source operand is an integer 0,
it is treated as a +0.

The following table shows the results obtained when multiplying various classes of
numbers, assuming that neither overflow nor underflow occurs.

Volume 4: Base IA-32 Instruction Reference 4:145

FMUL/FMULP/FIMUL—Multiply (Continued)

4:146

DEST
—0 -F -0 +0 +F +0 NaN
—0 +00 +00 * * —00 —00 NaN
-F +00 +F +0 -0 -F —o0 NaN
- +00 +F +0 -0 -F) NaN
SRC -0 * +0 +0 -0 -0 * NaN
+0 * -0 -0 +0 +0 * NaN
+| —o0 -F -0 +0 +F +00 NaN
+F — -F -0 +0 +F +00 NaN
+00 —00 —00 * * +o0 +o0 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.
Imeans Integer.
*indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL

THEN

DEST « DEST =* ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST « DEST * SRC;

Fl;
IF instruction = FMULP
THEN
PopRegisterStack

Fl;

FPU Flags Affected

C1

Co, C2, C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

Undefined.

Floating-point Exceptions

#IS
#IA

#D
#U
#0
#P

Stack underflow occurred.

Operand is an SNaN value or unsupported format.

One operand is +0 and the other is +ow.

Source operand is a denormal value.

Result is too small for destination format.

Result is too large for destination format.

Value cannot be represented exactly in destination format.

Volume 4: Base IA-32 Instruction Reference

FMUL/FMULP/FIMUL—Multiply (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:147

FNOP—No Operation

Opcode Instruction Description
D9 DO FNOP No operation is performed.
Description

Performs no FPU operation. This instruction takes up space in the instruction stream but
does not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:148 Volume 4: Base IA-32 Instruction Reference

FPATAN—Partial Arctangent

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register
stack

Description

Computes the arctangent of the source operand in register ST(1) divided by the source
operand in register ST(0), stores the result in ST(1), and pops the FPU register stack.
The result in register ST(0) has the same sign as the source operand ST(1) and a
magnitude less than +n.

The following table shows the results obtained when computing the arctangent of
various classes of numbers, assuming that underflow does not occur.

Table 2-6. FPATAN Zeros and NaNs

ST(0)
-. -F -0 +0 +F +00 NaN
- —3n/4 /2 —m/2 -n/2 -n/2 —n/4 NaN
sT(1) |-F -p —n to —m/2 —n/2 -n/2 -n/2to-0 |-0 NaN
-0 -p -p -p -0 -0 -0 NaN
+0 +7 +7 +n +0 +0 +0 NaN
+F +n +n to +n/2 +7/2 +n/2 +n/2to +0 | +0 NaN
+00 +31/4 +7/2 +7/2 +n/2 +1/2 +n/4 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Note:
Fmeans finite-real number.

There is no restriction on the range of source operands that FPATAN can accept.

Operation

ST(1) < arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2,C3 Undefined.
Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:149

FPATAN—Partial Arctangent (Continued)

4:150

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.
Intel Architecture Compatibility Information

The source operands for this instruction are restricted for the 80287 math coprocessor
to the following range:

0 < |ST(1)| < |ST(0)] < +»

Volume 4: Base IA-32 Instruction Reference

FPREM—Partial Remainder

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained on dividing ST(0)
by ST(1)

Description

Computes the remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0) — (N * ST(1))

Here, N is an integer value that is obtained by truncating the real-number quotient of
[ST(0) / ST(1)] toward zero. The sign of the remainder is the same as the sign of the
dividend. The magnitude of the remainder is less than that of the modulus, unless a
partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Table 2-7. FPREM Zeros and NaNs

ST(1)
- -F -0 +0 +F +o0 NaN
— 7 7 * * * 7 NaN
ST(0) -F ST(0) —F or-0 * > —F or -0 ST(0) NaN
-0 -0 -0 * * -0 -0 NaN
+0 +0 +0 * * +0 +0 NaN
+F ST(0) +F or +0 > > +F or +0 ST(0) NaN
oo * * * * * * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
o, the result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std. 754. The
IEEE specified remainder can be computed with the FPREM1 instruction. The FPREM
instruction is provided for compatibility with the Intel 8087 and Intel287 math
Ccoprocessors.

Volume 4: Base IA-32 Instruction Reference 4:151

FPREM—Partial Remainder (Continued)

4:152

The FPREM instruction gets its name “partial remainder” because of the way it
computes the remainder. This instructions arrives at a remainder through iterative
subtraction. It can, however, reduce the exponent of ST(0) by no more than 63 in one
execution of the instruction. If the instruction succeeds in producing a remainder that is
less than the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and CO flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of n/4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D « exponent(ST(0)) - exponent(ST(1));
IFD<64
THEN
Q « Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) «~ ST(0) - (ST(1) * Q);
C2 « 0;
CO0, C3, C1 « LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2 « 1;
N < an implementation-dependent number between 32 and 63;
QQ « Integer(TruncateTowardZero((ST(0) / ST(1)) /2@ -Ny);
ST(0) «— ST(0) - (ST(1) * QQ * 2P -N));
Fl;

FPU Flags Affected

co Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (QO0).

Cc2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions
Itanium Reg Faults Désabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference

FPREM—Partial Remainder (Continued)

Floating-point Exceptions

#1IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is «, or
unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:153

FPREM1—Partial Remainder

4:154

Opcode Instruction Description
D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained on dividing

ST(0) by ST(1)

Description

Computes the IEEE remainder obtained on dividing the value in the ST(0) register (the
dividend) by the value in the ST(1) register (the divisor or modulus), and stores the
result in ST(0). The remainder represents the following value:

Remainder = ST(0) — (N = ST(1))

Here, N is an integer value that is obtained by rounding the real-number quotient of
[ST(0) / ST(1)] toward the nearest integer value. The sign of the remainder is the same
as the sign of the dividend. The magnitude of the remainder is less than half the
magnitude of the modulus, unless a partial remainder was computed (as described
below).

This instruction produces an exact result; the precision (inexact) exception does not
occur and the rounding control has no effect. The following table shows the results
obtained when computing the remainder of various classes of numbers, assuming that
underflow does not occur.

Table 2-8. FPREM1 Zeros and NaNs

ST(1)
-. -F -0 +0 +F +0 NaN
" ¥ * 7 7 * ¥ NaN
ST(0) -F ST(0) -For-0 > > —For-0 ST(0) NaN
-0 -0 -0 * * -0 -0 NaN
+0 +0 +0 * * +0 +0 NaN
+F ST(0) +F or +0 > > +F or +0 ST(0) NaN
oo * " * * * * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

*indicates floating-point invalid-arithmetic-operand (#IA) exception.
**indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is
o, the result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This
instruction operates differently from the FPREM instruction in the way that it rounds the
quotient of ST(0) divided by ST(1) to an integer (see the “Operation” below).

Volume 4: Base IA-32 Instruction Reference

FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative
subtraction, but can reduce the exponent of ST(0) by no more than 63 in one execution
of the instruction. If the instruction succeeds in producing a remainder that is less than
one half the modulus, the operation is complete and the C2 flag in the FPU status word
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder.
The exponent of the partial remainder will be less than the exponent of the original
dividend by at least 32. Software can re-execute the instruction (using the partial
remainder in ST(0) as the dividend) until C2 is cleared.

Note: While executing such a remainder-computation loop, a higher-priority inter-
rupting routine that needs the FPU can force a context switch in-between the
instructions in the loop.

An important use of the FPREM1 instruction is to reduce the arguments of periodic
functions. When reduction is complete, the instruction stores the three least-significant
bits of the quotient in the C3, C1, and CO flags of the FPU status word. This information
is important in argument reduction for the tangent function (using a modulus of =n/4),
because it locates the original angle in the correct one of eight sectors of the unit circle.

Operation

D « exponent(ST(0)) - exponent(ST(1));
IFD<64
THEN
Q « Integer(RoundTowardNearestinteger(ST(0) / ST(1)));
ST(0) « ST(0) - (ST(1) * Q);
C2 «0;
CO0, C3, C1 « LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2«1;
N <« an implementation-dependent number between 32 and 63;
QQ « Integer(TruncateTowardZero((ST(0) / ST(1)) /2 -N)y);
ST(0) «— ST(0) - (ST(1) * QQ * 2 -N)).
Fl;

FPU Flags Affected

Cco Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least
significant bit of quotient (QO).

c2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:155

FPREM1—Partial Remainder (Continued)

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is
o, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:156 Volume 4: Base IA-32 Instruction Reference

FPTAN—Partial Tangent

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1 onto
the FPU stack.

Description

Computes the tangent of the source operand in register ST(0), stores the result in
ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be given
in radians and must be less than £263. The following table shows the unmasked results
obtained when computing the partial tangent of various classes of numbers, assuming
that underflow does not occur.

ST(0) SRC ST(0) DEST
—00 *
-F —F to +F
-0 -0
+0 +0
+F —F to +F
+00 *
NaN NaN
Notes:

Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#lA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range —2°3
to +263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2r or by using the FPREM instruction with a divisor of 2x.

The value 1.0 is pushed onto the register stack after the tangent has been computed to
maintain compatibility with the Intel 8087 and Intel287 math coprocessors. This
operation also simplifies the calculation of other trigonometric functions. For instance,
the cotangent (which is the reciprocal of the tangent) can be computed by executing a
FDIVR instruction after the FPTAN instruction.

Operation

IF ST(0) < 263
THEN
C2 « 0;
ST(0) « tan(ST(0));
TOP « TOP - 1;
ST(0) « 1.0;
ELSE (*source operand is out-of-range *)
C2 « 1;
Fl;

Volume 4: Base IA-32 Instruction Reference 4:157

FPTAN—Partial Tangent (Continued)

4:158

FPU Flags Affected

C1

C2

Co, C3

Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Set to 1 if source operand is outside the range —2°3 to +2°3;
otherwise, cleared to 0.

Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Floating-point Exceptions

#IS
#IA
#D
#U
#P

Stack underflow occurred.

Source operand is an SNaN value, «, or unsupported format.
Source operand is a denormal value.

Result is too small for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM

EM or TS in CRO is set.

Real Address Mode Exceptions

#NM

EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM

EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FRNDINT—Round to Integer

Opcode Instruction Description
D9 FC FRNDINT Round ST(0) to an integer.
Description

Rounds the source value in the ST(0) register to the nearest integral value, depending
on the current rounding mode (setting of the RC field of the FPU control word), and
stores the result in ST(0).

If the source value is «, the value is not changed. If the source value is not an integral
value, the floating-point inexact-result exception (#P) is generated.

Operation
ST(0) «~ RoundTolntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2,C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#P Source operand is not an integral value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:159

FRSTOR—Restore FPU State

4:160

Opcode Instruction Description
DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.
Description

Loads the FPU state (operating environment and register stack) from the memory area
specified with the source operand. This state data is typically written to the specified
memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the
corresponding FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a
floating-point exception will be generated. To avoid raising exceptions when loading a
new operating environment, clear all the exception flags in the FPU status word that is
being loaded.

Operation

FPUControlWord «<— SRC(FPUControlWord);

FPUStatusWord «— SRC(FPUStatusWord);

FPUTagWord < SRC(FPUTagWord);

FPUDataPointer «— SRC(FPUDataPointer);
FPUlnstructionPointer «— SRC(FPUInstructionPointer);
FPULastInstructionOpcode <~ SRC(FPULastInstructionOpcode);
ST(0) « SRC(ST(0));

ST(1) « SRC(ST(1));
ST(2) « SRC(ST(2));
ST(3) <« SRC(ST(3));
ST(4) <« SRC(ST(4));
ST(5) <« SRC(ST(5));
ST(6) < SRC(ST(6))
ST(7) « SRC(ST(7))

)
)
)
)
)

~N o O b

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

Floating-point Exceptions

None; however, this operation might unmask an existing exception that has been
detected but not generated, because it was masked. Here, the exception is generated
at the completion of the instruction.

Volume 4: Base IA-32 Instruction Reference

FRSTOR—Restore FPU State (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:161

FSAVE/FNSAVE—Store FPU State

4:162

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for pending
unmasked floating-point exceptions. Then re-initialize the FPU.

DD /6 FNSAVE m94/108byte Store FPU environment to m94byte or m108byte without checking
for pending unmasked floating-point exceptions. Then re-initialize
the FPU.

Description

Stores the current FPU state (operating environment and register stack) at the specified
destination in memory, and then re-initializes the FPU. The FSAVE instruction checks for
and handles pending unmasked floating-point exceptions before storing the FPU state;
the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag
word, instruction pointer, data pointer, and last opcode. See the Intel® 64 and IA-32
Architectures Software Developer’s Manual for the layout in memory of the stored
environment, depending on the operating mode of the processor (protected or real)
and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode,
the real mode layouts are used. The contents of the FPU register stack are stored in the
80 bytes immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions
preceding the FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set
to with the FINIT/FNINIT instructions (see “"FINIT/FNINIT—Initialize Floating-point Unit”
on page 4:133).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application
program needs to pass a “clean” FPU to a procedure.

Operation

(* Save FPU State and Registers *)

DEST(FPUControlWord) «— FPUControlWord;

DEST(FPUStatusWord) «— FPUStatusWord;

DEST(FPUTagWord) « FPUTagWord;

DEST(FPUDataPointer) «— FPUDataPointer;

DEST(FPUlnstructionPointer) «— FPUInstructionPointer;

DEST(FPULastInstructionOpcode) «<— FPULastInstructionOpcode;

DEST(ST(0)) « ST(0);

DEST(ST(1)) « ST(1);

DEST(ST(2)) « ST(2);

DEST(ST(3)) « ST(3);

DEST(ST(4)) < ST(4);
(5);
(6);
(7);

DEST(ST(5)) « ST
DEST(ST(6)) < ST
DEST(ST(7)) « ST
(* Initialize FPU *)

FPUControlWord « 037FH;

AA,\,\AAAAAA,—\A

vvvvvv

Volume 4: Base IA-32 Instruction Reference

FSAVE/FNSAVE—Store FPU State (Continued)

FPUStatusWord « 0;
FPUTagWord «- FFFFH;
FPUDataPointer < O;
FPUlnstructionPointer < 0;
FPULastInstructionOpcode « 0;

FPU Flags Affected

The CO, C1, C2, and C3 flags are saved and then cleared.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unalignhed memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:163

FSAVE/FNSAVE—Store FPU State (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II_f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Intel Architecture Compatibility Information

For Intel math coprocessors and FPUs prior to the Pentium processor, an FWAIT
instruction should be executed before attempting to read from the memory image
stored with a prior FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that
the storage operation has been completed.

4:164 Volume 4: Base IA-32 Instruction Reference

FSCALE—Scale

Opcode Instruction Description
D9 FD FSCALE Scale ST(0) by ST(1).
Description

Multiplies the destination operand by 2 to the power of the source operand and stores
the result in the destination operand. This instruction provides rapid multiplication or
division by integral powers of 2. The destination operand is a real value that is located
in register ST(0). The source operand is the nearest integer value that is smaller than
the value in the ST(1) register (that is, the value in register ST(1) is truncate toward 0
to its nearest integer value to form the source operand). The actual scaling operation is
performed by adding the source operand (integer value) to the exponent of the value in
register ST(0). The following table shows the results obtained when scaling various
classes of numbers, assuming that neither overflow nor underflow occurs.

ST(1)

-N 0 +N

—00 —00 —00 —00

ST(0) -F -F -F -F
-0 -0 -0 -0

+0 +0 +0 +0

+F +F +F +F

+o0 +o00 +o00 +o0
NaN NaN NaN NaN

Notes:
Fmeans finite-real number.
Nmeans integer.

In most cases, only the exponent is changed and the mantissa (significand) remains
unchanged. However, when the value being scaled in ST(0) is a denormal value, the
mantissa is also changed and the result may turn out to be a normalized number.
Similarly, if overflow or underflow results from a scale operation, the resulting mantissa
will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT
instruction, as shown in the following example:

FXTRACT;
FSCALE;
FSTP ST (1)

In this example, the FXTRACT instruction extracts the significand and exponent from

the value in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then
scales the significand in ST(0) by the exponent in ST(1), recreating the original value
before the FXTRACT operation was performed. The FSTP ST(1) instruction returns the
recreated value to the FPU register where it originally resided.

Volume 4: Base IA-32 Instruction Reference 4:165

FSCALE—Scale (Continued)

Operation
ST(0) « ST(0) * 25T(:

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Co, C2, C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#0 Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:166 Volume 4: Base IA-32 Instruction Reference

FSIN—Sine

Opcode Instruction Description
D9 FE FSIN Replace ST(0) with its sine.
Description

Calculates the sine of the source operand in register ST(0) and stores the result in
ST(0). The source operand must be given in radians and must be within the range —2°3
to +2°3. The following table shows the results obtained when taking the sine of various
classes of humbers, assuming that underflow does not occur.

SRC (ST(0)) DEST (ST(0))

—0 *

-F -1 to +1
-0 -0

+0 +0

+F -1to +1
+00 *

NaN NaN

Notes:

Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#lA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range -263
to 4263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2x or by using the FPREM instruction with a divisor of 2x.

Operation

IF ST(0) < 263

THEN
C2 «0;
ST(0) « sin(ST(0));

ELSE (* source operand out of range *)
C2 « 1;

Fl:

Volume 4: Base IA-32 Instruction Reference 4:167

FSIN—Sine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

c2 Set to 1 if source operand is outside the range ~203 to +263;
otherwise, cleared to 0.
Cco, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value, «, or unsupported format.
#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:168 Volume 4: Base IA-32 Instruction Reference

FSINCOS—Sine and Cosine

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with the

sine, and push the cosine onto the register stack.

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores
the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. (This
instruction is faster than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range -2°3 to
4263, The following table shows the results obtained when taking the sine and cosine of
various classes of numbers, assuming that underflow does not occur.

SRC

DEST

ST(0)

ST(0) Cosine

ST(1) Sine

*

*

-1 to +1

-1 to +1

+1

-0

+1

+0

-1 to +1

-1 to +1

NaN

NaN

NaN

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#|A) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status
word is set, and the value in register ST(0) remains unchanged. The instruction does
not raise an exception when the source operand is out of range. It is up to the program
to check the C2 flag for out-of-range conditions. Source values outside the range —23
to 4263 can be reduced to the range of the instruction by subtracting an appropriate
integer multiple of 2x or by using the FPREM instruction with a divisor of 2x.

Operation

IF ST(0) < 288
THEN
C2 « 0;
TEMP <« cosine(ST(0));
ST(0) « sine(ST(0));
TOP « TOP - 1;
ST(0) « TEMP;
ELSE (* source operand out of range *)
C2 « 1;
Fl:

Volume 4: Base IA-32 Instruction Reference 4:169

FSINCOS—Sine and Cosine (Continued)

4:170

FPU Flags Affected

C1

C2

Co, C3

Set to 0 if stack underflow occurred; set to 1 of stack overflow
occurs.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Set to 1 if source operand is outside the range —2°3 to +2°3;
otherwise, cleared to 0.

Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Floating-point Exceptions

#IS
#IA
#D
#U
#P

Stack underflow occurred.

Source operand is an SNaN value, «, or unsupported format.
Source operand is a denormal value.

Result is too small for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM

EM or TS in CRO is set.

Real Address Mode Exceptions

#NM

EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM

EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FSQRT—Square Root

Opcode Instruction Description
D9 FA FSQRT Calculates square root of ST(0) and stores the result in ST(0)
Description

Calculates the square root of the source value in the ST(0) register and stores the
result in ST(0).

The following table shows the results obtained when taking the square root of various
classes of numbers, assuming that neither overflow nor underflow occurs.

SRC (ST(0)) DEST (ST(0))
—0 *
_F *
-0 -0
+0 +0
+F +F
+o0 +o0
NaN NaN
Notes:

Fmeans finite-real number.
*indicates floating-point invalid-arithmetic-operand (#|A) exception.

Operation
ST(0) < SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2,C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
Source operand is a negative value (except for -0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Volume 4: Base IA-32 Instruction Reference 4:171

FSQRT—Square Root (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:172 Volume 4: Base IA-32 Instruction Reference

FST/FSTP—Store Real

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD DO+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack
DD /3 FSTP mé64real Copy ST(0) to m64real and pop register stack
DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack
DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack
Description

The FST instruction copies the value in the ST(0) register to the destination operand,
which can be a memory location or another register in the FPU registers stack. When
storing the value in memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops
the register stack. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The FSTP instruction can also
stores values in memory in extended-real format.

If the destination operand is a memory location, the operand specifies the address
where the first byte of the destination value is to be stored. If the destination operand
is a register, the operand specifies a register in the register stack relative to the top of
the stack.

If the destination size is single- or double-real, the significand of the value being stored
is rounded to the width of the destination (according to rounding mode specified by the
RC field of the FPU control word), and the exponent is converted to the width and bias
of the destination format. If the value being stored is too large for the destination
format, a numeric overflow exception (#0) is generated and, if the exception is
unmasked, no value is stored in the destination operand. If the value being stored is a
denormal value, the denormal exception (#D) is not generated. This condition is simply
signaled as a numeric underflow exception (#U) condition.

If the value being stored is £0, £, or a NaN, the least-significant bits of the significand
and the exponent are truncated to fit the destination format. This operation preserves
the value’s identity as a 0, «, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is
not generated.

Operation

DEST « ST(0);
IF instruction = FSTP
THEN
PopRegisterStack;
Fl;

Volume 4: Base IA-32 Instruction Reference 4:173

FST/FSTP—Store Real (Continued)

4:174

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception
(#P) is generated: 0 = not roundup; 1 = roundup.

Cco, C2, C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.
#U Result is too small for the destination format.

#0 Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Désabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FST/FSTP—Store Real (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a.tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:175

FSTCW/FNSTCW—Store Control Word

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for pending
unmasked floating-point exceptions.

D9 /7 FNSTCW m2byte Store FPU control word to m2byte without checking for pending
unmasked floating-point exceptions.

Description

Stores the current value of the FPU control word at the specified destination in memory.
The FSTCW instruction checks for and handles pending unmasked floating-point
exceptions before storing the control word; the FNSTCW instruction does not.

Operation
DEST « FPUControlWord;

FPU Flags Affected

The CO, C1, C2, and C3 flags are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4:176 Volume 4: Base IA-32 Instruction Reference

FSTCW/FNSTCW—Store Control Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:177

FSTENV/FNSTENV—Store FPU Environment

4:178

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after checking
for pending unmasked floating-point exceptions. Then mask all
floating-point exceptions.

D9 /6 FNSTENV m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point exceptions. Then
mask all floating-point exceptions.

Description

Saves the current FPU operating environment at the memory location specified with the
destination operand, and then masks all floating-point exceptions. The FPU operating
environment consists of the FPU control word, status word, tag word, instruction
pointer, data pointer, and last opcode. See the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for the layout in memory of the stored environment,
depending on the operating mode of the processor (protected or real) and the size of
the current address attribute (16-bit or 32-bit). (In virtual-8086 mode, the real mode
layouts are used.)

The FSTENV instruction checks for and handles any pending unmasked floating-point
exceptions before storing the FPU environment; the FNSTENV instruction does not.The
saved image reflects the state of the FPU after all floating-point instructions preceding
the FSTENV/FNSTENYV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to
the FPU instruction and data pointers. The environment is typically saved in the
procedure stack. Masking all exceptions after saving the environment prevents
floating-point exceptions from interrupting the exception handler.

Operation

DEST(FPUControlWord) «<- FPUControlWord;
DEST(FPUStatusWord) < FPUStatusWord;
DEST(FPUTagWord) < FPUTagWord;

DEST(FPUDataPointer) «— FPUDataPointer;
DEST(FPUlnstructionPointer) < FPUInstructionPointer;
DEST(FPULastInstructionOpcode) «— FPULastInstructionOpcode;

FPU Flags Affected

The CO, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Volume 4: Base IA-32 Instruction Reference

FSTENV/FNSTENV—Store FPU Environment (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption

Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:179

FSTSW/FNSTSW—Store Status Word

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for pending
unmasked floating-point exceptions.

9B DF EO FSTSW AX Store FPU status word in AX register after checking for pending
unmasked floating-point exceptions.

DD /7 FNSTSW m2byte Store FPU status word at m2byte without checking for pending
unmasked floating-point exceptions.

DF EO FNSTSW AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

Description

Stores the current value of the FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The
FSTSW instruction checks for and handles pending unmasked floating-point exceptions
before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM
instruction), where the direction of the branch depends on the state of the FPU
condition code flags. This instruction can also be used to invoke exception handlers (by
examining the exception flags) in environments that do not use interrupts. When the
FNSTSW AX instruction is executed, the AX register is updated before the processor
executes any further instructions. The status stored in the AX register is thus
guaranteed to be from the completion of the prior FPU instruction.

Operation
DEST <« FPUStatusWord;

FPU Flags Affected

The CO, C1, C2, and C3 are undefined.

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

4:180 Volume 4: Base IA-32 Instruction Reference

FSTSW/FNSTSW—Store Status Word (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:181

FSUB/FSUBP/FISUB—Subtract

4:182

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB mé64real Subtract m64real from ST(0) and store result in ST(0)

D8 EO+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(/), store result in ST(i), and pop register
stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Description

Subtracts the source operand from the destination operand and stores the difference in
the destination location. The destination operand is always an FPU data register; the
source operand can be a register or a memory location. Source operands in memory
can be in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register
from the ST(1) register and stores the result in ST(1). The one-operand version
subtracts the contents of a memory location (either a real or an integer value) from the
contents of the ST(0) register and stores the result in ST(0). The two-operand version,
subtracts the contents of the ST(0) register from the ST(/) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point subtract instructions always results in the register stack
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather
than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the SRC value is subtracted from the DEST value (DEST - SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward -« mode, in which case the result is -0. This instruction also
guarantees that +0 - (-0) = 40, and that -0 - (+0) = -0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is «, the result is « of the expected sign. If both operands are « of
the same sign, an invalid-operation exception is generated.

Volume 4: Base IA-32 Instruction Reference

FSUB/FSUBP/FISUB—Subtract (Continued)

Table 2-9. FSUB Zeros and NaNs
SRC
—0 —F or -l -0 +0 +F or +l +o0 NaN
—0 * —o0 —0 —0 —0 —00 NaN
-F +o0 +F or +0 DEST DEST -F —o0 NaN
DEST -0 +00 -SRC +0 -0 -SRC —o0 NaN
+0 +00 -SRC +0 +0 -SRC —o0 NaN
+F +o0 +F DEST DEST +F or £0 —0 NaN
+00 +00 +o0 +00 +00 +00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN
Notes:

Fmeans finite-real number.
Imeans integer.
*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB

THEN

DEST « DEST - ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST « DEST - SRC;

Fl;

IF instruction = FSUBP

THEN

PopRegisterStack

Fl;

FPU Flags Affected

c1

Cco, C2, C3

Set to O if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault

is generated: 0 = not roundup; 1 = roundup.
Undefined.

Floating-point Exceptions

#IS
#IA

#D
#U
#0
#P

Stack underflow occurred.

Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.

Source operand is a denormal value.

Result is too small for destination format.

Result is too large for destination format.

Value cannot be represented exactly in destination format.

Volume 4: Base IA-32 Instruction Reference

4:183

FSUB/FSUBP/FISUB—Subtract (Continued)

4:184

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

If a memory operand effective address is outside the SS segment
limit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

#NM

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

EM or TS in CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR mé64real Subtract ST(0) from mé64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC EO+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i)

DE EO+i FSUBRP ST(i), ST(0) Subtract ST(0) from ST(/), store result in ST(/), and pop register
stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

Description

Subtracts the destination operand from the source operand and stores the difference in
the destination location. The destination operand is always an FPU register; the source
operand can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB
instructions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register
from the ST(0) register and stores the result in ST(1). The one-operand version
subtracts the contents of the ST(0) register from the contents of a memory location
(either a real or an integer value) and stores the result in ST(0). The two-operand
version, subtracts the contents of the ST(/) register from the ST(0) register or vice
versa.

The FSUBRP instructions perform the additional operation of popping the FPU register
stack following the subtraction. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. The no-operand
version of the floating-point reverse subtract instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR
rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of
numbers from one another, assuming that neither overflow nor underflow occurs. Here,
the DEST value is subtracted from the SRC value (SRC — DEST = result).

Volume 4: Base IA-32 Instruction Reference 4:185

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

When the difference between two operands of like sign is 0, the result is +0, except for
the round toward -« mode, in which case the result is —0. This instruction also
guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0. When the source operand is
an integer 0, it is treated as a +0.

When one operand is «, the result is « of the expected sign. If both operands are « of
the same sign, an invalid-operation exception is generated.

Table 2-10. FSUBR Zeros and NaNs

SRC
—o0 -F -0 +0 +F +o0 NaN
—o0 * +o0 +00 +00 +0 +00 NaN
DEST —F or -l —o0 +F or +0 -DEST -DEST +F +o0 NaN
-0 —o0 SRC +0 +0 SRC +00 NaN
+0 —o0 SRC -0 0 SRC +0o0 NaN
+F or +l —o0 -F -DEST -DEST +F or +0 +00 NaN
+00 —o0 -0 -0 —o0 —o0 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

Imeans integer.

*indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN
DEST « ConvertExtendedReal(SRC) — DEST;
ELSE (* source operand is real number *)
DEST « SRC - DEST;

Fl;
IF instruction = FSUBRP
THEN
PopRegisterStack
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault
is generated: 0 = not roundup; 1 = roundup.

Co, C2, C3 Undefined.

4:186 Volume 4: Base IA-32 Instruction Reference

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Floating-point Exceptions

#1S Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.
Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#0 Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) II‘f a_tmemory operand effective address is outside the SS segment
imit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:187

FTST—TEST

4:188

Opcode Instruction Description
D9 E4 FTST Compare ST(0) with 0.0.
Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags CO,
C2, and C3 in the FPU status word according to the results (see table below).

Condition Cc3 Cc2 co
ST(0) > 0.0 0 0 0
ST(0) <0.0) 0 0 1
ST(0)=0.0 1 0 0
Unordered 1 1 1

This instruction performs an “unordered comparison.” An unordered comparison also
checks the class of the numbers being compared (see "FXAM—Examine” on

page 4:193). If the value in register ST(0) is a NaN or is in an undefined format, the
condition flags are set to “unordered.”)

The sign of zero is ignored, so that -0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO « 111;

ST(0) > 0.0: C3, C2, CO « 000;

ST(0) < 0.0: C3, C2, CO « 001;

ST(0) = 0.0: C3, C2, CO « 100;
ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.
Cco, C2, C3 See above table.

Floating-point Exceptions

#1S Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.
#D One or both operands are denormal values.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FTST—TEST (Continued)

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:189

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

4:190

Opcode Instruction Description

DD EO+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice
Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets
condition code flags C0O, C2, and C3 in the FPU status word according to the results (see
the table below). If no operand is specified, the contents of registers ST(0) and ST(1)
are compared. The sign of zero is ignored, so that -0.0 = +0.0.

Comparison Results C3 C2 co
STO > ST(i) 0 0 0
STO < ST(j) 0 0 1
STO = ST(i) 1 0 0
Unordered? 1 1 1

a. Flags not set if unmasked invalid-arithmetic- operand
(#lA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“"FXAM—Examine” on page 4:193). The FUCOM instructions perform the same
operation as the FCOM instructions. The only difference is that the FUCOM instruction
raises the invalid-arithmetic-operand exception (#IA) only when either or both
operands is an SNaN or is in an unsupported format; QNaNs cause the condition code
flags to be set to unordered, but do not cause an exception to be generated. The FCOM
instruction raises an invalid-operation exception when either or both of the operands is
a NaN value of any kind or is in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand
exception being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instructions pop the register stack following the comparison operation and
the FUCOMPP instructions pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, CO « 000;
ST < SRC: C3, C2, CO « 001;
ST = SRC: C3, C2, CO « 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

Volume 4: Base IA-32 Instruction Reference

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real (Continued)

THEN
C3, C2, CO « 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

#IA;
IF FPUControlWord.IM =1
THEN
C3,C2,CO « 111;
Fl;
Fl;
IF instruction = FUCOMP
THEN
PopRegisterStack;
Fl;
IF instruction = FUCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Co, C2,C3 See table on previous page.

Floating-point Exceptions

#1S Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported
formats. Detection of a QNaN value in and of itself does not raise an
invalid-operand exception.

#D One or both operands are denormal values.
Additional Itanium System Environment Exceptions
Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:191

FWAIT—Wait

See entry for WAIT.

4:192 Volume 4: Base IA-32 Instruction Reference

FXAM—Examine

Opcode Instruction Description
D9 E5 FXAM Classify value or number in ST(0)
Description

Examines the contents of the ST(0) register and sets the condition code flags CO, C2,
and C3 in the FPU status word to indicate the class of value or number in the register

(see the table below).

Class C3 C2 co
Unsupported 0 0 0
NaN 0 0 1
Normal finite number 0 1 0
Infinity 0 1 1
Zero 1 0 0
Empty 1 0 1
Denormal number 1 1 0

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is

empty or full.

Operation

C1 « sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, CO «- 000;

NaN: C3, C2, CO « 001;
Normal: C3, C2, CO « 010;
Infinity: C3, C2, CO « 011;
Zero: C3, C2, CO « 100;
Empty: C3,C2, CO « 101;

Denormal: C3, C2, CO « 110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).
See table above.

co, C2, C3

Floating-point Exceptions

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Volume 4: Base IA-32 Instruction Reference

4:193

FXAM—Examine (Continued)

4:194

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FXCH—Exchange Register Contents

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(/)
D9 C9 FXCH Exchange the contents of ST(0) and ST(1)
Description

Exchanges the contents of registers ST(0) and ST(J). If no source operand is specified,
the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to
the top of the stack [ST(0)], so that they can be operated on by those floating-point
instructions that can only operate on values in ST(0). For example, the following
instruction sequence takes the square root of the third register from the top of the
register stack:

FXCH ST (3);
FSORT;
FXCH ST (3);

Operation

IF number-of-operands is 1
THEN
temp « ST(0);
ST(0) « SRC;
SRC <« temp;
ELSE
temp « ST(0);
ST(0) « ST(1);
ST(1) « temp;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.
Co, C2, C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption

Abort.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference 4:195

FXCH—Exchange Register Contents (Continued)

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:196 Volume 4: Base IA-32 Instruction Reference

FXTRACT—Extract Exponent and Significand

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand, store
exponent in ST(0), and push the significand onto the register
stack.

Description

Separates the source value in the ST(0) register into its exponent and significand,
stores the exponent in ST(0), and pushes the significand onto the register stack.
Following this operation, the new top-of-stack register ST(0) contains the value of the
original significand expressed as a real number. The sign and significand of this value
are the same as those found in the source operand, and the exponent is 3FFFH (biased
value for a true exponent of zero). The ST(1) register contains the value of the original
operand’s true (unbiased) exponent expressed as a real humber. (The operation
performed by this instruction is a superset of the IEEE-recommended logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range
scaling operations. The FXTRACT instruction is also useful for converting numbers in
extended-real format to decimal representations (e.g. for printing or displaying).

If the floating-point zero-divide exception (#2Z) is masked and the source operand is
zero, an exponent value of - is stored in register ST(1) and 0 with the sign of the
source operand is stored in register ST(0).

Operation

TEMP « Significand(ST(0));
ST(0) «— Exponent(ST(0));
TOP« TOP - 1;

ST(0) « TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow
occurred.
Cco, C2,C3 Undefined.

Floating-point Exceptions

#1S Stack underflow occurred.
Stack overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#Z ST(0) operand is +0.
#D Source operand is a denormal value.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Volume 4: Base IA-32 Instruction Reference 4:197

FXTRACT—EXxtract Exponent and Significand (Continued)

4:198

Protected Mode Exceptions

#NM EM or TS in CRO is set.

Real Address Mode Exceptions

#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions

#NM EM or TS in CRO is set.

Volume 4: Base IA-32 Instruction Reference

FYL2X—Compute y x log,x

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) * log,ST(0)) and pop the register
stack

Description

Calculates (ST(1) = log, (ST(0))), stores the result in resister ST(1), and pops the FPU
register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

Table 2-11. FYL2X Zeros and NaNs

ST(0)
—o -F +0 +0 +F +00 NaN
—0 * * +00 +00 +00 —o0 NaN
ST(1) -F * * > ** +F -0 NaN
-0 * * * * +0 * NaN
+0 * * * * +0 * NaN
+F * * > > +F +o0 NaN
+o00 * * - —o0 —0 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

Fmeans finite-real number.

*indicates floating-point invalid-operation (#lA) exception.
**indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains +0, the
instruction returns « with a sign that is the opposite of the sign of the source operand in
register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the
calculation of logarithms with an arbitrary positive base (b):

logpx = (log,b) ™" * log,x

Operation

ST(1) <« ST(1) * log,ST(0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

Volume 4: Base IA-32 Instruction Reference 4:199

FYL2X—Compute y x log,x (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#1S Stack underflow occurred.
#IA Either operand is an SNaN or unsupported format.
Source operand in register ST(0) is a negative finite value (not -0).
#Z Source operand in register ST(0) is +0.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#0 Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:200 Volume 4: Base IA-32 Instruction Reference

FYL2XP1—Compute y * log,(x +1)

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) * log,(ST(0) + 1.0) and pop the
register stack

Description

Calculates the log epsilon (ST(1) * log,(ST(0) + 1.0)), stores the result in register
ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the
range:

~(1-42/2))to(1 - 2/2)

The source operand in ST(1) can range from —wo to +wo. If either of the source operands
is outside its acceptable range, the result is undefined and no exception is generated.

The following table shows the results obtained when taking the log epsilon of various
classes of nhumbers, assuming that underflow does not occur:

Table 2-12. FYL2XP1 Zeros and NaNs

ST(0)
-0 | —(1-(42/2))to-0 | -0 +0 | +0to+(1-(42/2)) +00 NaN
—00 * +00 * * —0 —o0 NaN
ST(1) -F * +F +0 -0 -F —o0 NaN
-0 * +0 +0 -0 -0 * NaN
+0 * -0 -0 +0 +0 * NaN
+F * -F -0 +0 +F +00 NaN
+00 * —0 * * +00 +00 NaN
NaN NaN NaN NaN | NaN NaN NaN NaN

Notes:
Fmeans finite-real number.
*indicates floating-point invalid-operation (#lA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register
ST(0)] that are close to 0. When the epsilon value (¢g) is small, more significant digits
can be retained by using the FYL2XP1 instruction than by using (¢+1) as an argument
to the FYL2X instruction. The (e+1) expression is commonly found in compound interest
and annuity calculations. The result can be simply converted into a value in another
logarithm base by including a scale factor in the ST(1) source operand. The following
equation is used to calculate the scale factor for a particular logarithm base, where n is
the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor = log,, 2

Operation

ST(1) < ST(1) = log,(ST(0) + 1.0);
PopRegisterStack;

Volume 4: Base IA-32 Instruction Reference 4:201

FYL2XP1—Compute y * log,(x +1) (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Cco, C2, C3 Undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults Disabled FP Register Fault if PSR.dfl is 1, NaT Register Consumption
Abort.

Floating-point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result is too small for destination format.

#0 Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TS in CRO is set.

Real Address Mode Exceptions
#NM EM or TS in CRO is set.

Virtual 8086 Mode Exceptions
#NM EM or TS in CRO is set.

4:202 Volume 4: Base IA-32 Instruction Reference

HLT—Halt

Opcode Instruction Description
F4 HLT Halt
Description

Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, NMI, or a reset will resume execution. If an interrupt (including NMI) is used
to resume execution after a HLT instruction, the saved instruction pointer (CS:EIP)
points to the instruction following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in
protected or virtual 8086 mode, the privilege level of a program or procedure must to 0
to execute the HLT instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,HALT);
Enter Halt state;

Flags Affected

None.

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) If the current privilege level is not 0.

Volume 4: Base IA-32 Instruction Reference 4:203

IDIV—Signed Divide

4:204

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-extension of
AL) by r/m byte. (Results: AL=Quotient, AH=Remainder)

F7 17 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-extension
of AX) by r/m word. (Results: AX=Quotient, DX=Remainder)

F7 17 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain

sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and
stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a
general-purpose register or a memory location. The action of this instruction depends
on the operand size, as shown in the following table:

Table 2-13. IDIV Operands

Operand Size Dividend Divisor | Quotient | Remainder Q;:I:'::t
Word/byte AX r/m8 AL AH -128 to +127
Doubleword/word DX:AX r/m16 AX DX -32,768 to +32,767
Quadword/doubleword EDX:EAX r/m32 EAX EDX 23110 2%2 1

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is
always the same as the sign of the dividend. The absolute value of the remainder is
always less than the absolute value of the divisor. Overflow is indicated with the #DE
(divide error) exception rather than with the OF flag.

Operation

IFSRC=0
THEN #DE; (* divide error *)

Fl;

IF OpernadSize = 8 (* word/byte operation *)
THEN

temp < AX/ SRC; (* signed division *)

IF (temp > 7FH) OR (temp < 80H)

(* if a positive result is greater than 7FH or a negative result is less than 80H *)
THEN #DE; (* divide error *) ;

ELSE
AL « temp;
AH « AX SignedModulus SRC;
Fl;
ELSE
IF OpernadSize = 16 (* doubleword/word operation *)

THEN

Volume 4: Base IA-32 Instruction Reference

IDIV—Signed Divide (Continued)

temp < DX:AX/ SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)
THEN #DE; (* divide error *) ;
ELSE
AX « temp;
DX « DX:AX SignedModulus SRC;
Fl;
ELSE (* quadword/doubleword operation *)
temp «— EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)
THEN #DE; (* divide error) ;
ELSE
EAX « temp;
EDX « EDXE:AX SignedModulus SRC;
Fl;
Fl;
Fl;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Volume 4: Base IA-32 Instruction Reference 4:205

IDIV—Signed Divide (Continued)

4:206

Real Address Mode Exceptions

#DE

#GP

#SS

If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#DE

#GP(0)
#S5(0)

#PF(fault-code)
#AC(0)

If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

IMUL—Signed Multiply

Opcode Instruction Description
F6 /5 IMUL /m8 AX« AL * r/m byte
F7 /5 IMUL /m16 DX:AX « AX * r/m word
F7 175 IMUL r/m32 EDX:EAX < EAX * r/m doubleword
OF AF /r IMUL r16,r/m16 word register «— word register * r/m word
OF AF Ir IMUL r32,r/m32 doubleword register «— doubleword register * r/m doubleword
6B /rib IMUL r16,r/m16,imm8 word register «<— r/m16 * sign-extended immediate byte
6B /rib IMUL r32,r/m32,imm8 doubleword register «— /m32 * sign-extended immediate byte
6B /rib IMUL r16,imm8 word register «— word register * sign-extended immediate byte
6B /rib IMUL r32,imm8 doubleword register «— doubleword register * sign-extended
immediate byte
69 /r iw IMUL r16,r/ word register «— r/m16 * immediate word
m16,imm16
69 /rid IMUL r32,r/ doubleword register «— /m32 * immediate doubleword
m32,imm32
69 /r iw IMUL r16,imm16 word register «— r/m16 * immediate word
69 /rid IMUL r32,imm32 doubleword register «— /m32 * immediate doubleword
Description

Performs a signed multiplication of two operands. This instruction has three forms,
depending on the number of operands.

¢ One-operand form. This form is identical to that used by the MUL instruction.
Here, the source operand (in a general-purpose register or memory location) is
multiplied by the value in the AL, AX, or EAX register (depending on the operand
size) and the product is stored in the AX, DX:AX, or EDX:EAX registers,
respectively.

e Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a
general-purpose register and the source operand is an immediate value, a
general-purpose register, or a memory location. The product is then stored in the
destination operand location.

¢ Three-operand form. This form requires a destination operand (the first operand)
and two source operands (the second and the third operands). Here, the first
source operand (which can be a general-purpose register or a memory location) is
multiplied by the second source operand (an immediate value). The product is then
stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the result fits exactly in the lower half of
the result.

Volume 4: Base IA-32 Instruction Reference 4:207

IMUL—Signed Multiply (Continued)

4:208

The three forms of the IMUL instruction are similar in that the length of the product is
calculated to twice the length of the operands. With the one-operand form, the product
is stored exactly in the destination. With the two- and three- operand forms, however,
result is truncated to the length of the destination before it is stored in the destination
register. Because of this truncation, the CF or OF flag should be tested to ensure that no
significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because
the lower half of the product is the same regardless if the operands are signed or
unsigned. The CF and OF flags, however, cannot be used to determine if the upper half
of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)
THEN
AX « AL * SRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;
Fl;
ELSE IF OperandSize = 16
THEN
DX:AX « AX * SRC (* signed multiplication *)
IF (DX = 0000H) OR (DX = FFFFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;
Fl;
ELSE (* OperandSize = 32 *)
EDX:EAX « EAX = SRC (* signed multiplication *)
IF (EDX = 00000000H) OR (EDX = FFFFFFFFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;

Fl;
Fl;
ELSE IF (NumberOfOperands = 2)
THEN

temp <~ DEST * SRC (* signed multiplication; temp is double DEST size*)
DEST « DEST = SRC (* signed multiplication *)
IF temp = DEST
THEN CF =1; OF = 1;
ELSE CF =0; OF = 0;
Fl;

ELSE (* NumberOfOperands = 3 *)

DEST « SRC1 = SRC2 (* signed multiplication *)

temp <~ SRC1 * SRC2 (* signed multiplication; temp is double SRC1 size *)

IF temp = DEST
THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

Fl;

Fl;
Fl;

Volume 4: Base IA-32 Instruction Reference

IMUL—Signed Multiply (Continued)

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when
significant bits are carried into the upper half of the result and cleared when the result
fits exactly in the lower half of the result. For the two- and three-operand forms of the
instruction, the CF and OF flags are set when the result must be truncated to fit in the
destination operand size and cleared when the result fits exactly in the destination
operand size. The SF, ZF, AF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:209

IN—Input from Port

4:210

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 1/O port address into AL
E5 ib IN AX,imm8 Input byte from imm8 1/0 port address into AX
E5ib IN EAX,imm8 Input byte from imm8 1/O port address into EAX
EC IN AL,DX Input byte from 1/O port in DX into AL

ED IN AX,DX Input word from 1/O port in DX into AX

ED IN EAX,DX Input doubleword from 1/O port in DX into EAX
Description

Copies the value from the I/0 port specified with the second operand (source operand)
to the destination operand (first operand). The source operand can be a
byte-immediate or the DX register; the destination operand can be register AL, AX, or
EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively).
Using the DX register as a source operand allows I/O port addresses from 0 to 65,535
to be accessed; using a byte immediate allows I/O port addresses 0 to 255 to be
accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing
a 16- and 32-bit I/0 port, the operand-size attribute determines the port size.

At the machine code level, I/0 instructions are shorter when accessing 8-bit I/O ports.
Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing 1/0O ports located in the processor’s I/0O
address space.

I/0 transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/0 transaction.

In the Itanium System Environment, I/0 port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLB in the Itanium
architecture to grant or deny permission to any four I/0 ports. The I/0 port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/0 permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/0 permission bitmap (the bitmap is not
referenced).

If the referenced I/0 port is mapped to an unimplemented virtual address (via
the I/0 Base register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing IN instruction.

Operation

IF (PE =1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *)
IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);
Fl;

Volume 4: Base IA-32 Instruction Reference

IN—Input from Port (Continued)

ELSE (* Real-address mode or protected mode with CPL < IOPL *)
(* or virtual-8086 mode with all /O permission bits for I/O port cleared *)
Fl;

IF (Itanium_System_Environment THEN
SRC_VA =|0Base | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST « [SRC_PA]; (* Reads from 1/O port *)

Fl;

memory_fence();
DEST <-SRC;
memory-fence();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA_32_Exception Debug traps for data breakpoints and single step
IA_32_Exception Alignment faults

#GP(0) Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/0 privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/0 port being accessed is 1 when CFLG.io is 1.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

Volume 4: Base IA-32 Instruction Reference 4:211

INC—Increment by 1

4:212

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC /m16 Increment r/m word by 1

FF /0 INC /m32 Increment r/m doubleword by 1
40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

Adds 1 to the operand, while preserving the state of the CF flag. The source operand
can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate
operand of 1 to perform a increment operation that does updates the CF flag.)

Operation
DEST « DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If the operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Volume 4: Base IA-32 Instruction Reference

INC—Increment by 1 (Continued)

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:213

INS/INSB/INSW/INSD—Input from Port to String

4:214

Opcode Instruction Description

6C INS ES:(E)DI, DX Input byte from port DX into ES:(E)DI

6D INS ES:DI, DX Input word from port DX into ES:DI

6D INS ES:EDI, DX Input doubleword from port DX into ES:EDI
6C INSB Input byte from port DX into ES:(E)DI

6D INSW Input word from port DX into ES:DI

6D INSD Input doubleword from port DX into ES:EDI
Description

Copies the data from the I/0O port specified with the second operand (source operand)
to the destination operand (first operand). The source operand must be the DX register,
allowing I/0 port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit
I/0 port, the opcode determines the port size; when accessing a 16- and 32-bit I/O
port, the operand-size attribute determines the port size.

The destination operand is a memory location at the address ES:EDI. (When the
operand-size attribute is 16, the DI register is used as the destination-index register.)
The ES segment cannot be overridden with a segment override prefix.

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and
doubleword versions of the INS instructions. (For the INS instruction, "ES:EDI” must be
explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the I/O port to the memory
location, the EDI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is
incremented; if the DF flag is 1, the EDI register is decremented.) The EDI register is
incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4
for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords.

This instruction is only useful for accessing I/O ports located in the processor’s I/0O
address space.

I/0 transactions are performed after all prior data memory operations. No
subsequent data memory operations can pass an I/0 transaction.

In the Itanium System Environment, I/0 port references are mapped into the
64-bit virtual address pointed to by the IOBase register, with four ports per
4K-byte virtual page. Operating systems can utilize the TLBs in the Itanium
architecture to grant or deny permission to any four I/0 ports. The I/0 port
space can be mapped into any arbitrary 64-bit physical memory location by
operating system code. If CFLG.io is 1 and CPL>IOPL, the TSS is consulted for
I/0 permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/0 permission bitmap (the bitmap is not
referenced).

Volume 4: Base IA-32 Instruction Reference

INS/INSB/INSW/INSD—Input from Port to String (Continued)

If the referenced I/0 port is mapped to an unimplemented virtual address (via
the IOBase register) or if data translations are disabled (PSR.dt is 0) a
GPFault is generated on the referencing INS instruction.

Operation

IF (PE =1) AND ((VM = 1) OR (CPL > IOPL)))
THEN (* Protected mode or virtual-8086 mode with CPL > |OPL *)
IF (CFLG.io AND Any I/O Permission Bit for I/O port being accessed = 1)
THEN #GP(0);
Fl;
ELSE (* I/O operation is allowed *)
Fl;
IF (Itanium_System_Environment) THEN
SRC_VA =|0Base | (Port{15:2}<<12) | Port{11:0};
SRC_PA = translate(SRC_VA);
DEST <« [SRC_PA]; (* Reads from 1/O port *)
Fl;
memory_fence();
DEST <- SRC;
memory_fence();
IF (byte transfer)
THEN IF DF =0
THEN (E)DI « 1;
ELSE (E)DI « -1;

Fl;
ELSE IF (word transfer)
THEN IF DF =0
THEN DI « 2;
ELSE DI « -2;
Fl;
ELSE (* doubleword transfer *)
THEN IF DF =0
THEN EDI « 4;
ELSE EDI « -4;
Fl;
Fl;

Fl;
Fl;

Flags Affected

None.

Volume 4: Base IA-32 Instruction Reference 4:215

INS/INSB/INSW/INSD—Input from Port to String (Continued)

4:216

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

IA_32_Exception
IA_32_Exception
#GP(0)

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Debug traps for data breakpoints and single step
Alignment faults

Referenced Port is to an unimplemented virtual address or PSR.dt is
zero.

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If the CPL is greater than (has less privilege) the I/O privilege level
(IOPL) and any of the corresponding I/O permission bits in TSS for
the I/O port being accessed is 1 and when CFLG.io is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments
is given.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure

Opcode Instruction Description

CcC INT3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector numbered by immediate byte
CE INTO Interrupt 4—if overflow flag is 1
Description

The INTn instruction generates a call to the interrupt or exception handler specified
with the destination operand. The destination operand specifies an interrupt vector
from 0 to 255, encoded as an 8-bit unsigned intermediate value. The first 32 interrupt
vectors are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.

The INTn instruction is the general mnemonic for executing a software-generated call
to an interrupt handler. The INTO instruction is a special mnemonic for calling overflow
exception (#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the
EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT3 instruction is a special mnemonic for calling the debug exception handler. The
action of the INT3 instruction (opcode CC) is slightly different from the operation of the
INT 3 instruction (opcode CC03), as follows:

¢ Interrupt redirection does not happen when in VME mode; the interrupt is handled
by a protected-mode handler.

e The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without
faulting at any IOPL level.

The action of the INTn instruction (including the INTO and INT3 instructions) is similar
to that of a far call made with the CALL instruction. The primary difference is that with
the INTh instruction, the EFLAGS register is pushed onto the stack before the return
address. (The return address is a far address consisting of the current values of the CS
and EIP registers.) Returns from interrupt procedures are handled with the IRET
instruction, which pops the EFLAGS information and return address from the stack.

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn
contains a pointer to an interrupt or exception handler procedure. In protected mode,
the IDT contains an array of 8-byte descriptors, each of which points to an interrupt
gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far
pointers (2-byte code segment selector and a 2-byte instruction pointer), each of which
point directly to procedure in the selected segment.

The following decision table indicates which action in the lower portion of the table is
taken given the conditions in the upper portion of the table. Each Y in the lower section
of the decision table represents a procedure defined in the “Operation” section for this
instruction (except #GP).

Volume 4: Base IA-32 Instruction Reference 4:217

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Table 2-14. INT Cases

"PE 0 1 T T T 1 T 1
VM - - - - - 0 1 1
IOPL - - - - - - <3 =

DPL/CPL - DPL< - DPL> DPL= DPL< - -
RELATIONSHIP CPL CPL CPLorC CPL & NC

INTERRUPT TYPE - S/W - - - — — _

GATE TYPE — — Task Trap or Trap or Trap or Trap or Trap or
Interrupt Interrupt Interrupt Interrupt Interrupt

REAL-ADDRESS-MODE |Y
PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-G Y Y Y Y Y
ATE

INTER-PRIVILEGE-LEVEL Y
-INTERRUPT

INTRA-PRIVILEGE-LEVE Y
L-INTERRUPT

INTERRUPT-FROM-VIRT Y
UAL-8086-MODE

TASK-GATE Y
#GP Y Y Y

Notes:

— Don't Care

Y Yes, Action Taken
BlankAction Not Taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action
of the INTh instruction. If the IOPL is less than 3, the processor generates a general
protection exception (#GP); if the IOPL is 3, the processor executes a protected mode
interrupt to privilege level 0. The interrupt gate's DPL must be set to three and the
target CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit
of the IDT. The initial base address value of the IDTR after the processor is powered up
or reset is 0.

Operation

The following operational description applies not only to the INTn and INTO
instructions, but also to external interrupts and exceptions.
IF Itanium System EnvironmentTHEN
IF INT3 Form THEN IA_32_Exception(3);
IF INTO Form THEN IA_32_Exception(4);
IF INT Form THEN IA-32_Interrupt(N);
Fl;

4:218 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

/*IN the Itanium System Environment all of the following operations are intercepted*/

IF PE=0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1%*)
GOTO PROTECTED-MODE;
Fl;

REAL-ADDRESS-MODE:

IF (DEST = 4) + 3) is not within IDT limit THEN #GP; FI;

IF stack not large enough for a 6-byte return information THEN #SS; FI;

Push (EFLAGS[15:0]);

IF < O; (* Clear interrupt flag *)

TF « 0O; (* Clear trap flag *)

AC « 0; (*Clear AC flag*)

Push(CS);

Push(IP);

(* No error codes are pushed *)

CS « IDT(Descriptor (vector * 4), selector));

EIP « IDT(Descriptor (vector * 4), offset)); (* 16 bit offset AND 0000FFFFH *)
END;

PROTECTED-MODE:
IF ((DEST = 8) + 7) is not within IDT limits
OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST = 8) + 2 + EXT);
(* EXT is bit O in error code *)
Fl;
IF software interrupt (* generated by INTn, INT3, or INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector number * 8) + 2);
(* PE=1, DPL<CPL, software interrupt *)
Fl;
Fl;
IF gate not present THEN #NP((vector number * 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)
Fl;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

Fl;

Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

Fl;

Volume 4: Base IA-32 Instruction Reference

4:219

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of two bytes
THEN #SS(0);
Fl;
Push(error code);
Fl;
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;
TRAP-OR-INTERRUPT-GATE
Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null
THEN #GP(OH + EXT); (* null selector with EXT flag set *)
Fl;
IF segment selector is not within its descriptor table limits
THEN #GP(selector + EXT);
Fl;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);
Fl;
IF trap or interrupt gate segment is not present,
THEN #NP(selector + EXT);

Fl;
IF code segment is non-conforming AND DPL < CPL
THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)
ELSE (* VM=1 %)
IF code segment DPL = 0 THEN #GP(new code segment selector); Fl;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *)
Fl;
ELSE (* PE=1, interrupt or trap gate, DPL > CPL *)
IF VM=1 THEN #GP(new code segment selector); Fl;
IF code segment is conforming OR code segment DPL = CPL
THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)
Fl;

4:220 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Fl;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress < new code segment (DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS « TSSstackAddress + 4;
NewESP « stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress < new code segment (DPL = 4) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
NewESP « TSSstackAddress;
NewSS « TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); Fl;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL = DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;
Read segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL = DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

Fl;
IF stack segment not present THEN #SS(SS selector+EXT); Fl;
IF 32-bit gate
THEN
IF new stack does not have room for 24 bytes (error code pushed)
OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);
Fl;
ELSE (* 16-bit gate *)
IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
Fl;

IF instruction pointer is not within code segment limits THEN #GP(0); Fl;
SS:ESP « TSS(SS:ESP) (* segment descriptor information also loaded *)
IF 32-bit gate
THEN
CS:EIP « Gate(CS:EIP); (* segment descriptor information also loaded *)
ELSE (* 16-bit gate *)
CS:IP « Gate(CS:IP); (* segment descriptor information also loaded *)
Fl;
IF 32-bit gate
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);

Volume 4: Base IA-32 Instruction Reference 4:221

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)
ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)
Fl;
CPL « CodeSegmentDescriptor(DPL);
CS(RPL) «- CPL;
IF interrupt gate
THEN IF < O (* interrupt flag to O (disabled) *); Fl;
TF « 0;
VM « 0;
RF « 0;
NT « O;
| END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress < new code segment (DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS « TSSstackAddress + 4;
NewESP <« stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress < new code segment (DPL * 4) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
NewESP « TSSstackAddress;
NewSS « TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector's RPL = DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL # DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);
Fl;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate
THEN
IF new stack does not have room for 40 bytes (error code pushed)
OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
ELSE (* 16-bit gate *)
IF new stack does not have room for 20 bytes (error code pushed)

4:222 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

Fl;
Fl;
IF instruction pointer is not within code segment limits THEN #GP(0); Fl;
IF CR4.VME =0
THEN
IF IOPL=3
THEN
IF Gate DPL = 3
THEN (*CPL=3, VM=1, IOPL=3, VME=0, gate DPL=3)
IF Target CPL =0
THEN #GP(0);
ELSE Goto VM86_INTERURPT_TO_PRIVO;
Fl;
ELSE (*Gate DPL < 3%)
#GP(0);
Fl;
ELSE (*IOPL < 3%)
#GP(0);
Fl;

ELSE (*VME = 1%)
(*Check whether interrupt is directed for INT n instruction only,
(*executes virtual 8086 interupt, protected mode interrupt or faults*)
Ptr <- [TSS + 66]; (*Fetch IO permission bitmpa pointer*)
IF BIT[Ptr-32,N] =0 (*software redirection bitmap is 32 bytes below 10
Permission®)
THEN (*Interrupt redirected*)
Goto VM86_INTERRUPT_TO_VM86;

ELSE
IFIOPL =3
THEN
IF Gate DPL =3
THEN
IF Target CPL =0
THEN #GP(0);
ELSE Goto VM86_INTERRUPT_TO_PRIVO;
Fl;
ELSE #GP(0);
Fl;
ELSE (*IOPL < 3%)
#GP(0);
Fl;
Fl;
Fl;
END;

VM86_INTERRUPT_TO_PRIVO:
tempEFLAGS <« EFLAGS;
VM « 0;

Volume 4: Base IA-32 Instruction Reference 4:223

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

TF « 0;
RF « 0;
IF service through interrupt gate THEN IF « O; FI;
TempSS « SS;
TempESP « ESP;
SS:ESP « TSS(SS0:ESPO0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS « 0; (*segment registers nullified, invalid in protected mode *)
FS « 0;
DS « 0;
ES « 0;
CS « Gate(CS);
IF OperandSize=32

THEN

EIP « Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP « Gate(instruction pointer) AND 0000FFFFH,;

Fl;
(* Starts execution of new routine in Protected Mode *)
END;
VM86_INTERRUPT_TO_VM86:
IFIOPL=3
THEN
push(FLAGS OR 3000H); (*Push FLAGS w/ IOPL bits as 11B or IOPL 3%)
push(CS);
push(IP);
CS <-[N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 7CD5H; (*Clear TF and IF in EFLAGS like 8086*)
ELSE

TempFlags <- FLAGS OR 3000H; (*Set IOPL to 11B or IOPL 3%)
TempFlags.IF <- EFLAGS.VIF;
push(TempFlags);
push(CS);
push(IP);
CS <-[N*4 + 2]; (*N is vector num, read from interrupt table*)
IP <- [N*4];
FLAGS <- FLAGS AND 77ED5H; (*Clear VIF and TF and IF in EFLAGS like 8086%)
Fl;
END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

4:224 Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate
THEN
IF current stack does not have room for 16 bytes (error code pushed)
OR 12 bytes (no error code pushed); THEN #SS(0);
Fl;
ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)
OR 6 bytes (no error code pushed); THEN #SS(0);
Fl;
IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP « Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP « Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
Fl;
CS(RPL) « CPL;
IF interrupt gate
THEN
IF < O; FI;
TF « 0;
NT « O;
VM « 0;
RF « 0;
Fl;
END;

Flags Affected

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction
is executed (see “Operation” section.)

Additional Itanium System Environment Exceptions

IA_32_Exception If INT3 or INTO form, vector numbers are 3 and 4 respectively.
IA-32_Interrupt If INT n form, vector number is N.

Volume 4: Base IA-32 Instruction Reference 4:225

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

4:226

Protected Mode Exceptions

#GP(0)

#GP(selector)

#55(0)

#SS(selector)

#NP(selector)

#TS(selector)

#PF(fault-code)

If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTh instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment and no stack switch
occurs.

If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, or stack segment
pointer exceeds the bounds of the stack segment.

If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor pointed to by the stack
segment selector in the TSS is not equal to the DPL of the code
segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

If a page fault occurs.

Real Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the interrupt vector is outside the IDT limits.
If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack
exceeds the bounds of the stack segment when a stack switch
occurs.

Volume 4: Base IA-32 Instruction Reference

INTn/INTO/INT3—Call to Interrupt Procedure (Continued)

Virtual 8086 Mode Exceptions

#GP(0)

#GP(selector)

#SS(selector)

#NP(selector)

#TS(selector)

#PF(fault-code)
#BP
#OF

(For INTn instruction) If the IOPL is less than 3 and the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task
gate is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment
selector index is outside its descriptor table limits.

If the interrupt vector is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INTh instruction and the DPL of
an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point
to a segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If the SS register is being loaded and the segment pointed to is
marked not present.

If pushing the return address, flags, error code, stack segment
pointer, or data segments exceeds the bounds of the stack segment.

If code segment, interrupt-, trap-, or task gate, or TSS is not
present.

If the RPL of the stack segment selector in the TSS is not equal to
the DPL of the code segment being accessed by the interrupt or trap
gate.

If DPL of the stack segment descriptor for the TSS’s stack segment
is not equal to the DPL of the code segment descriptor for the
interrupt or trap gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor
table limits.

If a page fault occurs.
If the INT3 instruction is executed.
If the INTO instruction is executed and the OF flag is set.

Volume 4: Base IA-32 Instruction Reference 4:227

INVD—Invalidate Internal Caches

4:228

Opcode Instruction Description
OF 08 INVD Flush internal caches; initiate flushing of external caches.
Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus
cycle that directs external caches to also flush themselves. Data held in internal caches
is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches to
complete their flushing operation before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

Use this instruction with care. Data cached internally and not written back to main
memory will be lost. Unless there is a specific requirement or benefit to flushing caches
without writing back modified cache lines (for example, testing or fault recovery where
cache coherency with main memory is not a concern), software should use the WBINVD
instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVD);

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed at the virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference

INVD—Invalidate Internal Caches (Continued)

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

Volume 4: Base IA-32 Instruction Reference 4:229

INVLPG—Invalidate TLB Entry

Opcode Instruction Description
OF 01/7 INVLPG m Invalidate TLB Entry for page that contains m
Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the
source operand. The source operand is a memory address. The processor determines
the page that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also implementation-dependent; its function may be
implemented differently on future Intel architecture processors.

The INVLPG instruction normally flushes the TLB entry only for the specified page;

however, in some cases, it flushes the entire TLB.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,INVLPG);

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual 8086
mode.

Intel Architecture Compatibility

This instruction is not supported on Intel architecture processors earlier than the
Intel486 processor.

4:230 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)
CF IRETD Interrupt return (32-bit operand size)
Description

Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt or, a
software-generated interrupt, or returns from a nested task. IRET and IRETD are
mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is
intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand
sizes.

In Real Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT
(nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image
stored on the current stack. Depending on the setting of these flags, the processor
performs the following types of interrupt returns:

¢ Real Mode.

e Return from virtual-8086 mode.
Return to virtual-8086 mode.
Intra-privilege level return.
Inter-privilege level return.

Return from nested task (task switch)

All forms of IRET result in an IA-32_Intercept(Inst,IRET) in the Itanium
System Environment.

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being returned
to must be equally or less privileged than the interrupt handler routine (as indicated by
the RPL field of the code segment selector popped from the stack). As with a
real-address mode interrupt return, the IRET instruction pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP, CS,
and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure. If the return is to another privilege level, the IRET instruction
also pops the stack pointer and SS from the stack, before resuming program execution.
If the return is to virtual-8086 mode, the processor also pops the data segment
registers from the stack.

Volume 4: Base IA-32 Instruction Reference 4:231

IRET/IRETD—Interrupt Return (Continued)

If the NT flag is set, the IRET instruction performs a return from a nested task (switches
from the called task back to the calling task) or reverses the operation of an interrupt
or exception that caused a task switch. The updated state of the task executing the

IRET instruction is saved in its TSS. If the task is reentered later, the code that follows

the IRET instruction is executed.

IRET performs an instruction serialization and a memory fence operation.

Operation

IF(Itanium System Environment)
THEN IA-32_Intercept(Inst,IRET);

IF PE =0
THEN

GOTO REAL-ADDRESS-MODE;;

ELSE

GOTO PROTECTED-MODE;

Fl;

REAL-ADDRESS-MODE;
IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS; Fl;

IF instruction pointer not within code segment limits THEN #GP(0); FI;

EIP « Pop();

CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)

tempEFLAGS <« Pop();

EFLAGS « (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)

Fl;
END;

IF top 6 bytes of stack are not within stack limits THEN #SS; Fl,

IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();

EIP « EIP AND 0000FFFFH;

CS « Pop(); (* 16-bit pop *)

EFLAGS[15:0] < Pop();

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)
THEN

Fl;

GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

IF NT = 1
THEN

Fl;

GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

IF OperandSize=32
THEN

4:232

IF top 12 bytes of stack not within stack limits

Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

THEN #SS(0)

Fl;

tempEIP « Pop();

tempCS « Pop();

tempEFLAGS <« Pop();

ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits
THEN #SS(0);

Fl;

tempEIP « Pop();

tempCS « Pop();

tempEFLAGS <« Pop();

tempEIP <« tempEIP AND FFFFH;

tempEFLAGS <« tempEFLAGS AND FFFFH;

Fl;
IF tempEFLAGS(VM) = 1 AND CPL=0
THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)
ELSE
GOTO PROTECTED-MODE-RETURN,;
(* PE=1, VM=0 in EFLAGS image *)
Fl;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)
IF CR4AVME =0
THEN
IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); Fl;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS « Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FlI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)
EFLAGS[15:0] < Pop(); (* IOPL in EFLAGS is not modified by pop *)
Fl;
ELSE #GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)
Fl;
ELSE (*VME is 1%)
IFIOPL=3
THEN
IF OperandSize = 32

Volume 4: Base IA-32 Instruction Reference 4:233

IRET/IRETD—Interrupt Return (Continued)

THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)
TempEFlags « Pop();
FLAGS = (EFLAGS AND 1B3000H) OR (TempEFlags AND 244FD7H)
(*VM,IOPL,RF,VIP,and VIF EFLAGS bits are not modified by pop *)
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)
TempFlags <- Pop();
FLAGS = (FLAGS AND 3000H) OR (TempFLags AND 4FD5H)
(*IOPL unmodified™)
Fl;
ELSE (*IOPL < 3%)
IF OperandSize = 16
THEN
IF ((STACK.TF !-0) OR (EFLAGS.VIP=1 AND STACK.IF=1))
THEN #GP(0);
ELSE
IP <- Pop(); (*Word Pops*)
CS <- Pop(0);
TempFlags <- Pop();
(*FLAGS IOPL, IF and TF are not modified*)
FLAGS = (FLAGS AND 3302H) OR (TempFlags AND 4CD5H)
EFLAGS.VIF <- TempFlags.IF;

Fl;
ELSE (*OperandSize = 32 *)
#GP(0);
Fl;
Fl;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)
IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);
Fl;
IF instruction pointer not within code segment limits
THEN #GP(0);
Fl;
CS « tempCS;
EIP « tempEIP;
EFLAGS « tempEFLAGS
TempESP <« Pop();
TempSS « Pop();
ES « Pop(); (* pop 2 words; throw away high-order word *)
DS « Pop(); (* pop 2 words; throw away high-order word *)
FS <« Pop(); (* pop 2 words; throw away high-order word *)
GS « Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP « TempSS:TempESP;

4:234 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

(* Resume execution in Virtual 8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=1, NT=1 ¥)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #GP(TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit
THEN #GP(0);
Fl;
END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FlI;
IF return code segment selector addrsses descriptor beyond descriptor table limit
THEN GP(selector; Fl;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL THEN #GP(selector); Fl;
IF return code segment descriptor is conforming
AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present THEN #NP(selector); FlI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL,;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL
Fl;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP « tempEIP;
CS « tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) «- tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) < tempEFLAGS;
Fl;
IF CPL < I0OPL
THEN
EFLAGS(IF) < tempEFLAGS;
Fl;

Volume 4: Base IA-32 Instruction Reference 4:235

IRET/IRETD—Interrupt Return (Continued)

IFCPL=0
THEN
EFLAGS(IOPL) <« tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) < tempEFLAGS;

Fl;

Fl;

END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:

IF OperandSize=32
THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); Fl;
ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;
Fl;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); Fl;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(SSselector); Fl;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL = RPL of the return code segment selector
IF stack segment selector RPL = RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL = RPL of the return code segment selector
THEN #GP(SS selector);
Fl;
IF stack segment is not present THEN #NP(SS selector); FI;
IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP « tempEIP;
CS « tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) « tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) < tempEFLAGS;

Fl;
IF CPO < 10PL
THEN
EFLAGS(IF) <« tempEFLAGS;
Fl;
IFCPL=0
THEN
EFLAGS(IOPL) « tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) < tempEFLAGS;
Fl;
Fl;

CPL « RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)
DO;
IF segment register points to data or non-conforming code segment

4:236 Volume 4: Base IA-32 Instruction Reference

IRET/IRETD—Interrupt Return (Continued)

AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)
SegmentSelector «— 0; (* null segment selector *)
Fl;
OD;
END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Instruction Intercept Trap for ALL forms of IRET.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.
If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return
code segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL
of the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the
return code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the segment descriptor for a code segment does not indicate it is
a code segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not

available.
#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and

alignment checking is enabled.

Volume 4: Base IA-32 Instruction Reference 4:237

IRET/IRETD—Interrupt Return (Continued)

Real Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual 8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit.

IF IOPL not equal to 3
#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If argluréaligned memory reference occurs and alignment checking is
enabled.

4:238 Volume 4: Base IA-32 Instruction Reference

Jcc—Jump if Condition Is Met

Opcode Instruction
77 cb JA rel8

73 cb JAE rel8
72 cb JB rel8

76 cb JBE rel8
72 cb JC rel8

E3 cb JCXZ rel8
E3 cb JECXZ rel8
74 cb JE rel8

7F ¢cb JG rel8

7D cb JGE rel8
7Ccb JL rel8

7E cb JLE rel8

76 cb JNA rel8
72 c¢ch JNAE rel8
73 ¢cb JNB rel8
77 cb JNBE rel8
73 ¢cb JNC rel8
75 cb JNE rel8
7E cb JING rel8
7Ccb JNGE rel8
7D cb JNL rel8
7F cb JNLE rel8
71c¢cb JNO rel8
7B cb JNP rel8
79 cb JNS rel8
75 cb JNZ rel8
70 cb JO rel8

7A cb JP rel8

7A cb JPE rel8
7B cb JPO rel8
78 cb JS rel8

74 cb JZ rel8

OF 87 cw/cd JA rel16/32
OF 83 cw/cd JAE rel16/32
OF 82 cw/cd JB rel16/32
OF 86 cw/cd JBE rel16/32
OF 82 cw/cd JC rel16/32
OF 84 cw/cd JE rel16/32
OF 84 cw/cd JZ rel16/32
OF 8F cw/cd JG rel16/32

Description

Jump short if above (CF=0 and ZF=0)

Jump short if above or equal (CF=0)

Jump short if below (CF=1)

Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)

Jump short if CX register is 0

Jump short if ECX register is 0

Jump short if equal (ZF=1)

Jump short if greater (ZF=0 and SF=0OF)
Jump short if greater or equal (SF=OF)
Jump short if less (SF<>OF)

Jump short if less or equal (ZF=1 or SF<>OF)
Jump short if not above (CF=1 or ZF=1)
Jump short if not above or equal (CF=1)
Jump short if not below (CF=0)

Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)

Jump short if not equal (ZF=0)

Jump short if not greater (ZF=1 or SF<>OF)
Jump short if not greater or equal (SF<>OF)
Jump short if not less (SF=0OF)

Jump short if not less or equal (ZF=0 and SF=0F)
Jump short if not overflow (OF=0)

Jump short if not parity (PF=0)

Jump short if not sign (SF=0)

Jump short if not zero (ZF=0)

Jump short if overflow (OF=1)

Jump short if parity (PF=1)

Jump short if parity even (PF=1)

Jump short if parity odd (PF=0)

Jump short if sign (SF=1)

Jump short if zero (ZF = 1)

Jump near if above (CF=0 and ZF=0)

Jump near if above or equal (CF=0)

Jump near if below (CF=1)

Jump near if below or equal (CF=1 or ZF=1)
Jump near if carry (CF=1)

Jump near if equal (ZF=1)

Jump near if 0 (ZF=1)

Jump near if greater (ZF=0 and SF=0F)

Volume 4: Base IA-32 Instruction Reference

4:239

Jecc—Jump if Condition Is Met (Continued)

4:240

Opcode Instruction Description

OF 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

OF 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

OF 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)
OF 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

OF 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

OF 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

OF 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

OF 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

OF 8E cw/cd JING rel16/32 Jump near if not greater (ZF=1 or SF<>OF)
OF 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

OF 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=0F)
OF 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

OF 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

OF 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

OF 85 cw/cd JINZ rel16/32 Jump near if not zero (ZF=0)

OF 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

OF 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

OF 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

OF 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

OF 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF,
SF, and ZF) and, if the flags are in the specified state (condition), performs a jump to
the target instruction specified by the destination operand. A condition code (cc) is
associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the
instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). A relative offset (rel8, rel16,
or rel32) is generally specified as a label in assembly code, but at the machine code
level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the
instruction pointer. Instruction coding is most efficient for offsets of -128 to +127. If
the operand-size attribute is 16, the upper two bytes of the EIP register are cleared to
0Os, resulting in @ maximum instruction pointer size of 16 bits.

The conditions for each Jcc mnemonic are given in the “Description” column of the
above table. The terms “less” and “greater” are used for comparisons of signed integers
and the terms “above” and “below” are used for unsigned integers.

Volume 4: Base IA-32 Instruction Reference

Jecc—Jump if Condition Is Met (Continued)

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the JA (jump if
above) instruction and the JNBE (jump if not below or equal) instruction are alternate
mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When
the target for the conditional jump is in a different segment, use the opposite condition
from the condition being tested for the Jcc instruction, and then access the target with
an unconditional far jump (JMP instruction) to the other segment. For example, the
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do
not check the status flags. Instead they check the contents of the ECX and CX registers,
respectively, for 0. These instructions are useful at the beginning of a conditional loop
that terminates with a conditional loop instruction (such as LOOPNE). They prevent
entering the loop when the ECX or CX register is equal to 0, which would cause the loop
to execute 232 or 64K times, respectively, instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines,
regardless of jump address or cacheability.

Operation

IF condition
THEN
EIP « EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP < EIP AND 0000FFFFH,;
Fl;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions
IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Volume 4: Base IA-32 Instruction Reference 4:241

Jecc—Jump if Condition Is Met (Continued)

Real Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment
or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment

or is outside of the effective address space from 0 to FFFFH. This
condition can occur if 32-address size override prefix is used.

4:242 Volume 4: Base IA-32 Instruction Reference

JMP—Jump

Opcode Instruction Description
EB cb JMP rel8 Jump near, relative address
E9 cw JMP rel16 Jump near, relative address
E9 cd JMP rel32 Jump near, relative address
FF /4 JMP r/m16 Jump near, indirect address
FF /4 JMP r/m32 Jump near, indirect address
EA cd JMP ptr16:16 Jump far, absolute address
EA cp JMP ptr16:32 Jump far, absolute address
FF /5 JMP m16:16 Jump far, indirect address
FF /5 JMP m16:32 Jump far, indirect address
Description

Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address of
the instruction being jumped to. This operand can be an immediate value, a
general-purpose register, or a memory location.

e Near jump - A jump to an instruction within the current code segment (the
segment currently pointed to by the CS register), sometimes referred to as an
intrasegment call.

e Far jump - A jump to an instruction located in a different segment than the current
code segment, sometimes referred to as an intersegment call.

e Task switch — A jump to an instruction located in a different task. (This is a form of
a far jump.) Results in an IA-32_1Intercept(Gate) in Itanium System
Environment.

A task switch can only be executed in protected mode (see Chapter 6 in the Inte/
Architecture Software Developer’s Manual, Volume 3 for information on task switching
with the JMP instruction).

When executing a near jump, the processor jumps to the address (within the current
code segment) that is specified with the target operand. The target operand specifies
either an absolute address (that is an offset from the base of the code segment) or a
relative offset (a signed offset relative to the current value of the instruction pointer in
the EIP register). An absolute address is specified directly in a register or indirectly in a
memory location (r/m16 or r/m32 operand form). A relative offset (rel8, rel16, or
rel32) is generally specified as a label in assembly code, but at the machine code level,
it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to the value
in the EIP register (that is, to the instruction following the JMP instruction). The
operand-size attribute determines the size of the target operand (16 or 32 bits) for
absolute addresses. Absolute addresses are loaded directly into the EIP register. When
a relative offset is specified, it is added to the value of the EIP register. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to 0Os,
resulting in a maximum instruction pointer size of 16 bits. The CS register is not
changed on near jumps.

Volume 4: Base IA-32 Instruction Reference 4:243

JMP—Jump (Continued)

4:244

When executing a far jump, the processor jumps to the code segment and address
specified with the target operand. Here the target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
address of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indirect
method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute
determines the size of the offset (16 or 32 bits) in the far address. The far address is
loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the
upper two bytes of the EIP register are cleared to Os.

When the processor is operating in protected mode, a far jump can also be used to
access a code segment through a call gate or to switch tasks. Here, the processor uses
the segment selector part of the far address to access the segment descriptor for the
segment being jumped to. Depending on the value of the type and access rights
information in the segment selector, the JMP instruction can perform:

e A far jump to a conforming or non-conforming code segment (same mechanism as
the far jump described in the previous paragraph, except that the processor checks
the access rights of the code segment being jumped to).

e An far jump through a call gate.

¢ A task switch. Results in an IA-32_Intercept(Gate) in Itanium System
Environment.

The JMP instruction cannot be used to perform inter-privilege level jumps.

When executing an far jump through a call gate, the segment selector specified by the
target operand identifies the call gate. (The offset part of the target operand is
ignored.) The processor then jumps to the code segment specified in the call gate
descriptor and begins executing the instruction at the offset specified in the gate. No
stack switch occurs. Here again, the target operand can specify the far address of the
call gate and instruction either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is similar to executing a jump through
a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to. (The offset part of the target operand is ignored). The task
gate in turn points to the TSS for the task, which contains the segment selectors for the
task’s code, data, and stack segments and the instruction pointer to the target
instruction. One form of the JMP instruction allows the jump to be made directly to a
TSS, without going through a task gate. See Chapter 13 in Intel Architecture Software
Developer’s Manual, Volume 3 the for detailed information on the mechanics of a task
switch.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

Operation

IF near jump
THEN IF near relative jump
THEN
tempEIP « EIP + DEST,; (* EIP is instruction following JMP instruction®)
ELSE (* near absolute jump *)
tempEIP « DEST;
Fl;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « tempEIP;
ELSE (* OperandSize=16 *)
EIP « tempEIP AND 0000FFFFH;
Fl;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
Fl:

IF far jump AND (PE = 0 OR (PE =1 AND VM = 1)) (* real address or virtual 8086 mode *)
THEN
tempEIP < DEST (offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS « DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN
EIP « tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP « tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
Fl;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
Fl;
IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
OR segment selector in target operand null
THEN #GP(0);
Fl;
IF segment selector index not within descriptor table limits
THEN #GP(new selector);
Fl;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
ELSE
#GP(segment selector);
Fl;

Volume 4: Base IA-32 Instruction Reference 4:245

JMP—Jump (Continued)

CONFORMING-CODE-SEGMENT:

IF DPL > CPL THEN #GP(segment selector); Fl;

IF segment not present THEN #NP(segment selector); Fl;

tempEIP «— DEST(offset);

IF OperandSize=16

THEN tempEIP « tempEIP AND 0000FFFFH;

Fl;

IF tempEIP not in code segment limit THEN #GP(0); Fl;

CS « DEST(SegmentSelector); (* segment descriptor information also loaded *)

CS(RPL) « CPL

EIP < tempEIP;

IF Iltanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
END;

NONCONFORMING-CODE-SEGMENT:

IF (RPL > CPL) OR (DPL # CPL) THEN #GP(code segment selector); Fl;

IF segment not present THEN #NP(segment selector); Fl;

IF instruction pointer outside code segment limit THEN #GP(0); FI;

tempEIP «— DEST/(offset);

IF OperandSize=16

THEN tempEIP « tempEIP AND 0000FFFFH;

Fl;

IF tempEIP not in code segment limit THEN #GP(0); FI;

CS « DEST(SegmentSelector); (* segment descriptor information also loaded *)

CS(RPL) «- CPL

EIP « tempEIP;

IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
END;

CALL-GATE:

IF call gate DPL < CPL
OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); Fl;
IF call gate not present THEN #NP(call gate selector); Fl;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
IF call gate code-segment selector is null THEN #GP(0); Fl;
IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL = CPL
THEN #GP(code segment selector); Fl;
IF code segment is not present THEN #NP(code-segment selector); Fl;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP <« DEST(offset);
IF GateSize=16
THEN tempEIP « tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS « DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) «- CPL
EIP < tempEIP;

4:246 Volume 4: Base IA-32 Instruction Reference

JMP—Jump (Continued)

END;

TASK-GATE:

IF task gate DPL < CPL
OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); Fl;
IF task gate not present THEN #NP(gate selector); Fl;
IF Itanium System Environment THEN IA-32_Intercept(Gate,JMP);
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); Fl;
IF TSS not present THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:

IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector); Fl;
IF TSS is not present THEN #NP(TSS selector); Fl;
IF Itanium System Environment THENIA-32_Intercept(Gate,JMP);
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does

not occur.

Additional Itanium System Environment Exceptions
Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data

IA-32_Intercept

IA_32_Exception

TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Gate Intercept for JMP through CALL Gates, Task Gates and Task
Segments

Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0)

If offset in target operand, call gate, or TSS is beyond the code
segment limits.

If the segment selector in the destination operand, call gate, task
gate, or TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Volume 4: Base IA-32 Instruction Reference 4:247

JMP—Jump (Continued)

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment
selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is
less than the CPL or than the RPL of the call-gate, task-gate, or TSS’s
segment selector.

If the segment descriptor for selector in a call gate does not indicate
it is a code segment.

If the segment descriptor for the segment selector in a task gate
does not indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not

available.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made. (Only occurs when fetching target from memory.)

4:248 Volume 4: Base IA-32 Instruction Reference

JMPE—Jump to Intel® Itanium® Instruction Set

Opcode Instruction Description

OF 00 /6 JMPE r/m16 Jump to Intel ltanium instruction set, indirect address specified by
r/m16

OF 00 /6 JMPE r/m32 Jump to Intel ltanium instruction set, indirect address specified by
r/m32

OF B8 JMPE disp16 Jump to Intel Itanium instruction set, absolute address specified by
addr16

OF B8 JMPE disp32 Jump to Intel Itanium instruction set, absolute address specified by
addr32

Description

This instruction is available only on processors based on the Itanium architecture in the
Itanium System Environment. Otherwise, execution of this instruction at privilege levels
1, 2, and 3 results in an Illegal Opcode fault, and at privilege level 0, termination of the
IA-32 System Environment on a processor based on the Itanium architecture.

JMPE switches the processor to the Itanium instruction set and starts execution at the
specified target address There are two forms; an indirect form, r/mr16/32, and an
unsigned absolute form, disp16/32. Both 16 and 32-bit formats are supported.

The absolute form computes the 16-byte aligned 64-bit virtual target address in the
Itanium instruction set by adding the unsigned 16 or 32-bit displacement to the current
CS base (IP{31:0} = disp16/32 + CSD.base). The indirect form specifies the virtual
target address by the contents of a register or memory location (IP{31:0} =
[r/m16/32] + CSD.base). Target addresses are constrained to the lower 4G-bytes of
the 64-bit virtual address space within virtual region 0.

GR[1] is loaded with the next sequential instruction address following JMPE.

If PSR.di is 1, the instruction is nullified and a Disabled Instruction Set Transition fault is
generated. If Itanium branch debugging is enabled, an IA_32_Exception(Debug)
trap is taken after JMPE completes execution.

JMPE can be performed at any privilege level and does not change the privilege level of
the processor.

JMPE performs a FWAIT operation, any pending IA-32 unmasked floating-point
exceptions are reported as faults on the JMPE instruction.

JMPE does not perform a memory fence or serialization operation.
Successful execution of JMPE clears EFLAG.rf and PSR.id to zero.

If the register stack engine is enabled for eager execution, the register stack engine
may immediately start loading registers when the processor enters the Itanium
instruction set.

Volume 4: Base IA-32 Instruction Reference 4:249

JMPE—Jump to Intel® Itanium® Instruction Set (Continued)

Operation

IF(NOT Itanium System Environment) {
IF (PSR.cpl==0) Terminate_|A-32_System_Env();
ELSE IA_32_Exception(lllegalOpcode);

} ELSE IF(PSR.di==1) {

Disabled_Instruction_Set_Transition_Fault();
} ELSE IF(pending_numeric_exceptions()) {
IA_32_exception(FPError);
} ELSE {

IF(absolute_form) { /lcompute virtual target
IP{31:0} = disp16/32 + AR[CSD].base;//disp is 16/32-bit unsigned value

} ELSE IF(indirect_form) {
IP{31:0} = [/m16/32] + AR[CSD].base;

}

PSR.is = 0; /Iset Itanium Instruction Set bit
IP{3:0}= 0; /[Force 16-byte alignment
IP{63:32} = 0; /lzero extend from 32-bits to 64-bits

GR[1]{31:0} = EIP + AR[CSD].base; /Inext sequential instruction address
GR[1]{63:32} = 0;
PSR.id = EFLAG.rf = 0;
IF (PSR.tb) /ltaken branch trap
IA_32_Exception(Debug);
}

Flags Affected

None (other than EFLAG.rf)

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Fault.

Disabled ISA Disabled Instruction Set Transition Fault, if PSR.di is 1
IA_32_Exception Floating-point Error, if any floating-point exceptions are pending
IA_32_Exception Taken Branch trap, if PSR.tb is 1.

I1A-32 System Environment Exceptions (All Operating Modes)
#UD JMPE raises an invalid opcode exception at privilege levels 1, 2 and

3. Privilege level O results in termination of the IA-32 System
Environment on a processor based on the Itanium architecture.

4:250 Volume 4: Base IA-32 Instruction Reference

LAHF—Load Status Flags into AH Register

Opcode Instruction Description
9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)
Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF,
and CF) to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in
the AH register as shown in the “Operation” below.

Operation
AH < EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 4: Base IA-32 Instruction Reference 4:251

LAR—Load Access Rights Byte

4:252

Opcode Instruction Description

OF 02 /r LAR r16,r/m16 r16 < r/m16 masked by FFOOH

OF 02 /r LAR r32,r/m32 r32 « r/m32 masked by 00FxFFOOH
Description

Loads the access rights from the segment descriptor specified by the second operand
(source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location)
contains the segment selector for the segment descriptor being accessed. The
destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can preform additional checks on the access rights
information.

When the operand size is 32 bits, the access rights for a segment descriptor comprise
the type and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in
the second doubleword (bytes 4 through 7) of the segment descriptor. The doubleword
is masked by OOFXFFOOH before it is loaded into the destination operand. When the
operand size is 16 bits, the access rights comprise the type and DPL fields. Here, the
two lower-order bytes of the doubleword are masked by FFOOH before being loaded into
the destination operand.

This instruction performs the following checks before it loads the access rights in the
destination register:
e Checks that the segment selector is not null.
e Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

e Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LAR instruction. The
valid system segment and gate descriptor types are given in the following table.

¢ If the segment is not a conforming code segment, it checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the
segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Volume 4: Base IA-32 Instruction Reference

LAR—Load Access Rights Byte (Continued)

Table 2-15. LAR Descriptor Validity

Type Name Valid
0 Reserved No
1 Available 16-bit TSS Yes
2 LDT Yes
3 Busy 16-bit TSS Yes
4 16-bit call gate Yes
5 16-bit/32-bit task gate Yes
6 16-bit trap gate No
7 16-bit interrupt gate No
8 Reserved No
9 Available 32-bit TSS Yes
A Reserved No
B Busy 32-bit TSS Yes
C 32-bit call gate Yes
D Reserved No
E 32-bit trap gate No
F 32-bit interrupt gate No

Operation

IF SRC(Offset) > descriptor table limit THEN ZF « 0O; Fl;
Read segment descriptor;
IF SegmentDescriptor(Type) # conforming code segment
AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction
THEN
ZF <0
ELSE
IF OperandSize = 32
THEN
DEST <« [SRC] AND 00FxFFOOH;
ELSE (*OperandSize = 16%)
DEST « [SRC] AND FFOOH;
Fl;
Fl;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is
cleared to 0.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Volume 4: Base IA-32 Instruction Reference 4:253

LAR—Load Access Rights Byte (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3. (Only occurs
when fetching target from memory.)

Real Address Mode Exceptions
#UD The LAR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual 8086 mode.

4:254 Volume 4: Base IA-32 Instruction Reference

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Opcode Instruction Description

C51/r LDS r16,m16:16 Load DS:r16 with far pointer from memory
C51/r LDS r32,m16:32 Load DS:r32 with far pointer from memory
OF B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory
OF B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory
C41ir LES r16,m16:16 Load ES:r16 with far pointer from memory
C41ir LES r32,m16:32 Load ES:r32 with far pointer from memory
OF B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory
OF B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory
OF B5/r LGS r16,m16:16 Load GS:r16 with far pointer from memory
OF B5/r LGS r32,m16:32 Load GS:r32 with far pointer from memory
Description

Load a far pointer (segment selector and offset) from the second operand (source
operand) into a segment register and the first operand (destination operand). The
source operand specifies a 48-bit or a 32-bit pointer in memory depending on the
current setting of the operand-size attribute (32 bits or 16 bits, respectively). The

instruction opcode and the destination operand specify a segment
register/general-purpose register pair. The 16-bit segment selector from the source

operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from
the segment descriptor pointed to by the segment selector in the source operand is
loaded in the hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into
DS, ES, FS, or GS registers without causing a protection exception. (Any subsequent
reference to a segment whose corresponding segment register is loaded with a null
selector, causes a general-protection exception (#GP) and no memory reference to the
segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded

THEN IF SegementSelector = null
THEN #GP(0);
Fl;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL = CPL
OR Access rights indicate nonwritable data segment
OR DPL # CPL
THEN #GP(selector);
Fl;
ELSE IF Segment marked not present
THEN #SS(selector);
Fl;
SS « SegmentSelector(SRC);

Volume 4: Base IA-32 Instruction Reference

4:255

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

4:256

SS « SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);
Fl;
ELSE IF Segment marked not present
THEN #NP(selector);
Fl;
SegmentRegister « SegmentSelector(SRC) AND RPL;
SegmentRegister «— SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister «— NullSelector;
SegmentRegister(DescriptorValidBit) «— 0; (*hidden flag; not accessible by software*)

Fl;

Fl;
IF (Real-Address or Virtual 8086 Mode)

THEN
SS « SegmentSelector(SRC);

Fl;
DEST « Offset(SRC);

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#UD If source operand is not a memory location.
#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#GP(selector) If the SS register is being loaded and any of the following is true:
the segment selector index is not within the descriptor table limits,
the segment selector RPL is not equal to CPL, the segment is a
nonwritable data segment, or DPL is not equal to CPL.

Volume 4: Base IA-32 Instruction Reference

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

If the DS, ES, FS, or GS register is being loaded with a non-null
segment selector and any of the following is true: the segment
selector index is not within descriptor table limits, the segment is
neither a data nor a readable code segment, or the segment is a
data or nonconforming-code segment and both RPL and CPL are
greater than DPL.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#SS(selector) If the SS register is being loaded and the segment is marked not
present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment

selector and the segment is marked not present.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Volume 4: Base IA-32 Instruction Reference 4:257

LEA—Load Effective Address

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16
8D /r LEA r32,m Store effective address for m in register r32
Description

Computes the effective address of the second operand (the source operand) and stores
it in the first operand (destination operand). The source operand is a memory address
(offset part) specified with one of the processors addressing modes; the destination
operand is a general-purpose register. The address-size and operand-size attributes
affect the action performed by this instruction, as shown in the following table. The
operand-size attribute of the instruction is determined by the chosen register; the
address-size attribute is determined by the attribute of the code segment.

Table 2-16. LEA Address and Operand Sizes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit
register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address
are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is
zero-extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

Different assemblers may use different algorithms based on the size attribute and
symbolic reference of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN
DEST <« EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32
THEN
temp « EffectiveAddress(SRC); (* 32-bit address *)
DEST « templ[0..15]; (* 16-bit address *)
ELSE IF OperandSize = 32 AND AddressSize = 16
THEN
temp <« EffectiveAddress(SRC); (* 16-bit address *)
DEST « ZeroExtend(temp); (* 32-bit address *)
ELSE IF OperandSize = 32 AND AddressSize = 32
THEN
DEST « EffectiveAddress(SRC); (* 32-bit address *)
Fl;
Fl;

4:258 Volume 4: Base IA-32 Instruction Reference

LEA—Load Effective Address (Continued)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

Volume 4: Base IA-32 Instruction Reference 4:259

LEAVE—High Level Procedure Exit

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP
Description

Executes a return from a procedure or group of nested procedures established by an
earlier ENTER instruction. The instruction copies the frame pointer (in the EBP register)
into the stack pointer register (ESP), releasing the stack space used by a procedure for
its local variables. The old frame pointer (the frame pointer for the calling procedure
that issued the ENTER instruction) is then popped from the stack into the EBP register,
restoring the calling procedure’s frame.

A RET instruction is commonly executed following a LEAVE instruction to return
program control to the calling procedure and remove any arguments pushed onto the
stack by the procedure being returned from.

Operation

IF StackAddressSize = 32
THEN
ESP « EBP;
ELSE (* StackAddressSize = 16%)
SP « BP;
Fl;
IF OperandSize = 32
THEN
EBP « Pop();
ELSE (* OperandSize = 16*)
BP « Pop();
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of
the current stack segment.

4:260 Volume 4: Base IA-32 Instruction Reference

LEAVE—High Level Procedure Exit (Continued)

Real Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective
address space from 0 to OFFFFH.

Virtual 8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective
address space from 0 to OFFFFH.

Volume 4: Base IA-32 Instruction Reference 4:261

LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:262 Volume 4: Base IA-32 Instruction Reference

LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:263

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Opcode Instruction Description

OF 01 /2 LGDT m16&32 Load m into GDTR
OF 01 /3 LIDT m16&32 Load m into IDTR
Description

Loads the values in the source operand into the global descriptor table register (GDTR)
or the interrupt descriptor table register (IDTR). The source operand is a pointer to 6
bytes of data in memory that contains the base address (a linear address) and the limit
(size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the
6-byte data operand) and a 32-bit base address (upper 4 bytes of the data operand)
are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit limit (lower
2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the
high-order byte of the operand is not used and the high-order byte of the base address
in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are
not used in application programs. They are the only instructions that directly load a
linear address (that is, not a segment-relative address) and a limit in protected mode.
They are commonly executed in real-address mode to allow processor initialization prior
to switching to protected mode.

Operation
IF Itanium System Environment THEN IA-32_Intercept(INST,LGDT/LIDT);

IF instruction is LIDT
THEN
IF OperandSize = 16
THEN
IDTR(Limit) <« SRCI[0:15];
IDTR(Base) «— SRC[16:47] AND 00FFFFFFH;
ELSE (* 32-bit Operand Size *)
IDTR(Limit) «- SRC[0:15];
IDTR(Base) « SRC[16:47];
Fl;
ELSE (* instruction is LGDT *)
IF OperandSize = 16
THEN
GDTR(Limit) « SRC[0:15];
GDTR(Base) «- SRC[16:47] AND 00FFFFFFH,;
ELSE (* 32-bit Operand Size *)
GDTR(Limit) «~ SRC[0:15];
GDTR(Base) «<— SRC[16:47];
Fl;
Fl;

Flags Affected

None.

4:264 Volume 4: Base IA-32 Instruction Reference

LGDT/LIDT—Load Global/lnterrupt Descriptor Table Register (Continued)

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept for LIDT and LGDT

Protected Mode Exceptions

#UD If source operand is not a memory location.
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS If a memory operand effective address is outside the SS segment
limit.

Virtual 8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:265

LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

4:266 Volume 4: Base IA-32 Instruction Reference

LLDT—Load Local Descriptor Table Register

Opcode Instruction Description
OF 00 /2 LLDT r/m16 Load segment selector /m16 into LDTR
Description

Loads the source operand into the segment selector field of the local descriptor table
register (LDTR). The source operand (a general-purpose register or a memory location)
contains a segment selector that points to a local descriptor table (LDT). After the
segment selector is loaded in the LDTR, the processor uses to segment selector to
locate the segment descriptor for the LDT in the global descriptor table (GDT). It then
loads the segment limit and base address for the LDT from the segment descriptor into
the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not affected by this
instruction, nor is the LDTR field in the task state segment (TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors
in the LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general
protection exception (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be
used in application programs. Also, this instruction can only be executed in protected
mode.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LLDT);
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); Fl;
Read segment descriptor;

IF SegmentDescriptor(Type) # LDT THEN #GP(segment selector); Fl;
IF segment descriptor is not present THEN #NP(segment selector);

LDTR(SegmentSelector) «- SRC;
LDTR(SegmentDescriptor) <« GDTSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions
IA-32_Intercept Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Volume 4: Base IA-32 Instruction Reference 4:267

LLDT—Load Local Descriptor Table Register (Continued)

#GP(selector) If the selector operand does not point into the Global Descriptor
Table or if the entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LLDT instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LLDT instruction is recognized in virtual 8086 mode.

4:268 Volume 4: Base IA-32 Instruction Reference

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global Descriptor Table Register/Load Interrupt
Descriptor Table Register.

Volume 4: Base IA-32 Instruction Reference 4:269

LMSW—Load Machine Status Word

4:270

Opcode Instruction Description
OF 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CRO
Description

Loads the source operand into the machine status word, bits 0 through 15 of register
CRO. The source operand can be a 16-bit general-purpose register or a memory
location. Only the low-order 4 bits of the source operand (which contains the PE, MP,
EM, and TS flags) are loaded into CRO. The PG, CD, NW, AM, WP, NE, and ET flags of
CRO are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the
processor to switch to protected mode. The PE flag in the CRO register is a sticky bit.
Once set to 1, the LMSW instruction cannot be used clear this flag and force a switch
back to real address mode.

The LMSW instruction is provided for use in operating-system software; it should not be
used in application programs. In protected or virtual 8086 mode, it can only be
executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on processors more recent than the Intel 286 should use
the MOV (control registers) instruction to load the machine status word.

This instruction is a serializing instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LMSW);
CRO0[0:3] «- SRC[0:3];

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept Mandatory Instruction Intercept

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment
limit.
#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference

LMSW—Load Machine Status Word (Continued)

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.
#PF(fault-code) If a page fault occurs.

Volume 4: Base IA-32 Instruction Reference 4:271

LOCK—Assert LOCK# Signal Prefix

4:272

Opcode Instruction Description
FO LOCK Asserts LOCK# signal for duration of the accompanying
instruction
Description

Causes the processor’s LOCK# signal to be asserted during execution of the
accompanying instruction (turns the instruction into an atomic instruction). In a
multiprocessor environment, the LOCK# signal insures that the processor has exclusive
use of any shared memory while the signal is asserted.

The LOCK prefix can be prepended only to the following instructions and to those forms
of the instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS,
CMPXCHG, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined
opcode exception will be generated if the LOCK prefix is used with any other instruction.
The XCHG instruction always asserts the LOCK# signal regardless of the presence or
absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a
read-modify-write operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Operation
IF Itanium System Environment AND External_Bus_Lock_Required AND DCR.Ic
THEN IA-32_Intercept(LOCK);

AssertLOCK#(DurationOfAccompaninglnstruction)

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

IA-32_Intercept Lock Intercept — If an external atomic bus lock is required to
complete this operation and DCR.Ic is 1, no atomic transaction
occurs, the instruction is faulted and an IA-32_Intercept(Lock) fault
is generated. The software lock handler is responsible for the
emulation of the instruction.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Volume 4: Base IA-32 Instruction Reference

LOCK—Assert LOCK# Signal Prefix (Continued)

Real Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Virtual 8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the
“Description” section above. Other exceptions can be generated by
the instruction that the LOCK prefix is being applied to.

Volume 4: Base IA-32 Instruction Reference 4:273

LODS/LODSB/LODSW/LODSD—Load String Operand

4:274

Opcode Instruction Description

AC LODS DS:(E)SI Load byte at address DS:(E)SI into AL

AD LODS DS:SI Load word at address DS:Sl into AX

AD LODS DS:ESI Load doubleword at address DS:ESI into EAX
AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:Sl into AX

AD LODSD Load doubleword at address DS:ESI into EAX
Description

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX
register, respectively. The source operand is a memory location at the address DS:ESI.
(When the operand-size attribute is 16, the SI register is used as the source-index
register.) The DS segment may be overridden with a segment override prefix.

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and
doubleword versions of the LODS instructions. (For the LODS instruction, “"DS:ESI"”
must be explicitly specified in the instruction.)

After the byte, word, or doubleword is transfer from the memory location into the AL,
AX, or EAX register, the ESI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
ESI register is incremented; if the DF flag is 1, the ESI register is decremented.) The
ESI register is incremented or decremented by 1 for byte operations, by 2 for word
operations, or by 4 for doubleword operations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these
instructions are used within a LOOP construct, because further processing of the data
moved into the register is usually necessary before the next transfer can be made. See
“REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” on page 4:337 for a
description of the REP prefix.

Operation

IF (byte load)
THEN

AL < SRC; (* byte load *)

THEN IFDF =0
THEN (E)SI < 1;
ELSE (E)SI « -1;

Fl;

ELSE IF (word load)

THEN
AX « SRC; (* word load *)
THEN IF DF =0
THEN S| « 2;
ELSE Sl « -2;
Fl;
ELSE (* doubleword transfer *)

EAX < SRC; (* doubleword load *)

Volume 4: Base IA-32 Instruction Reference

LODS/LODSB/LODSW/LODSD—Load String Operand (Continued)

THENIFDF =0
THEN ESI « 4;
ELSE ESI « -4;

Fl;

Fl;
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS IIf a memory operand effective address is outside the SS segment
imit.

Virtual 8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Volume 4: Base IA-32 Instruction Reference 4:275

LOOP/LOOPcc—Loop According to ECX Counter

4:276

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count = 0

E1ch LOOPE rel8 Decrement count; jump short if count = 0 and ZF=1
E1cb LOOPZ rel8 Decrement count; jump short if count = 0 and ZF=1
EO cb LOOPNE rel8 Decrement count; jump short if count = 0 and ZF=0
EO cb LOOPNCZ rel8 Decrement count; jump short if count = 0 and ZF=0
Description

Performs a loop operation using the ECX or CX register as a counter. Each time the
LOOP instruction is executed, the count register is decremented, then checked for 0. If
the count is 0, the loop is terminated and program execution continues with the
instruction following the LOOP instruction. If the count is not zero, a near jump is
performed to the destination (target) operand, which is presumably the instruction at
the beginning of the loop. If the address-size attribute is 32 bits, the ECX register is
used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the EIP register). This offset is generally
specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit immediate value, which is added to the instruction pointer. Offsets of -128
to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the instruction,
a condition code (cc) is associated with each instruction to indicate the condition being
tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF flag;
the ZF flag is changed by other instructions in the loop.

All branches are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

Operation

IF AddressSize = 32
THEN
Count is ECX;
ELSE (* AddressSize = 16 *)
Count is CX;
Fl;
Count « Count - 1;

IF instruction is not LOOP

THEN
IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN
IF (ZF =1) AND (Count # 0)
THEN BranchCond « 1;
ELSE BranchCond « O;
Fl;
Fl;

Volume 4: Base IA-32 Instruction Reference

LOOP/LOOPcc—Loop According to ECX Counter (Continued)

IF (instruction = LOOPNE) OR (instruction = LOOPNZ)
THEN
IF (ZF =0) AND (Count = 0)
THEN BranchCond « 1;
ELSE BranchCond « 0;
Fl;
Fl;
ELSE (* instruction = LOOP *)
IF (Count = 0)
THEN BranchCond « 1;
ELSE BranchCond « 0;

Fl;
Fl;
IF BranchCond = 1
THEN
EIP « EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP «— EIP AND 0000FFFFH,;
Fl;
IF Itanium System Environment AND PSR.tb THEN IA_32_Exception(Debug);
ELSE
Terminate loop and continue program execution at EIP;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.
IA_32_Exception Taken Branch Debug Exception if PSR.tb is 1

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real Address Mode Exceptions

None.

Virtual 8086 Mode Exceptions

None.

Volume 4: Base IA-32 Instruction Reference 4:277

LSL—Load Segment Limit

4:278

Opcode Instruction Description

OF 03 /r LSL r16,/m16 Load: r16 « segment limit, selector /m16
OF 03 /r LSL r32,r/m32 Load: r32 « segment limit, selector /m32)
Description

Loads the unscrambled segment limit from the segment descriptor specified with the
second operand (source operand) into the first operand (destination operand) and sets
the ZF flag in the EFLAGS register. The source operand (which can be a register or a
memory location) contains the segment selector for the segment descriptor being
accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in
the destination register, software can compare the segment limit with the offset of a
pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of
byte 6 of the segment descriptor. If the descriptor has a byte granular segment limit
(the granularity flag is set to 0), the destination operand is loaded with a byte granular
value (byte limit). If the descriptor has a page granular segment limit (the granularity
flag is set to 1), the LSL instruction will translate the page granular limit (page limit)
into a byte limit before loading it into the destination operand. The translation is
performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-order 12 bits
with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination
operand. When the operand size is 16 bits, a valid 32-bit limit is computed; however,
the upper 16 bits are truncated and only the low-order 16 bits are loaded into the
destination operand.

This instruction performs the following checks before it loads the segment limit into the
destination register:
e Checks that the segment selector is not null.
¢ Checks that the segment selector points to a descriptor that is within the limits of
the GDT or LDT being accessed.

e Checks that the descriptor type is valid for this instruction. All code and data
segment descriptors are valid for (can be accessed with) the LSL instruction. The
valid special segment and gate descriptor types are given in the following table.

o If the segment is not a conforming code segment, the instruction checks that the
specified segment descriptor is visible at the CPL (that is, if the CPL and the RPL of
the segment selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction,
the ZF flag is cleared and no value is loaded in the destination operand.

Volume 4: Base IA-32 Instruction Reference

LSL—Load Segment Limit (Continued)

Type Name Valid
0 Reserved No
1 Available 16-bit TSS Yes
2 LDT Yes
3 Busy 16-bit TSS Yes
4 16-bit call gate No
5 16-bit/32-bit task gate No
6 16-bit trap gate No
7 16-bit interrupt gate No
8 Reserved No
9 Available 32-bit TSS Yes
A Reserved No
B Busy 32-bit TSS Yes
C 32-bit call gate No
D Reserved No
E 32-bit trap gate No
F 32-bit interrupt gate No

Operation

IF SRC(Offset) > descriptor table limit
THEN ZF « O; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) = conforming code segment
AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF <0
ELSE
temp « SegmentLimit([SRC]);
IF(G=1)
THEN
temp <« ShiftLeft(12, temp) OR 00000FFFH;
Fl;
IF OperandSize = 32
THEN
DEST « temp;
ELSE (*OperandSize = 16%)
DEST « temp AND FFFFH;
Fl;

Fl;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared

to 0.

Volume 4: Base IA-32 Instruction Reference

4:279

LSL—Load Segment Limit (Continued)

4:280

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

#SS(0) IIf a memory operand effective address is outside the SS segment
imit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real Address Mode Exceptions

#UD The LSL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The LSL instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference

LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS.

Volume 4: Base IA-32 Instruction Reference 4:281

LTR—Load Task Register

4:282

Opcode Instruction Description
OF 00/3 LTR r/m16 Load /m16into TR
Description

Loads the source operand into the segment selector field of the task register. The
source operand (a general-purpose register or a memory location) contains a segment
selector that points to a task state segment (TSS). After the segment selector is loaded
in the task register, the processor uses to segment selector to locate the segment
descriptor for the TSS in the global descriptor table (GDT). It then loads the segment
limit and base address for the TSS from the segment descriptor into the task register.
The task pointed to by the task register is marked busy, but a switch to the task does
not occur.

The LTR instruction is provided for use in operating-system software; it should not be
used in application programs. It can only be executed in protected mode when the CPL
is 0. It is commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,LTR);
IF SRC(Offset) > descriptor table limit OR IF SRC(type) # global
THEN #GP(segment selector);
Fl;
Reat segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); Fl;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) « 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) <~ SRC;
TaskRegister(SegmentDescriptor) < TSSSegmentDescriptor;

Flags Affected

None.

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a null segment selector.

Volume 4: Base IA-32 Instruction Reference

LTR—Load Task Register (Continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one
for a task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.
#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) If a page fault occurs.

Real Address Mode Exceptions

#UD The LTR instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions

#UD The LTR instruction is not recognized in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:283

MOV—Move

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to /m8

89 /r MOV r/m16,r16 Move r16 to /m16

89 /r MOV r/m32,r32 Move r32 to /m32

8AIr MQV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8CIr MQV r/m16,Sreg** Move segment register to /m16
8E Ir MOV Sreg,r/m16 Move r/m16 to segment register
AO MOV AL,moffs8* Move byte at (seg:offset) to AL
A1 MOV AX,moffs16* Move word at (seg:offset) to AX
A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX
A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

BO+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16to r16

B8+ rd MOQV r32,imm32 Move imm32 to r32

C6/0 MQV r/m8,imm8 Move imm8 to r/m8

C7/0 MOV r/m16,imm16 Move imm16 to /m16

C7/0 MOV r/m32,imm32 Move imm32 to /m32
Notes:

*The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where 8, 16,
and 32 refer to the size of the data. The address-size attribute of the instruction determines the size of the
offset, either 16 or 32 bits.

**In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value 66H
preceding the instruction).

Description

Copies the second operand (source operand) to the first operand (destination operand).
The source operand can be an immediate value, general-purpose register, segment
register, or memory location; the destination register can be a general-purpose register,
segment register, or memory location. Both operands must be the same size, which can
be a byte, a word, or a doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results
in an invalid opcode exception (#UD). To load the CS register, use the RET instruction.

4:284 Volume 4: Base IA-32 Instruction Reference

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector. In protected mode, moving a segment
selector into a segment register automatically causes the segment descriptor
information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register. While loading this information, the segment
selector and segment descriptor information is validated (see the “Operation” algorithm
below). The segment descriptor data is obtained from the GDT or LDT entry for the
specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS
registers without causing a protection exception. However, any subsequent attempt to
reference a segment whose corresponding segment register is loaded with a null value
causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all external interrupts
and traps until after the execution of the next instruction in the IA-32 System
Environment. For the Itanium System Environment, MOV to SS results in a
IA-32_Intercept(SystemFlag) trap after the instruction completes. This
operation allows a stack pointer to be loaded into the ESP register with the next
instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When moving data in 32-bit mode between a segment register and a 32-bit
general-purpose register, the Pentium Pro processor does not require the use of a
16-bit operand size prefix; however, some assemblers do require this prefix. The
processor assumes that the sixteen least-significant bits of the general-purpose register
are the destination or source operand. When moving a value from a segment selector
to a 32-bit register, the processor fills the two high-order bytes of the register with
zeros.

Operation
DEST « SRC;

Loading a segment register while in protected mode results in special checks and
actions, as described in the following listing. These checks are performed on the
segment selector and the segment descriptor it points to.

IF SS is loaded;
THEN
IF segment selector is null
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
OR segment selector's RPL = CPL

OR segment is not a writable data segment
OR DPL # CPL

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE

Volume 4: Base IA-32 Instruction Reference 4:285

MOV—Move (Continued)

SS « segment selector;
SS « segment descriptor;
Fl;
Fl;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;
Fl;
Fl;
IF DS, ES, FS or GS is loaded with a null selector;
THEN
SegmentRegister «— null segment selector;
SegmentRegister «— null segment descriptor;
Fl;

Flags Affected

None.

Additional Itanium System Environment Exceptions

IA-32_Intercept System Flag Intercept trap for Move to SS
Itanium Reg Faults NaT Register Consumption Abort.

Itanium Mem FaultsVHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data
TLB Fault, Data Page Not Present Fault, Data NaT Page Consumption
Abort, Data Key Miss Fault, Data Key Permission Fault, Data Access
Rights Fault, Data Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.
If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and
the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
nonwritable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is not a data or readable code segment.

4:286 Volume 4: Base IA-32 Instruction Reference

MOV—Move (Continued)

#SS(0)
#SS(selector)
#NP

#PF(fault-code)
#AC(0)

#UD

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is a data or nonconforming code segment, but both the
RPL and the CPL are greater than the DPL.

If a memory operand effective address is outside the SS segment
limit.

If the SS register is being loaded and the segment pointed to is
marked not present.

If the DS, ES, FS, or GS register is being loaded and the segment
pointed to is marked not present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If attempt is made to load the CS register.

Real Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

IIf a memory operand effective address is outside the SS segment
imit.
If attempt is made to load the CS register.

Virtual 8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS, ES, FS,
or GS segment limit.

If a memory operand effective address is outside the SS segment
limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If attempt is made to load the CS register.

Volume 4: Base IA-32 Instruction Reference 4:287

MOV—Move to/from Control Registers

Opcode Instruction Description
OF 22 /r MOV CRO0,r32 Move r32 to CRO
OF 22 /r MOV CR2,r32 Move r32 to CR2
OF 22 /r MOV CR3,r32 Move r32 to CR3
OF 22 /r MOV CR4,r32 Move r32 to CR4
OF 20 /r MOV r32,CRO Move CRO to r32
OF 20 /r MOV r32,CR2 Move CR2 to r32
OF 20 /r MOV r32,CR3 Move CR3 to r32
OF 20 /r MOV r32,CR4 Move CR4 to r32
Description

Moves the contents of a control register (CR0O, CR2, CR3, or CR4) to a general-purpose
register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See the Intel Architecture Software
Developer’s Manual, Volume 3 for a detailed description of the flags and fields in the
control registers.)

When loading a control register, a program should not attempt to change any of the
reserved bits; that is, always set reserved bits to the value previously read.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are always 11B. The r/m field
specifies the general-purpose register loaded or read.

These instructions have the following side effects:
 When writing to control register CR3, all non-global TLB entries are flushed (see the
Intel Architecture Software Developer’s Manual, Volume 3.

e When modifying any of the paging flags in the control registers (PE and PG in
register CRO and PGE, PSE, and PAE in register CR4), all TLB entries are flushed,
including global entries. This operation is implementation specific for the Pentium
Pro processor. Software should not depend on this functionality in future Intel
architecture processors.

o If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1
(to enable the physical address extension mode), the pointers (PDPTRS) in the
page-directory pointers table will be loaded into the processor (into internal,
non-architectural registers).

o If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3
will cause the PDPTRs to be reloaded into the processor.

o If the PAE flag is set to 1 and control register CRO is written to set the PG flag, the
PDPTRs are reloaded into the processor.

Operation

IF Itanium System Environment AND Move To CR Form THEN IA-32_Intercept(INST,MOVCR);
DEST « SRC;

4:288 Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Control Registers (Continued)

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

IA-32_Intercept Move To CR#, Mandatory Instruction Intercept.
Move From CR#, read the virtualized control register values,

CRO0O{15:6} return zeros.
Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write reserved bits in the page-directory
pointers table (used in the extended physical addressing mode)
when the PAE flag in control register CR4 and the PG flag in control
register CRO are set to 1.

Real Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual 8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual 8086 mode.

Volume 4: Base IA-32 Instruction Reference 4:289

MOV—Move to/from Debug Registers

4:290

Opcode Instruction Description

OF 21/r MOV r32, DR0-DR3 Move debug registers to r32
OF 21/r MOV r32, DR4-DR5 Move debug registers to r32
OF 21/r MOV r32, DR6-DR7 Move debug registers to r32
OF 23 /r MOV DRO0-DR3, r32 Move r32 to debug registers
OF 23 /r MOV DR4-DRS5, r32 Move r32 to debug registers
OF 23 /r MOV DR6-DR7,r32 Move r32 to debug registers
Description

Moves the contents of two or more debug registers (DRO through DR3, DR4 and DR5,
or DR6 and DR7) to a general-purpose register or vice versa. The operand size for these
instructions is always 32 bits, regardless of the operand-size attribute. (See the Intel
Architecture Software Developer’s Manual, Volume 3 for a detailed description of the
flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate
on debug registers in a manner that is compatible with Intel386™ and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7,
respectively. When the DE set in CR4 is set, attempts to reference DR4 and DR5 result
in an undefined opcode (#UD) exception.

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are always 11. The r/m field
specifies the general-purpose register loaded or read.

Operation

IF Itanium System Environment THEN IA-32_Intercept(INST,MOVDR);

IF (DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST <« SRC

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Additional Itanium System Environment Exceptions
IA-32_Intercept Mandatory Instruction Intercept.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

Volume 4: Base IA-32 Instruction Reference

MOV—Move to/from Debug Registers (Continued)

#DB If any debug register is accessed while the GD flag in debug register
DR7 is set.

Real Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction
is executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register
DR?7 is set.

Virtual 8086 Mode Exceptions

#GP(0) Theddebug registers cannot be loaded or read when in virtual 8086
mode.

Volume 4: Base IA-32 Instruction Reference 4:291

MOVS/MOVSB/MOVSW/MOVSD—Move Data from Strin