
Intel® IXP400 Digital Signal
Processing (DSP) Software
Version 2.5
Programmer’s Guide

December 2004

Document Number: 252725-004a

2 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5

NFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® IXP400 DSP Software v2.5 may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2004

Programmer’s Guide 3

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Contents

Contents
1 Introduction..5

1.1 General ...5
1.2 Scope..6
1.3 Audience...6
1.4 Related Documents ..7

2 Architecture Overview ..9

3 Run-Time Interfaces ..13
3.1 Control Interface ...13
3.2 PCM Data Interface ..14
3.3 Packet Interface..15

4 Components, Features, and Parameters...17
4.1 Network Endpoint ...17
4.2 Encoder ..18
4.3 Decoder ..20
4.4 Tone Generator ..22
4.5 Tone Detector ...24
4.6 Audio Player ...25
4.7 Audio Mixer...26
4.8 Audio Stream Router ..27
4.9 T.38 Fax..29
4.10 Message Agent...30

5 Programming Guide ..33
5.1 Initialization ...33
5.2 Programming Model ...34

6 OS-Specific Issues ..37
6.1 VxWorks* ..37
6.2 Linux*..38

7 User-Defined Messages ..41
7.1 Overview...41
7.2 Pre-Defined User Messages...43

7.2.1 Link Message...45
7.2.2 Link Break Message ..46
7.2.3 Link Switch Message ...46
7.2.4 Start IP Message ...47
7.2.5 Stop IP Message ...48
7.2.6 Set Up Call Message ..48
7.2.7 Set Call Parameters Message ...49
7.2.8 Set Up Call with Parameters Message ..50
7.2.9 Switch Call Message ...51
7.2.10 Create Three-Way Call Message...52
7.2.11 Exit Three-Way Call Message ...52

4 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Contents

7.2.12 Tear Down Three-Way Call Message.. 53
7.2.13 Back to Two-Way Call Message.. 53
7.2.14 Set Clear Channel Message.. 54
7.2.15 T.38 Switch-Over Message ... 55
7.2.16 Set Parameters Message .. 56

7.3 Pre-Defined User-Response Messages ... 56
7.3.1 Acknowledge Message.. 56
7.3.2 Stop Acknowledge Message .. 57

8 Application Examples ... 59
8.1 IP Interface ... 59
8.2 Caller-ID Generator .. 61

Figures
1 Architecture of Intel® IXP400 DSP Software.. 9
2 Data-Flow and Data-Processing Functions .. 10
3 Intel® IXP400 DSP Software Message, Data, and Tasks .. 11
4 Control Interface and Message Queues... 14
5 PCM Data Interface .. 15
6 Packet Interface.. 16
7 Audio Stream Connections in a Three-Way Call .. 26
8 Terminations and Router .. 28
9 General State-Machine Approach for Client Applications .. 35
10 Intel® IXP400 DSP Software Client Driver in Linux* .. 39
11 Decoding User-Defined Messages in the Message Agent ... 43
12 Intel® DSP Software Application in VxWorks* ... 60
13 Intel® DSP Application in Linux* .. 61

Tables
(No numbered tables.)

Revision History

Date Revision Description

December 2004 005 Updated product branding.

June 2004 004 Document updated for release of Intel® IXP400 DSP Software v.2.5.

January 2004 003 Document updated for release of Intel® IXP400 DSP Software v.2.4.

September 2003 002 Document updated for release of Intel® IXP400 DSP Software v.2.3.

March 2003 001 Initial release of this document.

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 5

Introduction 1

Intel® IXP400 DSP Software is a software module that provides the basic voice and signal
processing functionalities for voice-over-Internet-protocol (VoIP) on Intel® IXP42X Product Line
of Network Processors and IXC1100 Control Plane Processor.

This document explains how to use the Intel® IXP400 Digital Signal Processing (DSP) Software
Version 2.5 API Reference Manual and provides guidelines and examples to the application
developers.

1.1 General
The Intel® IXP400 DSP Software is a software module for media processing, targeted for next-
generation Integrated Access Devices (IADs) such as Consumer Premise Equipment (CPE),
specifically, to perform media compression, echo cancellation, tone processing, and jitter control,
required in any IP media gateway or real-time media-streaming functionalities.

This document is intended to describe the control and data interfaces in order for a third-party
developer to incorporate the DSP software into a media gateway or server system and integrate it
with other client software. Together with the Intel® IXP400 Digital Signal Processing (DSP)
Software Version 2.5 Programmer’s Guide, this document provides sufficient details of the
interfaces and message and data-delivery mechanisms that the user applications can fully configure
and control the processing operations and services.

This release of DSP Software supports the following features:

• G.729ab — G.729a with VAD and CNG support

• G.711 µ-law and A-law CODEC with 10-ms frame size

• G.711 Annex 2. Support for VAD and CNG

• G.723.1 with 5.3 and 6.3 Kbps rates

• G.722

• G.726 with the rates of 16, 24, 32 and 40 Kbps

• Packet loss concealment (PLC) for G.711 G.726, and G.722

• Configurable PCM interface in the wideband or narrowband mode

• Dynamically switch coder types on the fly

• Automatically switch decoder types according to the received RTP packets

• Support multiple frames per packet. The maximum numbers of frames per packet are:

— 6 for G.711 and G.722

— 8 for G.723

— 9 for G.726 40 Kbps

— 12 for G.726 32 Kbps

6 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Introduction

— 16 for G.726 24 Kbps

— 24 for G.729 and G.726 16 Kbps

• Dynamically changing the frames per packet on the fly

• Dynamically routing the audio streams between any resource components

• Support Automatic Gain Control (AGC) for encoder with provision for manual setting with
mute

• Support Automatic Level Control (ALC) for decoder with provision for manual setting with
mute

• Echo cancellation

• DTMF generation and detection

• Receiving DTMF digit input

• Fax-tone detection

• Modulated-tone generation capability

• Detection and generation of user-specified tones

• FSK modem signal generating and receiving for caller ID

• United States, China1, and Japan call-progress tone generation

• Dynamic DTMF tone clamping

• RFC 2833 tone event support for DTMF with variable frame rate

• Dynamic/Adaptive Jitter Buffer algorithm

• Audio mixer for three-way call and small conference (up to five parties)

• Audio player for voice prompts, on-hold music, etc. (playing back G.711 or G.729 encoded
data).

• Low-latency TDM switching

• Digital gain control at the front end

• User-defined control interface

1.2 Scope
The Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 API Reference Manual
specifies how user can interface to the DSP software. This document provides more application
information on how the interface can be effectively used. Some examples are given for illustration
purposes. Details on pre-defined user messages, which are not part of the core DSP software but
are provided to help ease integration, are also given here.

1. In this document, all references to China refer to the People’s Republic of China.

 Programmer’s Guide 7

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Introduction

1.3 Audience
This document is intended for third-party software developers who are using the Intel® IXP400
DSP Software to build a gateway or server application. It is assumed that the reader has general
knowledge of VoIP applications and products.

1.4 Related Documents

Document Document
Number

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 API Reference Manual 273811

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Release Notes N/A

Intel® IXP400 Digital Signal Processing (DSP) Software Specification Update 273810

Intel® IXP400 Software Programmer’s Guide 252539

8 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Introduction

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 9

Architecture Overview 2

The Intel® IXP400 DSP Software is implemented as an independent module having its own tasks
and runtime environment. The software architecture is of a two-layer hierarchy — a control layer
that handles the control interface and control logic and a data-processing layer where the media
data streams are processed by appropriate algorithms.

Figure 1 shows the logic decomposition of the DSP software modules, where the shaded blocks
represent the control and data interfaces between the DSP software and other software modules.

From the control point of view, a DSP software channel consists of a set of Media Processing
Resource (MPR) components. Each MPR is an addressable entity and can be controlled
independently. That gives the maximum flexibility of setting up a channel with various resource
configurations, e.g., half-duplex call or asymmetry Rx and Tx CODEC types, if necessary.

Figure 1. Architecture of Intel® IXP400 DSP Software

Common Control Logic and
Generic Control Engine

Control
Messages

Real-Time Execution Environment

Intel® IXP400 DSP
Software Control Interface

Network
Endpoint Decoder Encoder Tone

Generator
Tone

Detector

Data-Processing
Algorithms and
Components

SLIC
Interface

IP
Stack

Intel® IXP400 DSP Software Client

PCM
Data

Interface

Packet
Interface

Control Layer

Data Processing Layer

Message
Agent

User-Defined
Control Interface

Audio
Mixer

Audio
Player

Replies and
Events

User-Defined
Control

Messages
and Replies

T.38

PCM
Data

Sync

Encoded
Packets

Revision 002

10 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Architecture Overview

From the perspective of data flows, the data processing functions are depicted in Figure 2. All the
functions are executed by real-time tasks (or threads) created during initialization. There is one task
for each unique coder frame rate. Currently there is a 10-ms task for G.711 and G.729 coders and a
30-ms task for the G.723 coder, fax modem, and T.38 engine.

The 10-ms task also handles all other non-coder voice processing, such as echo cancellation and
tone detection. The real-time tasks are of higher priority than the control task and are synchronized
(triggered) by the Network Processing Engine (NPE) of the High Speed Serial (HSS) port in the
IXP42X product line processors.

Some of the necessary input and output functions are also performed in the context of the real-time
tasks. This includes buffering of data to and from the HSS interface, and the external function
registered toDSP software to encode the DSP software’s packets into RTP format for forwarding to
the IP stack.

The relation among the messages, data and tasks inside and outside the DSP software, is illustrated
by Figure 3 on page 11 and can be summarized as:

• The control task is driven by the in-bound messages from the user application.

• The real-time tasks are synchronized with the data from HSS interface. HSS NPE signals the
scheduler via an interrupt service routine (ISR) every 10 ms. The scheduler triggers the real-
time tasks according to the algorithms executed by the tasks.

• Real-time tasks generate and consume the encoded audio packets at the fixed rates essentially
synchronized with PCM data.

• The encoded audio packets arrive at variable rate asynchronously with the real time tasks.

Note: It is important to understand that the internal, real-time tasks are characterized by their hard task
deadlines. That means if a real task cannot finish its processing before the next task period, data

Figure 2. Data-Flow and Data-Processing Functions

HPF EC

Tone
Clamping

AGC Enc

TD/FSK

Linear to A, µ-Law
Tx-Gain Control

ALC

TG/FSK

Front-End Processing
(TDM Termination)

Delay

Dec Jitter
Buffer

Switch/
Mixer

In
te

l®
 IX

P4
2X

 P
ro

du
ct

 L
in

e
Pr

oc
es

so
r

H
SS

 In
te

rf
ac

e

A, µ-Law
to Linear
Rx-Gain
Control

R
TP

 P
ac

ke
t I

nt
er

fa
ceOut-Band Signaling

A
ud

io
 S

tre
am

 R
ou

te
r

Media Service

Audio Player

Audio Mixer
(Conference)

IP Termination

RFC 2833 Packets

Out-Band Signaling

RFC 2833 Packets

V.17
Modem

T.38
CODEC

PLR

Revision 003

 Programmer’s Guide 11

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Architecture Overview

will be lost and consequently voice quality is degraded seriously. That may happen if the real-time
task is preempted by ISR or other tasks for a long time or simply the processor is overloaded.

Figure 3. Intel® IXP400 DSP Software Message, Data, and Tasks

IP Stack

Ethernet
NPE

Intel® IXP400 DSP Software
Client Application

 Intel® IXP400 DSP
 Software Module

Job
Management

HSS
Buffer

SL
IC

 In
te

rf
ac

e

H
S

S
 N

P
E

8-bit
PCM
Data

16-bit
PCM
Data

Scheduler

Egress Encoded
Packets

Ingress Encoded
Packets

Control Messages

Interrupt
IP

Packets

Control Task

Jitter
Buffer

IP ISR

IP Task

Interrupt

Real-Time Task

Revision 002

12 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Architecture Overview

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 13

Run-Time Interfaces 3

The Intel® IXP400 DSP Software is implemented as an independent module executed by its own
tasks. User applications do not directly access the internal functions or data.

The DSP software provides three interfaces for the applications to communicate control
information, PCM data, and encapsulated voice packets, respectively, in run-time as shown in
Figure 1 and Figure 2 on page 10.

3.1 Control Interface
The applications primarily communicate with DSP software through the control interface defined
as a set of functions, messages and macros.

There are two message queues in the control interface for the in-bound messages from applications
to the DSP software and the out-bound messages in the other direction. Refer to Figure 4 on
page 14. Two interface functions, xMsgSend() and xMsgReceive(), can be used for the
application to send and receive messages to/from the queues, respectively.

The DSP software spawns a dedicated control task pending on the in-bound message queue to
handle the control messages. The reason of isolating the DSP software software from user
applications by message queues is to avoid the internal control functions being accessed by
multiple tasks of the user application, since making the control functions multi-task-safe creates
extra complexity and subsequent performance penalties.

TheDSP software sends replies or events to the application through the out-bound message queue.
The application can retrieve the messages using xMsgReceive(). The caller's task of
xMsgReceive() will be blocked forever or until timeout if the out-bound queue is empty.

A third function for the control interface, xMsgWrite(), allows the application to directly post
external messages to the out-bound message queue back to the user application if necessary. This
enables the user application to receive all channel-associated events from one place, even though
some of these events are external to the DSP software. For instance, the application may hook a
callback function to the ISR that reports the SLIC interface on/off hook events. In the callback
function, an external event message as defined by the user is sent to the out-bound message queue
to signal the event to the user application.

Because of the limitation of the queue lengths, the queues may overflow and the messages may be
lost if the application keeps sending messages without waiting for the replies. In this case, the in-
bound queue may overflow if the user application is of higher priority than the DSP software
control task, or the out-bound queue may overflow if the user application has lower priority.

Copy-based message delivery is used. That is, the entire message context is actually copied from
the deliverer to the receptor rather than passing a pointer around. This avoids dynamically
allocating memory for the messages. Since no memory is shared between the DSP software and the
application, the application can reuse the memory of a message for any other purpose immediately
after the message is sent. On the other hand, to receive a message the application is responsible for
preparing the memory that must be able to accommodate the maximum message size with the
alignment at 4-byte boundary.

14 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Run-Time Interfaces

The message format consists of an 8-byte message header plus an optional message payload. The
message header contains the common information like channel ID, MPR ID, type, size, etc. A 4-
byte transaction ID is provided to allow the user application to keep track of the replies or events.
When the DSP software sends a reply or event message to the user application, it copies the
transaction ID from the associated message originated from the user application. Refer to the Intel®

IXP400 Digital Signal Processing (DSP) Software Version 2.5 API Reference Manual for details of
the control message format.

3.2 PCM Data Interface
PCM data represents the audio data stream between theDSP software and the telephone interface
via the TDM data bus. The PCM data interface relies on the HSS hardware integrated in the
IXP42X product line processors.

In contrast to the data network interface, such as the Ethernet interface, the HSS interface is
integrated as part of the DSP software. This allows the most efficient transfer of real-time PCM
data input since no other application is expected to need this data directly. The user application,
however, controls how the HSS is being configured, by parameters being passed to the DSP
software during initialization.

From the user application's perspective, the HSS can be viewed as a piece of hardware to be
properly configured, to interoperate with the external, customer-specific interface connected to it.
Once it is configured and started, there is no further user application involvement.

The user application configures the HSS by specifying the signal format to be presented on TDM
bus of the HSS device, including the clock rate, time slots, frame sync, endian, etc. Such
information is organized in two data structures:

• IxHssAccConfigParams

• IxHssAccTdmSlotUsage

Using this set of information, theDSP software initializes the HSS interface and starts data
transfers. Refer to the Intel® IXP400 Software Programmer’s Guide for details.

Figure 4. Control Interface and Message Queues

In-Bound
Message
Queue

Out-Bound
Message
Queue

Control
Messages

Replies or
Events

Other
Channel-
Associated
Events

xMsgSend () xMsgReceive () xMsgWrite()

Control Task

Revision 001

 Programmer’s Guide 15

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Run-Time Interfaces

The DSP software supports dual-band PCM interface over the HSS. In the narrowband mode, the
PCM data format is 8-bit A-law or µ-law compressed data at an 8-KHz sampling rate. In the
wideband mode, it is 16-bit linear data at 16-KHz sampling rate. In order to share the TDM bus of
the HSS, a wideband audio channel takes four time slots at the 8-KHz frame rate. The user
applications need to specify how those time slots are located if a channel is configured to wideband
mode during the system initialization. Sampling rate conversion (SRC) is applied automatically if a
wideband channel is connected to a narrowband media processing resource or vice versa. The
superior voice quality can be expected only when both the interface and the resources operate in
the wideband mode.

The user application may enable more HSS time slots than the number of channels supported by
the DSP software. In this case the time slots are connected to the channels from the first one
sequentially and the extra time slots are ignored. To use the low latency time slot switch feature, at
least eight time slots must be enabled. (See “Audio Stream Router” on page 27.)

Internally, the real-time tasks are synchronized with HSS data transfer — the scheduler being
signaled by the HSS driver (in an interrupt context) each time when certain amount (10 ms) of data
is transferred. The real-time tasks may not be invoked at all if the HSS interface is not configured
and started properly.

3.3 Packet Interface
Compared to PCM Data Interface, the Packet Interface is a pure software protocol that defines how
the encoded audio data packets are exchanged between the DSP software and the IP interface.

There are two functions and a packet format involved in the Audio Packet Interface as shown in
Figure 6 on page 16. The DSP software defines the packet format and provides the packet receive
function. The user application is responsible for providing the transmit function.

In ingress (packets coming from the IP interface), the IP interface converts each incoming VoIP
packet it receives to anDSP software data packet and then calls xPacketReceive() to deliver
it to the DSP software. The user application needs to decode the incoming IP packets to forward the
RTP packet payloads with the proper DSP software header format, with the extracted RTP
timestamp, to the proper DSP software channel.

Figure 5. PCM Data Interface

8-Bit, Compressed
PCM Samples

Intel® IXP400
DSP Software

Real-Time
Tasks and

Data-
Processing
Functions

TDM bus

Te
le

ph
on

e
In

te
rfa

ce

A
-L

aw
 o

r µ
-L

aw
to

 L
in

ea
r C

on
ve

rs
io

n

In
te

l®
 IX

P
42

X
H

S
S

 C
ha

nn
el

HSS Buffers

Revision 001

16 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Run-Time Interfaces

The function xPacketReceive() copies the packet to the jitter buffer without further
processing. Therefore xPacketReceive() can be called from an Interrupt Service Routine
context but re-entry is not allowed. Since the packets are copied by the DSP software, the caller of
the xPacketReceive() can free or reuse any memory it may have allocated to buffer the
incoming RTP packets upon return from the function.

In egress (packets going to the IP interface), through xDspSysInit(), the application registers
a callback function with the DSP software. This callback function is supposed to deliver the data
packet to the IP interface and sends it out. The DSP software always prepares the memory for the
packet and fills the packet header information (including local time stamp) and packet payload
before it calls the function. This user-provided function should create and encode the RTP header
with the time stamp in the data packet supplied by the DSP software. After returning from the
function, the DSP software will immediately reuse the memory for other purpose. Therefore, it
may be necessary for the callback function to make a copy of the packet.

Since the function is called from the internal real-time tasks at regular basis each time when a
packet is generated, there are two additional requirements for the callback function:

• It must finish as soon as possible without any blocks inside (to allow real-time data to be
acquired and processed without data loss)

• It must be multi-task-safe (it must allow re-entry)

Figure 6. Packet Interface

xPacketReceive()

packetSendCB()

Data packets delivered via
two call-back functions

Intel® IXP400 DSP Software

IP Stack

Revision 001

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 17

Components, Features, and Parameters 4

An Intel® IXP400 DSP Software channel consists of several media processing resource (MPR)
components, which can be addressed independently by the application. Each component has its
particular processing functions and features that are controlled by the messages and parameters. In
this section, we will discuss the MPR components and their features and parameters.

4.1 Network Endpoint
Network Endpoint component is a front-end data processing unit connecting the HSS interface to
the rest of MPR components. In additional to receive and transmit the data, it also applies the gain,
A-law or µ-law conversion (in the narrowband mode) in both directions and high- pass filter (HPF)
and echo cancellation in Rx direction (from the HSS to the DSP software).

The channels of Network Endpoint can be configured to narrowband or wideband in the
initialization time.

In the narrowband mode, the application can specify A-law or µ-law conversion by setting the
parameter XPARMID_NET_LAW. If this parameter is set to XPARM_NET_PASSTHRU, all the
front-end processing mentioned above will be automatically bypassed. This is only used for
debugging purposes and should not be set in normal applications. When
XPARM_NET_PASSTHRU is set, the encoder and decoder should also be set to PASSTHRU
codec. In this mode, 8-bit to 16-bit data conversion from HSS to linear is also bypassed and MPR
components — such as tone detection and tone generation — are no longer meaningful. This
parameter only applies to the narrowband mode.

Digital gain control can be applied to the audio signal in front of the Network Endpoint via the
XPARMID_NET_GAIN_RX and XPARMID_NET_GAIN_TX parameters. This feature should be
used only if the gain control is not available in the SLIC interface, because it takes extra processing
time and may also affect the voice quality if they are not set properly. Gain control is bypassed
when setting the gain control parameters to zero. A low-latency HSS channel bypass with gain
control is available. For more details, see “Audio Stream Router” on page 27.

A high-pass filter is applied to the input audio data from HSS interface in order to remove the
unwanted low frequency noise and safeguard the other algorithms from the harmful DC bias. The
HPF has the 3-dB cut-off frequency, at 270 Hz in the narrowband mode, or 150 Hz in the wideband
mode. The HPF cannot be disabled until the Network Endpoint is stopped.

Echo cancellation is the most significant function in this component. EC cancels the echo
generated by the hybrid of local telephone interface and phone set so that the other party connected
to the channel will not hear the echo. In other words, the beneficiary of EC is the remote party.

EC performance is mainly affected by two parameters: tail length and delay compensation (that is,
XPARMID_NET_ECTAIL and XPARMID_NET_DELAYCOMP). Depending on the hardware
circuits and telephone set, the tail length of 4 ~ 8ms is usually good enough if the telephone set is
directly connected to the unit.

18 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Since EC is very computation intensive, the longer tail length results in higher CPU occupancy.
Changing the parameter of EC tail length requires that the Network Endpoint component be reset
(by sending XMSG_RESET message). The CPU occupancy is about doubled if the channel is
configured to the wideband mode. The tail length is limited to 32 ms for wideband mode.

EC can be made the most effective if the reference signal is properly aligned with the delayed echo
signal. That is the purpose of adjusting the parameter of delay compensation. The value of the
parameter should be determined according to the customer’s specific hardware platform.

The user can use the XPARMID_NET_ECENABLE message to enable/disable EC. The message
XPARMID_NET_ECFREEZE, used to disable adaptation on the EC algorithm, should only be
used in debugging.

Network Endpoint resource also provides a complementary function of reporting hook state and
detecting flash hook on behalf of the SLIC interface. The SLIC driver often notices the hook state
changes through the interrupt. The SLIC’s interrupt service routine can call the
xFlashHookDetect() function which reports the hook state via the
XEVT_NET_HOOK_STATE event. The event data gives the hook state. If an on-hook followed by
an off-hook transition within the time specified by the XPARMID_NET_FLASH_HK parameter, a
flash-hook event will be reported.

Another complementary function is timer service. The user applications can set the timer counter
via the XPARMID_NET_TIMER parameter. This counter is decremented by 1 each 10 ms. A
XEVT_NET_TIMER event is generated when the counter is decremented to 0.

The Network Endpoint component is started with the default setup values automatically after
initialization. The application can still start or stop it using XMSG_START or XMSG_STOP
message for debug and test purpose. Stopping the component is to stop EC, HPF, and the
complementary functions, but the audio data stream still continues and the A-law or µ-law
conversion still functions in the narrowband mode. In other words, stopping the Network Endpoint
component does not affect data transfer between the HSS and IP interfaces.

4.2 Encoder
The primary function of this component is to encode and packetize the audio data from HSS and
then send to the IP interface. The audio CODEC supports G.711, G.726, G.722, and G.729 on 10-ms
frame size and G.723.1 on 30-ms frame size. Other features include Automatic Gain Control
(AGC), Voice Activity Detector (VAD), and Multiple Frame per Packet (MFPP). In the following
paragraphs, the possible affect of these features on voice quality or system performance is briefly
discussed.

This component works in the wideband mode when using G.722.

There are two automatic gain control elements: AGC in the egress side and ALC (Automatic Level
Control) in the ingress side. Only one of these should be turned on, depending on what gain control
functions are implemented in the remote party.

In the completed audio path when two parties are connected, enabling both AGC on one side and
ALC on the other side may cause unexpected interaction and degrade voice quality. Typical VoIP
equipment employs ALC, thus it is recommended that AGC is turned off and ALC is turned on
(this is the default).

 Programmer’s Guide 19

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

The VAD algorithm can distinguish active speech signal from the silence (background noise).
During the silence period the encoder only sends much smaller packets containing only the noise
parameter at much lower rate. That helps to reduce network traffic.

Enabling VAD slightly impacts the voice quality.

Another effect of VAD is the change of average CPU occupancy. Enabling VAD in G.729 and
G.723.1 will significantly reduce the average occupancy because the most complicated processing
of G.729 encoder is eliminated during the silence and background-noise period. However, VAD
increases the CPU occupancy, when enabled with G.711, because the VAD algorithm is much more
complicated than just the G.711 coder.

VAD is not available in G.726 and G.722.

Packing more frames into a packet (i.e., MFPP) is another way to reduce network traffic. The
application either specifies the number of frames per packet — in XMSG_CODER_START
message when it starts the encoder — or modifies it — by setting the parameter
XPARMID_ENC_MFPP at any time. Obviously, having MFPP increases the total latency and
voice quality is more affected if the packet is lost. Typically, this trade-off of network traffic versus
latency/voice quality is made depending on the target network and user preference.

The maximum numbers of frames that can be packed in one packet are listed below.

The user can query or change the coder type via the XPARMID_ENC_CTYPE parameter.

Switching the coder type on the fly may cause a few packets discarded. The number of frames per
packet may be reduced automatically during switching if it exceeds the maximum allowed by the
new coder type. If the encoder is started by XMSG_START message without specifying MFPP and
the coder type, the current parameter values take effect.

G.726 has four different rates. Each of them is treated as a different coder type. They use dynamic
RTP payload types that are negotiated by the call stack during call setup. The application is
responsible for informing the DSP software the payload types to be used in the current call by
setting the payload type parameters. The payload type of the coder not used in the current call has
no effect. The payload type parameters are:

• XPARMID_ENC_G726_40_RTP_PLD

• XPARMID_ENC_G726_32_RTP_PLD

• XPARMID_ENC_G726_24_RTP_PLD

• XPARMID_ENC_G726_16_RTP_PLD

Coder Types Maximum MFPP

G.711, G.722 6

G.723.1 8

G.726 40 Kbps 9

G.726 32 Kbps 12

G.726 24 Kbps 16

G.729, G.726 16 Kbps 24

20 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Two packing formats are supported for G.726 of all the rates. One is described in RFC 3551 as
commonly used for VoIP. Another is defined for ATM AAL in ITU-T I.366.2 Annex E. The
XPARMID_ENC_G726_PACK parameter determines which format takes effect. Setting the
parameter to XPARM_G726_PACK_LSB will choose RFC 3551 packing format or
XPARM_G726_PACK_MSB for I.366.2 Annex E format.

The XPARMID_ENC_EVT_PKT message is used to setup the encoder to report bad packets. This
is only intended for debugging since packet loss should not be monitored on an event basis.

Typically, the user application starts Encoder by XMSG_CODER_START or XMSG_START
message when a call is setup and stops it when the call is torn down. The Encoder is the component
that enables data flow from HSS to the IP side.

A PASSTHRU CODEC type is provided for debugging purposes in the narrowband mode, in
conjunction with the pass through mode of the Network Endpoint component. When using
PASSTHRU CODEC, no signal processing is done. The data in RTP G.711 packets are directly
copied from HSS.

4.3 Decoder
The Decoder receives the encoded audio packets from the IP interface and converts them to the
audio stream to the HSS interface. Similar to the encoder, the decoder supports G.711, G.729,
G.723.1, G.722, and G.726 coder types and additional features like Comfort Noise Generator
(CNG), ALC, Packet Loss Concealment (PLC), and Jitter Buffer.

CNG is the counterpart of VAD in the encoder. For G.729 and G.723 coders, CNG is built into the
decoder algorithms and cannot be turned off. For G.711, disabling CNG will result in the pure
silence between active speech periods if VAD is enabled in the remote party.

CNG is not available in G.726 and G.722.

The PLC algorithm uses the previous speech signal to repair the lost frames. But it cannot repair
any big chunk of consecutive frames lost. Because of the complexity of PLC algorithm, it will
increase the processor occupancy during packet loss when using G.711, G.726, and G.722 coders.
But since they are relatively low computation coders, the resultant processor occupancy rates are
still lower than that of G.729 and G.723.

The PLC algorithm is always enabled.

The Decoder automatically handles MFPP if a received packet contains multiple frames. The
application starts Decoder when a call is setup, using XMSG_CODER_START message
(frmsPerPkt field in the message is ignored for the Decoder). Currently, both the Encoder and
Decoder support MFPP frame counts that are limited by internal buffer size.

The Jitter Buffer regulates the flow of data from the IP interface to the HSS interface. This is
necessary since encoded audio packets from the IP interface are being transmitted on the IP
network in real time using RTP protocol. This means packets can be delayed, out-of-order,
duplicated, or lost without re-transmission. To perform this function, the Jitter Buffer delays
incoming packets to allow delayed and out-of-order packets to arrive and be delivered to the HSS
interface correctly. This delay is dynamically adjusted by the Jitter Buffer depending on IP network
conditions.

 Programmer’s Guide 21

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

The Jitter Buffer monitors network conditions by checking the timestamps in the incoming DSP
software packets against the local clock. (The correct sequencing of audio packets is also done with
the help of the timestamp.) The Jitter Buffer implements a proprietary delay profiling algorithm
that provides better tracking and improves voice quality, compared with the algorithm specified by
RFC 1889.

There is typically a trade-off of delay versus being able to recover more delayed packets in real
data networks. The Jitter Buffer allows the user application to balance this by two parameters:

• XPARMID_DEC_JB_MAXDLY — Specifies the maximum desired jitter delay in ms (current
range is 0 to 500 ms)

• XPARMID_DEC_JB_PLR — Specifies the allowable packet loss rate in 0.1% units

The jitter buffer automatically determines the jitter delay based on the network delay profile it
keeps from the desired packet loss rate, subject to the limit of the maximum allowed jitter delay
parameter. By setting the allowable packet loss rate judiciously, a balance between voice quality
and latency can be achieved in real network conditions.

If a packet has not arrived after the allowable jitter delay, the packet is declared lost and the
Decoder is instructed to perform packet loss concealment. The Jitter Buffer also handles VAD
packets and MFPP packets appropriately.

The Jitter Buffer handles RFC 2833 tone packets independently, since they can be at a different rate
than the CODEC frame rate and the timestamp are event based instead of frame based.

The Jitter Buffer is at the front-end of the ingress side. The user application uses the
xPacketReceive() function to copy the encoded audio packets from the IP interface directly
into the jitter buffer memory.

The user can query the coder type via the XPARMID_DEC_CTYPE parameter. During decoding
processing, the coder type may be switched automatically according to the received RTP payload
type or changed by the user's application.

To allow automatic coder switch, the user need to set the XPARMID_DEC_AUTOSW parameter in
which each bit represents a coder type. For instance setting the parameter to
(XPARM_DEC_AUTOSW_G711MU | XPARM_DEC_AUTOSW_G711A) means to allow the decoder
to automatically switch between G.711 A-Law and µ-Law coder types. The received packets will
be discarded if they do not match either of the two coder types.

Setting the parameter to XPARM_DEC_AUTOSW_OFF disables the auto-switch feature.

Setting the parameter to XPARM_DEC_AUTOSW_ALL enables Decoder to switch to all supported
coder types.

The user can also change the coder via the XPARMID_DEC_CTYPE parameter at any time. But
keep in mind that the coder type may switch anyway if auto-switch is enabled. When the decoder is
started by XMSG_START message without specifying the coder type, the current parameter takes
effect. Changing the coder type on the fly may cause a few packets lost.

The DSP software reports the changes of received RTP payload type through the event message
(XMSG_EVENT). The event code is XEVT_DEC_PACKET_CHNG. The event data 1 gives the coder
type associated with the changed payload type and the event data 2 is the received RTP payload
type. From the event and the setting of XPARMID_DEC_AUTOSW parameter, the user application
can determine if the coder type is switched automatically or not.

22 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

For example if the coder type reported by event matches any of the ones set in the
XPARMID_DEC_AUTOSW parameter, the event also indicates the decoder has switched its coder
type accordingly. The event report can be enabled or disabled by the
XPARMID_DEC_EVT_PKTCHNG parameter.

G.726 has four different rates. Each of them is treated as a different coder type. They use dynamic
RTP payload types that are negotiated by the call stack during call setup. The application is
responsible for informing the DSP software the payload type to be used in the current call by
setting the payload type parameters. The parameters are:

• XPARMID_DEC_G726_40_RTP_PLD

• XPARMID_DEC_G726_32_RTP_PLD

• XPARMID_DEC_G726_24_RTP_PLD

• XPARMID_DEC_G726_16_RTP_PLD

Two packing formats are supported for G.726 of all the rates. One is described in RFC 3551 as
commonly used for VoIP. Another is defined for ATM AAL in ITU-T I.366.2 Annex E. The
XPARMID_DEC_G726_PACK parameter determines which format takes effect. Setting the
parameter to XPARM_G726_PACK_LSB will choose RFC 3551 packing format or
XPARM_G726_PACK_MSB for I.366.2 Annex E format.

The XPARMID_DEC_EVT_PKT parameter is used to set up the decoder to report packet loss.
This is only intended for debugging since packet loss should not be monitored on an event basis.

Typically, the user application starts the Decoder together with the Encoder when a call is setup and
stops it when the call is torn down. The decoder is the component that enables data flow from the
IP side to the HSS. A PASSTHRU CODEC type is provided for debugging purposes, in
conjunction with the pass through mode of the Network Endpoint component in the narrowband
mode. When using PASSTHRU CODEC, no signal processing is done. The data in RTP G711
packets are directly copied to HSS.

4.4 Tone Generator
The Tone Generator is capable to generate single- or dual-frequency tone and amplitude-modulated
tone. It has a set of pre-defined tones. And user-defined tones can be added. Several tone segments
can be combined as a single tone signal. This is very useful to generate some special call progress
tones.

Internally, a tone is represented by a template that contains information like tone ID, frequencies,
amplitude, and cadence. Current supported tones can have one or two frequencies (DTMF), each
with its amplitude information. (Modulated tones are supported by specifying the carrier
frequency/amplitude and modulating frequency/amplitude.) Tones, (especially call progress tones),
can have a cadence, that is, an “on” duration, following by an “off” duration, and a repeat pattern.

The Tone Generator is a narrowband resource and cannot produce the frequency higher than
4,000 Hz.

All the tone templates, including DTMF and call progress tones, are pre-defined. Since call
progress tones are country-specific, the application has to set the country code during initialization,
so that Tone Generator can select the correct template table accordingly.

Overall tone volume can be changed by the XPARMIDTNGEN_VOL parameter.

 Programmer’s Guide 23

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

The application can play tones by sending XMSG_TG_PLAY message with a list of tone IDs to be
played sequentially. The definition of tone ID is compliant to RFC 2833 standard.

If tones are played while decoder has been started, the tone signal will overwrite or mix with the
speech signal from the decoder according to the mode specified in the tone template. Most tones
are of the overwrite-mode so that the speech is muted during the whole tone period. However,
some tones have the cadence of a tone-on duration followed by a silent duration. For example, a
call-progress tone, such as the call waiting notification tone, may require a short tone, followed by
a long pause, and then the repetition of the tone-on/tone-off sequence. For these tones, the mix-
mode is more appropriate, which allows the tone signal to be added to the speech so that the speech
is not suppressed during the silence duration, or non-activated part of the tone.

If a continuous tone (e.g., call-progress tone) is played, the user application can stop it by playing
another tone or stop it explicitly using XMSG_STOP message.

The Tone Generator can also generate FSK modem signals compliant to ITU-V.23 or Bellcore*
202 specifications, depending on user mode selection via the XPARMID_TNGEN_FSK_MOD
parameter. This is implemented for caller ID generation. To implement caller ID functionality, a
user application has to directly control the SLIC telephone interface and implement the caller ID
transmit sequence, which are beyond the scope of the current DSP software.

FSK parameters such as baud rate, channel seizure bits (CS) length, mark bits length, and postmark
bits length can be modified by the XPARMID_TNGEN_FSK_RATE,
XPARMID_TNGEN_FSK_CS, XPARMID_TNGEN_FSK_MARK, and
XPARMID_TNGEN_FSK_POSTMK parameters, respectively.

The Tone Generator also generates the corresponding tones when RFC 2833 packets are received,
if RFC 2833 tone generation is enabled by the XPARMID_TNGEN_RFC2833 parameter. The RTP
user application needs to classify the RFC-2833 packets based on the negotiated dynamic payload
type, and encode the media field in the headers to indicate to the DSP software that these are RFC-
2833 packets. RFC-2833 tones will override audio frames if both are present.

Although the Tone Generator has a set of pre-defined tones including the DTMF tones and the call
progress tones of the United States, Japan, and China, the user applications can add more tone
definitions through the xBuildToneTG() function in which a new tone is defined by a list of
tone segments and associated tone ID.

Each segment is specified by a set of parameters including the signal types (single or dual
frequency or amplitude-modulated tone), amplitudes or modulation rate, on/off durations and
numbers of repetitions. A total of 64 tone segments can be added. Since a tone can contain multiple
segments, the number of tones that can be added can be less than 64. The multiple segment tones
are typically necessary in the country-specific call progress tone definitions.

Users can replace the pre-defined call progress tones with the newly added tones by specifying the
same tone IDs.

The user-defined tones must be added during initialization time following xDspSysInit().

24 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

4.5 Tone Detector
The Tone Detector is also a narrowband resource and is able to detect single- or dual-frequency
tones with the frequency range from 300 ~ 3,500 Hz, using an FFT analyzer. Besides the pre-
defined tones, users can add new criterion tables during initialization to detect user-specified tone
signals.

To reliably detect a dual tone, it is required that the frequencies of the dual-tone signal are
separated by at least 200 Hz.

Internally all the tones to be detected (that is, DTMF tones and fax tones) are described by a list of
templates that contain the criteria of frequencies, energy, SNR, durations, and so on.

To use any features provided by the Tone Detector, the user application needs to first start Tone
Detector by sending XMSG_START message. The basic function of Tone Detector is to report tone
events that are enabled by setting the parameter XPARMID_TD_RPT_EVENTS. Tone-on and/or
tone-off events are reported according to the parameter. Tone events are reported via the
XMSG_EVENT message in which the event data 1 field indicates tone ID and event data 2 field is
the time stamp in 10-ms units.

Instead of being notified by tone events, the user application may want to receive a DTMF digit
string, for example, a telephone number entered from the telephone set. For this purpose, the user
application can use the XMSG_TD_RCV message and specify number of digits it expects and the
termination conditions. Tone Detector will return the result via XMSG_TD_RCV_CMPLT message
once the digits are collected or the termination conditions are met.

One scenario of using this feature is call setup. For example when the application detects the off-
hook state of the telephone, it plays the dial tone and then starts to collect 10 digits of calling
number entered by the telephone. It waits for 20 seconds for the first entering. After that, it stops
collecting the entering of the digits if getting all the 10 digits as expected, or no entering in 5
seconds after any digits, or any special digits (star or pound) entered, or the total time of 25 seconds
passed before getting 10 digits.

In this case, the application use the XMSG_TD_RCV message, specifying all the termination
conditions mentioned above in the message correspondingly. The XMSG_TD_RCV_CMPLT
message returns the collected digits and tells the reasons why collecting the digits is stopped. If the
tone event report is enabled during receiving digits, the first digit entering is also reported as an
event. The application can use that event to stop the dial tone in the above example. Then the tone
event report is temporarily disabled for the rest of digits automatically.

The Tone Detector can also receive and decode FSK signals used in Caller ID specifications.
Currently it works for Bellcore 202 or ITU-V.23 at a fixed, 1,200-bps baud rate. To start receiving
FSK data, the application sends the XMSG_TD_RCV_FSK message and receives the
XMSG_TD_RCV_FSK_CMPLT message with the decoded data once completed, or when the
specified timeout has expired.

During receiving FSK, all other tone detection features are temporally suspended.

Another feature of the Tone Detector is tone clamping. The Tone Detector mutes the input audio
stream from HSS during the period when a tone signal is detected. For VoIP applications, this
feature is primarily used to implement out-band DTMF, because the tone signal is often distorted
by speech coder like G.729. Since it takes about 30 ms to detect a tone, up to 30-ms tone signal may
already leak out before it is clamped. To prevent tone leakage, the user application can enable the
look-ahead buffer by setting the buffer size parameter XPARMID_TD_TC_FRAMES to 1, 2 or 3 (in
10-ms units). Remember that enabling the look-ahead buffer increases the latency accordingly.

 Programmer’s Guide 25

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

If RFC 2833 is enabled (XPARMID_TD_RFC2833E_ENABLE), the Tone Detector will generate
RFC-2833 payloads for transmission from the user RTP application, via the registered RTP
transmit function (using xDspSysInit). The RTP payload type for the RFC-2833 packets is
specified by the user via the XPARMID_TD_RFC2833E_PAYLOADTYPE message. The marker
bit in the packet header is also set by the DSP software.

The rate for RFC-2833 packet generation can be set by the user application
(XPARMID_TD_RFC2833E_UPDATERATE, typical rate is either 50 ms or coder frame rate). The
number of beginning-of-tone (XPARMID_TD_RFC2833E_NUMBOE) and end-of-tone
(XPARMID_TD_RFC2833E_NUMEOE) redundant packet transmission can also be set by the user
application.

Normally, audio RTP packets are not transmitted during tones, but they can be enabled by turning
off audio suppression (XPARMID_TD_RFC2833E_AUDIOSUPRESS).

Besides a set of built-in criteria to detect the DTMF and fax tones, users can add new criterion
tables, using xBuildToneTD(), to detect user-specified tone signals. Currently users can add
the new tone detection ability for single or dual frequency tones but not amplitude modulated (AM)
tones. The user-specified tone will be reported via the XMSG_EVENT message along with the tone
ID and time stamp.

The user cannot replace the pre-defined tone detection criteria. New tones are always added in
addition.

4.6 Audio Player
The Audio Player component resource plays back the pre-recorded audio data to TDM and /or IP
terminations. The Audio Player is currently designed to play cached voice prompts, that is, the
audio data must be all pre-loaded into memory. The user application registers the audio data with
the DSP software via xDspRegCachePrompt() and obtains the prompt handles. Each handle
represents a piece of audio data stored in contiguous memory.

Currently up to 32 handles can be registered permanently. The audio data must be recorded in
G.711 A-law/µ-law or G.729 format without VAD and loaded into the memory as raw data format
without any extra embedded information such as header and time stamps, etc..

The demo source code included in this release gives the examples of using hard coded audio data
and loading the audio data from wave format files.

During playback, the application can play any selected data segments by specifying the handle,
offset and length. This segment information must be supplied with the XMSG_PLY_START
message. Each message can carry up to 14 segments which can be played back in any given order
once or repeatedly.

The number of player instances in the DSP software is configurable at initialization time. Each
player instance has a dedicated location of the output audio stream where the encoded audio data is
converted. To play back to an HSS or IP channel, the Network Endpoint resource or the Decoder
resource has to listen to a player instance by connecting its input to the player. For details of audio
stream routing, see “Audio Stream Router” on page 27.

If an application uses the player resource only for playing on-hold music, one player instance is
enough for the purpose since all the channels can listen to the same player. Otherwise each channel
may need a dedicated player instance.

26 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

4.7 Audio Mixer
Audio Mixer mixes a number of audio streams to form an audio conference. The Mixer resource in
theDSP software is primarily used for three-way call applications. It does not have the pre-
processing functions that are found in the audio conference resources such as active talker
selection, and volume balance. Therefore, mixing too many parties may results in voice quality
problems like background noise built up, unbalanced volumes on different parties when the
network condition is not good.

This release of the DSP software provides one Mixer instance. A Mixer can be configured to have
3 ~ 5 ports (or parties) during the system configuration time.

Figure 7 on page 26 shows how the audio streams are connected when a normal two-way and a
three-way call are set up simultaneously. We can see during the three-way call there is no longer
1:1 association between HSS channels and IP channels and a mechanism of dynamically routing
the audio streams is required. This will be discussed in the next section. Also we may need more IP
channels than HSS channels if two parties of the three-way call come from IP side.

The Mixer has multiple ports (pairs of input and output audio streams). Each port is to be
connected to the resource (or party) that joins the call. The output of a port is the summation of all
the inputs except for itself.

For example, consider three-party mixing:

• First party with input port L1 and output port T1.
The output of first party on port T1 is sum of data of input ports L2 and L3.

• Second party with input port L2 and output port T2.
The output of second party on port T2 is sum of data of input ports L1 and L3.

• The third party with input port L3 and output port T3.
The output of third party on port T3 is sum of data of input ports L1 and L2.

The Mixer resource is started and stopped by the XMSG_START and XMSG_STOP messages. It has
the parameters that are used to link its audio input and output to other resources.

Figure 7. Audio Stream Connections in a Three-Way Call

HSS Channel 1 Audio-
Stream
Router

HSS Channel 2 IP Channel 2

IP Channel 3

IP Channel 1

Audio
Mixer

IP
Network

Revision 001

 Programmer’s Guide 27

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Currently, the Mixer operates only in the narrowband mode. The wideband audio data is converted
to narrowband if a wide channel is connected to the Mixer.

4.8 Audio Stream Router
The three-way call is an example that requires the audio streams be routed among the resources.
Other examples are call transfer and IP tone detection.

To route the audio streams, we first break the DSP resources along the data path into a TDM
termination and an IP termination which are connected by the router in between as shown in
Figure 8 on page 28.

The TDM termination contains the Network Endpoint resource

The IP termination contains a set of resources (Decoder, Encoder, Tone Detector, and Tone
Generator).

The TDM termination has a talk-port (T-Port) that supplies data to the router and a listen-port (L-
Port) that receives the data from the router.

The IP termination has one T-Port shared by Decoder and Tone Generator and two L-Ports for
Encoder and Tone Detector separately.

In general, a resource that generates PCM audio data has a T-Port as its output and a resource that
receives the audio has an L-Port as its input. For example, an Audio Player instance has only one T-
Port and a Mixer has multiple pairs of T-Ports and L-Ports.

The Router applies sampling rate conversion (SRC) automatically if the resources being connected
are in different modes (wideband or narrowband).

The DSP software implements a distributed switch method to route the audio streams. The Audio
Stream Router is not a control entity but a set of streams that can link the T-Ports and L-Ports.

All the T-Ports of the resources are assigned the dedicated streams permanently.

Routing is done by enabling an L-Port of a resource to listen to any streams by setting a parameter
to the resource. In this way any T-Ports can be linked to any L-Ports.

Figure 8 shows a full-duplex connection between a TDM termination and an IP termination. In this
figure, if the L-Port of the Tone Detector listens to the stream of the T-Port of the same IP
termination instead of the one of TDM termination, then it will detect tones coming from the
remote IP side.

28 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Each stream is specified by a unique ID number from 0. A null stream is given the ID as (-1). Any
L-Ports listen to the null stream receive silence.

To make a connection between two resources, the user has to know what stream IDs are assigned to
the T-Ports of the resources. Such information is available by calling xDspGetResConfig().
The function returns the base stream IDs for the T-Port for each type of terminations and resources
(the TDM and IP terminations, Player and Mixer).

For example, the base stream ID of the TDM termination means the stream ID assigned to the T-
Port of the first TDM termination channel. The T-Port stream of nth channel (n=1,2,..) is calculated
as (base stream + n - 1). The base stream of the Mixer means the output stream of the Mixer's first
port. The Mixer has 3~5 L-Ports that it mixes and it has the same numbers of T-Ports where the
outputs of the mixes are transmitted.

Having the stream ID information for the T-Ports, the user can have a resource listen to a particular
T-Port by setting the L-Port stream parameter of the resource. For example, to detect the tone from
IP side in the channel 2 of the IP termination, the user first obtains the base stream ID of the IP
termination (suppose it is 4), Then the T-Port stream ID of IP termination channel 2 is 5 (4 + 2 - 1).
The user needs to set the XPARMID_TD_LP_STREAM parameter of the Tone Detector to 5.

Network Endpoint and Encoder have their L-Port stream parameters too.

The XPARMID_MIX_LP_STREAM is such parameter ID of the first port of the mixer. For the rest
of the ports, parameter IDs increases by 1 sequentially.

Examples of high-level message interfaces that link the terminations and the Mixer are also
provided using the Message Agent approach.

In some applications, the user may want to link two TDM terminations without IP involved (also
called TDM switch or TDM bypass).

There are two modes for such connection. In the normal mode — when the
XPARMID_NET_HSS_BYPASS parameter in Network Endpoint resource is set to
XPARM_OFF(0) — the echo cancellation and front end gain control are applied to the audio path.
This achieves a latency of approximately 25 ms. This is a bypass at the Intel XScale® Core level.

Figure 8. Terminations and Router

Network
Endpoint

Phone
Interface

Dec / TG

Enc

Tone Det

RTP
IP

…

TDM Termination

Audio-Stream
Router

TD detects tones from IP side,
if it listens to this stream.

IP Termination

T Port

L Port

L Port

T Port

L Port

Revision 001

 Programmer’s Guide 29

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

In the short bypass mode when the parameter is set to XPARM_ON(1), the connection is made
within the NPE between the corresponding time slots, therefore the latency is reduced significantly
to approximately less than 2 ms. In this mode, only the gain control remains in effect.

The short bypass can only be enabled if both TDM terminations to be linked are in narrowband
mode or the audio data will be corrupted.

4.9 T.38 Fax
The T.38 Component serves as the real-time fax gateway between G3E fax machines and IP
network. Unlike the fax bypass mode in which the modulated fax data are directly packed in G.711
format and transmitted over RTP packets, the T.38 component transfers the demodulated T.30
commands and fax image data over UDP or TCP packets.

As depicted in Figure 2 on page 10, the T.38 component contains three modules:

• A fax modem that establishes the T.30 session between the fax gateway and the local fax
machine

• T.38 CODEC that encapsulates the demodulated T.30 commands and HDLC data together
with redundancy or forward error correction, into fax data packets suitable for transmission
over UDP or TCP protocols

• Packet Loss Recovery (PLR) that recovers lost packets from the redundancy or forward error
correction on the receive side

The T.38 component is implemented as a separated entity from the voice resources (the Encoder,
Decoder, Tone Detector, and Generator). It accepts the common control messages such as
XMSG_START, XMSG_STOP, and XMSG_SETPARM.

The T.38 component is mutually exclusive with voice resource components within the same
channel during the run-time. It is the user applications' responsibility to stop the voice resources
and start the T.38 component when switching over from voice mode to T.38 fax mode.

The included DSP codelet source code provides examples of how this can be accomplished in the
VoIP gateway demonstration.

The DSP software uses the same packet format to exchange voice and T.38 packets with the user
applications. The media type field in the packet header indicates the packet types. In the TDM side,
the fax modem uses the same PCM stream IDs assigned to the Encoder and Decoder with the same
instance number to receive or generate the modulated fax data.

There are different modes that T.38 can operate in: in UDP or TCP mode, specified by the
parameter XPARMID_T38_TRANSPORT, with packet redundancy or FEC (Forward Error
Correction), specified by the parameter XPARMID_T38_FEC.

For UDP mode, the T.38 packets are transmitted to the IP in UDP packets. Packet loss in the
network is recovered by either FEC or packet redundancy.

For TCP mode, the fax payload is transmitted via TCP/IP protocol. Packet loss in the network is
recovered by retransmission via the TCP/IP protocol.

30 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Encapsulation of the UDP or TCP packets is the responsibility of the user application. In UDP
mode, the DSP software emits the formatted UDPTL packet; in TCP mode, it emits the raw fax
payload. The media type field in the DSP packet header identifies the type of packet being
transmitted or received.

The XPARMID_T38_RATE_NEG parameter determines whether the rate negotiation is performed
locally or remotely. Rate negotiation is typically done remotely for UDP mode, since the network
conditions affect rate selection. Rate negotiation is typically done locally for TCP mode. In this
case, XPARAID_T38_TCF_THRSHLD determines the error level threshold used to locally
determine the rate.

In UDP mode, T.38 specifies either packet redundancy or FEC for error recovery. For packet
redundancy, the XPARMID_T38_REDUNDANCY parameter specifies the level of redundancy. This
is only an indication of the overall level of redundancy. The actual redundancy in the payload is
also determined by the type of fax payload (for example, signaling or image data).

The DSP software also optionally supports some variations on the T.38 protocol for Ellipsis* and
China Telecom* versions.

4.10 Message Agent
The DSP software exposes the individual media-processing resources and provides a basic set of
message interface to user applications. This allows the maximal flexibility, but may not be
convenient to the application development.

For example, the user application may have a state machine driven by the asynchronous events
from the call stack and user inputs of the telephone set. For each event, the application has to send
several control messages to the resource components and handle the replies. The large number of
messages and their replies make the state machine more complicated. Ideally, the user may want to
have just one comprehensive message for each event which can accomplish all the control over all
the resource components involved and to receive only one reply message for the results.

The Message Agent can be viewed as a macro or scripting facility that allows multiple basic
messages to be executed by one user message command. By eliminating multiple messages being
passed between the DSP software and user application, the associated context swaps are removed
and operating efficiency gained. By providing a base of helpful pre-defined user messages, which
can be modified and expanded, the integration between user application and the DSP software can
be expedited.

If users are going to replace their existing DSP solution with the DSP software, they may have to
modify their applications significantly because of the differences in the interfaces, or they may
implement a translation layer to convert the interface. To build such a layer on top of the DSP
software may introduce extra overhead and inefficiency. With the Message Agent, the user can
embed such translation layer inside the DSP software much more easily and efficiently because the
message traffic is greatly reduced.

The Message Agent is a special resource component which does not have any media processing
functions. To support the user-defined, high-level messages, the user needs to supply a message
decoder function registered with the Message Agent. The function decomposes the user message
into a series of original control messages. The Message Agent will directly execute the control to
resources based on the decoded message sequence. During the procedure, the responses from the
resources are redirected to another user-supplied message encoder function which composes the
responses into one user-defined reply message sent back to the user application by the Message

 Programmer’s Guide 31

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Agent. The only responses which are directly the results of the control messages such as
XMSG_ACK and XMSG_ERROR are redirected. The messages that are the results of media data
processing like XMSG_EVENT and XMSG_TG_PLAY_CMPLT are still sent to the applications as
usual.

The Message Agent is enabled if a message decoder function is registered during the initialization
via the xDspSysInit() function. The message encoder function is optional. If not registered,
the replies from the resources are always sent to the application as usual.

As examples, this release includes a set of high-level messages and the source code of message
decoder and encoder functions. User can further extend and modify that message interface.

32 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Components, Features, and Parameters

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 33

Programming Guide 5

This section discusses the rules and guidelines that should be followed when building user
applications on top of the Intel® IXP400 DSP Software.

5.1 Initialization
As the DSP software is a standalone module or a layer of media processing, it must be configured
and initialized properly before the application can interact with it. To configure the software, the
user must provide configuration information as defined in the XDSPSysConfig_t data
structure. That includes:

• The Signal formats and time slot assignment on the HSS's TDM bus as defined by the data
structures IxHssAccConfigParams and IxHssAccTdmSlotUsage.
Each instance of the Network Endpoint resource must be linked to one or four time slots
depending on the mode. If more time slots are activated, the data from the extra time slots are
ignored and the data to those time slots are undetermined.
The link between the effective time slots and the instances of the Network Endpoint is
specified by the XDSPChanTdmSlots_t data structure. If not given, all the instance of
Network Endpoint will be configured to the narrowband mode and the first N time slots will be
linked to the total N instance of Network Endpoint component sequentially. (For more details,
see Section 8.1 in API Reference Manual.)
In current release, the number of active time slots must be at least eight if the low-latency
TDM switching feature is required. (The latency of HSS NPE will be minimized if eight or
more time slots are enabled).

• The number of instances of media processing resource components. The maximum number of
instances is four (except for Mixer which has only one instance). The default number of four
will be used if an invalid number is given.

• Country code which determines the call-progress tone definitions and some the default FSK
parameters.

• The base priority for the internal real-time data-processing and control tasks.

• The call back functions.

With user-supplied configuration information, the initialization follows these steps:

1. Download HSS NPE code and initialize HSS dependents.
(For more information, see HSS Interface document and demo source code.)

2. Add user-specified tone detection criterion tables to Tone Detector using xBuildToneTD().

3. Call xDspSysInit() with the configuration information as described above.

4. An assertion occurs if fatal errors happen (for example, if the memory is exhausted).

5. Add user-defined tone definitions to Tone Generator using xBuildToneTG().

6. Use xDspGetResConfig() to retrieve the base stream information assigned to the
different resource components.

34 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Programming Guide

Such information is required when routing the audio streams between the resources. Also the
function returns the actual resource configuration that can be different from what a user may
have incorrectly specified.

5.2 Programming Model
A VoIP gateway application may contain several modules such as user interface, IP call stacks, and
the DSP software. The key functionality of the gateway application is to handle the call progress
procedure: establishing calls and connecting the audio data path between two remote and local
parties, then dropping the calls and disconnecting the data path accordingly. From control point of
view, this procedure can be characterized as the interactions among the DSP software, IP call stack,
and SLIC driver through asynchronous messages and commands. Such control logic is best
implemented by a message-driven state machine model. The DSP software's control interface is
suitably designed to support this programming model.

To use the state machine approach, it is recommended that the user application spawn a dedicated
task to handle the call-progress procedures. The DSP software allows the user to use the DSP
software release output message queue via the xMsgWrite() function.

The user can use this function to send external messages (such as SLIC driver events or IP call
stack messages) back to the user application to allow all message inputs to be consolidated. (In
Linux*, this can be done in the client driver module). Then the user control task is pending on the
message queue, using xMsgReceive(), to handle all the call progress-related messages from all
these modules.

Figure 9 shows a general approach of such state machine model. In this programming model, a call
progress scenario is represented by a sequence of states. Each state is characterized by:

The actions it takes

The messages it expects

The next state it goes to

For example, the scenario of accepting a remote call can be represented by the following states:

• Idle State — Waiting for call-setup message from IP call stack.

• Ring State — Ringing the local telephone set and waiting for an off-hook event.

• Channel Setup State — Sending control messages to the DSP software to start encoder,
decoder, and tone-detector resources and waiting for the acknowledges.

• Connected State — Acknowledging IP call stack that a local channel has been set up. Waiting
for disconnect message from the call stack or on-hook event from the local telephone set.

• Teardown State — Sending control messages to the DSP software to stop the resources and
waiting for acknowledgements. Acknowledging IP call stack that the channel has been
teardown. Going back to Idle State.

The actual state machine will be more complicated when taking all the possible error conditions
into account. For instance, timeout message must be handled in Ring State if the call is not
answered.

 Programmer’s Guide 35

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Programming Guide

The major advantage of such programming model is the high efficiency and good performance. In
Linux, it also helps the DSP software to maintain its real-time behavior. The Gateway Demo
included in this release is a good example of using this programming model.

Figure 9. General State-Machine Approach for Client Applications

Yes No

Creating task
Initializing Intel® IXP400
DSP Software
Initializing state information

Waiting for reply and event
or user-defined message

Updating state
information

Handling the reply, event, or message
according to the current state information
Handling the error conditions
Determining the next state

State changes?

Starting/initializing a new state
Sending control message (or to
SLIC driver and IP call stack that
will eventually result in a message
coming in through the message
queue)

Revision 003

36 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Programming Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 37

OS-Specific Issues 6

Because of the substantial differences between VxWorks* and Linux, the DSP software's internal
real-time environment and interface are implemented differently. The exposed APIs look, however,
are identical.

Users need to understand some OS-specific issues in order to design the overall software
appropriately.

6.1 VxWorks*
The application development in VxWorks is quite straightforward because of the excellent real-
time properties and development tools provided by the OS. There are two aspects that make the
implementation in VxWorks simpler.

• It provides the preemptive multitasking environment with enormous supporting functionalities

• All the software modules reside under the same memory address space

In the current release for VxWorks, two internal tasks are spawned and two sets of task properties
are reserved for future use, as listed below. (The higher the number, the lower the priority is.) The
priorities of the real-time tasks are assigned according to rate-monotonic-scheduling (RMS) — that
is, the higher-frequency periodic task gets higher priority.

The user applications can change the default priority settings during the initialization by specifying
the base priority level — the priority of the control task. The real-time tasks have higher priorities
than the base priority, increasing by one level sequentially. The users have to assign the priorities to
their application tasks properly in order to coexist with the DSP software. In summary, the rules for
the user applications are:

• User control tasks that are not involved in data- and packet-processing should not have a
higher priority than the internal control task.

• User time-critical tasks may have a higher priority only if their execution is predictable and
does not significantly affects the internal real time task. (For example, the task does not
preempt the real-time tasks long enough to prevent the real-time task from meeting its
deadline, every 10 ms.)

• The applications must not send a burst of control messages without waiting for the replies, or
the message queues may overflow.

Task Name Priority Description

DspCtrlTsk 40 Control task. Pending on in-bound message queue. Triggered by incoming
control messages.

DspRtTsk30 39 Real-time task. Wake up in every 30 ms synchronously with PCM data.
Executes G.723, fax modem and T.38 CODEC algorithms.

DspRtTsk10 38 Real-time task. Wakes up in every 10 ms synchronously with PCM data.
Execute all DSP algorithms supported in the current release.

38 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
OS-Specific Issues

6.2 Linux*
Linux will be the choice for the DSP software if the cost of the target products is the major
consideration. This OS will require some extra development effort and caution because:

• Linux is not a real-time OS and does not support priority-based, preemptive multitasking.

• User-mode applications cannot directly access the interfaces which reside in kernel-mode.
A shim layer of driver software must be developed to allow the user application to
communicate with the DSP software.

The DSP software in Linux is fully in kernel mode. The software creates the following kernel-
mode threads:

The two threads have the same priorities and do not preempt each other. To enforce real-time
behavior, it is important that DspCtrlTsk never takes too much time in any 10-ms period.
Although the DSP software is designed to avoid the burst execution in the control task, it can still
be affected by the user applications.

For the performance and reliability reasons, it is suggested the user applications that are non-time-
critical such as call-control and call-progress modules be implemented in Linux user-mode. It is the
user's responsibility to develop the client driver module as shown in Figure 10.

The demo code in the DSP software release provides an example of the client driver module.

As the middleware, the primary responsibility of the driver module is to act as a transport layer
between the DSP software's control interface and the user application and between the packet
interface and the IP stack. The secondary responsibility is to perform the module initialization,
which can be done as part of driver module initialization function. Additionally, the driver may
also consolidate the messages and events from SLIC and other related modules into the same
format and through a single queue to the user applications.

Thread Name Priority Description

DspCtrlTsk kernel Control thread. Pending on in-bound message queue. Triggered by incoming
control messages.

DspRtTsk30 kernel Real- time task, Wakes up every 30 ms synchronously with PCM data.
Executes G.723, fax modem and T.38 CODEC algorithms.

DspRtTsk10 kernel Real time task. Wakes up every 10 ms synchronously with PCM data. Execute
all the DSP algorithms supported in the current release.

 Programmer’s Guide 39

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
OS-Specific Issues

The driver can be implemented as an active or passive transport layer. In active mode, the driver
spawns a dedicated kernel thread pending on the out-bound queue and automatically pumps the
messages to applications once there is a message in the queue. In passive mode, it retrieves the
message from the queue once the user application requests it.

As discussed in “Programming Guide” on page 33, the programming model for user application is
still recommended. The applications should not send a burst of control messages without waiting
for the replies, or the real-time behavior of the DSP software may be affected.

If the user application has to create kernel threads for time-critical data processing, the execution of
the threads must be predictable and not impact the internal real time thread. As a guideline, the
total execution time of these other threads should not exceed 1 ms in any 10-ms period.

Figure 10. Intel® IXP400 DSP Software Client Driver in Linux*

User Mode

Kernel Mode

Control
Messages

Data
Packets

IXP400 DSP Software
Client Driver

IP Stack

Other Drivers,
e.g., SLIC

IXP400 DSP Software

Intel® IXP400 DSP Software
Client Application

Revision 001

40 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
OS-Specific Issues

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 41

User-Defined Messages 7

The DSP software provides a facility for users to define custom messages, based on a combination
of basic messages, to enable a simpler and more efficient interface.

7.1 Overview
To enable the user control message facility using the Message Agent, the user application needs to
register a decoder function and an encoder function with the DSP software, via the function
xDspSysInit(). The decoder function is called by the DSP software to decode all user control
messages. The encoder function is called to handle all the replies to the decoder function,
eventually encoding a reply message to the user message.

User control messages have the same format as the basic control messages, which contain a
message header defined as:

The resource field in the header should specify XMPR_MA, which directs it to the Message Agent
resource.

The instance field must be always 1. Since instance field is always 1 for the messages sent to and
received from the Message Agent, the user has to use the transactionId field to track the
messages associated with the channels.

The type field in the header specifies type of message. User control messages should start with the
value XMSG_USRMSG_TYPE_BEGIN - values less than this constant represents the basic control
messages.

User-defined messages are delivered in the same way as theDSP software control messages —
using the same message queues for input and output, respectively.

The Message Agent calls the registered decoder function when the type is beyond its internal
range. The user-supplied decoder function is of the format:

typedef struct{
UINT32 transactionId; /* used by apps to track the message */
UINT16 instance; /* instance ID (1-0xffff), 0:reserved */
UINT8 resource; /* MPR resource type */
UINT8 reserved; /* reserved for future */
UINT16 size; /* total size in bytes */
UINT8 type; /* message type */
UINT8 attribute; /* attribute, reserved for future */

} XMsgHdr_t, *XMsgRef_t;

typedef int (*XMsgAgentDec_t)(XMsgRef_t pUsrMsg,
 XMsgRef_t pNativeMsg, int sequenceNo);

42 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

The first parameter of the decoder function is the input message pointer, referencing the control
message to be decoded.

The second parameter is the output message pointer, referencing the output of the decoder function.

The sequenceNo field starts at 1 for the first decoder function call, and is incremented each time the
decoder function is called.

The return value of the decoder function indicates whether the decoder function is complete with
its message sequencing (returns 0); or whether the decoder function should continue to be called
(returns non-zero). The return value can simply be the number of messages left to sequence. If
there is an error in the decoder process, the return value is set to negative. The return value —
together with the sequence number — are used to drive the decoder function until the entire
message sequence required is complete.

One useful feature of the Message Agent is the ability to recursively call other user control
messages (maximum level of recursion is 4). This allows more complex functions to be built
compactly.

The user encoder function is of the format:

The first parameter of the encoder function is the output message pointer, referencing the output of
the encoder function.

The second parameter is the input message pointer, referencing the reply message from the
resource component involved.

The Message Agent first calls the encoder function once with sequenceNo set to
XMSG_MA_ENCODING_INIT (0) before receive the replies. Then the sequenceNo field is
incremented each time a reply is received. The Message Agent in the DSP softwaresets this field to
XMSG_MA_ENCODING_CMPLT (-1) when the decoding process is complete.

The usrMsgType field informs the encoder of the user message ID, such that specific encoder
functions may be called accordingly.

The replies to the decoded messages are re-directed to the encoder function, which can record the
number of replies and any errors that may occur. A final reply message will be encoded and sent
back to the user application when the message decoding process is complete.

Figure 11 depicts how the Message Agent processes user-defined control messages.

typedef void (*XMsgAgentEnc_t)(XMsgRef_t pUsrReply, XMsgRef_t pNativeReply,
 int sequenceNo, UINT8 usrMsgType);

 Programmer’s Guide 43

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

7.2 Pre-Defined User Messages
This section describes the user messages that have already been implemented as examples. They
can be further extended or modified by the users. These messages form a higher-level control
interface for the application scenarios like call setup, call transfer and three-way call. The control
entities of this interface are the terminations which can be a TDM or IP terminations or a port of the
mixer. The termination is specified by its type and channel defined as:

Figure 11. Decoding User-Defined Messages in the Message Agent

Receive user-defined message

 Allocate memory for decoded message.
 Call user encoder function to initialize.
 Set decoder sequence # = 1 .

 Call user decoded function to obtain the
 decoded message .

If decoded msg is a
DSP message?

Repeat
recursively

 Forward the message to DSP resource.
 Reply from DSP resource redirected to
 user’s encoder function.

If decoder function
returns < 0 ?

If decoder function
returns > 0 ?

Call user encoder function to complete

End

End
with
error

Set decoder
sequence #

+ 1

No

No

No

Yes

Yes

Yes

Revision 001

44 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

where channel is the channel number, and type can be

The following message types are defined and the corresponding message decoder and encoder
functions are implemented:

typedef struct{
 UINT8 type;
 UINT8 channel;
} __attribute__ ((packed)) IxDspCodeletTerm;

typedef enum{
 IX_DSP_CODELET_TERM_NULL = 0, /* null termination, to link to null
 means to disconnect the L-Port */
 IX_DSP_CODELET_TERM_TDM, /* TDM termination contains one DSP
 dspResource - Network Endpoint which
 has a T-Port and a L-Port */
 IX_DSP_CODELET_TERM_IP, /* IP termination contains DEC,ENC,
 TG and TD resources. It has one
 T-Port shared by DEC and TG and
 2 L-Ports for ENC and TD. But in
 This API, the 2 L-Ports always
 listen to the same talker */
 IX_DSP_CODELET_TERM_MIXER_PORT, /* Mixer termination has multiple
 T-Ports and L-Ports */
 IX_DSP_CODELET_TERM_EOL /* End of List */
} IxDspCodeletTermType;

 Programmer’s Guide 45

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

7.2.1 Link Message
Type: IX_DSP_CODELET_MSG_LINK

Direction: Inbound

Description: Connects two specified terminations. Since terminations involve multiple resources,
this involves multiple basic control messages.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm term1;
 IxDspCodeletTerm term2;
} IxDspCodeletMsgLink;

typedef enum{
 /*------ messages send to Message Agent -------*/
 IX_DSP_CODELET_MSG_LINK = IX_DSP_CODELET_MSG_TYPE_BEGIN,
 IX_DSP_CODELET_MSG_LINK_BREAK,
 IX_DSP_CODELET_MSG_LINK_SWITCH,
 IX_DSP_CODELET_MSG_START_IP,
 IX_DSP_CODELET_MSG_STOP_IP,
 IX_DSP_CODELET_MSG_SETUP_CALL,
 IX_DSP_CODELET_MSG_SET_CALL_PARMS,
 IX_DSP_CODELET_MSG_SETUP_CALLWPARMS,
 IX_DSP_CODELET_MSG_SWITCH_CALL,
 IX_DSP_CODELET_MSG_CREATE_3WCALL,
 IX_DSP_CODELET_MSG_EXIT_3WCALL,
 IX_DSP_CODELET_MSG_TEARDOWN_3WCALL,
 IX_DSP_CODELET_MSG_BACKTO_2WCALL,
 IX_DSP_CODELET_MSG_SET_CLEAR_CHAN,
 IX_DSP_CODELET_MSG_T38_SWITCH,
 IX_DSP_CODELET_MSG_SET_PARMS,
 IX_DSP_CODELET_MSG_END_OF_OUTMSG,
 /*------messages received from Message Agent------*/
 IX_DSP_CODELET_MSG_ACK,
 IX_DSP_CODELET_MSG_LINK_ACK,
 IX_DSP_CODELET_MSG_SETUP_ACK,
 IX_DSP_CODELET_MSG_3W_ACK,
 IX_DSP_CODELET_MSG_STOP_ACK,
 IX_DSP_CODELET_MSG_T38_ACK,
 IX_DSP_CODELET_MSG_END_OF_LIST
} IxDspCodeletMsgType;

46 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

Macro:
#define IX_DSP_CODELET_MAKE_MSGHDR_LINK(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_LINK, \
 sizeof(IxDspCodeletMsgLink) \
)\
 }

Response:

General Acknowledgement message (IX_DSP_CODELET_MSG_Link_ACK)

7.2.2 Link Break Message
Type: IX_DSP_CODELET_MSG_LINK_BREAK

Direction: Inbound

Description: Disconnect two terminations. This connects each termination to null, using the
IX_DSP_CODELET_MSG_LINK user message.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm term1;
 IxDspCodeletTerm term2;
} IxDspCodeletMsgLinkBreak;

Macro:
#define IX_DSP_CODELET_MAKE_MSGHDR_LINK_BREAK(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_LINK_BREAK, \
 sizeof(IxDspCodeletMsgLinkBreak) \
)\
 }

Response:

General Acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.3 Link Switch Message
Type: IX_DSP_CODELET_MSG_LINK_SWITCH

 Programmer’s Guide 47

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

Direction: Inbound

Description: Disconnects the termination from one termination and connects to another. This
connects the term termination to the switchTo termination, and connects the switchFrom
termination to null. Again, this uses the IX_DSP_CODELET_MSG_LINK user message.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm term;
 IxDspCodeletTerm switchFrom;
 IxDspCodeletTerm switchTo;
} IxDspCodeletMsgLinkSwitch;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_LINK_SWITCH(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_LINK_SWITCH, \
 sizeof(IxDspCodeletMsgLinkSwitch) \
)\
 }

Response:

General Acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.4 Start IP Message
Type: IX_DSP_CODELET_MSG_START_IP

Direction: Inbound

Description: Starts an IP termination. This involves the basic messages to start the Encoder,
Decoder, and Tone Detector, respectively, and to stop the Tone Generator.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT8 channel;
} IxDspCodeletMsgStartIP;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_START_IP(pMsg, trans, chanIP) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_START_IP, \

48 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 sizeof(IxDspCodeletMsgStartIP) \
)\
 ((IxDspCodeletMsgStartIP *)(pMsg))->channel = (chanIP);\
 }

Response:

General Acknowledgement message (IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.5 Stop IP Message
Type: IX_DSP_CODELET_MSG_STOP_IP

Direction: Inbound

Description: Stops an IP termination. This involves the messages to stop the Encoder, Decoder,
Tone Detector, and Tone Generator, respectively.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT8 channel;
} IxDspCodeletMsgStopIP;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_STOP_IP(pMsg, trans, chanIP) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_STOP_IP, \
 sizeof(IxDspCodeletMsgStopIP) \
)\
 ((IxDspCodeletMsgStopIP *)(pMsg))->channel = (chanIP);\
 }

Response:

Stop Acknowledgement message (IX_DSP_CODELET_MSG_STOP_ACK)

7.2.6 Set Up Call Message
Type: IX_DSP_CODELET_MSG_SETUP_CALL

Direction: Inbound

Description: Sets up a call. This uses two user messages, IX_DSP_CODELET_MSG_LINK to
connect an HSS termination to an IP termination, and IX_DSP_CODELET_MSG_START_IP to
start the IP termination.

Format:
typedef struct{

 Programmer’s Guide 49

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 XMsgHdr_t header;
 UINT8 channelIP;
 UINT8 channelTDM;
} IxDspCodeletMsgSetupCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_SETUP_CALL(pMsg, trans, chanIP,
chanTDM) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_SETUP_CALL, \
 sizeof(IxDspCodeletMsgSetupCall) \
)\
((IxDspCodeletMsgSetupCall *)(pMsg))->channelIP = (chanIP);\
((IxDspCodeletMsgSetupCall *)(pMsg))->channelTDM = (chanTDM);\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.7 Set Call Parameters Message
Type: IX_DSP_CODELET_MSG_SET_CALL_PARMS

Direction: Inbound

Description: Sets parameters of a call. These parameters are likely affected by the results of
negotiation between the call stacks and may change call by call. The message involves four basic
messages to set the parameters for the Encoder, Decoder, Tone Detector, and Tone Generator of an
IP termination.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletCallParms parms;
 UINT8 channelIP;
}IxDspCodeletSetCallParms;

where IxDspCodeletCallParms is defined as:
typedef struct{
 UINT16 decAutoSwitch;
 UINT8 decType;
 UINT8 encType;
 UINT8 frmsPerPkt;
 UINT8 vad;
 UINT8 rfc2833;
 UINT8 rfc2833pyldType;

50 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 UINT8 toneClamp;
} IxDspCodeletCallParms;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_SET_CALL_PARMS(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_SET_CALL_PARMS, \
 sizeof(IxDspCodeletSetCallParms) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_ACK)

7.2.8 Set Up Call with Parameters Message
Type: IX_DSP_CODELET_MSG_SETUP_CALLWPARMS

Direction: Inbound

Description: Setup a call with parameters. This involves two user messages,
IX_DSP_CODELET_MSG_SET_CALL_PARMS to setup the call parameters, and
IX_DSP_CODELET_MSG_SETUP_CALL to setup the call.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletCallParms parms;
 UINT8 channelIP;
 UINT8 channelTDM;
} IxDspCodeletMsgSetupCallwParms;

where IxDspCodeletCallParms is defined as:
typedef struct{
 UINT16 decAutoSwitch;
 UINT8 decType;
 UINT8 encType;
 UINT8 frmsPerPkt;
 UINT8 vad;
 UINT8 rfc2833;
 UINT8 rfc2833pyldType;
 UINT8 toneClamp;
} IxDspCodeletCallParms;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_SETUP_CALLWPARMS(pMsg, trans) \

 Programmer’s Guide 51

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_SETUP_CALLWPARMS, \
 sizeof(IxDspCodeletMsgSetupCallwParms) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.9 Switch Call Message
Type: IX_DSP_CODELET_MSG_SWITCH_CALL

Direction: Inbound

Description: Switches a call. This involves two user messages,
IX_DSP_CODELET_MSG_LINK_SWITCH to switch an HSS termination to another IP
termination, and IX_DSP_CODELET_MSG_SETUP_CALL to set up the call.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT8 channelTDM;
 UINT8 ipChanOnHold;
 UINT8 ipChanNewCall;
} IxDspCodeletMsgSwitchCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_SWITCH_CALL(pMsg, trans, chTDM,
chHld, chNew) \

 {\

 XMSG_MA_MAKE_HEADER \

 (pMsg, \

 trans, \

 IX_DSP_CODELET_MSG_SWITCH_CALL, \

 sizeof(IxDspCodeletMsgSwitchCall) \

)\

((IxDspCodeletMsgSwitchCall *)(pMsg))->channelTDM = (chTDM);\

((IxDspCodeletMsgSwitchCall *)(pMsg))->ipChanOnHold = (chHld);\

((IxDspCodeletMsgSwitchCall *)(pMsg))->ipChanNewCall = (chNew);\

 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

52 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

7.2.10 Create Three-Way Call Message
Type: IX_DSP_CODELET_MSG_CREATE_3WCALL

Direction: Inbound

Description: Sets up a three-way call. This involves using user message
IX_DSP_CODELET_MSG_LINK three times to connect each of the three parties in the three-way
call to the mixer. Then a basic message is used to start the mixer resource.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm parties[3];
} IxDspCodeletMsgCreate3wCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_CREATE_3WCALL(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_CREATE_3WCALL, \
 sizeof(IxDspCodeletMsgCreate3wCall) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK).

7.2.11 Exit Three-Way Call Message
Type: IX_DSP_CODELET_MSG_EXIT_3WCALL

Direction: Inbound

Description: Exits a three-way call. This is the same as in
IX_DSP_CODELET_MSG_CREATE_3WCALL, except the
IX_DSP_CODELET_MSG_LINK_BREAK is used instead. Then a basic message is used to stop
the mixer resource.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm parties[3];
} IxDspCodeletMsgExit3wCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_EXIT_3WCALL(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \

 Programmer’s Guide 53

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_EXIT_3WCALL, \
 sizeof(IxDspCodeletMsgExit3wCall) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK)

7.2.12 Tear Down Three-Way Call Message
Type: IX_DSP_CODELET_MSG_TEARDOWN_3WCALL

Direction: Inbound

Description: Tear down a three-way call. This involves first using the user message
IX_DSP_CODELET_MSG_EXIT_3WCALL to exit the three-way call. Then the user message
IX_DSP_CODELET_MSG_STOP_IP is used to stop any IP channels that have been connected.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm parties[3];
} IxDspCodeletMsgTeardown3wCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_TEARDOWN_3WCALL(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_TEARDOWN_3WCALL, \
 sizeof(IxDspCodeletMsgTeardown3wCall) \
)\
 }

Response:

Stop acknowledgement message (IX_DSP_CODELET_MSG_STOP_ACK)

7.2.13 Back to Two-Way Call Message
Type: IX_DSP_CODELET_MSG_BACKTO_2WCALL

Direction: Inbound

54 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

Description: Changes a three-way call to a two-way call. It involves using the user message
IX_DSP_CODELET_MSG_EXIT_3WCALL to exit the three-way call. Then the user message
IX_DSP_CODELET_MSG_LINK is used to create the two-way call. Then the user message
IX_DSP_CODELET_MSG_STOP_IP is used to stop the IP termination if the disconnected party
is one.

Format:
typedef struct{
 XMsgHdr_t header;
 IxDspCodeletTerm party1;
 IxDspCodeletTerm party2;
 IxDspCodeletTerm partyToDrop;
} IxDspCodeletMsgBackto2wCall;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_BACKTO_2WCALL(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_BACKTO_2WCALL, \
 sizeof(IxDspCodeletMsgBackto2wCall) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK).

7.2.14 Set Clear Channel Message
Type: IX_DSP_CODELET_MSG_SET_CLEAR_CHAN

Direction: Inbound

Description: Sets a channel to clear channel. This involves five basic messages to set the
parameters of the Encoder, Decoder, Tone Generator, Tone Detector, and Network resources,
respectively.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT8 channelIP;
 UINT8 channelTDM;
 UINT8 codeType;
} IxDspCodeletMsgSetClearChan;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_SET_CLEAR_CHAN(pMsg, trans,
chanIP, ChanTDM, code) \
 {\

 Programmer’s Guide 55

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_SET_CLEAR_CHAN, \
 sizeof(IxDspCodeletMsgSetClearChan) \
)\
((IxDspCodeletMsgSetClearChan *)(pMsg))->channelIP = chanIP; \
((IxDspCodeletMsgSetClearChan *)(pMsg))->channelTDM = ChanTDM; \
((IxDspCodeletMsgSetClearChan *)(pMsg))->codeType = code; \
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_ACK)

7.2.15 T.38 Switch-Over Message
Type: IX_DSP_CODELET_MSG_T38_SWITCH

Direction: Inbound

Description: Switches a channel between voice and T.38 fax modes.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT8 channelIP;
 UINT8 channelTDM;
 UINT8 mode; /* mode to switch, fax or voice */
} IxDspCodeletMsgT38Switch;

Macros:
#define IX_DSP_CODELET_MAKE_MSG_T38_SWITCH(pMsg, trans,
chanIP,ChanTDM,md) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_T38_SWITCH, \
 sizeof(IxDspCodeletMsgT38Switch) \
)\
((IxDspCodeletMsgT38Switch *)(pMsg))->channelIP = chanIP; \
((IxDspCodeletMsgT38Switch *)(pMsg))->channelTDM = ChanTDM; \
((IxDspCodeletMsgT38Switch *)pMsg)->mode = md;\
}

Response:

T.38 acknowledgement message (IX_DSP_CODELET_MSG_T38_ACK)

56 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

7.2.16 Set Parameters Message
Type: IX_DSP_CODELET_MSG_SET_PARMS

Direction: Inbound

Description: Sets parameters. It sends basic messages to set the parameters from an input list
across the different resource components involved.

Format:
typedef struct{
 XMsgHdr_t header;
 UINT16 numParms;
 IxDspCodeletParm parms[IX_DSP_CODELET_MAX_PARMS];
} IxDspCodeletMsgSetParms;

where IxDspCodeletParm is defined as:
typedef struct{
 UINT16 parmID;
 INT16 value;
 UINT8 dspResource;
 UINT8 dspResInstance;
} __attribute__ ((packed)) IxDspCodeletParm;

Macros:
#define IX_DSP_CODELET_MAKE_MSGHDR_SET_PARMS(pMsg, trans) \
 {\
 XMSG_MA_MAKE_HEADER \
 (pMsg, \
 trans, \
 IX_DSP_CODELET_MSG_SET_PARMS, \
 sizeof(IxDspCodeletMsgSetParms) \
)\
 }

Response:

General acknowledgement message (IX_DSP_CODELET_MSG_ACK).

7.3 Pre-Defined User-Response Messages

7.3.1 Acknowledge Message
There are three Acknowledge messages which are of the same format but corresponding to
different control messages.

Type:
IX_DSP_CODELET_MSG_ACK

IX_DSP_CODELET_MSG_LINK_ACK

 Programmer’s Guide 57

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

IX_DSP_CODELET_MSG_SETUP_ACK

IX_DSP_CODELET_MSG_T38_ACK.

Direction: Outbound

Description: Acknowledge messages to user control messages.

Format:
typedef struct{
 XMsgHdr_t header;
 INT16 numDspReplies;
 INT16 numErrors;
 IxDspCodeletError error[IX_DSP_CODELET_MAX_ERR_REPLY];
} IxDspCodeletMsgAck,
IxDspCodeletMsgLinkAck,
IxDspCodeletMsgSetupAck,
IxDspCodeletMsgT38Ack;

where IxDspCodeletError is defined as:
typedef struct{
 UINT32 errData;
 UINT16 errCode;
 UINT8 dspResource;
 UINT8 dspResInstance;
} IxDspCodeletError;

7.3.2 Stop Acknowledge Message
Type: IX_DSP_CODELET_MSG_STOP_ACK

Direction: Outbound

Description: Stops acknowledge message to user stop messages.

Format:
typedef struct{
 XMsgHdr_t header;
 INT16 numDspReplies;
 INT16 numErrors;
 IxDspCodeletError error[IX_DSP_CODELET_MAX_ERR_REPLY];
 INT16 numStopAck;
 IxDspCodeletStopCmplt stopAck[IX_DSP_CODELET_MAX_STOP_CMPLT];
} IxDspCodeletMsgStopAck;

where IxDspCodeletError is defined above and IxDspCodeletStopCmplt is defined as:
typedef struct{
 UINT32 totalFrames;
 UINT8 dspResource;
} IxDspCodeletStopCmplt; UINT8 dspResInstance;

58 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
User-Defined Messages

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5 Programmer’s Guide 59

Application Examples 8

8.1 IP Interface
The Intel® IXP400 DSP Software uses two interface functions to transfer encoded audio packets to
and from the IP interface. These audio packets are transferred on the IP network as RTP (Real-time
Transport Protocol) packets. RTP packets are UDP (User Datagram Protocol) packets with a 12-
byte RTP header at the beginning of the UDP payload. UDP packets are suitable for transmitting
real-time media data since they are low on overhead and thus provide speedy delivery, though
packet delivery is not guaranteed.

The RTP packet streams need to be extracted from the overall incoming IP traffic in the ingress
direction, and merged to outgoing IP traffic in the egress direction. One way to do this is to
examine the IP packets in the Ethernet driver. Incoming RTP packets are routed to the DSP
software, while other IP packets are sent to the user's IP stack. Another way is to route all IP traffic
to the user application from the Ethernet driver. Then the user uses standard interfaces, such as
sockets, to route the appropriate traffic to the respective parties.

The advantage of the second approach is that socket functionalities are already provided both by
the VxWorks or Linux operating systems. The EthAcc interface of the DSP software is integrated
with the Ethernet driver and the user application developers do no need to worry about this service.
The user application is only required to perform initialization and then exchange control messages
and data packets between the DSP software and the application. Because an application can open
multiple sockets as needed, the resource in the DSP software can be shared by multiple clients.

A typical VoIP application using sockets will consist of a few tasks that handle either the data
packets or the control messages. Figure 12 and Figure 13 on page 61 show two possible
implementations in VxWorks and Linux, respectively.

In VxWorks, the application has direct access of the control and data interface. This makes it
straight forward to exchange control messages and data packets between the application and the
DSP software. As shown in Figure 12, two tasks are spawned in the application. One uses
xMsgReceive() to wait for the event and response messages and the other waits for packets
from the socket. Control messages are sent directly by calling xMsgSend(), and Packets received
from the socket will be passed by calling xPacketReceive(). The DSP software will directly
call a call back function, for example packetSendCB(), which is registered with
xDspSysInit() during initialization, to send packets through the socket.

The case for Linux is slightly different because the application usually runs in user mode, while the
DSP software runs in kernel mode. To get the event and response message to the application, a task
is needed in user mode — using xMsgReceive() to wait for messages from the DSP software.
Another task running in user mode waits for packets from the socket and then uses driver-write
function call to pass the packets to the driver which then call xPacketReceive() to pass the
packet along to the DSP software. Control messages are also delivered by using driver write
function calls and then xMsgSend() is called in kernel mode.

The application may choose to send and receive packets through sockets with a single port. A
channel ID can be embedded in the package so that the package can be passed to the corresponding
the DSP software channel based on the ID number. Alternatively, the application may choose to
map the socket port number with the DSP software channel.

60 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Application Examples

Figure 12. Intel® DSP Software Application in VxWorks*

Application

HssAcc

EthAcc

Socket

Recvfrom()

Sendto()

IP stack

MII/Phy

AD/DA and
Telephone Interface

xMsgSend()

Task waiting for
messages

xMsgReceive() packetSendCB()

Intel® IXP400 DSP Software

Task waiting for
packets from socket

xPacketReceive()

Telephone

Ethernet Driver
(ethEND)

xMsgWrite()

Revision 003

 Programmer’s Guide 61

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Application Examples

8.2 Caller-ID Generator
The FSK modulator provided in the DSP software is designed primarily to allow user applications
to implement the caller-ID generator. It should be noted that caller-ID generation is a function of
the user application, since it involves direct interaction with the specific SLIC interface being used.

The caller ID specifications are country-specific and some of them can be found in the documents
of Bellcore* 202 for the United States, Technical Specification YDN 069-1977 for China1, and
NTT Technical Reference - Telephone Interfaces, Edition 5 for Japan.

Figure 13. Intel® DSP Application in Linux*

 Driver
 for control

Application

HssAcc

EthAcc

Socket

Recvfrom()

Sendto()

IP Stack

MII/Phy

AD/DA and
Telephone Interface

xMsgSend()

Task waiting for
messages

xMsgReceive

Intel® IXP400 DSP Software

Task waiting for
packet from socket

xPacketReceive()

Driver

packetSendCB()

Task reading
from driver

Task waiting for
messages from
Intel® IXP400
DSP Software

User Mode

Kernel
Mode

Telephones

Ethernet Driver

write

xMsgWrite()

Revision 004

1. In this document, all references to China refer to the People’s Republic of China.

62 Programmer’s Guide

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.5
Application Examples

In this release, the demo source codes are included to show how to implement U.S., China, and
Japan caller-ID generators on the evaluation platform using the FSK feature according to these
specifications.

To implement caller-ID generation, the user's applications are responsible to provide the following
functions in addition to FSK modulator:

• Generate the complete caller ID data to be transmitted by the FSK modem. The data must be
represented in octet (byte) without mark, start, and stop bits. The demo code includes useful
utilities that can build the caller ID data format from the information to be displayed and add
parity check bits, CRC octets, or check sum if necessary.

• Control the SLIC device to generate the signals such as polarity reverse, short ring (CRA), and
normal ring as required by the caller-ID specifications

• Detect the loop connection/disconnection (or off-hook/on-hook status) for Japan caller ID.
SLIC driver may report such events through the outbound message queue using the
complementary function of hook-event detection.

• Provide timer service using OS services, based on hardware or software resources. The built-in
complementary timer service function in the NET component in DSP software can be used for
this purpose. The timer events can be reported through the outbound message queue.

• Implement the state machine that follows the signal flow diagram of the caller ID as described
in NTT specifications. The data ID data as we discussed above are transmitted using the FSK
modem function in the proper state. The demo code gives an example of such state machine.

Most of other country-specific caller-ID generators can be implemented similarly. Some caller-ID
specifications, like Japan, require the FSK data to be transmitted in off-hook state, while others
transmit the data in on-hook state. The procedure of on-hook transmission is simpler because the
interactions between SLIC device and the caller-ID receiver are no longer necessary.

	Contents
	Figures
	1 Architecture of Intel® IXP400 DSP Software 9
	2 Data-Flow and Data-Processing Functions 10
	3 Intel® IXP400 DSP Software Message, Data, and Tasks 11
	4 Control Interface and Message Queues 14
	5 PCM Data Interface 15
	6 Packet Interface 16
	7 Audio Stream Connections in a Three-Way Call 26
	8 Terminations and Router 28
	9 General State-Machine Approach for Client Applications 35
	10 Intel® IXP400 DSP Software Client Driver in Linux* 39
	11 Decoding User-Defined Messages in the Message Agent 43
	12 Intel® DSP Software Application in VxWorks* 60
	13 Intel® DSP Application in Linux* 61

	Tables
	(No numbered tables.)

	Revision History

	Introduction 1
	1.1 General
	1.2 Scope
	1.3 Audience
	1.4 Related Documents

	Architecture Overview 2
	Run-Time Interfaces 3
	3.1 Control Interface
	3.2 PCM Data Interface
	3.3 Packet Interface

	Components, Features, and Parameters 4
	4.1 Network Endpoint
	4.2 Encoder
	4.3 Decoder
	4.4 Tone Generator
	4.5 Tone Detector
	4.6 Audio Player
	4.7 Audio Mixer
	4.8 Audio Stream Router
	4.9 T.38 Fax
	4.10 Message Agent

	Programming Guide 5
	5.1 Initialization
	5.2 Programming Model

	OS-Specific Issues 6
	6.1 VxWorks*
	6.2 Linux*

	User-Defined Messages 7
	7.1 Overview
	7.2 Pre-Defined User Messages
	7.2.1 Link Message
	7.2.2 Link Break Message
	7.2.3 Link Switch Message
	7.2.4 Start IP Message
	7.2.5 Stop IP Message
	7.2.6 Set Up Call Message
	7.2.7 Set Call Parameters Message
	7.2.8 Set Up Call with Parameters Message
	7.2.9 Switch Call Message
	7.2.10 Create Three-Way Call Message
	7.2.11 Exit Three-Way Call Message
	7.2.12 Tear Down Three-Way Call Message
	7.2.13 Back to Two-Way Call Message
	7.2.14 Set Clear Channel Message
	7.2.15 T.38 Switch-Over Message
	7.2.16 Set Parameters Message

	7.3 Pre-Defined User-Response Messages
	7.3.1 Acknowledge Message
	7.3.2 Stop Acknowledge Message

	Application Examples 8
	8.1 IP Interface
	8.2 Caller-ID Generator

