IMPLEMENTATION GUIDE

Data Center
Rack Scale Design

intel.

Provisioning Intel® Rack Scale
Design Bare Metal Resources In
the OpenStack Environment

NOTE: If you are familiar with Intel® Rack Scale Design and OpenStack* and just want to know how to install components to
enable OpenStack composition and bare metal provisioning, please skip to “Installing the Intel RSD OpenStack Components
below.

Introduction

Intel Rack Scale Design (Intel® RSD) is an open source Data Center architecture that enables dynamic composition of logical
systems, or “nodes” from disaggregated pools of compute, storage, and (in an upcoming release) accelerator resources. It

is based on open, scalable and secure infrastructure management APIs that support a software defined infrastructure with
interoperability across hardware and software vendors. Intel RSD makes the Data Center more economical, flexible, simpler to
manage, and easier to scale out on demand.

Orchestration Software (e.g., OpenStack*, 99Cloud Animbus*)

RSD POD Manager (e.g., AMI MegaRAC Composer?*)

INTEL" RSD COMPATIBLE RACK

Dedicated management network

’
|
|
|
|
|
|
|
|
| Compute Storage Accelerators
|
|
|
|
|
|
|
|
|
|
|

Figure 1. Intel Rack Scale Design is an industry-aligned specification for composable disaggregated infrastructure.

Today, Data Center managers using cloud-oriented continues to evolve it will address more usage models,
virtualized environments like OpenStack* are asking how technologies and products. In addition, there are many
they can employ Intel RSD in their existing public, private integration efforts currently under way to support Intel RSD
and hybrid clouds. In this paper we describe how to deploy systems as native platforms in a wide range of virtual and
Intel® RSD-based equipment in an existing OpenStack cloud environments.

environment, using OpenStack’s Ironic* service for logical
node composition and bare metal provisioning. Readers
should keep in mind that as the Intel RSD specification

Implementation Guide | Data Center - Rack Scale Design

Table of Contents Traditional vs. Intel RSD Bare Metal Provisioning

Introduction 1 Even in cloud environments like OpenStack, operators still need to provision bare

Traditional vs. Intel RSD Bare metal servers for specific purposes:

Metal Provisioning 2 + High-performance computing clusters

Intel RSD and Redfish. 3 » Applications that require access to hardware devices that can't be
virtualized

Discovery, Composition,

- Database hosting (some databases run poorly on a hypervisor)
Provisioning and Deployment

» Single tenant, dedicated hardware to meet performance, security,
of Workloads on Intel RSD

dependability or regulatory requirements

Resources with OpenStack 3 « Orsimply to rapidly deploy an OpenStack cloud infrastructure

Installing the Intel RSD

OpenStack Components.......... 4 The OpenStack environment provides a component called Ironic that supports

Enrolling Composed Nodes 5 operators with a set of services to provision servers, either for incorporation into
the virtual cloud environment, or to run dedicated applications directly on bare

OpenStack RSD CLI Examples ... 6 metal. To provision a traditional bare metal server, oF:)F;rators physicall{/ install

Product Availability 7 and make physical power and network connections to the target servers. Then
they “enroll” these servers in the Ironic database, i.e., they provide a description
of the assets, including CPU type, number of sockets and cores, size of DRAM and
attached SSDs or hard disk storage, accelerator resources, port address, and so
on, either manually or using an in-band script. When a new server is needed to
support a workload, the Nova service in OpenStack will search the Ironic database
for a server that matches the workload requirements, provision it, and deploy the
workload.

To understand how Ironic works with Intel RSD based equipment, we need to

keep in mind that Intel RSD provides a degree of flexibility that is not available in
traditional fixed-configuration servers. Intel RSD is a disaggregated architecture,
so rather than fixed configuration servers, equipment is visualized as pools of
resources by type, e.g., compute, storage, and (in the future) accelerator resources.
When fully deployed Intel RSD will allow operators to define or “compose” logical
nodes in real time with any mix of resources available in the resource pools. Rather
than choosing a “best fit" existing server, Intel RSD allows operators to create
logical nodes with the exact resource requirements “on-the-fly” and then enroll
the node in the Ironic database for future consumption. The current version of
Intel RSD (2.2) enables storage pooling and composition over PCle interconnects.
Upcoming versions will support NVMe over Fabric*, FPGA pooling, network
function virtualization (NFV) management and additional features.

Composing a logical node from pooled compute and storage resources and making
it available to Nova* requires one extra step compared to provisioning traditional
bare metal servers. This is the composition step, which is accomplished by a simple
operation using a modified OpenStack Client (OSC) command line interface (CLI)

to define the new node with the desired resources (compute, DRAM, storage, etc.).
Once this is accomplished, the operator enrolls the new node as usual, and then
provisions it with a call to Nova, which invokes Ironic “under the covers.”

Implementation Guide | Data Center - Rack Scale Design

Intel RSD and Redfish

At this point we should clarify the relationship between Intel RSD and Redfish.
Redfish is an open standard for data center management created by the
Distributed Management Task Force (DMTF)*. Essentially, Redfish is the successor
to IPMI* (Intelligent Platform Management Interface), which is about 20 years old.
Redfish is intended for hyperscale environments and is more scalable and secure
than IPMI due to its web-friendly, RESTful APIs.

Intel is a longstanding member of DMTF, and a major contributor to Redfish.

New functionality and APIs needed to implement the Intel RSD vision, including
composition of logical servers from disaggregated resources, is defined,
prototyped and tested by Intel and its partners, and then submitted to the Redfish
committee for inclusion in the standard. This extends Redfish and encourages

the convergence of Intel RSD and Redfish over time. As with any standards effort,
Redfish submissions require review, discussion and approval by the governing
committees, so there is always a time lag between the latest Intel RSD APIs and
reference code, and the approved version of Redfish. Consequently, at any pointin
time there may be some differences in the management interface (e.g., the URIs).

Eathflndlng Proposed new Prototyping Submission to Convergence A“g”r;‘e”‘ @i
with partners e " Intel® RSD
APIs and validation Redfish and approval .
and end users and Redfish

Figure 2. Intel RSD is a collaborative initiative by which pathfinding activities with
Intel's ecosystem partners and definitional customers result in proposed functions
and APIs submitted to the DMTF Redfish working group.

Intel RSD also differs from Redfish by identifying APIs as required, optional

or recommended, and by providing a conformance test suite. This eliminates
ambiguity, and helps ensure that the required capabilities have been properly
implemented and that components of the Intel RSD software stack from suppliers
will work properly together.

(The following discussion assumes that the target equipment implements Intel RSD
version 2.2 APls.)

Discovery, Composition, Provisioning and Deployment of
Workloads on Intel RSD Resources with OpenStack

To enable Intel RSD in the OpenStack environment, Intel created a python library
called “rsd-lib” and an OpenStack Client (OSC) plugin called “python-rsdclient”
and upstreamed them to the OpenStack project. The rsd-lib library extends the
standard Ironic Redfish Sushy driver, enabling it to make composition calls to the
POD Manager (PODM) software component of Intel® RSD. PODM then carries out
node composition requests by communicating with hardware resources through
Intel RSD APIs exposed by PSME software components running on hardware
modules within the rack. The python-rsdclient plugin provides the user commands
for node composition and Ironic enrollment. The diagram in Figure 3 below shows
the Intel RSD bare metal provisioning process:

1. User requests a new composed node with specific parameters (CPU,
DRAM, storage, etc.) using the OSC RSD CLI, which sends requests to
PODM.

2. PODM composes the node and returns node status to the user.

3. The user enrolls the new node into the Ironic database using the OSC
Ironic CLI.

4. The user commissions a workload on the new node using Nova, like any
other server.

5. Nova invokes Ironic to provision the node and then deploys the
workload.

Implementation Guide | Data Center - Rack Scale Design

Installing the Intel RSD OpenStack Components

Note: The changes to enable Intel RSD bare metal provisioning have been
upstreamed to the OpenStack community. As of release of this application note,
the Intel RSD modified OpenStack client and Ironic Sushy extensions are in the
OpenStack review process. This situation may change as these submissions are
promoted to official plug-in status. You may have to search Github* to find the
current location of this package. We expect these changes to be incorporated into
the “Queens” release of OpenStack.

The Python* library for Intel® Rack Scale Design, rsd-lib, extends the existing
Redfish Sushy driver to include functionality for Intel RSD PODM APIs. Capabilities
include logical node composition and decomposition, remote storage discovery
and composition, and attaching and detaching NVMe drives over PCle to logical
nodes. The rsd-lib library is located at https://github.com/openstack/rsd-lib and is
made available to OSC automatically through the RSD OSC plugin—no additional
user actions are required.

‘ 0 Compostion commands/responses (Intel® RSD RESTFUL API'S)
OPEIEﬂACK AR I

python-rsdclient PR A
I

e Enroll composed node InEe(l)‘@DIi/ISD ‘
Commission 9 |
workload &1 \ " Intel°RSD |
: : . PSME |
| Ironic 3 1 3
! API ! | |
| : Redfish o
Nova ! Ironic Driver ‘ ‘ j
Scheduler ! Conductor (Sushy) 1
Nova ; Ironic 3
Compute ; DB 1

Figure 3. Python libraries upstreamed by Intel to the OpenStack project provide
the ability to dynamically compose, enroll and provision logical nodes using OSC.

Users interact with Intel® Rack Scale Design compatible hardware through the
RSD plugin for OSC, which provides the extended RSD command line interface
(CLI). To use OpenStack RSD commands, install the normal python-openstackelient
and the python-rsdclient RSD plugin on any node that has a network connection to
OpenStack:

pip install python-openstackclient
pip install python-rsdclient

Implementation Guide | Data Center - Rack Scale Design

Next, initiate your user session by logging in to the RSD OpenStack client. First,
provide your OpenStack username, password, project, and auth endpoint. You can
use configuration options --os-username, --os-password, --os-project-id (or --os-project-
name), and --os-auth-url, or set the corresponding environment variables:

S export OS_USERNAME=user

S export OS_PASSWORD=password

S export OS_PROJECT_NAME=project # or OS_PROJECT_ID
S export OS_PROJECT_DOMAIN_ID=default

S export OS_USER_DOMAIN_ID=default

$ export OS_IDENTITY_API_VERSION=3

S export OS_AUTH_URL=http://auth.example.com:5000/identity

Then, you have to provide Intel PODM username, password, SSL certificate with
admin privilege, and PODM URL. You can use configuration options --rsd-username,
--rsd-password, --rsd-verify, and --rsd-url, or set the corresponding environment
variables:

S export RSD_USERNAME=admin

S export RSD_PASSWORD=password

$ export RSD_VERIFY=False # or RSD_VERIFY=<path to SSL certificate>
S export RSD_URL=https://localhost:8443/

Once logged in to the CLI, users can issue commands to compose logical nodes
and enroll them to the Ironic database (see examples below). The PODM access
endpoint (URL) can be specified in a Linux environment variable, or it can be
entered as a CLI parameter when composition is initiated in the OSC CLI.

Enrolling Composed Nodes

Once a new node is composed, it must be enrolled in the Ironic database prior to
provisioning, just like any new server resource. However, there is one difference
users must be aware of—the /redfish/v1/Nodes/<node ID> endpoint for the
composed node returned by PODM cannot be used directly, since it is specific to
Intel RSD, and the Ironic driver for Redfish uses standard Redfish only (see “Intel®
and Redfish” section above).

However, users can determine the correct Redfish URIs by displaying the system
UUIDs for composed nodes using the OSC RSD CLI. The URIs can then be used to
retrieve the Redfish system IDs (e.g. /redfish/v1/Systems/<system ID>), which can
be used to enroll the new nodes with Ironic. For example:

Get the list of nodes that have been composed:

S openstack rsd node list

RO SN R RO — +
| Identity | Name | uuID | Description |
N AR —— R T — N R — +
| 2 | Test | fd011520-86a2-11e7-b4d4-5d323196a3e4 | None |
e Hmmmmmen S —— dmmmmmmmmmem e +

Use the UUIDs of the composed nodes you want to enroll to retrieve the correct
Redfish system IDs

S openstack node show fd011520-86a2-11e7-b4d4-5d323196a3e4 | grep —i “system”

Here we're using grep to isolate just the systems URI from the large amount of
information potentially returned for each node, so the response should contain a
string representing the systems URI. For example:

/redfish/v1/Systems/<system ID>

Implementation Guide | Data Center - Rack Scale Design

Then enroll the composed nodes using the Redfish systems URIs:

S openstack baremetal node create --driver redfish --driver-info \
redfish_address=https://example.com --driver-info \
redfish_system_id=/redfish/v1/Systems/<system ID> --driver-info \
redfish_username=admin --driver-info redfish_password=password

General enrollment documentation can be found at https://docs.openstack.org/
project-install-guide/baremetal/draft/enrollment.html

OpenStack RSD CLI Examples

Compose node command allows the user to issue node composition command
through OpenStackClient(OSC):

S openstack rsd node compose [--name <name>]
[--description <description>]
[--processor <processor requirements>]
[--memory <memory requirements>]
[--remote-drives <remote drives requirements>]
[--local-drives <local drives requirements>]
[--ethernet <ethernet requirements>]

Attach specific resource to existing composed node:

S openstack rsd node attach [--resource <resource uri>]
[--capacity <size>]
<node>

Detach specific resource from existing composed node:

S openstack rsd node detach [--resource <resource uri>]
<node>

Delete composed node allows the user to delete composed node(s) by specifying
<node_uuid>:

S openstack rsd node delete <node> [<node> ...]

Show composed node detail command allows the user to get composed node
details by specifying <node_uuid>:

S openstack rsd node show <node>

List composed node command allows the user to list all composed node with brief
info:

S openstack rsd node list

R RS Ao R +
| Identity | Name | uuliD | Description |
ommmmmmmeee . e Fommmmmmmm e +
| 2 | Test | fd011520-86a2-11e7-b4d4-5d323196a3e4 | None |
B ommmme- B e TR o +

List storage services command allows the user to list all storage services brief info
like below shows:

S openstack rsd storage list

R oo e +
| Identity | Name | Description |
ommmmmmmeen Fommmmmm e o +
| 2 | Storage Service | Storage Service for Testing |
B o T TR +

Implementation Guide | Data Center - Rack Scale Design

Show storage detail command allows the user to display the storage service
details:

S openstack rsd storage show <storage service>

List fabric command allows the user to list all fabrics with brief info:

S openstack rsd fabric list

Show fabric detail command allows the user to display the fabric details:

S openstack rsd fabric show <fabric>

To get a list of available sub-commands and options, run:

S openstack help rsd

To get usage and options of a command, run:

S openstack help rsd <sub-command>

Implementation Guide | Data Center - Rack Scale Design

Product Availability

Intel RSD compatible products are available now from
major vendors including Dell EMC*, Ericsson*, HPE?,
Huawei*, Inspur*, Quanta*, Radisys*, Supermicro*,
Wiwynn* and others. Learn more about how the Intel
RSD architecture can accelerate your transition to

an open, modular, software-defined Data Center at:
https://www.intel.com/intelrsd. Or contact your local
Intel representative to discuss how Intel® can help you
to meet the demands of the Digital Transformation.

intel.

Allinformation provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. No license (express or implied,
by estoppel or otherwise) to any intellectual property rights is granted by this document. Copyright © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, and Optane are trade-
marks of Intel Corporation in the U.S. and/or other countries.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available
on request. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system
configuration and may require enabled hardware or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your
system manufacturer or retailer.

Intel® Rack Scale Design, Intel® RSD, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

