

 Document Number: 336815-001

Intel® Rack Scale Design POD Manager
(PDOM)
User Guide
Software v2.2

December 19, 2017

Revision 001

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
2 Document Number: 336815-001

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications
and roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or
retailer or learn more at www.intel.com.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and noninfringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
http://www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 3

Contents
1 Introduction ... 7

 Intended audience ... 7
 Conventions ... 7
 Terminology ... 7
 Related Documents ... 8
 Typographical conventions .. 8

2 Installation ... 9
 Core Ubuntu* installation ... 9
 Configure server internet access ... 9
 OpenJDK 1.8 Java Runtime environment installation .. 9

 Adding PPA repository for OpenJDK (Ubuntu v14.04.4 only) .. 9
 Installing OpenJDK Java Runtime environment .. 9
 Verifying OpenJDK installation ... 9

 PostgreSQL 9.5 installation.. 9
 Adding repository for PostgreSQL .. 10
 Installing PostgreSQL 9.5 ... 10
 Verifying PostgreSQL 9.5 installation .. 10

 Additional package installation ... 10
 Custom iPXE .. 10

 Custom iPXE compilation ... 10
 Custom iPXE installation ... 11

 Setting up GRUB .. 11
 NTP configuration ... 12
 Package signature ... 12

 Signing a package .. 12
 Checking package signature .. 13
 Automated installation with check of package signature .. 13

 Installation of Pod Manager using DEB packages .. 13
3 Configuration ... 14

 Discovery .. 14
 Requirements .. 14
 Customization ... 14

 Event handling .. 15
 Northbound .. 15
 Customization ... 15
 Impact on Composed Node status ... 17

 Service root UUID configuration ... 17
 Storage service configuration .. 17

 Storage service working on drawer's computer system .. 17
 Storage service working on external host attached to rack's storage network 17

 Network management ... 17
 Retention policy ... 18

4 Security ... 19
 Securing Pod Manager northbound API .. 19

 Basic authentication management ... 19
 Securing Pod Manager southbound API .. 19

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
4 Document Number: 336815-001

 Pod Manager as server .. 20
 Pod Manager as client .. 20
 Detailed configuration ... 21

 Certificate management ... 21
 Creating client certificate .. 22
 Importing client certificate ... 23
 Distributing CA certificate ... 23
 Using custom VAULT configuration ... 24

5 Deployment .. 25
 Starting PostgreSQL service ... 25
 Starting Pod Manager Service .. 25
 Accessing Pod Manager REST API .. 25

6 Features ... 28
 Composed node lifecycle management .. 28

 Composed node using JSON template ... 28
 Specifying requirements for a composed node .. 28
 General assumptions for allocation .. 28
 Specifying processor requirements.. 28
 Specifying memory requirements ... 29
 Specifying remote drive requirements .. 31
 Specifying local drive requirements ... 32
 Specifying Ethernet interface requirements ... 33
 Allocation algorithm ... 34

 Using Pod Manager with RMM service .. 36
 Rack lifecycle policy (Chassis of type Rack) ... 36

 Deep discovery ... 37
 Introduction .. 37
 General requirements, assumptions and limitations... 37
 Building Linux* Utility Image (LUI) ... 38
 Configuring deep discovery ... 38

 InBand Service support .. 38
 How Pod Manager detects InBand Service .. 38
 Enabling aggregation of InBand Service resources.. 39
 How the resources get aggregated ... 39

 Link Aggregation Group (LAG) ... 40
 Creating LAG .. 40
 Modifying LAG ... 41
 Removing LAG ... 43
 Limitations .. 43

 Pod Manager Northbound Interface Eventing .. 43
 Supported events .. 43
 Event subscription ... 43
 Registering new subscription .. 44

 Booting with iSCSI Out of Band feature ... 44
 Booting from iSCSI .. 44
 Setting Chap data... 44
 Setting boot data ... 45
 Limitations .. 45

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 5

Appendices
A Appendix ... 46

A.1 Database status across Pod Manager restarts .. 46
A.2 Source Code Compilation (Ubuntu) ... 47

A.2.1 Key components... 47
A.3 OpenJDK 1.8 Java Development Kit installation ... 47

A.3.2 Verifying OpenJDK installation .. 47
A.3.3 PostgreSQL 9.5 installation ... 47
A.3.4 Compilation of Pod Manager application .. 48
A.3.5 Configuration of ISC DHCP server ... 48

Tables
Table 1. Terminology .. 7
Table 2. Related Documents .. 8
Table 3. Order of .deb package installation ... 13
Table 4. PODM REST API ... 25
Table 5. Attribute Definition (for Processor) .. 29
Table 6. Attribute Definition (for Memory) ... 30
Table 7. Attribute Definition (for Remote Drive) .. 31
Table 8. Attribute Definition (for Local Drive) ... 32
Table 9. Attribute Requirement (for Ethernet Interfaces) .. 33
Table 10. Subresource Identification Table.. 40
Table 11. Attribute Requirement (for LAG) ... 41
Table 12. Attribute Requirement (for VLAN) .. 42
Table 13. Source Code Compilation key Components .. 47

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
6 Document Number: 336815-001

Revision History
Revision Description Date

001 Initial release. December 19, 2017

Introduction

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 7

This document contains information about the installation and configuration of the Intel® Rack Scale Design (Intel®
RSD) Pod Manager (PDOM) v2.2. This document will be referred to at the Pod Manager (PDOM) throughout this
document.

 Intended audience
The intended audiences for this document include:

• Software Vendors (xSVs) of pod management software, who make use of PODM to discover, compose, and
manage drawers, regardless of the hardware vendor, and/or manage drawers in a multivendor environment.

• Hardware Vendors (OxMs) of PSME firmware who would like to provide Intel® RSD PODM API on top of their
hardware platform.

 Conventions
The key words/phrases "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119, refer
to Table 2.

 Terminology
Table 1. Terminology

Term Definition
ACL Access Control List
CA Certificate Authority
CM Control Module
HTTP Hypertext Transfer Protocol
IBL Intel Business Link
JSON JavaScript Object Notation
LAG Link Aggregation Group
LUI Linux* Utility Imag4e
MMP Management Midplane
PKCS #12 Personal Information Exchange Syntax Standard
Pod A physical collection of multiple racks
PODM Pod Manager
PSME Pooled System Management Engine
Redfish* DMTF standard
REST Representational state transfer
RMM Rack Management Module
RSA Public key cryptosystem
RSS RSD Storage Service
SB Southbound API
SSL Secure Socket Layer
TLS Transport Layer Security
URI Uniform Resource Identifier
UUID Universally Unique Identifier
URL Uniform Resource Locator

Introduction

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
8 Document Number: 336815-001

 Related Documents
Table 2. Related Documents

Doc ID Title Location

336811 Intel® Rack Scale Design (RSD) Conformance and Software Reference Kit
Getting Started Guide v2.2, Revision 001

http://www.intel.com/intelRSD

336814 Intel® Rack Scale Design Pod Manager (PDOM) Release Notes, Software v2.2,
Revision 001

336816 Intel® Rack Scale Design PSME Release Notes, Software v2.2, Revision 001
336810 Intel® Rack Scale Design PSME User Guide, Software v2.2, Revision 001
336855 Intel® Rack Scale Design PSME REST API Specification, Software v2.2, Revision

001
336856 Intel® Rack Scale Design Storage Services API Specification, Software v2.2,

Revision 001
336857 Intel® Rack Scale Design Pod Manager REST API Specification, Software v2.2,

Revision 001
336858 Intel® Rack Scale Design Rack Management Module (RMM) API Specification,

Software v2.2, Revision 001
336859 Intel® Rack Scale Design Generic Assets Management Interface API

Specification, Software v2.2, Revision 001
336860 Intel® Rack Scale Design Firmware Extension Specification, Software v2.2,

Revision 001
336861 Intel® Rack Scale Design Architecture Specification, Software v2.2, Revision 001
336862 Intel® RSD v2.2 Solid State Drive (SSD) Technical Advisory
RFC2119 Key words for use in RFCs to Indicate Requirement Levels, March 1997 https://www.ietf.org/rfc/rfc2119.

txt
SDP0266 Scalable Platforms Management API Specification v1.1.0 https://www.dmtf.org/sites/defa

ult/files/standards/documents/
DSP0266_1.1.0.pdf

DSP8010 Redfish Schema v2016.3 https://www.dmtf.org/sites/defa
ult/files/standards/documents/
DSP8010_2016.3.zip

 Typographical conventions
Notation used in JSON serialization description:

• Values in italics indicate data types instead of literal values.
• Characters are appended to items to indicate cardinality:

− "*" (wildcard)
− "?" (0 or 1)
− "*" (0 or more)
− "+" (1 or more)

• Vertical bars, "|", denote choice. For example, "a|b" means a choice between "a" and "b".
• Parentheses, "(" and ")", are used to indicate the scope of the operators "?", "*", "+" and "|".
• Ellipses (i.e., "...") indicate points of extensibility.

 The lack of an ellipses does not mean no extensibility point exists, rather it is just not explicitly called out.

http://www.intel.com/intelRSD
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP8010_2016.3.zip
https://www.dmtf.org/sites/default/files/standards/documents/DSP8010_2016.3.zip
https://www.dmtf.org/sites/default/files/standards/documents/DSP8010_2016.3.zip

Installation

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 9

Pod Manager Software can be installed on both Ubuntu* Server 14.04.4 and Ubuntu Server 16.04.1.

 Core Ubuntu* installation
Recommend using a machine with at least 32 GB of storage space available. Download Ubuntu Server v14.04.4 or
v16.04.1. Boot the target machine using one of those images and follow the installation instructions.

 Configure server internet access
Pod Manager Software installation requires access to public software repositories on the Internet. Confirm the
server network, firewall, and proxy configurations are configured properly to allow internet access.

 OpenJDK 1.8 Java Runtime environment installation
OpenJDK 1.8 Java Runtime Environment is required by Pod Manager. If OpenJDK 8 Java Runtime Environment is
already installed on the system, then refer to Section 2.3.3, Verifying OpenJDK installation to verify installation.

If OpenJDK 8 is not installed, then follow the steps to set up the Java environment correctly. Refer to 2.3.2
Installing OpenJDK Java Runtime environment.

 Adding PPA repository for OpenJDK (Ubuntu v14.04.4 only)
Add the OpenJDK 1.8 repository to the /etc/apt/sources.list file by adding the following line:

deb http://ppa.launchpad.net/openjdk-r/ppa/ubuntu trusty main

Download key:

sudo su -
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 86F44E2A

Update the apt-get repositories:

sudo apt-get update

 Installing OpenJDK Java Runtime environment
Install the OpenJDK 1.8 Java Runtime Environment package:

sudo apt-get install openjdk-8-jre-headless

 Verifying OpenJDK installation
Check the default java version by typing:

java -version

If the above command does not show openjdk v1.8, execute the following command to set Java defaults:

sudo update-alternatives --config java

 PostgreSQL 9.5 installation
PostgreSQL 9.5 is required by Pod Manager. If PostgreSQL 9.5 is already installed on the system, then refer
Verifying PostgreSQL 9.5 installation section to verify installation.

If PostgreSQL 9.5 is not installed, then follow the steps below to install it correctly.

Installation

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
10 Document Number: 336815-001

 Adding repository for PostgreSQL
Create the file /etc/apt/sources.list.d/pgdg.list and add the following repository line:

• For Ubuntu* v14.04:
deb http://apt.postgresql.org/pub/repos/apt/ trusty-pgdg main
• For Ubuntu* v16.04.1:

deb http://apt.postgresql.org/pub/repos/apt/ xenial-pgdg main

Import the repository signing key:

wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo
apt-key add -

Update the apt-get repositories:

sudo apt-get update

 Installing PostgreSQL 9.5
Install PostgreSQL 9.5 packages:

sudo apt-get install postgresql-9.5 postgresql-contrib-9.5

 Verifying PostgreSQL 9.5 installation
Check if PostgreSQL 9.5 is installed and runs on port 5432:

pg_lsclusters

If it is installed, the above command should return output like:

Ver Cluster Port Status Owner Data directory Log file
9.5 main 5432 online postgres /var/lib/postgresql/9.5/main
/var/log/postgresql/postgresql-9.5-main.log

 Additional package installation
Install the following packages:

sudo apt-get install isc-dhcp-server
sudo apt-get install openssh-server
sudo apt-get install python3
sudo apt-get install tftpd-hpa
sudo apt-get install ntp
sudo apt-get install vlan
sudo apt-get install acl

Update the apt-get repositories:

sudo apt-get update

 Custom iPXE
Custom iPXE is required for full Pod Manager Functionality. It is not provided as part of the Pod Manager .deb
packages created after compiling Pod Manager Source.

 Custom iPXE compilation
The following packages must be installed on Ubuntu v14.04.4 or Ubuntu v16.04.1.

Installation

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 11

sudo apt-get install build-essential
sudo apt-get install genisoimage
sudo apt-get install git
sudo apt-get install liblzma-dev

1. Clone iPXE repository.
git clone https://git.ipxe.org/ipxe.git

2. Copy the following file from the Pod Manager Source package to the ipxe/src/ directory.
SW/external/ipxe-dhcp

3. Compile iPXE by executing the following command from the ipxe/src directory.
make EMBED=ipxe-dhcp

Transfer bin/undionly.kpxe to the target machine.

 In case of iPXE dependency or compilation issues, refer to:

http://ipxe.org/docs

 Custom iPXE installation
Create the /srv/tftp directory on the target machine.

sudo mkdir -p /srv/tftp

On the target machine copy undionly.kpxe to /srv/tftp

Make symlink to podmipxe.0

cd /srv/tftp
sudo ln -s undionly.kpxe podmipxe.0

 Setting up GRUB
Configure the system to use ethX naming convention for ethernet interfaces.

1. Edit the /etc/default/grub file and comment the following variables:
#GRUB_HIDDEN_TIMEOUT
#GRUB_HIDDEN_TIMEOUT_QUIET

2. Edit the /etc/default/grub file and modify the following variables:
GRUB_CMDLINE_LINUX_DEFAULT=""
GRUB_TERMINAL=console
GRUB_CMDLINE_LINUX="nomodeset net.ifnames=0 biosdevname=0 acpi-osi="
GRUB_TIMEOUT=2
GRUB_RECORDFAIL_TIMEOUT=2

3. Save the file and apply changes:
sudo update-grub

4. Restart the system for the changes to take effect.

Installation

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
12 Document Number: 336815-001

 NTP configuration
1. Edit the /etc/ntp.conf file and add the following lines:
tos maxdist 16

In case of lost connection to external NTP server, PODM shall use itself
as a NTP server.
This might happen if PODM has no access to worldwide network or there is
a temporary connectivity problem.
server 127.127.1.0
fudge 127.127.1.0 stratum 10

restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery
restrict 10.3.0.0 255.255.252.0 nomodify notrap
restrict 10.2.0.0 255.255.255.0 nomodify notrap
restrict 127.0.0.1
restrict ::1

2. Restart the NTP service:
sudo service ntp restart

 Package signature
If user is planning to distribute PODM package, then the PODM package must be signed first. Once signed, end user
has an option to verify (e.g. before installation) that package can be trusted and was not subjected to any
modifications.

To sign .deb package user should follow steps described in Section 2.9.1 Signing a package. If PODM package has
been signed, before installing PODM package user can verify package signature using steps described in Section
2.9.2. Checking package signature to sign *.deb packages, use linux* GPG and debsigs:

1. To install debsigs, use:
sudo apt-get install debsigs

2. To sign package, gpg uses key-pair. To check existing keys in the system, use following command:
gpg --list-key

3. To create a new key pair use the following command:
gpg --gen-key

4. When prompted, specify the key type, desired key size, length of time the key should be valid, key owner
and email address of the owner. For more information, refer to:
https://help.ubuntu.com/community/GnuPrivacyGuardHowto

 Step 4 requires a good source of entropy. Failure to provide sufficient entropy can result in a failure with
error “not enough entropy”.

5. To export the created public key to file, use the command:
gpg --armour --output /tmp/podm.key --export <owner name>

 Signing a package
The following procedure provides instructions on signing a package.

1. To sign a .deb package use the command below:
debsigs --sign=origin -k <key_id> <deb package>

https://help.ubuntu.com/community/GnuPrivacyGuardHowto

Installation

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 13

2. Once the packages are signed, use the GNU Privacy Handbook Getting Started Guide for instructions on how
to exchange your GPG key with the recipient, refer to Table 2.

 Checking package signature
Before checking a signature of a .deb package, the user must import the GPG public key that was used during
package signing and create a keyring. Follow the steps below to create a keyring:

1. Import the key used during package signing:
gpg --import <gpg public key file>

2. Verify package signature. To verify a signature of a .deb package run the following command:
sudo dpkg-sig -c <podm package>.deb

 Automated installation with check of package signature
To automate installation process of signed package (with its signature verification) there is possibility to use
convenient installation script. To use it, run command in SW directory created with srcTar task. The prerequisite
to run the script is python3*. Also dpkg-sig package must be installed. The supported version of gpg is
v1.4.20.

./pod-manager-install.py

 Installation of Pod Manager using DEB packages
Pod Manager .deb packages can be generated manually as described in the Source Code Compilation (Ubuntu)
section.

Pod Manager .deb packages should be installed in the following order show in Table 3.

Table 3. Order of .deb package installation

Package Required Description
pod-manager Yes Creates user for services, also contains the web server, database, update scripts and

configuration for Pod Manager.
pod-manager-
networking

Yes Contains configuration for network, DHCP, NTP, TFTP

Caution: This package overrides the settings for network interfaces in the user
system. If the user has custom network settings on the machine on
which the Pod Manager is installed, the custom settings will be wiped
out by the Pod Manager during package installation.

Configuration

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
14 Document Number: 336815-001

 Discovery
There are two available mechanisms to discover new services, based on DHCP protocol or based on SSDP protocol.
By default, both of them are enabled and same service can be detected by both mechanisms. It is highly
recommended the user use either one of the two mechanisms to discover RSD resources.

 Requirements
This chapter contains all requirements for the service or hostname to be visible for DHCP or SSDP-based discovery.

 Hostname based discovery using DHCP
 This is required only for the DHCP-based discovery mechanism.

Hostname of PSME services must start with string "psme", hostname of storage services must start with string
"storage" and hostname of deep discovery LUI service must be set to string "lui". Hostname of RMM service
must start with string "rmm".

Example: psme1, storage1, lui, rmm2

 Service name based discovery using SSDP

This is required only for the SSDP-based discovery mechanism.

The property "Name" available on service entry point (/redfish/v1) must be set to the following values:

• For PSME service: "PSME Service Root"
• For RSS service: "RSS Service Root"
• For LUI service: "LUI Service Root"
• For RMM service: "Root Service"

Property values can be changed in the configuration file under “ServiceMapping” as described in Section 3.1.2,
Customization.

Caution: If PODM is unable to match the value of the "Name" property with any value present in the
configuration file, it will assume the service type to be PSME.

 Customization
Configuration for discovery mechanisms is located at /etc/pod-manager/service-detection.json.

{
 "EnabledProtocols": [
 "DHCP",
 "SSDP"
],
 "ServiceTypeMapping": {
 "PSME": "PSME Service Root",
 "RSS": "RSS Service Root",
 "LUI": "LUI Service Root",
 "RMM": "Root Service",
 "INBAND": "In Band Service"
 },
 "Protocols": {
 "SSDP": {

Configuration

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 15

 "AnnouncementFrequencyInSeconds": 600,
 "MX": 5,
 "Subnets": [
 "0.0.0.0/0"
]
 },
 "DHCP": {
 "FilesCheckIntervalInSeconds": 10,
 "NumberOfRetriesForFailedServiceCheck": 5,
 "FailedEndpointRecheckIntervalInSeconds": 300
 }
 }
}
• EnabledProtocols - defines which protocols for discovery mechanisms are enabled. Possible options are:

"DHCP", "SSDP".
• NumberOfRetriesForFailedServiceCheck – Defines how many times PODM will retrieve service root

for newly discovered services.
• FailedEndpointRecheckIntervalInSeconds – Defines the interval after which PODM will retry to

retrieve service root from the service that failed to be available during initial discovery.
• ServiceTypeMapping - contains mapping between service types and property "Name" available on service

root of service.
• Protocols - contains configuration specific to selected protocols.

− SSDP:
• AnnouncementFrequencyInSeconds - how often the M-SEARCH message will be sent to

network
• MX - configuration of the MX parameter
• Subnets - from which subnets PODM will accept "ssdp:alive" or M-SEARCH response messaged.

"0.0.0.0/0" means that all networks are accepted.
− DHCP:

• FilesCheckIntervalInSeconds - how often PODM will refresh data from DHCP.

 Event handling
The Pod Manager is able to subscribe to events and receive from Redfish compliant external services when a
specific resource is removed, added or changed.

 Northbound
Pod Manager provides Redfish compliant eventing and sends events to its subscribers when specific resource is
removed, added or changed.

 Southbound

Pod Manager is able to subscribe to events and receive them from Redfish compliant external services when
specific resource is removed, added or changed.

 Customization
Configuration for events is located at /etc/pod-manager/events.json:

{
 "Northbound": {
 "DeliveryRetryAttempts": 2,
 "DeliveryRetryIntervalSeconds": 1
 },

Configuration

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
16 Document Number: 336815-001

 "Southbound": {
 "EventSubscriptionIntervalSeconds": 90,
 "BufferedEventProcessing" : {
 "ProcessingWindowSizeInSeconds": 5
 },
 "ServicesConfiguration": [
 {
 "ServiceType": "psme",
 "NetworkInterfaceName": "eth0.4094",
 "PodManagerIpAddress": "127.0.0.1"
 },
 {
 "ServiceType": "rss",
 "NetworkInterfaceName": "eth0.4093",
 "PodManagerIpAddress": "127.0.0.1"
 },
 {
 "ServiceType": "rmm",
 "NetworkInterfaceName": "eth0.4094",
 "PodManagerIpAddress": "127.0.0.1"
 },
 {
 "ServiceType": "inband",
 "NetworkInterfaceName": "lo",
 "PodManagerIpAddress": "127.0.0.1"
 }
]
 }
}

Northbound - this section groups configuration parameters related with Pod Manager Northbound Interface
Eventing feature:

* DeliveryRetryAttempts - How many times Pod Manager will try to deliver particular event before
subscription is removed

* DeliveryRetryIntervalSeconds - Interval between delivery attempts in seconds

Southbound: This section groups configuration parameters related with Pod Manager Southbound Interface Event
subscription feature

* EventSubscriptionIntervalSeconds - how often Pod Manager checks if it is subscribed to a service. In
case of subscription absence, Pod Manager subscribes to this service.

* BufferedEventProcessing - when section is defined, buffered event processing is enabled

*ProcessingWindowSizeInSeconds incoming events are buffered and processed once per time window (size of
which can be adjusted by this attribute).

* ServicesConfiguration:

• * ServiceType - name of service type that is configured by this object. Valid values: psme, rss, rmm,
inband. * NetworkInterfaceName - name of network interface used to communicate with specified
service. It is used to determine Pod Manager IP address for event subscription in PSME/Storage
Service/RMM services. When PodManagerIpAddress is present, this parameter is ignored.

• * PodManagerIpAddress - Pod Manager IP address used for event subscription in PSME/Storage
Service/RMM service. This parameter is optional.

Configuration

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 17

 Impact on Composed Node status
As a result of event handling, Composed Node State may be set to Offline and Health to Critical when:

• Associated Computer System's or RemoteTarget's State is different than Enabled
• Associated Computer System is removed or Remote Target is deleted

 Service root UUID configuration
Northbound API service root UUID is stored in the /var/lib/pod-manager/service-root-uuid.json
configuration file. Pod Manager will generate a UUID and store it at this location by default. The user can change or
set a specific UUID of Pod Manager service root by editing the above file. Remember, this file must contain a proper
UUID of Pod Manager service root in the following format:

Sample UUID format:

{
 "UUID": "00000000-0000-0000-0000-000000000000"
}

 Storage service configuration
Storage service can be configured in two ways:

• Storage service working on drawer's computer system
• Storage service working on external host attached to rack's storage network

 Refer to the Intel® Rack Scale Design PSME User Guide, Table 2, to get details regarding Linux* image
creation for storage service host.

 Storage service working on drawer's computer system
To have storage service working on drawer's computer system, the user must deploy the storage service image
onto the computer system's storage device. Later, the user must allocate (with local boot option enabled) and
assemble a new node with this exact computer system. If such a configured storage system is not assembled via
PODM REST API, then it may be targeted for Deep Discovery (the computer system will be rebooted and left in a
powered off state).

 The hostname for storage service must start with string "storage".

 Storage service working on external host attached to rack's storage
network

The user can simply attach the external host with storage service image to Rack's storage network.

 Additional settings on ToR may be required for this type of deployment. Also, the hostname for storage
service must start with string "storage".

 Network management
The Pod Manager has the following reserved VLANs preconfigured:

• 4091 - Production Network
• 4094 - Service Management Network
• 4092 - Rack Backplane Management
• 4088 - In-band Management
• 4093 - Storage Management/Access Network

Configuration

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
18 Document Number: 336815-001

• 4090 - External Management Network

Except for VLAN #4090 (which is an External Management Network), all VLANs are enabled by default with
preconfigured IP addresses. To enable VLAN #4090, the ADMINISTRATOR must change the entry (for eth0.4090)
in the /etc/network/interfaces.d/pod-manager-network-configuration.conf file or the
/etc/network/interfaces file to make this change permanent between the Pod Manager updates.

More information about these files are found on the Interfaces Manpage on the Ubuntu website:
http://manpages.ubuntu.com/manpages/wily/man5/interfaces.5.html.

Remember the default configuration for this VLAN requires DHCP presence and it must be enabled in this network.

 The default configuration for VLAN 4090 requires DHCP presence and the virtual VLAN interface must be
enabled. Another point to note is that in Ubuntu v16.04, all interfaces present in the above files are read
record-by-record. If a record fails to fetch its IP address, then the subsequent record would also report
failure.

To disable the Pod Manager specific network configuration, the ADMINISTRATOR must delete
/etc/network/interfaces.d/pod-manager-network-configuration.conf file and remove this line
source /etc/network/interfaces.d/pod-manager-network-configuration.conf in the
/etc/network/interfaces file. Restart of the networking service is required.

 Retention policy
The retention policy is the period (given in hours) between the time the external service – like PSME or RMM
becomes unavailable and the time Pod Manager deletes all assets connected to this service from its own database.
During this time all assets state will be set to "Absent".

The user can provide a special value "0" which will result in the immediate deletion of given external service (and
its assets) at the time of its absence notice. The "0" value might be helpful especially when Pod Manager
communicates with an older version of the RSD software modules.

To change the retention time, change /etc/pod-manager/external-services.json file:

{
 "RetainUnavailableServicesForHours": 720
}

 The Pod Manager does not need to be restarted after the change, but loading a new retention time may
take time to complete.

http://manpages.ubuntu.com/manpages/wily/man5/interfaces.5.html

Security

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 19

 Securing Pod Manager northbound API
Custom certificates can be configured to secure Pod Manager northbound API communication. All certificates are
stored in a default keystore located at:

/var/lib/pod-manager/keystore.jks

It is possible to change keystore, its password, localization, and stored keys. Keystore path, password and alias are
provided by an entry in "keystore" xml node contained in file:

/opt/pod-manager/wildfly/standalone/configuration/standalone.xml

Detailed information about WildFly SSL connections configuration is provided here:

https://docs.jboss.org/author/display/WFLY9/Detailed+Configuration

WildFly supports password hashing for the keystore entry in the standalone.xml file using VAULT tool. Detailed
information is provided here:

https://developer.jboss.org/wiki/JBossAS7SecuringPasswords

Caution: VAULT uses a container to store the hashed passwords. Once the user changes the VAULT container,
the configuration files MUST be updated as described in using the custom VAULT configuration.

Keystore creation command example:

keytool -genkey -alias <alias> -keyalg RSA -keysize 2048 -keystore
<keystore_name>

Recommended key size is at least 2048 bits. A key with a lower size might lead to compatibility issues.

Custom certificate import example:

keytool -importcert -file <certificate> -keystore <keystore> -alias <alias>

For more information, use the following command:

man keytool

 Basic authentication management
Default login credentials for Pod Manager are:

User: admin
Password: admin

Basic authentication mechanism can be managed by the "add-user" utility.

/opt/pod-manager/wildfly/bin/add-user.sh

 Securing Pod Manager southbound API
The Pod Manager on southbound API can act as both client and server. South bound API communication is
established using TLSv1.2 protocol.

While establishing a secure connection with external services (southbound communication), Pod Manager uses
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher suite. This means that cipher suite implements
Elliptic - Curve Diffie - Hellman Ephemeral key exchange. Elliptic - Curve Digital Signature
Algorithm, with AES-128 as the block cipher and SHA-256 HMAC for the authentication hash.

Security

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
20 Document Number: 336815-001

More information about this cipher suite can be found here:

https://tools.ietf.org/html/rfc5289

Important points to note:

• For communication to be properly established by TLS with client authentication at server side, all
communicating components MUST have synchronized time. Time must be set up correctly to fulfill the
certificate validation period. "pod-manager-config" package configures NTP service on Pod Manager to be
used for time synchronization between Pod Manager and other services (RMM, PSME, LUI, Storage Service).
Each service using Pod Manager as NTP server must have the correct NTP client configuration.

• The expected format of the client certificate, CA certificate is PKCS #12 (.pfx). It is assumed that the pkcs file
with client signed certificate is a well formatted container that includes a full certification chain.

 Pod Manager as server
The Pod Manager acts as a server when receiving events (even from clients that are not authenticated).

 Pod Manager as client
The Pod Manager acts as a client when obtaining information from external services and is configured to send its
own certificate to be authenticated by server. LUI does not authenticate the Pod Manager on the SB API. The Pod
Manager does not perform server authentication.

The CA signed certificate is used by the Pod Manager. The CA certificate should be added to external services trust
store.

The default client certificate and CA certificate are provided with Pod Manager .deb packages. The client certificate
has been signed by CA certificate which is also provided.

The Pod Manager (client) certificate is stored in a keystore file:

/var/lib/pod-manager/client.jks

CA certificates can be created manually and corresponding keys are stored in:

/var/lib/pod-manager/ca

CA certificate and key is also packed to file in PKCS #12 format so it can be used in other locations.

TLS can be turned ON/OFF by modifying following configuration file (it's turned ON by default):

/etc/pod-manager/service-connection.json

The TLS can be configured separately for each external service type, by setting the "true" or "false" value
accordingly.

https://tools.ietf.org/html/rfc5289

Security

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 21

Example to set TLS OFF for PSME:

{
 "SslEnabledForRmm" : true,
 "SslPortForRmm" : 8091,
 "DefaultPortForRmm" : 8090,
 "SslEnabledForPsme" : false,
 "SslPortForPsme" : 8443,
 "DefaultPortForPsme" : 8888,
 "SslEnabledForRss" : true,
 "SslPortForRss" : 8443,
 "DefaultPortForRss" : 8888,
 "SslEnabledForLui" : true,
 "SslPortForLui" : 8443,
 "DefaultPortForLui" : 8888
}

 Detailed configuration
Pod Manager Southbound API must be properly configured to establish a secure connection by satisfying the
points below:

• Client certificate must be added to keystore located at:
/var/lib/pod-manager/client.jks

Keystore "client.jks" is protected by a password. To hash the password, the WildFly hashing tool called VAULT
is used. Detailed information can be obtained from:

https://developer.jboss.org/wiki/JBossAS7SecuringPasswords

Caution: VAULT uses a container to store the hashed password. Once the user changes the VAULT container,
the configuration files MUST be updated as described in Using custom VAULT configuration.

• Client certificate must be signed by a known CA. A CA certificate may be a self-signed certificate.
• To create a correct key SHA256 with ECDSA, a signature algorithm must be used.
• All servers that will authenticate Pod Manager must have the CA certificate provided.

Caution: The certificate distributed with the Pod Manager has a limited validation period. Check the validity
period for certificates before using them. System time CANNOT exceed the certificate expiration date.
The default exported certificate distributed with Pod Manager is located at:

/var/lib/pod-manager/root.crt

To check the certificate validation period from the client.jks file, use the keytool:

keytool -v -list -keystore client.jks

 Certificate management
Certificates can be created by the user or imported to keystore using tools described in this section.

https://developer.jboss.org/wiki/JBossAS7SecuringPasswords

Security

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
22 Document Number: 336815-001

 Creating client certificate
The script to generate the client certificate is located at:

/usr/bin/pod-manager-certificate-creation.sh

The script must be executed with root privileges by using:

sudo /usr/bin/pod-manager-certificate-creation.sh

Print script using --help option:

sudo /usr/bin/pod-manager-certificate-creation.sh --help

Example 1: Create a new client certificate and sign it with a newly created CA certificate:

sudo pod-manager-certificate-creation.sh --ca-certificate
"/C=PL/ST=State/L=locality/O=organization/CN=fqdn_or_ip" --client-certificate
"C=PL,ST=State,L=locality,O=organization,CN=fqdn_or_ip"

The above command creates the client certificate under /var/lib/pod-manager and CA certificate under
/var/lib/pod-manager/ca

Example 2: Create a new client certificate and sign it with an existing CA certificate:

sudo pod-manager-certificate-creation.sh --ca-certificate
/path/to/ca/file/ca.pfx --client-certificate
"C=PL,ST=State,L=locality,O=organization,CN=fqdn_or_ip"

The above command creates a new client certificate under /var/lib/pod-manager. Whereas, extracted the CA
certificate and private key will be copied to /var/lib/pod-manager/ca directory.

Example 3: Create a new client certificate and sign it with the provided CA certificate - using interactive mode.

During this process, the user will be asked to pass the client certificate attributes manually and follow the
instructions displayed on screen to complete the process:

sudo /usr/bin/pod-manager-certificate-creation.sh --ca-certificate
"/path/to/ca/file/ca.pfx"

Upon completion, the above command creates a new client certificate under /var/lib/pod-manager directory
and extracted CA certificate and private key are copied to the /var/lib/pod-manager/ca directory.

 DO NOT REMOVE keystore file created after certificate generation process for all above examples. This
container is used by the Pod Manager application to configure SSL/TLS Connection.

/var/lib/pod-manager/client.jks

Take note of the escape sequence used to escape "white space" and existing CA certificate path.

 When using TLS configuration on PSMEs, authentication from the Pod Manager to PSMEs is certificate-
based and PSMEs rest servers will not communicate with clients that do not perform certificate-based
authentication.

 To access the PSME APIs directly using a web browser or any command line REST API client (for example
cURL), it is necessary to export the client certificate from Pod Manager for use with other HTTP clients.

The following steps describe the process to access the PSME APIs using the cURL client only:

1. Generate a PKCS #12 key based on the root key:
sudo keytool -importkeystore -srckeystore /var/lib/pod-manager/client.jks
-srcstoretype JKS -destkeystore client.p12 -deststoretype pkcs12

2. Create .pem certificate file using the output of the above command:
openssl pkcs12 -clcerts -nodes -in client.p12 -out client.pem

Security

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 23

The .pem certificate file can be used by the cURL or imported into a web browser such as Firefox* or
Chrome*.

Example use with cURL client:

curl -k -i --cert client.pem --cacert /var/lib/pod-manager/root.crt -X
GET https://<psme_ip>:8443/redfish/v1/

 Importing client certificate
Script to import a signed client certificate to the container is located at:

/usr/bin/pod-manager-certificate-import.sh

The Script must be executed with root privileges as shown:

sudo /usr/bin/pod-manager-certificate-import.sh

Print script using:

sudo /usr/bin/pod-manager-certificate-import.sh --help

 It is assumed the signed certificate container used is of type PKCS #12 and contains a full certificate chain.

Example:

sudo pod-manager-certificate-import.sh -c /path/to/ca/file/ca.pfx

The above command creates a container of type JKS with imported client certificate signed by CA certificate,
located at:

/var/lib/pod-manager/client.jks

 Distributing CA certificate
The CA certificate must be propagated to all external services (RMM, PSME, Storage Services) that authenticate the
Pod Manager.

Which CA certificate to use:

• The default CA certificate provided with Pod Manager packages is located at:
/var/lib/pod-manager/root.crt

• If the certificate was created using the "pod-manager-certificate-creation.sh" script, then the certificate is
located at:

/var/lib/pod-manager/ca/root.crt

 Provide RMM and PSME with CA certificate

The following procedures provides the RMM and PSME with CA certicate using the following procedures.

RMM:

1. The selected CA certificate must be copied to RMM. The RMM requires the CA certification file to be named
"podm.cert".

2. Rename the CA certificate file “podm.cert” and copy the CA certificate to following location:
/etc/rmm/podm.cert

3. Once the is copied, the RMM will propagate this certificate to all PSME's in the rack it manages.

 In a case where the RMM is not used, the certificate MUST be copied manually to a specific location
on each PSME to the following location:

/etc/psme/certs/ca.crt

Security

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
24 Document Number: 336815-001

PSME:

The PSME configuration file "/etc/psme/psme-rest-server-configuration.json" MUST be updated NOT
to expect a certificate from the RMM as shown below:

"rmm-present" : false,

 Provide storage service with CA certificate
 To copy the CA certificate the RMM requires the CA certificate file to be named "podm.cert".

The user must rename the CA certificate file to "podm.cert" and copy it to following location:

/etc/psme/certs/ca.crt

For the Storage Service PSME rest server configuration file "/etc/psme/psme-rest-server-
configuration.json" MUST be updated NOT to expect the certificate from the RMM as shown below:

"rmm-present" : false,

 Using custom VAULT configuration
The VAULT is used to read the keystore password:

• By Pod Manager while reading the certificate from keystore files
• By script to generate/import certificates to set up keystore password

The VAULT container can be changed. For more information refer:

https://developer.jboss.org/wiki/JBossAS7SecuringPasswords

Once the user changes the VAULT container entry values (KEYSTORE_URL, KEYSTORE_PASSWORD,
KEYSTORE_ALIAS, SALT, ITERATION_COUNT, ENC_FILE_DIR) corresponding updates MUST also be made
in the following two files:

WildFly configuration file “standalone.xml” located at:

/opt/pod-manager/wildfly/standalone/configuration/standalone.xml

Scripts configuration file "vault.json" used to generate/import certificates located at:

/var/lib/pod-manager/vault/vault.json

https://developer.jboss.org/wiki/JBossAS7SecuringPasswords

Deployment

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 25

Pod Manager is Java EE application that uses Wildfly Application Server and PostgreSQL as persistent storage
engine.

 Starting PostgreSQL service
sudo service postgresql start

To confirm that the DB is running, use this command:

sudo service postgresql status

If it is running, the above command should return following message:

9.5/main (port <PORT>): online

Default login credentials for PostgreSQL are stored securely in Wildfly's VAULT and are set to:

User: administrator
Password: podm

 Starting Pod Manager Service
sudo service pod-manager start
sudo service pod-manager status

If running, command should return following message:

* Wildfly Application Server is running with PID <PID>

If the application is not available, check for deployment error logs in the following locations:

/var/log/wildfly/console.log
/opt/pod-manager/wildfly/standalone/log/server.log

 Accessing Pod Manager REST API
Pod Manager Service can be accessed at the following address:

https://<target_machine_IP>:8443/redfish/v1

We recommend using JSON formatting plugins for web browsers e.g JSONView, JSON Formatter etc.

Requests should contain HTTP Basic authentication headers.

Table 4. PODM REST API

Resource URI
Service Root /redfish/v1
Chassis Collection /redfish/v1/Chassis
Chassis /redfish/v1/Chassis/{chassisID}
PowerZone Collection /redfish/v1/Chassis/{chassisID}/PowerZones
PowerZone /redfish/v1/Chassis/{chassisID}/PowerZones/{powerzonesID}
ThermalZone Collection /redfish/v1/Chassis/{chassisID}/ThermalZones
ThermalZone /redfish/v1/Chassis/{chassisID}/ThermalZones/{thermalzoneID}
Power /redfish/v1/Chassis/{chassisID}/Power
Thermal /redfish/v1/Chassis/{chassisID}/Thermal
Drive /redfish/v1/Chassis/{chassisID}/Drives/{driveID}

Deployment

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
26 Document Number: 336815-001

Resource URI
Computer System Collection /redfish/v1/Systems
Computer System /redfish/v1/Systems/{systemID}
(Computer System) Ethernet
Interface Collection

/redfish/v1/Systems/{systemID}/EthernetInterfaces

(Computer System) Ethernet
Interface

/redfish/v1/Systems/{systemID}/EthernetInterfaces/{nicID}

Computer System Metrics /redfish/v1/Systems/{systemID}/Metrics
(Computer System) VLAN
Network Interface Collection

/redfish/v1/Systems/{systemID}/EthernetInterfaces/{nicID}/VLANs

(Computer System) VLAN
Network Interface

/redfish/v1/Systems/{systemID}/EthernetInterfaces/{nicID}/VLANs/{vlanID}

(Computer System) Network
Interface Collection

/redfish/v1/Systems/{systemID}/NetworkInterfaces

(Computer System) Network
Interface

/redfish/v1/Systems/{systemID}/NetworkInterfaces/{networkInterfaceID}

Network Device Function
Collection

/redfish/v1/Systems/{systemID}/NetworkInterfaces/{networkInterfaceID}/NetworkDeviceFun
ctions

Network Device Function /redfish/v1/Systems/{systemID}/NetworkInterfaces/{networkInterfaceID}/NetworkDeviceFun
ctions/{networkDeviceFunctionID}

Processor Collection /redfish/v1/Systems/{systemID}/Processors
Processor /redfish/v1/Systems/{systemID}/Processors/{processorID}
Memory Collection /redfish/v1/Systems/{systemID}/Memory
Memory /redfish/v1/Systems/{systemID}/Memory/{memoryID}
Storage Collection /redfish/v1/Systems/{systemID}/Storage
Storage /redfish/v1/Systems/{systemID}/Storage/{StorageID}
Simple Storage Collection /redfish/v1/Systems/{systemID}/SimpleStorage
SimpleStorage /redfish/v1/Systems/{systemID}/SimpleStorage/{SimpleStorageID}
Manager Collection /redfish/v1/Managers
Manager /redfish/v1/Managers/{managerID}
Network Protocol /redfish/v1/Managers/{managerID}/NetworkProtocol
(Manager) Network Interface
Collection

/redfish/v1/Managers/{managerID}/EthernetInterfaces

(Manager) Network Interface /redfish/v1/Managers/{managerID}/EthernetInterfaces/{nicID}
(Manager) VLAN Network
Interface Collection

/redfish/v1/Managers/{managerID}/EthernetInterfaces/{nicID}/VLANs

(Manager) VLAN Network
Interface

/redfish/v1/Managers/{managerID}/EthernetInterfaces/{nicID}/VLANs/ {vlanID}

Storage Service Collection /redfish/v1/Services
Storage Service /redfish/v1/Services/{serviceID}
Remote Target Collection /redfish/v1/Services/{serviceID}/Targets
Remote Target /redfish/v1/Services/{serviceID}/Targets/{targetID}
Logical Drive Collection /redfish/v1/Services/{serviceID}/LogicalDrives
Logical Drive /redfish/v1/Services/{serviceID}/LogicalDrives/{driveID}
Physical Drive Collection /redfish/v1/Services/{serviceID}/Drives
Physical Drive /redfish/v1/Services/{serviceID}/Drives/{driveID}
Ethernet Switch Collection /redfish/v1/EthernetSwitches
Ethernet Switch /redfish/v1/EthernetSwitches/{switchID}
Ethernet Switch Port
Collection

/redfish/v1/EthernetSwitches/{switchID}/Ports

Ethernet Switch Port /redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}

Deployment

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 27

Resource URI
(Switch Port) VLAN Network
Interface Collection

/redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}/VLANs

(Switch Port) VLAN Network
Interface

/redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}/VLANs/{vlanID}

Composed Node Collection /redfish/v1/Nodes
Composed Node /redfish/v1/Nodes/{nodeID}
Fabric Collection /redfish/v1/Fabrics
Fabric /redfish/v1/Fabrics/{fabricID}
Fabric Switch Collection /redfish/v1/Fabrics/{fabricID}/Switches
Fabric Switch /redfish/v1/Fabrics/{fabricID}/Switches/{switchID}
Fabric Switch Port collection /redfish/v1/Fabrics/{fabricID}/Switches/{switchID}/Ports
Fabric Switch Port /redfish/v1/Fabrics/{fabricID}/Switches/{switchID}/Ports/{portID}
Fabric Zone Collection /redfish/v1/Fabrics/{fabricID}/Zones
Fabric Zone /redfish/v1/Fabrics/{fabricID}/Zones/{zoneID}
EndPoint Collection /redfish/v1/Fabrics/{fabricID}/Endpoints
Endpoint /redfish/v1/Fabrics/{fabricID}/Endpoints/{endpointID}
PCIDevice /redfish/v1/Chassis/{chassisID}/PCIeDevices/{deviceID}
PCIe Device Function /redfish/v1/Chassis/{chassisID}/PCIeDevices/{deviceID}/Functions/{functionID}
Event Service /redfish/v1/EventService
Event Service Subscription
Collection

/redfish/v1/EventService/Subscriptions

Event Service Subscription /redfish/v1/EventService/Subscriptions/{subscriptionID}
Telemetry Service Collection /redfish/v1/TelemetryService
Metric Definition Collection /redfish/v1/TelemetryService/MetricDefinitions
Metric Definition /redfish/v1/TelemetryService/MetricDefinitions/{metricDefinitionID}
Metric Report Definition
Collection

/redfish/v1/TelemetryService/MetricReportDefinitions

Metric Report Definition /redfish/v1/TelemetryService/MetricReportDefinitions/{metricReportDefinitionID}

Available resources:

Refer to Intel® Rack Scale Design Pod Manager API Specification in Table 2, for a detailed description of above
resources.

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
28 Document Number: 336815-001

 Composed node lifecycle management

 Composed node using JSON template
To create a Composed Node using Pod Manager REST API, create a JSON template describing requested resources.
It must be supplied to Pod Manager by performing an HTTP POST request on the Composed Node Collection
Action URI located at /redfish/v1/Nodes/Actions/Allocate on the Pod Manager service.

The JSON template may contain various details of resources to be used in Composed Node. All JSON template
elements are optional, but each requirement should be coherent itself. It is possible to supply Pod Manager with a
JSON template containing no specific requirements (e.g. {} - a pair of empty curly braces in HTTP request body)
thus allowing Pod Manager to compose a node containing resources chosen arbitrarily by Pod Manager.

 Specifying requirements for a composed node
JSON template contains requirements for a single Composed Node. Basic customization covers setting a "Name"
and "Description" of such System (both being of type String). As the "Name" parameter is required by Redfish
for all resources, if it's not provided then Pod Manager will use the default name.

The example below will allocate a single Composed Node with requested name and description:

{
 "Name": "Customized Composed Node name",
 "Description": "Description of a customized Composed Node"
}

JSON template may contain requirements for: Processors, Memory, Remote Drives, Local Drives and Ethernet
Interfaces. To specify requirements for those resources, a proper section must appear in the JSON template.

 General assumptions for allocation
Requirements are treated as a minimal required value, so the resulting Composed Node may have better
parameters than requested. Composed Node customization and resource customization sections described below
can be used jointly.

Each resource type description has an associated table which contains details about specific requirements. Key is
the JSON object field. JSON type contains data type as defined by json.org, Allowed values contains additional
restrictions to JSON type or hints (e.g. for enumerations or Boolean values), Nullable indicates if null value can be
passed for a specified key. Notes, limitations provides additional hints about the specific requirement.

 Location requirements

Processor, Memory, Local Drive and Ethernet Interface sections may contain Resource and Chassis objects.
Resource must contain the Pod Manager URI (presented as "@odata.id") of the discovered resource (Processor's
URI in Processor section, URI to Memory resource in Memory section and so on). Chassis must contain the Pod
Manager URI of the discovered Chassis in which applicable resources will be looked for.

 Specifying processor requirements
The JSON template may contain requirements for multiple Processors. The example below specifies requirements
for a single Processor to be used in Composed Node.

{
 "Processors": [{
 "Model": "Multi-Core Intel(R) Xeon(R) processor 7xxx Series",

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 29

 "TotalCores": 2,
 "AchievableSpeedMHz": 3700,
 "InstructionSet": "x86-64",
 "Oem:Intel_RackScale": {
 "Capabilities": [
 "sse",
 "sse2"
],
 "Brand": "X7"
 },
 "Resource": {
 "@odata.id": "/redfish/v1/Systems/1/Processors/1"
 },
 "Chassis": {
 "@odata.id": "/redfish/v1/Chassis/1"
 }
 }]
}

Table 5. Attribute Definition (for Processor)

Key
JSON
type Allowed values Nullable Notes, limitations

Model String Yes String representing
Processor model

TotalCores Number Yes Positive integer value
expected

AchievableSpeedMHz Number Yes Positive integer value
expected

InstructionSet String "x86", "x86-64", "IA-64", "ARM-A32", "ARM-
A64", "MIPS32", "MIPS64", "OEM"

Yes One of allowed,
enumerated values

Oem Object Yes
Oem -> Brand String "E3", "E5", "E7", "X3", "X5", "X7", "I3", "I5", "I7",

"Unknown"
Yes One of allowed,

enumerated values
Resource Object Exact location of a single Processor. Yes See Location

requirements section
Chassis Object Exact location of a single Chassis. Yes See Location

requirements section

Allocation assumptions:

• Which Processors will meet supplied requirements?
− located on the same computer system as other resources
− with exact match on Model
− with exact match on Brand
− with at least TotalCores
− with at least AchievableSpeedMHz
− with exact match on InstructionSet

 Specifying memory requirements
The JSON template may contain requirements for multiple Memory Modules. The example below specifies the
requirements for a single Memory Module to be used in Composed Node.

{
 "Memory": [{

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
30 Document Number: 336815-001

 "CapacityMiB": 16000,
 "MemoryDeviceType": "DDR3",
 "SpeedMHz": 1600,
 "Manufacturer": "Intel",
 "DataWidthBits": 64,
 "Resource": {
 "@odata.id": "/redfish/v1/Systems/1/Memory/1"
 },
 "Chassis": {
 "@odata.id": "/redfish/v1/Chassis/1"
 }
 }]
}

Table 6. Attribute Definition (for Memory)

Key
JSON
type Allowed values Nullable

Notes,
limitations

CapacityMiB Number Yes Positive value
expected

MemoryDeviceType String "DDR", "DDR2", "DDR3", "DDR4", "DDR4_SDRAM",
"DDR4E_SDRAM", "LPDDR4_SDRAM", "DDR3_SDRAM",
"LPDDR3_SDRAM", "DDR2_SDRAM",
"DDR2_SDRAM_FB_DIMM",
"DDR2_SDRAM_FB_DIMM_PROBE", "DDR_SGRAM",
"DDR_SDRAM", "ROM", "SDRAM", "EDO",
"FastPageMode", "PipelinedNibble"

Yes One of allowed,
enumerated
values

SpeedMHz Number Yes Positive integer
value expected

Manufacturer String Yes String
representing
Memory Module
manufacturer
name

DataWidthBits Number Yes Positive integer
value expected

Resource Object Exact location of a single Memory Module. Yes See Location
requirements
section

Chassis Object Exact location of a single Chassis. Yes See Location
requirements
section

Allocation assumptions:

• Which Memory Modules (represented by Memory resource) will meet supplied requirements?
− located on the same computer system as other resources
− with exact match on MemoryDeviceType
− with at least SpeedMHz
− with exact match on Manufacturer
− with at least DataWidthBits

• If a computer system contains Memory Modules of a total size at least CapacityMiB, it will meet the
requirements.

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 31

 Specifying remote drive requirements
The JSON template may contain requirements for multiple Remote Drives, but currently only one set of
requirements is supported. The example below specifies requirements for a single Remote Drive to be used in
Composed Node.

{
 "RemoteDrives": [{
 "CapacityGiB": 80,
 "iSCSIAddress": "iqn.oem.com:fedora21",
 "Master": {
 "Type": "Snapshot",
 "Resource": {
 "@odata.id": "/redfish/v1/Services/1/LogicalDrives/1"
 }
 }
 }]
}

Table 7. Attribute Definition (for Remote Drive)

Key
JSON
type

Allowed
values Nullable Notes, limitations

CapacityGiB Number Yes Positive value expected, required if Master Drive supplied. Should
be at least the size of Logical Drive used as Master Drive.

iSCSIAddress String No Required. Defines TargetIQN of RemoteTarget. When no Master
Drive supplied - it defines IQN of an existing target. Otherwise
defines IQN to be set for new Remote Target (should be unique in
Pod Manager).

Master Object Yes
Master ->
Type

String "Snapshot",
"Clone"

No One of allowed, enumerated values. Required if Master Drive
supplied.

Master ->
Address

Object No Pod Manager URI of discovered Logical Volume. Required if
Master Drive supplied.

 Using existing remote drive

To use an existing Drive it is necessary to:

• set iSCSIAddress to TargetIQN of existing target,
• do not provide Master, or set it to null

{
 "RemoteDrives": [{
 "iSCSIAddress": "iqn.oem.com:fedora21"
 }]
}

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
32 Document Number: 336815-001

 Using a Master Drive for fresh remote drive creation

To use a fresh Drive created from a Master Drive, it is necessary to:

• set CapacityGiB to define the capacity of the new Remote Drive that is at least Master Drive size
• set Address to IQN that is unique in Pod Manager
• set Master -> Type to "Snapshot" or "Clone"
• set Master -> Resource to valid Pod Manager URI of Logical Drive to be used as source Drive

{
 "RemoteDrives": [{
 "CapacityGiB": 80,
 "iSCSIAddress": "iqn.oem.com:fedora21",
 "Master": {
 "Type": "Snapshot",
 "Resource": {
 "@odata.id": "/redfish/v1/Services/1/LogicalDrives/1"
 }
 }
 }]
}

 Specifying local drive requirements
The JSON template may contain requirements for multiple Local Drives (represented by Device resource under
System Adapters or by Simple Storage Device under System Simple Storage). The example below specifies
requirements for a single Local Drive to be used in Composed Node.

{
 "LocalDrives": [{
 "CapacityGiB": 100,
 "Type": "HDD",
 "MinRPM": 5400,
 "SerialNumber": "12345678",
 "Interface": "SATA",
 "Resource": {
 "@odata.id": "/redfish/v1/Systems/1/Adapters/1/Devices/1"
 },
 "Chassis": {
 "@odata.id": "/redfish/v1/Chassis/1"
 }
 }]
}

Table 8. Attribute Definition (for Local Drive)

Key JSON type Allowed values Nullable Notes, limitations
CapacityGiB Number Yes Positive value expected
Type String "HDD", "SSD", "NVMe" Yes One of allowed, enumerated values
MinRPM Number Yes Positive integer value expected
SerialNumber Number Yes
Interface String "PCIe", "SAS", "SATA" Yes One of allowed, enumerated values
Resource Object Exact location of a single Device. Yes See Location requirements section
Chassis Object Exact location of a single Chassis. Yes See Location requirements section

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 33

Allocation assumptions:

• Which Local Drives will meet supplied requirements?
− located on the same computer system as other resources
− with at least CapacityGiB
− with exact match on Type
− with at least MinRPM
− with exact SerialNumber
− with exact Interface

 Specifying Ethernet interface requirements
The JSON template may contain requirements for multiple Ethernet Interfaces. The example below specifies
requirements for a single Ethernet Interface to be used in Composed Node.

{
 "EthernetInterfaces": [{
 "SpeedMbps": 1000,
 "PrimaryVLAN": 100,
 "VLANs": [{
 "VLANId": 100,
 "Tagged": false
 }],
 "Resource": {
 "@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1"
 },
 "Chassis": {
 "@odata.id": "/redfish/v1/Chassis/1"
 }
 }]
}

Table 9. Attribute Requirement (for Ethernet Interfaces)

Key JSON type Allowed values Nullable Notes, limitations
SpeedMbps Number Yes Positive integer value expected
PrimaryVLAN Number Yes Positive integer value expected
VLANs Array[Object] Yes Null value will be interpreted as absence of this key.

Empty array [] will clear all existing vlans, excluding
Reserved VLANs

VLANs ->
VLANId

Number No Positive integer value expected

VLANs ->
Tagged

Boolean true, false No Boolean value

Resource Object Exact location of a
single Ethernet
Interface.

Yes See Location requirements section

Chassis Object Exact location of a
single Chassis.

Yes See Location requirements section

Allocation assumptions:

• Which Ethernet Interfaces will meet supplied requirements?
− located on the same Computer System as other resources
− with at least SpeedMbps
− ones that are connected with SwitchPorts (when VLANs section is provided)

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
34 Document Number: 336815-001

 Reserved VLANs

It is possible to restrict the usage of some vlans by changing the configuration file located in /etc/pod-
manager/allocation.json.

Example file looks like:

{
 "ReservedVlanIds": [170, 4088, 4091, 4094]
}

Where 170, 4088, 4091, 4094 are VLANs which are reserved. Reserved VLANs have the following implications:

• Allocation JSON cannot contain such VLANs and such requests result in an error
• Reserved VLANs are not deleted during allocation
• Reserved VLANs are not deleted during disassembly

 Allocation algorithm
Node composition starts with HTTP POST request of the JSON template on
/redfish/v1/Nodes/Actions/Allocate Composed Node Collection Action URI on the Pod Manager Service.
If the JSON template is well-formed and contains a supported set of requirements, the allocation process starts.

Four major scenarios are currently supported:

• Allocating resources for Composed Node to be booted from Local Drive.
• Allocating resources for Composed Node to be booted from existing Remote Drive.
• Allocating resources for Composed Node to be booted from Remote Drive that need to be created.
• Allocating resources for Composed Node with VLAN requirements specified. This scenario is used with one

of the other three.

The allocation process is preceded by a general verification of JSON template that checks if the requested node
can be realized by available resources and consists of:

• Selecting and allocating a Computer System that contains resources matching template requirements for
Processors, Memory, Local Drives and Ethernet Interfaces.

• Selecting or creating a Remote Drive to be used with a previously selected Computer System and allocating
it.

 Detailed process of selecting and allocating a Computer System for a Composed
Node

1. Find all Computer Systems that are not yet allocated (not used by any other allocated Composed Node) with
Status Enabled and Health OK.

2. Filter Computer Systems by specified Resource and Chassis (if supplied in template).
3. Filter Computer Systems by Processors: return all Computer Systems that contain at least a requested

quantity of Processors that meet requirements (if supplied in template):

• Exactly matching requested model,
• Exactly matching requested brand,
• With at least requested number of cores,
• With at least requested frequency,
• Exactly matching requested instruction set.

4. Filter Computer Systems by Memory: return all Computer Systems with at least the total requested size of
memory located on the Memory Modules that meet requirements (if supplied in template):

• Memory of exactly requested dimm device type,
• With at least requested speed MHz,

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 35

• With exact requested manufacturer,
• With at least requested data width bits.

5. Filter Computer Systems by Local Drives: return all Computer Systems that contain for each requested
Drive one distinct Device meeting requirements (if supplied in template):

• With at least requested capacity specified,
• Exactly matching requested Drive type,
• With at least requested min RPM,
• With exact requested serial number,
• With exact Interface.

6. Filter Computer Systems by Ethernet Interfaces: return all Computer Systems that contain for each
requested Ethernet Interface one distinct Ethernet Interface meeting requirements (if supplied in
template):

• With at least requested speed.
• If a VLANs section is provided then Computer Systems with Ethernet Interfaces which are not connected

with EthernetSwitchPorts are filtered out (as described below).
7. A first Computer System from resulting filtered collection is then allocated to be used in Composed Node.

 Connection between Computer System's EthernetInterface and
EthernetSwitchPort

In order to enable particular VLAN usage on Composed Node, there is a need to map the Ethernet Switch Port and
Computer System's Ethernet interface. This mapping is done using a MAC address as an identifier. Fields used for
this mapping:

• NeighborMAC on EthernetSwitchPort resource
• MacAddress on EthernetInterface resource

If the Computer System's Ethernet Interface and Ethernet Switch Port properties contain the same values they are
treated as connected.

 Only Computer Systems with Ethernet Interfaces which are connected to Ethernet Switch Ports can be
used in allocation with a specified VLANs requirement.

 Detailed process of selecting Remote Drives

1. Determine what type of Remote Drive is requested.
2. When requesting existing Remote Drive:

a. Find all Targets that are not yet allocated (not used by any allocated Composed Node).
b. Find first Target that exactly matches the requested IQN and allocate it to be used in Composed Node.

3. When requesting a new Remote Drive:

a. Check if Target does not exist with requested IQN to be set for newly created target.
b. Check if Logical Drive requested as Master Drive exists on Storage Service handled by Pod Manager, and

select this Storage Service to handle new Target creation.
c. Find all Logical Volume Groups meeting requirements:

1. Located on selected Storage Service
2. Having free space of at least requested capacity for a new Remote Drive

d. A first Logical Volume Group from resulting filtered collection is. selected as a placement for new Logical
Volume, which will be exposed as a new Target (Remote Drive)

e. A new Logical Volume is created on selected Logical Volume Group (as a snapshot or as a clone).
f. A new Target is created on top of a newly created Logical Volume.
g. Newly created Target is allocated to be used in Composed Node.

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
36 Document Number: 336815-001

 Post-allocation scenarios

A Composed Node is created as a new REST resource at /redfish/v1/Nodes/{NodeId} when a proper
Computer System is found and is successfully allocated. State of Composed Node is set to "Allocated". An
"Allocated" Composed Node is a Pod Manager proposition that can be either accepted or rejected.

• If accepted, the user has to send a HTTP POST request on ComposedNode.Assemble action of the proposed
Composed Node to assemble it:
− If no Remote Drive was requested, a Composed Node's state is set to "PoweredOff".
− When Remote Drive is requested, Composed Node remains "Assembling" until Target creation

finishes. When Target is successfully assembled to be used with the Composed Node, node's state is set
to "PoweredOff".

− Assembly process doesn't end with sending power on request, it is necessary to perform a
ComposedNode.Reset action to power on a Composed Node after assembly.

• If rejected, the user can continue sending HTTP POST requests of JSON template on
/redfish/v1/Nodes/Actions/Allocate to create more proposals to pick from. When finding the right pick, it is
recommended to send HTTP DELETE on all rejected proposals of Composed Nodes to free the resources
allocated by them.

 Disassembly

Upon disassembly of Composed Node, several actions are performed:

• A Graceful shutdown request is sent to Computer System.
• All VLANs (except for reserved ones – refer to Reserved VLANs) are removed from associated Ethernet

switch ports associated with Computer System's Ethernet Interfaces.
• The Computer System is deallocated.
• The Remote Target is deallocated (when used in composition).

 Using Pod Manager with RMM service
Pod Manager requires that RMM software be installed on external machine and meet the following requirements:

• Host should be part of VLAN 4094
• Hostname must start with a string "rmm"
• Pod Manager certificate is present in /etc/rmm/podm.cert - for more information about security refer to

Section 4.2, Securing Pod Manager southbound API.

 Rack lifecycle policy (Chassis of type Rack)

 Creating new Rack resource

The following rules are used for creating a new Rack resource:

• When a new Drawer (Chassis of type Drawer) is discovered:
− If discovered Drawer is reporting 'null' as 'ParentLocationId' Drawer is attached to Pod (Chassis

of type Pod).
− If Rack with the rack location that this Drawer is reporting (under 'ParentLocationId') does not

exist, a new Rack resource is created in Pod Manager REST API and this Drawer is attached to it.
− If the Rack with the rack location that this Drawer is reporting (under 'ParentLocationId') does

exist, the Drawer is attached to this Rack resource.
• When a Drawer has been rediscovered (eg. after slow-poll refresh):

− If Rack with the rack location that this drawer is reporting does not exist, a new Rack is created in Pod
Manager REST API and this Drawer is attached to it.

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 37

− If Rack with the rack location that this Drawer is reporting (under 'ParentLocationId') does exist, Drawer
is attached to this Rack resource.

• When new RMM service is discovered:
− The New Rack resource is created in the Pod Manager REST API and RMM attributes are connected to it.

All racks with the same 'LocationId', but without RMM (attached) are removed and the Drawers
directly linked to those Racks are moved to the newly created rack resource.

• When the RMM has been rediscovered (eg. after slow-poll refresh):
− If RMM's Rack changes its location id (in RMM: 'RackPuid' field), Pod Manager's Rack resource's

parameters 'RackPuid' and 'LocationId' are being updated to the new values. All drawers
contained by this Rack are moved under Rack identified by their respective parent location id. When
there is no single Rack with an old location id value, the new Rack is being created on Pod Manager.
Drawers can have their 'ParentLocationId' updated via RMM <-> PSME <-> Pod Manager events
notification channel or slow-poll refresh.

 Rack resource removal

The Rack resource will be deleted under the following conditions:

• When a removed Drawer is the last one that was attached to the Rack and Rack and does not have the RMM
service asociated with it.

• When RMM service has disappeared (eg. machine with RMM was turned off) and the Rack does not contain
any Drawers.

 Deep discovery
 In Intel® RSD 2.2 reference code, all discovery performed by PSME is done out-of-band (OOB). This default

OOB discovery enables all RSD POD Manager functionality. The legacy RSD 1.x in-band discovery tool
(LUI) is included in the reference code and may be used as an alternative to the OOB discovery. This
section describes how to build and configure in-band discovery tool.

 Introduction
In general, PSME is responsible for exposing information about Computer Systems. Currently, BMC does not
provide all required information. As a workaround, a tiny Linux* utility image (LUI) can be used to boot the system
and perform deep discovery of resources. This image includes a PSME compliant service that Pod Manager can
read from. Pod Manager reads the basic BMC collected data from PSME, then boots LUI on each computer system.
The data visible in the PSME APIs will only be the BMC collected data, whereas the Pod Manager merges both the
basic BMC data from the PSME and the additional data discovered from the LUI environment.

 General requirements, assumptions and limitations
• Pod Manager and PSME have DiscoveryState property
• During the deep discovery process, the computer system cannot be used for any other processes (for

example - allocation)
• Networks/VLANs used:

− iPXE/Deep discovery: Storage Access Network
− LUI -> Pod Manager: Separate dedicated VLAN

• To prevent power and bandwidth spikes, the deep discovery process is staggered. How staggering is
performed is configurable.

• Resource properties should be obtained either from PSME or from deep discovery, but not from both. It is
necessary to avoid overwriting data during the slow poll process. Expected data sources for specific
properties are currently hardcoded, but should be configurable in future. If customization is required, source
code has to be changed and the application rebuilt.

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
38 Document Number: 336815-001

 Building Linux* Utility Image (LUI)
Please refer to Intel® Rack Scale Design PSME User Guide to get information regarding prerequisites.

 Preparing rootfs directory

Please refer to Intel® Rack Scale Design PSME User Guide to get information on preparing rootfs directory.

 Building LUI

Refer to the Intel® Rack Scale Design PSME User Guide in Table 2 to get information on building LUI.

 Configuring deep discovery
To enable Deep Discovery, Pod Manager requires LUI. It should be provided at:

/opt/pod-manager/wildfly/discovery/bzImage

Refer to Intel® Rack Scale Design PSME User Guide for the LUI building process.

General configuration of discovery is located at /etc/pod-manager/discovery.json.

{
 "MaxComputerSystemsCountPerDrawerBeingDeepDiscovered": 1,
 "DeepDiscoveryEnabled": true,
 "DiscoveryIntervalSeconds": 600
}

 Deep discovery configuration notes

• It is possible to enable or disable deep discovery. If disabled, all data would be read from PSME.
• It is possible to configure the number of computer systems per drawer that could be deep discovered at the

same time. It could be set to lower value to prevent overcurrent and power spikes. Setting this property to
higher value will yield an overall shorter time needed to perform deep discovery on all computer systems.

• It is possible to trigger a deep discovery process manually; manual triggering is queued along with automatic
triggering. MaxComputerSystemsCountPerDrawerBeingDeepDiscovered configuration property defines
threshold value per Drawer for both manual and automatic process triggering.

 InBand Service support
Pod Manager supports InBand / OOB data aggregation mechanism for a subset of Redfish resources that can have
a representation originating from either PSME (OOB) or InBand Service or both. Aggregation is performed on
ComputerSystem and its following subresources: Processor, Memory, EthernetInterface,
SimpleStorage/SimpleStorageDevice, Storage/StorageController and on Chassis/Drive
resources related to the particular ComputerSystem that gets aggregated.

 How Pod Manager detects InBand Service
 Refer to README.md of InBand Service example code bundled with the Pod Manager source code to

deploy your own InBand Service instance.

It is assumed that a single InBand Service instance will handle a set of ComputerSystems that utilize the same
agent to provide data via InBand channel (one InBand Service should be deployed per agent type). Pod Manager
will detect InBand Service when provided with static endpoint configuration via /tmp/services.list file
containing a line with InBand Service endpoint, e.g.:

https://127.0.0.1:8448/redfish/v1/ inband

The Pod Manager will subscribe to events from this service and will discover its resources. The resources will get
updated independently from other services.

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 39

 Enabling aggregation of InBand Service resources
The aggregation feature is disabled by default and can be enabled via configuration file:

/etc/pod-manager/inband-service-config.json

by setting its content to:

{
 "InBandServiceSupportEnabled": true
}

 How the resources get aggregated
InBand Service resources are discovered independently and are stored separately from their OOB counterparts.
The aggregation is performed only when a primary ComputerSystem (discovered via OOB) has a matching
representation in InBand resources (based on ComputerSystem's UUID property).

 Aggregation is performed on demand, upon GET request on resources from Pod Manager Northbound
API.

 Properties aggregation

The aggregation is done by getting the values from OOB representation and then overlaying it with property values
from InBand representations. Simple properties are merged using following aggregate condition: * if the existing
value is null or an empty collection, use overlay value, * if the overlay value is not null then use overlay value (prefer
InBand value over OOB) * in other case use existing value

Caution: When using any InBand Service implementation make sure that it exposes full and meaningful
representation of resources to avoid unintended override of properties obtained via OOB (this
includes ComplexTypes and inline expanded collections).

 OEM data aggregation

The Pod Manager enables merging of Oem namespaces that are specific for a given inband agent (and different
than Intel_RackScale).

Consider two ComputerSystems are matched by the UUID and have some additional data available in the custom
Oem space on InBand Service:

Oem from OOB (PSME):

{
 "Oem": {
 "Intel_RackScale": {
 "@odata.type": "#Intel.Oem.ComputerSystem",
 "ProcessorSockets": 2
 }
 }
}
Oem from InBand Service:
{
 // other properties removed for brevity
 "Oem": {
 "SomeOem_org.OemSpace": {
 "SomeProp": "SomeVal"
 }
 }
}

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
40 Document Number: 336815-001

Merged Oems on Pod Manager:

{
 // other properties removed for brevity
 "Oem": {
 "Intel_RackScale": {
 "@odata.type": "#Intel.Oem.ComputerSystem",
 "ProcessorSockets": 2
 },
 "SomeOem_org.OemSpace": {
 "SomeProp": "SomeVal"
 }
 }
}

 Subresource collections aggregation

Apart from properties and Oem aggregation, the linked subresources collections get aggregated using their unique
identifiers. Various subresources are uniquely identified using different property values:

Table 10. Subresource Identification Table

Resource Unique Identifier
ComputerSystem UUID
Processor Socket
Memory DeviceLocator
EthernetInterface MACAddress
SimpleStorage UEFIDevicePath
SimpleStorageDevice Name
Storage Assumed always one per ComputerSystem
StorageController DurableName (when in UUID format), source URI otherwise
Chassis Using matching ComputerSystem's ContainedBy property to gain access to its Drives
Drive Last path segment of source URI

Based on these values Pod Manager is able to determine the contents of subresource collections (e.g.
EthernetInterfaces) and include: * resources present only in OOB (no matching InBand representation using
MACAddress property) * resources present both in OOB and InBand (matched by MACAddress, resource gets
merged) * resources present only in InBand Service (no matching OOB representation using MAC Address property)

 Link Aggregation Group (LAG)
Link aggregation group is a technique used in a high-speed-backbone network to enable the fast and inexpensive
transmission of bulk data. The best feature of link aggregation is its ability to enhance or increase network capacity
while maintaining a fast transmission speed and not changing any hardware devices, thus reducing cost.

 Creating LAG
A LAG can be created by combining at least one physical upstream port resulting in creating an additional virtual
port. To create a new LAG using Pod Manager REST API, it is necessary to create and supply a proper JSON
template to Pod Manager by performing an HTTP POST request on the Ethernet Switch Port Collection resource
located at:

/redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 41

Sample JSON template:

{
 "PortId" : "LagPort",
 "PortMode" : "LinkAggregationStatic",
 "Links" : {
 "PortMembers" : [{
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/10"
 }, {
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/11"
 }
]
 }
}

Table 11. Attribute Requirement (for LAG)

Key
JSON
type Allowed values Nullable Notes, limitations

PortId String Yes Switch port unique identifier.
Caution:
The maximum value must not exceed 16
characters and must not contain white
spaces.

PortMode String "LinkAggregationStatic",
"LinkAggregationDynamic"

Yes Port working mode. Currently only
LinkAggregationStatic mode is
supported.

PortMembers Array[Link] Yes Array of ports being member of LAG. Must
be placed in Links object. There must be
at least one port. All ports contained in
this array must have:
• "PortClass": "Physical"
• "PortType": "Upstream"
• The same speed.

None of these ports can be a member of
another LAG.
Empty arrays will be interpreted as
absence of this requirement key.

Response after the LAG has been successfully created should contain the location to the newly created Ethernet
Switch Port:

HTTP/1.1 201 Created

Location: <PROTOCOL>://<IP>:<PORT>/redfish/v1/EthernetSwitches/1/Ports/99

 Modifying LAG
To modify LAG using Pod Manager REST API, it is necessary to create and supply the proper JSON template to Pod
Manager by performing an HTTP PATCH request on the existing Ethernet Switch Port resource located at:

/redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}

If Switch Port modification JSON includes Links to PortMembers, then the modified Ethernet Switch Port needs to
be a proper LAG in order for this request to be successful:

• "PortClass" must be set to "Logical"
• "PortMode" must be set to "LinkAggregationStatic"
• "PortMembers" array cannot be empty.

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
42 Document Number: 336815-001

In the following example, port 12 is added as a member to the LAG along with changing additional properties:

Sample JSON template:

{
 "AdministrativeState" : "Up",
 "LinkSpeedMbps" : 40000,
 "FrameSize" : 1500,
 "Autosense" : false,
 "Links" : {
 "PrimaryVLAN" : {
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/99/VLANs/1"
 },
 "PortMembers" : [{
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/10"
 }, {
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/11"
 }, {
 "@odata.id" : "/redfish/v1/EthernetSwitches/1/Ports/12"
 }
]
 }
}

Table 12. Attribute Requirement (for VLAN)

Key
JSON
type

Allowed
values Nullable Notes, limitations

AdministrativeState String "Up", "Down" No Port link state forced by user.
LinkSpeedMbps Number Nonnegative

number
No Port speed.

FrameSize Number Nonnegative
number

No MAC frame size in bytes.

Autosense Boolean true, false No Indicates if the speed and duplex is automatically
configured by the NIC

PrimaryVLAN Link No Link to VLAN available on this port (only these
VLANs are acceptable).

PortMembers Array[Link] No Array of ports being member of LAG. Must be
placed in Links object. All ports contained in this
array must have:
• - "PortClass": "Physical"
• - "PortType": "Upstream"
• - the same speed

None of these ports can be a member of another
LAG.’
If PortMembers array is not present in PATCH
request, list of port members will not be changed.
Otherwise, there must be at least one port.

All of the above properties are optional. If not provided, they won't be changed.

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 43

Response after success LAG modification:

HTTP/1.1 204 No Content

 Removing LAG
To remove LAG using the Pod Manager REST API, it is necessary to perform an HTTP DELETE request on the
existing Ethernet Switch Port resource located at:

/redfish/v1/EthernetSwitches/{switchID}/Ports/{portID}
Response after successful LAG port removal:
HTTP/1.1 204 No Content

 Limitations
• LAGs can be created only from non-LAG ports
• LAGs can be created only on upstream physical ports that have matching speeds
• Creating a LAG on selected ports removes those ports' VLAN memberships

 Pod Manager Northbound Interface Eventing
Pod Manager provides eventing feature enabled on its northbound interface (implementation has been based on
eventing model defined by Redfish). Events generated by PodM can be utilized by user for getting knowledge about
changes of PodM data model.

 Supported events
Currently Pod Manager is able to generate following kind of events:

• ResourceAdded - event generated when new Redfish resource will be detected by PodM
• ResourceUpdated - event generated when PodM will detect that already known Redfish resource has been

updated
• ResourceRemoved - event generated when PodM will detect that already known Redfish resource has been

deleted
• StatusChange - event generated when PodM will detect that State of already known Redfish resource has

been changed
• Alert - event generated when PodM will detect that Status of already known Redfish resource enters

Critical state

 Event subscription
The user can control subscriptions life cycle using following HTTP operations: * POST on
/redfish/v1/EventService/Subscriptions (subscription creation) * DELETE on
/redfish/v1/EventService/Subscriptions/{subcriptionID} (subscription deletion)

 Be aware your subscription might be unregistered automatically in any case when Pod Manager (PodM)
cannot reach subscription endpoint after some #repeated retries.

Consider following scenario: - the user is registering new subscription (provided destination is http://inactive-
listener – since the EventSubscription is a Redfish resource the PodM will generate ResourceAdded event -
PodM will try to deliver a generated event to the http://inactive-listener – since this link http://inactive-listener is
not active, the PodM will try to redeliver the event - number of redelivery retries is limited to the value described by
DeliveryRetryAttempts - when the threshold defined by the DeliveryRetryAttempts is reached a
subscription related with the link http://inactive-listener will be automatically unregistered.

'#repeated retries' value has been described as #repeated retries attribute and it is stored in
/etc/podm/event.json file.

http://inactive-listener/
http://inactive-listener/
http://inactive-listener/
http://inactive-listener
http://inactive-listener/

Features

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
44 Document Number: 336815-001

For more information about configuring 'DeliveryRetryAttempts' and other related attributes please refer to
Customization

 Registering new subscription
Sample subscription creation request can look like:

{
 "Name" : "My Subscription",
 "Destination": "http://eventlistener.com:8000",
 "EventTypes": [
 "ResourceAdded", "ResourceRemoved", "ResourceUpdated", "Alert",
"StatusChange"
],
 "Context": "This is my event subscription",
 "Protocol": "Redfish",
 "OriginResources" : []
}

Where: * Name - is name of your subscription

• Destination - is reference to the system which is listening for events generated by Pod Manager
• EventTypes - events types which will be observed by particular subscriber. Any other events generated on

Pod Manager side will not be delivered to this subscriber.
• Context - a client-supplied string that is stored with the event destination subscription.
• Protocol - the only one value currently supported is 'Redfish'
• OriginResources - A list of resources for which the service will send events specified in EventTypes

array. Empty array or NULL is interpreted as subscription for all resources and assets in subsystem.

 Booting with iSCSI Out of Band feature
OOB iSCSI Boot is a way to boot node from iSCSI Target using BMC/BIOS.

 Booting from iSCSI
To boot from Out of Band iSCSI user needs to have PSME and POD Manager at least in 2.1.3 version. The only
requirement is that Network Device Function on REST API is available on Computer System and
"BootSourceOverrideMode" property for this System is set to UEFI.

There are two ways to boot from remote target:

• Automatically during node composition (when requesting remote drive in allocation JSON). Additional
Network Device Function will by patched with proper iSCSI data be POD Manager.

• Manually (for already assembled node) when no remote drive was requested in allocation request. User has
to patch Computer System and Network Device Function related to Node with iSCSI data. To avoid
overwriting iSCSI data by POD Manager it has to be done after #ComposedNode.Assemble and before
#ComposedNode.Reset action

 Setting Chap data
To boot using Chap data it is needed to PATCH Remote Target with "ChapUser" and "Secret" property. The
same data have to be send to Network Device Function before #ComposedNode.Reset action via PATCH request.

Note: "Secret" and "MutualSecret" properties won't be exposed on REST API (will be visible as NULL).

Features

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 45

 Setting boot data
Boot data on Computer System will be set by POD Manager in assembly process depending on allocation request
and available data on POD Manager REST API.

"BootSourceOverrideTarget" will be different depending on allocation request:

• When not requesting RemoteTarget, "BootSourceOverrideTarget" will be set to "Hdd".
• When requesting RemoteTarget:

− When Computer System used to compose the Node has Network Device Function, property
"BootSourceOverrideTarget" will be set to "RemoteDrive" before assembly process.

− When Computer System used to compose the Node does not have Network Device Function, property
"BootSourceOverrideTarget" will be set to "Pxe" before assembly process.

"BootSourceOverrideEnabled" will be set to "Continuous".

“BootSourceOverrideMode” will not be changed.

Be aware that “BootSourceOverrideMode” on Computer System should be set to “UEFI” to boot using this
feature. This may require changing this property, by sending PATCH on Computer System, between
#ComposedNode.Assemble and #ComposedNode.Reset. Due to different hardware behavior, it is recommended
to check and eventually set this value in every assemble process.

 Limitations
• Every manual change on "BootSourceOverrideEnabled" and "BootSourceOverrideTarget" on

Computer System between #ComposedNodeCollection.Allocate and #ComposedNode.Assemble will
be overwritten by POD Manager while #ComposedNode.Assemble task.

• Property "BootSourceOverrideMode" is not changed by POD Manager during allocation.
• Property "BootSourceOverrideMode" will be set to “Legacy” only while DeepDiscovery process.
• Currently POD Manager is able to boot using OOB iSCSI only when Computer System related with Node has

Network Device Function and this System's "BootSourceOverrideMode" property is set to UEFI.

Appendix

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
46 Document Number: 336815-001

A.1 Database status across Pod Manager restarts
Pod Manager retains its asset inventory upon restart. To clear Pod Manager Database upon Pod Manager Startup
user should execute a script that, by default, is installed with .deb package pod-manager:

sudo /usr/bin/pod-manager-clean-database-on-next-startup

 The Pod Manager retains asset inventory upon startup. This could lead the Pod Manager to display
inaccurate information on its RESTful API interface. Intel recommended to clear the Pod Manager
database to avoid the following:

• Startup functionality implications
− All assets that were reported in the Available state under REST API before Pod Manager shut down are

still exposed after a subsequent startup of Pod Manager
− Pod Manager sets InTest state for all assets available after startup in Pod Manager and originating

from RMM/PSME/Storage services
− Pod Manager performs rediscovery of RMM/PSME/Storage services that will result in respective state

changes of rediscovered assets
• Deep Discovery functionality implications

− Assets successfully fetched via LUI service remain unchanged. The user MUST trigger the deep
discovery process manually to refresh the Deep Discovery dataset

− Pod Manager assumes that Deep Discovery should be triggered on all Computer Systems that are in
DeepInProgress state upon startup

− Pod Manager will not trigger Deep Discovery for Computer Systems that are in "InTest" state
− If Deep Discovery is enabled, then Pod Manager will trigger Deep Discovery forcing asset rediscovery

(after respective state change)
− Computer Systems in DiscoveryState: DeepInProgress are put into InTest state
− Computer Systems in DiscoveryState: DeepFailed are left intact

• Composed Nodes / Allocation functionality implications
− During the allocation process Pod Manager does not take into consideration any assets with InTest state
− Composed Nodes in Allocating, Allocated or Assembling state during Pod Manager startup are

presumed Failed
• Implication on actions performed on resources

− Actions on assets with InTest state cannot be performed, and yield an HTTP 409 Conflict response from
Pod Manager

Appendix

 Intel® Rack Scale Design POD Manager (PDOM)
December 19, 2017 User Guide v2.2
Document Number: 336815-001 47

A.2 Source Code Compilation (Ubuntu)

A.2.1 Key components
Table 13. Source Code Compilation key Components

Component Name Version
Compiler OpenJDK 1.8
Java EE Full Profile 7.0
Libraries cling

 guava
 hibernate
 jackson-annotations
 jackson-core
 jackson-databind
 jackson-datatype-jsr310
 jackson-jaxrs-base
 jackson-jaxrs-json-provider
 jackson-module-jaxb-annotations
 javassist
 liquibase
 modelmapper
 blueprints-core
 logback-classic
 logback-core
 commons-beanutils
 commons-collections
 commons-digester
 commons-io
 commons-lang
 commons-logging
 commons-validator

2.0.1
 18.0
 5.0.7.Final
 2.6.0 (from other jackson libraries), 2.6.3
 2.6.3
 2.6.3
 2.6.3
 2.6.3
 2.6.3
 2.6.3
 3.16.1-GA
 3.5.2
 0.7.6
 2.6.0
 1.1.1
 1.1.1
 1.8.3
 3.2.2
 1.8.1
 2.4
 3.6
 1.2
 1.5.0

Application server WildFly 10.0.0.Beta1
Database PostgreSQL 9.5

A.3 OpenJDK 1.8 Java Development Kit installation
At the start, ensure the OpenJDK PPA repository is correctly configured in your system. For details refer to Section
2.3.1, Adding PPA repository for OpenJDK (Ubuntu v14.04.4 only).

Install the OpenJDK 1.8 Java Development Kit package:

sudo apt-get install openjdk-8-jdk-headless

A.3.2 Verifying OpenJDK installation
Check default javac version by typing:

javac -version

If the above command does not show openjdk version 1.8, execute the following command to set Java defaults:

sudo update-alternatives --config javac

A.3.3 PostgreSQL 9.5 installation
Refer to Section 2.4 PostgreSQL 9.5 installation of this document.

Appendix

Intel® Rack Scale Design POD Manager (PDOM)
User Guide v2.2 December 19, 2017
48 Document Number: 336815-001

A.3.4 Compilation of Pod Manager application
On the development machine, change directory to the Pod Manager source's root and use the gradle build tool* to
compile the Pod Manager package:

./gradlew buildDeb

The above command creates the necessary DEB packages under source root directory which are used to install Pod
Manager.

 If applicable, the user should pass the appropriate proxy information to the gradlew script through the "-
DproxyHost= -DproxyPort=" option.

Caution: In a rare case, the command can fail with an SSL exception, which is a known issue on Ubuntu with
OpenJDK 1.8, arising from the "/etc/ssl/certs/java/cacerts" file NOT being generated
properly.

If the scenario described above occurs, execute the following command:

sudo /var/lib/dpkg/info/ca-certificates-java.postinst configure

Thereafter, re-run the command used for compilation.

To find all packages generated by above command, navigate to source root directory and execute:

find ./ -iname *.deb

A.3.5 Configuration of ISC DHCP server
The recommended ISC DHCP Server configuration is provided by Pod Manager Package and it is located under
following path:

/etc/dhcp/dhcpd-pod-manager.inc

The default interfaces list on which ISC DHCP Server is listening is available in the following file

/etc/default/isc-dhcp-server

To change the interfaces list, change the following line to match the user configuration

INTERFACES="eth0.4091 eth0.4093 eth0.4094 eth0.4088"

	1 Introduction
	1.1 Intended audience
	1.2 Conventions
	1.3 Terminology
	1.4 Related Documents
	1.5 Typographical conventions

	2 Installation
	2.1 Core Ubuntu* installation
	2.2 Configure server internet access
	2.3 OpenJDK 1.8 Java Runtime environment installation
	2.3.1 Adding PPA repository for OpenJDK (Ubuntu v14.04.4 only)
	2.3.2 Installing OpenJDK Java Runtime environment
	2.3.3 Verifying OpenJDK installation

	2.4 PostgreSQL 9.5 installation
	2.4.1 Adding repository for PostgreSQL
	2.4.2 Installing PostgreSQL 9.5
	2.4.3 Verifying PostgreSQL 9.5 installation

	2.5 Additional package installation
	2.6 Custom iPXE
	2.6.1 Custom iPXE compilation
	2.6.2 Custom iPXE installation

	2.7 Setting up GRUB
	2.8 NTP configuration
	2.9 Package signature
	2.9.1 Signing a package
	2.9.2 Checking package signature
	2.9.3 Automated installation with check of package signature

	2.10 Installation of Pod Manager using DEB packages

	3 Configuration
	3.1 Discovery
	3.1.1 Requirements
	3.1.1.1 Hostname based discovery using DHCP
	3.1.1.2 Service name based discovery using SSDP

	3.1.2 Customization

	3.2 Event handling
	3.2.1 Northbound
	3.2.1.1 Southbound

	3.2.2 Customization
	3.2.3 Impact on Composed Node status

	3.3 Service root UUID configuration
	3.4 Storage service configuration
	3.4.1 Storage service working on drawer's computer system
	3.4.2 Storage service working on external host attached to rack's storage network

	3.5 Network management
	3.6 Retention policy

	4 Security
	4.1 Securing Pod Manager northbound API
	4.1.1 Basic authentication management

	4.2 Securing Pod Manager southbound API
	4.2.1 Pod Manager as server
	4.2.2 Pod Manager as client
	4.2.3 Detailed configuration

	4.3 Certificate management
	4.3.1 Creating client certificate
	4.3.2 Importing client certificate
	4.3.3 Distributing CA certificate
	4.3.3.1 Provide RMM and PSME with CA certificate
	4.3.3.2 Provide storage service with CA certificate

	4.3.4 Using custom VAULT configuration

	5 Deployment
	5.1 Starting PostgreSQL service
	5.2 Starting Pod Manager Service
	5.3 Accessing Pod Manager REST API

	6 Features
	6.1 Composed node lifecycle management
	6.1.1 Composed node using JSON template
	6.1.2 Specifying requirements for a composed node
	6.1.3 General assumptions for allocation
	6.1.3.1 Location requirements

	6.1.4 Specifying processor requirements
	6.1.5 Specifying memory requirements
	6.1.6 Specifying remote drive requirements
	6.1.6.1 Using existing remote drive
	6.1.6.2 Using a Master Drive for fresh remote drive creation

	6.1.7 Specifying local drive requirements
	6.1.8 Specifying Ethernet interface requirements
	6.1.8.1 Reserved VLANs

	6.1.9 Allocation algorithm
	6.1.9.1 Detailed process of selecting and allocating a Computer System for a Composed Node
	6.1.9.2 Connection between Computer System's EthernetInterface and EthernetSwitchPort
	6.1.9.3 Detailed process of selecting Remote Drives
	6.1.9.4 Post-allocation scenarios
	6.1.9.5 Disassembly

	6.2 Using Pod Manager with RMM service
	6.2.1 Rack lifecycle policy (Chassis of type Rack)
	6.2.1.1 Creating new Rack resource
	6.2.1.2 Rack resource removal

	6.3 Deep discovery
	6.3.1 Introduction
	6.3.2 General requirements, assumptions and limitations
	6.3.3 Building Linux* Utility Image (LUI)
	6.3.3.1 Preparing rootfs directory
	6.3.3.2 Building LUI

	6.3.4 Configuring deep discovery
	6.3.4.1 Deep discovery configuration notes

	6.4 InBand Service support
	6.4.1 How Pod Manager detects InBand Service
	6.4.2 Enabling aggregation of InBand Service resources
	6.4.3 How the resources get aggregated
	6.4.3.1 Properties aggregation
	6.4.3.2 OEM data aggregation
	6.4.3.3 Subresource collections aggregation

	6.5 Link Aggregation Group (LAG)
	6.5.1 Creating LAG
	6.5.2 Modifying LAG
	6.5.3 Removing LAG
	6.5.4 Limitations

	6.6 Pod Manager Northbound Interface Eventing
	6.6.1 Supported events
	6.6.2 Event subscription
	6.6.3 Registering new subscription

	6.7 Booting with iSCSI Out of Band feature
	6.7.1 Booting from iSCSI
	6.7.2 Setting Chap data
	6.7.3 Setting boot data
	6.7.4 Limitations

	A Appendix

