
Provisioning Intel® Rack Scale 
Design Bare Metal Resources in 
the OpenStack Environment

Data Center
Rack Scale Design 

NOTE: If you are familiar with Intel® Rack Scale Design and OpenStack* and just want to know how to install components to 
enable OpenStack composition and bare metal provisioning, please skip to “Installing the Intel RSD OpenStack Components” 
below.

Figure 1. Intel Rack Scale Design is an industry-aligned specification for composable disaggregated infrastructure.

Dedicated management network

High-Speed Data Interconnect (e.g., E-net, Optical, etc.)

Compute Storage Accelerators

Intel® RSd CompatIBle RaCK

Orchestration Software (e.g., OpenStack*, 99Cloud Animbus*)

RSD POD Manager (e.g., AMI MegaRAC Composer*)

Built-in Open Management APIs (Redfish*)

Introduction
Intel Rack Scale Design (Intel® RSD) is an open source Data Center architecture that enables dynamic composition of logical 
systems, or “nodes” from disaggregated pools of compute, storage, and (in an upcoming release) accelerator resources. It 
is based on open, scalable and secure infrastructure management APIs that support a software defined infrastructure with 
interoperability across hardware and software vendors. Intel RSD makes the Data Center more economical, flexible, simpler to 
manage, and easier to scale out on demand.

Today, Data Center managers using cloud-oriented 
virtualized environments like OpenStack* are asking how 
they can employ Intel RSD in their existing public, private 
and hybrid clouds. In this paper we describe how to deploy 
Intel® RSD-based equipment in an existing OpenStack 
environment, using OpenStack’s Ironic* service for logical 
node composition and bare metal provisioning. Readers 
should keep in mind that as the Intel RSD specification 

continues to evolve it will address more usage models, 
technologies and products. In addition, there are many 
integration efforts currently under way to support Intel RSD 
systems as native platforms in a wide range of virtual and 
cloud environments.

Implementation guide



Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . .                    1

Traditional vs. Intel RSD Bare

Metal Provisioning . . . . . . . . . . . . . . .              2

Intel RSD and Redfish. . . . . . . . . . . . .            3

Discovery, Composition, 

Provisioning and Deployment

of Workloads on Intel RSD

Resources with OpenStack . . . . . . .      3

Installing the Intel RSD

OpenStack Components. . . . . . . . . .         4

Enrolling Composed Nodes. . . . . . .      5

OpenStack RSD CLI Examples. . . . .    6

Product Availability . . . . . . . . . . . . . .             7

Traditional vs. Intel RSD Bare Metal Provisioning
Even in cloud environments like OpenStack, operators still need to provision bare 
metal servers for specific purposes:

•	 High-performance computing clusters

•	 Applications that require access to hardware devices that can’t be 
virtualized

•	 Database hosting (some databases run poorly on a hypervisor)

•	 Single tenant, dedicated hardware to meet performance, security, 
dependability or regulatory requirements

•	 Or simply to rapidly deploy an OpenStack cloud infrastructure

The OpenStack environment provides a component called Ironic that supports 
operators with a set of services to provision servers, either for incorporation into 
the virtual cloud environment, or to run dedicated applications directly on bare 
metal. To provision a traditional bare metal server, operators physically install 
and make physical power and network connections to the target servers. Then 
they “enroll” these servers in the Ironic database, i.e., they provide a description 
of the assets, including CPU type, number of sockets and cores, size of DRAM and 
attached SSDs or hard disk storage, accelerator resources, port address, and so 
on, either manually or using an in-band script. When a new server is needed to 
support a workload, the Nova service in OpenStack will search the Ironic database 
for a server that matches the workload requirements, provision it, and deploy the 
workload. 

To understand how Ironic works with Intel RSD based equipment, we need to 
keep in mind that Intel RSD provides a degree of flexibility that is not available in 
traditional fixed-configuration servers. Intel RSD is a disaggregated architecture, 
so rather than fixed configuration servers, equipment is visualized as pools of 
resources by type, e.g., compute, storage, and (in the future) accelerator resources. 
When fully deployed Intel RSD will allow operators to define or “compose” logical 
nodes in real time with any mix of resources available in the resource pools. Rather 
than choosing a “best fit” existing server, Intel RSD allows operators to create 
logical nodes with the exact resource requirements “on-the-fly” and then enroll 
the node in the Ironic database for future consumption. The current version of 
Intel RSD (2.2) enables storage pooling and composition over PCIe interconnects. 
Upcoming versions will support NVMe over Fabric*, FPGA pooling, network 
function virtualization (NFV) management and additional features.

Composing a logical node from pooled compute and storage resources and making 
it available to Nova* requires one extra step compared to provisioning traditional 
bare metal servers. This is the composition step, which is accomplished by a simple 
operation using a modified OpenStack Client (OSC) command line interface (CLI) 
to define the new node with the desired resources (compute, DRAM, storage, etc.). 
Once this is accomplished, the operator enrolls the new node as usual, and then 
provisions it with a call to Nova, which invokes Ironic “under the covers.”

Implementation Guide | Data Center - Rack Scale Design

2



Intel RSD and Redfish
At this point we should clarify the relationship between Intel RSD and Redfish. 
Redfish is an open standard for data center management created by the 
Distributed Management Task Force (DMTF)*. Essentially, Redfish is the successor 
to IPMI* (Intelligent Platform Management Interface), which is about 20 years old. 
Redfish is intended for hyperscale environments and is more scalable and secure 
than IPMI due to its web-friendly, RESTful APIs.

Intel is a longstanding member of DMTF, and a major contributor to Redfish. 
New functionality and APIs needed to implement the Intel RSD vision, including 
composition of logical servers from disaggregated resources, is defined, 
prototyped and tested by Intel and its partners, and then submitted to the Redfish 
committee for inclusion in the standard. This extends Redfish and encourages 
the convergence of Intel RSD and Redfish over time. As with any standards effort, 
Redfish submissions require review, discussion and approval by the governing 
committees, so there is always a time lag between the latest Intel RSD APIs and 
reference code, and the approved version of Redfish. Consequently, at any point in 
time there may be some differences in the management interface (e.g., the URIs). 

Figure 2. Intel RSD is a collaborative initiative by which pathfinding activities with 
Intel’s ecosystem partners and definitional customers result in proposed functions 
and APIs submitted to the DMTF Redfish working group.

Intel RSD also differs from Redfish by identifying APIs as required, optional 
or recommended, and by providing a conformance test suite. This eliminates 
ambiguity, and helps ensure that the required capabilities have been properly 
implemented and that components of the Intel RSD software stack from suppliers 
will work properly together.

(The following discussion assumes that the target equipment implements Intel RSD 
version 2.2 APIs.)

Discovery, Composition, Provisioning and Deployment of 
Workloads on Intel RSD Resources with OpenStack
To enable Intel RSD in the OpenStack environment, Intel created a python library 
called “rsd-lib” and an OpenStack Client (OSC) plugin called “python-rsdclient” 
and upstreamed them to the OpenStack project. The rsd-lib library extends the 
standard Ironic Redfish Sushy driver, enabling it to make composition calls to the 
POD Manager (PODM) software component of Intel® RSD. PODM then carries out 
node composition requests by communicating with hardware resources through 
Intel RSD APIs exposed by PSME software components running on hardware 
modules within the rack. The python-rsdclient plugin provides the user commands 
for node composition and Ironic enrollment. The diagram in Figure 3 below shows 
the Intel RSD bare metal provisioning process: 

1.	 User requests a new composed node with specific parameters (CPU, 
DRAM, storage, etc.) using the OSC RSD CLI, which sends requests to 
PODM.

2.	 PODM composes the node and returns node status to the user.

3.	 The user enrolls the new node into the Ironic database using the OSC 
Ironic CLI.

4.	 The user commissions a workload on the new node using Nova, like any 
other server.

5.	 Nova invokes Ironic to provision the node and then deploys the 
workload.

Implementation Guide | Data Center - Rack Scale Design

Pathfinding
with partners
and end users

Proposed new
APIs

Prototyping
and validation

Submission to
Redfish

Convergence
and approval

Alignment of
Intel® RSD

and Redfish

3



Installing the Intel RSD OpenStack Components
Note: The changes to enable Intel RSD bare metal provisioning have been 
upstreamed to the OpenStack community. As of release of this application note, 
the Intel RSD modified OpenStack client and Ironic Sushy extensions are in the 
OpenStack review process. This situation may change as these submissions are 
promoted to official plug-in status. You may have to search Github* to find the 
current location of this package. We expect these changes to be incorporated into 
the “Queens” release of OpenStack.

The Python* library for Intel® Rack Scale Design, rsd-lib, extends the existing 
Redfish Sushy driver to include functionality for Intel RSD PODM APIs. Capabilities 
include logical node composition and decomposition, remote storage discovery 
and composition, and attaching and detaching NVMe drives over PCIe to logical 
nodes. The rsd-lib library is located at https://github.com/openstack/rsd-lib and is 
made available to OSC automatically through the RSD OSC plugin—no additional 
user actions are required.

Figure 3. Python libraries upstreamed by Intel to the OpenStack project provide 
the ability to dynamically compose, enroll and provision logical nodes using OSC.

Users interact with Intel® Rack Scale Design compatible hardware through the 
RSD plugin for OSC, which provides the extended RSD command line interface 
(CLI). To use OpenStack RSD commands, install the normal python-openstackclient 
and the python-rsdclient RSD plugin on any node that has a network connection to 
OpenStack:

# pip install python-openstackclient
# pip install python-rsdclient

Implementation Guide | Data Center - Rack Scale Design

Compostion commands/responses (Intel® RSD RESTFUL API’S)

Intel® RSD
PODM

Intel® RSD
PSME

Commission
workload 4

Ironic
API

Ironic
Conductor

Redfish
Driver

(Sushy)

Ironic
DB

Nova
API

uSeR
openStaCK

ClI

Nova
Scheduler

Nova
Compute

python-rsdclient

rsd-lib

1

Enroll composed node3
2

5

4



Implementation Guide | Data Center - Rack Scale Design

Next, initiate your user session by logging in to the RSD OpenStack client. First, 
provide your OpenStack username, password, project, and auth endpoint. You can 
use configuration options --os-username, --os-password, --os-project-id (or --os-project-
name), and --os-auth-url, or set the corresponding environment variables:

$ export OS_USERNAME=user
$ export OS_PASSWORD=password
$ export OS_PROJECT_NAME=project                  # or OS_PROJECT_ID
$ export OS_PROJECT_DOMAIN_ID=default
$ export OS_USER_DOMAIN_ID=default
$ export OS_IDENTITY_API_VERSION=3
$ export OS_AUTH_URL=http://auth.example.com:5000/identity

Then, you have to provide Intel PODM username, password, SSL certificate with 
admin privilege, and PODM URL. You can use configuration options --rsd-username, 
--rsd-password, --rsd-verify, and --rsd-url, or set the corresponding environment 
variables:

$ export RSD_USERNAME=admin
$ export RSD_PASSWORD=password
$ export RSD_VERIFY=False     # or RSD_VERIFY=<path to SSL certificate>
$ export RSD_URL=https://localhost:8443/

Once logged in to the CLI, users can issue commands to compose logical nodes 
and enroll them to the Ironic database (see examples below). The PODM access 
endpoint (URL) can be specified in a Linux environment variable, or it can be 
entered as a CLI parameter when composition is initiated in the OSC CLI.

Enrolling Composed Nodes
Once a new node is composed, it must be enrolled in the Ironic database prior to 
provisioning, just like any new server resource. However, there is one difference 
users must be aware of—the /redfish/v1/Nodes/<node ID> endpoint for the 
composed node returned by PODM cannot be used directly, since it is specific to 
Intel RSD, and the Ironic driver for Redfish uses standard Redfish only (see “Intel® 
and Redfish” section above).

However, users can determine the correct Redfish URIs by displaying the system 
UUIDs for composed nodes using the OSC RSD CLI. The URIs can then be used to 
retrieve the Redfish system IDs (e.g. /redfish/v1/Systems/<system ID>), which can 
be used to enroll the new nodes with Ironic. For example:

Get the list of nodes that have been composed:

$ openstack rsd node list
  +-----------+--------+-----------------------------------------------------+-----------------+
  | Identity | Name |                                     UUID                                 |  Description   |
  +-----------+--------+-----------------------------------------------------+-----------------+
  |       2       |   Test  | fd011520-86a2-11e7-b4d4-5d323196a3e4   |        None        |
  +-----------+--------+-----------------------------------------------------+-----------------+

Use the UUIDs of the composed nodes you want to enroll to retrieve the correct 
Redfish system IDs 

$ openstack node show fd011520-86a2-11e7-b4d4-5d323196a3e4 | grep –i “system”

Here we’re using grep to isolate just the systems URI from the large amount of 
information potentially returned for each node, so the response should contain a 
string representing the systems URI. For example:

/redfish/v1/Systems/<system ID> 

5



Implementation Guide | Data Center - Rack Scale Design

Then enroll the composed nodes using the Redfish systems URIs:

$ openstack baremetal node create --driver redfish --driver-info \
  redfish_address=https://example.com --driver-info \
  redfish_system_id=/redfish/v1/Systems/<system ID> --driver-info \
  redfish_username=admin --driver-info redfish_password=password

General enrollment documentation can be found at https://docs.openstack.org/
project-install-guide/baremetal/draft/enrollment.html

OpenStack RSD CLI Examples
Compose node command allows the user to issue node composition command 
through OpenStackClient(OSC):

$ openstack rsd node compose [--name <name>]
                             [--description <description>]
                             [--processor <processor requirements>]
                             [--memory <memory requirements>]
                             [--remote-drives <remote drives requirements>]
                             [--local-drives <local drives requirements>]
                             [--ethernet <ethernet requirements>]

Attach specific resource to existing composed node:

$ openstack rsd node attach [--resource <resource uri>]
                            [--capacity <size>]
                            <node>

Detach specific resource from existing composed node:

$ openstack rsd node detach [--resource <resource uri>]
                            <node>

Delete composed node allows the user to delete composed node(s) by specifying 
<node_uuid>:

$ openstack rsd node delete <node> [<node> ...]

Show composed node detail command allows the user to get composed node 
details by specifying <node_uuid>:

$ openstack rsd node show <node>

List composed node command allows the user to list all composed node with brief 
info:

$ openstack rsd node list
  +-----------+--------+-----------------------------------------------------+-----------------+
  | Identity | Name |                                     UUID                                 |  Description   |
  +-----------+--------+-----------------------------------------------------+-----------------+
  |    2          |   Test  | fd011520-86a2-11e7-b4d4-5d323196a3e4   |        None        |
  +-----------+--------+-----------------------------------------------------+-----------------+

List storage services command allows the user to list all storage services brief info 
like below shows:

$ openstack rsd storage list
  +-----------+----------------------+-----------------------------------+
  | Identity  |	 Name	 |	 Description	      |
  +-----------+----------------------+-----------------------------------+
  |        2      |   Storage Service  |  Storage Service for Testing  |
  +-----------+----------------------+-----------------------------------+

6



Implementation Guide | Data Center - Rack Scale Design

Show storage detail command allows the user to display the storage service 
details:

$ openstack rsd storage show <storage service>

List fabric command allows the user to list all fabrics with brief info:

$ openstack rsd fabric list

Show fabric detail command allows the user to display the fabric details:

$ openstack rsd fabric show <fabric>

To get a list of available sub-commands and options, run:

$ openstack help rsd

To get usage and options of a command, run:

$ openstack help rsd <sub-command>

7



All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. No license (express or implied, 
by estoppel or otherwise) to any intellectual property rights is granted by this document. Copyright © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, and Optane are trade-
marks of Intel Corporation in the U.S. and/or other countries.
The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available 
on request. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system 
configuration and may require enabled hardware or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your 
system manufacturer or retailer.
Intel® Rack Scale Design, Intel® RSD, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.				  

Implementation Guide | Data Center - Rack Scale Design

Product Availability
Intel RSD compatible products are available now from 
major vendors including Dell EMC*, Ericsson*, HPE*, 
Huawei*, Inspur*, Quanta*, Radisys*, Supermicro*, 
Wiwynn* and others. Learn more about how the Intel 
RSD architecture can accelerate your transition to 
an open, modular, software-defined Data Center at: 
https://www.intel.com/intelrsd. Or contact your local 
Intel representative to discuss how Intel® can help you 
to meet the demands of the Digital Transformation.

8




