Intel® IXP400 Software: VLAN and
QoS Application Version 2.0

Programmer’s Guide

October 2005

Document Number: 301925, Revision: 002
October 2005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Intel IXP400 Software may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECSs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This Programmer’s Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear
in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel, the Intel logo, and Intel XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2005, Intel Corporation. All Rights Reserved.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
2 Document Number: 301925, Revision: 002

http://www.intel.com

|
I nt6| Contents
®
O [0 o Yo [0 To3 T o PP 7
O V1Y o - LS L PSP T TS UO PP PPPPRPRN 7
1.2 SCOPE AN PUIMPOSE .. .iiieiiiiiieite et e e e ettt et e e e e e e e e e aa b e bbe et e e e e e aaaaesaaaaanbbbbasaeeaaaaaaaaeaaaanes 7
R T o] (0] 1)/ 1 1 TSP PP PP PPPPPPPPP 8
1.4 Related DOCUMENLSttt ettt et et e e e e e e e e et e bt et e e e eaaaaeesaaaannbbbbaeeeeaaaaaaaaaaaaanes 9
2.0 SOFtWAIE OVEIVIBW ...oiiiiiiiiiiiie ittt e e oottt ettt e e e e e e s e s s bbb bt tteeeeaaaaaesseaaabnsbbeabeeeaaaaesaaaannns 9
2% N U [Tox 1 o g = 1 1] 2 @ A= V= PR 9
2% T Y N VU Tod 1 o - 11 Y SO 9
2 T @ T S 3N U T 1o) =11 10
2.2 Software Architecture and High-Level DesSignoovvvveeviiiiiiiiiiiiieie e 11
3.0 802.1Q VLAN MOAUIE ..ottt ettt e e e e e e e e e s bbb e eeaaeeeas 12
3.1 INGress RUIES COMPONENTuuiiiiiiiiiieeeee sttt e e e e e e e e s et r e e e e eeeeesssansnbnreeareeeaaaeeeas 15
3.1.1 External Interactions and DePENdeNCIEScuuveiiiiiiiiieiiiiiie e 17
3.1.2 KEY ASSUMPLIONS .eeeiiitiiiiee ittt ettt ettt e ettt e e et e e e e e snb e e e e abbn e e e e e annees 17
3.2 VLAN Classification COMPONENT..........uvtiiiiiiiieeeiitiiee ettt e ettt e e st e e e s sbar e e e e s sbbeeeae e 17
3.2.1 External Interactions and DePendenCiIesc.uueeeriiiiiieiiiiiiee e 18
3.3 EQress RUIES COMPONENT......coitiiiiiiiiiiiie ettt ettt e e e reb e e e e stbb e e e e s aanbreeeeeans 19
3.3.1 External Interactions and DePENdENCIEScuuveeiiiiiiiieiiiiiie e 20
3.3.2 KEY ASSUMPLIONS ..eeiiitiieiee ittt ettt ettt ettt e e st e e e s e it e e e s anbe e e e e e annees 21
3.4 Database COMPONENT........uiieiiiiiiiee ittt e e et e e et e e e e s st be e e e e s st br e e e e s sabbeeeaeaanbneeeeeaas 21
3.4.1 External Interactions and DePENdENCIEScuuveeiiiiiiiieiiiiiie e 21
3.4.1.1 POrt Databasecoooiiiiiiiiiiiiiiie e e e 22
3.4.1.2 VLAN DAtabaseccccuiiiiiiiiiiieie et 22
3.4.2 Classification RUIES Databaseccccuuuiiiiiiiiiiieeee e 23
3.5 Management INterface COMPONENTccoiiuiiiiiiiiiiiie e a e 24
4.0 802.1p User Priority and QOS MOAUIEoeiiiiiiiiiiiiiii e 25
4.1 Traffic Shaper COMPONENT........ccoi i e e e e e e e e e e as 26
4.1.1 External Interactions and DependenCiescccevviiiiiiiiiieeeeii e 27
4.2 Priority Mapping COMPONENTuuiiiii et e s e e e e e e e e e e e e e e e e e e aeeeer s 28
4.2.1 External Interactions and DependenCiesc.ccoeviiiiiiiiieieeeeii e 29
4.2.2 KeY ASSUMPLIONSccoiiiiiiiiieeeieeeieiii s s s s s s e s e e e e e e e e e e e eeeeeeaeaeaa s tate e a e s e e eaeeaaaaaees 29
4.3 Management Interface COMPONENTcccoiiii i e 29
5.0 10CTL Enhancements for EtNernet DIIVEISoooiiiiiiiiiiiiieeee et 30
6.0 APIREIEIENCE ...ceiiiiiiii 31
6.1 Data Type DefiNtIONSccooiiiiiiiiieii e e e e e e eeeeeaee s 32
6.2 Function Prototype DefiNitiONS.........cooiiiiiiiiiiiiee e 37
Figures
1 Intel® IXP400 Software and Ethernet Device DIVEr OVEIVIEW...............ccvveereeeeeeirereeeereses 11
2 Software Architecture with the VLAN and QoS Example Code.........ccccoccvvieeiiiiiiieiiniiieee e, 12
3 802.1Q VLAN Module — COMPONENE VIEWccoiiiiiiiiiiiiiiiie ettt ettt 13
4 802.1Q FIAmME TYPES .. eeiiiiieieieiie ittt e e e e e et e et e e et e e e e e e s e s s s e e ettt te e e e e e e aeannrnrrnneeeene s 15

Programmer’s Guide

Intel® IXP400 Software: VLAN and QoS Application Version 2.0
Document Number: 301925, Revision: 002

October 2005
3

Contents int6|®

5 Flow Diagram for Acceptable Frame Type Filteringoooouiiiiiiiiiiiiie s 16
6 Flow Diagram for Ingress VLAN Membership Filteringcccuuueiiiiiiiiiiiiee s 17
7 Flow Diagram for VLAN ClasSIfiCatioN...........couiiiiiiiiiiiiieeieece et 18
8 Flow Diagram for Egress VLAN Membership FIlteringcccccuvuiiiiiiiiiiiiiiiiiieeee e 19
9 Flow Diagram for Rebuilding the Frame Header ... 20
10 Port Database DEPENUENCIES.uuuiiiiiiiiiie ettt e e e e e e e e e e e e sbebbe b e eeeaaaaeas 22
11 VLAN Database DEPENUENCIESuuuiiiiiiiiaeae ittt e e et e e e e e e e e e e e e aeaeabebbeeeeeaaaans 23
12 Classification RUIES DAtaasEe............ceiiiiiiiiiiiiie e 24
13 Management INterface INtEraCtioNScooii ittt e e e e 25
14 802.1p User Priority to Traffic Class MapPingccoioiuuiiiiiiiiieie ettt 28
15 Interactions of the QoS Module Management Interface Sub-Component..............ccccceeeeeieennn. 29
16 System View Of IOCTL ULIlitieS @nd Parser.........occuuuiiiiiiiiiaie ettt a e 30
Tables
1 Rules for Rebuilding Frame HEAUEISooo it e e e e e e e e 20
2 User Priority to Traffic Class Defaults and Recommendations............cccccvveviveieeeee e sccciiviineee, 28
B AP INOEX 1ttt e et n e e e 31
October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 ~ Programmer’s Guide
4 Document Number: 301925, Revision: 002

intel.

Revision History

Contents

Date Revision Description
October 2005 002 General upda'tes_. Replaced Section 6.0, “AP| Reference” on page 31.
Change bars indicate areas of change.
September 2004 001 Initial release.

Programmer’s Guide

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002

October 2005
5

Contents

October 2005
6

This page is intentionally left blank.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0
Document Number: 301925, Revision: 002

Programmer’s Guide

1.0

1.1

1.2

Introduction

Introduction

What's New

The VLAN QoS API has been updated from version 1.0. This is documented in Section 6.0, “API
Reference” on page 31.

VLAN Features

¢ Supports all VLAN groups (VLAN ID #1 to #4094) and all can be enabled simultaneously.
Version 1.0 only supports 32 VLAN groups.

* Protocol-Based VLAN classification supports IPv6 and IPv4 protocol. Version 1.0 only
supports IPv4.

¢ The following computing/processing tasks are off-loaded to NPE-level software:
— Acceptable Frame Type Checker
— VLAN Membership Filtering

— Frame Tagging and Tag-Removal on Egress

QoS Features
¢ Supports QoS on Ingress and Egress side. Version 1.0 only supports QoS on Ingress.

¢ Four traffic classes are supported for each side and for each NPE Ethernet port. \ersion 1.0
can support eight traffic classes on Ingress for each port.

¢ Automatic adjusting for queue length for traffic shapers is supported. The benefit is that the
setting function for queue length, which while supported in Version 1.0, is no longer needed or
supported.

Scope and Purpose

The purpose of this document is to provide high-level technical desggn information for the Intel®
IXP400 Software VLAN and QoS Application v2.0. Based on Intel™ IXP400 Software v2.0, the
VLAN and QoS application is provided to implement IEEE 802.1Q VLAN (Virtual Local Area
Networks), IEEE 802.1p User Priority to Traffic Class (TC) mappings, and Quality of Services
(QoS) functionality for IPv4/IPv6 traffic using the IXP400 software.

This document covers the high-level functionality of the various modules, and describes their
behavioral links. For a more complete understanding, you should review the API reference
information provided in Section 6.0, “API Reference” on page 31, review the IXEthDB Functional
Behavior section in the Intel® IXP400 Software Programmer’s Guide, and review the VLAN and
QoS Example Code user interface (as described in the VLAN and QoS Application Version 2.0
Release Notes), and the VLAN and QoS Example source code.

It is assumed that you are familiar with IEEE 802.1D Ethernet bridging and IEEE 802.1Q/p VLAN
and Priority functionality.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
7

Document Number: 301925, Revision: 002

Introduction

13

October 2005
8

Acronyms

FIFO

QoS
VID
VLAN

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

First In, First Out
Identification

Institute of Electrical and Electronics Engineers
Input / Output

1/0 Control

Local Area Network

Media Access Controller
Network Processing Engine
Operating System

Port VLAN ID

Traffic Class

Quality of Service

VLAN Identification
Virtual LAN

Document Number: 301925, Revision: 002

Programmer’s Guide

]
I ntGI ® Software Overview

1.4 Related Documents

Additional Intel documents listed below are available from your field representative or from the
following Web site:

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

Document Title Document #
Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Release Notes N/A
Intel® IXP400 Software Release 2.0 Software Release Notes N/A
Intel® IXP400 Software Programmer’s Guide (for Release v2.0) 252539-007
Intel® IXP400 Software Specification Update 273795
IEEE_ Standards (IEEE Std 802.]:D—1998) for Local Area and Metropolitan Networks, N/A
Media Access Control (MAC) Bridge
IE_EE Standards (IEEE Std 802.1Q-1998) for Local Area and Metropolitan Networks, N/A
Virtual Bridged Local Area Networks
IEEE Standards (IEEE Std 802.1p-1998) for Traffic class expediting and dynamic N/A

multicast filtering

2.0 Software Overview
2.1 Functionality Overview
2.1.1 VLAN Functionality

The VLAN (Virtual Local Area Networks) functionality behaves as described in the following
example scenario:

1. A frame generated from one station is received by NPE Ethernet port 1.

2. The frame type (VLAN-tagged or VLAN-untagged) is evaluated for the acceptance test.

If the frame is not acceptable by port 1, it is discarded; otherwise, the VLAN tag for the frame
is determined. For a VLAN-tagged frame, the VLAN tag is obtained from the frame header;
otherwise, it is determined by the VLAN tag of the ingress port (i.e., port 1) or by the
classification rules. User Priority and VID (id of the VLAN which this frame should be
grouped into) are included in the VLAN tag.

In this example, the VID of the frame is 1.

3. The Ingress rule is then applied to determine if this frame should be discarded or kept.
The Ingress rule determines whether the station is a member of the VLAN in which the frame
is grouped.
In our example, the frame has not been discarded and the bridging function component will
decide which port this frame should be forwarding to.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 9

http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm
http://www.intel.com/design/network/products/npfamily/docs/ixp4xx.htm

[]
Software Overview I ntGI ®

2.1.2

October 2005
10

4. Once the destination port (e.g., NPE Ethernet port 2) is decided, the egress filtering rule will be
applied to make sure whether this frame can be transmitted on the destination port.

Suppose the VLAN #1 is in the membership of port 2; therefore, the frame passes the filtering
rule and is instructed by egress rule that its frame type as being submitted through port 2.

To fit into the proper frame type, the frame will be tagged, un-tagged by egress port or be
passed through.

QoS Functionality

Traffic can be classified into traffic classes. QoS Traffic Class Mapping maps each Ethernet frame
into particular traffic classes according to the user priority field of the frame. When the IXP400-
based system is connected to a VLAN machine, that machine is considered the ‘previous stat’ to
the IXP400 system. The previous stat generates Ethernet frames with VLAN tags containing the
user priority field.

The mapping table should be manageable per port to allow different QoS strategies on each
individual port.

With the exception of bridging, ingress traffic is usually forwarded to the upper layers. This is
usually data that needs further processing by the host processor, such as DSP (digital signal
processing) applications or network routing. QoS can be applied to each traffic type differently
according to their Traffic Class. For example, time-sensitive traffic (e.g., voice) is mapped into a
traffic class different from time-insensitive traffic (e.g., routing frame). By setting higher priority
for the voice traffic, the bandwidth for the voice data can be distributed to prevent transmission of
the voice frames from being delayed/blocked by the routing frames. This would help ensure high
voice quality in VoIP applications.

In the egress side of NPE Ethernet port, the QoS is also supported in the manner very similar to the
ingress side. The egress traffics are classified and mapped into classes. Priority can be set to the
individual classes. Careful assignment of priorities can help conserve transmission bandwidth for
higher-priority traffic.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

]
I ntGI ® Software Overview

2.2 Software Architecture and High-Level Design

As depicted in Figure 1, the software architecture of Intel® IXP400 Software VLAN and QoS
Application v2.0 is designed to integrate with the IXP400 software.

Figure 1. Intel® IXP400 Software and Ethernet Device Driver Overview

Bridge Fundtion in Kernel

11

I¥P400 Etherna Device Oriver

1

I¥P400 Software Release

i ifi

IOCTL Parser

B hernet/NFE O | Bhernet/NPE 1
Etherna Segrert Bherna Segrment

The Intel® IXP4XX Product Line of Network Processors contain Network Processing Engines
(NPEs), which provide physical connectivity and processing of data to various interfaces. One
function of the 1XP400 software is to provide OS and upper-level applications access to these
interfaces via a set of APIs. In the case of the VLAN and QoS Example Code, the two Ethernet
NPE ports are the two physical links of an Ethernet bridge. The Ethernet device driver is the OS-
specific code that provides access to these NPEs via the services of the IXP400 software.

The VLAN and QoS functionality is provided by a set of software modules that interface with the
IXP400 Software, the OS-specific device driver for the NPE ports, and the OS-specific bridging
software.

The modules do contain a minimal amount of OS-dependent code. When OS-specific code is used,
it is enclosed by a compiler definition typically passed through to the makefiles from the I1XP400
software build system.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 11

802.1Q VLAN Module inte|®

Figure 2. Software Architecture with the VLAN and QoS Example Code

3.0

October 2005

12

Configuration tilities

1L

BEridge Functionin Kernel

10

Enhanced IOCTL
Farser |

| IEEE 0% .10 hodule

1t

I4P400 Software Release |

i) 11

[XP400 Bhemet
Device Driver

]
Qo s Module |
|
|

Ethernet/NFE 0 | | Ethermet/NFE 1 |
Ethermet Segrert Etherret Segment

Figure 2 closely resembles Figure 1, but includes the VLAN and QoS Example Code. The two
modules, one for 802.1Q VLAN and another for QoS processing, are inserted into the data path of
the system. The Ethernet device driver uses these modules when VLAN-capable Ethernet frames
are received or need to be sent.

The VLAN and QoS Example Code also provides control path capabilities. The Ethernet device
driver’s IOCTL parser is enhanced to recognize and execute the additional VLAN and QoS
functionality.

802.1Q VLAN Module

This module implements the IEEE 802.1Q VLAN functionality. The module includes five software
sub-components, which are briefly described below; later sections provide more sub-component
detail. Ingress Rules, Egress Rules, and VLAN Classification deal with frame processing, the
Database records all information supported by 802.1Q VLAN module, while the Management
Interface deals with configuration for each component and provides public APIs for external
modules. The general flow, shown in Figure 3, is described below.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

In

tel.

802.1Q VLAN Module

Figure 3. 802.1Q VLAN Module — Component View

Ethernet VLAN
Control Flow

Ethernet Frames
Data Flow ﬂ

m I I
% | Management Interface |
)
I I
m— — I
I Egress Rules |
I I
I I
I I
IXP400 I VLAN |EEE 802.1 I
Ethernet I Classification :: Datab A I
Device ol atabase I
Driver]
% I I
£l \ I
I I
Ingress Rules C I
I I
I I
U |

LAN Module Sub-Components
* Ingress Rules

Two Ingress Rule filterings are supported: Acceptable Frame Types, and Ingress VLAN
Membership. Since IXP400 Software v1.5, the filterings have been assisted by NPE firmware
instead of by software running on the Intel XScale core. For Acceptable Frame Types filtering,
the NPE determines if received frames are “VVLAN-tagged” or “all frame types”. Frames are
discarded if the reception port is not allowed to receive these types of frames. For Ingress
VLAN Membership filtering, the frames are discarded if the VLAN group the frame carries is
not in the membership table of the port from which the frame is received or transmitted
through.

VLAN Classification

Determines VLAN Identification (VID) and User Priority of received frames (in ingress path)
and transmission frames (in egress path), either by the criteria of Tag-Based, Port-Based,
Protocol-Based, or MAC-Based VLAN.

Egress Rules

Two major features are supported: Egress VLAN Membership filtering and Rebuild Packet
Header. The function of the Egress VLAN Membership filtering is the same as Ingress VLAN
Membership filtering, except that it executes at the egress port. Rebuild Packet Header
supports the ability to determine if transmission frames should be tagged or untagged, and then
adds/removes/modifies the VLAN-tag header for the outbound frames.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002 13

802.1Q VLAN Module inte|®

* Management Interface
Interface for maintaining database and public APIs.

* Databases

Records all information and rules for the 802.1Q VLAN module. They include port-specific
information, VLAN-group-specific information, and VLAN classification rules. The port-
specific information is port-related such as PVID (Port VLAN Identification), Acceptable
Frame Types parameter, and VLAN membership table. VLAN-specific information contains
the Egress attributes (tagged or untagged). Classification rules include the MAC-based
classification rules and Protocol (Layer 3/4)-based classification rules.

Private Frame Buffer Memory

Sixteen bytes of extra memory is reserved for each frame buffer used by the VLAN module for
storing per-frame VID and user priority information, which is determined at the ingress port. This
private memory is transparent to the 1XP400 software.

Ingress Path

For inbound Ethernet Frames, the NPE firmware performs the Ingress rule for VLAN ingress
processing. The Ingress Rules component analyzes the frame type, VLAN-tagged, Priority-tagged,
or VLAN-untagged type (see Figure 4), of received frames and commences Acceptance Frame
Type Check filtering. Frames are discarded if their frame types are not allowed on the reception
port. If frames pass the Acceptance Frame Type Check filtering, the Ingress Rules component then
calls the services of the VLAN Classification component to determine VLAN ldentification (VID)
and user priority of received frames. Next, the Database component is queried to get the (port)
member set of the detected VLAN group and decide if the reception port is in the member set of
that VLAN group or not. Frames are discarded if the reception port is not in the member set of the
detected VLAN group. For frames that pass the VLAN Ingress Rules (Acceptable Frame Type
Check and VLAN Membership filtering), the VID and user priority are saved into the private area
and frames are relayed to the kernel for the bridging process. In addition to the VID and User
Priority data, the module also calculates a signature and checksum and stores this information in
the private area to help ensure data integrity.

Egress Path

For outbound Ethernet frames, the device driver calls the API of the Egress Rules component for
VLAN Egress processing if the Egress Rules component determines frames are bridged from the
other NPE/Ethernet port or from an upper-layer application. If frames come from the bridge,
ingress-determined VLAN Identification (VID) and user priority (both saved in the private area)
are retrieved. Otherwise, the Egress Rules component calls the services of VLAN classification
component to determine the VID and user priority of transmission frames. When VID and user
priority of transmission frames are determined, the Database component provides the (port)
member set of the VLAN group and decides whether or not the transmission port is in the member
set of VLAN group. Frames are discarded if the transmission port is not in the member set of the
VLAN group. If the transmission port is in the member set, egress attributes (VLAN-tagged or
VLAN-untagged) of the transmission port in the VLAN group and the frame type of the outbound
frames are used to determine whether or not the frame header of transmission frames should be
rebuilt (insert or remove VLAN tag). After completing all egress processes, the NPE put the frames
in transmission with proper headers.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
14 Document Number: 301925, Revision: 002

intel.

3.1 Ingress Rules Component

802.1Q VLAN Module

This component supports the functionality of IEEE 802.1Q Acceptable Frame Types and Ingress
VLAN Membership filtering. In the IEEE 802.1Q standard, three frame types are defined —
VLAN-tagged, priority-tagged, and non-VLAN-tagged. Figure 4 shows the frame types.

Figure 4. 802.1Q Frame Types

DA SA

Type/Length
(1=0x8100)

VLAN-untagged Frame

Type/Length
DA SA VLAN Header (=0x8100) Payload
VLAN-tagged 3-bits 1-bit 12-bits VID
Frame [~ 0x8100 Priority CIF (1=0)
Priority-tagged l 3-hits 1-bit 12-bits VID
Frame 0x8100 Priority CIF (=0)

B5322-01

The Acceptable Frame Types parameter associated with each port controls the reception of the
types of frames on that port. Valid values for this parameter are: “Admit Only VLAN-tag Frames”
and “Admit All Frames”. If it is set to “Admit Only VLAN-tag Frames”, any frames received on
that port which do not contain VID tagging information (i.e., untagged frames and priority-tagged

frames) are discarded. Acceptable Frame Type filtering is presented in Figure 5.

Programmer’s Guide

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002

October 2005
15

802.1Q VLAN Module inte|®

Figure 5. Flow Diagram for Acceptable Frame Type Filtering

Start Entry of
Acceptable Frame Types Filter

“Acceptable Frame Types™se
Rx port is “Admit only VLAN-tag
frames”?

NoO———p»

Rx frames is VLAN
tagged?
No Yes

Return FALSE
(Rx frame should be Return TRUE
discarded)

Ingress VLAN Membership filtering discards any frames whose VLAN group is not included in
the member set of the port they were received from. This is shown in Figure 6.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
16 Document Number: 301925, Revision: 002

intel.

802.1Q VLAN Module

Figure 6. Flow Diagram for Ingress VLAN Membership Filtering

Start Entry of
Ingress VLAN Membership
Filter

ngress Filtering of the
port is enabled?

Yes

Retrieve port's VLAN
membership information

Is the VLAN group in the
membership set of the port?

No
DISCARD the frame

PASS

3.1.1 External Interactions and Dependencies

The Ethernet device driver utilizes this component to perform IEEE 802.1Q Ingress Rules
(Acceptable Frame Types and VLAN Membership) filtering. The Ingress rule depends on whether
or not Ingress Filtering is enabled, Acceptable Frame Types parameters, and the member set of the

VLAN group.

3.1.2 Key Assumptions

¢ The Database component in VLAN module is initialized and available for query.

¢ Default value of Acceptable Frame Types parameter for all ports is “Admit All Frames”.

3.2 VLAN Classification Component

VLAN Classification component is used to determine VLAN ldentification (VID) and User
Priority of reception/transmission frames in accordance with established classification rules. Four
kinds of classification rules are supported: 802.1Q tag-based, port-based, MAC-based and Protocol
(Layer 3/4) -based classifications. 802.1Q tag-based classification determines VID and priority
from the VLAN-tag header of received frames. Port-based classification uses the reception port
transmission port of frames to decide VID and priority. MAC-based classification uses source
MAC address, and Protocol (Layer 3/4) -based classification uses information in IP/UDP/TCP
IPv6/UDP/TCP/AH/ESP headers to determine a frame’s VID and priority. VLAN Classification

flow is presented in Figure 7.

Programmer’s Guide

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

October 2005

Document Number: 301925, Revision: 002 17

802.1Q VLAN Module

Figure 7. Flow Diagram for VLAN Classification

Rx Ethernet Frame In

No

VLAN enabled or not?

Yes

VLAN-tagged frame?

No

LAN-priority-tagged
frame?

Ye:

A 4

Retrieve VID and User Priority
information from VLAN tag ——»
header of Rx frame

Yes v

Retrieve User Priority

L3/L4-based VLAN
enable?

3ft4 info of Rx frame
meet any L3/L4-based

MAC-based VLAN

Yes enable?

|

Retrieve VID and user priority
(if it is not determined yet)
information from matched L3/
L4-based VLAN entry

No
No

l

meet any MAC-based

Apply received port's PVID
(Port VLAN ID) and default
Priority (if it is not determined
yet) to Rx frame

A 4

information from VLAN tag
header of Rx frame

AC of Rx fran

VLAN rule?
Yes

i

Retrieve VID and user priority
(if it is not determined yet)
information from matched

MAC-based VLAN entry

No e ™~
‘ > Return -

3.2.1 External Interactions and Dependencies

The Ethernet device driver utilizes the VLAN Classification component to perform Ingress and
Egress VLAN Classification. The driver also utilizes services in the Database component to
determine if any classification rules should be applied to frames.

October 2005

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Programmer’s Guide

18 Document Number: 301925, Revision: 002

3.3 Egress Rules Component

802.1Q VLAN Module

This component provides functionality for IEEE 802.1Q VLAN Egress Rules. Two features are

supported: Egress VLAN Membership filtering and Rebuild the Frame Header.

* Egress VLAN Membership filtering
Discards frames whose transmission ports are not present in a frame's VID member set. This
behavior is depicted in Figure 8.

Figure 8. Flow Diagram for Egress VLAN Membership Filtering

Start Entry of
Egress VLAN Membership
Filter

Egress Filtering of the

port is enabled?

Yes
h 4

Retrieve port's VLAN
membership information

Is the VLAN group in the
membership set of the port?

No
DISCARD the frame

A4
PASS

* Rebuilding Frame Headers
In the IEEE 802.1Q Standard, on a given link a VLAN-aware bridge can transmit untagged
frames for some VLANs and VLAN-tagged frames for others, but cannot transmit both
formats for the same VLAN. A feature is provided for adding, modifying, or removing VLAN
tag headers from transmission frames in accordance with tagging requirements on egress for
each port. This behavior is described in Figure 9 and Table 1.

Programmer’s Guide

Intel® IXP400 Software: VLAN and QoS Application Version 2.0
Document Number: 301925, Revision: 002

October 2005
19

802.1Q VLAN Module

Figure 9. Flow Diagram for Rebuilding the Frame Header

Start Entry of
Rebuild Packet Header

Check the transmission port in

VLAN membership is tagged or
urtagged port
o Tagged port? Yes:
Txframe is VLAN-
tagged? Yes—
No

Tx frameis priority-

) Yes

Tx frameis priority-
tagged?

Txframe is VLAN-

Yes

i—‘

Yes—

Renove VLAN
Add VLAN header to
header from Tx T
frame

Mocify VLAN header

to Tx frame

Table 1. Rules for Rebuilding Frame Headers

Transmit Port

Receive Port Receives frame as:

Transmits Frame as: VLAN-Tagged

Priority-Tagged

Untagged

untagged Remove tag header

Remove tag header

N/A

VLAN tagged N/A

Modify VLAN header

Add VLAN tag header

3.3.1 External Interactions and Dependencies

The NPE Ethernet device driver utilizes this component to perform 802.1Q Egress Rules functions.
It depends on whether or not Egress Filtering is enabled, and the VLAN membership of the port on

transmit.

October 2005

20 Document Number: 301925, Revision: 002

Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Programmer’s Guide

inte|® 802.1Q VLAN Module

3.3.2 Key Assumptions

¢ Database component in VLAN module is initialized and available for query.

3.4 Database Component

This component contains all VLAN information for 802.1Q VLAN operations. There are three
categories (sub-database) of information in this database: Port Database, VLAN Database, and
Classification Database.

Port Database

This database contains information about port configurations as follows:
¢ PVID (Port VLAN Identification) and Default User Priority
¢ Status of Ingress Filtering (enable or disable)
¢ Acceptable frame types (AdmitAllFrames or AdmitOnlyVlanTaggedFrames)
¢ Port’s VLAN membership table.

Note: The VLAN membership table includes the VLAN groups to which the port belongs.
Please see the IEEE 802.1Q standard for more information.

VLAN Database

This database contains the following information about port configurations:
* VLAN function is enabled or not.
¢ Egress attributes (VLAN-tagged or VLAN-untagged) of ports in VLAN group.

Classification Rules Database

This database contains the following classification rules:
* Rules for MAC-based classification

* Rules for Protocol (Layer 3/4) -based classification.

There are several general characteristics and functions provided by the Database component:

¢ Services to configure and query information of Port Database, VLAN Database, and
Classification Rules Database.

* 4095 VLAN groups are supported simultaneously.

* Up to 16 MAC-based classification rules and up to 16 Protocol (Layer 3/4) -based
classification rules are supported, for up to 32 simultaneous rules.

3.4.1 External Interactions and Dependencies

The Database component houses critical information attributes used by other sub-components of
the VLAN module. Those interactions (detailed in this section) depend on which sub-database is
used.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 21

802.1Q VLAN Module inte|®

3411 Port Database

Depending on the desired service, the Port database is used by the following sub-components:
* Ingress Rules: Ingress Filtering and Acceptable Frame Types attributes for each port.
¢ Port Based VLAN: The PVID and Default User Priority for each port.
¢ Port VLAN membership: Ingress Filtering and Egress Filtering.
* Management Interface: Supports interactions from the component APIs.

This is shown in Figure 10.

Figure 10. Port Database Dependencies

Management
Interface

VLAN Classification

Ingress Rules

(Membership Filter) \ I

— Port Database
VLAN Classification

Ingress Rules
(Acceptable Frame
Type Filter)

34.1.2 VLAN Database

For the services described, the VLAN database is used by the following sub-components:
* Egress Rules: Egress attributes (tagged or untagged) for egress ports in a VLAN group.
* Management Interface: Supports interactions from the component APIs

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
22 Document Number: 301925, Revision: 002

inte|® 802.1Q VLAN Module

Figure 11. VLAN Database Dependencies

Management
Interface

H

VLAN
Database

Egress Rules (Header
Re-builder)

3.4.2 Classification Rules Database

Depending on the desired service, the Classification Rules database is used by the following sub-
components:
* VLAN Classification; VID and User Priority of frames.

* Management Interface: Supports interactions from the component APIs.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 23

802.1Q VLAN Module inte|®

Figure 12. Classification Rules Database

3.5

October 2005
24

Management
Interface

VLAN Classification

VLAN Classification

& Classification

Rules
Database

(for L2/L3/L4)

Management Interface Component

This component provides a unique interface (i.e., control path) for external modules to configure
the behavior of the 802.1Q VLAN module. For example, the IOCTL parser in the Ethernet device
driver should utilize this interface to access services in 802.1Q VLAN module. Direct accesses to
services (or APIs) in other components in this module are not supported.

The features provided by the Management Interface component are:

Enable & Disable 802.1Q VLAN function

Assignment VLAN membership and associated (tagged/untagged) attributes of egress ports
Set port’s PVID and Default User Priority

Configure Acceptable Frame Types filtering of reception port

Enable & Disable Ingress (VLAN) Membership filtering

Enable & Disable Egress (VLAN) Membership filtering

Enable & Disable MAC-based VLAN Classification

Enable & Disable Protocol (Layer 3/4) -based VLAN Classification

Configure MAC-based VLAN Classification Rules

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

In

tel.

802.1p User Priority and QoS Module

¢ Configure Protocol (Layer 3/4) -based VLAN Classification Rules.

Figure 13. Management Interface Interactions

4.0

VLAN Classification

Ingress Rules

External — Ma}n?gtfament
Module nterface

Egress Rules

Database

802.1p User Priority and QoS Module

This purpose of this software module is to implement IEEE 802.1p User Priority to Traffic Class
Mappings, and QoS functionality for both Ingress and Egress sides. According to IEEE 802.1p,
there are a maximum of eight traffic classes supported. This module support four traffic classes:
traffic class 0, 1, 2 and 3. The traffic class which is higher in numerically has the higher priority.
The determination for the traffic class is performed by a combination of two subsystems: the
VLAN Classifier module that provides the priority field in VLAN tag, and by the Ingress QoS -
Priority Mapping Module that maps port number and VLAN priority to a traffic class. Each traffic
class has its corresponding shaper with the private configuration. Depending on the shaper of
frame’s traffic class, the traffic could be forwarded to the next module, buffered in a priority queue,
or get dropped.

For each shaper, there are two types of shapers: Data Bytes shaper (D-type), and Frame Count
shaper (F-type). There are two parameters associated with each shaper: Average Rate (avgD/avgF),
and Ceil Rate (ceilD/ceilF). The shaper is designed with the concept of a token bucket. The shaper
design controls the long-term rate of traffic while also allowing some short-term bursts. Because
the D-type shaper monitors the bandwidth of a certain traffic class, they are used extensively in the
network community. The purpose for an F-type shaper is to control the number of frames allowed
for further processing. The F-type shaper is commonly used to limit the number of table lookups
required by the host CPU, which is often a system bottleneck. The upper-layer user interface,
however, can be configured to use both shapers simultaneously, one of the two shaper types at a
time, or disable the shaper for some particular traffic class. When the shaper for a traffic class is
disabled, frames belonging to that traffic class are passed to the next module directly.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002 25

|
802.1p User Priority and QoS Module Int6|®

4.1

October 2005
26

When the shaper type (D-type, F-type, or both) is enabled for a traffic class, frames that are
classified to this traffic class have to go through its corresponding shaper. When the corresponding
shaper still has available quota and no frames are buffered in the frame queue, the frame is passed
to the next module. Alternately, if any of the enabled shapers is over-quota, then the frame is sent to
frame queue for that traffic class. Before that frame is physically pushed to a frame queue, the
queue length limitation corresponding to that traffic class is examined. If the queue length exceeds
the limitation, the frame is dropped instantly, otherwise the frame is pushed to the queue.

Periodically, the timer module is triggered and updates shapers that are enabled. After updating all
enabled shapers, a signal is sent to the priority queue service routine, which pops frames from the
high-priority traffic class queue to the low-priority traffic queue. For each frame at the head of a
certain queue, the shaper status is checked before sending to the next module. If the shaper has
available queues, the frame is popped and sent to the next module, after that the corresponding
shapers are updated. If the shapers are already over-quota, then the priority queue service routine
goes to the next queue for service.

802.1p Priority Mapping and Ingress QoS Sub-Components

* Traffic Shaper
Traffic rate control and frame queue for buffering frames.

* User Priority to Traffic Class Mapping

Processes for IEEE 802.1Q/p User Priority to Traffic Class Mappings is handled in this
component.

* Management Interface
Control path for maintaining associated database as well as shaper configuration.

The modularization of 802.1p User Priority to Traffic Class Mappings and QoS components (such
as ingress queues and traffic shaper) makes it easy for updating/enhancing Ingress QoS functions.
No effort is required for design changes in 802.1p User Priority to Traffic Class Mappings when a
new queueing discipline is added into the ingress queue module, or when a new traffic control
algorithm is defined for the traffic shaper.

Traffic Shaper Component

The purpose of the Traffic Shaper component is to control the rate of traffic sent to the next
software module. In general, the higher traffic class is treated as higher priority traffic. The Traffic
Shaper determines if the frame should be passed to next module directly, queued in the ingress
priority queues, or if the frame should be dropped. As previously stated, frames are sent to the
priority queue under the condition that either traffic rate exceeds the shaper's configured rate or
there are frames waiting in the corresponding priority queue. If rate limitation is not exceeded, and
there are no frames buffered in the respective queue, frames are relayed to the next module. In the
case where the frame must be delayed, the module first checks the number of queued frames of the
particular queue. If the buffered length is above the limitation, then the frame is discarded;
otherwise frames are pushed to the corresponding queue. If shapers for a traffic class are disabled,
then traffic classified to this traffic class is treated as rate-unlimited. Frames are passed to the next
module directly.

Each time a frame is sent to the next software module, the shapers are updated accordingly. If both
D-type and F-type shapers are enabled, then the quota for both types are updated. If only D-type is
enabled, then only the quota for D-type is updated. The F-type shaper quota update process is the
same.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

802.1p User Priority and QoS Module

Periodically, the timer (interrupt service routine) updates the quota of token buckets by the
parameters of shaper configuration. The shaper parameters are:

* Average data rate in bps (bytes per second)

¢ Average packet count in fps (frames per second)
¢ Ceil data rate in bps

¢ Ceil packet count in fps

¢ Type of shaper: D-type or F-type

The timer parameters are:
¢ Period of timer in millisecond (as compiler option)

The functionality provided by the Traffic Shaper component includes:
¢ |Initialize Traffic shaper and unload traffic shaper
¢ Determine if the traffic conforms to the shaper configuration
¢ Configure the traffic rate passing through the shaper component by:
— rate in frames
— rate in bytes

* Queuing the frames once the traffic rate exceeds the specified rate of the shaper.

4.1.1 External Interactions and Dependencies
This software component is initialized and configured by the Management Interface component. as
described in the following steps. The Traffic Shaper component utilizes services to retrieve frames
from the Ingress or Egress thread and to push them to the next stage.

1. The device driver (via the Management Interface component) calls the API to initialize whole
QoS modules, including the Traffic Shaper component.

2. The device driver calls the API to register the callback function.

3. The device driver calls the API to initiate the QoS process.

4. The software has the capability to determine the traffic class of a particular traffic. It utilizes
the VLAN classification to determine the user priority of the frame and maps the user priority
into a traffic class. If the number of frames of the traffic class does not exceed the configured
rate of its corresponding shaper, execute the next step. Otherwise, skip to step 6.

5. Call the registered Rx callback function or CSR submitting function to relay frames to next
stage in software. The process is now complete.

6. Check the queued length. If there is room in the buffered queue, proceed to step 7. Otherwise
drop this frame. The process is now complete.

7. Push the frame into the buffered queue.

8. Queue service routine is executed by timer ISR and dequeue frames from queues.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002 27

802.1p User Priority and QoS Module

4.2

Priority Mapping Component

intel.

This component maps the user priority (0~ 7) (determined in VLAN classification) of a received

frame into the corresponding traffic class value. Frames are classified into different classes and call
the services of the Traffic Shaper component to determine if frames should be queued or not. This
process is presented in Figure 14.

Figure 14. 802.1p User Priority to Traffic Class Mapping

Table 2.

October 2005
28

aagagege

Priority
Mapping
Component

(171

Traffic Class O

Traffic
Shaper
Component

B5321-01

User Priority to Traffic Class Defaults and Recommendations

User Priority Tr?g(ie(f:aillgss (Rezgargige?c?astsion)
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 1
6 0 2
7 0 3

Intel® IXP400 Software: VLAN and QoS Application Version 2.0
Document Number: 301925, Revision: 002

Programmer’s Guide

|
Int6|® 802.1p User Priority and QoS Module

The functionality provided by the Priority Mapping component includes:
¢ Support 802.1Q/p User Priority to Traffic Class Mappings of received and transmitting frames.
¢ |nterface to configure the table for mapping from User Priority to Traffic Class.

4.2.1 External Interactions and Dependencies

This software component is initialized and configured by the Management Interface component.
The device driver utilizes services of this component for the QoS module. The Traffic Shaper
component uses the Priority Mapping component to determine the traffic class of received or
submitting frames.

422 Key Assumptions

¢ Maximum number of User Priority is defined 802.1Q/p and the traffic class support by QoS
module is designed to be four by implementation.

¢ Each Traffic class is associated with a traffic shaper; default state of a shaper is disabled as
QoS module is initialized.

4.3 Management Interface Component

This component provides the public interface (i.e., control path) for external modules to configure
the behavior of 802.1p User Priority to Traffic Class Mappings and QoS module. The IOCTL
parser in Ethernet device driver should utilize this interface to access services of the QoS module.
Direct access to services (or APIs) in other components of this module is not supported. These
Interactions are shown in Figure 15.

Figure 15. Interactions of the QoS Module Management Interface Sub-Component

Traffic Shaper
<:> Component
External Management j C Priority Mapping
Module Interface Component

<:> Other Component
(Timer, Frame Queue...)

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 29

[]
IOCTL Enhancements for Ethernet Drivers IntGI ®

5.0 IOCTL Enhancements for Ethernet Drivers

The purpose of this software is to extend existing IOCTL functionality in the IXP400 Ethernet
device drivers. New IOCTL commands are defined to support new features for 802.1Q VLAN and
QoS Modules. These commands are grouped into a configuration utility named vgconfig. The
utility communicates with the common module to access VLAN and QoS services in the 1XP400
Ethernet device driver. The IOCTL Parser recognizes these IOCTL commands and in turn executes
associated services in the VLAN and QoS modules. The system view is presented in Figure 16

Figure 16. System View of IOCTL Utilities and Parser

18 TL LHilitie=s

[lie veonfig and qeonfig)
*2
Kernel g
(e orks E
& Linix =
U

= a =

Enhanced [OCTL Parser

hgm
% P400 | 205 Module
Ethernet Mgt ET eI
Dievice Driver ™ WLAN hadule

[®FP400 Software Releasze

The vgconfig utility sends management API calls via IOCTL commands to the VLAN and Qos
Module. More detailed information regarding the syntax of the utility is available in the Intel®
IXP400 Software: VLAN and QoS Application Version 2.0 Release Notes.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
30 Document Number: 301925, Revision: 002

In

6.0

API Reference

API| Reference

Table 3. APl Index (Sheet 1 of 2)

IxVlanQosStatus ixVIanQosModulelnitialize (void); 37
IxVlanQosStatus ixVIanQosModuleUninitialize (void); 37
IxVlanQosStatus ixVIanQosPortTxFrameSubmit (IxvlanQosPortld portid, IX_OSAL_MBUF *buffer,
UINT B2 PriOritY); oo et ettt e e e e e e e e e 37
IxVlanQosStatus ixVIanQosPortRxCallbackRegister (IxEthAccPortld portld, IXEthAccPortRxCallback
rxCallbackFn, UINT32 callbackTag); oo oottt e e e e e e e e e 37
IxVlanQosStatus ixVIanQosPortTxDropCallbackRegister (IxEthAccPortld portld,
IxVlanQosCallbackFn txDropCallbackFn,UINT32 callbackTag); 39
IxVlanQosStatus ixVIanQosReservedBufferGetCallbackRegister (IxVlanQosPortld portid,
IxVlanResvBufGetCallbackFn callbackFn, UINT32 callbackTag);, 39
IxVlanQosStatus ixVIanPortEnable (IxVlanQosPortld pid);o ot 39
IxVlanQosStatus ixVIanPortDisable (IxvVianQosPortld pid);t 40
IxVlanQosStatus ixVIanPortEnabledGet (IxVlanQosPortld pid, BOOL *enabled); 40

IxVlanQosStatus ixVIanEgressTypeSet (IxVlanQosPortld pid, IxVlanVlanid vid,
IXVIANEGreSSTYPE tYPE); . o o v et et e e e e e e 40

IxVlanQosStatus ixVIanEgressTypeGet (IxVlanQosPortld pid, IxVlanVlanid vid,
IXVIANEGreSSTYPE MY PE); o o ottt e e e 41

IxVlanQosStatus ixVIanMembershipSet (IxVlanQosPortld pid, IxVlanVlanid vid, BOOL isMember); .. 41
IxVlanQosStatus ixVlanMembershipGet (IxvVlanQosPortld pid, IxVlanVlanid vid, BOOL *isMember); . 41
IxVlanQosStatus ixVIanPortAcceptFrameTypeSet (IxVianQosPortld pid,

IXVIanAcceptbaleFrameType tyPe); . .o ottt e 42
IxVlanQosStatus ixVIanPortAcceptFrameTypeGet (IxVlanQosPortld pid,
IXVlanAcceptbaleFrameType Mype); . . . oot 42
IxVlanQosStatus ixVIanPortMembershipFilterSet (IxVlanQosPortld pid, IxVlanQosDirection dir, BOOL
ENADIEd); . .o 42
IxVlanQosStatus ixVIanPortMembershipFilterGet (IxVlanQosPortld pid, IxVlanQosDirection dir, BOOL
ENADIEd); .. 43
IxVlanQosStatus ixVIanPortVlanTagSet (IxVlanQosPortld pid, IxVlanVlanid vid,
IXEthDBPIIOItY PHIOIILY); .« o ot o e e e e e e e e e e e e e e e e 43
IxVlanQosStatus ixVIanPortVlanTagGet (IxVlanQosPortld pid, IxVlanVianld *vid,
IXEthDBPIIOFtY *PrOILY); . o o o o o e e e e e e e e e e e 43
IxVlanQosStatus ixVIanMacRuleAdd (IxVlanMacRule *mac_rule, RULE_ID *rid); 44
IxVlanQosStatus ixVIanMacRuleDelete (RULE_ID rid);ootii e 44
IxVlanQosStatus ixVIanMacRuleGet (RULE_ID rid, IxVlanMacRule *mac_rule); 44
IxVlanQosStatus ixVIanMacRuleFind (IxVlanMacRule *mac_rule, RULE_ID *rid); 44
IxVlanQosStatus ixVIanFirstMacRuleldGet (RULE_ID *rid);ccviiiieiieeenn. 45
IxVlanQosStatus ixVIanNextMacRuleldGet (RULE_ID *rid);oovviiii e 45
IxVlanQosStatus ixVIanMacRuleHitGet (RULE_ID rid, UINT32 *hit);covuiiriennnnnn.. 45
IxVlanQosStatus ixVIanMacRuleHitReset (RULE_ID rid);oviiniiiieii e, 46
IxVlanQosStatus ixVIanMacRuleResetAll (void);ot 46
IxVlanQosStatus ixVIanMacClassifierSet (IxVlanQosPortld pid, BOOL enabled); 46
Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002 31

API Reference In ®

Table 3.

6.1

October 2005
32

APl Index (Sheet 2 of 2)

IxVlanQosStatus ixVIanMacClassifierGet (IxVlanQosPortld pid, BOOL *enabled); 46
IxVlanQosStatus ixVlanProtocolRuleAdd (IxVlanipRule *ip_rule, RULE_ID *rid); 47
IxVlanQosStatus ixVIanProtocolRuleDelete (RULE_IDrid);ot et e 47
IxVlanQosStatus ixVIanProtocolRuleGet (RULE_ID rid, IxVlanlpRule *ip_rule); 47
IxVlanQosStatus ixVIanProtocolRuleFind (IxVianipRule *ip_rule, RULE_ID *rid); 48
IxVlanQosStatus ixVIanFirstProtocolRuleldGet (RULE_ID *rid);cviineinnenann... 48
IxVlanQosStatus ixVIanNextProtocolRuleldGet (RULE_ID *rid);ovvirnerniennnnn... 48
IxVlanQosStatus ixVIanProtocolRuleHitGet (RULE_ID rid, UINT32 *hit); 49
IxVlanQosStatus ixVIanProtocolRuleHitReset (RULE_IDrid);vtiei e 49
IxVlanQosStatus ixVlanProtocolRuleResetAll (void); i 49
IxVlanQosStatus ixVlanProtocolClassifierSet (IxVlanQosPortld pid, BOOL enabled); 49
IxVlanQosStatus ixVlanProtocolClassifierGet (IxVlanQosPortld pid, BOOL *enabled); 50

IxVlanQosStatus ixQosShaperEnable (IxvVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid); . .50
IxVlanQosStatus ixQosShaperDisable (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid); . .50

IxVlanQosStatus ixQosShaperEnabledGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,
BOOL *enabled);ot 51

IxVlanQosStatus ixQosShaperRateGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,
UINT32 #pS, UINT32 ¥DPS), -+« « e v ettt e e e e e e e e e e e e e e e e e 51

IxVlanQosStatus ixQosShaperCeilSet (IxvVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,

IxVlanQosStatus ixQosShaperCeilGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,
UINT32 #10S, UINT32 *DPS); « + e v e eeeee e e e e e e e e e e e e e 52

IxVlanQosStatus ixQosShaperBurstSizeSet (IxvVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,
UINT32 frames, UINT32 DitS);o oot e e e e e e e e e e 53

IxVlanQosStatus ixQosShaperBurstSizeGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld
teid, UINT32 *frames, UINT32 *DitS); oo e e e 53

IxVlanQosStatus ixQosPriorityMappingSet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IXQOSTCId tCid);ttt 53

IxVlanQosStatus ixQosPriorityMappingGet (IxVlanQosPortld pid, IxVlanQosDirection dir,

IxVlanQosStatus ixQosPriorityMapping TableSet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IXQOSTCIA tCIA[]); -« v o e e e et e e e e e 54

IxVlanQosStatus ixQosPriorityMapping TableGet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IXQOSTCIA tCIA[]); -« v o e e e et e e e e e 55

Data Type Definitions

This section contains the data type definitions and data structure descriptions that will be used in
the VLAN and QOS application programmer interface.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

int6|® APl Reference

Direction Type for Data Path

typedef enum {
IX_VLAN QOS INGRESS = 0,
IX VLAN QOS EGRESS

} IxVlanQosDirection;

Description:
Define the identifiers to be used as a function parameter for specifying the direction in the
data path.

Status Type

typedef enum {
IX VLAN QOS SUCCESS = 0,
IX VLAN QOS FAIL

} IxVlanQosStatus;

Description:
Define the identifiers to be used as the status value returning from calling function.

Acceptable Frame Type

typedef enum {
ACCEPT TAGGED ONLY,
ACCEPT ALL FRAME,

} IxVlanAcceptbaleFrameType;

Description:
Define the identifiers to be used as a function parameter for specifying the acceptable frame

type.
Egress Frame Type

typedef enum {
TAGGED_ FRAME TYPE,
UNTAGGED FRAME TYPE,
} IxVlanEgressType;

Description:
Define the identifiers to be used as a function parameter for specifying the frame type as
egress.
Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002 33

API Reference i nt6| ®

Data Types of Rule Content

typedef unsigned char MAC ADDRESS[6];
typedef unsigned char IP_ADDRESS[16];
typedef signed long PROTOCOL TYPE;
typedef signed long TC;

typedef signed long PORT_NUM;
typedef unsigned long SPI;

Description:
Define data types which are used in the content of a rule for MAC-Based VLAN
classification or Protocol-Based VLAN classification.
Definition:
MAC_ADDRESS: MAC address of an Ethernet frame.
IP_ADDRESS: The IP address of a frame in IP or IPv6 protocol types. If it is used for
specifying an IPv4 address, only the first 4 bytes are used and the rest bytes will not be considered.
PROTOCOL_TYPE: This carries the layer 3 and layer 4 protocol types.
PORT_NUM: Port number in a TCP or UDP header. The range for valid value is from 0 to
65535.
TC: Traffic class specified in an IPv6 header. The range for valid value is from 0 to 255.
SPI: Security Parameter Index in an AH or an ESP header. The numbers within the range
which be represented by a 32 bits unsigned integer are all valid for SPI.

Data Type for VLAN and QoS functionality
typedef unsigned short RULE ID;
typedef UINT32 IxQosTcId; /* valid values: 0, 1, 2, 3 */
typedef UINT32 IxVlanQosPortId;
typedef UINT32 IxVlanQosPriority;

Definition:
IxQosTcld: Identifier of traffic class for QoS. The valid values are 0, 1, 2, and 3.
IxVlanQosPortld: Identifier of a NPE Ethernet port.
IxVIanQosPriority: User priority defined in IEEE802.1Q
RULE_ID: Identifier of a rule for MAC-Based or Protocol-Based VLAN classifications.

Data Structure for MAC Rule
typedef struct ({
UINT32 vid;
UINT32 priority;
MAC ADDRESS src_mac;
} IxVlanMacRule;

Description:
Define the data structure be used as the function parameter to specify a rule for MAC-Based

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
34 Document Number: 301925, Revision: 002

int6|® APl Reference

VLAN classification. The frame whose source MAC address is identical to the MAC address
specified in the rule is called it matches to the rule. The VLAN group of the frame which
matches to the rule is assigned to the VLAN ID specified in the rule.

Structure member:
vid: Specifying the VLAN ID for the frames which match to the rule.
priority: Specifying the 802.1Q user priority for the frames which match to the rule.
src_mac: The MAC address used to match to source MAC address of an Ethernet frame.

Data Structure for Protocol Rule

typedef struct ({
UINT32 vid;
UINT32 priority;
IP ADDRESS src _ip, src_ip mask;
IP ADDRESS dst ip, dst ip mask;
PROTOCOL_TYPE protocol;
TC tc;
PORT_NUM src_port, src_port end;
PORT NUM dst port, dst port end;
SPI spi;

} IxVlanIpRule;

Description:
Define the data structure be used as the function parameter to specify a rule for Protocol-
Based VLAN classification. The rule describes an Ethernet frame by specifying the ranges of
value for some fields of protocol headers of a frame in layer 3 and layer 4. The frame which
is identical to the describing by the rule is called it matches to the rule. The VLAN group of
the frame which matches to the rule is assigned to the VLAN ID specified in the rule.
Structure member:
vid: Specifying the VLAN ID for the frames which match to the rule.
priority: Specifying the 802.1Q user priority for the frames which match to the rule.
src_ip, src_ip_mask: The IP address and mask used to specifying a range of the source IP
address for an IP or IPv6 protocol frame.
dst_ip, dst_ip_mask: The IP address and mask used to specifying a range of the destination
IP address for an IP or IPv6 protocol frame.
protocol: This specifies the protocol type of an Ethernet frame. The high word specifies the
protocol type in layer 3. It shall use the identifiers ETH_IP and ETH_IPV6 to represent IP
and IPv6 protocol types respectively. The low word specifies the protocol type in layer 4. It
shall be filled with the value of protocol type directly. The software only supports TCP and
UDP for an IP protocol frame and support TCP, UDP, ESP and AH for an IPv6 frame.
tc: This specifies the traffic class in the IPv6 protocol header. Use UNSPECIFIED_TC to
indicate software not to care this field.
src_port: This specifies the number of source port for a TCP or UDP header. Use
UNSPECIFIED_PORT for src_port indicates software not to care this field.
src_port_end: This specifies the end of a range of port numbers which starting with src_port.
Use UNSPECIFIED_PORT to indicate software none or a single port is specified by

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 35

API Reference i nt6| ®

src_port.

dst_port: This specifies the number of destination port for the TCP or UDP header. Use
UNSPECIFIED_PORT for dst_port indicates software not to care this field.

dst_port_end: This specifies the end of a range of port numbers which starting with dst_port.
Use UNSPECIFIED_PORT to indicate software none or a single port is specified by
dst_port.

spi: This specifies the value of Security Parameter Index for the ESP or AH header. Use
UNSPECIFIED_SPI to indicate software not to care this field.

Data Type for Call Back Functions

typedef void (*IxVlanQosCallbackFn) (UINT32 callbackTag,

typedef void (*IxVlanResvBufGetCallbackFn) (UINT32 callbackTag,

IX OSAL MBUF *buffer);

IX_OSAL MBUF *buffer,
UINT8 **retBuffer);

October 2005
36

Definition:

IxVlanQosCallbackFn: The callback function used to drop an Ethernet frame. Once the
VLAN and QoS modules discard a TX or RX frame, the module calls this function, which is
registered by Ethernet driver or client software.

IxVIanResvBufGetCallbackFn: The callback function used to retrieve a reserved buffer
once the VLAN modules save the VLAN information of a received frame. This callback function is
offered and registered by the Ethernet driver or client software. The allocation for reserved spaces
and maintenance of the linkage to each MBUF is the responsibility of the software that registered
this callback function.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

API Reference

6.2 Function Prototype Definitions
This section contains the VLAN and QoS Example Code APIs and data structures.
Prototype: IxVlanQosStatus ixVlanQosModulelnitialize (void);
Parameters: Description: 1/0:
n/a | None
Return: IX_VLAN_QOS_SUCCESS: Success on initialization.
’ IX_VLAN_QOS_FAIL: Fail on initialization.
Description: Initialize the VLAN and QoS modules. This function is called when the client software or Ethernet driver,
P ' which use the VLAN and QoS modules, is started.
Prototype: IxVlanQosStatus ixVIanQosModuleUninitialize (void);
Parameters: Description: 1/0:
n/a
Return: IX_VLAN_QOS_SUCCESS: Success on un-initialization.
’ IX_VLAN_QOS_FAIL: Fail on un-initialization.
Description: Un-initialize the VLAN and QoS modules. This function is called when the client software or Ethernet driver,
P ' which use the VLAN and QoS modules, is exiting or being removed.

Prototype: IxVlanQosStatus ixVIanQosPortTxFrameSubmit (IxVlanQosPortld portid, IX_OSAL_MBUF *buffer,

ype: UINT32 priority);

Parameters: Description: 1/0:
portld | The identifier of the NPE Ethernet port to transmit Ethernet frame on. |
buffer | Address of an MBUF which representing the Ethernet frame to be transmitted. |

priority | Relative priority used to transmit a frame. |

Return: IX_VLAN_QOS_SUCCESS: Success on transmission.

' IX_VLAN_QOS_FAIL: Failed on transmission.
This function shall be used to submit MBUFs buffers for transmission on a particular MAC device. Software

Description: shall use this function instead of ixEthAccPortTxFrameSubmit to applying processing of VLAN and QoS

functionality for the Egress frames.

Prototype: IxVlanQosStatus ixVlanQosPortRxCallbackRegister (IxEthAccPortld portld, IXEthAccPortRxCallback

ype: rxCallbackFn, UINT32 callbackTag);

Parameters: Description: 1/0:

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

October 2005
Document Number: 301925, Revision: 002 37

API Reference In ®

portld | The identifier of the NPE Ethernet port the callback is registered to. |
rxCallbackFn | Function to be called when Ingress Ethernet frames are received. |
callbackTag | This tag shall be provided to the callback function. |

IX_VLAN_QOS_SUCCESS: Success on registration.
IX_VLAN_QQOS_FAIL: Failed on registration.

Return:

Register a callback function to allow the reception of frames. The registered callback function is called once
Description: a frame is received by this service. This function is used to replace ixEthAccPortRxCallbackRegister when
software expects the processing for VLAN and QoS functionality to be applied on Ingress frames.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
38 Document Number: 301925, Revision: 002

INtal.

API Reference

Prototvpe: IxVlanQosStatus ixVIanQosPortTxDropCallbackRegister (IxEthAccPortld portid,
ype: IxVlanQosCallbackFn txDropCallbackFn,UINT32 callbackTag);
Parameters: Description: 1/0:
portld | The identifier of the NPE Ethernet port the callback is registered to. I
txDropCall- Function to be called when Egress frames are discarded. |
backFn
callbackTag | This tag shall be provided to the callback function. '
Return: IX_VLAN_QOS_SUCCESS: Success on registration.
' IX_VLAN_QOS_FAIL: Failed on registration.
Description: Register a callback function to drop an Egress frame requested either by VLAN or QoS modules. The
P ' registered callback function is called once a frame being transmitted is to be dropped by this software.
Prototvpe: IxVlanQosStatus ixVIanQosReservedBufferGetCallbackRegister (IxVlanQosPortld portid,
ype: IxVlanResvBufGetCallbackFn callbackFn, UINT32 callbackTag);
Parameters: Description: 1/0:
portld | The identifier of the NPE Ethernet port the callback is registered to. |
callbackFn | Function to be called when the reserved buffer is requested. |
callbackTag | This tag shall be provided to the callback function. |
Return: IX_VLAN_QOS_SUCCESS: Success on registration.
' IX_VLAN_QOS_FAIL: Failed on registration.
Register a callback function to retrieve a reserved buffer associated with a MBUF. The software uses this
buffer to save the VLAN information of a frame which represented by a MBUF. The VLAN information is
o determined during the VLAN processing is applying on the received frame. Once the frame has been
Description: bridged to another NPE Ethernet port, the VLAN information will be extracted from the buffer by software on
Egress.
NOTE: The client software or Ethernet driver shall reserve 16 bytes space for each MBUF.
Prototype: IxVlanQosStatus ixVIanPortEnable (IxvlanQosPortld pid);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to be enabled. |
Return: IX_VLAN_QOS_SUCCESS: Success on enabling the port.
’ IX_VLAN_QOS_FAIL: Fail on enable the port.
Description: Enable the VLAN functionality for a given NPE Ethernet port. The functionality is disabled by default.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

October 2005
Document Number: 301925, Revision: 002 39

API Reference

Prototype:

IxVlanQosStatus ixVlanPortDisable (IxVlanQosPortld pid);

Parameters:

pid

Description: 1/0:

The identifier of the NPE Ethernet port to be enabled. |

Return:

IX_VLAN_QOS_SUCCESS: Success on disabling the port.
IX_VLAN_QQOS_FAIL: Fail on disabling the port.

Description:

Disable the VLAN functionality for a given NPE Ethernet port.

Prototype:

IxVlanQosStatus ixVlanPortEnabledGet (IxVlanQosPortld pid, BOOL *enabled);

Parameters:
pid

*enabled

Description: 1/0:

The identifier of the NPE Ethernet port to retrieve from. I

Address of the space used to retrieve the port is whether enabled. Zero value indicates the 1)
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving status from the port.
IX_VLAN_QOS_FAIL: Fail on retrieving status from the port.

Description:

Retrieve the Boolean value from a given NPE Ethernet port indicating whether the VLAN functionality on the
port is enabled.

Prototype:

IxVlanQosStatus ixVIanEgressTypeSet (IxVlanQosPortld pid, IxVlanVlanid vid, IxVlanEgressType
type);

Parameters:
pid
vid
type

Description: 1/0:

The identifier of the NPE Ethernet port to be set. I
The identifier of the VLAN to be set. I

The frame type of a frame being transmitted in. Use TAGGED_FRAME_TYPE for tagging the I
frames and use UNTAGGED_FRAME_TYPE for un-tagging the frames.

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the egress type.
IX_VLAN_QOS_FAIL: Fail on setting the egress type.

Description:

Set the VLAN egress tagging or un-tagging for a given NPE Ethernet port and VLAN ID. If egress VLAN
tagging is set, the untagged frame will be transmitted in a tagged format. If egress VLAN un-tagging is set,
the tagged frame will be transmitted in untagged format. The egress type is un-tagging by default.

NOTE: If the VLAN ID of the frame is not joined in the membership table of the egress port, the frame will
be transmitted without being changed.

October 2005
40

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

INtal.

API Reference

Prototype: IxVlanQosStatus ixVlanEgressTypeGet (IxVlanQosPortld pid, IxVlanVlanid vid, IxVlanEgressType
ype: *type);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to retrieve from. I
vid | The identifier of the VLAN to be retrieved. I
*type | Address of the space used to retrieve the egress frame type. TAGGED_FRAME_TYPE 0
indicates the egress frames will be tagging and UNTAGGED_FRAME_TYPE indicates the
egress frames will be un-tagging. The address cannot be NULL.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the egress type.
' IX_VLAN_QOS_FAIL: Fail on retrieving the egress type.
D T Retrieve the egress type from a given NPE Ethernet port and VLAN ID. Egress type indicates the format of
escription: . h
the egress frames to be transmitted in.
Prototype: IxVlanQosStatus ixVlanMembershipSet (IxVlanQosPortld pid, IxVlanVianid vid, BOOL isMember);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to be set. I
vid | The identifier of the VLAN to be set. I
isMember | The Boolean value to indicate the VLAN ID whether to be the member of the NPE Ethernet I
port or not. Use TRUE value demands the VLAN ID joining into the VLAN membership of the
port and FALSE value demands the VLAN ID leaving from the VLAN membership of the port.
Return: IX_VLAN_QOS_SUCCESS: Success on setting the membership.

' IX_VLAN_QOS_FAIL: Fail on setting the membership.

Description Demand a VLAN id to join to or leave from the VLAN membership of a given NPE Ethernet port.

iption:

P NOTE: The PVID (default VLAN ID of the port) cannot leave the VLAN membership of the port.
Prototype: IxVlanQosStatus ixVIanMembershipGet (IxVlanQosPortld pid, IxVlanVlanid vid, BOOL *isMember);
Parameters: Description: 1/0:

pid | The identifier of the NPE Ethernet port to retrieve from. I
vid | The identifier of the VLAN to be retrieved. I
*isMember | Address of the space to retrieve the Boolean value which indicating the membership of the o
VLAN ID on the port. TRUE value indicates the VID is joined in the VLAN membership of the
port and FALSE value indicates not. The address cannot be NULL.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the membership.
' IX_VLAN_QOS_FAIL: Fail on retrieving the membership.
Description: Retrieve the VLAN membership of a VLAN ID from a given NPE Ethernet port.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002

October 2005

41

API Reference

In

Prototype:

IxVlanQosStatus ixVlanPortAcceptFrameTypeSet (IxVlanQosPortld pid, IxVlanAcceptbaleFrameType
type);

Parameters:

pid
type

Description: 1/0:

The identifier of the NPE Ethernet port to be set. |

The acceptable frame type. Use ACCEPT_TAGGED_ONLY to accept VLAN tagged frames |
only and use ACCEPT_ALL_FRAME to accept all type of frames.

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the acceptable frame type
IX_VLAN_QOS_FAIL: Fail on setting the acceptable frame type.

Description:

Set the acceptable frame type for a given NPE Ethernet port. Use ACCEPT_TAGGED_ONLY to accept
VLAN tagged frames only and use ACCEPT_ALL_FRAME to accept all type of frames.

Prototype:

IxVlanQosStatus ixVIanPortAcceptFrameTypeGet (IxVlanQosPortld pid,
IxVlanAcceptbaleFrameType *type);

Parameters:

pid
*type

Description: 1/0:

The identifier of the NPE Ethernet port to retrieve from.
Address of the space used to retrieve the acceptable frame type.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the acceptable frame type.
IX_VLAN_QOS_FAIL: Fail on retrieving the acceptable frame type.

Description:

Retrieve the acceptable frame type from a given NPE Ethernet port. The type can be accepting all type of
frames or accepting VLAN tagged frames only.

Prototype:

IxVlanQosStatus ixVIanPortMembershipFilterSet (IxvVlanQosPortld pid, IxVlanQosDirection dir,
BOOL enabled);

Parameters:

pid
dir

enabled

Description: 1/0:

The identifier of the NPE Ethernet port to be set. |

Which direction of data path to be set. IX_VLAN_QOS_INGRESS indicates the ingress side |
and IX_VLAN_QOS_EGRESS indicates the egress side.

The Boolean value indicating the filter to be enabled or disabled. TRUE value indicates I
enabling the filter and FALSE value indicates disabling the filter.

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the filter.
IX_VLAN_QOS_FAIL: Fail on setting the filter.

Description:

Enable or disable the VLAN membership filter for a given NPE Ethernet port at the given direction. The
Ingress and Egress VLAN membership filter of the port are both enabled by default.

October 2005
42

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

INtal.

API Reference

. IxVlanQosStatus ixVlanPortMembershipFilterGet (IxvVlanQosPortld pid, IxVlanQosDirection dir,
Prototype: N .
BOOL *enabled);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to retrieve from.
dir | Which direction of data path to be set. IX_VLAN_QOS_INGRESS indicates the ingress side I
and IX_VLAN_QOS_EGRESS indicates the egress side. I
*enabled | Address of the space used to retrieve the Boolean value, which indicates if the filter is
enabled. Zero value indicates the port is disabled and nonzero value indicates the filter is e)
enabled. The address cannot be NULL.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the filter status.
' IX_VLAN_QOS_FAIL: Fail on retrieving the filter status.
Description: Retrieve whether the VLAN membership filter is enabled for a given NPE Ethernet port at the given direction.
Prototype: IxVlanQosStatus ixVlanPortVlanTagSet (IxVlanQosPortld pid, IxVlanVianid vid, IXEthDBPriority
ype: priority);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to be set. |
vid | VLAN id of the default VLAN tag. |
priority | User priority of the default VLAN tag. |
Return: IX_VLAN_QOS_SUCCESS: Success on setting the default VLAN tag.
' IX_VLAN_QOS_FAIL: Fail on setting the default VLAN tag.
Description: Set the default VLAN tag for a given NPE Ethernet port. The VLAN tag consists of IEEE 802.1Q user priority
P ' and VLAN ID. The default VLAN tag of the port is (priority=0, vid=1).
Prototvpe: IxVlanQosStatus ixVIanPortVIlanTagGet (IxVlanQosPortld pid, IxVlanVlanid *vid, IXEthDBPriority
ype: *priority);
Parameters: Description: 1/0:
pid | The identifier of the NPE Ethernet port to retrieve from. |
*vid | Address of the space used to retrieve the VLAD id of the default VLAN tag. (0]
*priority | Address of the space used to retrieve the user priority of the default VLAN tag. (0]
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the default VLAN tag.
' IX_VLAN_QOS_FAIL: Fail on retrieving the default VLAN tag.
Description: Retrieve the default VLAN tag from a given NPE Ethernet port. The VLAN tag consists of IEEE 802.1Q user
P ' priority and VLAN ID.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002 43

October 2005

API Reference

Prototype: IxVlanQosStatus ixVlanMacRuleAdd (IxvVlanMacRule *mac_rule, RULE_ID *rid);
Parameters: Description: 1/0:
mac_rule | The MAC rule to be added. The content of the rule shall be filled before to be added. |
rid | Address of the space used to retrieve the rule identifier if the requested adding is successful. (@)
Return: IX_VLAN_QOS_SUCCESS: Success on adding the rule.
' IX_VLAN_QOS_FAIL: Fail on adding the rule.
Description: Add a rule to the database for MAC-based VLAN classification. On success, a unique identifier that
P ' associates with the newly added rule will be returned.
Prototype: IxVlanQosStatus ixVIanMacRuleDelete (RULE_ID rid);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule to be removed. |
Return: IX_VLAN_QOS_SUCCESS: Success on removing the rule.
' IX_VLAN_QQOS_FAIL: Fail on removing the rule.
D T Remove a rule from the database for MAC-Based VLAN classification. The rule identifier shall be given to
escription: .
specify the rule.
Prototype: IXVlanQosStatus ixVlanMacRuleGet (RULE_ID rid, IxVlanMacRule *mac_rule);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule whose content to be retrieved. |
*mac_rule | Address of the space used to retrieve the content of the rule. O
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
' IX_VLAN_QOS_FAIL: Fail on retrieving the rule.
Description: Retrieve the content of a MAC-Based VLAN classification rule specified by a given identifier.
Prototype: IxVlanQosStatus ixVIanMacRuleFind (IxVlianMacRule *mac_rule, RULE_ID *rid);
Parameters: Description: 1/0:
*mac_rule | Address of the rule content used to be matched to the rules in the classifier database. |
*rid | Address of the space used for retrieving the identifier of the rule which matched to the given o
content, if existed. On fail, there will be no change on that address.
Return: IX_VLAN_QOS_SUCCESS: Success on finding the rule.
' IX_VLAN_QOS_FAIL: Fail on finding the rule.
Find the MAC-based VLAN classification rule from the database by matching a given content. The content of
Description: the rule shall be filled before calling the function. The member fields, vid and priority, will be ignored during
the content matching.

October 2005
44

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

INtal.

API Reference

Prototype:

IxVlanQosStatus ixVIanFirstMacRuleldGet (RULE_ID *rid);

Parameters:

*rid

Description: 1/0:

Address of the space used to retrieve the identifier of the first rule if there is any in the
database.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the rule identifier.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:

Retrieve the first MAC-Based VLAN classification rule in the classifier database. When the user wants to
retrieve all rules in the classifier, the user has to call this function at first and then call the
ixVlanNextMacRuleldGet for retrieving the consequent rules. This function will return the rule identifier of the
first rule, instead of returning the content.

Prototype:

IxVlanQosStatus ixVIanNextMacRuleldGet (RULE_ID *rid);

Parameters:

*rid

Description: 1/0:

Address of the space used to retrieve the identifier of the rule in the database which is in
sequence to the previous one. The address cannot be NULL.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the rule identifier.
IX_VLAN_QOS_FAIL: Fail on finding the rule.

Description:

Retrieve the MAC-Based VLAN classification rule which is consequent to the rule be retrieved by calling this
function or calling ixVlanFirstMacRuleldGet at previous. This function will return the rule identifier instead of
returning the rule content.

Prototype:

IxVlanQosStatus ixVIanMacRuleHitGet (RULE_ID rid, UINT32 *hit);

Parameters:

rid
*hit

Description: 1/0:

The rule identifier specifying the rule whose hit count to be retrieved. |
Address of the space used to retrieve the hit counter. The address cannot be NULL. (0]

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the hit counter.
IX_VLAN_QOS_FAIL: Fail on retrieving the hit counter.

Description:

Retrieve the hit counter of a MAC-based VLAN classification rule. The hit count records the number of times
the rule was able to be matched to the ingress or egress frames being classified in the data path.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002 45

October 2005

API Reference

Prototype: IxVlanQosStatus ixVIanMacRuleHitReset (RULE_ID rid);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule whose hit count is to be reset. |
Return: IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
' IX_VLAN_QQOS_FAIL: Fail on resetting the hit counter.
Description: Reset the hit counter of a MAC-based VLAN classification rule to zero.
Prototype: IxVlanQosStatus ixVlanMacRuleResetAll (void);
Parameters: Description: 1/0:
n/a | None
Return: IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
' IX_VLAN_QQOS_FAIL: Fail on resetting the hit counter.
Description: Reset the database of the MAC-based classification. This action will remove all rules from the database.
Prototype: IxVlanQosStatus ixVIanMacClassifierSet (IxVlanQosPortld pid, BOOL enabled);
Parameters: Description: 1/0:
pid | Identifier of the NPE Ethernet port to be set. |
enabled | The Boolean value indicating whether the classifier is to be enabled or disabled. TRUE value |
indicates enabling the classifier and FALSE value indicates disabling it.
Return: IX_VLAN_QOS_SUCCESS: Success on setting the classifier.
’ IX_VLAN_QOS_FAIL: Fail on setting the classifier.
T Enable or disable the MAC-based VLAN classification for the incoming or outgoing frames on a given NPE
Description:
Ethernet port.
Prototype: IxVlanQosStatus ixVlanMacClassifierGet (IxvVlanQosPortld pid, BOOL *enabled);
Parameters: Description: 1/0:
pid | Identifier of the NPE Ethernet port to be set. I
*enabled | Address of the space used to retrieve the port is whether enabled. Zero value indicates the 1)
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the classifier.
’ IX_VLAN_QOS_FAIL: Fail on retrieving the classifier.
Description: Retrieve the Boolean value from a given NPE Ethernet port indicating that the MAC-based VLAN
P ' classification on the port is enabled.

October 2005
46

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide

Document Number: 301925, Revision: 002

INtal.

A

Pl Reference

Prototype: IxVlanQosStatus ixVIanProtocolRuleAdd (IxVianlpRule *ip_rule, RULE_ID *rid);
Parameters: Description: 1/0:
*ip_rule | The Protocol rule to be added. The content of the rule shall be filled before to be added. |
*rid | Address of the space used to retrieve the rule identifier if the requested adding is successful. (0]
Return: IX_VLAN_QOS_SUCCESS: Success on adding the rule.
’ IX_VLAN_QOS_FAIL: Fail on adding the rule.
S Add a rule to the database for Protocol-Based VLAN classification. On success, a unique identifier which
Description: ’ . :
associates with the newly added rule is returned.
Prototype: IxVlanQosStatus ixVIanProtocolRuleDelete (RULE_ID rid);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule to be removed. |
Return: IX_VLAN_QOS_SUCCESS: Success on removing the rule.
’ IX_VLAN_QOS_FAIL: Fail on removing the rule.
S Remove a rule from the database for Protocol-Based VLAN classification. The rule identifier shall be given to
Description: .
specify the rule.
Prototype: IxVlanQosStatus ixVIanProtocolRuleGet (RULE_ID rid, IxVlanlpRule *ip_rule);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule whose content to be retrieved. |
*ip_rule | Address of the space used to retrieve the content of the rule. (0]
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
' IX_VLAN_QOS_FAIL: Fail on retrieving the rule.
Description: Retrieve the content of a Protocol-Based VLAN classification rule specified by a given identifier.
Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005

Document Number: 301925, Revision: 002

47

API Reference

Prototype: IxVlanQosStatus ixVIanProtocolRuleFind (IxVlanipRule *ip_rule, RULE_ID *rid);
Parameters: Description: 1/0:
*ip_rule | Address of the rule content used to be matched to the rules in the classifier database. I
*rid | Address of the space used for retrieving the identifier of the rule which matched to the given 9
content, if existed. On fail, there will be no change on that address.
Return: IX_VLAN_QOS_SUCCESS: Success on finding the rule.
' IX_VLAN_QOS_FAIL: Fail on finding the rule.
Find the Protocol-Based VLAN classification rule from the database by matching a given content. The
Description: content of the rule shall be filled before calling the function. The member fields, vid and priority, will be
ignored during the content matching.
Prototype: IxVlanQosStatus ixVIanFirstProtocolRuleldGet (RULE_ID *rid);
Parameters: Description: 1/0:
*rid | Address of the space used to retrieve the identifier of the first rule if there is any in the o
database.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
' IX_VLAN_QQOS_FAIL: Fail on retrieving the rule.
Retrieve the first Protocol-Based VLAN classification rule in the classifier database. When the user wants to
Description: retrieve all rules in the classifier, the user has to call this function at first and then call the
P ' ixVlanNextProtocolRuleldGet for retrieving the consequent rules. This function will return the rule identifier of
the first rule, instead of returning the content.
Prototype: IxVlanQosStatus ixVIanNextProtocolRuleldGet (RULE_ID *rid);
Parameters: Description: 1/0:
*rid | Address of the space used to retrieve the identifier of the rule in the database which is o
consequent to the previous one. The address cannot be NULL.
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the rule.
’ IX_VLAN_QQOS_FAIL: Fail on retrieving the rule.
Retrieve the Protocol-Based VLAN classification rule which is consequent to the rule be retrieved by calling
Description: this function or calling ixVlanFirstProtocolRuleldGet at previous. This function will return the rule identifier
instead of returning the rule content.

October 2005
48

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

INtal.

API Reference

Prototype: IxVlanQosStatus ixVIanProtocolRuleHitGet (RULE_ID rid, UINT32 *hit);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule whose hit count to be retrieved. |
*hit | Address of the space used to retrieve the hi counter. The address cannot be NULL. (0]
Return: IX_VLAN_QOS_SUCCESS: Success on retrieving the hit counter.
' IX_VLAN_QOS_FAIL: Fail on retrieving the hit counter.
Description: Retrieve the hit counter of a Protocol-Based VLAN classification rule. The hit count records the times the rule
P ' is matched to the ingress or egress frames needs be classified in data path.
Prototype: IxVlanQosStatus ixVlanProtocolRuleHitReset (RULE_ID rid);
Parameters: Description: 1/0:
rid | The rule identifier specifying the rule whose hit count to be reset. |
Return: IX_VLAN_QOS_SUCCESS: Success on resetting the hit counter.
' IX_VLAN_QOS_FAIL: Fail on resetting the hit counter.
Description: Reset the hit counter of a Protocol-Based VLAN classification rule to zero.
Prototype: IxVlanQosStatus ixVIanProtocolRuleResetAll (void);
Parameters: Description: 1/0:
n/a | None
Return: IX_VLAN_QOS_SUCCESS: Success on resetting the Protocol-Based classification database.
' IX_VLAN_QOS_FAIL: Fail on resetting the Protocol-Based classification database.
Description: Reset the database of the Protocol-Based classification. This action will remove all rules from the database.
Prototype: IxVlanQosStatus ixVlanProtocolClassifierSet (IxVlanQosPortld pid, BOOL enabled);
Parameters: Description: 1/0:
pid | |dentifier of the NPE Ethernet port to be set. I
enabled | The Boolean value indicating the classifier to be enabled or disabled. TRUE value indicates I
enabling the classifier and FALSE value indicates disabling it.
Return: IX_VLAN_QOS_SUCCESS: Success on setting the classifier.
' IX_VLAN_QOS_FAIL: Fail on setting the classifier.
Description: Enable or disable the Protocol-Based VLAN classification for the incoming or outgoing frames on a given
P ' NPE Ethernet port.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002

October 2005
49

API Reference

In

Prototype:

IxVlanQosStatus ixVIanProtocolClassifierGet (IxVlanQosPortld pid, BOOL *enabled);

Parameters:

pid
*enabled

Description: 1/0:

Identifier of the NPE Ethernet port to retrieve from. I

Address of the space used to retrieve the port is whether enabled. Zero value indicates the 1)
port is disabled and nonzero value indicates the port is enabled. The address cannot be
NULL.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the classifier.
IX_VLAN_QOS_FAIL: Fail on retrieving the classifier.

Description:

Retrieve the Boolean value from a given NPE Ethernet port which indicating whether
the Protocol-Based VLAN classification on the port is enabled.

Prototype:

IxVlanQosStatus ixQosShaperEnable (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid);

Parameters:
pid
dir
tcid

Description: 1/0:

Identifier of the NPE Ethernet port the shaper is standing on. |
Direction which the shaper is standing on. |
Traffic class which the shaper is working for. |

Return:

IX_VLAN_QOS_SUCCESS: Success on enabling the shaper.
IX_VLAN_QQOS_FAIL: Fail on enabling the shaper.

Description:

Enable the shaper on a given NPE Ethernet port and a given traffic class at a given direction. As the shaper
is enabled, the rate of traffic corresponding to the shaper will be limited on the behavior described by the
shaper configuration. The shaper is disabled by default.

Prototype:

IxVlanQosStatus ixQosShaperDisable (IxvVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid);

Parameters:
pid
dir
tcid

Description: 1/0:

Identifier of the NPE Ethernet port the shaper is standing on. |
Direction which the shaper is standing on. |
Traffic class which the shaper is working for. |

Return:

IX_VLAN_QOS_SUCCESS: Success on disabling the shaper.
IX_VLAN_QOS_FAIL: Fail on disabling the shaper.

Description:

Disable the shaper on a given NPE Ethernet port and a given traffic class at a given direction. As the shaper
is disabled, the rate of traffic corresponding to the shaper will not be limited.

October 2005
50

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

In ® APl Reference

IxVlanQosStatus ixQosShaperEnabledGet (IxvianQosPortld pid, IxVlanQosDirection dir, IxQosTcld

Prototype: tcid, BOOL *enabled);

Parameters: Description: 1/0:

pid | Identifier of the NPE Ethernet port the shaper is standing on.
dir | Direction which the shaper is standing on.
tcid | Traffic class which the shaper is working for.

o___

*enabled | Address of the space used to retrieve the Boolean value. Zero value indicates the port is
disabled and nonzero value indicates the port is enabled. The address cannot be NULL.

IX_VLAN_QOS_SUCCESS: Success on retrieving the shaper status.
IX_VLAN_QOS_FAIL: Fail on retrieving the shaper status.

Return:

Return whether the shaper on a given NPE Ethernet port and a given traffic class at a given direction is

Description: enabled.

IxVlanQosStatus ixQosShaperRateSet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,

Prototype: UINT32 fps, UINT32 bps):

Parameters: Description: 1/0:

pid | ldentifier of the NPE Ethernet port the shaper is standing on.
dir | Direction which the shaper is standing on.

|

|

tcid | Traffic class which the shaper is working for. |
fps | The average frame number per second (frame rate). |
|

bps | The average bits number per second (bit rate).

IX_VLAN_QOS_SUCCESS: Success on enabling the shaper.
IX_VLAN_QOS_FAIL: Fail on enabling the shaper.

Return:

Set the average rate for a given shaper. Average rate of the traffic class corresponding to the shaper will be
limited to under below the given number. The rate can be specified in the unit of “frame number per second”
or/and in the unit of “bit number per second”. If rates in both units were specified, the traffic class will be
limited by which has been exceeded first. If the user wants to specify the frame rate to under a certain
number and does not care the bit rate, for example, the user has to use IX_QOS_RATE_UNLIMIT to specify
the bit rate. In the case that does not care the frame rate, use the same identifier for the parameter either.

Description:

IxVlanQosStatus ixQosShaperRateGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,

Prototype: UINT32 *fps, UINT32 *bps);

Parameters: Description: 1/0:

pid | Identifier of the NPE Ethernet port the shaper is standing on.
dir | Direction which the shaper is standing on.

tcid | Traffic class which the shaper is working for.

*fps | Address of the space used to retrieve the average frame rate.

00— - -

*bps | Address of the space used to retrieve the average bit rate.

IX_VLAN_QOS_SUCCESS: Success on retrieving the rate.
IX_VLAN_QOS_FAIL: Fail on retrieving the rate.

Return:

Description: Retrieve the average frame rate and average bit rate from a given shaper.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0 October 2005
Document Number: 301925, Revision: 002 51

API Reference In ®

IxVlanQosStatus ixQosShaperCeilSet (IxvVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,

| Prototype: UINT32 fps, UINT32 bps):

Parameters: Description: 1/0:

pid | Identifier of the NPE Ethernet port the shaper is standing on. |
dir | Direction which the shaper is standing on. |
tc | Traffic class which the shaper is working for. |
fps | The ceil frame rate. |
bps | The ceil bit rate. |

IX_VLAN_QOS_SUCCESS: Success on setting the ceil rate.

Return: . . .
IX_VLAN_QOS_FAIL: Fail on setting the ceil rate.

Set the ceil traffic rate for a given shaper. Ceil rate is the transient maximum rate the traffic was allowed to
pass through the shaper. The time length that the traffic can be allowed to pass in the ceil rate is determined
by how many traffic less than the average rate were accumulated before. For example, consider the
condition that the average rate was set to 100 frames/sec and the ceil rate was set to 500 frames/sec for a
shaper. If traffic rate was generated in 20 frames per second and was lasted for 10 seconds, there were 80
frames less than average rate per second and totally 800 frames were accumulated for the burst size during
the 10 seconds. When the traffic suddenly increases to over 500 frames per second, the shaper can allow
the traffic to pass through in the ceil rate, which is 400 frames larger than the average rate (over 400 frames
were in burst per second), and it can last for 2 (800 / 400) seconds. The ceil rate can be specified in frame
rate and/or bit rate. The traffic will be bounded by the rate which is exceeded at first.

Description:

IxVlanQosStatus ixQosShaperCeilGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld tcid,

| Prototype: UINT32 *fps, UINT32 *bps);

Parameters: Description: 1/0:

pid | Identifier of the NPE Ethernet port the shaper is standing on.
dir | Direction which the shaper is standing on.
tcid | Traffic class which the shaper is working for.
*fps | Address of the space used to retrieve the ceil of frame rate.
*bps | Address of the space used to retrieve the ceil of frame rate.

oo - - -

IX_VLAN_QOS_SUCCESS: Success on retrieving the ceil rate.

Return: . L .
IX_VLAN_QQOS_FAIL: Fail on retrieving the ceil rate.

| Description: Retrieve the ceil frame rate and the ceil bit rate from a given shaper.

October 2005 Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
52 Document Number: 301925, Revision: 002

INtal.

API Reference

Prototype:

IxVlanQosStatus ixQosShaperBurstSizeSet (IxVlanQosPortld pid, IxVlanQosDirection dir, 1xQosTcld
tcid, UINT32 frames, UINT32 bits);

Parameters:

pid

dir

teid
frames
bits

Description: 1/0:

Identifier of the NPE Ethernet port the shaper is standing on. I
Direction which the shaper is standing on. |
Traffic class which the shaper is working for. |
Amount of frames for burst. I
Amount of bits for burst. I

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the burst size.
IX_VLAN_QOS_FAIL: Fail on setting the burst size.

Description:

Set the burst size for a given shaper. The burst size means how many amount of traffic addition to the traffic
under average rate can be allowed to pass through the shaper in the ceil rate. Refer to the example in the
description for ixQosShaperCeilSet.

Prototype:

IxVlanQosStatus ixQosShaperBurstSizeGet (IxVlanQosPortld pid, IxVlanQosDirection dir, IxQosTcld
tcid, UINT32 *frames, UINT32 *bits);

Parameters:

pid

dir

teid
*frames
*bits

Description: 1/0:

Identifier of the NPE Ethernet port the shaper is standing on.
Direction which the shaper is standing on.

Traffic class which the shaper is working for.

Address of the space to retrieve the burst size for frames.

00— — -

Address of the space to retrieve the burst size for bits.

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the burst size.
IX_VLAN_QOS_FAIL: Fail on retrieving the burst size.

Description:

Retrieve the burst size of frames and bits for a given shaper.

Prototype:

IxVlanQosStatus ixQosPriorityMappingSet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IxXVlanQosPriority priority, IxQosTcld tcid);

Parameters:
pid
dir
priority
tcid

Description: 1/0:

Identifier of the NPE Ethernet port the traffic class is standing on.
Direction which the traffic class is standing on.

The user priority to be mapped.

Traffic class which the user priority is mapped to.

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the traffic class.
IX_VLAN_QOS_FAIL: Fail on setting the traffic class.

Description:

Set for which traffic class that a given user priority is mapped to on a given NPE Ethernet port and a given
direction.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

October 2005
Document Number: 301925, Revision: 002 53

API Reference

In

Prototype:

IxVlanQosStatus ixQosPriorityMappingGet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IxVlanQosPriority priority, IxQosTcld *tcid);

Parameters:

pid

dir
priority
*tcid

Description: 1/0:

Identifier of the NPE Ethernet port the traffic class is standing on.

Direction which the traffic class is standing on.

The user priority to be mapped.

Address of the space to retrieve the traffic which the user priority is mapped to.

o___

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the traffic class.
IX_VLAN_QOS_FAIL: Fail on retrieving the traffic class.

Description:

Retrieve the traffic class that a given user priority is mapped to on a given NPE Ethernet port and a given
direction.

Prototype:

IxVlanQosStatus ixQosPriorityMappingTableSet (IxVlanQosPortld pid, IxVlanQosDirection dir,
IxQosTcld tcid[]);

Parameters:
pid
dir
tcid

Description: 1/0:

Identifier of the NPE Ethernet port the mapping table is for. I
Direction that the mapping table is for. I

Array of traffic classes for mapping the eight user priorities. The first element in the array I
specifies the traffic that user priority 0 is mapped to, and so on.

Return:

IX_VLAN_QOS_SUCCESS: Success on setting the table.
IX_VLAN_QOS_FAIL: Fail on setting the table.

Description:

Set the table for specifying which traffic classes that eight user priorities are mapped to.

October 2005
54

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide

Document Number: 301925, Revision: 002

INtal.

API Reference

Prototype:

IxVlanQosStatus ixQosPriorityMappingTableGet (IxvVlanQosPortld pid, IxVlanQosDirection dir,
IxQosTcld tcid[]);

Parameters:
pid
dir
teid

Description: 1/0:

Identifier of the NPE Ethernet port the mapping table is from. |
Direction that the mapping table is from. |
Array of traffic classes for mapping the eight user priorities. (0]

Return:

IX_VLAN_QOS_SUCCESS: Success on retrieving the table.
IX_VLAN_QOS_FAIL: Fail on retrieving the table.

Description:

Retrieve the table for specifying which traffic classes that eight user priorities are mapped to.

Programmer’s Guide Intel® IXP400 Software: VLAN and QoS Application Version 2.0

Document Number: 301925, Revision: 002

October 2005

55

API Reference

October 2005
56

This page is intentionally left blank.

Intel® IXP400 Software: VLAN and QoS Application Version 2.0 Programmer’s Guide
Document Number: 301925, Revision: 002

	Contents
	Figures
	1 Intel® IXP400 Software and Ethernet Device Driver Overview 11
	2 Software Architecture with the VLAN and QoS Example Code 12
	3 802.1Q VLAN Module - Component View 13
	4 802.1Q Frame Types 15
	5 Flow Diagram for Acceptable Frame Type Filtering 16
	6 Flow Diagram for Ingress VLAN Membership Filtering 17
	7 Flow Diagram for VLAN Classification 18
	8 Flow Diagram for Egress VLAN Membership Filtering 19
	9 Flow Diagram for Rebuilding the Frame Header 20
	10 Port Database Dependencies 22
	11 VLAN Database Dependencies 23
	12 Classification Rules Database 24
	13 Management Interface Interactions 25
	14 802.1p User Priority to Traffic Class Mapping 28
	15 Interactions of the QoS Module Management Interface Sub-Component 29
	16 System View of IOCTL Utilities and Parser 30

	Tables
	1 Rules for Rebuilding Frame Headers 20
	2 User Priority to Traffic Class Defaults and Recommendations 28
	3 API Index 31

	Revision History

	1.0 Introduction
	1.1 What’s New
	1.2 Scope and Purpose
	1.3 Acronyms
	1.4 Related Documents

	2.0 Software Overview
	2.1 Functionality Overview
	2.1.1 VLAN Functionality
	2.1.2 QoS Functionality

	2.2 Software Architecture and High-Level Design

	3.0 802.1Q VLAN Module
	3.1 Ingress Rules Component
	3.1.1 External Interactions and Dependencies
	3.1.2 Key Assumptions

	3.2 VLAN Classification Component
	3.2.1 External Interactions and Dependencies

	3.3 Egress Rules Component
	3.3.1 External Interactions and Dependencies
	3.3.2 Key Assumptions

	3.4 Database Component
	3.4.1 External Interactions and Dependencies
	3.4.1.1 Port Database
	3.4.1.2 VLAN Database

	3.4.2 Classification Rules Database

	3.5 Management Interface Component

	4.0 802.1p User Priority and QoS Module
	4.1 Traffic Shaper Component
	4.1.1 External Interactions and Dependencies

	4.2 Priority Mapping Component
	4.2.1 External Interactions and Dependencies
	4.2.2 Key Assumptions

	4.3 Management Interface Component

	5.0 IOCTL Enhancements for Ethernet Drivers
	6.0 API Reference
	6.1 Data Type Definitions
	6.2 Function Prototype Definitions

